Volume 16, issue 2 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Spin structures on loop spaces that characterize string manifolds

Konrad Waldorf

Algebraic & Geometric Topology 16 (2016) 675–709
Abstract

Classically, a spin structure on the loop space of a manifold is a lift of the structure group of the looped frame bundle from the loop group to its universal central extension. Heuristically, the loop space of a manifold is spin if and only if the manifold itself is a string manifold, against which it is well known that only the if part is true in general. In this article we develop a new version of spin structures on loop spaces that exists if and only if the manifold is string. This new version consists of a classical spin structure plus a certain fusion product related to loops of frames in the manifold. We use the lifting gerbe theory of Carey and Murray, recent results of Stolz and Teichner on loop spaces, and some of our own results about string geometry and Brylinski–McLaughlin transgression.

Keywords
string structures, loop group, transgression, fusion product
Mathematical Subject Classification 2010
Primary: 57R15
Secondary: 58B05, 53C08
References
Publication
Received: 1 December 2013
Revised: 10 April 2015
Accepted: 27 July 2015
Published: 26 April 2016
Authors
Konrad Waldorf
Institut für Mathematik und Informatik
Ernst-Moritz-Arndt-Universität Greifswald
Walther-Rathenau-Str. 47
D-17493 Greifswald
Germany
http://waldorf.math-inf.uni-greifswald.de