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Explicit rank bounds for cyclic covers

JASON DEBLOIS

For a closed, orientable hyperbolic 3–manifold M and an onto homomorphism
�W �1.M/! Z that is not induced by a fibration M ! S1, we bound the ranks of
the subgroups ��1.nZ/ for n 2 N , below, linearly in n . The key new ingredient
is the following result: if M is a closed, orientable hyperbolic 3–manifold and
S is a connected, two-sided incompressible surface of genus g that is not a fiber or
semifiber, then a reduced homotopy in .M; S/ has length at most 14g� 12 .

20F05, 57M10; 20E06

The rank of a group G , rkG , is the minimal cardinality of a generating set. This paper
gives lower bounds on the rank of �1 among cyclic covers of certain 3–manifolds:

Theorem 0.1 For a closed, orientable hyperbolic 3–manifold M , a homomorphism
�W �1M � Z and an integer n� 2, let �n D ��1.nZ/. Let k�k denote the Thurston
norm of the cohomology class of � . If � is not induced by a fibration M ! S1, then

rk�n �
n� 1

7k�kC 2
:

The Thurston norm of the cohomology class of � is defined to be the minimum
of
Pk
iD1 maxf��.Si /; 0g, taken over all surfaces S embedded in M representing

the Poincaré dual of � , where the Si are the components of S . See Thurston [17].
Theorem 0.1 immediately implies the following bound on the rank gradient of the
pair .�1M; f�ng/, defined by Lackenby [12] as

rg.�1M; f�ng/D lim inf
n!1

.rk�n� 1/=n:

Corollary 0.2 For a closed, orientable hyperbolic 3–manifold M , a homomorphism
�W �1M � Z and an integer n� 2, let �n D ��1.nZ/. Let k�k denote the Thurston
norm of the cohomology class of � . If � is not induced by a fibration M ! S1, then

rg.�1M; f�ng/� 1=.7k�kC 2/:
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If � is induced by a fibration, then rk�1Mn � 2gC 1 for every n, where g is the
genus of a connected fiber. Hence rg.�1M; f�ng/D 0. In the earlier paper [3], joint
with Stefan Friedl and Stefano Vidussi, we proved a weaker analog of Corollary 0.2
for a broader class of 3–manifolds: compact, orientable and connected with toroidal or
empty boundary. For such M and �W �1M � Z, Theorem 1.1 in that paper implies
that rg.�1M; f�ng/ > 0 if � is not induced by a fibration.

The strategy of the proof of Theorem 1.1 in DeBlois, Friedl and Vidussi [3] is to find
a finite cover pW M 0!M inheriting a map �0W �1M 0� Z so that, for homological
reasons, rg.�1M 0; f.�0/�1.nZ/g/ > 0, whence rg.�1M; f�ng/ > 0 as well. The
“virtually special” machine (see Haglund and Wise [6] and Wise [21; 22]) produces p ,
and controlling its degree seems out of reach at present. Producing an explicit bound
thus requires a different strategy. Our approach here, outlined in Section 1, instead
follows that of [3, Section 3]. We use:

Corollary 2.2 For a closed, orientable hyperbolic 3–manifold M and a connected,
two-sided incompressible surface S �M of genus g that is not a fiber or semifiber,
the �1M –action on the tree determined by S is .14g� 12/–acylindrical.

Combining this with an acylindrical accessibility theorem of R Weidmann [20] im-
mediately gives Theorem 0.1. The action at issue above is described by Bass–Serre
theory, see, eg Scott and Wall [14]. A connected surface S �M is a semifiber if it
separates M into a disjoint union of twisted I –bundles over the nonorientable surface
double covered by S . If S is a semifiber, then there is a twofold cover zM !M such
that S lifts to a fiber of a fibration zM ! S1. It is necessary in Corollary 2.2 that S not
be a fiber or semifiber; otherwise each element of �1S < �1M fixes the entire tree, so
the action is k–cylindrical for all k � 0.

Corollary 2.2 in turn follows from Theorem 4.1 below, whose proof contains the
main substantive work of the paper. It is an extension of the so-called “veg-o-matic”
argument which has seen prior use in the works of Cooper and Long [2, Section 4], Li
[13, Section 2], Walsh [19], and Boyer, Culler, Shalen, and Zhang [1, Theorem 5.4.1].

Theorem 4.1 For a closed, orientable hyperbolic 3–manifold M and a connected,
two-sided incompressible surface S �M of genus g that is not a fiber or semifiber, a
nondegenerate, reduced homotopy in .M; S/ has length at most 14g� 12.

Above, a homotopy in .M; S/ is a map of pairs H W .K � I;K � @I /! .M; S/, for a
topological space K . It is reduced of length k if it is obtained by chaining together
homotopies H 1; : : : ;Hk such that H i is essential and .H i /�1.S/ D K � @I for
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each i , and H iC1 starts on the opposite side of S from which H i ends for i < k .
(See also Definition 2.4.) An observation of Z Sela [15] draws the connection between
homotopies through M of curves in S and cylinders of the �1M –action on the tree
of S . In Section 2, we reproduce this observation as Lemma 2.1. With Theorem 4.1, it
immediately implies Corollary 2.2.

Section 3 gives some results on intersections of surfaces that we use in Section 4
to prove Theorem 4.1. This argument has two main steps. The first step identifies
a sequence ‰1 � ‰2 � � � � of subsurfaces of S , of minimal complexity, with the
property that for each k , a reduced homotopy H with length k and target .M; S/ has
H0 homotopic into ‰k in S . The primary technical tool in this step is the characteristic
submanifold of the manifold obtained by cutting M along S .

The second step uses the fact that M is hyperbolic and S is not a fiber or semifiber
to show that ‰k is not homotopic into ‰kC2 in S as long as ‰k ¤ ∅. Therefore
eventually ‰k D∅, and homotopies expire in finite time.

For various reasons, previous versions of this argument do not require accounting
for solid torus components of the characteristic submanifold. However, homotopies
through M of curves in S may indeed pass through such solid tori. The difficulty
in extending the standard argument to accommodate this is that the time-0 map of a
homotopy through such a component may not determine the time-1 map.

We sidestep this issue, producing the ‰k by adding judiciously chosen annuli to a
sequence fˆkg of subsurfaces of S , identified in Boyer, Culler, Shalen, and Zhang [1],
that carry time-0 maps of “large” homotopies (see Definition 3.1) with target .M; S/.
Indeed, many of the results of Sections 3 and 4 rely on and directly extend work in [1].
We indicate when this is so and cross-reference precisely.

Acknowledgements

Many thanks to Peter Shalen for explaining the argument of Boyer, Culler, Shalen, and
Zhang [1] to me, and for helping me extend it to the present context. Thanks also to
Peter Scott and the anonymous referee for suggestions that have improved the paper.
This paper was originally written during a period of partial NSF support.

1 Proof of the main theorem

The proof of Theorem 0.1 closely follows the proof of [3, Theorem 3.4]. We will
sketch it below, at times referring to [3] for details. But first we recall the defini-
tion of an acylindrical action and reproduce an “acylindrical accessibility” theorem
of R Weidmann.
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1346 Jason DeBlois

Definition 1.1 [15] An action � �T ! T is k–acylindrical if no g 2 � �f1g fixes
a segment of length greater than k , and k–cylindrical otherwise.

Theorem (Weidmann [20]) Let � be a noncyclic, freely indecomposable, finitely
generated group and � �T ! T a minimal k–acylindrical action. Then �nT has at
most 1C 2k.rk� � 1/ vertices.

Assuming Corollary 2.2, we now sketch the proof of Theorem 0.1.

Proof sketch, Theorem 0.1 For a closed hyperbolic 3–manifold M and an onto
homomorphism �W �1M!Z, standard arguments produce a closed, oriented surface S
embedded in M that is dual to � in the sense that � D p� for the map

pW M ! S1 D Œ�1; 1� =.�1� 1/

defined as follows: for a tubular neighborhood N D S � Œ�1; 1� of S in M and
for .x; t/ 2 S � Œ�1; 1�, let p.x; t/D t , and let p.x/D�1� 1 for each x 2M �N .

There is a �1–surjective map qW M !G0 , where G0 is a graph with one vertex for
each component of M � .S � .�1; 1// and one edge for each component of S � Œ�1; 1�
(with the obvious attaching maps), such that p factors through q . If �.G0/ < 0,
then for each n � 2, rk�1Mn � �n�.G0/C 1. This follows from the fact that Mn

�1–surjects an n–fold cover of G0 , the motivating observation for [3, Lemma 3.3]
(see also [3, Lemma 2.6]).

By the above, the desired bound on rank holds if �.G0/ < 0, so we may assume
�.G0/D 0. Assuming that S has minimal complexity among all surfaces dual to � ,
it follows that G0 has one vertex and one edge, ie S is connected and nonseparating.
This assertion is proved in the final two paragraphs of the proof of [3, Theorem 3.4].
Here the complexity of S D S1 t � � � t Sk , where each Si is connected, is defined
as ��S D

Pk
iD1 maxf��.Si /; 0g. The Thurston norm k�k of � is by definition equal

to ��S for S dual to � with minimal complexity.

G0 is the underlying graph of a graph of spaces decomposition of M in the sense
of [14, page 155], with vertex space XDM � .S � Œ�1; 1�/ and edge space S�Œ�1; 1�.
There is an associated action of �1M on a tree T , without inversions, such that each
vertex stabilizer is conjugate to �1.X/ and each edge stabilizer to �1S0 for some
component S0 of S . See [14, pages 166–167], also [16] and [18]. This is what we call
the action on the �1M -tree determined by S .

We now apply the hypothesis that � is not induced by a fibration M ! S1. Then S
is not the fiber of a fibration M ! S1 (if it were, then p would be homotopic to a
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fibration), and since it is nonseparating, it is not a semifiber. Corollary 2.2 therefore
asserts that the �1M –action on T is .14g� 12/–acylindrical, where g is the genus
of S . This property is inherited by each subgroup �n D ��1.nZ/ < �1M . By
construction, the graph �nnT has n vertices and edges, so the result follows directly
from Weidmann’s theorem upon noting that k�k D 2g� 2.

2 Cylinders and homotopies

We reproduce example (iv) of Z Sela’s introduction to [15] below:

Let S be an incompressible surface in a compact 3–manifold M . Let M 0

denote the 3–manifold obtained by cutting M along S . A homotopy H
[in M ] between two closed curves in S can be decomposed into essential
homotopies in M 0 . The number of these essential subhomotopies is called
the length of H . An incompressible surface is called k–acylindrical if
no homotopy between closed curves in S has length bigger than k . To
an incompressible surface S in M corresponds a splitting of �1M . The
bound on the length of a homotopy between curves on S corresponds
exactly to the dual splitting being .kC1/–acylindrical.

The purpose of this section is to expand on Sela’s remarks, define his terms, and give a
reasonably detailed sketch proof of the assertion of his final sentence in our case.

Lemma 2.1 Let M be a closed, irreducible 3–manifold and S �M a closed, con-
nected, two-sided incompressible surface. For k > 1, the action �1M � T ! T on
the tree T determined by S is k–cylindrical if and only if there is a nondegenerate
reduced homotopy .S1 � I; S1 � @I /! .M; S/ of length k .

A surface S as above is incompressible if it is embedded in M with a �1–injective
inclusion map, and it is not a two-sphere that bounds a ball in M . See, eg [8, Chapter 6].
We prove Lemma 2.1 at the end of this section, but first note that combining it with
Theorem 4.1 immediately yields:

Corollary 2.2 For a closed, orientable hyperbolic 3–manifold M and a connected,
two-sided incompressible surface S �M of genus g that is not a fiber or semifiber,
the �1M –action on the tree determined by S is .14g� 12/–acylindrical.

Definition 2.3 Let X and Y be topological spaces. A homotopy with domain X and
target Y is a map H W X�I!Y . The time-t map of H is a map Ht W X!Y defined
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by Ht .x/ D H.x; t/. For a map f W X ! Y , a homotopy of f is a homotopy H
with H0 D f . A map gW X ! Y is homotopic to f if there is a homotopy H of f
with H1 D g .

Let H 1; : : : ;Hn be homotopies with common domain X and common target Y . A ho-
motopy H with domain X and target Y is the composition of H 1; : : : ;Hn if there exist
numbers 0D t0 < t1 < � � �< tn D 1 and monotone increasing linear homeomorphisms
˛i W Œti�1; ti �! Œ0; 1� such that H.x; t/DH i .x; ˛i .t// for all x 2X and t 2 Œti�1; ti �.

A path 
 W I ! Y may be regarded as a homotopy with domain X D ∅. We will
denote the composition of paths 
1; 
2; : : : ; 
n , as defined above, by 
1:
2: � � � :
n .

For Z � Y , we say f W X ! Y is homotopic into Z if f is homotopic to a map g
with g.X/ � Z . If W � X , a homotopy of W is a homotopy of the inclusion
map W ,!X . A map of pairs f W .X;W /! .Y;Z/ is essential if f is not homotopic
through maps .X; Y /! .Z;W / to a map into W .

The definitions above are standard. We have borrowed their precise formulations from
[1]. This is also our source for the definitions below that apply to 3–manifolds.

Definition 2.4 Let M be a closed 3–manifold, and let S � M be an embedded,
transversely oriented surface. A homotopy in .M; S/ with domain K is a homotopy H
with domain K and target M such that H.K � @I / � S . It is nondegenerate if
H�.�1K/¤ f1g, and basic if H�1.S/DK � @I .

For � 2 fC;�g, we say a basic homotopy starts (respectively, ends) on the �–side if
H.K�Œ0; ı�/�N� (respectively, if H.K�Œ1�ı; 1�/�N� ). Here N ŠS�Œ�1; 1��M
is a closed regular neighborhood of S , embedded so that S D S �f0g and the standard
transverse orientation is preserved; NC D S � Œ0; 1�; and N� D S � Œ�1; 0�.

We say that X DM �.S �.�1; 1// is obtained by cutting M along S . If H is a basic
homotopy in .M; S/ with domain K , then after straightening in N and reparametrizing,
the restriction of H to H�1.X/ determines a homotopy H 0 in .X; @X/ with domain K .
We say H is essential if H 0 is essential as a map of pairs .K�I;K�@I /! .X; @X/,
ie �1–injective and not properly homotopic into @X .

A homotopy H in .M; S/ with domain K is reduced with length k if there exist basic
essential homotopies H 1; : : : ;Hk and �i 2 fC;�g for 1� i � k such that H is the
composition of H 1; : : : ;Hk, and for each i < k , H i starts on the �i –side and ends
on the ��iC1–side, and Hk starts on the �k –side.

A connected, incompressible surface S in a closed 3–manifold M determines a
graph of spaces decomposition of M whose underlying graph G has a single edge,
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corresponding to S , and (one or two) vertices corresponding to the components of the
manifold X obtained by cutting M along S . By Bass–Serre theory, this determines
an action of �1M on a tree T , without inversions and with quotient graph G . We will
use the following basic consequence of this set-up.

Lemma 2.5 Suppose a group … acts on a tree T , transitively on edges and without
inversions. Let fe0; : : : ; ekg be a segment of T of length kC1, so ei ¤ ei�1 but ei
and ei�1 share an endpoint vi for each i > 0, and let ƒD Stab….e0/.

There are two cases to consider:

Case S If G D …nT has two vertices, let �� D Stab….v0/ and �C D Stab….v1/,
where v0 ¤ v1 is an endpoint of e0 (recall from above that v1 D e1 \ e0 ). Then for
each i 2 f1; : : : ; kg, there exists 
i , in �� �ƒ for i even and in �C �ƒ for i odd,
such that for each j � k , the element ıj D 
1
2 � � � 
j takes e0 to ej .

Case N If G has a single vertex, let � D Stab….v0/, let ƒC < � stabilize an edge e0

containing v0 but not �–equivalent to e0 , and fix � 2 … with �.e0/ D e0 . Orient
the edge of G so that e0 points toward v1 in the inherited orientation on T , and for
0 < i � k , let �i D 1 if ei points from vi to viC1 and let �i D�1 otherwise. For each
i 2 f1; : : : ; kg, there exists 
i 2 � so that for 1� j � k ,

ıj D �.
1�
�1/ � � � .
j�1�

�j�1/

has the property that

ıj .v0/D vj and ej D

�
ıj 
j .e0/ if �j D 1;
ıj 
j .e

0/ if �j D�1:

Let �0 D 1. For i � 1, if �i�1 ¤ �i , then 
iC1 is not in an edge stabilizer.

Proof In case S, T has two …–orbits of vertices, and the stabilizer of any vertex v
acts transitively on the edges containing it. This is because on a small neighborhood
U of v in T , the projection to …nT factors through an embedding of Stab….v/nU .
This case, which we leave to the reader, is a straightforward induction argument.

With notation as described in case N, there are two � –orbits of edges of T containing
v0 , one pointing toward v0 and one away. In particular, e0 points toward v0 , and
�.v0/ D v1 . We therefore take ı1 D � . Then ı�11 .e1/ contains v0 , so depending
on orientation it is �–equivalent to one of e0 or e0 . If e1 points toward v1 , then

�11 ı�11 .e1/De

0 for some 
12� ; otherwise there exists 
12� with 
�11 ı�11 .e1/De0 .
This proves the base case of an induction argument.

For the inductive step of the argument, we take j >1 and suppose that we have identified
ıj�1 and 
j�1 satisfying the required properties. If �j�1D1, then 
�1j�1ı

�1
j�1.vj /Dv1 ,
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so ��1
�1j�1ı
�1
j�1.vj / D v0 . If �j�1 D �1, then �
�1j�1ı

�1
j�1.vj / D v0 . Therefore

ıj .v0/D vj . Since ı�1j .ej / thus contains v0 , arguing as in the base case we identify 
j
in � so that ıj 
j takes e0 or e0 (depending on �j ) to ej .

For the lemma’s final assertion, we note that �i�1 ¤ �i implies that ei�1 and ei either
both point toward or both point away from vi , so ı�1i .ei�1/ and ı�1i .ei / are distinct
� –translates. A definition-chase shows the translating element is 
i .

To the graph of spaces decomposition determined by an incompressible surface S ,
there corresponds a “graph of groups” decomposition of the fundamental group of M
with underlying graph G . We record this in the standard lemma below, a paraphrase of
[14, page 155].

Here for a closed path 
 based at a point x 2M , we will also denote its based homotopy
class in �1.M; x/ by 
 , letting context determine the proper interpretation, and we let
˛:ˇ denote the composition of paths ˛ and ˇ , defined as in Definition 2.3.

Lemma 2.6 For a closed 3–manifold M and a connected, transversely oriented
incompressible surface S with closed regular neighborhood N Š S � Œ�1; 1��M , let
S˙D S �f˙1g and X DM � .S � .�1; 1//. Fix x 2 S , take x˙D .x;˙1/ 2 S˙ , let
ƒD �1.S�; x�/, and let ˛W t 7! .x; 2t � 1/ join x� to xC in N .

There are two cases to consider:

Case S If S is separating, then �1M is a free product with amalgamation:

�1.M; x�/Š �� �ƒ �C
:
D h��; �C j �D ˛:��.�/:x̨; � 2ƒi:

Here �� D �1.X�; x�/, where X� is the component of X with S� D @X� , and
�C D f˛:
:x̨ j 
 2 �1.XC; xC/g for XC with SC D @XC .

Case N If S is nonseparating, then �1M is an HNN extension of � D �1.X; x�/:

�1.M; x�/Š ��ƒ
:
D h�; � j ��1�� D x̌:��.�/:ˇ; � 2ƒi:(1)

Here � 2 �1.M; x�/ is the pointed homotopy class of ˛:ˇ for some fixed arc ˇ in X
joining xC to x� .

In each case above, �W S� ! SC takes .x;�1/ to .x; 1/ for all x 2 S , so �� is an
isomorphism ƒ! �1.SC; xC/.

Proof of Lemma 2.1 First suppose there is a nondegenerate, reduced homotopy
H W .S1 � I; S1 � @I / ! .M; S/ of length k . Writing H as a composition of es-
sential basic homotopies H 1; : : : ;Hk, we may assume without loss of generality
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that H�1.S/D
Fk
iD0 S

�1 � fi=kg and for each i > 0, H i linearly reparametrizes
H jS1�Œ.i�1/=k;i=k� . We may further assume that H is vertical with respect to a closed
regular neighborhood N Š S � Œ�1; 1� of S in M , by which we mean that each H i is
obtained from its restriction to .H i /�1.X/ by collaring, where X DM �S � .�1; 1/.

Let yH i W S1 � I ! X be obtained by reparametrizing the restriction of H i to the
preimage of X . Fix a base point x 2 S and for each i fix a path �i in S from x

to H.1; i=k/. Taking S˙ D S � f˙1g, let x˙ D .x;˙1/ 2 S˙ , and let �i
˙1 be the

path parallel to �i in S˙ .

Assume for now that S is separating. Then each H i starts and ends on the same side
of S , so since H is reduced, the H i alternate sides. We will assume that H i starts
and ends on the C–side for odd i and the �–side for even i (the argument in the other
case is completely analogous). Thus yH i maps into X� for i odd and XC for i even,
where X˙ is the component of X with S˙ D @X˙ . For 1� i � k , define


i D

�
�i�1� :.t 7! yH i .1; t//:�̄i� for i even;

˛:�i�1
C
:.t 7! yH i .1; t//:�̄i

C
:x̨ for i odd:

Here ˛ is as described as in Lemma 2.6. For �˙ as described there, it follows by
construction that 
i 2 �C if i is odd and 
i 2 �� otherwise.

We claim that 
i …ƒ, for all i . If 
i 2ƒ, then H i jf1g�I � S after a homotopy of H ,
so there is a map .D; @D/! .M; S/ factoring through H for a disk D . Since S is
incompressible, @D bounds a disk D0 � S . The sphere theorem and the irreducibility
of M imply that �2.M/D 0, so D[D0!M extends over a ball. It follows that H
is not essential, contradicting our hypotheses.

For each i 2 f0; : : : ; kg, one obtains a loop in M based at H.1; 0/ by applying H to
the concatenation of the straight-line path in S1 � I joining .1; 0/ to .1; i=k/ with
the loop around S1 � fi=kg, followed by the straight-line path back to .1; 0/. After
connecting the base point x� to H.1; 0/ using �0� and a vertical arc, these loops all
evidently represent the same element g of �1.M; x�/. A short induction argument
shows that ı�1i gıi 2ƒ for all i , where ıi D 
1 � � � 
i .

As we remarked directly before Lemma 2.5, by Bass–Serre theory, S determines an
action �1M � T ! T on a tree T , without inversions and with quotient graph G .
Under this action, the stabilizer of each edge is a conjugate of the edge group ƒ of G ,
and the stabilizer of each vertex is conjugate to a vertex group of G , in this case, one
of �˙ . See [14, pages 166–167].

Let e0 be the edge of T stabilized by ƒ, and let v0 and v1 be the endpoints of e
stabilized, respectively, by �� and �C . Then g is in ƒ and by construction also
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in ıiƒı�1i for each i , stabilizing ei D ıi .e/. These determine a path in T since

i D ı

�1
i�1ıi is in one of �C or �� for each i . This path has length kC1 because


i …ƒ, so ei ¤ ei�1 , for any i .

The separating case of the “if” direction of Lemma 2.1 is established. Note that the
elements 
i and ıi above match the descriptions in case S of Lemma 2.5.

Suppose now that S is nonseparating, so that X is connected and has two boundary
components S˙ . Given a nondegenerate homotopy H of length k , decomposed into
H 1; : : : ;Hk as previously, there are four possibilities for each of the H i. If H i starts
and ends on the �–side, we define 
i as for H i in the separating case for i even, and
if it starts and ends on the C–side, we define as for i odd. Otherwise


i D

�
�i�1� :.t 7! yH i .1; t//:�̄i

C
:ˇ if H i starts on the C, ends on the � side;

˛:�i�1
C
:.t 7! yH i .1; t//:�̄i�:

x̌:x̨ if H i starts on the �, ends on the C side:

Here ˇ is as described in case N of Lemma 2.6. If H i starts and ends on the same
side, then arguing as in the separating case shows 
i is not in an edge stabilizer. We
produce a path in T by a process similar to the separating case, using words ıj which
in this case match the description in case N of Lemma 2.5 (for � as described in
Lemma 2.6). The details of this case track those of the parallel case of the reverse
implication, described below.

We now address the reverse implication of the lemma, proving that a nontrivial element g
stabilizing a length-.kC1/ segment in T gives rise to a length-k reduced homotopy
in .M; S/. The idea of the proof is to use the description of Lemma 2.5 to reverse-
engineer the construction above. We leave the separating case of this construction to
the reader (it is simpler) and move directly to the case that S is nonseparating. The
four different boundary behaviors of basic homotopies in this case correspond to the
possible orientations on edges meeting at a vertex.

To make this precise let us fix some notation. For � , ƒ and � defined as in case N
of Lemma 2.6, � stabilizes a vertex v0 of T and ƒ < � stabilizes an edge e0
containing v0 . It further follows from (1) above that e0 :D ��1.e0/ contains v0 since
ƒC

:
D ��1ƒ� < � .

Suppose now that the �1M –action is k–cylindrical, so there exists g 2 �1M � f1g
fixing a segment of length at least kC1. By transitivity, upon replacing g by a
conjugate we may assume v0 is the segment’s initial vertex. Since X has two boundary
components, each edge containing v0 is a � –translate of exactly one of e0 or e0 . Thus
conjugating g further in � , we may assume the segment’s initial edge is either e0

or e0 . If it is e0 , we apply Lemma 2.5; if it is e0 , we exchange ƒ and ƒC , replace �
by ��1 , rename e0 to e0 and vice-versa, then apply case N of Lemma 2.5.
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For each j � 0, since g stabilizes ej , the lemma implies that g D .ıj 
j /�j .ıj 
j /�1

for some �j , which is in ƒ if �j D 1 and ƒC otherwise. Since ıj D ıj�1.
j�1��j�1/,
comparing the resulting descriptions of g at ej�1 and ej , for j > 0, yields

���j�1�j�1�
�j�1 D 
j�j 


�1
j :(2)

For each j such that �j D 1, fix a closed curve cj on S� through x� that represents �j .
If �j D�1, then since ƒCD ��1ƒ� , we have that �j 2ƒC is, for some �.0/j 2ƒ, of
the form ��1�

.0/
j � D x̌:��.�

.0/
j /:ˇ . In this case, let cj be a closed curve on SC that

represents ��.�
.0/
j / 2 �1.SC; xC/.

For each j > 0, equation (2) above determines a homotopy in X either from �.cj�1/

to cj (if �j�1 D 1) or from ��1.cj�1/ to cj (if �j�1 D�1). One produces from this
a basic homotopy H j in .M; S/ by adjoining product collars in the obvious way. By
construction, H jC1 starts on the opposite side of S from H j for each j < k . To
show that the composition of H 1; : : : ;Hk is reduced of length k , it remains only to
show that each H j is essential.

This is clear when H j starts and ends on opposite components of @X , so let us consider
a case where it does not. If �j�1 D 1 and �j D �1, then �.cj�1/ D H j .S1 � f0g/

and cj DH
j .S1 � f1g/ each lie in SC . Equation (2) becomes

x̌:��.�j�1/:ˇ D 
j . x̌:��.�
.0/
j /:ˇ/
�1j ;

and H j is a concatenation of four homotopies, the free homotopy from ��.�j�1/

to x̌:��.�j�1/:ˇ , the pointed homotopy between left and right sides of (2), the free
homotopy from 
j . x̌:��.�

.0/
j /:ˇ/
j , and finally the free homotopy to ��.�

.0/
j /.

If there were a proper homotopy of H j into SC , it would follow that 
j 2 ƒC ,
contradicting the final assertion of Lemma 2.5. The case �j�1 D �1 and �j D 1 is
similar.

3 Essential surfaces and essential intersections

Now we shift gears to extend the theory of “essential intersection” for subsurfaces of a
2–manifold that is introduced in [1, Section 4]. There it is remarked that this notion
“has appeared implicitly in much of the literature on the characteristic submanifold of a
Haken manifold”. The results of [1] are proved for large subsurfaces (see below); we
must allow annular components as well. Many results extend directly to this context
using similar proof strategies, but some require important caveats.

We will work in the PL category throughout the next two sections. In particular, a
polyhedron is a topological space that admits the structure of a simplicial complex. It
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is well known that the class of such spaces includes surfaces and 3–manifolds. We
also use “annulus” interchangeably with “cylinder” to refer to S1 � I .

Definition 3.1 Let S be an orientable surface with no 2–sphere components. If K is
a polyhedron, we will say a map f W K! S is �1–injective if on each component K0
the induced map on �1K0 is injective, and large if this map has nonabelian image.

If A � S is a subsurface, we will say A is incompressible if no component of A
is a disk and the inclusion map A ,! S is �1–injective. A component A0 of an
incompressible subsurface A is redundant if its inclusion map is homotopic in S into
another component of A. We say A� S is irredundant if it is incompressible and has
no redundant components.

If A is a compact orientable surface, we will refer to the union of the components of A
with negative Euler characteristic as the large part AL , and to the union of the core
circles of the remaining annular components as the small part AS of A. (Note that
AL[AS is properly contained in A.)

Remark If A and B are orientable surfaces and hW A! B is a �1–injective map,
then h.AL/� BL .

The kind of argument we will use in this section is illustrated by a sketch proof for the
following assertion: if A is an incompressible subsurface of an orientable surface S
with no 2–sphere components, then each redundant component of A is homeomorphic
to an annulus.

Suppose A0 is such a component, whose inclusion map is homotopic in S into another
component A1 . We may assume A1 lies in the interior intS of S , after pushing off
the boundary. Choosing a basepoint in A1 , let zS ! intS be the cover corresponding
to �1A1 . The inclusion A1 ,! S lifts to an embedding to a subsurface zA1 � zS that
carries �1 zS . Therefore each component of zS � int zA1 is homeomorphic to a half-open
annulus. Since the inclusion map of A0 is homotopic into A1 , it lifts to an embedding
in zS . The inclusion map A0 ,! S is �1–injective by hypothesis, so its lift is too, and
the lift’s image does not intersect zA1 . The latter fact implies that its image is contained
in a half-open annulus, so A0 is an orientable surface with cyclic fundamental group,
hence an annulus.

The lemma below extends [1, Lemma 4.1].

Lemma 3.2 Suppose A and B are irredundant subsurfaces of a compact, orientable
surface S with no 2–sphere or torus components, and A is homotopic into B .
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(1) A is isotopic in S to a subsurface of B .

(2) If B is homeomorphic to an irredundant subsurface of A, then A and B are
isotopic subsurfaces of S .

(3) If B is homotopic into A, then A and B are isotopic subsurfaces of S .

Proof We follow the outline of the proof of [1, Lemma 4.1]; as there, assume without
loss of generality that S is connected. If S is an annulus, then any irredundant
subsurface of S is also an annulus, and the conclusions of the lemma follow quickly.
We thus assume below that S has negative Euler characteristic.

We first prove (1). We initially consider only AL[AS , that is, the disjoint union of the
large part AL of A and the 1–submanifold AS consisting of the cores of the annular
components. Analogous to [1, Lemma 4.1], we choose this object within its isotopy
class so that @AL[AS meets @B transversely in the minimal number of points possible,
and, among all intersection-minimizing representatives, to minimize the number of
components of @AL[AS not contained in B .

Given a component A0 of AL that is homotopic into a component B0 of B , the
proof of [1, Lemma 4.1(1)] again shows here that, with our assumptions, A0 � B0 .
We must simply replace instances of @A by @AL [ AS in the paragraph spanning
pages 2405–2406 there and its sequel. Pushing off @B0 for each such component B0 ,
we will assume AL is contained in the interior of B .

Now suppose a0 is a component of AS and let B0 be the component of B into which
it is homotopic. We again follow the proof of [1, Lemma 4.1]: Fixing a base point
in B0 , let pW zS ! intS be the cover corresponding to �1B0 . The inclusion map
B0 ,! S lifts to an embedding to a component zB0 of p�1.B0/ � zS , and because
a0 is homotopic into B0 , it too lifts to a simple closed curve za0 in zS . Since B0 is
incompressible, the inclusion zB0 ,! zS induces an isomorphism at the level of �1 , and
so each component of X D zS � int zB0 is homeomorphic to a half-open annulus.

If za0 meets @ zB0 , then the argument of the paragraph that spans pages 2405–2406
in [1] and its sequel again yields a contradiction to our minimality assumption (after
the same adjustment as before). Therefore za0 is disjoint from @ zB0 , and if za0 is not
contained in zB0 , then it is contained in an annular component Z of X . (Unlike in the
proof of [1, Lemma 4.1] this can occur, since �1a0 Š Z.)

Since za0 is a homotopically nontrivial simple closed curve in Z , it cobounds an annulus
with the component zb0 of @ zB0 that bounds Z . This annulus projects to a free homotopy
between a0 and b0 D p.zb0/, a component of @B0 . Theorem 2.1 of [4] now implies
that a0 is isotopic to b0 and hence, pushing a bit further, isotopic into the interior
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of B0 . This isotopy may be taken to be supported in a small enough neighborhood of
the annulus bounded by a0 and b0 that it leaves invariant all components of AL[AS
inside B0 , and all components of AS outside the annulus. After a finite sequence of
such isotopies we have AL[AS � B .

To complete the proof of (1), fix a hyperbolic metric with convex boundary on S , and
choose � > 0 so that for each component a of AS , the following hold:

(a) The �–neighborhood N�.a/ is regular and contained in the component A0 of A
containing a.

(b) Throughout the isotopy described above, N�.a/ remains regular, and a has
distance at least 2� from every other component of AL[AS .

(c) After the isotopy described above, N�.a/� B .

By the first criterion above, A deformation retracts to the union of AL with
S

a N�.a/
over the components a of AS . By the second criterion, the isotopy of AL[AS extends
to this union, and by the third, it takes it into B . This establishes (1).

We now turn to the proof of (2). Using (1), we will assume that A� intB . In particular,
AL � intBL . Since �1–injective maps preserve large parts, BL is homeomorphic to a
large subsurface of AL . The last 3 paragraphs on [1, page 2406] thus imply that each
component of BL�AL is an annulus with exactly one boundary component in AL . In
particular, we note that �.BL/D �.AL/, where �.S/ refers to the Euler characteristic
of S .

Since A is irredundant, it follows that each annular component of A is contained in
an annular component of B , and that no two are contained in the same component.
Therefore BS has at least as many components as AS . If BS had more components
than AS , then the homeomorphic embedding B! A would either take two annular
components into the same annular component of A, contradicting irredundancy of
the image, or would take an annular component of B into a component of AL . But
since the image of BL is a large subsurface of AL with the same Euler characteristic,
each component of its complement is an annulus, and the latter possibility above again
contradicts irredundancy of the image of B .

We thus find that each annular component of B contains a unique component of A as
an incompressible subannulus. Together with the assertions above regarding AL � BL ,
this implies (2).

To establish (3), we note that if B is homotopic into A, then by (1) it is isotopic to
a subsurface of A. This subsurface is necessarily irredundant, since B is, hence the
desired conclusion follows from (2).
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The following proposition extends [1, Proposition 4.2]. Below we reference the “large
intersection” A^LB of large surfaces A and B from [1, Definition 4.3].

Proposition 3.3 Suppose A and B are irredundant subsurfaces of an orientable com-
pact surface S with no 2–sphere or torus components. Then up to nonambient isotopy
there is a unique irredundant subsurface C of S with the following property:

(�) CL D AL ^L BL , and for a polyhedron K and a map f W K ! S such that
f�.�1K0/¤ 1 for each component K0 of K , f is homotopic into each of A
and B if and only if f is homotopic into C .

Furthermore, there are subsurfaces A0 � S and B 0 � S , isotopic to A and B , respec-
tively, such that @A0 meets @B 0 transversely and a union C of components of A0\B 0

satisfies .�/ above.

Definition 3.4 If A and B are irredundant subsurfaces of an orientable compact sur-
face S , we say an irredundant surface C that satisfies condition (�) of Proposition 3.3
represents the essential intersection A\essB of A and B .

Proposition 3.3 implies in particular that each of A and B contains a subsurface that
represents A\essB , and that these subsurfaces are isotopic in S .

Proof of Proposition 3.3 We assume without loss of generality that A;B� intS . If C
and C 0 are surfaces with property .�/, then C is homotopic into C 0 and vice-versa.
Hence Lemma 3.2(2) implies that they are isotopic, establishing uniqueness.

Now let B0 be a representative of the isotopy class of B in S with the property
that @B0 meets @A transversely in the smallest possible number of points, and let C0
be the union of the components of A \ B0 that are large. (In the language of [1],
C0DL.A\B0/.) The proof of [1, Proposition 4.2] implies that for any polyhedron K ,
every large map f W K! S that is homotopic into A and B is also homotopic into C0 .
(Recall from Definition 3.1 that f W K ! S is large if f�.�1K0/ is nonabelian for
each component K0 of K .) We will construct C by adding annular components to C0 .

Suppose K is a connected polyhedron and f W K! S is a map with f�.�1K/¤ f1g,
homotopic into A and B but not C0 . Let A1 be a component of A such that f is
homotopic into A1 , let pW zS! intS be the covering space corresponding to �1A1 , and
let zA� zS be a component of p�1.A/ mapping homeomorphically under p . Since A1
is �1–injective in S , the inclusion-induced homomorphism zA! zS is an isomorphism
and hence every component of X D zS � int zA is a half-open annulus.

Note that since f is homotopic into B , it is homotopic into B0 . Since f is homotopic
into A1 , it admits a lift zf to zS ; furthermore, the homotopy into B0 lifts to a homotopy
of zf to a map g with image in p�1.B0/. Let zB0 be the component of p�1.B0/
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containing g.K/. Unlike in the proof of [1, Proposition 4.1], it is not necessarily true
that zB0 intersects zA1 . We will treat the two cases separately.

Suppose first that zB0 \ zA1 ¤ ∅. Then the argument that begins in the paragraph
of [1] spanning pages 2407–2408 establishes that zB0 , hence also zf , deforms in zS
into zB0 \ zA1 . Projecting this homotopy of zf to S yields a homotopy of f into a
component of B0\A1 . Since f�.�1K/¤ f1g, this component is not a disk. Since f
is not homotopic into C0 , this component is not large, so it is an annulus Z1 which
moreover is not parallel to any component of C0 .

In this case, let C1 D C0[Z1 , and let A01 D A and B 01 D B0 . These are subsurfaces
of S respectively isotopic to A and B , such that C1 is a union of components of their
intersection.

Suppose now that zB0 \ zA1 D ∅, and let Z be the component of X containing zB0 .
Since �1 zB0 contains g�.�1K/, which is nontrivial, zB0 has a boundary component b0
that is a homotopically nontrivial simple closed curve in Z . Hence b0 cobounds
an annulus Z0 � Z together with a0 D @Z . If any component of the frontier in zS
of p�1.B0/ intersected a0 , there would thus be a disk in Z0 with boundary ˛ [ˇ ,
where ˛ � a0 and ˇ � @.p�1.B0//. If this did occur, then B0 could be isotoped to
reduce the number of intersections with A, by the argument of the paragraph of [1]
spanning pages 2405–2406. Thus a0\p

�1.B0/D∅.

Since p projects A1 homeomorphically, it sends a0 homeomorphically to a component
of @A1 in S . Since zB0 is a component of p�1.B0/, the covering map p restricts
on b0 to a k -to-1 covering map to a component b of @B0 for some k � 1. By the
paragraph above, b does not intersect a. Furthermore, the annulus Z0 bounded by a0
and b0 projects under p to a free homotopy in S between a and the kth power of b.
Since S is an orientable surface, by [4, Lemma 2.4], k D 1 and a and b bound an
annulus Z1 in S . It still holds in this case that g , and hence also f , is homotopic
into Z1 since the annulus Z � zS containing zB0 deformation retracts to a0 .

We may assume that Z1 \ A D a. If this is not so, then since A is essential and
irredundant, a component A2 of A intersects b. If a component of @A2 intersected
b, then by an innermost disk argument there would be an isotopy of B0 reducing the
number of intersections of @B0 with @A, a contradiction. Therefore b� A2 , so f is
homotopic into A2 , and putting A2 in the role of A1 in the argument above we find
that zB0\ zA2 ¤∅, ie we are in the first case. So assuming that none of the possible
choices of A1 yields the first case, we have Z1\AD a.

A similar argument shows that B0\A1Db, and it follows in this case that A01DA[Z1
and B 01 D B0[Z1 are respectively isotopic to A and B and that Z1 is a component
of A01\B

0
1 . Again in this case, let C1 D C0[Z1 .
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We now repeat the argument above but with C1 in the role of C0 . If there is a
polyhedron K and a map f W K ! S homotopic into A and B but not into C1 ,
with f�.�1K/¤ f1g, then this argument produces an essential annulus Z2 � S with
f homotopic into Z2 . We may take Z2 either to be a component of A \ B or
to intersect each in a distinct component of its frontier. In either case Z2 is disjoint
from C1 , and there exist surfaces A02 and B 02 respectively isotopic to A and B such
that C2 D C0[Z1[Z2 is a union of components of A02\B

0
2 .

Iterating this process produces a sequence fCng of subsurfaces of S with the property
that Cn D Cn�1 [ Zn for an essential annulus Zn disjoint from and not isotopic
into Cn�1 , which is either a component of A\B or intersects A and B in distinct
components of its frontier. The process terminates at some finite n, since A\B has only
finitely many components, and each of A and B have only finitely many boundary com-
ponents. It then follows from the construction above that C :

DCn has property .�/.

The result below, which we will use in the proof of Proposition 4.3, extends [1,
Proposition 4.4]. Its statement and proof follow those of its predecessor, but an
additional case must be considered.

Below, for a subset S of a topological space X , we refer to the frontier of S in X
as frS :

D S \X �S .

Proposition 3.5 Suppose B is an irredundant subsurface of a compact, orientable
surface S with no 2–sphere components, and for a connected polyhedron K , let
f W K! B satisfy f�.�1K/¤ f1g. If gW K! B is homotopic to f in S , then

(1) either f and g are homotopic in B , or

(2) for distinct components a and b of the frontier of B that are parallel in S but
not B , f is homotopic into a, and g into b, in B .

Remark To directly extend [1, Proposition 4.4] we must allow K to be disconnected.
Such a result is obtained by applying Proposition 3.5 component-by-component.

Proof Assume B � intS , and let B0 be the component of B containing f .K/.
Choosing a base point in B0 , we let pW zS ! intS be the cover corresponding
to �1.B0/ <�1.S/. By construction, the inclusion map B0 ,!S lifts to an embedding
to zS with image a subsurface which we denote by zB0 , that carries the fundamental group
of zS . Since B0 is �1–injective in S , each component of zS � int zB0 is homeomorphic
to a half-open annulus. In particular, there is a deformation retraction r W zS ! zB0 .

Since f maps K into B0 , composing with the lift of the inclusion map gives a lift
zf W K ! zS with zf .K/ � zB0 ; furthermore, the homotopy from f to g lifts to a
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homotopy H from zf to a lift zg of g with image in p�1.B/. If zg has image in zB0 ,
then H1 D p ı r ıH is a homotopy between f and g with image in B0 .

If zg does not map into zB0 , then the component of p�1.B/ containing its image lies
in a component Z of zS � intB0 , a half-open annulus. In this case, the time-1 map
of r ıH has its image in the frontier zaDZ \ zB0 of Z . So p ı r ıH is a homotopy
of f in B , into a component aD p.za/ of the frontier of B .

Switching the roles of f and g in the argument above, we find that if f and g are
not homotopic in B , then g is homotopic in B into a component b of the frontier
of B . This is distinct from a and not parallel to it in B , since it follows from algebraic
topology that two maps from a polyhedron (or more generally, a CW-complex) K
to S1 that induce the same map on �1K are homotopic. See, eg [7, Section 4.A,
Exercise 2]. Let us now choose arcs from a and b to the basepoint of �1S and again
denote by a and b the elements of �1S thus determined. The nontrivial subgroup
f�.�1K/ D g�.�1K/ of �1S is contained in both a conjugate of the subgroup hai
generated by a and a conjugate of hbi.

Our hypotheses ensure that �1S is isomorphic either to Z˚Z or a Fuchsian group.
In either case, standard results ensure that any two cyclic subgroups with nontrivial
intersection both lie in a single cyclic group. (In the Fuchsian case, see, eg [11,
Theorems 2.3.3 and 2.3.5].) Thus there exists 
 2 �1S such that certain conjugates
of a and b are powers of 
 . But since these conjugates represent the simple closed
curves a and b, they are primitive elements of �1S (see, eg [5, Proposition 1.4]), and
it follows that a is conjugate to b˙1 in �1S . Lemma 2.4 of [4] now implies that a
and b are parallel.

The lemma below distills a fact from the proof of Proposition 3.5 that we will use in
the following section.

Lemma 3.6 Let B be a compact, connected incompressible subsurface of a surface S ,
and for a polyhedron K suppose f W K ! B is homotopic into S �B . Then f is
homotopic in B into frB .

Proof After pushing off boundaries, we will assume that B � intS and f maps
into intB . Choose a base point for �1S in B , and let pW zS ! intS be the cover
corresponding to �1B . If zB is the image in zS of the lift of the inclusion map B ,! S ,
then every component of zS � int zB is homeomorphic to a half-open annulus, and there
is a retraction r W zS ! zB that takes each such component to a component of @ zB . The
homotopy of f out of B lifts to a homotopy zH whose time-0 map has its image in zB .
The time-1 map zH1 has its image in zS � int zB , so p ı r ı zH is a homotopy of f in B
to a map with its image in @B .
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4 Cylinders have bounded length

This section is dedicated to proving Theorem 4.1:

Theorem 4.1 For a closed, orientable hyperbolic 3–manifold M and a connected,
two-sided incompressible surface S �M of genus g that is not a fiber or semifiber, a
nondegenerate, reduced homotopy in .M; S/ has length at most 14g� 12.

The proof uses the characteristic submanifold of the manifold X obtained by cutting M
along S , which has the key property that it captures all nontrivial homotopies in X .
We recall its definition below.

We say a 3–manifold X with boundary is simple if

� X is compact, connected, orientable, irreducible and boundary-irreducible;
� no subgroup of �1.X/ is isomorphic to Z�Z; and
� X is not a closed manifold with finite fundamental group.

For a closed, orientable hyperbolic 3–manifold M containing an incompressible
surface S , each component of the manifold obtained by cutting M along S is simple.

Below, an essential annulus in a 3–manifold X with boundary is the image of an
essential, nondegenerate homotopy .S1�I; S1�@I /! .M; S/ (recall Definition 2.3)
that is an embedding. If P is an I –bundle over a surface F , we let @hP denote the
associated @I –bundle, the horizontal boundary of P , and denote by @vP (the vertical
boundary) the I –bundle over @F .

Theorem (Jaco and Shalen [9], Johansson [10]) Let X be a simple 3–manifold with
nonempty boundary. Up to ambient isotopy, its characteristic submanifold � is the
unique compact submanifold of X with the following properties:

(1) Every component of � is either an I –bundle P over a surface such that
P \ @XD@hP , or a solid torus S such that S \ @X is a collection of disjoint,
embedded annuli in @S that are homotopically nontrivial in S .

(2) Every component of the frontier of � is an essential annulus in X .

(3) No component of � is ambiently isotopic in X to a submanifold of another
component of �.

(4) If �1 is a compact submanifold of X such that (1) and (2) hold with �1 in
place of �, then �1 is ambiently isotopic in X to a submanifold of �.

If K is a polyhedron and H W .K�I;K�@I /! .X; @X/ is an essential, nondegenerate
map, then H is homotopic into .�;�\ @X/.

Algebraic & Geometric Topology, Volume 16 (2016)



1362 Jason DeBlois

Let the characteristic set of X be � \ @X . If X is a component of the manifold
obtained by cutting M along S , then by the JSJ theorem its characteristic set carries
a homotopic image of the time-0 map of any essential basic homotopy in .M; S/
(recall Definition 2.4) that intersects X . The first main result of this section identifies
a sequence of subsurfaces that play a role analogous to the characteristic set for
homotopies with length k � 1. This extends [1, Proposition 5.2.8].

Before we state the result, we translate [1, Definition 5.1.1] into our context.

Definition 4.2 A splitting surface in a closed, orientable hyperbolic 3–manifold M is
a transversely oriented, incompressible surface S �M such that the manifold obtained
by cutting M along S is a disjoint union of submanifolds X˙1 with the property
that N� �X� for each � 2 f˙1g, for N� as in Definition 2.4.

Separating, connected, two-sided incompressible surfaces are splitting surfaces, but
note that S is not required above to be connected. In fact, given a nonseparating
connected, two-sided incompressible surface S0 in M , the boundary S of a regular
neighborhood N0 of S0 becomes a splitting surface upon taking X�1 D N0 and
XC1 DM �N0 and giving each component of S the transverse orientation pointing
out of X�1.

Proposition 4.3 Let M be a closed, orientable hyperbolic 3–manifold and S �M
a splitting surface, and decompose the manifold obtained by cutting M along S into
submanifolds X˙1 as in Definition 4.2. For each � 2 f˙1g there is a sequence of
essential (possibly empty) subsurfaces .‰�

k
/k2N of S , such that ‰�1 � �

� \ @X�,
where �� is the characteristic submanifold of X�, and for each k 2N we have:

(1) ‰�
k
�‰�

kC1
.

(2) If K is a polyhedron with �1K¤f1g and H W K�I!M is a reduced homotopy
in .M; S/ of length k , starting on the �–side, then H0 is homotopic in S to
a map with image in ‰�

k
. Conversely, for such a polyhedron K if f W K! S

is �1–injective and homotopic into ‰�
k

, then there exists such a homotopy H
with H0 D f .

(3) .‰�
k
/L Dˆ

�
k

, where ˆ�
k

is the surface identified in [1, Proposition 5.2.8].

A surface with the properties above is determined up to isotopy in S by the requirement
that it be irredundant.

Below we will briefly review some definitions and results proved in [1, Section 5].
These were proven there under the hypothesis that M is a knot manifold, with a single

Algebraic & Geometric Topology, Volume 16 (2016)



Explicit rank bounds for cyclic covers 1363

torus boundary component, whereas we take M closed. However, they depend only
on the results on large intersection developed in [1, Section 4] and basic facts about
I –bundles and so carry over to our context without alteration. The blanket hypotheses
below are those of Proposition 4.3; in each case we paraphrase the result or definition
from [1] that is referenced.

5.2.1 Let .†�; ˆ�/ be the .I; @I /–bundle pair that is the union of all I –bundle
components of the characteristic submanifold of X�.

Proposition 5.2.8 There is a sequence fˆ�1 �ˆ
�
2 � � � � g of large subsurfaces of ˆ�,

with ˆ�1 D .ˆ
�/L , that satisfies property (2) of Proposition 4.3 with the hypothesis that

�1K ¤ f1g replaced by the assertion that H0 is large. The ˆ�i are determined up to
isotopy by this property.

Proposition 5.3.1 There is a homeomorphism h�
k
W ˆ�

k
!ˆ

.�1/kC1�

k
, for each k 2N ,

such that if H W K � I !M is a reduced homotopy of length k starting on the �–side
with large time-0 map, then there exists f W K!ˆ�

k
such that H0 is homotopic to f

and H1 to h�
k
ıf .

To motivate the existence of h�
k

, we note that the analog of Proposition 4.3(2) implies
the inclusion of ˆ�

k
is the time-0 map of a length-k homotopy H with target .M; S/.

Since H is length-k , the image of H1 lies in @X .�1/
kC1�, and since H can be run

backwards, this image is homotopic into ˆ.�1/
kC1�

k
.

The precise definition of the h�
k

is as follows. Let �� be the fixed-point free involution
of ˆ� that exchanges the endpoints of I –fibers. Then h�1 is defined to be the restriction
of �� to ˆ�1 . For k > 1, h�

k
is defined recursively by composing �˙� with a homotope

of the restriction of h�
k�1

. In [1] the following is proven:

Proposition 5.3.4 For k > 1, the restriction of h�
k�1

to ˆ�
k

is homotopic in S to an
embedding g�

k�1
W ˆ�

k
! ˆ.�1/

k�1�
1 with the property that h�

k
is homotopic in S to

�.�1/k�1� ıg
�
k�1

.

Proposition 5.3.5 h�
k�1

.ˆ�
k
/ is isotopic in S to .ˆ.�1/

k�

k�1
\essˆ

.�1/k�1�
1 /L .

The statements above are special cases of the results cited. Our phrasing of the latter
implicitly uses our Proposition 3.3 (also see above it, and Definition 3.4).

The lemma below is a version of [1, Lemma 5.2.4], where the original hypothesis
that the homotopy H in question has large time-0 map has been replaced here by the
assertion that H maps into †�. In the original version this follows from the largeness
hypothesis; the remainder of its proof carries through without revision.

The standard essential basic homotopy referenced below is from [1, Definition 5.2.3].
That definition in turn refers to the fundamental homotopy defined in 5.2.1 there.
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For a component P of †�, which is an I –bundle in X� such that P \ @X� is the
associated @I –bundle (see above), the fundamental homotopy has domain P \ @X�

and takes I –fibers to I –fibers.

Lemma 4.4 For � 2 f˙1g and a polyhedron K , let H W .K � I;K � @I /! .†�; ˆ�/

be an essential basic homotopy. Then H is homotopic as a map of pairs to a standard
essential basic homotopy. In particular, H1 is homotopic in P to �� ıH0 .

The lemma below extends the conclusion of [1, Proposition 5.3.1] to certain reduced
homotopies whose time-0 maps are not necessarily large.

Lemma 4.5 For � 2 f˙1g and k 2N , suppose H is a reduced homotopy in .M; S/
of length k that starts on the �–side, with domain a polyhedron K , such that H0 is
homotopic in S into ˆ�

k
but not into @ˆ�

k
. Then H1 is homotopic in S to h�

k
ı f ,

where H0 is homotopic to f W K!ˆ�
k

.

Proof We will assume without loss of generality that K is connected, since the
desired homotopy can be constructed component-by-component. We prove the result
first for k D 1; thus assume that H W .K � I;K � @I /! .X�; @X�/ is an essential
basic homotopy. Applying the JSJ theorem, after homotoping H through maps of pairs
to .X�; @X�/, we will assume that it maps into ��.

Let P be an I –bundle component of �� such that P \@X� �ˆ�1 contains the image
of a map f homotopic to H0 . Since f is not homotopic into @ˆ�1 , Lemma 3.6 implies
that f is not homotopic out of P \ @X�, so H0 and hence all of H maps into P .
Lemma 4.4 now yields the conclusion in this case, since h�1 D ��jˆ�1 .

Now take k > 1 and assume that the lemma holds for all reduced homotopies of
length k�1. Given a reduced homotopy H of length k that satisfies the hypotheses,
writing H as the composition of essential basic homotopies H 1; : : : ;Hk, we have that
the composition of H 1; : : : ;Hk�1 has time-1 map homotopic to h�

k�1
ı f , where

H0 is homotopic to f W K!ˆ�
k
�ˆ�

k�1
.

Let g�
k�1
W ˆ�

k
! ˆ

.�1/k�1�
1 be the embedding supplied by [1, Proposition 5.3.4],

homotopic to the restriction of h�
k�1

and so that h�
k

is homotopic to �.�1/k�1� ıg
�
k�1

.
Let P be the I –bundle component of �.�1/

k�1� such that g�
k�1
ıf maps into @hP .

Since f is not homotopic into @ˆ�
k

, the same holds true for g�
k�1
ıf in @hP .

Since Hk
0 DH

k�1
1 , it is homotopic in S to g�

k�1
ı f . It thus follows from the JSJ

theorem as in the k D 1 case that Hk is homotopic as a map of .I; @I /–bundle pairs
into P , and furthermore by Lemma 4.4 that Hk

1 is homotopic to �.�1/k�1� ıg
�
k�1
ıf .

Therefore Hk
1 DH1 is homotopic to hk ıf , and the lemma follows by induction.
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Because solid torus components of � may have many components of intersection
with @X , no homeomorphism analogous to h�

k
is uniquely defined on ‰�

k
. But it is

still true that every reduced homotopy is tracked by a homotopy of a surface containing
the image of its time-0 map.

Lemma 4.6 For � 2 f˙1g and k 2N , suppose H is a reduced homotopy in .M; S/
of length k that starts on the �–side, with domain a connected, non-simply connected
polyhedron K , such that H0 is homotopic in S to a map f with image in an annulus A
in �� \ @X� . There is a reduced homotopy J in .M; S/ of length k that starts on the
�–side, with domain A, such that H1 is homotopic to J1 ıf .

Proof Consider the case in which H W .K � I;K � @I /! .X�; @X�/ is an essential
basic homotopy, for � 2 f˙1g. By the JSJ theorem, after a homotopy through maps
.K � I;K � @I /! .X�; @X�/, we may assume H maps into some component P
of the characteristic submanifold ��.

If the annulus A supplied by the hypotheses does not lie in P , then Lemma 3.6
implies that H0 is homotopic into a component b of @.P \ @X�/. The subgroups
of �1S respectively generated by b and the core circle a of A thus share the nontrivial
subgroup .H0/�.�1K/. Since S is orientable and a and b are simple, this implies
they generate identical subgroups, so a and b are parallel in S by [4, Lemma 1.4]. It
follows that even if A does not lie in P \ @X� it is still isotopic into it in @X�.

If P is an I –bundle component of �� , then applying Lemma 4.4, after a further
homotopy we may assume that H is standard. If A lies outside of P , then by the
paragraph above we may homotope H0 so that its image lies in an annular neighbor-
hood B � P \ @X� of b, isotopic to A, with the property that B is a component
of ��1.�.B//\ @X�. (Here � is the bundle projection of P .) Since H is standard,
this determines a homotopy of H to a standard homotopy in the restriction of �
to ��1.�.B//.

A homotopy of A through X� is now determined by composing the isotopy J 0 from A

to B with the restriction J 1 to B of the fundamental homotopy of P \ @X�. This
becomes a basic essential homotopy J upon pushing J 0:J 1W A� I ! X� off @X�

on int I . Since f is homotopic to H0 in @X�, Proposition 3.5 now implies that
.J 0/1 ı f is homotopic to H0 in B ; possibility (2) there does not occur since the
components of @B are not parallel in S , which has genus at least two. Since H and J 1

are standard, it now follows that J1 ıf is homotopic to H1 .

Now suppose P is a solid torus component of ��, and let B and C be the components
of P \ @X� containing the images of H0 and H1 , respectively. As in the previous
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case, if A ¤ B , then there is an isotopy J 0 from A to B , and H0 and .J 0/1 ı f
are homotopic in B . We now require a homotopy J1 from B to C to replace the
fundamental homotopy of the previous case. We construct this below.

Fix a homeomorphic lift zB of B to the cover pW zP !P corresponding to �1B , let zH
be the lift of H with zH0.K/� zB , and let zC be the component of p�1.C / containing
the image of zH1 . Note that since C is parallel to B on @P , the component zC is
also a homeomorphic lift of C . Moreover, since zB and zC carry �1 zP , there is a
product structure on zP , namely, zP ŠX �I for an annulus X , with zB ŠX �f0g and
zC Š X � f1g. Restricting the fundamental homotopy of this product structure to zB
yields a homotopy zJ 1W zB � I ! zP such that . zJ 1/1 is a homeomorphism to zC .

Let J 1 be p ı zJ 1 following the lift B! zB of the inclusion map B ,!P . Now define
a homotopy J through X� with domain A by pushing the composition J 0:J 1 off @X�

on int I . Lemma 4.4 implies that zH is homotopic to a standard homotopy with respect
to the product structure on zP , so since .J 0/1 ıf is homotopic in B to H0 , it follows
that J1 ıf is homotopic in C to H1 .

This completes the proof of the essential basic case. The lemma now follows from this
case and induction on the length k of the reduced homotopy.

Proof of Proposition 4.3 We will prove the proposition by induction. Let ‰˙11
be obtained from �˙1 \ @X˙1 by discarding redundant annuli, where �˙1 is the
characteristic submanifold of X˙1. Property (2) for ‰˙11 holds by the enclosing
property of the JSJ theorem, and we note that .‰˙11 /L Dˆ

˙1
1 .

Now let m � 2 be given, and suppose that for each � 2 f˙1g we have identified a
sequence of subsurfaces

‰�1 �‰
�
2 � � � � �‰

�
m�1;

such that for each k < m, ‰k satisfies (2) and .‰�
k
/L Dˆ

�
k

. We will further assume
(after discarding some annuli if necessary) that ‰�

k
is irredundant for k < m.

Before we define ‰�m , we let P �m be a subsurface of ˆ.�1/
m�

m�1 representing

ˆ
.�1/m�
m�1 \ess‰

.�1/mC1�
1 :

By Proposition 3.3, .P �m/L is maximal among large surfaces of ˆ.�1/
m�

m�1 that admit
a homotopy of length one starting on the .�1/mC1�–side. If a large subsurface A
of ˆ.�1/

m�
m�1 admits an essential homotopy of length one starting on the .�1/mC1�–side,

then .h�m�1/
�1.A/ admits a homotopy of length m starting on the �–side; thus [1,

Proposition 5.2.8] implies that h�m�1.ˆ
�
m/ has the same maximality property as .P �m/L .

Therefore by Lemma 3.2(3), these are isotopic subsurfaces of ˆ.�1/
m�

m�1 .
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We now define ‰�m Dˆ
�
m[

�S
Ai
�
[
�S

Bj
�
[
�S

Ck
�
, where the Ai , Bj , and Ck

are annuli defined as follows:

(a) Let fAig be the set of annular components of ‰�m�1 that admit a reduced
homotopy of length m.

(b) Let fbj g be the set of components of the frontier in S of ˆ�m�1 such that bj is
not isotopic into ˆ�m but bj admits a reduced homotopy of length m, and for
each j let Bj be a regular neighborhood of bj in ˆ�m�1� intˆ�m .

(c) Let fC 0
k
g be the set of annular components of P �m that are not boundary

parallel in ˆ
.�1/m�
m�1 . For each k , let Ck be an annulus isotopic in ˆ�m�1

to .h�m�1/
�1.C 0

k
/ and disjoint from ˆ�m[

S
Bj .

Properties (1) and (3) are clear from this construction. Since ‰�m admits a reduced
homotopy of length m by construction, it remains only to show for a reduced homotopy
H W .K � I;K � @I /! .M; S/ of length m that H0 is homotopic into ‰�m .

Write H as a composition of essential basic homotopies H 1; : : : ;Hm. Since the
composition H 1:H 2 : : :Hm�1 is a reduced homotopy of length m�1, by hypothesis
H0D .H

1/0 is homotopic into ‰�m�1 . If H0 is homotopic into an annular component
of ‰�m�1 , then by Lemma 4.6, this component admits a reduced homotopy of length k ;
hence it is of the form Ai for some i . We thus assume below that this does not hold,
hence that H0 is homotopic into ˆ�m�1 .

If H0 is homotopic into ˆ�m , then we are done, so let us assume this is not the case.
In particular, by [1, Proposition 5.2.8], H0 is not large. If H0 is homotopic into a
boundary curve of ˆ�m�1 that is not homotopic into ˆ�m , then by Lemma 4.6 again,
the corresponding boundary component is of the form bj for some j .

By the preceding paragraph, we may assume that H0 is homotopic into ˆ�m�1 but
not into @ˆ�m�1 . Lemma 4.5 therefore implies that .Hm�1/1 is homotopic in S

to h�m�1 ı f �ˆ
.�1/m�
m�1 , where f W K!ˆ�m�1 is homotopic to H0 . It follows that

h�m�1 ı f admits an essential homotopy of length one, hence by Proposition 3.3 it is
homotopic into a component C 0 of P �m �ˆ

�
m�1 .

If h�m�1ıf were not homotopic into C 0 in ˆ.�1/
m�

m�1 , then Proposition 3.5 would imply
in particular that it is homotopic in ˆ.�1/

m�
m�1 into a boundary component. But then f ,

and hence H0 , would be homotopic to a boundary component of ˆ�m�1 , contradicting
our assumption. Hence h�m�1 ıf is homotopic into C 0 in ˆ.�1/

m�
m�1 .

Recalling from above that .P �m/L is isotopic in ˆ.�1/
m�

m�1 to h�m�1.ˆ
�
m/, we find that

C 0 is an annulus since we have assumed H0 is not homotopic into ˆ�m . Therefore C 0

is of the form C 0
k

for some k , and we are in case (c) above.
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The second main result of this section asserts that the sequence f‰�
k
g is shrinking. We

cannot hope to establish that ‰�
k

is properly larger than ‰�
kC1

for each k . Indeed,
in the case of interest to us (when S is the boundary of a regular neighborhood of a
nonseparating surface) ‰�

k
is identical to ‰�

kC1
for each odd or even k (depending

on � ). Instead we obtain the following extension of [1, Proposition 5.3.9].

Proposition 4.7 Let M be a closed, orientable hyperbolic 3–manifold and S �M a
splitting surface that is not a fiber or a semifiber, and decompose the manifold obtained
by cutting M along S into submanifolds X˙1 as in Definition 4.2. For � 2 f˙1g,
let ‰�1 �‰

�
2 � � � � be a sequence of irredundant surfaces that satisfy Proposition 4.3.

Then for each k , we have that ‰�
k

is not homotopic into ‰�
kC2

.

Proof Proposition 5.3.9 of [1] asserts that in this situation ˆ�
k

is not homotopic
into ˆ�

kC2
for any k 2N or � 2 f˙1g, so the result holds as long as ‰�

k
has nonempty

large part. Therefore suppose for some k that ‰�
k

is a disjoint union of annuli homotopic
into ‰�

kC2
.

Let H be a reduced homotopy in .M; S/ of length kC2 with domain ‰kC2 that
starts on the �–side, and write H as the composition of H 00 and H 0 , each starting
on the �–side, where H 0 has length 2 and H 00 length k . Since H 01.‰

�
kC2

/ admits
a reduced homotopy of length k , Proposition 4.3 implies that H 01 is homotopic to a
map f W ‰�

kC2
! ‰�

k
. After applying the homotopy that takes ‰�

k
into ‰�

kC2
, we

may take f to map into ‰�
kC2

. It follows that there exists a homotopy of length 2
in .M; S/ with domain and target ‰�

kC2
.

Associate a directed graph G to this homotopy as follows: G has a vertex v for each
component of ‰�

kC2
, and a directed edge joining v to v0 if and only if the component

associated to v is taken to the component associated to v0 by the time-1 map of the
homotopy described above. Then every vertex has a unique edge that leaves it, and so
G has a cycle.

We associate to a cycle v0; : : : ; vm�1 a map of a torus into .M; S/ as follows: For
0� i < m, let ai be the core of the component of ‰�

kC2
corresponding to vi , and let

F i W .S1�I; S1�@I /! .M; S/ be a reduced homotopy of length 2 with F i0 D ai and
F i1 D aiC1 (where iC1 is taken modulo m). Dividing a torus T into m concentric
essential annuli Ai , each homeomorphic to S1 � I , we obtain a map F W T ! M

that restricts on Ai to F i for each i . Since each F i is essential, F is essential,
contradicting the hyperbolicity of M .

We may now prove Theorem 4.1, which extends [1, Theorem 5.4.1].
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Proof of Theorem 4.1 If S is nonseparating, we replace S by the boundary zS of a
regular neighborhood, yielding a separating surface with two components of genus g .
If S is separating we take zS D S , and in either case let X˙1 be the components of
the manifold obtained by cutting M along S . For � 2 f˙1g, let ‰�1 �‰

�
2 � � � � be a

sequence of irredundant surfaces that satisfies the conclusion of Proposition 4.3.

We now briefly review the proof of [1, Theorem 5.4.1]. Given a large surface A, the
complexity of A is defined as c.A/D g.A/�3�.A/=2�jAj, where �.A/ is the Euler
characteristic of A, the number of its components is jAj, and g.A/ is the sum of their
genera. It is easy to see that if A is nonempty and large, then c.A/ > 0. The key fact
established in the proof of Theorem 5.4.1 is that if A and B �A are large surfaces with
even Euler characteristic, then c.B/ < c.A/ unless A is a regular neighborhood of B .

Fixing � 2 f˙1g, consider the subsequence

ˆ�1 �ˆ
�
3 � � � � :

This is strictly decreasing by [1, Proposition 5.3.9] and consists of large surfaces
with even Euler characteristic by [1, Corollary 5.3.8]. Thus for each i � 0, we have
c.ˆ�2iC1/ > c.ˆ

�
2iC3/. If S is separating, then c. zS/D c.S/D 4g� 4, and otherwise

c. zS/D 8g� 8. Taking mS D 4g� 4 in the separating case and mS D 8g� 8 in the
nonseparating case, it follows that ˆ2iC1 D∅ for i > mS .

The discussion above is enough to establish [1, Theorem 5.4.1]. In our situation of
interest, it establishes that ‰�2iC1 is a disjoint union of annuli for i >mS . Since ‰�i is
irredundant, ‰2mSC3 has at most 3g�3 components in the separating case and 6g�6
otherwise. (This uses the standard fact that a collection of disjoint, nonparallel, essential
simple closed curves on a closed surface of genus g has at most 3g � 3 members.)
Since Proposition 4.7 implies ‰�2iC1 is not homotopic into ‰�2iC3 , if these are unions
of irredundant collections of annuli, then ‰�2iC3 has fewer components than ‰�2iC1 .
Thus taking nS D 3g� 3 in the separating case and nS D 6g� 6 otherwise, we find
that ‰2iC1 D∅ for i > mS CnS .

By Proposition 4.3, the time-0 map of a reduced homotopy in .M; zS/ with length k
that starts on the �–side is homotopic into ‰�

k
. Therefore k � 2.mS CnS /C 2. If S

is separating, we therefore find that homotopies in .M; S/D .M; zS/ have length at
most 14g � 12. If S is nonseparating, a reduced homotopy of length k in .M; S/
determines a reduced homotopy of length 2k�1 in .M; zS/. Thus in this case we have
for a homotopy of length k in .M; S/ that 2k�1� 2.14g�14/C2, so k � 14g�13.
The theorem follows.
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