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Near-symplectic 2n–manifolds

RAMÓN VERA

We give a generalization of the concept of near-symplectic structures to 2n di-
mensions. According to our definition, a closed 2–form on a 2n–manifold M is
near-symplectic if it is symplectic outside a submanifold Z of codimension 3 where
!n�1 vanishes. We depict how this notion relates to near-symplectic 4–manifolds
and broken Lefschetz fibrations via some examples. We define a generalized bro-
ken Lefschetz fibration as a singular map with indefinite folds and Lefschetz-type
singularities. We show that, given such a map on a 2n–manifold over a symplectic
base of codimension 2 , the total space carries such a near-symplectic structure whose
singular locus corresponds precisely to the singularity set of the fibration. A second
part studies the geometry around the codimension-3 singular locus Z . We describe
a splitting property of the normal bundle NZ that is also present in dimension four.
A tubular neighbourhood theorem for Z is provided, which has a Darboux-type
theorem for near-symplectic forms as a corollary.

53D35, 57R17; 57R45

1 Introduction

The motivation for near-symplectic manifolds arose from a program, initiated by Taubes
[16], to study 4–manifolds equipped with symplectic forms that vanish on circles, with
the goal of obtaining smooth invariants of nonsymplectic 4–manifolds. A 4–manifold
is called near-symplectic if it is equipped with a closed 2–form that is nondegenerate
outside a disjoint union of circles, where it vanishes. These structures were studied in
detail in the work of Auroux, Donaldson and Katzarkov [2] using broken Lefschetz
fibrations (bLfs). It was shown that there is a direct correspondence between bLfs
and near-symplectic 4–manifolds. These results extended the theorems of Donaldson
[6] and Gompf [10] on Lefschetz fibrations and symplectic manifolds, which in turn
expanded Thurston’s theorem on symplectic fibrations. Broken Lefschetz fibrations have
found fruitful application in low-dimensional topology: for example, in holomorphic
quilts (see eg Wehrheim and Woodward [17]) and Lagrangian matching invariants (see
eg Perutz [15]). A relevant existence result states that every smooth closed oriented 4–
manifold admits a bLf; see Gay and Kirby [8], Lekili [13], Baykur [3; 4], and Akbulut
and Karakurt [1]. The geometric structure induced by a near-symplectic 4–manifold
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on the boundary of the tubular neighbourhood of its singular locus is an overtwisted
structure as studied by Honda [12] and Gay and Kirby [7]. This shows that these
manifolds are not fillable, as that would require removing all singular circles, which
Perutz proved to be impossible [14].

This work aims to find a good notion to generalize near-symplectic structures on
higher dimensions. We propose a definition on manifolds of dimensions 2n and use
singular maps that resemble broken Lefschetz fibrations. We also study the underlying
geometric structure, induced by the near-symplectic form, on the boundaries of tubular
neighbourhoods, which are codimension-1 submanifolds in this setting.

In Section 2A, we suggest a definition of a near-symplectic structure in dimension 2n.
The goal is to relax the nondegeneracy condition of the symplectic form in a controlled
way so that it degenerates exclusively on a certain submanifold. The idea starts by
considering a closed 2–form ! on a smooth, orientable, 2n–manifold M such that
!n � 0. At the points where the degeneracy occurs, that is, where !n D 0, we impose
a transversality condition on the gradient or differential map of ! . This transversality
condition tells us that the singular locus Z is a submanifold of codimension 3 in M,
where !n D 0 and !n�1

p D 0 for all p 2 Z, but !n�2
p 6D 0. We call these 2–forms

near-symplectic. Examples of near-symplectic 2n–manifolds are given in Section 2B

Next, we study the existence of these structures using singular fibrations, which are
analogous to bLfs. We define a generalized bLf as a submersion f WM 2n!X 2n�2 with
two types of sets of singularities, both of which lie in M. First, we have codimension-4
submanifolds of extended Lefschetz type singularities, locally modelled by complex
coordinate charts

Cn
!Cn�1; .z1; : : : ; zn/ 7! .z1; : : : ; zn�2; z

2
n�1C z2

n/:

The second singularities are codimension-3 submanifolds † of indefinite folds, mod-
elled by real coordinate charts

R2n
!R2n�2; .t1; : : : ; t2n�3;x1;x2;x3/ 7! .t1; : : : ; t2n�3;�x2

1 Cx2
2 Cx2

3/:

Using these maps, we obtain the following result.

Theorem 1.1 Let f WM ! X be a generalized bLf from a smooth closed oriented
2n–manifold M to a compact symplectic .2n� 2/–manifold .X; !X /. Denote by †
the set of fold singularities of f . Assume that there is a class ˛ 2H 2.M / that pairs
positively with every component of every fibre such that ˛j† D Œ!X j†�. Then there is a
near-symplectic form ! on M, with singular locus Z equal to †, and with symplectic
fibres outside †.
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We start the proof appearing in Section 3B by constructing an explicit closed 2–form
on the fibres that vanishes at the set of singularities of the mapping. We then pull back
the symplectic form of the base. Both 2–forms are combined and glued together into
a global 2–form representing the class ˛ . This statement follows a similar line of
reasoning as the construction of Auroux, Donaldson, and Katzarkov [2], using bLfs in
dimension 4.

Section 4 concerns the geometric structure on the boundary of the neighbourhood of
the singular locus. We study two geometric structures that appear on a codimension-1
submanifold of M. Firstly, we look at Hamiltonian structures. A Hamiltonian structure
on a .2n� 1/–dimensional manifold N is a closed 2–form � such that �n�1 6D 0

everywhere. In the presence of a Hamiltonian structure, there is a 1–dimensional
distribution associated to � through its kernel ker.�/. A 1–form � is called a
stabilizing 1–form if �^�n�1 > 0 and ker.�/� ker.d�/. The pair .�;�/ is known
as a stable Hamiltonian structure. A near-symplectic form naturally equips the singular
locus Z with a Hamiltonian structure. Moreover, if Z carries a stable Hamiltonian
structure, so does the boundary of a small tubular neighbourhood in the case that the
normal bundle is trivial.

We conclude by examining the properties of the normal bundle of Z that are defined by
the near-symplectic form. As in dimension 4, there is a decomposition of the normal
bundle NZ in two subbundles: a rank-1 bundle L� and a rank-2 bundle LC. In
Section 4C, we prove the following neigbourhood theorem for near-symplectic forms
around their singular loci.

Theorem 1.2 Let .M0; !0/, .M1; !1/ be two near-symplectic manifolds with diffeo-
morphic singular loci Z0 ŠZ1 and equal symplectic forms !0jZ0

D !1jZ1
on them.

Assume that there is an isomorphism on the normal bundles NZ0
'NZ1

such that it
restricts to an isomorphism on the positive subbundles LC

0
'LC

1
. Denote by U0 �M0

and U1 �M1 the corresponding tubular neighbourhoods of Z0 and Z1 . Then there
is a homeomorphism 'W U0! U1 that is a diffeomorphism away from Z, such that
'�!1 D !0 .

As a corollary, we obtain a local Darboux-type theorem which describes a near-
symplectic form around a point of Z .

Corollary 1.3 Let .M; !/ be a near-symplectic manifold and p a point of the singular
locus Z �M. There is a coordinate neighbourhood U �M around p such that, on U,

(1) ! D !Z � 2x1.dz0 ^ dx1C dx2 ^ dx3/

Cx2.dz0 ^ dx2� dx1 ^ dx3/Cx3.dz0 ^ dx3C dx1 ^ dx2/;

where !Z WD i�! is a closed 2–form of maximal rank on Z .
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2 Near-symplectic forms

We first recall the definition of near-symplectic forms on 4–manifolds [2].

Definition 2.1 Let X be a smooth oriented 4–manifold. Consider a closed 2–form
! 2�2.X / such that !2 � 0 and such that !p only has rank 4 or rank 0 at any point
p 2X, but never rank 2. The form ! is called near-symplectic if it is nondegenerate
or if it vanishes transversally along circles. That is, for every p 2X, either

(1) !2
p > 0, or

(2) !pD0 and Rank.r!p/D3, where r!pW TpX!ƒ2T �p X denotes the intrinsic
gradient of ! .

It follows from the condition on r!p that the singular locus Z! is a smooth 1–
submanifold of X [2; 14].

Example 2.2 A prototypical example of a near-symplectic 4–manifold is given by
X DS1�Y 3 , where Y is a closed 3–manifold. Consider a closed 1–form ˛ 2�1.Y /

with indefinite Morse critical points, and let t be the parameter of S1 . The 2–form
!Ddt^˛C�.dt^˛/ is near-symplectic, where the Hodge �–operator is defined with
respect to the product metric on S1 and Y . The singular locus Z! Dfp 2X j!p D 0g

is, in this case, S1 �Crit.˛/.

2A Near-symplectic 2n–manifolds

The following definition of near-symplectic forms in higher dimensions is due to Tim
Perutz. The author would also like to acknowledge that the coming exposition very
closely follows a message from Perutz.

Let M be an oriented smooth 2n–manifold, and ! 2�2.M / a closed 2–form such that

(2) !n
� 0

Algebraic & Geometric Topology, Volume 16 (2016)
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everywhere. Suppose that at some point p , the kernel K of ! ,

(3) K D fv 2 TpM j !p.v; � /D 0g;

seen as a subspace of the tangent space, has dimension 4. We have an intrinsic
gradient r!W K!ƒ2T �p M. We can restrict this map to bivectors in K to get a map
K!ƒ2T �p M !ƒ2K�, where the map ƒ2T �p M !ƒ2K� corresponds to the dual
of the inclusion K ,! TpM in the corresponding exterior algebra. We denote this
composition as

(4) DK W K!ƒ2K�:

The wedge square gives us a nondegenerate quadratic form

qW ƒ2K�˝ƒ2K�!ƒ4K�:

Proposition 2.3 The image Im.DK / has dimension at most 3. In local coordinates,
this is a positive semidefinite subspace of ƒ2K� with respect to the wedge square form,
that is, the 4–form DK .v/^DK .v/� 0 for v 2K .

Proof Take an arbitrary tangent vector v 2 TpM, and choose coordinates such that
p D 0 is the point at the origin. By (2) above, we have !n.t � v/� 0 for all scalars t ,
where t �v points into the manifold. Yet if we use a Taylor expansion to write !.t �v/D
!.0/C t � rv!.0/CO.t2/ and take v 2K, we have

!n.t �v/D !n.0/„ƒ‚…
D0

Ct
� n

1

�
!n�1.0/„ ƒ‚ …
D0

^rv!.0/C t2
� n

2

�
!.0/n�2

^.r!v.0//
2
CO.t3/:

The forms !n.0/ and !n�1.0/ vanish since they take vectors @k1
; : : : ; @k4

from K,
whereas in the linear combination of !n�2, there will be vectors outside of K where
the form remains nonzero. This gives us

!n.t � v/D
� n

2

�
� t2
�!.0/n�2

^ .r!v.0//
2
CO.t3/:

We work over a local coordinate system using the tangent space at p D 0. The space
TpM=K has a symplectic structure, and we can combine an orientation on it with an
orientation of K to get an orientation of TpM, which has a natural orientation. With
respect to this chosen orientation, we want to show that DK .v/^DK .v/� 0 for v 2K.
Let ei D .@=@xi/1�i�2n be an oriented basis. Since !n.tv/ � 0 from our original
consideration (2), we have that !n.t � v/.e1; : : : ; e2n/� 0; thus

!n.t � v/� C �!.0/n�2
^ .r!v.0//

2.e1; : : : ; e2n/� 0
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with the constant C D
�
n
2

�
� t2 . The form !.0/n�2 has a sign on the subspace comple-

mentary to K in TpM since we have chosen an orientation. However from (4), by
restricting to vectors in K, we have

!n.t � v/� C � t2
�!.0/n�2.e1; : : : ; e2n�4/^ .r!v.0//

2„ ƒ‚ …
DK .v/^DK .v/

.@k1
; : : : ; @k4

/� 0:

We can see now that the image of DK is a positive semidefinite subspace of ƒ2K�.
Hence Im.DK / has dimension at most 3. In particular, DK .v/^DK .v/ is a nonnega-
tive 4–form with respect to K .

Definition 2.4 A 2–form ! 2 �2.M 2n/ is near-symplectic if it is closed, !n � 0

and, at a point p where !nD 0, one has that the kernel KDfv 2TpM j!p.v; � /D 0g

is 4–dimensional and that Im.DK / has dimension 3.

Remark 2.5 Informally, the definition implies that a closed 2–form ! 2�2.M / is
near-symplectic if, for every p 2M, either

(i) !n
p > 0, or

(ii) !n�1
p D 0, but !n�2

p 6D 0 at a codimension-3 submanifold of M.

In the remaining part of this section, we will explain why the degeneracy locus is a
codimension-3 submanifold.

The image of the map DK W K!ƒ2K� is of dimension 3, thus it has a 1–dimensional
kernel. If we look at !n�1, then it vanishes at p since it takes at least two vectors
from K. Moreover, G Dr!n�1.p/ is intrinsically defined. Choose coordinates .xk/

so that K is defined by the vanishing of all but the last four dxk . Take the derivative
of !n�1 and apply the chain rule to obtain

G D .n� 1/!.p/n�2
r!p;

where the gradient on the right is defined using the coordinates. The 2–form ! is
symplectic on the submanifold Z where the last 4 coordinates are zero. We can adjust
the coordinates to Darboux form so that ! is constant on Z ; that is, for p 2Z we have
!jpDdx1^dx2C� � �Cdx2n�5^dx2n�4 . Hence r!p.@xi/D0 for iD1; : : : ; 2n�4.
However, we have

ker G D ker.r!p/;

and now one sees that this is a codimension-3 subspace containing the line ker.DK /.
Hence the degeneracy locus Z of the near-symplectic form is a codimension-3 sub-
manifold of M .
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Lemma 2.6 The singular locus Z! D fp 2 M j !n�1
p D 0g is a codimension-3

submanifold of M .

Remark 2.7 Let V be a 2n–dimensional manifold and Z a .2n� 3/–submanifold.
The property of !jn

V nZ
> 0 guarantees that the whole V 2n is orientable. This is due to

the fact that Z is a submanifold of codimension 3. In fact, it follows from a standard
algebraic topological argument that this orientability property is true for any dimension
if the codimension of the submanifold is greater than or equal to two. That is to say,
if ! is a 2–form on V , the submanifold K � V is k –dimensional, and !n > 0 on
V nK, then V is oriented if codim.K/� 2.

Remark 2.8 In dimension 4, near-symplectic structures are related to self-dual har-
monic forms. An obvious obstacle in dimensions 6 and above is that there is no
analogue of self-duality for 2–forms. Some local models of near-symplectic forms on
6–manifolds M 6 seem to indicate that near-symplectic forms could be equivalent to
! D �!2 for some generic metric, outside the singular locus Z .

2B Examples

Example 2.9 On R2n with coordinates .q1;p1; : : : ; qn�2;pn�2;x0;x1;x2;x3/, the
following 2–form is near-symplectic:

! D�2x1.dx0 ^ dx1C dx2 ^ dx3/Cx2.dx0 ^ dx2� dx1 ^ dx3/

Cx3.dx0 ^ dx3C dx1 ^ dx2/C

n�2X
iD1

dqi ^ dpi :

The singular locus where !n�1 D 0 is given by Z! D fp 2R2n j x1 D x2 D x3 D 0g

and !n > 0 away from Z! .

For the next example, let .Q; x!/ be a symplectic manifold and �W Q!Q a symplec-
tomorphism. Consider the mapping torus

N DQ.�/D .Q� Œ0; 1�/=� ;

where .x; 0/� .�.x/; 1/. The mapping torus is, in particular, a fibre bundle over S1, and
it carries a nonvanishing closed 1–form ˇ . We can extend x! from Q to N . There is a 2–
form defined on Q�R. The Z–action on this manifold given by .x; t/ 7! .�.x/; tC1/

leaves the 2–form invariant; hence it descends to the quotient. Thus, x! is a well-defined
2–form on N that is symplectic on Q.

Algebraic & Geometric Topology, Volume 16 (2016)
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Example 2.10 Consider the 2n–manifold M DN �Y , where N is the mapping torus
described in the previous paragraph, and Y is a closed, connected, orientable, smooth
3–manifold. Let ˛ 2�1.Y / be a closed 1–form with indefinite Morse singular points
(ie no maximum or minimum). By Calabi’s and Honda’s theorems [11; 12], this form
can be replaced by an intrinsically harmonic 1–form lying in the same cohomology
class and having the same Morse numbers. Thus we may assume that �˛ D 0 for
some Riemannian metric on Y . Equip the 2n–manifold with the 2–form

(5) ! D ˇ^˛C x!C .�Y ˛/;

where �Y denotes the Hodge-� operator. This 2–form is near-symplectic on M, and
its singular locus is Z! DN �Crit.˛/.

3 Fibrations

3A Near-symplectic fibrations

We recall the definition of broken Lefschetz fibrations on dimension four. On a smooth,
closed 4–manifold X 4, a broken Lefschetz fibration or bLf is a smooth map to the
2–sphere, f W X 4! S2 , with two types of singularities:

(1) isolated Lefschetz-type singularities, which are contained in the finite subset of
points B �X 4 and are locally modelled by complex charts

C2
�!C; .z1; z2/ 7�! z2

1 C z2
2 I

(2) indefinite fold singularities, also called broken, which are contained in the smooth
embedded 1–dimensional submanifold � �X 4 nB and are locally modelled
by the real charts

R4
�!R2; .t;x1;x2;x3/ 7�! .t;�x2

1 Cx2
2 Cx2

3/:

In [2] these mappings were studied under the name of singular Lefschetz fibrations.
It was shown that there is a natural connection between bLfs and near-symplectic
manifolds. Up to blow-ups, a near-symplectic 4–manifold X can be decomposed into
a bLf. The other direction is given by the following theorem.

Theorem 3.1 [2] If we have a bLf with singularity set � tB on a closed oriented
4–manifold X, with the property that there is a class ˛ 2 H 2.X / such that it pairs
positively with every component of every fibre, then X carries a near-symplectic
structure with zero-locus being equal to the set of broken singularities of f .

Algebraic & Geometric Topology, Volume 16 (2016)
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Figure 1: Example of a bLf with one circle of folds and two Lefschetz points.

Our Theorem 1.1 shows a similar statement in 2n dimensions. Now we define a
map that will play an analogous role of a bLf two dimensions higher. This map is
a submersion with folds and Lefschetz-type singularities. Notice that a submersion
with folds is stable if the map f restricted to its fold set is an immersion with normal
crossings [9]. By stable, we mean that any nearby map zf is identical to f after a
change of coordinates.

Definition 3.2 Let M be a smooth, closed 2n–manifold M and X a smooth, closed
.2n�2/–manifold. By a (generalized) broken Lefschetz fibration, we mean a submersion
f W M !X with two types of singularities:

(1) “Extended” Lefschetz-type singularities are locally modelled by

Cn
!Cn�1; .z1; : : : ; zn/ 7! .z1; : : : ; zn�2; z

2
n�1C z2

n/:

These singularities are contained in codimension-4 submanifolds crossed with a
Lefschetz singular point. Singular fibres present an isolated nodal singularity,
but nearby fibres are smooth and convex.

(2) Indefinite fold singularities are locally modelled by

R2n
!R2n�2; .t1; : : : ; t2n�3;x1;x2;x3/ 7! .t1; : : : ; t2n�3;�x2

1 Cx2
2 Cx2

3/:

The fold locus is an embedded codimension-3 submanifold, and we denote
it by †. Singular fibres present a nodal singularity, but this time crossing †
changes the genus of the regular fibre by one.

Algebraic & Geometric Topology, Volume 16 (2016)
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M

X †

Figure 2: Fibres: regular (left, right) and singular (middle).

If we consider the total space to be near-symplectic with regular fibres being symplectic
and the fold locus being Z! , then we will refer to the previous map f W M !X as a
near-symplectic fibration.

3B Proof of Theorem 1.1

Step 1: Constructing the local 2–form We first want to define the local near-
symplectic form near the singular sets †tC, where † denotes the singularity set of
folds and C the set of extended Lefschetz-type singularities. We begin by defining
a singular symplectic form vanishing at †, and then we pull back the symplectic
form of the base. Let .t1; : : : ; t2n�3;x1;x2;x3/ be coordinates around a fold point
p 2† of index 1, locally modelled by zf W .t;x/ 7! .t1; : : : ; t2n�3;�x2

1
C

1
2
.x2

2
Cx2

3
//.

Since the fibres are 2–dimensional, we can take a similar local model as the near-
symplectic forms on 4–manifolds. Define the following 2–form on a piece of the
tubular neighbourhood of † containing p :

(6) �p D d.�.t/x1.x2dx3�x3dx2//:

This 2–form is closed, vanishes at the singularity set, is nondegenerate outside †, and
evaluates positive on the fibres. Here �.t/ is a smooth cut-off function depending on
coordinates on Z . This cut-off function will help us in the gluing process when sum-
ming up the 2–forms �pi

to build a local 2–form on the whole tubular neighbourhood
of †. We sum up the forms �pk

over a finite cover of †, and pullback the symplectic
form from the base. We obtain

(7) !A D

X
pk

�pk
Cf �!X :

Algebraic & Geometric Topology, Volume 16 (2016)
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This closed 2–form is defined on the tubular neighbourhood of †. It is nondegenerate
outside † and positive on the fibres. At the degeneracy points, Kp DNp†˚ "p is of
dimension four, where "D ker.f �!X /� T†.

Around elements of C, where f is given by .z1; : : : ; zn/ 7! .z1; : : : ; zn�2; z
2
n�1
Cz2

n/,
we can choose disjoint neighbourhoods Bk such that !0jBk

D !Cn�1 . Since, near C ,
we are in a situation similar to a Lefschetz fibration, we can proceed as in [2; 10].
For any v1; v2 2 TpF, we get !0jBk

.v1; v2/ > 0 away from the singularity. The
symplectic form !AjBk

can be extended to the fibre Fq as a symplectic form for all
q 2 f .Bk/�X .

Step 2: Extension over the neighbourhoods of the fibres In this step we want to
construct local 2–forms on the neighbourhood of the fibres. We extend the 2–form to a
local model over the neighbourhood of the fibres such that it agrees with !A near †tC.
Let U be the tubular neighbourhood of †tC. Choose a closed 2–form � 2�2.M /

with a class being represented by ˛ . Since ˛j† D !X j† 2 H 2.†/, over U there
exists a 1–form x� 2�1.U / such that !A� � D d x�. We now extend x� to an arbitrary
1–form on the manifold, � 2 �1.M /, supported in a neighbourhood W of U. By
substituting �D �C d� on U, we can regard � to be !A when restricted to U .

By assumption, we have a positive pairing h˛;Fi > 0 over each component of the
fibre, Œ��D ˛ , and the fibres have a symplectic form �F . We equip the fibres with a
closed singular 2–form �q with the following properties:

(a) �qjFq\U1
D �. By restricting �q to U, this 2–form is near-symplectic since

�jU D !A . The form �q is defined on the fibre, so �qjFq\U1
is near-symplectic.

(b) �qjFq
is positive on Fq , where the fibre is smooth. This can be seen by con-

sidering two subsets of the fibre. Take a small open neighbourhood around
the singularity and a second larger one covering the rest of the fibre. On the
first neighbourhood around the singularity, the 2–form !A evaluates positively
except at the singular point. On the second subset where the fibre is smooth, the
area form of Fq evaluates positively.

(c)
R

F �q D h˛;Fi> 0, since

Œ�q � �jFq
�D 0 in H 2.Fq;Fq \U1/

PD
'H0.Fq;Fq \U1/' 0;

assuming Fq is connected. Then .�q � �jFq
/ is exact in Fq \ U1 ; that is,

Œ�q �D Œ��D ˛ .

We now describe some properties of the neighbourhood of the fibres in order to extend
the 2–form. For any q 2X, we can find a tubular neighbourhood Vq of the fibre Fq

Algebraic & Geometric Topology, Volume 16 (2016)
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and neighbourhoods U2 � U1 � U of the fold singularity set †. A q 2 X can be
engulfed by an m–disk Dm. Around a fibre Fq , take f �1.Dm/DVq . After removing
a small neighbourhood of the critical set, we have that Vq n .Vq\U2/ is diffeomorphic
to Dm�1 � .Fq n .Fq \U2//. This follows from the Ehresmann theorem, since we
locally have a nice smooth map without critical points.

To extend the 2–form on the neighbourhood of the fibre, we build a smooth map

� W Vq! Vq

by interpolating between two maps as follows:

(i) Close to the singular point of the fibre inside the neighbourhood Vq \U1 , we
use the identity map so that � is idVq\U1

. Since Vq is a neighbourhood of a
fibre Fq and Vq \U1 retracts to Fq \†, we want that � maps down to the
piece of the fibre close to the singularity together with the intersection of the
neighbourhoods Vq and U1; that is,

Im.�/� Fq [ .Vq \U1/:

(ii) Farther away from the singular region, that is, on the smooth part Fq n.Fq\U2/,
we use the projection map prW Vq n .Vq \U2/! Fq nFq \U2 that comes from
the product structure.

We use the map � to construct a near-symplectic form ˇ on Vq . With � , we pull back
the 2–form � on Vq \U1 and the 2–form �q on Fq to get

ˇ D ���q C ���:

This 2–form has the following features:

(1) dˇ D 0 and Œˇ�D ˛jVq
.

(2) ˇjVq\U2
D �.

(3) There exists a 1–form �q on Vq such that ˇ� �D d�q , since Œˇ� ��D 0 in
H 2.Vq;Vq \U2/'H 2.Fq;Fq \U2/. Thus, on Vq ,

ˇq D �C d�q:

(4) ˇqjFq
> 0 restricts positively to the fibre for every regular point q 2 Vq .

Algebraic & Geometric Topology, Volume 16 (2016)



Near-symplectic 2n–manifolds 1415

Step 3: Patching into a global form We expand the near-symplectic form over the
whole manifold M. Since our base is compact, we can find a finite subset Q � X

and choose a finite cover D with open subsets .Dq/q2Q such that f �1.Dq/� Vq for
each q 2X. Consider a smooth partition of unity �W X ! Œ0; 1�, with

P
q2Q �q D 1,

subordinate to the cover D with supp.�q/�Dq . We build a global 2–form � on M

by patching the local 1–forms �q previously defined on Vq . Thus, we define the
following closed 2–form:

(8) �D �C d

�X
q2Q

.�q ıf /�q

�
:

Since f is constant on the fibres, the 1–form d..�q ı f /�q/ D 0 when evaluated
on the vectors tangent to the fibre. From the second step, � agrees with !A when
restricted to U. Let U2 be the intersection of all neighbourhoods U2 for all q 2Q;
that is, U2 D U2 \

T
q2Q f

�1.Dq/. The 2–form � agrees with � when restricted
to U2 , so it agrees with the local model of !A at U2 . Thus, � is globally well-defined
over M.

The 2–form � restricts to a fibre Fq in the following way:

�jFq
D �jFq

C

X
q2Q

� ıf .p/d�qjFq

D

X
q2Q

� ıf .p/.�C d�q/jFq

D

X
q2Q

.� ıf .p// ˇqjFq
:

This is a convex combination of near-symplectic 2–forms. On each fibre, � is closed,
positive outside the singular locus, and degenerates at †, inducing a symplectic structure
on each fibre outside the singularities.

Step 4: Positivity on vertical and horizontal tangent subspaces To conclude the
global construction, we apply a similar argument as in the symplectic case. The 2–form
� is positive on the vertical subspaces tangent to the fibre ker df .p/D TpF � TpM,
outside the singularity set. To guarantee positivity on the horizontal spaces, we multiply
the pullback from the symplectic form of the base by a sufficiently large real number
K > 0 to obtain the 2–form

(9) !K D�CK �f �!X :

If we restrict !K to the vertical subspaces tangent to the fibre, it agrees with �. The
2–form !K defines a near-symplectic structure on M.
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3C Examples

Example 3.3 (pullback bundle) We can obtain examples of near-symplectic mani-
folds and near-symplectic fibrations via a pullback bundle construction. Suppose we
have n>2, M and X oriented, closed manifolds of dimension .2n�2/, B an oriented,
closed, connected manifold of dimension .2n� 4/, f and g smooth mappings, and
W D f.x;m/ 2X �M j f .x/D g.m/g, fitting into a pullback diagram:

W

zg
��

zf
// M

g

��

X
f

// B

Before going to the near-symplectic case, we briefly comment on the symplectic one.
A theorem from Thurston tells us that if g is a compact symplectic fibration over a
closed connected symplectic manifold B, and there is a class ˛ 2H 2.M / such that
��˛ D Œ�b � for all b 2 B, where �b 2�

2.Fb/ is the canonical form of the fibre, then
M is symplectic. We can pull back this information to W via zf and obtain a class
z̨ D zf �˛ 2H 2.W / with the same property. Thus we only need X to be symplectic
so that W is a symplectic manifold via the induced map zg . We now discuss the
near-symplectic scenario.

Throughout these examples, we assume that the critical set of g forms regular points
for f , so that f behaves like a bundle near the critical sets by the Ehresmann theorem
(whenever there is a critical set for g ). The first example follows from Theorem 1.1. If
g is a bLf (thus zg a generalized bLf), and X is symplectic, then W is near-symplectic
via zg assuming that the cohomological condition of Theorem 1.1 is satisfied. A second
case appears when the base X is near-symplectic. Keeping a vertical view of the
diagram, we do not now consider g and zg to be bLfs. The following proposition
explains this situation.

Proposition 3.4 Let gW M ! B be a compact symplectic fibration with symplectic
total space M, and let .X; !X / be a closed, near-symplectic manifold over a closed
connected symplectic base B of codimension 2. Let W be the pullback bundle as
defined in the previous paragraph. Then W carries a near-symplectic structure induced
by zgW W !X .

Proof Let � be the singular locus of !X , which is a codimension-3 submanifold
in X. Its preimage under zg is a surface bundle, and we will denote by Z its total space.
This bundle will become the singular locus of the near-symplectic form of W . Let U
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be the tubular neighbourhood of � and let E D zg�1.U/. E is a surface bundle. We
will also consider a small tubular neighbourhood xE inside E .

We now construct a closed 2–form z� 2 �2.W / that is positive on the fibres of zg
in W , whose wedge power z�n�1 is zero on E. Since g is a symplectic fibration, we
have a cohomology class ˛ 2 H 2.M / that pairs positively with the fibre class. We
choose z� such that Œz��D zf �˛ 2H 2.W / with �� z̨ D zf �Œ� �. Secondly, as xE and E

are cohomologically .2n� 3/–dimensional, we can select z� with the property that
z�n�1j xE D 0.

Let Uk be contractible open subsets of a cover of B with trivializations �k , such that
�k ı �

�1
j are symplectomorphisms over Uk \Uj . We bring these neighbourhoods

to W as .zg ı f /�1.Uk/ D zUk . Define  k WD .proj ı z�k ı
zf /W zUk ! F. Over zUk ,

there is a 1–form �k such that d�k D  
�z�k � z�k , since Œz��D zf �jF .˛/D Œ �z��.

The rest of the proof follows similarly as in steps 3 and 4 of the proof of Theorem 1.1.
Choose a partition of unity �W W ! Œ0; 1� in such a way that its open subsets do not
touch xE, and with it define a closed 2–form ˇD z�C

P
k �kd�k on W . This form has

the properties that ˇj xE D z�j xE and ˇjF D �b , where �b is the form of the fibre Fb .
Finally, we build up our global form by adding zg�!X . If K is a sufficiently large
positive real number, then we have a closed 2–form which is nondegenerate away
from Z :

!K D ˇCK � zg�!X :

Example 3.5 (near-symplectic manifolds coming from bLfs) Broken Lefschetz fi-
brations also provide ways to obtain near-symplectic fibrations on 2n–manifolds over
near-symplectic .2n�2/–manifolds. Let gW M ! B be a bLf as defined previously
with singular fold set †zg , where M is near-symplectic with dim.M /� 4, and B is
a closed, connected, symplectic manifold with dim.B/ � 2. Furthermore, consider
.X; !X / to be a symplectic manifold with dim.X /� 4. Assume that there is a class
˛ 2 H 2.M / such that h˛;Fi > 0 and z̨j†zg D !X j†zg . Then W is near-symplectic
via a generalized bLf zg .

If both f W X ! B and gW M ! B are two bLfs, then we require the intersection of
their critical images to be transversal in B, but not necessarily disjoint. In that case, it
follows from a standard differential topological argument that W is a 2n–dimensional
manifold. The maps zf and zg become near-symplectic fibrations, carrying the same
type and number of fold and Lefschetz-type singularities as f and g , respectively.
Around a critical point in f �M, the maps zf and zg are locally modelled by coordinate
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charts ' and � respectively defined as

'W R2n
!R2n�2; .r1; : : : ; r2n/ 7! .r2

1 C r2
2 � r2

3 ; r4; : : : ; r2n/;

� W R2n
!R2n�2; .r1; : : : ; r2n/ 7! .r1; : : : ; r2n�3;�r2

2n�2C r2
2n�1C r2

2n/:

Assume the cohomological condition on the class z̨ 2H 2.W / as above, and denote by
� the singular locus of !X , and † the singularity set of zg . The mapping zg becomes a
near-symplectic fibration over a near-symplectic base .X; !X /, if zg�1.�/ 6�† in W .
This construction gives 2 generalized bLfs, one for each pullback mapping.

Remark 3.6 If we would like to consider deformations of near-symplectic fibrations,
in a similar fashion as Lekili [13], then it would be necessary to consider all stable
singularities of maps from R2n to R2n�2. For maps going from a 6–dimensional source
to a 4–dimensional target, there are 4 stable singularities: folds, cusps, swallowtails, and
butterflies [9]. For higher dimensions, the list becomes longer and more complicated.

4 Geometry of the singular locus

In this section, we study the geometry around the singular locus induced by the near-
symplectic form. First, we show that the singular locus carries a natural Hamiltonian
structure. Then we show that if Z admits a stable Hamiltonian structure, so does
its normal sphere bundle Z � S2 in the case where the normal bundle is trivial. In
the second part, we describe the splitting property of the normal bundle following
from a near-symplectic structure, similar to the 4–dimensional case. Then, we give a
neighbourhood-type theorem. As a corollary, we find a local Darboux-type statement
for near-symplectic forms.

4A Stable Hamiltonian structures

We present the next definitions as exposed by Cielebak and Volkov [5].

Definition 4.1 A Hamiltonian structure (HS) on an oriented .2n� 1/–dimensional
manifold M is a closed 2–form � such that �n�1 6D 0 everywhere. Associated to �
is its 1–dimensional kernel distribution ker.�/ WD fv 2 TM j �v� D 0g. We orient
ker.�/ using the orientation on M together with the orientation on the local transversal
to ker.�/ given by �n�1.

A stabilizing 1–form for � is a 1–form � such that
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(1) �^�n�1 > 0, and

(2) ker.�/� ker.d�/.

A Hamiltonian structure � is called stabilizable if it admits a stabilizing 1–form �. A
stable Hamiltonian structure (SHS) is the pair .�; �/.

An SHS .�; �/ induces a canonical Reeb vector field R generating ker.�/ and nor-
malized by �.R/D 1. Note that if .�; �/ is an SHS, then .�;��/ is an SHS inducing
the opposite orientation.

Example 4.2 (1) Contact manifolds .M; �/ is a contact manifold, R is the Reeb
vector field, and �D˙d�.

(2) Mapping tori M WDW� DR�W =.t;x/� .tC1; �.x// is the mapping torus
of a symplectomorphism � of a symplectic manifold .W; x!/, RD @=@t , �Ddt ,
and � is the form on M induced by x! . Note that d�D 0, so ker.�/ defines a
foliation. Notice that W� D Œ0; 1��W =.0;x/' .1; �.x//.

(3) Circle bundles � W M ! W is a principal circle bundle over a symplectic
manifold .W; x!/, R is the vector field generating the circle action, � is the
connection form, and �D ��x! .

The next class of examples follows directly from the definition of a near-symplectic form.

Proposition 4.3 A near-symplectic structure induces a Hamiltonian structure on its
singular locus Z! .

Proposition 4.4 Let .Z �R3; !/ be a near-symplectic manifold with singular locus
Z � f0g, where Z is an oriented .2n� 1/–manifold. If " is a stabilizing 1–form for
!Z on Z, then the normal sphere bundle Z �S2 has a stable Hamiltonian structure.

Proof By assumption, we have that "^!n�2
Z

> 0 on Z and ker.!Z /� ker.d"/. Let
�S2 be the symplectic form of S2. The boundary of a piece of the tubular neighbourhood
@.Z �B3/DZ �S2 can be equipped with a Hamiltonian structure by

(10) x! D !Z C �S2 :

This is a closed 2–form of maximal rank on Z �S2 since x!n�1 D !n�2
Z
^ �S2 > 0.

The stabilizing 1–form on Z �S2 is defined by �D ". We have

�^ x!n�1
D "^ .x!n�2

^ �S2/ > 0:
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This shows the first condition of an SHS. Now for the second property, observe that

ker.x!/D fv 2 TM j �v x! D �v.!Z C �S2/D 0g D ker.!Z /:

In this case, ker.x!/� ker.d�/. The pair .x!; �/ is a stable Hamiltonian structure for
Z �S2 � .M; !ns/.

Stable Hamiltonian in bLf case

Proposition 4.5 Let .Z; �Z D ker.˛Z // be a contact manifold of dim.Z/D 2n� 1

and .Z � R; !B D d.et˛Z // its symplectization. Let f W Z � R3 ! Z � R be a
broken Lefschetz fibration. The total space Z�R3 is near-symplectic inducing a stable
Hamiltonian structure on Z �S2 .

Proof We now equip M DZ �R3 with a near-symplectic form along the lines of
[2] and Theorem 1.1. Over the regular neighbourhood of Z, using the coordinates .xi/

of the fibre, define the 2–form

(11) � D d.x1.x2dx3�x3dx2//:

We obtain a closed 2–form that is positive on the fibres and nondegenerate outside Z.
Define the 2–form ! 2�2.Z �R3/ as

! D � Cf �!B:

At the points where !n D 0, we have a 4–dimensional kernel

K D fv 2 TpM j !p.v; �/D 0g ' "p˚TpY 3;

where "D ker.f �!B/. The 2–form ! defines a near-symplectic structure on Z �R3.

Let U be the tubular neighbourhood of Z in M and �S2 the area form of S2. Define
on the boundary of U the 2–form

(12) x! D d˛Z C �S2 :

The contact form ˛Z will work as the stabilizing 1–form �D ˛Z . A simple computa-
tion shows that

�^ x!n�1
D ˛Z ^ d˛n�2

Z ^ �S2 > 0:

Moreover, since ker.x!/' "' ker.d˛Z /, the second property is also satisfied. Hence
the pair .x!; ˛Z / defines a stable Hamiltonian structure on the boundary of the singular
locus Z �S2 .
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4B Normal bundle of Z

In this section, we will first show that the definition of near-symplectic form reflects
properties on the normal bundle of the singular locus similar to dimension 4. In
particular, we obtain a splitting of the normal bundle NZ into two subbundles.

Let K WD " ˚ NZ be defined by " D ker.!Z / and the normal bundle of Z, the
singular locus of ! . Fix a metric g on K such that !jK is self-dual. Identify the
intrinsic normal bundle NZ with the complement .TZ/? using the metric g . From the
transversality of ! , the image of the intrinsic gradient DK WD r!jK is 3–dimensional.
In fact, we have that Im.Dk/Dƒ

2
CK�. Thus we have a natural identification with the

bundle of self-dual 2–forms. This implies that DK defines an isomorphism

NZ !ƒ2
CK�:

Let X D @=@z0 be the unit vector field defined on the line ker.!jZ /�TZ. The interior
derivative defines a bundle isomorphism

ƒ2
CK�!N �Z ; ˇ 7! �X ˇ:

Its inverse N �
Z
! ƒ2

C is given by � 7! � ^ �C�.� ^ �/, where � is a 1–form that
is nonvanishing on ". Using the metric g we can define an isomorphism N �

Z
!NZ .

The endomorphism

F W NZ !NZ

defined by the composition

NZ

DK
��!ƒC

�X
��!N �Z

g
��!NZ

is a self-adjoint, trace-free automorphism as in dimension 4 [11; 14]. The matrix A

representing this map is symmetric and trace-free. Consequently, at each point p 2Z,
A has three real eigenvalues, two of them positive and one negative, following the sign
convention used in low dimensions [11; 14; 16]. We obtain a splitting of the normal
bundle in two eigensubbundles defined by the negative and positive eigenspaces:

NZ 'L�˚LC:

Here L� is a rank-1 bundle, locally trivial, and LC is a rank-2 bundle, the orthogonal
complement to L� . After a choice of basis, the linear map F can be represented by
a trace-free symmetric matrix ADAC˚A� , where AC is a 2� 2 positive-definite
matrix, and A� < 0.
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4C Proof of Theorem 1.2

Step 1: Family of near-symplectic forms Define !t D .1 � t/!0 C t � !1 . We
want to show that this is a family of near-symplectic forms. The closedness property
follows from the fact that this family is a linear combination of closed 2–forms. The
symplectic subspaces defined by !Z0

and !Z1
are the same on TZ0 ' Symp0˚ "0

and TZ1 ' Symp1 ˚ "1 . This defines the same complementary line bundle " D
ker.!Z0

/D ker.!Z1
/.

The kernels K0 ' "˚NZ0
and K1 ' "˚NZ0

are 4–dimensional. Interpolating
between !0 and !1 leaves dim.Kt / D 4 for all t . Thus up to scaling, the intrinsic
gradients DK0

WD r!jK0
and DK1

WD r!jK1
agree, and so do their images. Hence,

at a point p D 0 in Z , we have that !n
t D 0. Notice that this property can also be

computed directly by looking at the expansion

!n
t .0/D cn.t/!

n
0 .0/C cn�1.t/

�n

1

�
�!n�1

0 ^!1.0/

C cn�2.t/
�n

2

�
!n�2

0 ^!2
1.0/C � � �C c0.t/!

n
1 .0/;

where ck.t/D .1� t/k � tn�k for k 2 f0; : : : ; ng. In the previous expression, all terms
vanish since each of them necessarily takes four vectors from Kt .

Now we show that !n
t is nonnegative. Let v be a vector in NZ and s 2R. Consider

the Taylor expansion around p 2Z :

!n
t .s � v/D !

n
0 .0/„ƒ‚…
D0

C s � !n�1
0„ƒ‚…
D0

^rv!0C s2
�!n�2

0 ^ .rv!0/
2
C � � �C!k

0 ^!
n�k
1 .0/„ ƒ‚ …
D0

C s �!k�1
0 ^!n�k

1„ ƒ‚ …
D0

^r!0C s �!k
0 ^!

n�k�1
1„ ƒ‚ …
D0

^r!1

C s2
�
�
!k�2

0 ^!n�k
1 ^ .rv!0/

2
C!k�1

0 ^!n�k�1
1 ^ .rv!0 ^rv!1/

C!k
0 ^!

n�k�2
1 ^ .rv!1/

2
�
C � � �

D !n
1 .0/„ƒ‚…
D0

C s � !n�1
1„ƒ‚…
D0

^rv!1C s2
�!n�2

1 ^ .rv!1/
2
C � � �

The terms of the form !k
0
^!n�k

1
for k 2 f0; : : : ; ng vanish identically as explained

in the previous paragraph. The linear terms of the form !k�1
0
^ !n�kC1

1
^ rv!i

for i 2 f0; 1g are also zero since, from the 2n� 2 vectors vi which are allocated in
!k�1

0
^!n�kC1

1
.v1; : : : ; v2n�2/, at least two of those vectors should come from Kt .
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This leaves us with the following expression with leading terms of order s2 :

!n
t .s � v/D s2

�
�
!n�2

0 .0/^ .rv!0/
2
C � � �C!n�2

0 ^ .rv!0 ^rv!1/C � � �

C!n�3
0 ^!1.rv!0/

2
C � � �C!n�2

0 ^ .rv!1/
2
C � � �

C!n�3
0 ^!1.rv!0 ^rv!1/C � � �C!

n�4
0 ^!2

1 ^ .rv!0/
2
C � � �

C!n�3
0 ^!1 ^ .rv!0/

2
C � � �C!n�4

0 ^!2
1.rv!0 ^rv!1/C � � �

C!n�5
0 ^!3

1 ^ .rv!0/
2
C � � �C!n�2

1 ^ .rv!0 ^rv!1/C � � �

C!0 ^!
n�3
1 .rv!0/

2
C � � �C!n�2

1 .0/^ .rv!1/
2
C � � �

�
:

Factorizing the .n� 2/–forms which are symplectic on Z, we can rewrite the previous
expression as

(13) !n
t .s � v/D s2

�
�
!n�2

0 .0/^
�
.rv!0/

2
Crv!0 ^rv!1C .rv!1/

2
�
C � � �

C!n�k
0 ^!k

1 ^
�
.rv!0/

2
Crv!0 ^rv!1C .rv!1/

2
�
C � � �

C!n�2
1 .0/^

�
.rv!0/

2
Crv!0 ^rv!1C .rv!1/

2
��
:

As in Section 2, by restricting the terms .rv!0/
2 and .rv!1/

2 to vectors @ki
in Kt ,

we have .rv!0/
2.@k1

; : : : ; @k4
/DD2

K0
� 0 and .rv!1/

2.@k1
; : : : ; @k4

/DD2
K1
� 0.

Thus, in (13), the square binomial terms are nonnegative:

..rv!0/j
2
KCrv!0^rv!1jKC.rv!1/j

2
K /D .rv!0jKCrv!1jK /

2
WDrv!

2
t jK � 0:

Also, the forms !n�k
0
^!k

1
for k 2f0; 1; : : : ; ng are positive on the symplectic subspace

in Z , from which we conclude that !n
t � 0 on the tubular neighbourhood of the

singular locus.

Step 2: Poincaré lemma These next two steps follow the lines of Perutz [14], where
we first use an application of the Poincaré lemma. The De Rham homotopy operator

QW �k
!�k�1; Q�D

Z 1

0

h�t .�R�/ dt

satisfies
Id.�/� .� ı�/�.�/D dQ.�/CQd.�/:

Here we have � W NZ ! Z the bundle projection, i W Z ! NZ the zero section,
ht W NZ!NZ ; x! t �x the fibrewise dilation, and R the Euler vector field. Applying
this lemma to a neighbourhood of the zero section U0 � NZ , we find a 1–form
�t WDQ.!t / satisfying d�t D !t on U0 nZ. Moreover, notice that !t vanishes up to
degree 1 on Kt . Inserting the Euler vector field R into !t adds one degree more and
produces a 1–form �R!t that vanishes on Z up to degree 2.
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Step 3 We proceed in two parts. First we consider the case on U0 nZ, where the
argument is very similar as in dimension 4. Then we focus on the symplectic subspace
inside Z .

On U0 nZ, where !t is near-symplectic, introduce vector fields Xt defined by

(14) �Xt
!t C�t D 0:

We want to show that, on the tubular neighbourhood, Xt shrinks as it approaches Z. On
the other four complementary directions defined by Kt , we have that r�t .u/D0 for all
nonzero vectors u 2NZ0

since �t vanishes to the second order along Z. Furthermore,
!t degenerates on Kt , and a Taylor expansion shows that r!t 6D 0 on K , so that
jX t

K
.x/j � C jxj for a constant C , as shown in [14].

On the symplectic subspace in Z , we have �t jSympZ
D 0, but the restriction !t jSympZ

is nondegenerate on this subspace. Thus, in order to satisfy (14), the vector field Xt

needs to vanish on SympZ . In particular, the components of the vector field along the
symplectic subspace satisfy jX t

Symp.x/j � cjxj for a constant c .

The family fXtgt2Œ0;1� generates a flow f tgt2Œ0;1� on U0 outside Z . A trajectory xs

defined on some interval Œ0; zs � satisfies d.log jxsj/=ds � �C . Integrating over Œ0; zs �,
we obtain jxzsj � eCzsjx0j. This shows that the trajectory stays inside U0 nZ0 ; hence
the flow  s is well defined.

Step 4 Define on U0 nZ0

z!t WD  
�
t !t ;

and on Z0

z!t WD !Z0
:

Moser’s argument shows that z!t D !t in some neighbourhood of Z. The diffeo-
morphism  1 is not defined on Z. Extend it to Z by the identity. At the level of
the singular locus, we can take the diffeomorphism to be the one from the theorem’s
assumption that Z0�Z1 . This leads to a homeomorphism, which is a diffeomorphism
away from Z .

Finally, set ' D  1 and  1.U0/D U1 . Then we have that '�!1 D !0 away from Z ,
but !1 and !0 agree on Z by assumption.

4D Proof of Corollary 1.3

This proof uses the previous theorem and an adaptation of an argument from [14].
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Proof First let 
 be a closed interval inside the line " D ker.!Z /. Now consider
� WD
�B3�KD"˚NZ . Identify an open subset of Z with V �f0g�U 'V �B3

0
.R/

inside M, such that � �U . Denote by z0 the coordinate on 
 and by @z0
a positively

oriented vector field on 
 for the orientation determined by ! .

Take a metric g for which !j� is self-dual. We can find an orthonormal frame
.e1; e2; e3/ for NZ such that L�D span.e1/ and LCD span.e2; e3/. The metric and
the choice of ei provide normal coordinates .xz; z0;x1;x2;x3/ on a small neighbour-
hood of p inside U, where xz correspond to the .2n� 4/ coordinates complementary
to z0 on Z. Using these coordinates, we can write three basis elements ˇi of ƒ2

CK� :

ˇ1 D dz0 ^ dx1C dx2 ^ dx3;

ˇ2 D dz0 ^ dx2� dx1 ^ dx3;

ˇ3 D dz0 ^ dx3C dx1 ^ dx2:

Let zF D zF�˚ zFC be a matrix representing the linear map F 2 End.NZ / with respect
to .e1; e2; e3/, and let x D .x1;x2;x3/ and ˇ D .ˇ1; ˇ2; ˇ3/

T . Expand ! near Z

to obtain

!.z;x/D !jZ C .x � zF �ˇ
T
CO.x2//

D !jZ C

�
x1
zF�ˇ1C .x2;x3/ zFC

�
ˇ2

ˇ3

�
CO.x2/

�
:

Define, on a small neighbourhood of Z , a family of near-symplectic forms with
common singular locus Z by

!t D .1� t/!C t � .!jZ � 2x1ˇ1Cx2ˇ2Cx3ˇ3/:

Following the same reasoning as in the proof of the previous theorem in a local setting,
we can show that this is a family of near-symplectic forms with common degeneracy
locus Z. The next steps follow as in the previous proof.
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