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Centralizers in good groups are good

TOBIAS BARTHEL

NATHANIEL STAPLETON

We modify transchromatic character maps of the second author to land in a faithfully
flat extension of Morava E–theory. Our construction makes use of the interaction
between topological and algebraic localization and completion. As an application we
prove that centralizers of tuples of commuting prime-power order elements in good
groups are good and we compute a new example.

55N20

1 Introduction and outline

The character maps of the second author [25] suggest the intriguing possibility of
approximating height n Morava E–theory by Morava E–theory of a lower height. In
particular, it is easy to imagine that a character map from En to p–adic K–theory could
have many applications because it could reduce height n problems to representation
theory in the same way that the character map of Hopkins, Kuhn and Ravenel [10]
reduces height n problems to combinatorial problems. However, the maps produced
in [25] have a codomain which is an extension of the K.t/–localization of En for
t < n. This cohomology theory is less familiar and presents some computational
difficulties because its coefficients are not a complete local ring. In this paper, we
present a modification of the character maps that, for good groups, land in a faithfully
flat extension of Et . This work grew out of work of the second author with Tomer
Schlank [21] on Strickland’s theorem, where this modified character map from height n

to height 1 plays a critical role.

A finite group is good (at a prime p ) if E�n .BG/ is free and evenly concentrated.
There are a variety of classes of groups that are known to be good. These include
finite abelian groups, symmetric groups, finite general linear groups away from the
characteristic, wreath products and products of these groups, as well as groups of
order p3 ; see [10, Theorem E] and Tanabe [26, Proposition 7.10]. It was a conjecture
of Hopkins, Kuhn and Ravenel that all groups are good; however this was disproved
by Kriz [15]. A corollary of the construction of this modified character map is that
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1454 Tobias Barthel and Nathaniel Stapleton

centralizers of abelian p–groups in good groups are good. This enlarges the class of
groups known to be good in a very different way than the results above.

Our approach relies on a variety of facts concerning completion and localization of flat
modules in stable homotopy theory. In order to put these into a more abstract context,
we review the relationship between chromatic localization functors on the category of
MU–modules and certain arithmetic localizations and completions, as described in
Greenlees and May [8]. As an immediate consequence we obtain that the coefficients
of the K.t/–localization of a flat En –module M are given by the simple formula

��.LK.t/M /Š .��M /Œu�1
t �^.p;:::;ut�1/

:

We also provide a proof of a mild generalization of Hovey’s unpublished theorem that
the In –completion of a flat E�n –module is flat.

We then use these methods to analyze the spectrum C t DLK.t/.Ct ^Et /. Here Ct is
an E1–ring with coefficient ring C �t , from [25], with the following properties: let
GEn

be the formal group associated to En viewed as a p–divisible group. The ring
C �t is an E�n –algebra with the property that GEn

decomposes as a sum of a height t

formal group with a height n� t constant étale p–divisible group after base change
to C �t .

After proving that C �t is faithfully flat as an E�t –module we construct the modified
character maps. For H the centralizer of a tuple of commuting elements in G , we
show that there is an isomorphism

C �t ˝LK.t/E�n
LK.t/E

�
n .BH /Š C �t ˝E�t

E�t .BH /:

Now let L.�/D hom.BZp;�/ be the p–adic free loop space functor; note that this is
the space of unpointed maps. The main object of study is the composite of the character
map from [25] with the isomorphism above

E�n .BG/! C �t ˝LK.t/E�n
LK.t/E

�
n .L

n�tBG/Š C �t ˝E�t
E�t .L

n�tBG/:

The codomain of this character map is just the Et –cohomology of Ln�tBG base-
changed to a faithfully flat extension. Morava Et is certainly more computable and
more familiar than LK.t/En . Our main result gives a condition for when this map
induces an isomorphism after base change to C �t ; see Theorem 6.9.

Main theorem For a good group G , the map above, base-changed to C �t , gives an
isomorphism

C �t ˝E�n
E�n .BG/

Š
�! C �t ˝E�t

E�t .L
n�tBG/:
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This allows us to reduce certain height n problems to height t problems without
introducing more exotic cohomology theories. For instance, an argument using faithfully
flat descent for finitely generated projective modules proves Corollary 7.1 (centralizers
in good groups are good) from this result. The paper ends with a brief summary of
what is known about good groups and a new example.

Acknowledgements We thank Omar Antolín Camarena, Mark Behrens, Tyler Lawson,
Eric Peterson, Tomer Schlank, and Björn Schuster for many helpful conversations. We
also thank the referee for useful comments on an earlier version of this paper. The
second author was partially supported by NSF grant DMS-0943787.

2 Arithmetic localization and completion

In this section we summarize the Greenlees–May theory of localization and completion
in topology, as developed in [8], using some insights from [17].

2.1 Construction of localization and completion

Let R be an E1–ring spectrum, so that the category ModR of R–modules has a
symmetric monoidal structure, where the smash product over R will be denoted ^.
Note that most of the arguments work as well for E2 –ring spectra, but we will not
need this extra generality here.

Let I ���R be a finitely generated ideal with a minimal set of generators fx1; : : : ;xng.
It is possible to weaken this hypothesis as in [7], but for simplicity we will restrict
ourselves to the finitely generated situation.

Definition 2.2 A module M 2ModR is called I –nilpotent if I � supp.m/D fr 2
�0R j there exists n with rnmD 0g for all m 2 ��M . This condition is equivalent to
M Œ1=x�D 0 for all x 2 I .

If we define the Koszul complex as Kos.I/D
Vn

iD1 Kos.xi/ with Kos.xi/D fib.R!
RŒ1=xi �/, then we can construct the fundamental cofiber sequence

Kos.I/!R! LC .I/:

Lemma 2.3 The inclusion functor ModI�nil
R ,!ModR has a right adjoint �I which

is given by �I D�^Kos.I/.

Algebraic & Geometric Topology, Volume 16 (2016)
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It follows easily that ModI�nil
R is compactly generated by

Vn
iD1 cofib.R

xi
�!R/. For

example, Mod.p/�nil
S0

.p/

'ModQ�acyclic
S0

.p/

is generated as a localizing subcategory by S0=p .

If C is a full stable subcategory of ModR , its left orthogonal is defined as the full
subcategory of ModR on those objects N for which Hom.M;N /D 0 for all M 2 C .

Definition 2.4 ModI�loc
R is the left orthogonal to ModI�nil

R , ie N 2ModI�loc
R if and

only if HomR.M;N /D 0 for all M 2ModI�nil
R .

Lemma 2.5 The inclusion functor ModI�loc
R ,!ModR admits a left adjoint, given by

I –localization LI D�^
LC .I/, also written as .�/ŒI�1�. In particular, this gives rise

to a fiber sequence of functors

�I ! id!LI :

Definition 2.6 ModI�comp
R

is the left orthogonal to ModI�loc
R .

Equivalently, an R–module M is I –complete if and only if lim.� � �
x
�!M

x
�!M /D 0

for all x 2 I , as shown in [17, Corollary 4.2.8].

Lemma 2.7 The I –adic completion functor is defined as .�/^
I
D HomR.Kos.I/;�/,

and it is left-adjoint to the inclusion functor ModI�comp
R

,!ModR .

As a special case, .�/^
.x/
' lims.�=x

s/, which coincides with the familiar construction
of completion.

The following diagram summarizes our discussion of arithmetic localization and com-
pletion,

ModI�loc
R

��

��

ModR

LI

OO

�Iyy

.�/^
I

&&

ModI�nil
R

99

�
//

88

ModI�comp
R

ff

where the dotted arrows indicate left orthogonality. The bottom triangle of the diagram
commutes, and the bottom map is an equivalence by [13, Theorem 3.3.5(g)]. More-
over, this reduces to the usual derived functors of localization and completion upon
specialization to Eilenberg–Mac Lane spectra.
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2.8 Bousfield localization

Following [6], we will work in the category of ModR of modules over an E1–ring
spectrum R. Let E be an R–module.

Definition 2.9 An R–module X is called E–acyclic if X ^E D 0, and Y 2ModR

is called E–local if Hom.X;Y / D 0 for all E–acyclic X . A morphism f is an
E–equivalence if f ^E is an equivalence.

The following fundamental result was proven by Bousfield [4].

Theorem 2.10 There exists a functor LE W ModR !ModR together with a natural
transformation id! LE such that X ! LEX is an E–equivalence with E–local
target for all X . Equivalently, X !LEX is the initial map from X into an E–local
object.

Recall also that a localization functor L is called smashing if for all M 2 ModR

LM DM ^LR. As in [8, Theorems 4.2 and 5.1], we now identify the arithmetic
localization and completion functors encountered earlier as special cases of Bousfield
localization.

Proposition 2.11 Let R be an E1–ring spectrum with Noetherian coefficients and
let I be an ideal in ��R, then the following hold:

(1) LI is the smashing Bousfield localization with respect to LC .I/.

(2) There is a spectral sequence E2
p;q D

LC H
�p;�q
I

.��M /) �pCq.LI M /. Here,
LC H�

I
denotes Čech cohomology with respect to I as defined in [8].

We will be mainly interested in completion. Recall that algebraic I –completion is not
exact on the category of all R�–modules, but we can consider its left derived functors
LI

s D Ls.�/
^
I

. These will be studied in more detail in Section 3.9.

Proposition 2.12 Let R be an E1–ring spectrum with Noetherian coefficients and
let I be an ideal in ��R, then the following hold:

(1) .�/^
I

is Bousfield localization with respect to Kos.I/. In general, .�/^
I

is not
smashing.

(2) There is a spectral sequence E2
s;t DLs.��M /t) �sCt .M

^
I
/, where Ls DLI

s

denotes the sth left derived functor of ordinary I –adic completion.

Remark 2.13 More generally, the E2 term of the above spectral sequence can be
identified with the local homology of groups of ��M with respect to I ; E2

s;t D

H I
s;t .��M /.
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3 Localization and completion of MU–modules

The goal of this section is to show that the restrictions of certain Bousfield localization
functors appearing in chromatic homotopy theory to MU–modules can be expressed
as combinations of the arithmetic functors of Section 2. This is certainly well known
to experts, but since there is no published reference for these results, we include the
proofs.

Moreover, the same techniques allow us to study the effect of K.n/–localization on
coefficients, which admits an explicit description for flat modules.

3.1 Recollections

Fix a prime p , and let En and K.n/ denote Morava E–theory and Morava K–theory
at height n, respectively. Recall that En is a Landweber exact E1–ring spectrum with
coefficients E�n DWkŒŒu1; : : : ;un�1�� Œu

˙1�, where Wk is the ring of Witt vectors of
a perfect field k of characteristic p and u has degree 2. The spectrum representing
Morava K–theory is a complex orientable A1–ring spectrum with K.n/�D Fpn Œv˙1

n �

with vn of degree 2.pn� 1/.

These spectra come with associated Bousfield localization functors Ln and LK.n/ that
play a fundamental role in the chromatic approach to stable homotopy theory. We recall
two important relations between these functors:

� Ln D LWn
iD0 K.i/ D LE.n/ , where E.n/ is height n Johnson–Wilson theory;

see [19, Theorem 2.1].
� There is a homotopy pullback square of functors on spectra

Ln
//

��

LK.n/

��

Ln�1
// Ln�1LK.n/

usually called the chromatic fracture square.

The nth monochromatic layer MnW Sp! Sp is defined as the fiber Mn D fib.Ln!

Ln�1/. By the smash product theorem of Hopkins and Ravenel, Ln and hence Mn are
smashing for all n, whereas LK.n/ does not have this property unless nD 0. Moreover,
Hovey and Strickland provide a convenient description of K.n/–localization.

Proposition 3.2 For any spectrum X and n� 0, there is an equivalence

LK.n/X D HomS0.MnS0;LnX /:
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3.3 Identification of chromatic functors

Greenlees and May [8] provide the starting point of a dictionary between arithmetic
and chromatic localization and completion functors on the category of MU–modules.
Since BP is known to be E4 by [3], we could work with BP as well.

Proposition 3.4 For N 2ModMU and any t � 0:
(1) LtN DN ŒI�1

tC1
�'N ^ LC .ItC1/.

(2) N ^
It
' HomS0.colimi Mi ;N /, where the Mi form a cofinal sequence of gener-

alized type t Moore spectra.

Here, It denotes the ideal .p; v1; : : : ; vt�1/.

Remark 3.5 The obvious analogue of this result hold for the category of En –modules
as well.

Lemma 3.6 For N 2ModMU , Mt .N /' �It
.N Œv�1

t �/.

Proof Using the octahedral axiom, the following commutative diagram in which all
rows and columns are fiber sequences shows that Mt .�/D .�/^Kos.It /^ LC .vt /,
since LtN 'N ^ LC .ItC1/.

Kos.ItC1/ //

��

MU //

'

��

LC .ItC1/

��

Kos.It / //

��

MU //

��

LC .It /

��

Kos.It /^ LC .vt / // 0 // †Kos.It /^ LC .vt /

Proposition 3.7 If N 2ModMU , then LK.t/N ' .N Œv�1
t �/^

It
.

Proof By Proposition 3.2 and Proposition 3.4, we have

LK.t/N ' .N ŒI�1
tC1�/

^
It
' Hom.Kos.It /;N ^ LC .ItC1//:

Consider the following commutative diagram of fiber sequences:

Hom.Kos.It /;N ^Kos.ItC1// //

�

��

Hom.Kos.It /;N / //

�

��

Hom.Kos.It /;N ^ LC .ItC1//

��

Hom.Kos.It /;N ^Kos.vt // // Hom.Kos.It /;N / // Hom.Kos.It /;N ^ LC .vt //:
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We claim that the first vertical map � is an equivalence, hence so is the last one and
the result follows. To see the claim, note that � fits into a cofiber sequence

Hom.Kos.It /;N ^Kos.It /^Kos.vt // // Hom.Kos.It /;N ^Kos.vt //

��

Hom.Kos.It /;N ^ LC .It /^Kos.vt //;

where the cofiber is contractible by adjunction, as there are no non-trivial maps from
an It –local module to an It –complete module.

Remark 3.8 The spectral sequence of Proposition 2.11

E2
s;t D

LC H
�p;�q
ItC1

.��N /) �pCq.LtN /

corresponds to the geometric decomposition induced by the chromatic fracture cube.
It accounts for the existence of odd-dimensional classes in the homotopy of LtEn ,
0< t < n.

The following table summarizes the identifications of the chromatic functors on the
category of MU–modules; here, the right column should really be interpreted as derived
arithmetic functors.

Chromatic functor Arithmetic functor

Lt .�/ .�/ŒI�1
tC1

�

Ct .�/ �ItC1
.�/

Mt .�/ �It
.�/Œv�1

t �

LK.t/.�/ .�/Œv�1
t �^

It

In particular, we have a commutative diagram

ModMU

Œv�1
t �

��
Mt





LK.t/

��

Modv�1
t MU

�Itxx

.�/^
It

&&

ModIt�nil
v�1

t MU

88

�
// ModIt�comp

v�1
t MU

ff

where the bottom horizontal equivalence is the well-known equivalence between the
height t monochromatic category and the K.t/–local category when restricted to
MU–modules; see [13, Theorem 3.3.5(g)].
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3.9 K.n/–localization and flatness

Proposition 3.7 can be used to compute the homotopy groups of localizations. Recall
that a module spectrum M over an E1 –ring spectrum R is said to be flat if and only
if ��M is flat as a graded module over ��R.

Corollary 3.10 If N 2ModEn
is flat, then ��LK.t/N Š ..��N /Œv�1

t �/^
It

.

Proof By Proposition 3.7, LK.t/N ' .N Œv�1
t �/^

It
. Since N is flat, so is N Œv�1

t �,
hence the spectral sequence of Proposition 2.12 computing the completion collapses
by [14, Theorem A.2(b)]. Therefore

��.N Œv�1
t �/^It

Š ..��N /Œv�1
t �/^It

;

since �� preserves filtered colimits.

More generally, Proposition 2.12 gives a natural strongly convergent spectral sequence

E2
s;t D .Ls��M /t ) �sCtLK.n/M

with E2
s;� D 0 if s > n and differentials dr W Er

s;t !Er
s�r;tCr�1

. Using this spectral
sequence, it is not hard to see [2, Corollary 3.14] that M 2ModEn

is K.n/–local if
and only if ��M is isomorphic to L0.��M /. In fact this holds more generally for any
completion functor over a connective E2 –ring spectrum; see [17, Theorem 4.2.13].

Remark 3.11 This corollary complements Hovey’s result for ring spectra, [11, Theo-
rem 1.5.4.].

For the rest of this section, let R be a regular complete local Noetherian commu-
tative ring of dimension n, and let I D .x1; : : : ;xt / be an ideal in R with a cho-
sen minimal regular sequence of generators. The main example of interest to us is
E0

n DWkŒŒu1; : : :un�1�� with its maximal ideal mD .p;u1; : : : ;un�1/.

By the Artin–Rees lemma, the algebraic completion functor .�/^
I

is exact when
restricted to finitely generated modules, but it is neither left nor right exact in general.
Therefore, for general R–modules, we have to consider the left derived functors Ls of
I –adic completion. However, L0 coincides with ordinary I –adic completion for flat
modules, so we may restrict ourselves to this case here. An overview of the construction
and properties of these functors relevant to topology can be found in [14; 2; 20].

Remark 3.12 The assumption that R is Noetherian can be weakened. In particular, the
theory applies as well to the non-Noetherian but coherent ring BP�DZ.p/Œv1; v2; : : :�;
see [7].
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The following result was proven in the special case of RDEn� and I Dm by Hovey
[12]; the arguments easily generalize to give the following flatness criterion.

Proposition 3.13 If M is a flat R–module such that M=I is projective over R=I ,
then M^

I
is also flat over R.

Sketch of proof By [27, Tag 05D3], the hypotheses imply that M^
I

is a retract of a
pro-free module, ie a module of the form F^

I
with F 2ModR free. Since pro-free

objects are retracts of products of R by [14, Proposition A.13]1, hence flat as R is
Noetherian, it follows that M^

I
is also flat over R.

Remark 3.14 In fact, in case R is local and I Dm is the maximal ideal, the class of
pro-free objects coincides with the collection of flat R–modules which are I –complete.
This characterization does not generalize to arbitrary finitely generated ideals I , as the
example I D .0/ shows.

4 A short digression on Landweber exact theories

We include a short digression on Landweber exact cohomology theories. This is partly
to set up some technicalities that will be of use later and partly to clarify the relation
between Landweber exactness and Brown representability.

Assume that E is a Landweber exact spectrum and R is a flat E–module. It is always
the case that

R�.X /ŠR�˝E� E�.X /

defines a homology theory on all spaces X . However, we prefer to work cohomo-
logically so that our theories are naturally ring-valued; here, things are a bit more
complicated. Base change provides a cohomology theory defined on finite spaces
(spaces equivalent to finite CW–complexes) R�˝E� E�.X / and on these spaces this
is the same as R�.X /.

We may extend this to finite G –CW complexes Borel equivariantly: R�˝E�E
�.EG�G

X /, but there can be a large difference between R�.Y / and R� ˝E� E�.Y / for
infinite Y .

Example 4.1 Let E D En , R D p�1En , and Y D BZ=p . Then E�n .BZ=p/ is a
free E�n –module of rank pn . Thus we see that p�1E�n ˝E�n

E�n .BZ=p/ is a free
module of rank pn over p�1E�n . However, .p�1En/

�.BZ=p/Š p�1E�n as p�1En

is a rational cohomology theory.

1Note that the proof of [14, Proposition A.13] generalizes to any finitely generated ideal I .
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The key observation is that, in general, R�˝E� E�.�/ does not satisfy the infinite
wedge axiom. However, Brown representability (in the form of [1]) applied to this
theory defined on finite spaces produces a spectrum R0 .

Lemma 4.2 With the above notation, R'R0 .

Proof The cohomology theory associated to R0 must take the same value as the
cohomology theory associated to R on finite spaces. Now this lemma is an immediate
consequence of [14, Theorem 2.8], which says that Landweber exact spectra are
determined by their coefficients.

In the following, we will also need the fact that the smash product of even Landweber
exact theories is again even. Note that this fails for general spectra, as the example
HFp ^HFp shows.

Lemma 4.3 If E and F are Landweber exact theories, then so is E^F . Additionally,
if E and F are even, then E ^F is even as well.

Proof The first part of the claim follows from Hopkins discussion in [9]. Indeed, there
is a pullback diagram

Spec.��E ^F / //

��

Spec.F�/

v

��

Spec.E�/ u
//MFG

where Mfg denotes the stack of one-dimensional formal groups. Since u and v are
flat, the composite Spec.��E^F /!Mfg is flat by base change. To show that E^F

is even, recall that

��.E ^F /ŠE�˝MU� MU�MU ˝MU� F�:

The claim follows since MU�MU is concentrated in even degrees.

5 Some spectra related to character theory

5.1 Recollections

We recall the character maps of [25]. For the rest of the paper fix a prime p . Let En

be Morava E–theory and Lt;nDLK.t/En be the localization of En by Morava K.t/.
By Corollary 3.10 there is an isomorphism

�0Lt;n ŠWkŒŒu1; : : : ;un�1�� Œu
�1
t �^It

:

Algebraic & Geometric Topology, Volume 16 (2016)
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Let GEn
be the p–divisible group associated to En and GLt;n

the p–divisible group
associated to Lt;n . In [25] a flat extension C �t of L�t;n is constructed with the following
property.

Let G WDL0
t;n˝GEn

so that GLt;n
is the connected component of the identity of G

[25, Proposition 2.4]. Note that this means that there is a canonical map GLt;n
!G .

For an L0
t;n –algebra R, let

IsoGLt;n
=.R˝GLt;n

˚Qp=Z
n�t
p ;R˝G/

be the set of isomorphisms of p–divisible groups under GLt;n
.

Recall the following proposition.

Proposition 5.2 [25, Proposition 2.17] The functor from L0
t;n –algebras to sets

IsoGLt;n
=.GLt;n

˚Qp=Z
n�t
p ;G/W R 7! IsoGLt;n

=.R˝GLt;n
˚Qp=Z

n�t
p ;R˝G/

is representable by C 0
t .

C �t is constructed as a localization of the ring colimk L�t;n˝E�n
E�n .B.Z=p

k/n�t /.
The following result should be compared to [10, Proposition 6.5].

Proposition 5.3 The ring C 0
t is a faithfully flat L0

t;n –algebra.

Proof Note that C 0
t is a flat L0

t;n –algebra since it is constructed as a filtered colimit
of algebras, each of which is a localization of a finitely generated free module.

Recall that a map of commutative rings is faithfully flat if and only if it is flat and
surjective on Spec.�/ [27, Tag 00HQ]. Let P � L0

t;n be a prime ideal, we must
produce a prime ideal in C 0

t that restricts to P . Let i be the smallest natural number
such that ui 62 P . Note that i � t . Now consider the algebraic closure of the fraction
field

K WD .L0
t;n=P /.0/:

There is an isomorphism [5, page 34]

K˝G ŠGfor˚Qp=Z
n�i
p :

The formal part has height i because ui has been inverted. Now since

Gfor˚Qp=Z
n�i
p ŠGfor˚Qp=Z

t�i
p ˚Qp=Z

n�t
p ;

Proposition 5.2 implies that this is classified by a map C 0
t

q
�! K that extends the

canonical map L0
t;n!K . Now the kernel of q is a prime ideal and must restrict to P ,

thus C 0
t is a faithfully flat L0

t;n –algebra.
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The ring C �t is used in the construction of the transchromatic generalized character
maps of [25]. For a finite G –CW complex X , let

Fixh.X /D
a

˛2hom.Zh
p ;G/

X im˛:

This is a finite G –CW complex with G –action given by x 2X im˛ 7! gx 2X im g˛g�1

.
The character map is a map E�n .EG�G X /!C �t ˝L�t;n

L�t;n.EG�G Fixn�t X / with
the following property.

Theorem 5.4 [25] The character map has the property that the map induced by
tensoring the domain up to Ct

C �t ˝E�n
E�n .EG �G X /

Š
�! C �t ˝L�t;n

L�t;n.EG �G Fixn�t X /

is an isomorphism.

5.5 Some spectra related to character theory

Let ƒk D .Z=p
k/n�t and let Ct be the spectrum

S�1 colimk Lt;n ^En
EBƒk

n :

It is clear that Ct is an E1–ring and that the coefficients of Ct is the ring C �t from
the previous section. Let E.t/ be the height t Johnson–Wilson spectrum.

Proposition 5.6 The spectrum Ct is E.t/–local.

Proof Note that Lt;n ^En
E

Bƒk
n is E.t/–local. In fact, it is K.t/–local as it is

equivalent to LK.t/.E
Bƒk
n /. This follows from the fact that E

Bƒk
n is a free En –

module spectrum. Now colimits in the E.t/–local category may be computed in the
category of spectra (since localization with respect to E.t/ is smashing) so Ct is
E.t/–local.

While Ct ^Et is E.t/–local and flat as a Ct –module and as an Et –module, it is not
K.t/–local and thus the argument of Proposition 6.2 cannot be used. For that reason
we introduce a variant C t , which allows us to exploit the good finiteness properties of
the K.t/–local category.

Definition 5.7 We define C t WDLK.t/.Ct ^Et /.

Proposition 5.8 The spectrum C t is even periodic, and C �t is faithfully flat as an
E�t –module.
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Proof As seen in Lemma 4.3, the smash product of even periodic Landweber exact
spectra is even periodic and this cannot be changed by completion (which is all that
K.t/–localization is for E.t/–local BP –modules). By even periodicity it suffices to
prove that C 0

t is faithfully flat over E0
t . Note that �0.Ct ^Et / is flat as a C 0

t –module
and as an E0

t –module by Lemma 4.3. By Proposition 3.13, the completion of a flat
E0

t –module at It is flat. Thus C 0
t is flat as an E0

t –module. For faithful flatness it
suffices to prove that C 0

t =It is nonzero [27, Tag 00HP]. But Hovey–Strickland implies
that it is �0.K.t/^Ct / and since C 0

t =It is nonzero [25, Proposition 2.17], we know
that the K.t/–localization of Ct is nonzero.

6 From E –theory to E –theory

In this section we present a modification of the character maps of [25]. We begin by
recalling the character maps. An upshot of the presentation here is that the character
map is a map of E1–rings. We then analyze the modification of the character map
applied to good groups and use this to show that centralizers of tuples of commuting
elements in good groups are good.

6.1 Character maps written spectrally

The character maps of [25] admit an obvious spectral interpretation. For a finite group
G and a finite G –CW complex X we may consider the evaluation map Bƒk�EG�G

Fixn�t .X /!EG �G X . For X a point this is just the evaluation map

Bƒk � hom.Bƒk ;BG/! BG;

for X not a point this can be interpreted as an evaluation map by using topological
groupoids and the inertia groupoid construction. This induces the map of spectra

EEG�GX
n !EBƒk

n ^En
EEG�GFixn�t .X /

n :

Now the canonical maps E
Bƒk
n ! Ct and En!Lt;n induce

EBƒk
n ^En

EEG�GFixn�t .X /
n ! Ct ^Lt;n

L
EG�GFixn�t .X /
t;n :

After extending coefficients in the domain the composite induces an equivalence

Ct ^En
EEG�GX

n

'
�! Ct ^Lt;n

L
EG�GFixn�t .X /
t;n :

In all of this discussion we are merely using the flatness of C �t over E�n and L�t;n to
translate the algebraic results of [25] to these spectral statements. It is worth noting that
all of the maps above are E1 (after choosing an E1–inverse to the Künneth map).
Thus it is clear that the character map is an equivalence of E1–rings.
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Now we present a modification of the above map that has some desirable properties.
In particular, the codomain is related to Et in the same way that the above map is
related to Lt;n . It seems to suffer in two respects though. It does not seem to induce
an equivalence for all spaces after base change of the domain to C t and it is not as
computable as the above map.

The modification is the composite of two maps. The first is the character map above.
The second is the canonical map of E1–rings

Ct ^Lt;n
L

EG�GFixn�t .X /
t;n ! C

EG�GFixn�t .X /
t :

Proposition 6.2 For any finite G –CW complex X the canonical map

C t ^Et
E

EG�GX
t

'
�! C

EG�GX
t

is an equivalence.

Proof Because C �t is flat over E�t there is an isomorphism

C �t ˝E�t
E�t .EG �G X /Š ���.C t ^Et

E
EG�GX
t /:

It is clear that C t ^Et
E

EG�GX
t is E.t/–local. However, since E�t .EG �G X / is

finitely generated and E�t is Noetherian, the above isomorphism implies that

C �t ˝E�t
E�t .EG �G X /

is It –complete and thus C t ^Et
E

EG�GX
t is K.t/–local. Let D.EG �G X / D

F.EG �G X;LK.t/S/. Now we have equivalences

C t ^Et
E

EG�GX
t 'LK.t/.C t ^Et

E
EG�GX
t /

'LK.t/.C t ^Et
LK.t/.Et ^D.EG �G X ///

'LK.t/.C t ^Et
Et ^D.EG �G X //

'LK.t/.C t ^D.EG �G X //

' C
EG�GX
t :

The second and fifth equivalences follow from the K.t/–local duality of spaces of the
form EG �G X [14, Corollary 8.7].

Thus in the category of E1–rings we have the map

EEG�GX
n ! C t ^Et

E
EG�GFixn�t .X /
t

that factors

EEG�GX
n !C t^Lt;n

L
EG�GFixn�t .X /
t;n !C

EG�GFixn�t .X /
t

'
 �C t^Et

E
EG�GFixn�t .X /
t :
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The middle map is the most mysterious. The reason for this is that it is not clear at all
that C 0

t is a flat L0
t;n –module.

Proposition 6.3 Let G be a finite group and let X be a finite G–CW complex with
the property L�t;n.EG �G X / finitely generated and projective as an L�t;n –module,
then there is an isomorphism

C �t ˝L�t;n
L�t;n.EG �G X /Š C �t .EG �G X /:

Proof This proof is essentially the same as the proof of Proposition 6.2. Since
L�t;n.EG �G X / is projective we have an isomorphism

C �t ˝L�t;n
L�t;n.EG �G X /Š ���.C t ^Lt;n

L
EG�GX
t;n /:

Since L�t;n.EG�G X / is finitely generated and L�t;n is Noetherian, the smash product
is K.t/–local. Now we have the same set of equivalences as in Proposition 6.2 with
Et replaced by Lt;n .

Remark 6.4 When GDZ=pk we recover the anticipated result that C 0
t˝GLt;n

Œpk �Š

C 0
t ˝GEt

Œpk �.

Definition 6.5 A finite group G is good (at the fixed prime p) if E�n .BG/ is even
and free for all n.

Remark 6.6 Our definition of a good group differs somewhat from the original [10,
Definition 7.1]. They observe that their definition implies Definition 6.5.

Remark 6.7 Because the En –cohomology of a good group is even, it admits an
algebro-geometric interpretation. Because the En –cohomology of a good group is
free the character map of [10] is an embedding and so the ring can be attacked using
character-theoretic methods.

Corollary 6.8 Let G be a good group and let ˛W Zn�t
p !G , then

C �t ˝L�t;n
L�t;n.BC.im˛//Š C �t .BC.im˛//:

Proof We show that L�t;n.BC.im˛// is finitely generated and projective. The char-
acter map of Theorem 5.4 gives a factorization

C �t ˝E�n
E�n .BG/Š

Y
Œ˛�2hom.Zn�t

p ;G/=�

C �t ˝L�t;n
L�t;n.BC.im˛//;

where hom.Zn�t
p ;G/=� is the set of continuous homomorphisms up to conjugation.
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For a fixed ˛ , this implies that C �t ˝L�t;n
L�t;n.BC.im˛// is finitely generated projective

because it is a summand of a finitely generated free module. Now since C �t is faithfully
flat as an L�t;n –module, faithfully flat descent for finitely generated projective modules
implies that L�t;n.BC.im˛// is finitely generated and projective.

Together Proposition 6.2 and Corollary 6.8 give the main theorem.

Theorem 6.9 For a good group G we have an equivalence

C t ^En
EBG

n

'
�! CLn�t BG

t

'
 � C t ^Et

ELn�t BG
t ;

where LhBG D hom.BZh
p;BG/DEG �G Fixh.�/.

Remark 6.10 When n D 1 we obtain a map from E–theory to p–adic K–theory.
This seems like a useful tool. It allows one to reduce certain computations at height
n to computations in representation theory. This is used by Tomer Schlank and the
second author in [21] to give a new proof and generalization of Strickland’s theorem
regarding the E–theory of symmetric groups.

7 Examples of good groups

A comprehensive list of finite groups that are known to be good at a fixed prime p can
be found in the habilitation thesis of Björn Schuster [22], to which we refer for the
original references; these include

(1) abelian groups
(2) symmetric groups
(3) GLn.Fq/ with p − q

(4) all groups of order p3 and of order 32

(5) metacyclic groups
(6) the Mathieu group M12 ; see [24].

The collection G of good groups is closed under products and also under wreath
products with Z=p ; moreover, a group is good if its Sylow p–subgroup is good. If
GDH1�H2 , then H1 is good if both G and H2 are good because there is a Künneth
isomorphism for good groups. Furthermore, given an extension of the form

�!H !G! Z=p!�;

Kriz [15] gives conditions for when H good implies G is good, and conversely. In
particular, semi-direct products of elementary abelian p–groups and Z=p are good.

The methods of the previous section allow us to deduce a new closure property of G .
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Corollary 7.1 Let G be a good group and let ˛W Zh
p ! G , then E�n .BC.im˛// is

finitely generated, free, and evenly generated as an E�n –module.

Proof Corollary 6.8 implies that C �t .BC.im˛// is finitely generated, projective, and
even. Proposition 6.2 implies that

C �t .BC.im˛//Š C �t ˝E�t
E�t .BC.im˛//

and Proposition 5.3 implies that C �t is faithfully flat as an E�t –modules. Faithfully
flat descent for finitely generated projective modules implies that E�t .BC.im˛// is
finitely generated, even, and projective. But now since E�t is complete local, projective
implies free.

Remark 7.2 Calling a group En –good if its En –cohomology is concentrated in even
degrees and free, Corollary 7.1 applied to the identity element shows that EnC1 –good
implies En –good. This is compatible with Minami’s result [18].

Using the computer algebra system GAP, we can thus construct new examples of good
groups.

Example 7.3 Let p D 2 and consider G D GL2.F3/ o C2 , a good group of order
4608. There exists an element g 2G of order 4 with centralizer

CG.g/DH Ì C2;

where H is the binary octahedral group, ie a non-split extension of S4 by C2 . The
GAP ID of CG.g/ in the Small Groups Library is Œ96; 192�. Since the Sylow 2–
subgroup of CG.g/ has order 32, [23] independently shows that this group has to be
good.

However, the group KDCG.g/oC2 contains an element k of order 8 whose centralizer

CK .k/D ...C8 �C2/Ì C2/Ì C3/Ì C2

has GAP ID Œ192; 963� and Sylow 2–subgroup .C8�C4/Ì C2 , which is therefore not
covered by the previous list of examples. This process can be iterated, giving rise to
other new examples.

For an odd prime p , [16] implies that the unipotent radical in GL4.Fp/ is not good.
So, as a curious consequence, we see that it cannot be obtained by iteratively applying
the constructions that G is closed under to the above list of known good groups. We do
not know how to show this using only algebraic methods.
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