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On the metastable homotopy of mod 2 Moore spaces

ROMAN MIKHAILOV
JIE WU

We study the exponents of metastable homotopy of mod 2 Moore spaces. We
prove that the double loop space of 4n—dimensional mod 2 Moore spaces has
a multiplicative exponent 4 below the range of 4 times the connectivity. As a
consequence, the homotopy groups of 4n—dimensional mod 2 Moore spaces have an
exponent of 4 below the range of 4 times the connectivity.

55Q52, 14F35, 55Q20; 55Q05, 55P35

1 Introduction

Metastable homotopy has been studied by various people since the early 1950s; see
M G Barratt [1], Barratt and Mahowald [3], Baues [4], Green and Holzsager [12], James
[13], Mahowald [15; 16], Morisugi [17] and Tipple [19]. The descriptions on the lower
metastable homotopy groups of the Moore spaces given by Barratt [1] in 1954 led to
computational results announced in [19]. In this article, we consider the exponents of
the metastable homotopy groups of mod 2 Moore spaces.

Let P"(2) = X" 2RP? be the n—dimensional mod 2 Moore space with n > 3. It
is well known that P"(2) has a suspension exponent 4, that is, the degree-4 map
[4]: P*(2) — P"(2) is nullhomotopic. By the classical result of Barratt [2], the
metastable homotopy of P”(2) has an exponent dividing 8. This leads to the natural
question of whether the metastable homotopy of P”(2) has an exponent 4. The
answer to this question is negative for the cases n = 2,3 mod 4 because there are
7,/ 8—summands occurring in the lower metastable homotopy groups, according to
Cohen and Wu [10], Morisugi and Mukai [18] and Tipple [19]. The purpose of this
article is to give an affirmative answer to this question for the case » = 0 mod 4 with
n>>5.

We actually show that the double loop space 22 P"(2) has the multiplicative exponent 4
below the range roughly four times the connectivity in the case » = 0 mod 4 with
n > 5. More explicitly, our main result is the following.
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Theorem 1.1 Let n =0 mod 4 with n > 4. Then the power map
4: Q2P (2) —» Q2P"(2)
restricted to the skeleton sky,_o(2% P"(2)) is nullhomotopic.

As a consequence, we get the description of exponents of the homotopy groups up to
the given range; for the first case, n = 4, the homotopy groups ;. (P*(2)) are known
up to the range 4n —4 [21].

Corollary 1.2 Let n =0 mod4. Then 4-m; (P"(2)) =0 fork <4n—1. |

It is unknown whether the homotopy groups of mod 2 Moore spaces have a bounded
exponent. It is known that there are infinitely many Z/8—summands (in different
dimensions) occurring in the homotopy groups of mod 2 Moore spaces; see Cohen
and Wu [10]. Our result shows that the first Z /8—torsion should occur in the range at
least four times the connectivity in the case n = 0 mod 4.

We briefly sketch the proof of Theorem 1.1 as follows. We use the Cohen groups for
displaying the explicit obstructions to the 4™ power map on the single loop space
QP"(2). By using the shuffle relations and the Hopf invariants on general configuration
spaces, the 4" power on the double loop space ©22P"(2) up to the given range
is decomposed as a composite involving the Whitehead product. After handling
the reduced evaluation map, Theorem 1.1 is then proved via Theorem 3.6 in the
special case when the Whitehead square w,—; is divisible by 2. With the help of
technical lemmas about Whitehead products on P*"(2), Theorem 1.1 is finally proved
using Theorem 5.3. The key lemma (Lemma 4.3) presents a special property for 4n—
dimensional mod 2 Moore spaces, which is hinted at by Mark Mahowald’s result [14]

that [t4n—1,N4n—1] = 0.

The article is organised as follows. In Section 2, we discuss the 4" power map
on the single loop spaces and double loop spaces. The reduced evaluation map on
mod 2 Moore spaces is studied in Section 3, where Theorem 3.6 is the special case
of Theorem 1.1 in the case when the Whitehead square is divisible by 2. We give
some lemmas in Section 4. Theorem 1.1 is proved in Section 5, where Theorem 1.1 is
restated as Theorem 5.3.

2 The 4™ power map on looped suspensions

In this section, we display the obstructions to the 4™ power mapon Q¥2X and Q2%2X
below four times the connectivity for spaces ¥?X having suspension exponent 4.
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The obstructions to the 4" power map on 2X2X

We use the Cohen groups [8] for computing the obstructions to the 4™ power map.
Recall that the Cohen group K,,Z /4 = KnZ / 4(x1, ..., Xp) is combinatorially defined by
generators xi, ..., X, with the following relations:

(1) iterated commutators are given by [[x;, X;,], ..., x;,] = 1 if x;, = x;, for some
1 < p < q < n, where commutators are defined as [a,b] =a~'b~'ab, and

(2) xt=1forl<i=<n.

Let d;: KnZ 4 KnZ_/ ‘11 be the group homomorphism defined by

Xj if j <1,

di(xj) =11 if j =1,

Xj_yp if j>i.
The Cohen group H,,Z /* is defined as the equaliser of the maps d;: K,% * LK nZ _/ 14
1 <i <n. Namely, H,,Z /* is the subgroup of K,% /4 consisting of the words w with
the property that d;(w) = d;(w) for 1 <i <n. For the spaces £?X satisfying the
hypothesis that

for

(2-1) the identity map idy:2 y is of order 4 in (22X, 22X],
there is a commutative diagram of groups!

KZ* X (2x) Qx2X)
(2-2) 4n

HE* X 1J,(5X), Q22X]

where J(Y) is the James construction with the James filtration J,(Y). The monomor-
phism in the right column is induced by the quotient map ¢,: (XX )*" — J,(ZX)
and the group homomorphism ey sends the letter x; to the homotopy class of the
composite

=Xy I vy < QF2X,
where 7; is the i coordinate projection for 1 <i <n. Let
Op = X1X2 "Xy € H,,Z/4 < KnZ/4.

IDiagram (2-2) commutes regardless of hypothesis (2-1) for the groups K, and Hj, integrally without
assuming the second relations x;t =1forl<i=<n.
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Then ey (ay) is the homotopy class of the inclusion map J,(ZX) — Q22X .

We are only interested in the range below four times the connectivity. It is suffi-
cient to consider only ag‘, which can be done by direct computations through the
Magnus-type representation of K,% /* into the noncommutative exterior algebra A%/ +,
Here, A%M = A%M(yl, ..., ¥n) is the quotient of the tensor algebra T (y1,..., Vn)
over Z/4 by the relations

(2-3) YiyYip o yi, =0 if yj, =y, forsome 1 < p <qg <t.

The representation e: KnZ /4 A,%/ *is given by e(x;) = 1+ y;. Itis proved in [8] that
this is a faithful representation of K ,,Z *,

Now e(@?) = ((1+ y1)(1 4+ y2)(1 + y3)* in 42/*. Note that

(I+y)(d+y2)(A+y3)=1+01 +02+03,

where

or=Y1+)y2+y3, 02=y1y2+y1y3+y2y3, 03=y1)2)3.
Let A =0y + 03 +03. Then
e(@d) = (1+A)* = 1 +4A + 6A2 +4A3 4 A% = 1 +2A2

in A3Z/4, since 4o = 0 for o € A%M and A% € I4AZ/4 = 0, the 4-fold product

3
of the augmentation ideal 7 A3Z/ ‘. By using the property that / 4A3Z/ * =0, we have

A? = 012 40,01 4+ 0107 . Using the notation [«, 8] = af — B for @, B in an algebra A
and using the relations (2-3), we have

208 =2(y1 + y2 + »3)?
=2(2y1 +y3y1 +y1iy2+y3yva+yiy3+y23)
=2(y1, y2l+ 1. yal +[y2. y3D).

2(0102 + 0201) =2(2y1y2¥3 + y2V3y1 + Y1y3ya + V2 Y193 + Y3viya2)
=2(2y3y1 + »1y3y2 + y2y1¥3 + y3viy2)
=2(y2([y1, y3D) + 1, »3ly2)
= 2[[y1, y3], yal.

(Note that, since we are working modulo 4, the sign £ on the terms can be ignored after
multiplying by 2.) Using the property [22, Lemma 1.4.8] that e([[x;,, x,], ..., X;,]) =
L+ [iy» Vi)s - - - vi, ], we get

(2-4) af = ([er. X2y, x3]%[x2, x31%) - [[x1, x3). X2
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This method is valid for computing «;f for small n. A more effective method for
determining «; for general n can be seen in [9]. The geometric interpretation of
formula (2-4) through the representation ey gives the following lemma.

Lemma 2.1 (obstruction lemma) Let X be a CW-complex such that 4 -[ids2 ] =0
in [22X,22X]. Let 47,0 J3(2X) — QX2X be the restriction of the power map
4: J(2X) ~ Q%X — QX2 X. Then there is a decomposition

(4731 =82+ 3
in the group [J3(ZX), QX2 X], where ¢, is represented by the composite

QW2
J3(2X) — J(IX) 22 j=x)™?) 22 o2y,

with Hj, the k"™ James—Hopf invariant and W}, the k—fold Whitehead product, and {3
is represented by the composite

. S2
J(2x) PN (mx)n3 23 (mx)n3 25 o3y,

with 1, 3 the map switching positions 2 and 3 in the self-smash product and Sy, the

k—fold Samelson product. a

The elimination of the obstruction {3

Consider the looping homomorphism
Q: [J3(ZX), Q22X] - [QJ3(2X), Q222 X],  [f]+~[2f]
The obstruction 3 can be eliminated after looping using the shuffle relations introduced

in [22]. Here we give a proof by highlighting the ideas of the shuffle relations.

Proposition 2.2 The element {5 lies in the kernel of the looping homomorphism
defined as above. Thus, for any space Z and any map f: XZ — J3(XX), the
composite {30 f: ©Z — QX2 X is nullhomotopic.

Proof Let Y =XX. Let J(Y) A J(Y) be filtered by

Fil, J(Y)AJ(Y) = | ) L) A Ji(Y).
i+j=<n
Since Y is a co- H—space, there exists a filtration-preserving map

U J(Y) > JY)AJ(Y)
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such that 1} is homotopic to the reduced diagonal A. Consider the homotopy commu-
tative diagram

pinch

JY) —— 2 J3(Y) - Y3

A V3 shuffle

. pinch (JL(Y)/J1(Y)AY)
JY)A J\(Y) = Fl(JY)AJ(Y)) — V(Y A Ty(Y)/ T (Y))

~
N

~
~ &
N
~
~
N

~
~
N

N Y

JYMN) — LX)/ (X)AY =Y

proj.

2
& S5

\

QYY

where S5 is the Samelson product and the extension map H exists by the suspension
splitting of J(Y') A J(Y). Using the Cohen program, we see that the composite from
J3(Y) going through the right column represents the element

[[x1, x2], x3] + [[x2, x1], x3] + [[x3, x1], x2] = —[[x1, x3], x2]

in the Cohen group K3. Note that —[[x;, x3], x2] represents a map S3 o 75,3 which
is —% of the map {3 in Lemma 2.1. The assertion follows by letting the compos-
ite from J3(Y) take the path from the right-hand side and using the property that
QA: QJ(Y) — Q(J(Y) A J(Y)) is nullhomotopic. o

The configuration spaces and the obstruction ¢,

The obstruction ¢, is essential after looping in general. We use configuration spaces
for reducing the obstruction ¢, from the cubic range to the quadratic range. We refer to
C-F Bodigheimer’s work [5] as a reference on configuration space models for mapping
spaces as well as his constructions of the Hopf invariants on configuration spaces.

Let M be a smooth manifold, M, a submanifold, and X a pointed CW-complex.
Let C(M, My; X) be the configuration space with labels in X in the sense of [5]
with the filtration C, = C,(M, My; X) induced by the configuration length. Let
Dy = Dy(M, My; X) denote C,,/Cy,—1. We will use the following properties:
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(1) [5, Lemma, page 178] Let N be a codimension-zero submanifold of M . Then
the isotopy cofibration

(N,NNMy) — (M, My) — (M, N U M)
induces a quasifibration
C(IN NN My; X) — C(M, My; X) — C(M,N U My; X)
provided that (N, N N Ny) or X is connected.

(2) [5, Section3] Let V = \/,311 Dy . There is a Cohen construction [6] of a power
setmap P: C(M, My; X) — C(R®; V), which is natural on (M, My) and X,
inducing a stable splitting of C(M, My; X'). The Hopf invariant is given by the
composite

Hy: C(M, My: X) 2o C(R: V) 2% C(R%; Dy)
for k>1.

In particular, if 7 =[O0, 1], there is a quasifibration
C(0,1]x I; X) — C((]0, 3],[2,3]) x I; X) — C(([0, 3],[0,1]U[2,3]) x I; X)
for any path-connected CW-complex X with
C(([0,3],[2,3)x I: X) ~% and C([0,1]xI;X)~Q>2%X.
We define the evaluation map
YQ2E2X ~2C(I%X) — Q22X ~ J(ZX)
by composing
YC(I* X) ~ C(([0,3],04) x I; X)/C(I x I; X) pinel) C(([0,3],0)x I; X)
(where 0+ =2, 3] and d = [0, 1]U[2, 3]) with the homotopy inverse of the composite
J(ZX) <=+ C(I;X) <= C(([0,3],9) x I; X).

The evaluation map o: £C(1%; X)— J(ZX) defined in this way is filtration-preserving
up to homotopy, and so its restrictions give maps

(2-5) o SCr(I%: X) — Ji(=X)
inducing the reduced evaluation maps

(26)  T: SDR(I% X) = Z(Ch/Chor) = (X = Je(EX)/Tp—1 (EX)
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for k > 1, where 0y = 0y: XC;(I?; X) = X — J{(£X) is a homotopy equiva-
lence. Moreover, by applying the naturality of the Hopf invariants on (M, Mj) to the
composites in the definition of the evaluation map o, we get the following homotopy
commutative diagram:

S H,

SC(I%X) » XC(R®; D) == TC(R>; Dy)
o |
inch 1
sC, — e - D, |
2-7) ok Ok |
Y H \
J(£X) —* - J((ZX)N) s CR®; (5X)M)
! inch !
T (ZX) P (SX)N

Let sk,(Y) denote the n™ skeleton of Y.

Theorem 2.3 Let X be a simply connected space with connectivity |X | such that
ids.2 y has exponent 4 in [S2 X, £2X]. Then there is a map

Hy: skyjx)-1(R222X) — Dy(1% X)
such that the adjoint map of the 4™ power 4: Q?*X?X — Q2X2X restricted to
ska|x|—1 (2222 X) is homotopic to the composite
Ssky x1-1(Q252X) 2B =D, (1% x) -2+ (3x)"2 25 32y,

Proof Note that D,(1%; X) is the (4|X|—1)-skeleton of C(R*; D,). There is a
homotopy commutative diagram

sky x|—1(Q*Z2X) = C3(I% X) —— Q?2*X

(2-8) i, H,

A\
D, < » C(R%; D)

for some map H,. This gives the map H, in the statement.
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By Proposition 2.2, {3 o g3 is nullhomotopic. Therefore we only need to consider the
obstruction {,. By diagram (2-7), using the property that |(ZX)"?| = 2(|X| + 1),
there is a homotopy commutative diagram:

o
5 sk (2252X)) 2k 1y (2x)

S H, <
D, (1% X) — 2+ (5X)™ < J(ZX)™)
The assertion now follows by Lemma 2.1. O

3 The reduced evaluation map on mod 2 Moore spaces

In this section, we give some lemmas on the reduced evaluation map
G =0, XD, = SD,(I* X) = =D, (R*; X) — (ZX)"?

in the case that X is a mod 2 Moore space. Let P"(2) = S"~! U, e" be the n—
dimensional mod 2 Moore space.

Lemma 3.1 [21, Proposition 2.5] Let n > 3. Then the degree-2 map [2]: P*(2) —
P"(2) is homotopic to the composite

pr(o) P gn N gt pny),
Thus the degree-2 map [2]: P"(2)"? — P"(2)"\? is homotopic to the composite
Pn(z)/\Z M P2n(2) m PZn—l(z) c Pn(z)/\Z O

Let u, v be a basis for the mod 2 homology fl*(P” (2)) with |u|=n—1 and |v| =n.
Then the mod 2 homology is given by Hyx(QP"T1(2)) = T'(u,v) with Sql v =u. By
the work of Dyer and Lashof [11], Hy(D,(R?; P"~1(2))) has the following basis:

_ 2
2n—1 (v9) Sg*/
_ 2 2
2n—2 (v) %A Sq; ([u, v])
2n—3 t(u)t(v) S Sq2 t(u?)
9!
2n—4 T(u)?
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where the Steenrod operations follow from those on Hy(QP"11(2)).

The reduced evaluation 7x: Hy(Dy(R2, P""1(2))) = Hy((P"(2))"?) is given by
Ge(t(v?) =02, Gul(tu,v]) =[u,v], Te(tW?)) =u?,

and the three remaining elements are sent to zero.

Let us do cellular analysis on the homotopy of XD, (R?; P"~1(2)). The elements
{t(v?), t([u, v]), T(v)%, t(u?)} have a structure of P2"~2(4) attached by 2—cells via
amap P2"2(2) - P?"2(4).

Let g, be the composite

(3_1) PZ}’!—Z(z) q SZn—Z n S2n—3 C PZn—2(4)'

Lemma 3.2 There exists a unique 4—cell complex C?"~! such that mod 2 homology
H,(C?"~1) has a basis {a2n—3.b2n—2. Can—2, don—1}, with

Ba(b) =a, Sqi(d)=a, Sqi(d)=c.

Proof Consider the short exact sequence
2203 (P22 (4)) = Z/2 «= [P2"72(2), P2 (4)] < man—a (P2 (4)) = Z/2.
Let g; be the map in the following commutative diagram of cofibre sequences:

SZn—3 c P2n—2(2) SZn—Z

2] g1

SZn—3 c P2n—2(4) SZn—2
Then 2[g] is given by the composite
P2n—2(2) S2n—2 n S2n—3 PZn—Z(z) g1 PZn—2(4)

which is nullhomotopic because g[S 2”3 factors through the degree map [2]: $2" 3 —
S27=3 Then
[P"72(2), P24 =Z/2& Z)2.

The three essential elements in [P2"~2(2), P?>"~2(4)] are given by [g1], [22]. [g1 +£2].
Since [g1]x, [g1 + g2lx: Han—2(P?"72(2)) = Hap—2(P>"~2(4)) are nonzero, [g,] is
the only homotopy class as the attaching map for C2"~1. The proof is finished. O
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By pinching out the bottom Moore space, we have a pinch map
¢: TD,(R2; P"1(2)) - C?"

with a commutative diagram

=D, (R P"1(2)) 2o Pr(2)"2

(3-2) ¢ D2

C2n P3 P2n (2)
where p3 induces an epimorphism on mod 2 homology.

Let C2"~! and C2"~! be defined in the commutative diagram

P2n—2(2) g2 P2n—2(4) C2‘n—1 P2n—1(2)

J1
U
(3_3) P2n—2(2) nogq SZn—3 52’1—1 P2n—2(2)
\ y
J2

P2n—2(2) ﬁoq P2n—3(2) 62n—1 P2n—2(2)
where 7: $2"72 — P2"=3(2) is a lifting of 1, g, is defined by (3-1) and the rows are
cofibre sequences. Observe that:
(1) The map j; induces a monomorphism on mod 2 homology.

(2) The homotopy cofibre of jj o jo: C?"~1 — C2"~1 is the same as the homotopy
cofibre of P2"73(2) — S2"73 — P21=2(4).

(3) The mod 2 homology ﬁ*(ézn_l) has a basis {X2,—1, X2n—2, X21—3, X2n—4}»
with
Sqs(X20—1)Y = X2n—2, SqL(X21—3) = X2n—4,

Sq2 (X2n—1) = X2n—3, SQ:(X2n—2) = X2n—4.

Lemma 3.3 The homotopy cofibre of P2"73(2) — S2"=3 — P2"=2(4) is P?"2(8).
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Proof This follows from the commutative diagram of cofibre sequences:

P2n—3 P2n—3(2)

Y Y

213 [4] §2=3 o, pan2y)

[2]

S2n—3 [8] SZn—3 P2n—2(8) O

Lemma 3.4 The space C2"~! is homotopy equivalent to £2"~7CP2 ARP2.

Proof We only need to show that there is a unique 4—cell complex having the same
homology as C2"*! with the same Steenrod module structure.

Consider the homotopy classes [P2"~2(2), P2"~3(2)]. There is a short exact sequence
Tan—3 (P23 (2)) = /2« [P*"72(2). P*" ()] +2 man—2 (P73 (2))/2.
There are three essential homotopy classes in [P2"~2(2), P2"~3(2)] given as follows:

(1) nAid: P2"=2(2) — P2?"=3(2). The homology of its cofibre has the same
structure as Hy (X2"~’CP? ARP?).

(2) The composite /11: P2"72(2) Py gan=2 M, pon-3 (2). The reduced mod 2
homology of the cofibre C,, has a basis

{V2n—1:Yan—2, Y2n—3. Yan—a}
with
Say(V2n—1) = Yan—2, SAu(V2n—3) = Van—a,
SQ2(Yan—1) = Yan—3, Sqz(yan—2) = 0.

Here Sq2(y2,—2) = 0 because /11| g2—3 is nullhomotopic.

(3) The composite h,: P2"72(2) . S§2n—4 . p2n=3(2), where 7 is an ex-
tension of 7: $?"~3 — §27"=4 The reduced mod 2 homology of the cofibre Ch,
has a basis

{Z2n—1 »Z2n—2,22n-3, Z2n—4}
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with | 1
SAx(Z2n—1) = Z2n—2,  Sq4(Z21—3) = Z2p—4,

SQZ(¥2n—-2) = Yan—a. Sqz(yan—1) =0.
Here Sq?k (¥21n—2) = 0 because
P2n—2(2) h2 P2n—3(2) — SZn—3
is nullhomotopic.
The proof is finished. |

The following lemma will be useful.

Lemma 3.5 There is a commutative diagram

C2n P3 PZH (2)
nAid
PZn—l (8) 4/0> P2n—1 (2)
where py: Hyp_»(P?*""1(8);Z/2) — Hy,_»(P?*"~2(2);Z/2) is an isomorphism.

Proof From property (2) of diagram (3-3) and Lemma 3.4, there is a commutative
diagram of cofibre sequences:

c2n J1°J2 c2n P2n—1(8)

pinch P
~2n 2n h 2n—1
C P"2) — P (2)
By Lemma 3.4, i1 >~ n Aid, and hence the result follows. O

Let us first prove the special case of Theorem 1.1 when the Whitehead square is divisible
by 2.

Theorem 3.6 Letn + 1 =0 mod4 withn+ 1> 5. Suppose that the Whitehead

square w, is divisible by 2. Then the 4™ power map 4|: Q2 P"+1(2) - Q2P"t1(2)
restricted to the skeleton sky(,—1)—1 is nullhomotopic.
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Proof By Theorem 2.3, it suffices to show that the composite

=D, 2 (P"(2))"2 —E (P(2)"2 2~ QP (2)
is nullhomotopic. By Lemma 3.1, it suffices to prove that the composite
(-4) =Dy e (PT(2))"2 P pA(g) ML p2nmi(g) B2 gprti()
is nullhomotopic.
Since wy, is divisible by 2,

Syl g2n—2: 72 — QP"T1(2)

is nullhomotopic. Thus S,|: P2"~1(2) — QP"+1(2) factors through S2"~!.

Let p: P?"~1(8) — P?"~1(2) be the map in Lemma 3.5. We show that there is a
commutative diagram of cofibre sequences:

S2n—2 c P2n—1(8) S2n—1

(3-5) p (4]

SZn—Z P2}’l—1 (2) SZn—l
There is a short exact sequence
Tan—a (P71 (2)) = Z/2 <o [P (8), P21 (2)] <= 7201 (P21 (2)) = Z/2.

Let o: P2"~1(8)— P?"~1(2) be an extension of the inclusion map S22 — P2"~1(2).
Then 2[] = 0. Thus

[P"=1®), PP =Z/20Z)2.
Let S be the composite
pn=1(g) pinch g2n=1 _"_ g2n=2 c P22(2).

Then [P2"~1(8), P2"~1(2)] is generated by a and B. We can make a choice of «
from the commutative diagram:

§2n-2 [8] 212 Pl (g) g2n—1
[4] o [4]

g2n-2 2] g2n-2 P=1(2) P4, gan-1

Algebraic € Geometric Topology, Volume 16 (2016)



On the metastable homotopy of mod 2 Moore spaces 1787

Then [p] equals [«] or [o + B]. Since p4«[B] = 0, diagram (3-5) holds.

Now the assertion follows from the commutative diagram

C2n D3 P2n(2)
nAid

Y
P2n—1(8) 4,0» P2n—1(2) &l QP”+1(2)

Y Y
g1 [ gan-1
which is obtained from Lemma 3.5 and diagram (3-5), together with diagram (3-2) and
the fact [10] that [A] € 72, (P"11(2)) is of order 4 when n + 1 =0 mod 4. |

4 Some lemmas on P2"(2)
In this section, we give some lemmas related to the Whitehead products.

Lemma 4.1 Let jy,4; be the composite

RP?" —— SOQ2n+ 1) — Q2 t1g2n+l
Then
Q" TH([2]) 0 jant1 =20 jonti-

Proof By [7, Proposition 4.3], the maps [2],2: Q52" T1 — QS§2"+! differ by the
homotopy class represented by the composite

H Qw
952n+1 2 Qs4n+l 2n+1 QSZn—H‘

From the commutative diagram

Rpk < RPk+l

Qk—i—lSk-i—l ., Qk+2Sk+2
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there is a commutative diagram

g2k+1 =gy sh+Ippk o, yh+Igpk+1 = pra g2k+2

Jk+1 Jk+2 Ok+2

Q2 g2k+3 P gh+1 E Qsk+2 H Q.§2k+3

where gi: Sk — RPF is the projection map, pjg41: RP¥T!1 — Sk+1 is the pinch map,
the top row is a cofibre sequence, and the bottom row is the EHP sequence. The map

Orkt2: Hopra(S?KT2) = Hyp (282K F3)

is an isomorphism [13, Theorem (1.1)]. It follows that there is a commutative diagram:

s 2npp2n 22" pan , §4n Ezn‘hn‘ s 2npp2n
j2/n+1 Oan j2/n+1
Qs§2n+1 H Qg4n+l Qwant1 Q§2n+1

We check that the composite
s2pp2n ZiP2n gan+2 T2 s2ppln
is nullhomotopic; the assertion will then follow from the above commutative diagram.
Consider the Hopf map
H: SRP*° ARP® — TRP*.
We can see that the composite
SRPY ARP' =—» SRP® ARP® —L. $RP®
maps into TRP?"*1 by considering the skeleton. Let
f: 2?RP?" = SRP?" ARP! — SRP?"*!

be the resulting map. Recall that the mod 2 homology Hy(RP*°) = I'(u) with |u| =1
is the divided power algebra. The Hopf map H induces

Hy(Z(y2n(w) @ y1(u))) = Zyant1(u).
Thus
fx: Hana(S*RPP™ Z/2) — Hapy o (SRPY' 1 Z/2)

Algebraic € Geometric Topology, Volume 16 (2016)



On the metastable homotopy of mod 2 Moore spaces 1789

is an isomorphism. It follows that the pinch map X2 p,,: Z2RP?" — S2"*2 factors
through f. From the cofibre sequence

= x2
ZRP2H+1 P2n+1 S2n+2 q2n Zszzn

we obtain that X2(g5, © p2,) is nullhomotopic. ]

Lemma 4.2 There is a homotopy commutative diagram

(2]

ZZ}’I"{‘IRPZII . 22”+1RP2}1 o RPZ}’I/\PZH"FZ(Z)
. v
J2n+1 J2n+1 kan+2
sntigpn+2 2] . y2n+lpp2nt2 Lo RP21H2, p2nt2(y)
=/ -/ k
Jan+3 Jan+3 2n+4
Y Y
gan+1 _ 2 g2n+1 P23
Do o
Y 2 Y
Q2g2n+3 Q([2) . Q2g2n+3 Q2 pnta(y)

Proof By Lemma 4.1, the left cube is homotopy commutative. Here the morphism
from the back face to the front face in the left cube is given by inclusions and all faces
except the back and the front commute strictly. The homotopy for the front face of the
left cube restricts to the homotopy for the rear face of the left cube. We can replace the
four objects in the right face of the left cube with the mapping cylinders and replace
the four rightward-pointing arrows in the left cube with inclusions. The homotopy
extension property implies that there is a choice of two downward arrows in the right
face of the new left cube that make it commutative. Taking the cofibres of the right
arrows in the new left cube and using the property that the composition of the bottom
two arrows is nullhomotopic, we conclude that there exists a map

k2n+2: sznAP2n+2(2) N P2n+2(2)

such that the right cube in the diagram commutes up to homotopy. a

Mahowald has a result [14, Theorem (1.1.2a)] that [t45—1,N4n—1] = 0. For mod 2
Moore spaces, we have the following lemma.
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Lemma 4.3 There exists a map 84,: P8"~2(2) — P*"(2) with the following proper-
ties:

(1) There is a homotopy commutative diagram:

P8n 2(2) P4n(2)

g8n—3 W4n—1 g4n—1

(2) The composite
2
PSI’! 2(2) P4n(2) 2P4n+2(2)

is nullhomotopic.
(3) The composite

nAid

P8n—1(2) PSI’! 2(2) P4I’l (2)

is nullhomotopic.

Proof Let W)! be the homotopy of the homotopy fibre of the inclusion map S" —
Qkgntk and let W/'(2) be the homotopy fibre of the inclusion map P"(2) —
Qk prtk(2). By Lemma 3.2, there is a homotopy commutative diagram
4 4 4
W' (2) - P*(2) o(P™(2)

A

k4n

Oan2 AN ppan—2 \ pang) _, ppoo  pingy)

A

RPP | A P4"—1 ()

o s4n-2y, v o
E4H—ZRP2§>1_1 n 24’1_1RP4”—2 E4H—IRPOO
j4n—1 ]c;o
Y Y Y
W;on—l N S4n—l Q(S4n—l)

Algebraic € Geometric Topology, Volume 16 (2016)



On the metastable homotopy of mod 2 Moore spaces 1791

with a canonical morphism of fibre sequences from the bottom row to the top row for
making a homotopy commutative diagram of cubic diagrams, where

: RPY | = RP®/RPF — SRPF
is the boundary map and Q(X) = Q® XX . Let
San: P¥72(2) > P*"(2)
be the composite

Jan—2 Aid
—_

kan
S4=1 A P4=1(2) 5 RPE_ A PY71(2) RP*"=2 A P47 (2) =25 p4n(2).

From the above commutative diagram, 84,|: S8~ — P4%(2) is homotopic to the
composite

S8n—3 W4n—1 S4n—1 c P4n(2)
Moreover, the composite
PHI=2(0) B pAn2) e Q(PA(2))

is nullhomotopic by construction. It follows that X284,: P87(2) — P*"*t2(2) is
nullhomotopic for dimensional reasons.

Now we check condition (3) in the statement. Observe that the reduced mod 2 homology

of RPZ,_, has a basis {u*} with k > 4n — 1. The Steenrod operation satisfies

qu(u4k_1) _ qu(u4k_4-u3) Y Sq?(u®) = y k1
Thus
Sq2: Hgp—1 (" 2RPY_ ) = 7/2 — Hgy—3(Z*" *RPY_) =7Z/2
is an isomorphism. It follows that the composite
g8n=2 M g8n—=3 < E‘m_zRsz—l
is nullhomotopic. By smashing with mod 2 Moore spaces, the composite

PSn—l(Z) nAid P8n—2(2) c 24”_2RPZ‘,’1_1 /\P4n—1(2)

is nullhomotopic. Condition (3) is satisfied and hence the result follows. O
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5 Proof of Theorem 1.1

We use the notation W,"(2) defined in the proof of Lemma 4.3. Consider the homotopy
commutative diagram of fibre sequences:

QwW2r - E - W2r(2) —— W2
Y 9 Y Y ch Y
(5-1) Qs O, gy, pangy PN qon

Y Y Y
2 —
QO(S*") = Q(S"™") — Q(P*"(2)) — Q(S*")
For a space X, let { P"(2), X} =[P"(2), Q(X)] denote the group of stable homotopy
classes from P"*(2) to X .

Lemma 5.1 (1) The stabilisation [P*"~2(2), S?"] — { P*"2(2), S} is an iso-
morphism.
(2) The stabilisation [P*"=2(2), QS?"] — [P*"~2(2), QQ(S?")] is onto.
(3) Let 4n # 4, 8. Then the kernel of [P8"72(2), S4"~1] — {P871=2(2), S~ 1} js
Z]2, generated by any map ¢: P8"72(2) — S*"~! guch that ¢|gsn—s3 is the
Whitehead square.

Proof Assertions (1) and (2) follows immediately from the fact that S>” is the (4n—1)—
skeleton of 82" *! . For assertion (3), consider homotopy commutative diagram of

fibre sequences:
Q2S8n—1 stgn_l

P
Y Y 2
WAn—1 gan—1 _ X o2 gdnti
2
E
Y Y
Q3S8n+1 QP QS4n QE 925411-}—1
H
Y Y
QSSn—l Qs8n—1
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Since the composite
§8n—2 Q3g8ntl 2P ogdan H o ¢8n—1
is of degree 2, we have
Sk8n—1(W24n_1) = P8n—2(2).
It follows that there is an exact sequence

[P8n—2(2), Q3S4n+1] — [P8n—2(2)’ P8n—2(2)]
— [P8n—2(2)’ S4n—1] _ {PSn—Z(Z)’ S4n_1}.

By the proof of Lemma 4.3, w4,_1 o1 is nullhomotopic. Thus the composite
p8n2(Q) . §8n2 M, q8n=3 | p8n=2(5)  g4n—l
is nullhomotopic, and so the image of
[PP"2(2), PP 2(Q)) = Z/4
in [P¥=*(2), S*"~1]is Z/2. The proof is finished. o
Lemma 5.2 There is a homotopy decomposition
QF?"{2} ~ Q8?1 x QS22 x QP 3(2)
up to dimension 8n —8§.

Proof Consider the homotopy commutative diagram of fibre sequences

QSZ” S2n—1 I(SZ”) S2n

A

y

U

Qs2n -, F2n{2} - P2n(2)

y

S2n

Y p— Y
where 7(S2") = SO(2n + 1)/ SO(2n — 1) = V3 2,41 is the 2—frame Stiefel mani-
fold. Since the map F?"{2} — S2"~! admits a cross-section, there is a homotopy

decomposition
QF?"{2)} ~ QY x Q82" 1,
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Let f: QS**~2 — QY be the extension of the inclusion of the bottom cell. Let
g: QP 3(2)= QL3 (P?"1(2)) — QY be the map in the functorial decomposition
of

QX ~ QSLy(X) x?

for 2-local spaces [10; 20]. Then the map

Q412 o QP6n—3(2) (f.g) QY

induces an isomorphism on homology up to dimension 87 —8. The proof is finished. O
We restate Theorem 1.1 as follows.

Theorem 5.3 Let n > 1. The power map 4: Q% P*"(2) — Q2 P*"(2) restricted to
the skeleton sk4(an—2)—1 (2 P*#"(2)) is nullhomotopic.

Proof If the Whitehead square w4, is divisible by 2, we have proved the assertion
in Theorem 3.6. Now we assume that w4, is not divisible by 2. Similar to the
situation in the proof of Theorem 3.6, it suffices to prove that the composite

(52) EDy —Te (P12 L pin=2(g) IS pin=i(y) 2l gpin(
is nullhomotopic. Our proof is given by controlling the map

S,|: P¥1(2) - QP (2).

By Lemma 5.2, QF4"{2} ~ QS*"~1 x QS8"=2 up to dimension 151 — 5. Thus
[P81=2(2), F41(0)] = [P8"=2(2), S*" 11 @ [P3"~2(2), S3"2]
=[P¥2(2), s Na17/2.
By Lemma 5.1(3), there is an exact sequence
(5-3) 7.)2 — [P¥"72(2), S~ — (P32 (2), 41,

Consider the homotopy commutative diagram (5-1) with replacing 2n by 4n. Let
g: P¥72(2) - P*"(2) be a map representing an element in

Ker([P3"72(2), P*"(2)] — {P¥"7%(2), P*"(2)}).
By Lemma 5.1(1), the composite

P8n—2(2) 4g> P4n(2) o, S4n
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is nullhomotopic and so g lifts to F4"{2}. Let g: P3"~2(2) — F*"{2} be a lifting of
g and let g denote the composite

P8n—2(2) 4g> F4n{2} . Q(S4n_1).

From the homotopy commutative diagram (5-1), g lifts to Q Q(S*"). By Lemma 5.1(2),
g lifts further to Q.S54”. It follows that there is a map f: P%"72(2) — E such that
the composite

P8n—2(2) 4f> E — F4I1{2} . P4n(2)

is homotopic to g. Thus Ker([P8"=2(2), P**(2)]— { P¥"~2(2), P#"(2)}) is contained
in
Im(Z/20Z/2 —[P*"72(2), F*"{2}] — [P¥"2(2), P*"(2))).

Here, by Lemma 5.2, Z/2 @ 7 /2 refers to the direct sum of a copy of Z/2 given in
the exact sequence (5-3) and a copy of Z/2 generated by the homotopy class of the
composite

P32 (2) pinch - ¢8n—2 han Finon
where d4,: S8772 — F47{2} induces an isomorphism on Hg,_».
Let A4y P8"72(2) — P*"(2) be the composite
P82(2) pinch -~ ¢:8n—2 han FAn(0) P41 ().

Since )_»4,,| ssn—3_1s trivial but O4nlgn—3 1s essential (because wg,—1 is not divisible
by 2), we have [Asp] # [84n]. Thus the elements {[A4,], [04,]} generate a subgroup?
of [P8"=2(2), P*"(2)] containing

Ker([P%"72(2), P*"(2)] — {P¥"7%(2), P*"(2)}).

Since
[S2]] € Ker([P3"2(2), P (2)] = { P¥"2(2), P*"(2)}).

we have [S;[] = [)_\4n]v [64n] or [X4n + 84n]-

By Lemma 4.3,
8ano (pAid): P¥71(2) — P4 (2)

is nullhomotopic.

2 We do not claim that [A4,] lies in Ker([P8"=2(2), P4"(2)] — {P%"2(2), P*"(2)}). What we
claim is that Ker([Pgn_2 (2), P4"(2)] — {P8"=2(2), P4"(2)}) is controlled by linear combinations of
[Aan] and [84,].
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Along the lines in the proof of Theorem 3.6, and using the properties that A4, fac-
tors through S87~2 and any map S%3 — QP#"(2) having nontrivial Hurewicz
image is of order 4 [10], the composite (5-2) is nullhomotopic if S| is replaced by

Aan: P8"73(2) — QP*"(2). The proof is finished. m]

Acknowledgements The main result (Theorem 1.1) is supported by Russian Scientific
Foundation, grant N 14-21-00035. The last author is also partially supported by the
Singapore Ministry of Education research grant (AcRF Tier 1 WBS No. R-146-000-
190-112) and a grant (No. 11329101) of NSFC of China.

References

[11 M G Barratt, Homotopy ringoids and homotopy groups, Quart. J. Math., Oxford Ser. 5
(1954) 271-290 MRO0073178

[2]1 MG Barratt, Spaces of finite characteristic, Quart. J. Math. Oxford Ser. 11 (1960)
124-136 MRO0120647

[3] MG Barratt, M E Mahowald, The metastable homotopy of O(n), Bull. Amer. Math.
Soc. 70 (1964) 758-760 MRO0182004

[4] HJ Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91
(1994) 49-107 MR1255923

[5] C-F Bodigheimer, Stable splittings of mapping spaces, from: “Algebraic topology”,
(HR Miller, D C Ravenel, editors), Lecture Notes in Math. 1286, Springer, Berlin (1987)
174-187 MR922926

[6] FR Cohen, The unstable decomposition of Q*%?X and its applications, Math. Z. 182
(1983) 553-568 MR701370

[71 F R Cohen, A course in some aspects of classical homotopy theory, from: “Algebraic
topology”, (HR Miller, D C Ravenel, editors), Lecture Notes in Math. 1286, Springer,
Berlin (1987) 1-92 MR922923

[81 F R Cohen, On combinatorial group theory in homotopy, from: “Homotopy theory and
its applications”, (A Adem, R J Milgram, D C Ravenel, editors), Contemp. Math. 188,
Amer. Math. Soc. (1995) 57-63 MR1349129

[91 F R Cohen, R Mikhailov, J Wu, A combinatorial approach to the exponents of Moore
spaces, preprint (2015) arXiv:1506.00948

[10] FR Cohen, J Wu, A remark on the homotopy groups of X"RP?, from: “The Cech
centennial”, (M Cenkl, H Miller, editors), Contemp. Math. 181, Amer. Math. Soc.
(1995) 65-81 MR1320988

[11] E Dyer, RK Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962)
35-88 MRO141112

Algebraic € Geometric Topology, Volume 16 (2016)


http://dx.doi.org/10.1093/qmath/5.1.271
http://www.ams.org/mathscinet-getitem?mr=0073178
http://dx.doi.org/10.1093/qmath/11.1.124
http://www.ams.org/mathscinet-getitem?mr=0120647
http://dx.doi.org/10.1090/S0002-9904-1964-11229-5
http://www.ams.org/mathscinet-getitem?mr=0182004
http://dx.doi.org/10.1016/0022-4049(94)90135-X
http://www.ams.org/mathscinet-getitem?mr=1255923
http://dx.doi.org/10.1007/BFb0078741
http://www.ams.org/mathscinet-getitem?mr=922926
http://dx.doi.org/10.1007/BF01215483
http://www.ams.org/mathscinet-getitem?mr=701370
http://dx.doi.org/10.1007/BFb0078738
http://www.ams.org/mathscinet-getitem?mr=922923
http://dx.doi.org/10.1090/conm/188/02233
http://www.ams.org/mathscinet-getitem?mr=1349129
http://arxiv.org/abs/1506.00948
http://dx.doi.org/10.1090/conm/181/02030
http://www.ams.org/mathscinet-getitem?mr=1320988
http://dx.doi.org/10.2307/2372804
http://www.ams.org/mathscinet-getitem?mr=0141112

On the metastable homotopy of mod 2 Moore spaces 1797

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

PS Green, R A Holzsager, Secondary operations in K—theory and applications to
metastable homotopy, lllinois J. Math. 16 (1972) 415-422 MR0326725

IM James, On the iterated suspension, Quart. J. Math., Oxford Ser. 5 (1954) 1-10
MRO0061836

M Mahowald, Some Whitehead products in S, Topology 4 (1965) 17-26
MRO0178467

M Mahowald, The metastable homotopy of S”, Mem. Amer. Math. Soc. 72, Provi-
dence, R.I. (1967) MR0236923

M Mahowald, On the metastable homotopy of O(n), Proc. Amer. Math. Soc. 19 (1968)
639-641 MRO0225324

K Morisugi, Metastable homotopy groups of Sp(n), J. Math. Kyoto Univ. 27 (1987)
367-380 MR898535

K Morisugi, J Mukai, Lifting to mod 2 Moore spaces, J. Math. Soc. Japan 52 (2000)
515-533 MR1760602

D A Tipple, A note on the metastable homotopy groups of torsion spheres, Bull. London
Math. Soc. 3 (1971) 303-306 MR0298661

J Wu, On combinatorial calculations for the James—Hopf maps, Topology 37 (1998)
1011-1023 MR1650426

J Wu, Homotopy theory of the suspensions of the projective plane, Mem. Amer. Math.
Soc. 769, Providence, RI (2003) MR1955357

J Wu, On maps from loop suspensions to loop spaces and the shuffle relations on the
Cohen groups, Mem. Amer. Math. Soc. 851, Providence, RI (2006) MR2203532

RM: Chebyshev Laboratory, St. Petersburg State University
14th Line, 29b, St. Petersburg, 199178, Russia

RM: St. Petersburg Department of Steklov Mathematical Institute

JW: Department of Mathematics, National University of Singapore
10 Lower Kent Ridge Road, Singapore 119076

rmikhailov@mail.ru, matwuj@nus.edu.sg

http://www.math.nus.edu.sg/~matwujie

Received: 2 June 2015 Revised: 20 September 2015

Geometry € Topology Publications, an imprint of mathematical sciences publishers :.msp


http://projecteuclid.org/euclid.ijm/1256065767
http://projecteuclid.org/euclid.ijm/1256065767
http://www.ams.org/mathscinet-getitem?mr=0326725
http://dx.doi.org/10.1093/qmath/5.1.1
http://www.ams.org/mathscinet-getitem?mr=0061836
http://dx.doi.org/10.1016/0040-9383(65)90046-7
http://www.ams.org/mathscinet-getitem?mr=0178467
http://www.ams.org/mathscinet-getitem?mr=0236923
http://dx.doi.org/10.2307/2035853
http://www.ams.org/mathscinet-getitem?mr=0225324
http://projecteuclid.org/euclid.kjm/1250520721
http://www.ams.org/mathscinet-getitem?mr=898535
http://dx.doi.org/10.2969/jmsj/05230515
http://www.ams.org/mathscinet-getitem?mr=1760602
http://dx.doi.org/10.1112/blms/3.3.303
http://www.ams.org/mathscinet-getitem?mr=0298661
http://dx.doi.org/10.1016/S0040-9383(97)00058-X
http://www.ams.org/mathscinet-getitem?mr=1650426
http://dx.doi.org/10.1090/memo/0769
http://www.ams.org/mathscinet-getitem?mr=1955357
http://dx.doi.org/10.1090/memo/0851
http://dx.doi.org/10.1090/memo/0851
http://www.ams.org/mathscinet-getitem?mr=2203532
mailto:rmikhailov@mail.ru
mailto:matwuj@nus.edu.sg
http://www.math.nus.edu.sg/~matwujie
http://msp.org
http://msp.org




	1. Introduction
	2. The 4th power map on looped suspensions
	The obstructions to the 4th power map on 2 X
	The elimination of the obstruction 3
	The configuration spaces and the obstruction 2

	3. The reduced evaluation map on mod 2 Moore spaces
	4. Some lemmas on P2n(2)
	5. Proof of Theorem 1.1
	References

