Volume 16, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A lower bound on tunnel number degeneration

Trenton Schirmer

Algebraic & Geometric Topology 16 (2016) 1279–1308
Bibliography
1 M Boileau, H Zieschang, Heegaard genus of closed orientable Seifert 3–manifolds, Invent. Math. 76 (1984) 455 MR746538
2 F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. 16 (1983) 451 MR740078
3 T Kobayashi, A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Theory Ramifications 3 (1994) 179 MR1279920
4 T Kobayashi, Y Rieck, Heegaard genus of the connected sum of m–small knots, Comm. Anal. Geom. 14 (2006) 1037 MR2287154
5 T Kobayashi, Y Rieck, Knot exteriors with additive Heegaard genus and Morimoto’s conjecture, Algebr. Geom. Topol. 8 (2008) 953 MR2443104
6 T Li, Rank and genus of 3–manifolds, J. Amer. Math. Soc. 26 (2013) 777 MR3037787
7 T Li, R Qiu, On the degeneration of tunnel numbers under a connected sum, Trans. Amer. Math. Soc. 368 (2016) 2793
8 Y Moriah, H Rubinstein, Heegaard structures of negatively curved 3–manifolds, Comm. Anal. Geom. 5 (1997) 375 MR1487722
9 K Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527 MR1317043
10 K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property “1 + 1 = 3, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 MR1356163
11 K Morimoto, J Schultens, Tunnel numbers of small knots do not go down under connected sum, Proc. Amer. Math. Soc. 128 (2000) 269 MR1641065
12 J M Nogueira, Tunnel number degeneration under the connected sum of prime knots, Topology Appl. 160 (2013) 1017 MR3049251
13 F H Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982) 143 MR663884
14 T Saito, M Scharlemann, J Schultens, Lecture notes on generalized Heegaard splittings, preprint (2005) arXiv:math/0504167
15 M Scharlemann, J Schultens, The tunnel number of the sum of n knots is at least n, Topology 38 (1999) 265 MR1660345
16 M Scharlemann, J Schultens, Annuli in generalized Heegaard splittings and degeneration of tunnel number, Math. Ann. 317 (2000) 783 MR1777119
17 M Scharlemann, A Thompson, Thin position for 3–manifolds, from: "Geometric topology" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231 MR1282766
18 J Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000) 353 MR1793793