Volume 16, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A lower bound on tunnel number degeneration

Trenton Schirmer

Algebraic & Geometric Topology 16 (2016) 1279–1308
Bibliography
1 M Boileau, H Zieschang, Heegaard genus of closed orientable Seifert 3–manifolds, Invent. Math. 76 (1984) 455 MR746538
2 F Bonahon, J P Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. École Norm. Sup. 16 (1983) 451 MR740078
3 T Kobayashi, A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Theory Ramifications 3 (1994) 179 MR1279920
4 T Kobayashi, Y Rieck, Heegaard genus of the connected sum of m–small knots, Comm. Anal. Geom. 14 (2006) 1037 MR2287154
5 T Kobayashi, Y Rieck, Knot exteriors with additive Heegaard genus and Morimoto’s conjecture, Algebr. Geom. Topol. 8 (2008) 953 MR2443104
6 T Li, Rank and genus of 3–manifolds, J. Amer. Math. Soc. 26 (2013) 777 MR3037787
7 T Li, R Qiu, On the degeneration of tunnel numbers under a connected sum, Trans. Amer. Math. Soc. 368 (2016) 2793
8 Y Moriah, H Rubinstein, Heegaard structures of negatively curved 3–manifolds, Comm. Anal. Geom. 5 (1997) 375 MR1487722
9 K Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527 MR1317043
10 K Morimoto, M Sakuma, Y Yokota, Examples of tunnel number one knots which have the property “1 + 1 = 3, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 MR1356163
11 K Morimoto, J Schultens, Tunnel numbers of small knots do not go down under connected sum, Proc. Amer. Math. Soc. 128 (2000) 269 MR1641065
12 J M Nogueira, Tunnel number degeneration under the connected sum of prime knots, Topology Appl. 160 (2013) 1017 MR3049251
13 F H Norwood, Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982) 143 MR663884
14 T Saito, M Scharlemann, J Schultens, Lecture notes on generalized Heegaard splittings, preprint (2005) arXiv:math/0504167
15 M Scharlemann, J Schultens, The tunnel number of the sum of n knots is at least n, Topology 38 (1999) 265 MR1660345
16 M Scharlemann, J Schultens, Annuli in generalized Heegaard splittings and degeneration of tunnel number, Math. Ann. 317 (2000) 783 MR1777119
17 M Scharlemann, A Thompson, Thin position for 3–manifolds, from: "Geometric topology" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231 MR1282766
18 J Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000) 353 MR1793793