Volume 16, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Lagrangian circle actions

Clément Hyvrier

Algebraic & Geometric Topology 16 (2016) 1309–1342
Abstract

We consider paths of Hamiltonian diffeomorphisms preserving a given compact monotone lagrangian in a symplectic manifold that extend to an S1–Hamiltonian action. We compute the leading term of the associated lagrangian Seidel elements. We show that such paths minimize the lagrangian Hofer length. Finally, we apply these computations to lagrangian uniruledness and to give a nice presentation of the quantum cohomology of real lagrangians in monotone symplectic toric manifolds.

Keywords
Lagrangian quantum homology, Lagrangian Seidel element, monotone toric manifolds
Mathematical Subject Classification 2010
Primary: 53D12, 53D20, 57R17, 57R58
References
Publication
Received: 17 September 2013
Revised: 15 October 2015
Accepted: 24 November 2015
Published: 1 July 2016
Authors
Clément Hyvrier
Département de Mathématiques
Cégep Saint-Laurent
625 avenue Sainte-Croix
Montreal, QC H4L 3X7
Canada