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Statistical hyperbolicity of relatively hyperbolic groups

JEREMY OSBORNE

WEN-YUAN YANG

We prove that a nonelementary relatively hyperbolic group is statistically hyperbolic
with respect to every finite generating set. We also establish the statistical hyperbolic-
ity for certain direct products of two groups, one of which is relatively hyperbolic.

20F65, 20F67

1 Introduction

The idea of statistical hyperbolicity was first introduced by M Duchin, S Lelièvre,
and C Mooney in [7]. Let G be a group generated by a finite set S . Assume that
1 … S D S�1 . Denote by G .G; S/ the Cayley graph of G with respect to S . Consider
the natural combinatorial metric on G .G; S/, denoted by d , inducing a word metric on
G . The intuitive meaning of statistical hyperbolicity of a group can then be summed
up as follows: on average, random pairs of points x; y on a sphere of the Cayley
graph of the group almost always have the property that d.x; y/ is nearly equal to
d.x; 1/C d.1; y/. More precisely,

Definition 1.1 Denote Sn D fg 2G j d.1; g/D ng for n� 0. Define

E.G; S/D lim
n!1

1

jSnj2

X
x;y2Sn

d.x; y/

n

if the limit exists. The pair .G; S/ is called statistically hyperbolic if E.G; S/D 2.

Recall that a group is called elementary if it is a finite group or a finite extension of Z.
It is easily checked that an elementary group is not statistically hyperbolic with respect
to any generating set. In [7], Duchin, Lelièvre, and Mooney proved that Zd for d � 2
is not statistically hyperbolic for any finite generating set. It was also discovered by
Duchin and Mooney in [8] that the integer Heisenberg group with any finite generating
set is not statistically hyperbolic.

A list of statistically hyperbolic examples were also found in [7]:
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Examples 1.2 (1) Nonelementary hyperbolic groups for any finite generating set.

(2) Direct product of a nonelementary hyperbolic group and a group for certain
finite generating sets.

(3) The lamplighter groups Zm oZ, where m� 2 for certain generating sets.

We remark that a definition of statistical hyperbolicity analogous to the above can be
considered for any metric space with a measure. (For graphs we consider the counting
measures). We refer the reader to [7] for precise definitions. For any m;p � 2, the
Diestel–Leader graph DL.m; p/ is proved to be statistically hyperbolic in [7]. In [5],
Dowdall, Duchin, and Masur established statistical hyperbolicity for the Teichmüller
space with various measures.

Summarizing the above results, one could think of the number E.G; S/ as a measure-
ment of negative curvature in groups and spaces. So it would be natural to expect
that the statistical hyperbolic property holds for a more general class of groups with
negative curvature. A natural source of such groups to be investigated is the class of
relatively hyperbolic groups, which generalizes word hyperbolic groups and includes
many more examples, such as

(1) fundamental groups of nonuniform lattices with negative curvature (see
Bowditch [1]),

(2) free products of groups, or a finite graph of groups with finite edge groups,

(3) limit groups (see Dahmani [4]), and

(4) CAT(0) groups with isolated flats (see Hruska and Kleiner [14]).

We refer the reader to Section 2 and references therein for more details on relatively
hyperbolic groups. The purpose of this article is to generalize the first two items in
Examples 1.2 to the setting of relatively hyperbolic groups.

Recently, Osborne established in his thesis [15] that relatively hyperbolic groups
are statistically hyperbolic, provided that the group growth rate dominates those of
parabolic subgroups. Our first result is to drop this assumption and to establish the
full generalization of the aforementioned result of Duchin, Lelièvre and Mooney in
relatively hyperbolic groups.

Theorem 1.3 A nonelementary relatively hyperbolic group is statistically hyperbolic
with respect to every finite generating set.
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Let’s say a bit about the ingredients in proof of our theorem. It was observed in [7]
that statistical hyperbolicity appears to be more delicate than the usual metric notion of
hyperbolicity in the sense of Gromov. Namely, examples of trees can be produced to
have arbitrary number E.G; S/ 2 Œ0; 2�. These examples do not have many isometries
because they are not homogeneous. Thus in their proof of statistical hyperbolicity for
hyperbolic groups, Duchin, Lelièvre, and Mooney make essential use of a result of
Coorneart [3] about growth functions. This is recently generalized by Yang in [17] for
relatively hyperbolic groups; see Lemma 2.9. Apart from this, we also exploit a crucial
fact in [17] to obtain the full generality: parabolic groups have convergent Poincaré
series; see Corollary 2.8. Based on them, our proof roughly follows the outline in the
hyperbolic case but with more involved analysis.

We now state our second result about a direct product of two groups, one of which
is relatively hyperbolic. First recall the notion of the growth rate �G;S of a group G
relative to S , which is defined to be the limit

�G;S D lim
n!1

log jSnj
n

:

A generating set S for G�H is called split if every generator in S lies either in G or
in H . Denote SG WD S \G and SH WD S \H . Taking into account Theorem 1.3, we
obtain the following theorem extending a similar result in [7].

Theorem 1.4 Let G �H be a direct product of a nonelementary relatively hyperbolic
group G and a group H . Let S be a split finite generating set for G �H , with SG
and SH the corresponding generating sets for G and H . If �G;SG

> �H;SH
, then

.G �H;S/ is statistically hyperbolic.

It is obvious that Theorem 1.4 can be thought of as a generalization of Theorem 1.3.

Lastly, we derive a corollary of Theorem 1.4. Recall that a group has subexponential
growth if its growth rate is zero for some (thus any) generating set. It is well-known
that a nonelementary relatively hyperbolic group has exponential growth.

Corollary 1.5 A direct product of a nonelementary relatively hyperbolic group and a
group of subexponential growth is statistically hyperbolic with respect to finite split
generating sets.

This article is structured as follows. Section 2 prepares preliminary material to be used
in the proof of Theorem 1.3, which occupies the whole of Section 3. In Section 4, we
give a proof of Theorem 1.4.
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2 Preliminaries

Consider the Cayley graph G .G; S/ of G with respect to S . Define

B.1; n/D fg 2G j d.1; g/� ng:

Let Sn be the set of elements g 2G such that d.1; g/D n. It will be useful to consider
the spherical set in a subgroup H in G . Define

Sn.H/DH \Sn:

A parametrized path p from p� to pC is endowed with a natural order. For any two
(parametrized) points v;w 2 p , we denote by Œv; w�p the segment between v and w
in p . As usual, Œv; w� denotes a (choice of) geodesic between v and w . Our path p
is often endowed with a length parametrization pW Œ0; `.p/�! G .G; S/.

Let p and q be two geodesics with the common initial endpoint p� D q� . A point
w 2 q is called congruent relative to v 2 p if d.v; p�/D d.w; p�/.

Given a subset X in G .G; S/, the projection ProjX .v/ of a point v to X is the set of
nearest points in X to v . For a subset A� G .G; S/, we define

ProjX .A/D
[
a2A

ProjX .a/:

2A Relative hyperbolicity and contracting property

Given a finite collection of subgroups P in G , one can talk about the relative hyper-
bolicity of G with respect to P . From various points of view, the notion of relative
hyperbolicity has been considered by many authors: Gromov [12], Bowditch [2], Osin
[16], Drutu and Sapir [6], and Gerasimov [9], just to name a few. These theories of
relatively hyperbolic groups emphasize different aspects and are widely accepted to be
equivalent for finitely generated groups. We refer the interested reader to Hruska [13]
and Gerasimov and Potyagailo [10] for further discussions on their equivalence.
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In order to avoid heavy exposition, we collect here only necessary facts in the theory
of relatively hyperbolic groups. Let P D fgP j g 2 G;P 2 Pg. Then P plays an
important role in the geometry of G .G; S/, which has the following nice property.

Definition 2.1 Let �;D > 0. A subset X is called .�;D/–contracting in G .G; S/ if

Diam.ProjX .
// < D

for any geodesic 
 in G .G; S/ with N�.X/\ 
 D∅.

A collection of .�;D/–contracting subsets is referred to as a .�;D/–contracting system.
The constants �;D will be often omitted if no confusion happens.

We now recall some useful properties of contracting sets and refer the reader to [18]
for detailed discussions.

Lemma 2.2 [6; 11; 18] Let .G;P/ be a relatively hyperbolic group. Then P is a
contracting system with the following two equivalent properties.

(1) Bounded intersection property For any � > 0 there exists RDR.�/> 0 with

Diam.N�.X/\N�.X 0// < R

for any two distinct X;X 0 2 P .

(2) Bounded projection property There exists a finite number D > 0 such that

Diam.ProjX .X
0// < D

for any two distinct X;X 0 2 P .

Proof The contracting property was established in [11, Proposition 8.5]. Property
(1) was proved in [6, Theorem 4.1] and in [11, Proposition 5.6], and property (2) was
proved in [10, Proposition 3.27]. The equivalence was shown in [18, Lemma 2.3].

Hereafter, we will often invoke the function R without explicit mention of Lemma 2.2.

The following notion was introduced by Hruska [13], and further elaborated on by
Gerasimov and Potyagailo [11].

Definition 2.3 Fix �; R > 0. Let 
 be a path in G .G; S/ and v 2 
 a vertex. Given
X 2 P , we say that v is .�; R/–deep in X if it holds that 
 \B.v;R/�N�.X/. If v
is not .�; R/–deep in any X 2 P , then v is called an .�; R/–transition point of 
 .

Algebraic & Geometric Topology, Volume 16 (2016)
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In what follows, we assume that there exists a uniform constant �0 > 0 such that
Lemmas 2.4, 2.5 and 2.6 hold. The first lemma is a consequence of the contracting
property of P (without the assumption of relative hyperbolicity). See [17, Lemma 2.9]
for a proof.

Lemma 2.4 Let p be a geodesic and a point v 2 p be .�; R/–deep in some X 2 P
for � � �0 and RDR.�/. Denote by x and y the entry and exit points of p in N�.X/,
respectively. Then x and y are .�0; R/–transition points.

The following lemma could be derived using techniques in [13, Section 8] or it follows
from the proof of [10, Proposition 7.1.1] in terms of Floyd distance.

Lemma 2.5 Let �� �0 and RDR.�0/. There exists DDD.�;R/ with the following
property. Consider a geodesic triangle consisting of three geodesics p; q; r in G .G; S/.
Let v be an .�; R/–transition point in r . Then there exists an .�; R/–transition point
w 2 p[ q such that d.v;w/ < D .

As a special case, we obtain the following result.

Lemma 2.6 Let �� �0 and RDR.�0/. For any r >0, there exists DDD.r/ with the
following property. Let p and q be two geodesics with p� D q� and d.pC; qC/� r .
Consider an .�; R/–transition point v 2 p . Then d.v; q/�D .

Remark For convenience, it will be useful to take the congruent point w 2 q relative
to v 2 p such that d.v;w/�D in the conclusion. In particular, d.p�; v/D d.p�; w/.

2B Exponential growth of balls

We now consider a type of Poincaré series associated to a subset A�G as follows:

P.s; A/D
X
a2A

exp.�s � d.1; a//; s � 0:

The critical exponent �A of P.s; A/ is the limit superior

�A D lim sup
n!1

log jB.1; n/\Aj
n

;

which can be thought of as the exponential growth rate of A. Note that �G is the usual
exponential rate �G;S of G with respect to S . It is readily checked that P.s; A/ is
convergent for s > �A and divergent for s < �A .
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Recall that a relatively hyperbolic group G acts as a convergence group on its Bowditch
boundary @G ; see [2]. Thus every subgroup H has a well-defined limit set ƒ.H/�@G ,
which consists of the set of accumulation points of all H –orbits in @G . Yang proves
the following result.

Lemma 2.7 [17, Lemma 4.9] Let H be a subgroup in G such that ƒ.H/ is properly
contained in @G . Then P.s;H/ is convergent at s D �G .

Recall that every parabolic subgroup P 2 P fixes a unique point in @G , which co-
incides with the limit set ƒ.P /. Lemma 2.7 then applies and the following result
follows immediately.

Corollary 2.8 For every P 2 P and s � �G , we haveX
p2P

exp.�s � d.1; p// <1;

or, equivalently, X
n�1

exp.�sn/ � jSn.P /j<1:

The estimate below is also important in the proof of Theorem 1.3. The lower bound holds
for any group as a consequence of the submultiplicative inequality jSnCmj � jSnjjSmj.

Lemma 2.9 [17, Theorem 1.8] Let G be a relatively hyperbolic group with a finite
generating set S . Then there exists c > 1 such that

(1) exp.n�G/� jSnj � c � exp.n�G/

for any n� 1.

3 Proof of Theorem 1.3

The proof is organized into two parts, the first of which is to decompose Sn into the
union of a sequence of CRCi sets; the second is to execute the calculation

P
d.x; y/

following the decomposition. We begin with the definition of uniform constants.

Constants 3.1 Recall that R is the function given by Lemma 2.2.

(1) Let � > 0 satisfy Lemmas 2.4, 2.5 and 2.6. Assume also that �;D0 > 0 are the
contracting constants for P .

(2) Let R0 DR.�/.
(3) Let D1 D D.0/ given by Lemma 2.6. We also demand that D1 satisfies

Lemma 2.5.
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3A Defining CRCi sets

Fix any number 0 < � < 1
2

. We consider the sphere S�n for n � 1. For simplicity,
assume that �n is an integer. We will divide Sn into disjoint well-controlled subsets.

Choose R > maxf2R0;R.2D1/g. Let CR be the set of elements g 2 Sn such that
there exists a geodesic 
g D Œ1; g� containing an .�; R0/–transition point in the (closed)
R–neighborhood of 
g.�n/.

We consider any g 2 Sn nCR . By definition of CR , any geodesic 
 between 1 and g
will not contain an .�; R0/–transition point in the R–neighborhood of 
.�n/. That is
to say, the segment 
.Œ�n�R; �nCR�/ is contained in N�.X
 / for some X
 2 P .
We first claim the following.

Claim X
 is independent of the choice of 
 .

Proof If not, we have that 
; 
 0; X
 and X
 0 satisfy the requirement as above. Note
that 
 and 
 0 have the same endpoints. Let x� and xC be the entry and exit points of 

in N�.X
 /, respectively. The points y�; yC 2 
 0 are similarly defined for X
 0 . Thus,
by Lemma 2.4, x�; xC; y� and yC are .�; R0/–transitional points. By Lemma 2.6, it
follows that

d.x�; 

0/; d.xC; 


0/; d.y�; 
/; d.yC; 
/�D1:

Clearly, by the remark after Lemma 2.6, we see that N2D1
.X
 / \N2D1

.X
 0/ has
diameter at least 2R�R.2D1/. This implies that X
DX
 0 by the bounded intersection
property of P .

Thus, in what follows, we omit the index 
 in X
 .

Let z be the entry point of 
 in N�.X/. By Lemma 2.4, z is an .�; R0/–transition
point in 
 . We observe that such a z lies in a uniformly bounded ball.

Lemma 3.2 For any g 2 Sn nCR , there exists a point x 2X such that any geodesic

 D Œ1; g� satisfies d.x; z/ � D0C � . In particular, the set of z 2 
 for all possible

 D Œ1; g� is uniformly bounded.

Proof Let x 2X be a projection point of 1 to X . By the contracting property of X ,
we see that d.z; x/�D0C � .

We subdivide Sn nCR and define a sequence of subsets as follows. For i � 1, define
CRCi to be the set of elements g in Sn nCR where the point z 2 
 defined as above
is nearest to 1 among all 
 D Œ1; g� and has an exact distance .RC i/ to 
.�n/. We
require that RC i � �n for obvious reasons.

We note the following fact.
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Lemma 3.3 CRCi \CRCj D∅ for i ¤ j .

By the above discussion, we have the following disjoint union for Sn :�[
i�1

CRCi

�
[CR D Sn:

Recall that P D fPk j 1� k �mg is a finite set. The following estimate is crucial in
the remaining argument, saying that CR occupies the major part of Sn for sufficiently
large R� 0.

Lemma 3.4 For any " > 0, there exists R1 > 0 with the following property. Let
R �R1 and n� 1 such that �n > R . ThenX

1�i��n�R

jCRCi j=jSnj � ":

Proof By definition of CRCi , for any g 2 CRCi , there exists a geodesic 
g D Œ1; g�
such that 
g.Œ�n�R� i; �n�/�N�.X/ for some X 2 P . It then follows that

jCRCi j �
X

1�k�m

jS�n�R�i j � jB.1; �/j � jSRCiC2�.Pk/j � jB.1; �/j � jSn��nj;

where RC i � �n. Note that jSRCiC2�.Pk/j � jSRCi .Pk/j � jS2�j for 1� k �m. By
Corollary 2.8, the series

(2)
X
i�1

jSRCi .P /j � exp.��G.RC i// <1

is convergent for each P 2 P . The conclusion then follows as a combination of the
estimate (1) of Lemma 2.9 and the convergent series (2).

3B Calculating the sum
P

d.x; y/

We first calculate the sum
P
d.x; y/, where y lies in CR .

Lemma 3.5 Let F D B.1; 2D1/ and Dn;R D 2.n� �n�R�D1/ > 0. Then

(3)
X

x2Sn;y2CR

d.x; y/� jCRj � .jSnj � jF j � jSn��nCRj/ �Dn;R:

Proof For any y 2 CR , there exists a geodesic 
y D Œ1; y� such that 
y contains an
.�; R0/–transition point z in the R–neighborhood of 
y.�n/. We can assume further
that z is nearest to 
y.�n�R/ among all such 
y D Œ1; y�. Then d.
y.�n/; z/�R .
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We consider two sets, A and B , of elements in Sn , separately. Let A be the set of
elements x 2 Sn such that d.z; Œ1; x�/�D1 for some Œ1; x�. Thus it follows that

(4) jAj � jF j � jSn��nCRj:

Let BDSnnA. For any x in B , we have d.z; Œ1; x�/>D1 , and then d.z; Œx; y�/�D1
by Lemma 2.5. Observe that d.x; z/ � d.y; z/. Indeed, if d.x; z/ < d.y; z/, then
d.1; x/ � d.x; z/C d.z; 1/ < d.y; z/C d.z; 1/ D d.1; y/. This is a contradiction,
since x; y 2 Sn .

Let w 2 Œx; y� such that d.z; w/ � D1 . Note that d.z; y/ � n � �n � R . Thus,
minfd.y;w/; d.x;w/g � n� �n�R�D1 . Therefore, the inequality (3) holds.

We now estimate the sum
P
d.x; y/ where y 2 CRCi for i � 1. The same proof as

Lemma 3.5 for the case i D 0 proves the following.

Lemma 3.6 For each i � 1 with RC i � �n, we have

(5)
X

x2Sn; y2CRCi

d.x; y/� jCRCi j � .jSnj � jF j � jSn��nCRCi j/ �Dn;R:

We are ready to finish the proof of Theorem 1.3. Combining all of the above inequalities
in Lemmas 3.5, 3.6 and 3.4, we obtain

(6)
X

x;y2Sn

d.x; y/D
X
i�0

X
x2Sn;y2CRCi

d.x; y/

�

X
i�0

jCRCi j � .jSnj � jF j � jSn��nCRCi j/ �Dn;R

�

�
jSnj

2
�

X
i�0

jF j � jCRCi j � jSn��nCRCi j

�
�Dn;R:

Therefore,

1

jSnj2

X
x;y2Sn

d.x; y/

n
� 2.1� �.n;R//

�
1� ��

RCD1

n

�
;

where

�.n;R/D

�X
i�0

jF j � jCRCi j � jSn��nCRCi j

�.
jSnj

2:

Lemma 3.7 For any " > 0, there exists R1 > 0 with the following property. Let
R �R1 and n� 1 such that �n�RCR1 . Then �.n;R/� ".
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Proof We first consider the sum with i D 0. Note that CR � Sn . By Lemma 2.9,
there exists a uniform constant � > 0 such that

jF j � jCRj � jSn��nCRj

jSnj2
�

�

exp.�G.�n�R//
:

Choose R1 > 0 such that �= exp.�GR1/� �=2.

Now consider the sum with i > 0. By Lemma 3.4, we may also choose R1 such thatX
1�i��n�R

jF j � jCRCi j=jSnj � "=2

for R >R1 . This concludes the proof of the lemma.

Thus, for any "> 0, we choose R>0 and let n!1 to get E.G; S/� 2.1�"/.1��/.
As " and � are arbitrary, we see E.G; S/D 2. The proof of Theorem 1.3 is complete.

4 Statistical hyperbolicity of direct products

This section is devoted to the proof of Theorem 1.4. The outline is almost the same
as the proof of the annulus lemma [7, Lemma 5], which is only sketched there. We
provide here the details since we considered one relatively hyperbolic factor in G�H ,
and our estimates in the proof of Theorem 1.3 are much more involved.

We consider the direct product G�H with a split generating set S . Let d be the word
metric on G �H with respect to S .

Denote SG D S \ G and SH D S \H . Then SG and SH generate G and H ,
respectively. Recall that Sn.X/ denotes the part of the sphere Sn in X �G�H . Note
that, since S is split, d.1; .g; h//D dSG

.1; g/C dSH
.1; h/ for any .g; h/ 2 G �H .

Thus the sphere Sn D Sn.G �H/ in G �H can be decomposed as follows:

Sn D
[

0�i�n

Si .G/�Sn�i .H/:

Note that Si .G/ coincides with the sphere of radius i in the Cayley graph G .G; SG/

of G with respect to SG .

Lemma 4.1 For any fixed 0 < t < 1,

(7)
j
S
0�i�tn Si .G/�Sn�i .H/j

jSnj
! 0 as n!1:
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Proof We use � and � to denote the inequality and equality, respectively, up to a
computable multiplicative constant. Note that there exists � with �G;SG

> � > �H;SH

and jSi .H/j � exp.�i/ for all i > 0. For simplicity, let �G D �G;SG
.

Since G is relatively hyperbolic, it follows by Lemma 2.9 that jSi .G/j � exp.i�G/
for i � 0. Observe that

j
S
0�i�tn Si .G/�Sn�i .H/j

j
S
tn�i�n Si .G/�Sn�i .H/j

�

P
0�i�tn exp.i�G/ exp..n� i/�/P

tn�i�n exp.i�G/

�
exp.tn.�G � �//

exp.n.�G � �//.1� exp..tn�n/�G//

�
exp..tn�n/.�G � �//
1� exp..tn�n/�G/

;

which tends to 0 as n!1 for any fixed 0 < t < 1.

We now proceed as in Section 3 and indicate the necessary changes. Fix any number
0 < � < 1

2
. Assume that 1 > t > � .

We consider the annular-like set Atn;n WD
S
tn�i�n Si .G/�Sn�i .H/. By Lemma 4.1,

we know that

(8) jAtn;nj=jSnj ! 1 as n!1:

Choose R >maxf2R0;R.2D1/g, where R0 and D1 are given by Constants 3.1. We
define CRCi sets in Atn;n for i � 0 as in Section 3, where Sn is replaced by Atn;n .

Let CR be the set of elements .g; h/2Atn;n such that there exists a geodesic 
gD Œ1; g�
in the Cayley graph G .G; SG/ of G such that 
g contains an .�; R0/–transition point
in the (closed) R–neighborhood of 
g.�n/.

We continue to subdivide Atn;n nCR . For i � 1, define CRCi to be the set of elements
.g; h/ in Atn;nnCR where the point z 2 
 defined in Section 3A is nearest to 1 among
all 
 D Œ1; g� in G .G; SG/ and has an exact distance .RC i/ to 
.�n/. Therefore,
Atn;n D

S
i�0 CRCi as a disjoint union.

We now prove an analogue of Lemma 3.4.

Lemma 4.2 For any " > 0, there exists R1 > 0 with the following property. Let
R �R1 and n� 1 such that �n > R . ThenX

1�i��n�R

jCRCi j=jAtn;nj � ":
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Proof By definition of CRCi , for any .g; h/ 2 CRCi , there is a geodesic 
g D Œ1; g�
such that 
g.Œ�n�R� i; �n�/�N�.X/ for some X 2 P . It then follows that

jCRCi j �
X

tn�j�n
1�k�m

jS�n�R�i .G/j � jSRCi .Pk/j � jB.1; 4�/j � jSj��n.G/j � jSn�j .H/j;

where RC i � �n and B.1; �/ should be understood as the ball in the Cayley graph
G .G; SG/.

By Lemma 2.9 there exists c > 1 such that exp.l�G/� jSl.G/j � c � exp.l�G/ for any
l � 1. Thus we obtain that

jCRCi j � c
2
jB.1; 2�/j �

X
tn�j�n
1�k�m

exp.�G.j �R� i// � jSRCi .Pk/j � jSn�j .H/j:

On the other hand,

jAtn;nj D
X

tn�j�n

jSj .G/j � jSn�j .H/j �
X

tn�j�n

exp.j�G/ � jSn�j .H/j:

In a similar manner as in the proof of Lemma 3.4, the conclusion follows as a conse-
quence of the convergent series given by Corollary 2.8.

Let F D B.1; 2D1/ in G .G; SG/, and let Dn;R D 2.tn� �n�R �D1/ > 0. We
proceed as in Lemma 3.5 to get the following:

Lemma 4.3 For each i � 0 with RC i � �n,

(9)
X

x2Atn;n; y2CRCi

d.x; y/

�Dn;R � jCRCi j �

�
jAtn;nj �

X
tn�j�n

jF j � jSj��nCRCi .G/j � jSn�j .H/j

�
:

Proof We sketch the arguments in the proof of Lemma 3.5 with necessary changes.

For any y D .gy ; hy/ 2 CRCi , there exists a geodesic 
y D Œ1; gy � in G .G; SG/ such
that 
y contains an .�; R0/–transition point z in the .RC i/–neighborhood of 
y.�n/.
Then d.
y.�n/; z/�RC i .

Let A be the set of elements x D .gx; hx/ 2 Atn;n such that dSG
.z; Œ1; gx�/ � D1 .

Thus the cardinality of A is at most

(10) jF j �
X

tn�j�n

jSj��nCRCi .G/j � jSn�j .H/j:
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Let B D Atn;n nA. For any x D .gx; hx/ in B , we have dSG
.z; Œ1; gx�/ > D1 , and

then dSG
.z; Œgx; gy �/�D1 by Lemma 2.5.

Let w 2 Œgx; gy � such that d.z; w/�D1 . Then an argument as in Lemma 3.5 proves
that minfdSG

.gy ; w/; dSG
.gx; w/g � tn � �n � R �D1 . The inequality (9) then

holds.

So we have the sum estimateX
x;y2Atn;n

d.x; y/

D

X
i�0

X
x2Atn;n

y2CRCi

d.x; y/

�

�
jAtn;nj

2
�

X
i�0

X
tn�j�n

jF j � jCRCi j � jSj��nCRCi .G/j � jSn�j .H/j

�
�Dn;R:

Thus,
1

jSnj2

X
x;y2Sn

d.x; y/

n
�

1

jSnj2

X
x;y2Atn;n

d.x; y/

n

� 2
jAtn;nj

2

jSnj2
.1� �.n;R//

�
t � ��

RCD1

n

�
;

where

�.n;R/D

�X
i�0

X
tn�j�n

jF j � jCRCi j � jSj��nCRCi .G/j � jSn�j .H/j

�.
jAtn;nj

2:

We can prove a similar statement for �.n;R/ by the same reasoning as in Lemma 3.7.

Lemma 4.4 For any " > 0, there exists R1 > 0 with the following property. Let
R �R1 and n� 1 such that �n�RCR1 . Then �.n;R/� ".

Sketch of proof Recall that Atn;n D
S
tn�j�n Sj .G/ � Sn�j .H/. We note that

CR � Sn , and by (8), jSnj=jAtn;nj ! 1 as n!1. For the sum with i D 0, the
following estimate suffices by Lemma 2.9:P

tn�j�n jSj��nCR.G/j � jSn�j .H/j

jAtn;nj
�

1

exp.�G.�n�R//

X
tn�j�n

1

exp.�G.n�j //
;

which tends to 0 as .�n�R/!1.
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For the sum with i � 1, since
P
tn�j�n jSj��nCRCi .G/j � jSn�j .H/j � jAtn;nj; by

Lemma 4.2, we have X
1�i��n�R

jCRCi j=jAtn;nj ! 0 as R!1:

The proof of the lemma follows easily from the above estimates.

Finally, for any ">0, we choose R>0 and let n!1 to get E.G; S/�2.1�"/.t��/.
As "; t; � are arbitrary, we then obtain that E.G; S/D 2. This completes the proof of
Theorem 1.4.
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