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Stability results for Houghton groups

PETER PATZT

XIAOLEI WU

We prove homological stability for a twisted version of the Houghton groups and
their multidimensional analogues. Based on this, we can describe the homology of
the Houghton groups and that of their multidimensional analogues over constant
noetherian coefficients as an essentially finitely generated FI–module.

18D10, 20J06, 55U05

Introduction

The Houghton groups were first introduced in [8] by Houghton. In [3], K Brown proved
that Houghton’s group Hn is of type FPn�1 but not FPn . The group Hn can be
defined as follows (see [3, Section 5]).

Let N be the set of positive integers, and Œn� D f1; 2; : : : ; ng. Let Hn be the group
of all permutations (self bijections) g of N � Œn� such that on each copy of N , g is
eventually a translation. More precisely, we require the following condition:

� There is an n–tuple .d1; d2; : : : ; dn/ 2 Zn such that for each i 2 Œn� one has
g.x; i/D .xC di ; i/ for sufficiently large x 2N .

We also define a twisted version zHn of Hn as follows. An element g 2 zHn is a
permutation of N � Œn� such that the following condition is true:

� There is an n–tuple .d1; d2; : : : ; dn/2Zn and � 2Sn such that for each i 2 Œn�,
one has g.x; i/D .xC di ; �.i// for sufficiently large x 2N .

We can embed the symmetric group Sn into the set of permutations of N � Œn� by
only acting on Œn�. That is to say, an element of � 2 Sn acts on .x; i/ 2 N � Œn�
by �.x; i/D .x; �.i//. Then zHn is generated by Hn and Sn . In fact, Hn is a normal
subgroup of zHn and zHn ŠHn ÌSn . Since Hn is a finite index subgroup of zHn , the
twisted Houghton group zHn has the same finiteness properties as Hn (see Chapter VIII,
Proposition 5.1 of Brown [2]).

The inclusion map N � Œn��N � ŒnC 1� induces a map from zHn to zHnC1 . We will
prove that these groups satisfy homological stability. Indeed we want to prove this for
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a multidimensional version of the Houghton groups. These groups were defined by
Bieri and Sach recently in [1], where they proved the multidimensional version has
similar finiteness properties to the original Houghton groups.

Let us first define zHk;n , the k –dimensional version of the twisted Houghton group.
This shall be a subgroup of permutations on Nk � Œn�. We will call a subset X �Nk

an r –dimensional ray if there is a point x 2Nk and an r –subset T � Œk� such that

X D fy 2Nk
j yj � xj for all j 2 T;yj D xj for all j 62 T g:

Let zHk;n be the group of all permutations that are translations on all rays of a finite
partition of Nk � Œn� into rays. By a translation we mean a map f W X ! Nk � Œn�

given by f .x; i/D .xCd; i Cd0/ for d 2Zk and d0 2Z. Note that 0–dimensional
rays are just points. In Bieri and Sach’s notion, this is the group Pet.Nk � Œn�/

where Nk � Œn� � ZkC1 , and the structure group ZkC1 acts on the lattice ZkC1

as translations.

Every finite partition of Nk � Œn� must contain exactly one k –dimensional ray for
every copy of Nk . Therefore there is a surjection zHk;n! Sn . Define Hk;n as the
kernel of that map. Note that this short exact sequence splits. Again from the inclusion
of Nk�Œn��Nk�ŒnC1� we get inclusion maps zHk;n!

zHk;nC1 and Hk;n!Hk;nC1 .
Note that zH1;n D zHn and H1;n DHn .

We now formulate our homological stability result for the twisted Houghton groups.

Theorem A The induced map

Hi.zHk;nIZ/!Hi.zHk;nC1IZ/

is surjective if i � 1
2
.n� 1/ and injective if i � 1

2
.n� 2/.

Remark Here we restrict our main result to the constant coefficient Z case. Never-
theless, the theorem also holds for some general coefficients by applying Theorem A
from Wahl and Randal-Williams [10].

Remark In Burillo, Cleary, Martino and Röver [4, Theorem 2.2], it was shown
that Aut.Hn/ is isomorphic to zHn . Hence Theorem A can also be understood as
homological stability of the automorphism groups Aut.Hn/.

We have a natural action of the symmetric groups on the homology groups of the
Houghton groups. Therefore we should not expect homological stability. However,
using a result of Putman and Sam [9] we can prove a representation stability result.
There have been different notions of representation stability. One that seems to imply
most of them in different contexts is the structure of a finitely generated FI–module.
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Theorem B Let R a commutative noetherian ring. Then for every i; k 2N there is
an FI–module V , given by Vn DHi.Hk;nIR/, which is essentially finitely generated,
ie there is a finitely generated FI–module W and a map W ! V such that Wn! Vn

is surjective for all large enough n 2N .

Remark Setting RDQ this immediately gives uniform representation stability by
a theorem of Church, Ellenberg and Farb [5, Theorem 1.13]. For dimension k D 1

one can see this directly, using the short exact sequence 1!S1!Hn!Zn�1! 1

and Hi.S1IQ/D 0.

The paper is organized as follows. In Section 1 we prove Theorem A and in Section 2 we
prove Theorem B. In more detail in the first section we recall definitions and results from
the categorical framework for homological stability in [10]. We prove Theorem A by
constructing a homogeneous category for the twisted Houghton group zHn and proving
its associated simplicial complex is highly connected by applying a generalization of a
proposition of Hatcher and Wahl [7, Proposition 3.5]. In the second section we quickly
give the necessary background for a result of Putman and Sam [9, Theorem 5.13]. We
then modify this result slightly to conclude Theorem B.

Acknowledgements The first author was supported by the Berlin Mathematical School.
The second author was supported by the POINT Fellowship from the Dahlem Research
School. The authors also want to thank Elmar Vogt and Nathalie Wahl for helpful
discussions. The proof of Corollary 1.15 was considerably shortened after Nathalie
Wahl pointed out the similarities to complete join complexes.

1 Homological stability

We begin with a summary of the axiomatized approach to homological stability given
by Randal-Williams and Wahl. The definitions and results concerning homogeneous
categories are taken from [10]. The reader is encouraged to consult the cited paper for
more details.

Definition 1.1 [10, Definition 1.2] Let a monoidal category .C;˚; 0/ be called
homogeneous if 0 is initial in C and if the following two properties hold :
� H1 Hom.A;B/ is a transitive Aut.B/–set under composition.
� H2 The map Aut.A/! Aut.A˚B/ taking f to f ˚ idB is injective with

image

Fix.B/ WD f� 2 Aut.A˚B/ j � ı .{A˚ idB/D {A˚ idBg

where {AW 0!A is the unique map.

Algebraic & Geometric Topology, Volume 16 (2016)



2368 Peter Patzt and Xiaolei Wu

For a homological stability result on a sequence of automorphism groups of a homoge-
neous category, the connectivity of a certain simplicial complex that we define next is
needed.

Definition 1.2 [10, Definitions 2.2 and 2.8] Let A;X be objects of a homoge-
neous category .C;˚; 0/. For n � 1, let Sn.A;X / denote the simplicial complex
whose vertices are the maps f W X !A˚X˚n and whose p–simplices are .pC1/–
sets ff0; : : : ; fpg such that there exists a morphism f W X˚pC1 ! A˚X˚n with
f ı ij D fj for some order on the set, where

ij D {X ˚j ˚ idX ˚{X ˚p�j W X D 0˚X ˚ 0!X˚pC1:

Also define the following property for a fixed pair .A;X / and a slope k � 2.

� LH3 For all n� 1, the simplicial complex Sn.A;X / is n�2
k

–connected.

Definition 1.3 [10, Definition 2.5] Let A and X be objects of a homogeneous
category .C;˚; 0/. C is called locally standard at .A;X / if it satisfies the following
two conditions:

� LS1 The two morphisms {A ˚ idX ˚{X and {A˚X ˚ idX are distinct in
Hom.X;A˚X˚2/.

� LS2 For all n � 1, the map Hom.X;A˚ X˚n�1/ ! Hom.X;A˚ X˚n/

taking f to f ˚ {X is injective.

Remark 1.4 In [10, Definition 2.2] a different semisimplicial complex is used to define
LH3, but our LH3 implies theirs if C is symmetric and locally standard at .A;X /.
This is shown in [10, Proposition 2.9, Theorem 2.10].

We are now ready to quote the theorem we will use.

Theorem 1.5 [10, Theorem 3.1] Let .C;˚; 0/ be a symmetric homogeneous category
satisfying LH3, LS1, and LS2 for a pair .A;X / with slope k � 2. Then the map

Hi.Aut.A˚X˚n/IZ/!Hi.Aut.A˚X˚nC1/IZ/

induced by the natural inclusion map is surjective if i � n=k , and injective if i �

.n� 1/=k .

Finally we want to quote a construction theorem that will allow us to build a category
in which Aut.X˚n/ are the twisted Houghton groups.
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Theorem 1.6 [10, Propositions 1.6 and 1.10, Theorem 1.8] Given a symmetric
monoidal groupoid .G;˚; 0/ with Aut.0/D fidg and the map Aut.A/! Aut.A˚B/

sending f to f ˚ idB is injective for all objects A;B in G . Assume furthermore
that the underlying monoid has no zero divisors and is cancellative. Then there is
a symmetric homogeneous category C , which is defined on the same elements as G
with homomorphism sets HomC.A;B˚A/D Aut.B˚A/=Aut.B/ and empty if the
codomain is not isomorphic to any such sum.

Let us fix a dimension k 2N . In this section, we want to prove homological stability
for the k –dimensional twisted Houghton groups. In order to apply Theorem 1.5, we
need to introduce a symmetric homogeneous category that can be constructed using
Theorem 1.6. Then it suffices to prove LH3, LS1, and LS2.

Let GH be the groupoid whose objects are the nonnegative integers such that its
morphisms are all automorphisms with Aut.0/D fidg and Aut.n/D zHk;n for n� 1.
This groupoid is symmetric monoidal with the usual addition on the integers, which
has no zero divisors and is cancellative. This can be seen with the map

Aut.m/�Aut.n/! Aut.mC n/;

where we want g 2 Aut.m/ to act as usual on Nk � f1; : : : ;mg and g0 2 Aut.n/ to
act on Nk � fmC 1; : : : ;mC ng. Since g and g0 commute, this defines a monoidal
structure on GH . The map�

.x; i/ 7!

�
.x; i C n/ for i �m

.x; i �m/ for i >m

�
2 Aut.mC n/

defines a symmetry.

Let CH be the homogeneous category constructed by Theorem 1.6. The next lemma
will help us understand the morphism sets HomCH.m; n/ better.

Lemma 1.7 Let m< n, then HomCH.m; n/ can be naturally identified with the set of
injections g from Nk � Œm� to Nk � Œn� which are translations on every ray of a finite
partition of Nk � Œm� into rays.

Proof From m < n, we have that HomCH.m; n/ D zHk;n=zHk;n�m by Theorem 1.6.
We define a map F from these injections to zHk;n=zHk;n�m . Given any injection
from Nk � Œm� to Nk � Œn� that is a translation on every ray of a finite ray partition of
Nk � Œm�, one easily extends it to a permutation of Nk � Œn� that is a translation on
every ray of a finite partition of Nk � Œn� into rays. Given two elements g1;g2 2 zHk;n

extending the same injection then they coincide on the first m copies of Nk . Let
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hD g�1
2

g1 which acts trivially on Nk � Œm�. Thus that h 2 zHk;n�m , and so the given
map F is well defined.

Given an element g 2 zHk;n , we can restrict it to Nk � Œm� to get an injection that is
a translation on rays. Thus F is surjective. Because every element in a coset has the
same restriction the map F is injective.

Let us choose X DAD 1. From the previous lemma CH is clearly locally standard
at .A;X /. We can apply Theorem 1.5 to get Theorem A, if the corresponding sim-
plicial complex Sn.1; 1/Š SnC1.0; 1/ (see Definition 1.2) is n�2

2
–connected. Let us

abbreviate Sn.0; 1/ by Sn . Let us prove a few properties about simplicial complexes
and come back to Sn again later.

Definition 1.8 A simplicial complex K is called weakly Cohen–Macaulay of dimen-
sion n if it is .n�1/–connected and the link of any p–simplex is .n�p�2/–connected.
In this case, we write wCM.K/� n.

Remark 1.9 Note that .�1/–connected is defined to mean nonempty. This implies
that K is at least of dimension n. Note also that a weakly Cohen–Macaulay complex
of dimension n is weakly Cohen–Macaulay of dimension m� n.

Definition 1.10 Let � W Y ! X be a surjective simplicial map between simplicial
complexes. Let S be a subset of the vertices of Y . We call a section �W X ! Y of �
an S –section if for all simplices � in the span of S and every simplex � in X we
have

� � LkX �� ” �� � LkY �;

where LkY � denotes the link of � in Y . We call � a fin-retraction if there exists an
S –section for every finite set of vertices of Y .

Remark 1.11 When Hatcher and Wahl call Y a complete join complex over X (see
[7, Definition 3.2]), there is an S –section where S is the set of all vertices of Y . In
particular, then Y ! X is a fin-retraction. The proof of our next proposition is a
generalization of [7, Proposition 3.5].

Proposition 1.12 If � W Y !X is a fin-retraction and wCM.X /�n, then Y is .n�1/–
connected. If � is simplexwise injective (ie, links map to links), then wCM.Y /� n.

Proof We first prove that Y is .n�1/–connected. We need to prove that every
map f W Sk ! Y with k � n � 1 homotopes to a constant map. We may assume
that f is simplicial. Let S be the set of images of the vertices in Sk and �W X ! Y
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an S –section. Then �X is an isomorphic image of X in Y . If we can homotope f
to land in �X , we have proved .n�1/–connectedness.

Call a simplex of Y bad if it lies in the complement of �X . Let � be a simplex of Sk

with maximal dimension q such that f .�/ is a bad simplex of Y , say of dimension
p � q . By maximality, f maps the link of � to �X . This implies that every simplex
in LkY f � is the image of a simplex � of X under � . But �� will be sent to ��� D �
in X , which is in LkX �f � because � is an S –section. In fact LkY f � is isomorphic
to LkX �f � because � is an S –section. This link is .n�p�2/–connected because
of our assumption on X and LkSk � Š Sk�q�1 . As k � q � 1 � n� p � 2, there
exists a map F W Dk�q ! LkY f � extending f jLk� . By the (relative) simplicial
approximation theorem, we can extend the simplicial structure of LkSk � to Dk�q

and assume that F is simplicial. Therefore there exists a simplicial map

H WD F �f j� W D
k�q
� � ! St.f �/

to the closed star of f � . The boundary of the ball Dk�q�� is @Dk�q��[Dk�q�@� .
Therefore H defines a homotopy from

f jSt.�/W St.�/D @Dk�q
� � ! St.f �/

to

F �f j@� W D
k�q
� @� ! St.f �/:

This defines a new map f 0 homotopic to f with fewer maximal simplices whose
images are bad. Note that the simplicial structure on Sk outside St.�/ has not changed,
however, the simplicial structure on St.�/ has changed from LkSk � � � to Dk�q � @� .
After finitely many iterations no bad simplices remain which shows that Y is .n�1/–
connected.

Assume � is simplexwise injective. Let � be a p–simplex in Y , then we need to
prove that LkY � is .n�p�2/–connected. Note that the link of a p–simplex in X is
.n�p�2/–connected. Now we consider the restriction of � to LkY � which maps to
LkX �� because � is simplexwise injective. Let �W X ! Y be an S –section where
S is the set of vertices of � . That means for all simplices � in X

� 2 LkX �� () �� 2 LkY �:

In conclusion � W LkY � ! LkX �� is surjective. Now we want to show that the
function � W LkY � ! LkX �� is a fin-retraction. Let S be a finite set of vertices
in LkY � , let � 0 be a simplex whose vertices are in S , and let � be a simplex in LkX �� .
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Then the following equivalences hold:

� � LkLkX �� ��
0
() � � LkX �.� 0 � �/

() �� � LkY �
0
� �

() �� � LkLkY � �
0:

This proves that wCM.Y /� n if wCM.X /� n.

Returning to Sn , let us define a map from � W Sn!�n�1 . By Lemma 1.7, we know
every vertex of Sn is an injection from Nk to Nk � Œn� that is a translation on rays.
Since there is exactly one k –dimensional ray in a finite partition of Nk into rays, we
can track to which copy of Nk this ray is sent. If we assume the vertex set of �n�1

is Œn�, this gives us a map on the vertices, which uniquely extends to a simplicial map.

We want to prove that �.n�2/W S
.n�2/
n ! .�n�1/.n�2/ restricted to the .n�2/–skeleton

is a fin-retraction. The following lemma will help us to analyze the complex Sn .

Lemma 1.13 Let f1; : : : ; fpC1W N
k ! Nk � Œn� be pC 1 � n� 1 vertices of Sn ,

then they form a p–simplex if and only if their images in Nk � Œn� are disjoint.

Proof By the universal property of the coproduct of sets (disjoint union) we can put
f1; : : : ; fpC1 together to be one map f W Nk� ŒpC1�!Nk� Œn�. Because the images
of the maps are disjoint and every individual map is injective, f is also injective. By
Lemma 1.7, f 2 HomCH.m; n/, which proves the lemma by Definition 1.2.

Proposition 1.14 The restriction of �.n�2/ to the .n�2/–skeleton maps surjectively
to the .n�2/–skeleton of �n�1 . Furthermore �.n�2/W S

.n�2/
n ! .�n�1/.n�2/ is a

fin-retraction.

Proof �.n�2/ is clearly surjective, because the identity map in HomCH.n; n/ defines
an .n�1/–simplex that maps surjectively to �n�1 . Thus the faces of this .n�1/–
simplex map surjectively onto the .n�2/–skeleton of �n�1 .

Let S be a finite set of vertices of Sn . We want to inductively construct vertices
f1; : : : ; fn 2 Sn such that �W .�n�1/.n�2/! S

.n�2/
n mapping i to fi gives a section

of � , ie, every n� 1 vertices form an .n�2/–simplex in Sn and �.fi/D i . We will
then also prove that � is an S –section.

Assume we have all fi with i < p already constructed. To construct fp , we con-
sider Nk as a k –dimensional ray and send it to Nk � fpg translating it far enough
out (choosing d 2 Zk large enough) that its image is disjoint from all images of
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the vertices in ffi j i < pg [ S � ��1.p/. It immediately follows that the images
f1.N

k/; : : : ; fn.Nk/ are pairwise disjoint. Thus � gives a section.

Let � be a simplex in the span of S and � a simplex in the .n�2/–skeleton of �n�1 .
The simplex � lies in the link of �� if and only if the set of vertices of �� and � are
disjoint and the union has at most cardinality n� 1. If this is the case, the vertices
of � and �� , which are some fi , form a simplex in S

.n�2/
n by the previous lemma.

Conversely, if the vertices of � and �� form a simplex in S .n�2/
n it can at most

have n � 1 vertices, and the k –dimensional ray of each vertex must be sent to a
different copy of Nk . That means that � sends the vertices to distinct vertices.

Corollary 1.15 The simplicial complex Sn is n�3
2

–connected.

Proof From Proposition 1.12 it follows that S
.n�2/
n is .n�3/–connected. For n� 2,

n� 3 �
�

n�3
2

˘
implies it is in particular n�3

2
–connected. S1 is nonempty, which is

needed for nD 1.

The corollary proves that SnC1 is n�2
2

–connected, and hence LH3 for Sn.1; 1/. Now
by Theorem 1.5, this finishes the proof of Theorem A.

2 Representation stability

In this last section, we want to analyze the homology of the Houghton groups Hk;n

and prove Theorem B that with constant noetherian coefficients their homology can
be described as “essentially” finitely generated FI–modules. We will shortly explain
how we consider the homology of the Houghton groups as FI–modules. Then describe
the central stability theory of Putman and Sam, which they introduced in [9]. Making
slight adjustments, we can use their Theorem 5.13 to prove that the homology groups
of the Houghton groups are essentially finitely generated FI–modules.

Let FI be the category of finite sets and injections. In fact this is the homogeneous
category we get from the construction in Theorem 1.6 starting with the symmetric
monoidal groupoid of finite sets and bijections. (See also [10, Section 5.1].) Let us
fix a commutative noetherian ring R, then we call a functor from FI to the category
of R–modules an FI–module. Note that FI is equivalent to the full subcategory only
defined on the objects Œn� for n�0.1 Likewise the category of FI–modules is equivalent
to the functor category from the mentioned subcategory to the category of R–modules.
By abuse of notation we will from now on refer to this subcategory when we write FI.

1Here Œ0� WD∅ .
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Let us define a functor G from FI to the category of groups by assigning n to
the Houghton groups G.n/ D Hk;n . Given an injection f W Œm� ,! Œn�, we define
f�W Hk;m!Hk;n sending g 2Hk;m to the element in Hk;n that maps .x; f .i// to
.y; f .j // if g.x; i/D .y; j / and leaves all other elements fixed. One easily checks
that this assignment is functorial. Postcomposing with the group homology functor
Hi.�IR/ will thus give an FI–module, where n is sent to Hi.Hk;nIR/.

In [9], Putman and Sam work with complemented categories, which can be shown
to be homogeneous categories. A complemented category is a symmetric monoidal
category .C;˚; 0/ with the following properties:

(1) Every morphism in C is a monomorphism.

(2) 0 is initial.

(3) The map

Hom.A˚B;C /! Hom.A;C /�Hom.B;C /;

f 7!
�
f ı .idA˚{B/; f ı .{A˚ idB/

�
is injective.

(4) Every subobject has a unique complement.

A subobject of an object X is an equivalence class of monomorphisms to X . Monomor-
phisms f W A ! X and f 0W A0 ! X are equivalent if there is an isomorphism
 W A ! A0 such that f D f 0 ı  . A complement of a subobject of an object X

is a subobject gW B ! X if there is an isomorphism �W A ˚ B ! X such that
f D � ı .idA˚{B/ and g D � ı .{A˚ idB/.

Putman and Sam say a monoidal category has a generator X if all objects are isomorphic
to X˚n for a unique n 2N . We can then speak of the X –rank of an object. Let B
and C be complemented categories with generators X and Y , respectively. Putman and
Sam call a strong monoidal functor ‰W B! C a highly surjective functor if ‰.X /D Y

and ‰�W AutB.B/!AutC.‰.B// is surjective for all objects B 2 B . In [9, Section 5]
it is proven that then there is a C–module Hi.‰IR/ with

Hi.‰IR/Y n DHi.ker.AutB.X n/! AutC.Y n//IR/:

The homogeneous categories FI and CH which we defined in Section 1 are comple-
mented categories. For FI this is stated in [9, Example 1.10]. For CH it is not much
harder to see. It is clear that (a) holds because all morphisms are injective maps.
CH being a homogeneous category implies (b). A morphism in HomCH.a˚ b; n/

is a map from Nk � Œa� tNk � Œb� to Nk � Œn�, and (c) follows from t being the
coproduct of sets. Finally for (d) we first observe that two maps f W Nk�Œm�!Nk�Œn�
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and f 0W Nk � Œm0�!Nk � Œn� represent the same subobject of n if and only if their
image in Nk � Œn� is the same. Clearly the image is an invariant of a subobject. On
the other hand if two such maps have the same image, m D m0 is the number of
k –dimensional rays that fit into the image. If f and f 0 are translations on every ray
of finite ray partitions of Nk � Œm� then this gives two finite ray partitions of the image.
The intersection yields a common refinement which is again a finite ray partition of
the image. Thereby we find two finite ray partitions of Nk � Œm� that by f and f 0 ,
respectively, map to this refinement by translations on the rays. Thus f �1 ıf 0 2 zHk;m

and both maps represent the same subobject. Then the complement of a subobject
f W Nk� Œm�!Nk� Œn� is uniquely given by Nk� Œn�� imf which can be partitioned
into finitely many rays.

Similar to the discussion in the introduction we can find a functor ‰W CH! FI sending
a morphism f W Nk � Œm�! Nk � Œn� to the injection given by the map where the
m–many k –dimensional rays are sent. This functor is in fact highly surjective, since
the generator 1 is mapped to the generator 1 and zHk;n!Sn is surjective.

Furthermore Putman and Sam’s Hi.‰IR/ for ‰W CH ! FI coincides with the FI–
module we have defined above.

Let us introduce a notation to truncate modules V over a complemented category C
with generator Y . By trunc�k V , we mean the functor that sends all objects with
Y –rank n< k to zero and all other objects A to VA as before. We call V essentially
finitely generated if there is some k 2N such that trunc�k V is finitely generated. In
[9, Section 3] Putman and Sam introduce a complex of C–modules

†�W � � � !†2V !†1V ! V;

where .†pV /Y n is given by IndAut.Y n/

Aut.Y n�p/
VY n�p and hence only depends on VY n�p .

Hence
.†p trunc�k V /C D .†pV /C

for all objects C with Y –rank n � pC k . In the light of this observation, we can
generalize their Lemma 3.6 and Theorem 3.7 to the following.

Lemma 2.1 Let C be a complemented category with generator Y and let V be a
C–module over a ring R. Assume that all VC with C having large enough Y –rank
are finitely generated R–modules. Then V is essentially finitely generated if and only
if d W .†1V /C ! VC is surjective for all C with large enough Y –rank.

Theorem 2.2 Let C be a complemented category with generator Y . Assume that the
category of C–modules is noetherian, and let V be an essentially finitely generated
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C–module. Fix some q � 1. For all C with large enough Y –rank, the chain complex

.†qV /C ! .†q�1V /C ! � � � ! .†1V /C ! VC ! 0

is exact.

We need one more piece of notation. Putman and Sam define a semisimplicial set IC

for a complemented category C with generator Y by

IC;p D HomC.Y
pC1;C /:

For C D Y n this is the same semisimplicial set Wn.0;Y / defined by Randal-Williams
and Wahl in [10, Definition 2.1].

Let us formulate a slight variation of Theorem 5.13 from [9] that we will use to
prove that for every i � 0 the FI–module given by Hi.Hk;nIR/ is essentially finitely
generated for every noetherian ring R.

Theorem 2.3 Let B and C be complemented categories with generators X and Y ,
respectively. Let ‰W B! C be a highly surjective functor. Fix a noetherian ring R and
assume the following conditions:

(1) The category of C–modules is noetherian.

(2) For all i � 0 the R–module Hi.‰IR/C is a finitely generated R–module for
all C with large enough Y –rank.

(3) Fix q � 0. Then IB is q–acyclic for all objects B 2 B with large enough
X –rank.

Then Hi.‰IR/ is an essentially finitely generated C–module for all i � 0.

In Putman and Sam’s proof of their Theorem 5.13 one can now replace their Lemma 3.6
and Theorem 3.7 by our Lemma 2.1 and Theorem 2.2, and the word finitely generated
by essentially finitely generated to get a proof of Theorem 2.3.

Theorem B is an application of Theorem 2.3 if we set B D CH , set C D FI, and
set ‰W CH! FI as above. Let us check the conditions. The first condition was proved
by Church, Ellenberg, Farb, and Nagpal in [6, Theorem A]. The second condition can
be directly derived from Hk;n being FPn�1 , ie, the trivial ZHk;n –module Z admits a
projective resolution which is finitely generated in dimensions � n� 1. This property
is proved in [3, 5.1] for the original Houghton groups and in [1, Theorem B] for k � 2.
The last condition is Corollary 1.15 together with Remark 1.4.
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