Recent Issues
Volume 20, 7 issues
Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529
Volume 19, 7 issues
Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532
Volume 18, 7 issues
Volume 18
Issue 7, 3749–4373
Issue 6, 3133–3747
Issue 5, 2509–3131
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
1
D Barnes ,
Classifying dihedral O (2) –equivariant
spectra , preprint (2008) arXiv:0804.3357
2
D Barnes , Rational
equivariant spectra , PhD thesis (2008) arXiv:0802.0954
3
D Barnes , Rational
O (2) –equivariant spectra , preprint (2012)
arXiv:1201.6610
4
T Bröcker , T tom
Dieck , Representations
of compact Lie groups , 98, Springer (1985) MR781344
5
T tom Dieck ,
The Burnside
ring of a compact Lie group, I , Math. Ann. 215 (1975)
235 MR0394711
6
J P C
Greenlees , Rational Mackey
functors for compact Lie groups, I , Proc. London Math.
Soc. 76 (1998) 549 MR1620500
7
J P C
Greenlees , Rational O (2) –equivariant
cohomology theories , from: "Stable and unstable homotopy"
(editors W G Dwyer, S Halperin, R Kane, S O Kochman,
M E Mahowald, P S Selick), Fields Inst. Commun. 19,
Amer. Math. Soc. (1998) 103 MR1622341
8
J P C
Greenlees , Rational S 1 –equivariant stable homotopy
theory , 661, Amer. Math. Soc. (1999) MR1483831
9
J P C
Greenlees , Rational
SO (3) –equivariant cohomology theories ,
from: "Homotopy methods in algebraic topology" (editors
J P C Greenlees, R R Bruner, N Kuhn), Contemp.
Math. 271, Amer. Math. Soc. (2001) 99 MR1831349
10
J P C
Greenlees , Triangulated categories
of rational equivariant cohomology theories ,
Oberwolfach Rep. 3 (2006) 480
11
J P C
Greenlees , Rational
torus-equivariant stable homotopy, I : Calculating groups of stable
maps , J. Pure Appl. Algebra 212 (2008) 72 MR2355035
12
J P C
Greenlees , Rational
torus-equivariant stable homotopy, II : Algebra of the standard
model , J. Pure Appl. Algebra 216 (2012) 2141 MR2925809
13
J P C
Greenlees , Algebraic models of induction and
coinduction , preprint (2014) arXiv:1501.06167
14
J P C
Greenlees , Rational
torus-equivariant stable homotopy, III : Comparison of models , J.
Pure Appl. Algebra 220 (2016) 3573 MR3506470
15
J P C
Greenlees , B Shipley , An algebraic model for
rational torus-equivariant spectra , preprint (2011)
arXiv:1101.2511
16
J P C
Greenlees , B Shipley , An algebraic model for
free rational G –spectra ,
Bull. Lond. Math. Soc. 46 (2014) 133 MR3161769
17
M Kedziorek ,
Algebraic
models for rational G –spectra , PhD thesis (2014)
18
L Solomon , Invariants of
finite reflection groups , Nagoya Math. J. 22 (1963) 57
MR0154929