Volume 16, issue 4 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Rational equivariant cohomology theories with toral support

J P C Greenlees

Algebraic & Geometric Topology 16 (2016) 1953–2019
Abstract

For an arbitrary compact Lie group G, we describe a model for rational G–spectra with toral geometric isotropy and show that there is a convergent Adams spectral sequence based on it. The contribution from geometric isotropy at a subgroup K of the maximal torus of G is captured by a module over H(BWGe(K)) with an action of π0(WG(K)), where WGe(K) is the identity component of WG(K) = NG(K)K.

Keywords
rational equivariant spectra, algebraic models, Adams spectral sequence, reduction to torus normalizer
Mathematical Subject Classification 2010
Primary: 55N91, 55P42, 55P91
Secondary: 55P92, 55T15
References
Publication
Received: 15 January 2015
Revised: 29 October 2015
Accepted: 6 November 2015
Published: 12 September 2016
Authors
J P C Greenlees
School of Mathematics and Statistics
University of Sheffield
Hicks Building
Sheffield S3 7RH
United Kingdom