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Quadratic-linear duality and rational homotopy theory
of chordal arrangements

CHRISTIN BIBBY

JUSTIN HILBURN

To any graph and smooth algebraic curve C , one may associate a “hypercurve”
arrangement, and one can study the rational homotopy theory of the complement X .
In the rational case (C DC ), there is considerable literature on the rational homotopy
theory of X , and the trigonometric case (C D C� ) is similar in flavor. The case
when C is a smooth projective curve of positive genus is more complicated due
to the lack of formality of the complement. When the graph is chordal, we use
quadratic-linear duality to compute the Malcev Lie algebra and the minimal model
of X , and we prove that X is rationally K.�; 1/ .

16S37, 52C35, 55P62

1 Introduction

This paper explores the topology of the rational, trigonometric, and projective (in
particular, elliptic) analogues of hyperplane arrangements. The rational case consists
of linear arrangements, which are finite sets of codimension-one linear subspaces of a
complex vector space. The trigonometric case consists of toric arrangements, which
are finite sets of codimension-one subtori in a complex torus. The elliptic case consists
of abelian arrangements, which are finite sets of codimension-one abelian subvarieties
of a product of elliptic curves. We focus our attention on unimodular and supersolvable
arrangements, which are classified by chordal graphs and are therefore called chordal
arrangements. Chordal arrangements can be defined without reference to abelian group
structure and hence make sense for curves of arbitrary genus. When we discuss the
projective case, we will only consider curves of positive genus, as our method does not
apply to P1 (whose cohomology ring is not Koszul).

In each case, we study a differential graded algebra (DGA) that is a model (in the sense
of rational homotopy theory) for the complement of the arrangement.

� For linear arrangements, the complement is formal, which means that the co-
homology algebra with trivial differential is itself a model. A combinatorial
presentation for this algebra is given by Orlik and Solomon [12].
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� For toric arrangements, the complement is also formal, and in the unimodular
case, a combinatorial presentation of the cohomology ring is given by De Concini
and Procesi [6].

� In the projective case, the complement is not necessarily formal, but combinato-
rially presented models (with nontrivial differential) are given by the first author
[2] in the elliptic case and by Dupont [7] in general.

When the matroid associated to the arrangement is supersolvable, the above model
is Koszul; this is due to Shelton and Yuzvinsky for linear arrangements [18], and we
prove it in the toric and projective cases (Theorems 3.3.3, 3.4.3, and 3.5.3). By studying
the quadratic dual of the model, one can obtain a combinatorial presentation for a Lie
algebra and use it to compute the Q–nilpotent completion of the fundamental group
and the minimal model. This is done by Papadima and Yuzvinsky in the linear case [14],
and the toric case is completely analogous. In the projective case, the lack of formality
makes this computation more subtle: we need to use nonhomogeneous quadratic duality,
where the dual to a Koszul differential graded algebra is a quadratic-linear algebra.
With this tool, we extend Papadima and Yuzvinsky’s results to the projective setting
(Theorem 5.2.1).

We also prove that complements of chordal arrangements are rational K.�; 1/ spaces.
In the rational and toric cases, this follows from formality and Koszulity [14]. In the
projective case (where we lack formality) it is not automatic, but we obtain it from our
concrete description of the minimal model (Corollary 5.2.3).

In the projective case, our results were inspired by [1], where Bezrukavnikov constructed
a model of the ordered configuration space of an arbitrary smooth, projective, complex
curve of positive genus; he showed that his model was Koszul, gave a presentation for
the dual Lie algebra, and described the minimal model. In fact, our results generalize
his since the ordered configuration space is the complement of the braid arrangement
(which is chordal).

In Section 2, we review known results on the cohomology of arrangements in each of
our cases, giving explicit presentations for the algebras we will consider. In Section 3,
we review the proof that the cohomology ring of the complement to a chordal linear
arrangement is Koszul, and then we prove the analogous results in the toric and
projective cases. In Section 4, we review definitions and results from rational homotopy
theory and quadratic-linear duality. The reader can skip ahead to Section 5 and refer
back to Section 4 as needed. In Section 5, we review some known results on the rational
homotopy theory of linear arrangements, which also apply to the toric case, and then
we prove the analogous results for the projective case.
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2 Cohomology

In this section, we collect known results about the cohomology of the complement of a
chordal arrangement in each of our cases. Since we will only be considering graphic
arrangements in Sections 3 and 5 (see Remark 3.1.1), we will state all of the results in
graphical language here, as well. Since our goal will be to study the rational homotopy
theory of these spaces, we will also restrict our attention to cohomology with rational
coefficients throughout this paper.

2.1 Definitions

An ordered graph is a graph � D .V; E/ with an ordering on the vertices V . We will
assume throughout that our graphs are simple (that is, they have no loops or multiple
edges). An ordered graph can be considered as a directed graph in the following way:
For each edge e 2 E , label its larger vertex by h.e/ (for “head” of an arrow) and its
smaller vertex by t.e/ (for “tail” of an arrow). An order on the vertices of � induces an
order on the edges by setting e< e0 if h.e/ < h.e0/ or if h.e/D h.e0/ and t.e/ < t.e0/.

Remark 2.1.1 None of the structures in this section will depend on the ordering of
the vertices, but it will simplify the notation. The order chosen will also be necessary
for the proofs in Section 3.

Let � D .V; E/ be an ordered graph. Let C be C , C� , or a complex projective curve,
and let C V be the complex vector space (respectively torus or projective variety) whose
coordinates are indexed by the vertices V . For each edge e 2 E , let

He D fxV 2 C V
j xh.e/ D xt .e/g:

The collection A.�;C /D fHe j e 2 Eg is a graphic arrangement in C V . In each case,
denote the complement of an arrangement A in V by XA WDV n

S
H2A H . In the case

that C is C , C� , or a complex elliptic curve, A.�;C / is a linear, toric, or abelian
arrangement, respectively.

Example 2.1.2 Let C DC , C� , or a complex projective curve. If � is the complete
graph on n vertices, then ADA.�;C / is the braid arrangement, and its complement XA
is the ordered configuration space of n points on C .
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2.2 Linear arrangements

For linear arrangements, a combinatorial presentation for the cohomology ring was first
given by Orlik and Solomon [12]. The fact that the complement of a linear arrangement
is formal (that is, its cohomology ring is a model for the space; see Section 4.1) is
originally due to Brieskorn [5]. Here, we state these results for graphic arrangements.

Theorem 2.2.1 [13, Theorems 3.126 and 5.89] Let � D .V; E/ be an ordered graph,
and let ADA.�;C/. Then XA is formal and H�.XA;Q/ is isomorphic to the exterior
algebra on the Q–vector space spanned by

fge j e 2 Eg

modulo the ideal generated byX
j
.�1/j ge1

� � � ygej
� � �gek

whenever fe1 < � � �< ekg is a cycle:

2.3 Toric arrangements

De Concini and Procesi studied the cohomology of the complement of a toric arrange-
ment. If A is a unimodular toric arrangement (that is, all multiple intersections of
subtori in A are connected), they show that the complement XA is formal and give a
presentation for the cohomology ring. Here, we state the result for graphic arrangements
(which are always unimodular).

Theorem 2.3.1 [6, Theorem 5.2] Let � D .V; E/ be an ordered graph, and let
A D A.�;C�/. Then XA is formal and H�.XA;Q/ is isomorphic to the exterior
algebra on the Q–vector space spanned by

fxv;ge j v 2 V; e 2 Eg

modulo the ideal generated by the following:

(i) (a) Whenever e0; e1; : : : ; em is a cycle such that t.e0/D t.e1/, h.e0/D h.em/,
and h.ei/D t.eiC1/ for i D 1; : : : ;m� 1 (as pictured below),

e1

e2

em

e0

we have

ge1
ge2
� � �gem

�

X
.�1/jI jCmCsI gei1

� � �geik
 ej1
� � � ejm�k�1

ge0
;
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where the sum is taken over all I D fi1 < � � � < ikg ¨ f1; : : : ;mg with
complement fj1 < � � �< jm�kg,  e`

D xh.e`/ �xt .e`/ , and sI is the parity
of the permutation .i1; : : : ; ik ; j1; : : : ; jm�k/.

(b) If we again have a cycle, but have some arrows reversed, relabel the arrows
so that e1 < � � �< es < e0 , then take the relation from (i-a) and replace each
 ei

with � ei
and each gei

with �gei
� ei

whenever ei points in the
opposite direction of e0 .

(ii) .xh.e/ �xt .e/ /ge for e 2 E .

The presentation encodes both the combinatorics of the arrangement and the geometry
of the ambient space. The generators xv come from the cohomology of C� , while
the generators ge are similar to that of the Orlik–Solomon algebra for its rational
counterpart. However, the toric analogue of the Orlik–Solomon relation is much more
complicated.

2.4 Abelian arrangements

The elliptic analogue has a very different flavor, since the complement to an arrangement
is not formal. If A is a unimodular abelian arrangement (that is, all multiple intersections
of subvarieties in A are connected), the first author gave a presentation for a model
for XA [2, Theorem 4.1]. The presentation for graphic abelian arrangements is also
a special case of one given by Dupont and Bloch [7], which we state in the next
subsection.

Theorem 2.4.1 Let E be a complex elliptic curve. Let � D .V; E/ be an ordered
graph, and let ADA.�;E/. Define the differential graded algebra A.A/ as the exterior
algebra on the Q–vector space spanned by

fxv;yv;ge j v 2 V; e 2 Eg

modulo the ideal generated by the following relations:

(i)
P

j .�1/j ge1
� � � ygej

� � �gek
whenever fe1 < � � �< ekg is a cycle and

(ii) .xh.e/ �xt .e/ /ge and .yh.e/ �yt .e/ /ge for each e 2 E .

The differential is defined by putting dxv D dyv D 0 and

dge D .xh.e/ �xt .e/ /.yh.e/ �yt .e/ /:

The DGA .A.A/; d/ is a model for XA .

In a similar way to toric arrangements, this algebra encodes both the combinatorics of
the arrangement (with the Orlik–Solomon relation) and the geometry of the ambient
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space. The generators xv;yv come from the cohomology of E , while the ge are from
the Orlik–Solomon algebra of its rational counterpart.

2.5 Higher-genus curves

By the work of Dupont and Bloch, we have the following presentation for graphic
arrangements in the case that C is a complex projective curve of positive genus [7],
which we state here.

Theorem 2.5.1 Let C be a complex projective curve with genus g � 1. Define
the differential graded algebra A.A/ as the exterior algebra on the Q–vector space
spanned by

fxi
v;y

i
v;ge j v 2 V; e 2 E ; i D 1; : : : ;gg

modulo the ideal generated by the following relations:
(i)

P
j .�1/j ge1

� � � ygej
� � �gek

whenever fe1 < � � �< ekg is a cycle,

(ii) .xi
h.e/
�xi

t .e/
/ge and .yi

h.e/
�yi

t .e/
/ge for each e 2 E ,

(iii) (a) xi
vyj

v , xi
vxj

v and yi
vyj

v for i ¤ j , and
(b) xi

vyi
v �xj

v yj
v .

The differential is defined by putting dxi
v D dyi

v D 0 and

dge D x1
h.e/

y1
h.e/
Cx1

t .e/
y1

t .e/
�

gX
iD1

.xi
h.e/

yi
t .e/
Cxi

t .e/
yi

h.e/
/:

The DGA .A.A/; d/ is a model for XA .

Just as before, this algebra encodes both the combinatorics of the arrangement and
the geometry of the ambient space. The generators xi

v;y
i
v come from the cohomology

of C V , and we write these generators and relations here explicitly since we will use this
presentation to show that the algebra is Koszul in Section 3.5. A more elegant way of
writing the differential is to say that the generator ge maps to Œ�e � 2H 2.C V/, where
�e is the diagonal corresponding to the coordinates indexed by h.e/ and t.e/ in C V .

3 Koszulity

In this section, we will show that for chordal arrangements, the algebras presented in
Theorems 2.2.1, 2.3.1, 2.4.1, and 2.5.1 are Koszul. The cohomology of the comple-
ment of a chordal linear arrangement was first shown to be Koszul by Shelton and
Yuzvinsky [18]. In Section 3.2, we outline the proof presented by Yuzvinsky in [20].
The analogous results for toric and abelian arrangements, as well as for higher-genus
curves, are new and presented in Sections 3.3, 3.4, and 3.5, respectively.
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3.1 Chordal arrangements

Let C be C , C� , or a complex elliptic curve, and let � D .V; E/ be a simple graph.
If � is chordal (that is, every cycle with more than three vertices has a chord), then the
graphic arrangement A.�;C / is said to be chordal.

A perfect elimination ordering is an order on the vertices so that for all v 2 V , v is a
simplicial vertex (a vertex whose neighbors form a clique) in the graph

�v WD � �fv
0
2 V j v0 > vg:

Such an ordering exists if and only if � is chordal [9, page 851]. From now on, we
will use such an order when discussing chordal graphs.

We say a set S D fe1 < � � � < ekg is a broken circuit if there is some edge e with
e < e1 such that S [feg is a cycle. A set S � E is nbc (nonbroken circuit) if no subset
of it is a broken circuit. Let F � E be a flat of the matroid of � , and consider the
subgraph �ŒF � of � , which has edges F and vertices adjacent to edges in F . We say
that an nbc set S is associated to F if S � F and S spans �ŒF �.

Remark 3.1.1 In the case of linear, toric, or abelian arrangements, the essential
property that we need for our results is that the arrangement is unimodular (for Theorems
2.3.1 and 2.4.1) and supersolvable (for Theorems 3.3.3 and 3.4.3). We could state all
of our results in the language of unimodular and supersolvable arrangements; however,
this isn’t any more general than the language of chordal graphs. This is because Ziegler
showed that a matroid is unimodular and supersolvable if and only if it is chordal
graphic (Proposition 2.6 and Theorem 2.7 of [21]). In fact, since the edge set of ��v is
a modular hyperplane when v is a simplicial vertex [21, Proposition 4.4], the maximal
chain of modular flats in the matroid corresponds exactly to our ordering on the vertices.

3.2 Linear arrangements

Yuzvinsky proved that the Orlik–Solomon ideal has a quadratic Gröbner basis when A is
supersolvable (eg chordal), which implies that H�.XA/ is Koszul [20, Corollary 6.21].
We outline his technique as we will use similar techniques in the toric and abelian cases.

For ease of notation, whenever C D fe1 < � � �< ekg we will use gC WD ge1
� � �gek

and
@gC WD

P
j .�1/j ge1

� � � ygej
� � �gek

. Let � D .V; E/ be a chordal graph with a perfect
elimination ordering on the vertices (and edges).

First, Yuzvinsky showed that the set G D f@gC j C is a circuitg is a Gröbner basis for
the ideal I D hGi in the exterior algebra ƒ.ge j e 2 E/, with the degree-lexicographic
order such that ge < ge0 whenever e < e0 . The leading (or initial) term of @gC is
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In.@gC / D gC 0 where C 0 � C is the broken circuit associated to C . Recall that a
subset G of an ideal I is a Gröbner basis if In.I/ D hIn.G/i. To prove that this
is a Gröbner basis, Yuzvinsky used the fact that the set of monomials not in In.I/
form a basis for H�.XA/Dƒ.ge/=I . The set of monomials not in In.I/ is the basis
fgC j C is nbcg.

Moreover, since � is chordal, this Gröbner basis can be reduced to a quadratic Gröbner
basis. This is because we have the following property (which follows immediately from
Proposition 6.19 of [20]): S � E is an nbc set if and only if for all distinct e; e0 2S we
have h.e/¤ h.e0/. A circuit C is not nbc, hence there exist distinct edges e; e0 2 C

such that h.e/D h.e0/. But then fe; e0g contains (and hence is) a broken circuit, and
so it is contained in some circuit T with jT j D 3. Thus In.@gT / D gege0 divides
In.@gC /, and we can reduce our Gröbner basis to a quadratic one.

3.3 Toric arrangements

Since the complement to a chordal toric arrangement is formal (as in the linear case),
we want to show that its cohomology ring is Koszul. Our argument will be similar to
(but slightly more complicated than) the linear case. We will provide a Q–basis for
the cohomology ring, use it to show that our generating set of the ideal is a Gröbner
basis, and then reduce the Gröbner basis to a quadratic one.

Lemma 3.3.1 Let � D .V; E/ be a chordal graph. Let F be a flat of the arrangement
ADA.�;C�/, and let S be a nonbroken circuit associated to F . Define IF to be the
ideal generated by

fxh.e/ �xt .e/ j e 2 Fg

in ƒ.xv j v 2 V/ŠH�..C�/V/, and let HF D
T

e2F He � .C�/V .

(1) With the degree-lexicographic order and xv < xv0 whenever v < v0 , the set

GS WD fxh.e/ �xt .e/ j e 2 Sg

is a Gröbner basis for IF .

(2) The set fxi1
� � �xir

j h.e/ =2 fi1; : : : ; ir g for each e 2 Sg is a basis for

H�.HF /Šƒ.xv j v 2 V/=IF ;

and this basis does not depend on the choice of nbc set S .

Proof For linear relations, finding a Gröbner basis is equivalent to Gaussian elimina-
tion, and so consider the matrix MF whose rows are indexed by edges e 2 F , whose
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columns are indexed by the vertices in decreasing order, and whose entries are zero
except .MF /e;h.e/ D 1 and .MF /e;t .e/ D�1 (so that row e corresponds to the element
xh.e/ �xt .e/ ). Note that since jS j D rk.S/D rk.MF /, we may use row operations so
that the rows corresponding to elements of S remain unchanged while all other rows
are zero. Moreover, since jfh.e/ jHe 2 Sgj D jS j, the matrix is in row echelon form.
Thus, GS is a Gröbner basis for IF .

For part (2), by Gröbner basis theory, the set of monomials not in In.IF / form a basis
for H�.HF /. Since the ideal In.IF / is generated by In.GS / D fxh.e/ je 2 Sg, the
monomials not in In.IF / are precisely those stated. Since S is an nbc set associated
to F , it spans the subgraph �ŒF �. Thus fh.e/ j e 2 Fg D fh.e/ j e 2 Sg and the basis
given does not depend on S .

For ease of notation, we will use

xAgC WD xa1
� � �xar

gc1
� � �gck

;

where AD fa1 < � � � < ar g and C D fc1 < � � � < ckg. We will also denote relations
(i-a) and (i-b) from Theorem 2.3.1 by rC for a cycle C .

Lemma 3.3.2 Let � D .V; E/ be a chordal graph, and let ADA.�;C�/. Define P

to be the set of all monomials xAgC such that C is a nonbroken circuit and h.e/ =2A

for all e 2 C . Then P is a basis for H�.XA/.

Proof There is a decomposition into the flats of A [6, Remark 4.3(2)] (see also [2,
Lemma 3.1]), which is given as follows: For a flat F , let HF D

T
e2F He � .C�/V ,

and let VF be the vector space spanned by gC for all nbc sets C associated to F . Then

H�.XA/D
M

F

H�.HF /˝VF :

Denote H�.HF /˝VF by AF . To show that P is a basis for H�.XA/, it suffices to
show that

P \AF D fxAgC j h.c/ =2A for c 2 C; where C is an nbc set associated to Fg

is a basis for AF . But this follows from Lemma 3.3.1.

Theorem 3.3.3 Let A be a chordal toric arrangement. Then H�.XA/ is Koszul.

Proof Fix a degree-lexicographic order on H�.XA/ that is induced by our order on V .
That is, ge < ge0 if e < e0 , and xh.e/ < ge < xh.e/C1 . We will show that

G D f.xh.e/ �xt .e/ /ge; rS j e 2 E and S is a circuitg

is a Gröbner basis with this order which can be reduced to a quadratic Gröbner basis.
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We have
In.G/D fxh.e/ ge; gC j e 2 E and C is a broken circuitg:

Then P is the set of monomials that are not in hIn.G/i. Since hIn.G/i � In.I/, the
monomials that are not in In.I/ are contained in P . Since the set of monomials not in
In.I/ is a basis for H�.XA/ contained in the basis P , and H�.XA/ is finite dimen-
sional, we must have equality throughout. That means that the monomials in hIn.G/i
are exactly the monomials in In.I/. Since these ideals are generated by monomials,
they must be equal. Note that the relations of type (ii) are already quadratic. In a similar
way as in the linear case, we can reduce our relations rC to quadratic ones as well.

3.4 Abelian arrangements

Let �D .V; E/ be a chordal graph, and let E be a complex elliptic curve. For the chordal
abelian arrangement AD A.�;E/, consider the algebra A.A/ from Theorem 2.4.1
(ignoring the differential). In this subsection, we will prove that A.A/ is Koszul. The
proof is very similar to (but slightly more complicated than) the toric case.

Lemma 3.4.1 Let � D .V; E/ be a chordal graph. Let F � E be a flat of the arrange-
ment ADA.�;E/, and let S be a nonbroken circuit associated to F . Define IF to
be the ideal generated by

fxh.e/ �xt .e/ ;yh.e/ �yt .e/ j e 2 Fg

in ƒ.xv;yv j v 2 V/ŠH�.EV/, and let HF D
T

e2F He �EV .

(1) With the degree-lexicographic order and xv < yv < xv0 < yv0 whenever v < v0 ,
the set GS WD fxh.e/ �xt .e/ ;yh.e/ �yt .e/ j e 2 Sg is a Gröbner basis for IF .

(2) The set fxi1
� � �xir

yj1
� � �yjt

j h.e/ =2 fi1; : : : ; ir ; j1; : : : ; jtg for each e 2 Sg is
a basis for

H�.HF /Šƒ.xv;yv j v 2 V/=IF ;

and this basis does not depend on the choice of nbc set S .

Proof Consider the matrix MF from the proof of Lemma 3.3.1. Build a 2� 2 block
matrix, where the upper left and lower right blocks are copies of MF and the other
blocks are zero. In the upper half of the matrix, row e corresponds to xh.e/ � xt .e/ ,
and in the lower half of the matrix, row e corresponds to yh.e/ �yt .e/ . By a similar
argument as before, we can eliminate rows that don’t correspond to elements of S and
we’re left with a matrix in row echelon form. Thus, we have a Gröbner basis.

The proof of the second statement mimics the proof in the toric case, with

In.GS /D fxh.e/ ;yh.e/ j e 2 Sg:
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Lemma 3.4.2 Let � D .V; E/ be a chordal graph, and let A D A.�;E/. Define P

to be the set of all monomials xAyBgC such that C is a nonbroken circuit and
h.e/ =2 .A[B/ for all e 2 C . Then P is a basis for A.A/.

Proof By Lemma 3.1 in [2], there is a decomposition into the flats of A, given by the
following: For a flat F , let HF D

T
e2F He � EV , and let VF be the vector space

spanned by gC for all nbc sets C associated to F . Then

A.A/D
M

F

H�.HF /˝VF :

Denote H�.HF /˝ VF by AF . To show that P is a basis for A.A/, it suffices to
show that

P\AF DfxAyBgC jh.c/ =2.A[B/ for c2C; where C is an nbc set associated to Fg

is a basis for AF . But this follows from Lemma 3.4.1.

Theorem 3.4.3 Let A be a chordal abelian arrangement. Then A.A/ is Koszul.

Proof Fix a degree-lexicographic order on A.A/ that is induced by our order on V .
That is, ge < ge0 if e < e0 , and xh.e/ < yh.e/ < ge < xh.e/C1 < yh.e/C1 . We claim
that

G D f.xh.e/ �xt .e/ /ge; .yh.e/ �yt .e/ /ge; @gS j e 2 E and S is a circuitg

is a Gröbner basis with this order. Here,

In.G/D fxh.e/ ge; yh.e/ ge; gC j e 2 E and C is a broken circuitg;

and P from Lemma 3.4.2 is the set of monomials not in hIn.G/i. By an argument
similar to that in the toric case, we can conclude that G is a Gröbner basis. Moreover,
using the fact that we have a chordal graph, we can again reduce this (in the same way)
to a quadratic Gröbner basis, thus proving Koszulity.

3.5 Higher-genus curves

Let � D .V; E/ be a chordal graph, and let C be a complex projective curve of genus
g > 1. For the chordal arrangement AD A.�;C /, consider the algebra A.A/ from
Theorem 2.5.1 (ignoring the differential). In this subsection, we will prove that A.A/
is Koszul. The proof is very similar to that of the abelian case in Section 3.4.

Algebraic & Geometric Topology, Volume 16 (2016)



2648 Christin Bibby and Justin Hilburn

Lemma 3.5.1 Let � D .V; E/ be a chordal graph. Let F � E be a flat of the ar-
rangement AD A.�;C /, and let S be a nonbroken circuit associated to F . Denote
HF D

T
e2F He in C V . Then H�.HF /Šƒ.x

i
v;y

i
v j v 2 V; i D 1; : : : ;g/=IF where

IF is the ideal generated by the relations

(i) xi
h.e/
�xi

t .e/
and yi

h.e/
�yi

t .e/
for e 2 F ,

(ii) xi
vxj

v , yi
vyj

v and xi
vyj

v for i ¤ j , and

(iii) xi
vyi

v �xj
v yj

v .

This algebra has basis˚
x1

A1
� � �x

g
Ag

y1
B1
� � �y

g
Bg
j

Ai \Bi D∅ for i > 1I fh.e/ j e 2 Sg\ .Ai [Bi/D∅ for i D 1; : : : ;g
	
;

and this basis does not depend on the choice of S .

Proof Consider the exterior algebra modulo the first relation, which we can write as
the exterior algebra

ƒ.xi
v; yi

v j v =2 fh.e/ j e 2 Sg; i D 1; : : : ;g/

by a similar argument as in the proof of Lemma 3.4.1. Note that, as before,

fh.e/ j e 2 Sg D fh.e/ j e 2 Fg;

and so this does not depend on the choice of S . Now consider relations (ii) and (iii) in
this algebra. This is a Gröbner basis G with

In.G/D
˚
xi

vxj
v ; yi

vyj
v ; xi

vyj
v .i ¤ j /; xi

vyi
v .i > 1/; v =2 fh.e/ j e 2 Sg

	
:

The set of monomials in our proposed basis are exactly those not divisible by In.G/
and are hence a basis.

Lemma 3.5.2 Let � D .V; E/ be a chordal graph, and let A D A.�;C /. Define P

to be the set of all monomials x1
A1
� � �x

g
Ag

y1
A1
� � �y

g
Ag

gS such that S is a nonbroken
circuit, h.e/ =2 .Ai [Bi/ for all e 2 S and all i , and Ai \Bi D∅ for i > 1. Then P

is a basis for A.A/.

Proof There is again a decomposition into the flats of A, given by the following: For
a flat F , let HF D

T
e2F He � C V , and let VF be the vector space spanned by gS

for all nbc sets S associated to F . Then

A.A/D
M

F

H�.HF /˝VF :
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Denote H�.HF /˝ VF by AF . To show that P is a basis for A.A/, it suffices to
show that P \AF is a basis of AF . But this follows from Lemma 3.5.1.

Theorem 3.5.3 Let C be a complex projective curve of genus g > 1, and let A be a
chordal arrangement in C V . Then A.A/ is Koszul.

Proof Fix a degree-lexicographic order on A.A/ that is induced by our order on V .
We claim that

G D f.xi
h.e/
�xi

t .e/
/ge; .y

i
h.e/
�yi

t .e/
/ge; @gS ;R j e 2 E ; and S is a circuitg

is a Gröbner basis with this order, where R denotes the set of relations (iii-a) and (iii-b)
in A.A/. Here,

In.G/D fx1
v y1

v ; xi
h.e/

ge; yi
h.e/

ge; gB j B is a broken circuitg;

and P from Lemma 3.5.2 is the set of monomials not in hIn.G/i. By an argument
similar to the previous cases, we can conclude that G is a Gröbner basis. Moreover,
using the fact that we have a chordal graph, we can again reduce this (in the same way)
to a quadratic Gröbner basis, thus proving Koszulity.

4 Rational homotopy theory and quadratic duality

In this section, we collect definitions and results from rational homotopy theory, qua-
dratic duality, and the relationship between these two subjects. This section is meant
to provide a background on the necessary theory; the reader can skip ahead and refer
back as needed. Throughout this section, all DGAs will be assumed to be connective
(that is, their cohomology has a nonnegative grading). Except in Section 4.3, all DGAs
will be commutative (that is, graded-commutative).

4.1 Rational homotopy theory

The fundamental problem of rational homotopy theory is to understand the topology of
the Q–completion X!Q1.X / of a topological space X as defined in [4, Chapter I.4].
When X is a simply connected CW-complex, we have �iQ1.X /Š .�iX /˝Q and
H�.X;Q/ŠH�.Q1.X /;Q/, but in general the relationship between X and Q1.X /
is more complicated. Still, the homotopy type of Q1.X / is substantially simpler than
that of X as the results of [17; 19; 3] show that the rational homotopy theory of
connected Q–finite spaces is determined by the quasi-isomorphism type of a particular
DGA .APL.X /; d/ with H�.APL.X /; d/ Š H�.X;Q/. A DGA .A.X /; d/ is a
model for X if it is quasi-isomorphic to .APL.X /; d/. The space X is formal if
.H�.X;Q/; 0/ is a model for X .
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Let .B; d/ be a DGA and for n� 0 let .B.n/; d/ be the DG-subalgebra of B generated
by Bi for i �n. Define .B.�1/; d/ to be the DG-subalgebra generated by 12B0 . For
n� 0, there is an increasing filtration .B.n; q/; d/ on .B.n/; d/ defined inductively as
follows: Let .B.n; 0/; d/D .B.n� 1/; d/ and let B.n; qC 1/ be the DG-subalgebra
of B generated by B.n�1/ and fb 2Bnjdb 2B.n; q/g. A commutative DGA .B; d/

is minimal [3, Section 7.1] if it is connected, B is a free commutative graded algebra,
and B.n/D

S
q�0 B.n; q/ for all n.

Sullivan [19] showed that any homologically connected DGA has a minimal model that
is unique up to unnatural isomorphism. Write .M.X /; d/ for the minimal model of
.APL.X /; d/, which is called the minimal model of X . Every minimal DGA .M; d/

has a canonical augmentation determined by the augmentation ideal MC . This lets
us define the homotopy groups �qM D H q.MC=.MC �MC/; d/ of .M; d/. The
following theorem relates the homotopy groups of .M.X /; d/ to those of Q1.X /.

Theorem 4.1.1 [3, Theorem 12.8] There are natural bijections

�qQ1.X /Š HomQ.�
qM.X /;Q/:

They are group isomorphisms for q � 2.

In the next subsection we develop the technology to get more refined information
about �1X from the minimal model. This will be important because the spaces we are
interested in are rational K.�; 1/ spaces.

4.2 Complete Lie algebras and nilpotent completion of groups

When X is not simply connected, we don’t necessarily have the isomorphism

�1Q1.X /Š .�1X /˝Q:

To even make sense of the right hand side when �1X isn’t abelian, we need to review
the Malcev completion (or Q–nilpotent completion) yG ˝Q of a finitely presented
group G . Then we will survey some results that show that yG˝Q is entirely determined
by a complete Lie algebra L.G/, which we call the Malcev Lie algebra of G .

Recall that the lower central series of G is defined by setting �1G D G and then
�qC1G D ŒG; �qG�. As in [10, Section 13.2], we will use a recursive procedure to
define NiG˝Q for each nilpotent group NiG DG=�iG and then define

yG˝Q WD lim
 ��
.NiG/˝Q:
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First we see that N1G D 0 so we can define .N1G/˝QD 0. Now assume that we
have defined .Ni�1G/˝Q. The NiG fit into a series of exact sequences

0! �i�1=�iG!NiG!Ni�1G! 0;

which determine classes �i 2H 2.Ni�1G; �i�1=�iG/ (where �i�1=�iG is given a
trivial Ni�1G –module structure). It can be shown that

H 2.Ni�1; �i�1=�iG/˝QŠH 2
�
.Ni�1G/˝Q; .�i�1=�iG/˝Q

�
;

so the class �i ˝ 1 determines an extension of .Ni�1G/˝Q by .�i�1=�iG/˝Q.
We then define this extension to be NiG˝Q.

For a minimal DGA .M; d/ the analogue of the lower central series of �1X is an
increasing filtration on �1M defined by � i�1 D Im.�1M.1; i � 1/! �1M /.

Theorem 4.2.1 [3, Theorem 12.8] Let .M.X /; d/ be the minimal model of X . Then

HomQ
�
�1M.X /=� i�1M.X /;Q

�
Š .Ni�1X /˝Q:

There is a second construction of yG˝Q that proceeds through the theory of complete
Hopf algebras [17, Appendix A]. In particular, yG˝Q is isomorphic to the group of
group-like elements fx 2QŒG� j�x D x y̋xg in the completion of the group algebra
QŒG� with respect to the augmentation ideal. We can also define a complete Lie algebra
by taking primitive elements

L.G/ WD fx 2QŒG� j�x D 1 y̋xCx y̋ 1g

in QŒG�. Recall that there is a lower central series for Lie algebras defined by �1LDL

and �iC1LD ŒL; �iL�.

The following proposition tells us that understanding the Malcev Lie algebra L.G/

is enough to understand the quotients in the lower central series of G and also the
completion QŒG� with respect to the augmentation ideal.

Proposition 4.2.2 [1, Section 4]

(1) .�i=�iC1G/˝QŠ �i=�iC1. yG˝Q/Š �i=�iC1L.G/.

(2) U.L.G//ŠQŒG� as complete Hopf algebras.

In fact, even more is true. The power series defining log.x/ and ex converge in any
complete Hopf algebra and give an isomorphism between the Lie algebra of primitive
elements and the group of group-like elements [17, Appendix A.2]. Thus, L.G/

completely determines yG˝Q and vice versa.
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4.3 Nonhomogeneous quadratic duality

In this subsection, we describe and outline definitions and results on the nonhomoge-
neous quadratic duality [16; 15; 1] between quadratic differential graded algebras and
weak quadratic-linear algebras. This will give a tractable method for computing the
minimal model .M.X /; d/ and the Malcev Lie algebra L.�1.X // when we have a
quadratic model .A.X /; d/ for a space X .

First we need to establish some conventions on graded and filtered algebras. All graded
and filtered algebras will be locally finite dimensional. All gradings will be concentrated
in nonnegative degree and will be notated with superscripts. All N –filtrations will
be increasing, exhaustive, and indexed by subscripts. The tensor algebra on a k –
vector space V will be denoted by T .V /. It is graded by putting V in degree 1,
equipped with the increasing filtration induced by the grading, and augmented by the
map �W T .V /! k that sends V to 0.

A WQLA (weak quadratic-linear algebra) is an augmented algebra �W B! k , together
with a choice of k –subspace W , satisfying the following:

(i) 1 2W .

(ii) B is generated multiplicatively by W .

(iii) Let V D ker.�jW / and J D ker.T .V /! B/. The ideal J is generated by J2 .

A QLA (quadratic-linear algebra) is an augmented algebra �W B! k equipped with an
exhaustive N –filtration such that gr B is quadratic. In particular this implies that the
choice W D B1 makes B into a WQLA. A morphism of WQLAs f W .B; �;W /!

.B0; �0;W 0/ is a homomorphism of augmented algebras such that f .W /�W 0 . Mor-
phisms of QLAs coincide with homomorphisms of augmented filtered algebras.

A WQLA B has an associated quadratic algebra B.0/ which is defined by generators
V ŠW =k �1 subject to the relations I D J2=J1 . For QLAs, gr BŠB.0/ . We say that
a WQLA B is Koszul if the underlying quadratic algebra B.0/ is Koszul. Every Koszul
WQLA is in fact a QLA [15, Section 3.3]. Denote the category of weak quadratic-linear
algebras by WQLA, and denote its subcategory consisting of Koszul quadratic-linear
algebras by KLA.

A DGA A has an underlying graded algebra given by forgetting the differential. We
say that a DGA is quadratic (respectively Koszul) if its underlying algebra is quadratic
(respectively Koszul). Let QDGA be the category of quadratic differential graded algebras,
and denote its subcategory consisting of Koszul DGAs by KDGA.
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There is a fully faithful contravariant functor DWQLAW WQLA! QDGA that is defined on
objects as follows: Let .B; �;W / be a WQLA. As a graded algebra D.B; �;W /DB.0/!

is the quadratic dual to the quadratic algebra associated to B . Note that J2\T1.V /D 0

and I D J2=J1 . Thus we can represent J2 as the graph of a linear map

.�h;��/W I ! T1.V /D k˚V:

It is easy to see that J2 � ker.�/ implies that hD 0. The map

d1 D �
�
W D.B; �;W /1 Š V �! I� ŠD.B; �;W /2

can be extended to a differential on D.B; �;W /.

On the other hand, there is a contravariant functor DQDGAW QDGA! WQLA defined
on objects as follows: Let .A; d/ be a quadratic DGA and let V D A1 . We can
write A Š T .V /=J . The map d jA1 W V D A1! A2 D .V ˝ V /=J has a dual map
�W J? ! V � , where V � is the dual vector space to V and J? � V �˝ V � is the
annihilator of J . Then D.A; d/D .T .V �/=I; x�;WA/, where I is the ideal generated
by fx � �.x/ j x 2 J?g, x� is the augmentation induced by �W T .V �/ ! k , and
WA D k˚V � .

Proposition 4.3.1 [15, Section 2.5] The functors DWQLA and DQDGA restrict to a
contravariant equivalence of categories between KLA and KDGA.

KLA KDGA

WQLA QDGA

�

If .A; d/ is a commutative QDGA, then S2.V /� J and hence J? �ƒ2.V �/. This
implies that there is a Lie algebra LDL.A/ such that

D.A; d/Š .U.L/; �;WA/:

We call this Lie algebra the Lie algebra dual to A. Note that in general, WA ¤ k˚L,
so the induced filtration is not the order filtration.

Example 4.3.2 We start with a very simple example of the duality we consider in
Section 5. A model for the punctured elliptic curve is given by

ADƒ.x;y;g/=.xg;yg/

with differential defined by dx D dy D 0 and dg D xy . The QL-algebra dual to A is

B D T .a; b; c/=.ab� ba� c/:
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As augmented algebras BŠU.L/, where L is the free Lie algebra on the generators a

and b , but the filtration on B does not coincide with the order filtration on U.L/.

Let L be a finite-dimensional Lie algebra, and consider its universal enveloping algebra
U.L/ equipped with the order filtration. It is an easy exercise to see that the QDGA
dual to U.L/ is the graded algebra ƒ.L�/ equipped with differential dual to the Lie
bracket. This is often called the standard (or Chevalley–Eilenberg) complex of L and is
denoted by .�.L/; d/. We can extend this to the situation when the Lie algebra L� is
N –graded with each graded piece finite dimensional by defining the standard complex
of L� to be the restricted dual subalgebra �.L�/ WD

L
i;j .Œƒ

iL�j /� of ƒ.L�/ with
differential dual to the Lie bracket.

Given a minimal model .M.X /; d/ for a space X , we can reconstruct the Lie algebra
L.�1X / as follows: The commutative DGAs .M.1; i/; d/ are quadratic and hence
dual to Lie algebras Li . Moreover the inclusions M.1; i/!M.1; iC1/ induce maps
LiC1!Li .

Theorem 4.3.3 [10, Theorem 13.2] There are natural isomorphisms

Li ŠL.�1X /=�iL.�1X / and L.�1X /Š lim
 ��

Li :

We can also recover QŒ�1X � from .M.X /; d/. Let .C �;�.A; d/; d1; d2/ be the cobar
bicomplex of .A; d/ as defined in [1, Section 3] (also called the dual bar bicomplex in
[15, Section 3]) and let H�

b
.A; d/ be the cohomology of its totalization.

Lemma 4.3.4 [1, Lemma 3.1] Let .A; d/ be a QDGA. Then H 0
b
.A; d/ is naturally

isomorphic to D.A; d/. The increasing columns filtration on the cobar complex induces
the QLA structure on D.A; d/. The decreasing rows filtration on the cobar complex
induces the filtration by powers of the augmentation ideal of D.A; d/.

Proposition 4.3.5 [1, Proposition 4.0] Let .M.X /; d/ be the minimal model of X .
Then

QŒ�1X �ŠH 0
b
.M.X /; d/;

where the completion on the left is with respect to the augmentation ideal and the
completion on the right is with respect to the decreasing rows filtration.

Suppose that .A; d/ is a quadratic model for a space X . Let L be the Lie algebra dual
to A, and let L.�1X / be the Malcev Lie algebra of X . The following theorem tells
us how to obtain L.�1X / from L, and also how to compute the minimal model of X

when A is Koszul.

Algebraic & Geometric Topology, Volume 16 (2016)



Quadratic-linear duality and rational homotopy theory of chordal arrangements 2655

Theorem 4.3.6 Let X be a space with a quadratic model .A.X /; d/, and let L D

L.A.X // be the Lie algebra dual to A.X /.

(1) U.L/ŠQŒ�1X �, where the completions are each with respect to the augmenta-
tion ideal. This isomorphism respects the Hopf algebra structures.

(2) xL Š L.�1X /, where the completion of L is with respect to the filtration by
bracket length.

(3) If A.X / is Koszul, and L is graded by bracket length with Li WDL=�iL finite
dimensional for all i , then .�.L�/; d/ is the minimal model of X .

(4) Under the hypotheses of (3), Q1.X / is a K.�; 1/ space.

Proof Since .A.X /; d/ is a model for X , there is a quasi-isomorphism from the
minimal model .M.X /; d/ to .A.X /; d/. This gives a map on the degree-zero co-
homology of their cobar complexes, H 0

b
.CA.X //!H 0

b
.CM.X //, which induces an

isomorphism on the associated graded quotients with respect to the rows’ filtration on
the complexes [1, Lemma 3.3a]. Thus, there is an isomorphism on the completions
with respect to the row filtration, H 0

b
.CA.X //ŠH 0

b
.CM.X //. Also by Lemma 4.3.4,

H 0
b
.CA.X // is the dual to A.X /, U.L/, and the rows’ filtration is the filtration by the

augmentation ideal. Hence H 0
b
.CA.X // Š U.L/. Moreover, Proposition 4.3.5 says

that H 0
b
.CM.X //ŠQŒ�1X �, completing the proof of (1).

Since the isomorphism in (1) respects the Hopf algebra structures, taking the primitive
elements on each side yields the isomorphism in (2).

The projection f W .U.L/; �;WA.X //! .U.Li/; �;Q˚Li/ is a map of QLAs, and so
it induces a map on the dual DGAs gW .�.Li/; di/! .A.X /; d/. The grading of L by
bracket length induces another grading on U.L/ and on U.Li/ which we call weight,
and the map f is an isomorphism for weight j < i . The weight gradings on U.L/ and
U.Li/ also induce weight gradings on Ext�U.L/.Q;Q/, Ext�U.Li /.Q;Q/, .A.X /; d/,
and .�.Li/; di/. The differentials on .A.X /; d/ and .�.Li/; di/ preserve weight and
hence we have a weight grading on H�.A.X /; d/ and H�.�.Li/; di/. Consider the
following diagram for weight j < i :

H�j .A; d/ H�j .�.Li/; di/

Ext�
U.L/;j

.Q;Q/ Ext�
U.Li /;j

.Q;Q/

g�

f �

Since A.X / and U.Li/ are Koszul, the maps on the right and left are both isomorphisms
[1, Lemma 3.2]. Since U.L/ and U.Li/ agree for weight j < i , one can see that f �
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is an isomorphism for weight j < i by comparing the minimal graded free resolutions
of Q considered as a U.L/–module and as a U.Li/–module. Thus, the map g is a
quasi-isomorphism for weight j < i . Since �.L�/ D lim

 ��i
�.Li/, we have a quasi-

isomorphism from the standard complex of L to A.X /. Moreover, �.L�/ is minimal
and is hence the minimal model of A.X /.

Finally, note that the minimal model �.L�/ is generated in degree 1. By Theorem 4.1.1,
this happens exactly when the space is rationally K.�; 1/.

5 Topology of XA

In this section, we will first review known results on the rational homotopy theory of
linear arrangements. These results will apply to the toric case as well, and so we focus
on proving the analogous results for abelian arrangements. In the projective case (with
curves of positive genus), we compute the quadratic dual to the QDGA .A.XA/; d/ for
a chordal arrangement A and give a combinatorial presentation for the Lie algebra dual
to A.XA/. This then gives us a combinatorial description of QŒ�1XA�, the Malcev
Lie algebra L.�1XA/, and the minimal model .M.XA/; d/. Finally, we will show
that XA is a rational K.�; 1/ space.

5.1 Linear and toric arrangements

Let �D .V; E/ be a chordal graph, and let ADA.�;C/. Papadima and Yuzvinsky [14]
describe the holonomy Lie algebra, L, of XA and show that it is the Lie algebra dual
to the cohomology ring H�.XA/. They also show that the standard complex of L is
the minimal model of XA [14, Propositions 3.1 and 4.4]. Moreover, Kohno [11] shows
that the holonomy Lie algebra is isomorphic to the Malcev Lie algebra L.�1XA/.

This Lie algebra L can be described as the free Lie algebra generated by ce for e 2 E ,
modulo the relations

(i) Œce; ce0 �D 0 if e and e0 are not part of a cycle of size 3, and

(ii) Œce1
; ce2
C ce3

�D 0 if fe1; e2; e3g is a cycle.

If X is a formal space, then H�.X / is Koszul if and only if X is rationally K.�; 1/

[14, Theorem 5.1]. In particular, XA is a rational K.�; 1/ space. Falk first showed that
XA is a rational K.�; 1/ space when studying the minimal model [8, Proposition 4.6],
but the generality of Papadima and Yuzvinsky’s arguments allows us to directly apply
them to toric arrangements, giving the following result:
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Theorem 5.1.1 Let � D .V; E/ be a chordal graph and ADA.�;C�/.
(1) The holonomy Lie algebra of XA is the Lie algebra dual to H�.XA/, denoted

by LDL.H�.XA//.

(2) The minimal model of XA is .�.L�/; d/, the standard complex of L.

(3) XA is a rational K.�; 1/ space.

However, the presentation for the Lie algebra is much more complicated.

5.2 Abelian arrangements and higher genus

For this subsection, fix a projective curve C of genus g > 0 and a chordal graph
� D .V; E/, and consider the chordal abelian arrangement ADA.�;C /. We will use
quadratic-linear duality to study the rational homotopy theory of XA .

Let L be the free Lie algebra generated by ai
v , bi

v and ce for v 2 V , e 2 E and
i D 1; : : : ;g , subject to the following relations:

(i) Œai
v; a

j
w �D Œb

i
v; b

j
w �D 0 for v;w 2 V with v ¤ w ,

(ii) (a) Œbi
h.e/

; ai
t .e/
�D Œbi

t .e/
; ai

h.e/
�D ce for e 2 E ,

(b) Œai
v; b

j
w �D 0 if v¤w and there is no edge connecting v and w , or if i ¤ j ,

(c)
Pg

iD1
Œai

v; b
i
v � D

P
v2fh.e/;t.e/g ce for v 2 V ,

(iii) (a) Œai
v; ce �D Œb

i
v; ce �D 0 for e 2 E and h.e/¤ v ¤ t.e/,

(b) Œai
h.e/
C ai

t .e/
; ce �D Œb

i
h.e/
C bi

t .e/
; ce �D 0 for e 2 E ,

(iv) (a) Œce; ce0 �D 0 whenever e and e0 are not part of a 3–cycle, and

(b) Œce1
; ce2
C ce3

�D 0 whenever fe1; e2; e3g is a cycle.

The following theorem generalizes the main theorem of [1]. Using the Lie algebra dual
to A.A/, this theorem gives a description of the Malcev Lie algebra of XA when A
is chordal.

Theorem 5.2.1 Let � D .V; E/ be a chordal graph, ADA.�;C /, and L be the Lie
algebra described above. Then we have the following:

(1) Consider the universal enveloping algebra U.L/ as a QLA whose first filtered
piece is spanned by ai

v; b
i
v; ce for v 2 V and e 2 E . Then U.L/ is a Koszul QLA

which is the nonhomogeneous quadratic dual to the Koszul DGA A.A/.
(2) U.L/ Š QŒ�1.XA/�, where the completions are each with respect to the aug-

mentation ideal. This isomorphism respects the Hopf algebra structures.

(3) xLŠL.�1.XA//, where the completion of L is with respect to the filtration by
bracket length.
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Proof (1) We can identify the QLA dual to A.A/ with L as follows. Let ai
v , bi

v , ce

be the dual basis to xi
v , yi

v , ge . The relations in the quadratic dual correspond to
quadratic elements of the basis from Lemma 3.5.2 since there is a natural isomorphism
�W I? Š ..V ˝V /=I/� . The four types of relations (i)–(iv) in the presentation for L

come from four types of basis elements for .V ˝V /=I :

(i) xi
vxj

w or yi
vyj

w for v ¤ w ,

(ii) xi
vyj

w for v ¤ w , or v D w and either i ¤ j or i D j D 1,

(iii) xi
vge or yi

vge for v ¤ h.e/,

(iv) ge1
ge2

for fe1; e2g not a broken circuit.

The further subtypes in the relations for L arise when computing ��1 . Since A.A/ is
Koszul by Theorem 3.4.3 or 3.5.3, U.L/ is also Koszul.

Statements (2) and (3) follow from Theorem 4.3.6.

Since A.A/ is a Koszul model for XA , Theorem 4.3.6 gives us the following proposition
and corollary, which describes the minimal model of XA and shows that XA is rationally
K.�; 1/.

Proposition 5.2.2 Let C be a complex projective curve of genus g � 1, � D .V; E/ a
chordal graph, ADA.�;C /, and L be the Lie algebra described above. Consider L�

with the grading by bracket length. Then the standard complex .�.L�/; d/ is the
minimal model for XA .

Corollary 5.2.3 Let C be a complex projective curve of genus g�1 and ADA.�;C /
a chordal arrangement. Then its complement XA is a rational K.�; 1/ space.

Remark 5.2.4 Not only is XA rationally K.�; 1/, but it is not hard to show that
XA is also K.�; 1/. As an easy case, a punctured projective curve is homotopic to
a wedge of circles and hence is K.�; 1/. Then by induction on jVj and using the
long exact sequence in homotopy of a fibration, one can show that if � D .V; E/ is
chordal, then the complement to A.� � v;C / is K.�; 1/. The fibration arises as the
restriction of the projection C V ! C V�v to XA.�;C /!XA.��v;C / , where v 2 V is
the maximum vertex in our perfect elimination ordering. The fiber of this fiber bundle
is homeomorphic to C n fk pointsg where k D jE n .E � v/j.

Remark 5.2.5 The fact that chordal arrangements are rationally K.�; 1/ gives us
a class of examples of abelian arrangements which are not formal. If we did have
formality, then Theorem 5.1 of [14] would imply that the cohomology ring is Koszul.
However, if the arrangement is chordal and has at least one cycle, the cohomology ring
is not even generated in degree one and hence cannot be Koszul.
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We end with an example computation of the first few terms �.L=�iL/ of the minimal
model lim

 ��i
�.L=�iL/ for the complement of the elliptic braid arrangement of type A2 .

Example 5.2.6 Consider the case of an elliptic curve. The braid arrangement of
type A2 corresponds to the complete graph � on three vertices V D f1< 2< 3g with
edges labeled f12; 13; 23g.

The DGA A.A/ is the quotient of the exterior algebra ƒ.xv;yv;ge/ by the ideal
generated by

(i) .xi �xj /gij , .yi �yj /gij , and

(ii) g12g13�g12g23Cg13g23 ,

with differential dgij D .xi �xj /.yi �yj /.

Recall from the proof of Theorem 4.3.6 that the bracket length defines another grading
on U.L/, which also gives another grading on A.A/ (by assigning the “weight” of
a generator of A.A/ to be the bracket length of its dual in U.L/). Notice that there
is a quasi-isomorphism up to weight less than i between �.L=�iL/ and A.A/, for
each i , which in the limit induces the quasi-isomorphism between �.L/ and A.A/.

(1) L=�1LD 0 and hence �1 DQ, which is isomorphic to the weight-0 part of
A.A/.

(2) L=�2L is the vector space generated by av and bv so that �1 D ƒ.xv;yv/

with differential d2 D 0. This is isomorphic to the weight � 1 part of A.A/.

(3) �.L=�3L/ D ƒ.xv;yv;ge/ with differential d3W gij 7! .xi � xj /.yi � yj /,
which matches A.A/ up to weight 2.

(4) �.L=�4L/Dƒ.xv;yv;ge; ke;a; ke;b/, where

kea
WD Œah.e/ ; ce �

�
D�Œat .e/ ; ce �

�

and
ke;b WD Œbh.e/ ; ce �

�
D�Œbt .e/ ; ce �

�:

The differential d4 restricts to d3 on the subalgebra �.L=L.3//, and we also
have d4ke;a D .xh.e/ �xt .e/ /ge and d4ke;b D .yh.e/ �yt .e/ /ge .

(5) �.L=�5L/Dƒ.xv;yv;ge; ke;a; ke;b; ke;aa; ke;bb; ke;ab; kC / where

ke;aa WD Œah.e/; Œah.e/; ce ��
�
D�Œat .e/; Œah.e/; ce ��

�;

ke;bb WD Œbh.e/; Œbh.e/; ce ��
�
D�Œbt .e/; Œbh.e/; ce ��

�;

ke;ab WD Œah.e/; Œbh.e/; ce ��
�
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and
kC D Œce1

; ce2
�� D�Œce1

; ce3
�� D Œce2

; ce3
��

whenever fe1; e2; e3g is a cycle. The differential is defined by

d5ke;aa D .xh.e/�xt .e//ke;a;

d5ke;bb D .yh.e/�yt .e//ke;b;

d5ke;ab D .xh.e/�xt .e//ke;bC .yh.e/�yt .e//ke;a;

and
d5kC D ge1

ge2
�ge1

ge3
Cge2

ge3
:
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