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On a spectral sequence for the cohomology
of infinite loop spaces

RUNE HAUGSENG

HAYNES MILLER

We study the mod-2 cohomology spectral sequence arising from delooping the
Bousfield–Kan cosimplicial space giving the 2–nilpotent completion of a connective
spectrum X . Under good conditions its E2–term is computable as certain nonabelian
derived functors evaluated at H�.X/ as a module over the Steenrod algebra, and it
converges to the cohomology of �1X . We provide general methods for computing
the E2–term, including the construction of a multiplicative spectral sequence of Serre
type for cofibration sequences of simplicial commutative algebras. Some simple
examples are also considered; in particular, we show that the spectral sequence
collapses at E2 when X is a suspension spectrum.

18G40, 55P47

1 Introduction

This paper explores the relationship between the F2–cohomology H�E D H�.EIF2/
of a connective spectrum E and that of its associated infinite loop space �1E .

The starting point is the stabilization map H�.E/ ! H�.�1E/, induced by the
adjunction counit †1�1E!E . This factors through the maximal unstable quotient
DH�.E/ of the A–module H�.E/ (where A is the Steenrod algebra), and this map
then extends over the free unstable algebra UDH�.E/. This construction provides the
best approximation to H�.�1E/ functorial in the A–module H�.E/.

We study a spectral sequence that converges (for E connected and of finite type)
to H�.�1E/ and has E2–term given by the nonabelian derived functors of UD applied
to H�.X/. This is the cohomology spectral sequence associated to the cosimplicial
space obtained by applying �1 to a cosimplicial Adams (or Bousfield–Kan) resolution
of the spectrum E .

This construction is analogous and in a sense dual to that of [21], where Miller
constructed a spectral sequence that converges to H�.E/ by forming a simplicial
resolution of E by suspension spectra and applying the zero-space functor �1 . The
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2912 Rune Haugseng and Haynes Miller

best approximation to the homology of E functorial in the homology of the infinite
loop space �1E is given by the indecomposables of H�.�1E/ with respect to
the Dyer–Lashof operations and products, which are annihilated by the natural map
H�.�1E/ ! H�.E/, and the E2–term of the spectral sequence is given by the
nonabelian left derived functors of these indecomposables applied to H�.�1E/.

The spectral sequence we study here is hardly new, and has been previously considered
(in unpublished work) by Bill Dwyer, Paul Goerss, and no doubt others. Our main contri-
bution here is related to the computation of the E2–term, which is of the form ��.UV�/,
where V� is a simplicial unstable A–module. We show that this is determined by a
natural short exact sequence of graded unstable modules over the Steenrod algebra,
in which the end terms are explicitly given in terms of the graded A–module ��.V�/.
This yields an explicit but mildly nonfunctorial description of the E2–term.

This reduces the analysis of the E2–term of the spectral sequence to the computation of
the derived functors L�D . These derived functors of destabilization have been studied
by many authors, including Singer [30; 31], Lannes and Zarati [19], Goerss [11], Kuhn
and McCarty [18], and Powell [24].

As an outcome of our computation, we find that the spectral sequence must collapse
when X is a connected suspension spectrum, X D †1B for B a connected space.
While the spectral sequence collapses by construction when X is a mod-2 Eilenberg–
Mac Lane spectrum, its collapse for suspension spectra is a bit of a surprise. This
does not yet constitute an independent calculation of the cohomology of �1†1B ,
however, since to prove that the spectral sequence collapses we simply compare the
size of the E2–term with that of the known homology of �1†1B . It is possible that
the collapse follows from Dwyer’s description [9] of the behavior of differentials in a
spectral sequence of this type.

It would be interesting to compare the spectral sequence we study to that arising from the
Goodwillie–Taylor tower of the functor †1�1 , as studied by Kuhn and McCarty [18].
Those authors also relate their spectral sequence to derived functors of destabilization,
though in a less direct way than they occur in our spectral sequence; we would like to
better understand the relationship between these constructions, which seems analogous
to the relationship between the Bousfield–Kan unstable Adams spectral sequence and
the spectral sequence arising from the lower central series.

1.1 Overview

We construct the spectral sequence in Section 2, and review some background ma-
terial on simplicial commutative F2–algebras in Section 3. Then in Section 4 we
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compute ��U.M/ in terms of ��M , where M is any simplicial A–module. We end
by discussing some simple examples of the spectral sequence in Section 5.
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2 Definition and convergence of the spectral sequence

In this section we define the spectral sequence we are interested in, observe that
its E2–term is described by certain derived functors, and show that it converges under
suitable finiteness and connectivity assumptions. More precisely, our goal is to prove
the following:

Theorem 2.1 Suppose X is a connected spectrum of finite type, ie ��X is 0 for �� 0
and is a finitely generated abelian group for �> 0. Then there is a convergent spectral
sequence

E
s;t
2 D L�s.UD/.H�X/t ) HtCs.�1X/:

Here L�.UD/ denotes the nonabelian derived functors of UD , which can be defined
as ��UD.M�/ where M� is the simplicial free resolution of the A–modules H�X .

To define the spectral sequence, recall that for any spectrum X the Eilenberg–Mac Lane
ring spectrum HF2 gives a cosimplicial spectrum

P �
WDX ^HF^.�C1/2 :

The homotopy limit of P � is the 2–nilpotent completion X^2 of X . Since the func-
tor �1 preserves homotopy limits, the cosimplicial space �1P � has homotopy
limit �1.X^2 /. This gives a spectral sequence in cohomology,

E
s;t
2 D ��sH

t .�1P �/) HtCs.�1.X^2 //:

Proposition 2.2 (Bousfield) If X is a connected spectrum of finite type (ie all its
homotopy groups are finitely generated), then this spectral sequence converges.
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Proof This follows from (the dual of) the convergence result of [3, Section 4.5].

Lemma 2.3 Suppose X is a connected spectrum of finite type. Then the map
�1X !�1.X^2 / exhibits �1.X^2 / as the HF2–localization of �1X . In par-
ticular, it induces an equivalence in HF2–cohomology.

Proof If X is connected, then by [2, Theorem 6.6] the 2–nilpotent completion X^2
is equivalent to the HF2–localization of X ; in particular the natural map X ! X^2
induces an equivalence in HF2–cohomology.

Moreover, under the stated assumptions on X the map X !X^2 induces an isomor-
phism .��X/˝Z^2 �!

� ��X
^
2 , by [2, Proposition 2.5]. Since X is connected, the

space �1X is nilpotent, and so by [4, Example VI.5.2] the map �1X ! .�1X/^2
also induces an isomorphism .���

1X/˝Z^2 �!
� ��.�

1X/^2 . Since �1.X^2 / is
2–complete, the map �1X ! �1.X^2 / factors through .�1X/^2 ; we know that
two of the maps in the resulting commutative diagram

��.�
1X/˝Z^2

��.�
1X/^2 ��.�

1.X^2 //

are isomorphisms, hence the map .�1X/^2!�
1.X^2 / is a weak equivalence. The re-

sult follows since under our assumptions the map �1X!.�1X/^2 exhibits .�1X/^2
as the HF2–localization of �1X by [4, Proposition VI.5.3].

Under these finiteness assumptions the spectral sequence thus converges to the mod-2
cohomology of �1X . To describe the E2–term more algebraically, we appeal to
Serre’s computation of the cohomology of Eilenberg–Mac Lane spaces. To state this
we must first recall some definitions:

Definition 2.4 Let ModA be the category of (graded) A–modules, and let U be the
full subcategory of unstable modules, ie A–modules M such that if x 2 Mn then
Sqi x D 0 for i > n. We define DW ModA ! U to be the destabilization functor,
which sends an A–module M to its quotient by the submodule generated by Sqi x
where x 2Mn and i > n; the functor D is left adjoint to the inclusion U ,!ModA .

Definition 2.5 Let K be the category of unstable algebras over the Steenrod alge-
bra A, ie augmented commutative A–algebras R that are unstable as A–modules,
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with x2DSqn x for all x 2Rn . We define U W U ! K to be the free unstable algebra
functor, which sends M 2 U to

S.M/=.x2�Sqjxj x/;

where S is the free graded symmetric algebra functor; this functor is left adjoint to the
forgetful functor K! U .

Theorem 2.6 (Serre [29]) If M is an Eilenberg–Mac Lane spectrum of finite type,
then the natural map H�.M/! H�.�1M/ induces an isomorphism

UD.H�M/ �!� H�.�1M/:

For any n > 0 the spectrum X ^ HF^n2 is a wedge of suspensions of Eilenberg–
Mac Lane spectra, so this theorem allows us to rewrite the E2–term of our spectral
sequence as

E
s;t
2 D ��sUD.H

�P �/t :

But by the Künneth theorem H�.P n/ is isomorphic to H�.X/˝A˝nC1 , and in fact
the simplicial A–module H�.P �/ is the standard cotriple resolution of H�X . The
A–modules ��UD.H�P �/ can therefore be interpreted as the (nonabelian) derived
functors L�.UD/ of UD evaluated at H�X . This completes the proof of Theorem 2.1.

Remark 2.7 Our spectral sequence is of the type considered by Dwyer in [9], so by
[9, Proposition 2.3] it is a spectral sequence of A–algebras. By (the dual of) results of
Hackney [15] it is actually a spectral sequence of Hopf algebras.

3 Simplicial commutative F2–algebras

In this section we first review some background material on simplicial commutative
(graded) algebras: we recall the model category structure on simplicial commutative
algebras in Section 3.1 and in Section 3.2 we review the higher divided square operations
in the homotopy groups of simplicial commutative algebras. Then in Section 3.3 we
discuss filtered algebras and modules from an abstract point of view, and finally in
Section 3.4 we use this material to construct a “Serre spectral sequence” for cofiber
sequences of simplicial commutative algebras.
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3.1 Model category structure

We will make use of a model category structure on simplicial augmented commuta-
tive graded F2–algebras. This is an instance of a general class of model categories
constructed by Quillen [25], and is also described by Miller [22]:

Theorem 3.1 There is a simplicial model category structure on the category of sim-
plicial augmented graded commutative F2–algebras where a morphism is a weak
equivalence or fibration if the underlying map of simplicial sets is a weak equivalence
or Kan fibration.

Remark 3.2 For us graded will mean N –graded rather than Z–graded. To avoid
confusion, let us also mention that we do not require that a graded F2–algebra A
has A0 D F2 , as is sometimes assumed in the literature.

Remark 3.3 Since a simplicial graded commutative F2–algebra is a simplicial group,
a morphism f W A!B is a fibration if and only if the induced map A!B��0B �0A

is surjective. In particular, every object is fibrant.

Theorem 3.4 (Rezk) This model structure on simplicial augmented graded commu-
tative F2–algebras is proper.

Proof This follows from the properness criterion of [26, Theorem 9.1], since polyno-
mial algebras are flat and thus tensoring with them preserves weak equivalences.

We now recall Miller’s description of the cofibrations in this model category:

Definition 3.5 A morphism f W A! B of simplicial augmented commutative F2–
algebras is almost-free if for every n� 0 there is a subspace Vn of the augmentation
ideal IBn and maps

ıi W Vn! Vn�1 for 1� i � n;

�i W Vn! VnC1 for 0� i � n;

so that the induced map An ˝ S.Vn/ ! Bn is an isomorphism for all n and the
following diagrams commute:

An˝S.Vn/ Bn

An�1˝S.Vn�1/ Bn�1;

di ˝S.ıi / di

An˝S.Vn/ Bn

AnC1˝S.VnC1/ BnC1:

si ˝S.�i / si
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In other words, all the face and degeneracy maps except d0 are induced from maps
between the Vn .

Remark 3.6 The definition of almost free morphisms in [22] is wrong and was
corrected in [23].

Theorem 3.7 (Miller, [22, Corollary 3.5]) A morphism of simplicial augmented
commutative F2–algebras is a cofibration if and only if it is a retract of an almost-free
morphism.

3.2 Higher divided square operations

In this subsection we review the higher divided square operations on the homotopy
groups of simplicial commutative F2–algebras. These operations were initially intro-
duced by Cartan [5], and have subsequently also been studied by Bousfield [1] and
Dwyer [10].

Definition 3.8 If V is a simplicial F2–vector space, we write C.V / for the unnor-
malized chain complex of V (obtained by taking the alternating sum of the face maps
as the differential) and N.V / for the normalized chain complex, given by

NkX D
\
i¤0

ker.di W Xk!Xk�1/

with differential d0 . These chain complexes are quasi-isomorphic, and their homology
groups are the same as the homotopy groups of V , regarded as a simplicial set.

Theorem 3.9 (Dwyer [10]) Let A be a simplicial commutative F2–algebra.

(i) There are maps ıi W C.A/n!N.A/nCi for i � 1 that satisfy

dıi .a/D

8̂̂̂<̂
ˆ̂:

ıi .da/ if n > i > 1;
ı1.da/C�.a/ if i D 1 and n > 1;

a da if i D n > 1;
a daC�.a/ if nD i D 1:

Here �.a/ denotes the image in N.A/ of the square a2 of a in the multiplication
on An .

(ii) In particular, there are higher divided square operations ıi W �n.A/! �nCi .A/

for 2 � i � n. If a2 D 0 for all a 2 A, then there is also an operation
ı1W �n.A/! �nC1.A/ for n� 1.

(iii) These operations have the following properties:
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(1) ıi W �nA! �nCiA is an additive homomorphism for 2 � i < n, and ın
satisfies

ın.xCy/D ın.x/C ın.y/C xy:

(2) ıi acts on products as follows:

ıi .xy/D

8<:
x2ıi .y/ if x 2 �0A;
y2ıi .x/ if y 2 �0A;
0 otherwise:

(3) (“Adém relations”) If i < 2j then

ıiıj .x/D
X

.iC1/=2�s�.iCj /=3

� j�iCs�1
j�s

�
ıiCj�sıs.x/:

Remark 3.10 Part (i) is not quite true using Dwyer’s definition of the chain-level
operations in [10], but is correct for the variant due to Goerss [12].

Remark 3.11 The upper bound in the “Adém relation” above differs from that in [10],
which does not give a sum of admissible operations; this form of the relation was proved
by Goerss and Lada [13] and implies, by the same proof as for Steenrod operations,
that composites of ı–operations are spanned by admissible composites:

Definition 3.12 A sequence I D .i1; : : : ; ik/ is admissible if it � 2itC1 for all t . A
composite ıI WD ıi1ıi2 � � � ıik is admissible if I is.

Corollary 3.13 Any composite of ı–operations can be written as a sum of admissible
ones.

Remark 3.14 For any x in ��A in positive degree we have x2 D 0. Therefore
Theorem 3.9(iii)(1)–(2) imply that the top operation ın on �n is a divided square,
whence the name “higher divided squares” for the ıi –operations.

Dwyer proves Theorem 3.9 by computing the homotopy groups in the universal case,
namely the symmetric algebra s.V / on a simplicial vector space V . We will now recall
the result of this computation, as well as the analogous result for exterior algebras
(both of which are originally due to Bousfield [1]). To state this we make use of the
following theorem of Dold:

Theorem 3.15 (Dold [7, 5.17]) Let Vect be the category of F2–vector spaces, and
grVect that of graded F2–vector spaces. For any functor F W Vect�n ! Vect there
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exists a functor FW grVect�n! grVect such that for V1; : : : ; Vn simplicial F2–vector
spaces there is a natural isomorphism

��F.V1; : : : ; Vn/Š F.��V1; : : : ; ��Vn/;

where on the left-hand side we take the homotopy of the diagonal of the multisimplicial
F2–vector space F.V1; : : : ; Vn/.

Example 3.16 The Eilenberg–Zilber theorem implies that if F is the tensor product
functor, then F is the graded tensor product of graded vector spaces.

In the symmetric algebra case, the functor s such that ��s.V / D s.��V / has the
following description:

Theorem 3.17 (Bousfield [1], Dwyer [10]) The functor s sends a graded vector
space V to that freely generated on V by a commutative product and operations ıi
satisfying the relations stated in Theorem 3.9 above as well as the relation x2 D 0 for
all x of positive degree.

If B is a graded basis for V , then s.��.V // is the free commutative algebra (modulo
the relation x2D 0 for jxj>0) generated by elements ıIv in degree jvjC i1C� � �C ik
for admissible sequences I D .i1; : : : ; ik/ with ik �2 of excess e.I / WD i1�i2�� � ��ik
at most jvj, as v runs over B .

Let sk.V / be the subspace of the symmetric algebra s.V / spanned by products of
length k ; it also is a functor Vect! Vect. Implicit in Theorem 3.17 is the following
description of the functor sk such that ��sk.V /D sk.��V /.

Theorem 3.18 Suppose V is a graded vector space. Define inductively a weight
function on products ıI1.v1/ � � � ıIn.vn/ where vi 2 V and the Ii are admissible
sequences by

wt.v/D 1 for v in V;

wt.xy/D wt.x/Cwt.y/;

wt.ıi .x//D 2wt.x/:

Then sk.V / is the subspace of s.V / spanned by elements of weight k .

Let e.V / denote the exterior algebra on V and ek.V / its subspace of products
of length k . Then there are functors e and ek such that ��e.V / D e.��V / and
��ek.V /D ek.��V / for a simplicial vector space V . These were also computed
by Bousfield:
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Theorem 3.19 (Bousfield [1]) The functor e sends a graded vector space V to that
freely generated on V by a commutative product and operations ıi (now with i D 1
allowed) satisfying the same relations as in the symmetric case, and with x2 D 0 for
all x . Thus e.V / is generated by v 2 V and symbols ıIv for admissible sequences
I D .i1; : : : ; ik/ (now with ik � 1) of excess � jvj; the element ıIv is again in
degree jvjC i1C� � �C ik . Defining the weight of such a generator as before, the graded
vector space ekV is the subspace of eV spanned by elements of weight k .

Remark 3.20 The same results hold in the graded case. We will use capital letters
for the graded versions of the functors considered above: so S.V / denotes the free
graded symmetric algebra on the graded vector space V , etc. The higher divided power
operations ıi double the internal degree.

3.3 An abstract approach to filtered algebras and modules

Given filtered algebras A, B and C , and maps A!B and A! C , we would like to
construct a filtration on the relative tensor product B˝AC whose associated graded is
the relative tensor product E0B˝E0AE

0C of graded algebras, where E0A denotes
the associated graded algebra of the filtered algebra A. Our goal in this section is to
show that this is possible, provided we allow ourselves to take cofibrant replacements
of these algebras in a suitable model category. We will do this by considering filtered
objects, and in particular filtered modules over a filtered algebra, from an abstract
perspective.

Let N denote the partially ordered set of natural numbers 0; 1; : : : , considered as a
category. If C is a category, we write Seq.C/ for the category Fun.N;C/ of sequences
of morphisms in C. A filtered object of C, if C is for example the category of
chain complexes of abelian groups, can then be thought of as a certain kind of object
of Seq.C/.

Addition of natural numbers is a symmetric monoidal structure on N, so if C is
a category with finite colimits and a symmetric monoidal structure that commutes
with finite colimits in each variable (for short, C is a symmetric monoidal category
compatible with finite colimits) we can equip Seq.C/ with the Day convolution tensor
product. This has as unit the constant sequence

I ! I ! � � �

with value the unit I in C, and if A and B are sequences in C their tensor product A˝B
is given by

.A˝B/n D colim
iCj�n

Ai ˝Bj :
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Remark 3.21 A simple cofinality argument shows that this colimit is isomorphic to
the iterated pushout

An˝B0qAn�1˝B0 An�1˝B1qAn�2˝B1 � � �qA0˝Bn�1
A0˝Bn;

which we can also describe as the coequalizer of the two obvious mapsa
sCtDn�1

As˝Bt �
a

iCjDn

Ai ˝Bj :

In other words, .A˝B/n is the quotient of
`
iCjDnAi ˝Bj where we identify the

images of As˝Bt with sC t D n� 1 in AsC1˝Bt and As˝BtC1 .

If A is an algebra object in Seq.C/, the Day convolution on Seq.C/ induces a relative
tensor product on the category ModA.Seq.C// of A–modules, given by the (reflexive)
coequalizer

M ˝A˝N �M ˝N !M ˝AN;

where M and N are A–modules in Seq.C/. If C is, for instance, chain complexes,
then a filtered algebra A in C is in particular an algebra object of Seq.C/, and filtered
A–modules M and N are also modules for A in Seq.C/. The tensor product of
A–modules then yields an object M ˝AN in Seq.C/, but in general this need not be
a filtered object of C, as the maps in this sequence need no longer be monomorphisms.
However, we can use a model structure on C to deal with this: If C is a combinatorial
model category, we can equip Seq.C/ with the projective model structure. A cofibrant
object in Seq.C/ is then a sequence

A0! A1! � � �

where the objects Ai are all cofibrant, and the morphisms Ai ! AiC1 are all cofibra-
tions. If cofibrations in C are monomorphisms, as they are for chain complexes or
simplicial algebras, then a cofibrant object of Seq.C/ is thus in particular a filtered
object.

The Day convolution tensor product interacts well with this model structure:

Proposition 3.22 (Isaacson) Let C be a symmetric monoidal combinatorial model
category that satisfies the monoid axiom. Then Seq.C/ is also a symmetric monoidal
combinatorial model category with respect to the Day convolution and satisfies the
monoid axiom.

Proof This is a special case of [16, Proposition 8.4].

We can now apply results of Schwede and Shipley to get the following:
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Corollary 3.23 Let C be a symmetric monoidal combinatorial model category that
satisfies the monoid axiom, and suppose A is a commutative algebra object in Seq.C/.
Then:

(i) The category Alg.Seq C/ of associative algebra objects of Seq.C/ is a combina-
torial model category. The forgetful functor to Seq.C/ creates weak equivalences
and fibrations, and the free-forgetful adjunction

Seq.C/� Alg.Seq.C//

is a Quillen adjunction.

(ii) If the unit of C is cofibrant, then the forgetful functor Alg.Seq.C//! Seq.C/
preserves cofibrant object.

(iii) The category ModA.Seq.C// of A–modules is a symmetric monoidal combinato-
rial model category satisfying the monoid axiom. The forgetful functor to Seq.C/
creates weak equivalences and fibrations, and the free-forgetful adjunction

FAW Seq.C/� ModA.Seq.C// WUA

is a Quillen adjunction.

(iv) If the underlying object of A is cofibrant in Seq.C/ then the forgetful functor UA
also preserves cofibrations.

Proof (i), (ii) and (iii) follow from [27, Theorem 4.1], and (iv) is an easy consequence
of the construction of the model structure using [27, Lemma 2.3]: If I is a set of
generating cofibrations in Seq.C/, then FA.I / is a set of generating cofibrations
in A–modules. The triple UAFA is A˝ –, which is a left Quillen functor if A is
cofibrant in Seq.C/. Thus UA takes the generating cofibrations to cofibrations. But
UA also preserves colimits, so as any cofibration is a transfinite composite of pushouts
of generating cofibrations this means it preserves all cofibrations.

Corollary 3.24 Let C be a symmetric monoidal combinatorial model category that
satisfies the monoid axiom, and suppose A is a commutative algebra object in Seq.C/
whose underlying object in Seq.C/ is cofibrant. If M and N are cofibrant A–modules,
then M ˝AN is a cofibrant object of Seq.C/.

This is the result we need to make our spectral sequence: if A is a suitable filtered
algebra in, say, chain complexes, and M and N are filtered A–modules, we can take
cofibrant replacements for them in the model structure on ModA.Seq.C// to get a
cofibrant relative tensor product over A, which is in particular a filtered object and so
gives a spectral sequence.

Algebraic & Geometric Topology, Volume 16 (2016)



On a spectral sequence for the cohomology of infinite loop spaces 2923

Next we want to analyze the associated graded object of such a relative tensor product,
which will allow us to describe the E1–page of our spectral sequence:

Definition 3.25 Let C be a category with finite colimits and a zero object 0. Denote
the product

Q1
iD0 C by Gr.C/ and write TrivW Gr.C/! Seq.C/ for the functor that

sends .Xi /i2N to the sequence

X0
0
!X1

0
!� � � :

This has a left adjoint E0W Seq.C/! Gr.C/, the associated graded functor. We have
.E0A/0 D A0 and .E0A/n for n > 0 is the quotient An=An�1 , ie the pushout

An�1 An

0 An=An�1:

If C has a symmetric monoidal structure, then we can equip Gr.C/ with a graded
tensor product (another Day convolution), given by

.X ˝Y /n D
a

iCjDn

Xi ˝Yj :

The unit is .I; 0; 0; : : :/.

Proposition 3.26 Let C be a symmetric monoidal category compatible with finite
colimits that has a zero object. Then the functor E0W Seq.C/! Gr.C/ is symmetric
monoidal.

Proof E0 clearly preserves the unit, so it suffices to show that there is a natural
isomorphism E0M ˝E0N �!� E0.M ˝N/.

By definition, E0n.M ˝N/ is the cofiber of .M ˝N/n�1! .M ˝N/n . For n 2 N,
let .N � N/�n denote the full subcategory of N � N spanned by the objects .i; j /
with i C j � n; if M �N denotes the composite functor

N�N M�N
���!C�C ˝

�!C;

then .M˝N/n is by definition given by the colimit of M�N restricted to .N�N/�n .
Let ˛ denote the inclusion .N � N/�.n�1/ ,! .N � N/�n ; then .M ˝ N/n�1 is
isomorphic to the colimit of the left Kan extension ˛Š.M �N/j.N�N/�.n�1/

. Thinking
of 0 as the constant diagram of shape .N�N/�n with value 0, we can write E0n.M˝N/
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as the pushout of two maps between colimits of diagrams of the same shape. Moreover,
these maps arise from natural transformations, so since colimits commute we can
identify E0n.M ˝N/ with the colimit of the functor ˇW .N�N/�n! C that assigns
to .i; j / the cofiber of the map

�i;j W .˛Š.M �N/j.N�N/�.n�1/
/.i; j /! .M �N/.i; j /:

If i C j < n then, since .N � N/�.n�1/ is a full subcategory of .N � N/�n , the
map �i;j is an isomorphism, so ˇ.i; j /Š 0. It follows that the colimit of ˇ is just
the coproduct

`
iCjDn ˇ.i; j /, and it remains to show that ˇ.i; j / is isomorphic

to E0i M ˝E
0
j N .

If i C j D n, let .N � N/<.i;j / be the full subcategory of N � N spanned by the
objects .x; y/ with x � i and y � j , except for .i; j /. Then by definition we have that
˛Š..M �N/j.N�N/�.n�1/

/.i; j / is the colimit of M �N restricted to .N�N/<.i;j / .

Write .N�N/0
<.i;j /

for the full subcategory

.i � 1; j / .i � 1; j � 1/! .i; j � 1/

of .N�N/<.i;j / . We claim the inclusion .N�N/0<.i;j / ,! .N�N/<.i;j / is cofinal, and
so gives an isomorphism of colimits. By [20, Theorem IX.3.1], to see this it suffices to
show that the categories

..N�N/0<.i;j //.x;y/= D .N�N/0<.i;j / �.N�N/<.i;j/ ..N�N/<.i;j //.x;y/=

are nonempty and connected. But this category is either all of .N�N/0<.i;j / if x� i�1
and y � j � 1, or the single object .i; j � 1/ if x D i , or the single object .i � 1; j /
if y D j ; these are certainly all nonempty and connected. We may thus identify
˛Š..M�N/j.N�N/�.n�1/

/.i; j / with the pushout Mi˝Nj�1qMi�1˝Nj�1
Mi�1˝Nj

and ˇ.i; j / with the total cofiber of the square

Mi�1˝Nj�1 Mi�1˝Nj

Mi ˝Nj�1 Mi ˝Nj :

The cofibers of the columns here are E0i M ˝Nj�1 and E0i M ˝Nj , since the tensor
product preserves colimits in each variable, and so the total cofiber ˇ.i; j / is isomorphic
to the cofiber of the map E0i M ˝Nj�1! E0i M ˝Nj , which is E0i M ˝E

0
j N , as

required.
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Corollary 3.27 Suppose A is a commutative algebra object of Seq.C/, where C is as
above. Then the adjunction E0 a Triv induces an adjunction

E0W ModA.Seq.C//� ModE0A.Gr.C// WTriv

such that E0 is symmetric monoidal.

This is immediate from Proposition 3.26 and the following easy formal observation:

Lemma 3.28 Let C and D be symmetric monoidal categories, and suppose

F W C � D WG

is an adjunction such that F is symmetric monoidal. If A is a commutative algebra
object of C, this induces an adjunction

FAW ModA.C/� ModFA.D/ WGA

such that FA is symmetric monoidal.

This allows us to identify the associated graded of a relative tensor product:

Corollary 3.29 Let C be a symmetric monoidal category compatible with finite
colimits that has a zero object. Suppose A is a commutative algebra object in Seq.C/
and that M and N are A–modules. Then there is a natural isomorphism

E0.M ˝AN/ŠE
0M ˝E0AE

0N:

Finally, we check that the colimit of a relative tensor product is the expected one:

Proposition 3.30 Suppose C is a symmetric monoidal category compatible with small
colimits. Then the colimit functor Seq.C/! C is symmetric monoidal.

Proof The unit for the tensor product on Seq.C/ is the constant sequence with value I ,
the unit for the tensor product on C. Thus colim preserves the unit. It remains to show
that the natural map colimn.A˝B/n! colimnAn˝ colimnBn is an isomorphism.
But the object colimn.A˝B/n is clearly the colimit over .i; j / 2 N�N of Ai ˝Bj .
Since the tensor product on C preserves colimits in each variable, this colimit is indeed
equivalent to .colimi2NAi /˝ .colimi2NBi /.

Applying Lemma 3.28, we get:
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Corollary 3.31 Let C be as above. Suppose A is a commutative algebra object in
Seq.C/ with colimit A. Then the colimit-constant adjunction induces an adjunction

colimW ModA.Seq.C//� ModA.C/ Wconst

where the left adjoint is symmetric monoidal.

Corollary 3.32 Suppose A is a commutative algebra object in Seq.C/ with colimit A,
and M and N are A–modules with colimits M and N . Then colimM ˝A N is
naturally isomorphic to M ˝AN .

3.4 A Serre spectral sequence for simplicial commutative algebras

In this subsection we construct a multiplicative “Serre spectral sequence” for the
homotopy groups of the cofiber of a cofibration of simplicial commutative algebras.
We derive this by studying a spectral sequence for filtered modules over a filtered
differential graded algebra. Our spectral sequence has the same form as one constructed
by Quillen [25], but his construction does not give the multiplicative structure.

Remark 3.33 We will implicitly assume that all filtrations we consider are nonnega-
tively graded and exhaustive, in the sense that if F0A� F1A� � � � is a filtration of A,
then A is the union of the subobjects FiA.

Proposition 3.34 Suppose A is a filtered commutative differential graded k–algebra,
nonnegatively graded, where k is a field, and B and C are filtered A–modules, also
nonnegatively graded.

(i) If B and C are cofibrant in the model structure on A–modules in sequences of
maps of chain complexes of Corollary 3.23, then the tensor product B˝AC has
a canonical filtration with associated graded

E0�.B˝A C/ŠE
0
�B˝E0�A

E0�C:

(ii) Suppose B and C are in addition filtered A–algebras. Then the filtration
of (i) makes B ˝A C a filtered algebra, so the associated spectral sequence is
multiplicative.

Proof Since k is a field, every k–module is projective, hence in the projective model
structure on the category Ch�0

k
of nonnegatively graded chain complexes of k–modules

every object is cofibrant. Thus in the projective model structure on Seq.Ch�0
k
/ the

cofibrant objects are precisely those that are sequences of monomorphisms, ie those that
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correspond to filtered chain complexes. Part (i) then follows from Corollaries 3.24, 3.29
and 3.32 applied to the projective model structure on chain complexes of k–modules.

If B and C are filtered A–algebras, then we may regard them as associative algebra
objects in the category ModA.Seq.Ch�0

k
//. Their relative tensor product is then also an

associative algebra object in this category, and by (i) its underlying object in Seq.Ch�0
k
/

corresponds to a filtered chain complex. Thus B ˝A C is a filtered algebra, and so
yields a multiplicative spectral sequence.

Proposition 3.35 Suppose A is a commutative differential graded k–algebra and B
and C are A–modules, all nonnegatively graded. Filter A and B by degree, and
give C the trivial filtration with FpC D C for all p � 0. Let B 0 and C 0 be cofibrant
replacements of B and C as A–modules in Seq.Ch�0

k
/. Then in the spectral sequence

associated to the induced filtration on B 0˝A C 0 we have:

(i) E1s;t D .B
0˝A �t�sC/s , where A acts on ��C via the map A! �0A.

(ii) E2s;t D �s.B
0˝A �t�sC/.

Proof The graded tensor product E0�B
0˝E0�A

E0�C
0 has in degree .s; t/ the coequal-

izer of M
iCjCkDs
�C�C�Dt

E0i B
0
�˝E

0
j A� ˝E

0
kC
0
� �

M
mCnDs
˛CˇDt

E0mB
0
˛˝E

0
nC
0
ˇ :

In our case E0
l
B 0 and E0

l
A are zero unless l D  , and E0

l
C 0 is zero unless l D 0,

so this is the coequalizer ofM
iCjDs

B 0i ˝Aj ˝C
0
t�s � B 0s˝C

0
t�s:

Now observe that the map Aj ˝C 0t�s ! C 0t�s is zero unless j D 0, since Aj is in
filtration j and so the product must lie in .E0j C

0/t�s D 0. Thus we can describe this
coequalizer as killing all elements of the form a � b with a 2 A and b 2 B 0 , giving
.B 0˝A �0A/s˝�0A C

0
t�s Š .B

0˝�0A C
0
t�s/s .

The differential in B 0˝AC 0 satisfies the Leibniz rule, so if b˝ c is in filtration s then
d.b˝ c/D db˝ cCb˝dc . Here db is in lower filtration than b , since it is in lower
degree, hence d0 comes from the differential in C 0 . Thus

E1s;t Š .B
0
˝�0A �t�sC/s:

Similarly, the next differential d1 comes from the differential in B , giving

E2s;t Š �s.B
0
˝�0A �t�sC/:
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The Dold–Kan correspondence extends to a Quillen equivalence of model categories
(see [28, Section 4]) between simplicial modules and chain complexes, where the
weak equivalences in the two categories are the ��–isomorphisms and the quasi-
isomorphisms, respectively. Using these model structures we can define derived tensor
products as follows:

Definition 3.36 If A is a simplicial graded F2–algebra, M is a right A–module, and
N is a left A–module, then the derived tensor product M˝L

AN is the homotopy colimit
of the simplicial diagram given by the bar construction, M ˝A˝�˝N . Similarly, if A
is an algebra in chain complexes of graded F2–vector spaces, M is a right A–module,
and N is a left A–module, we define a derived tensor product M˝L

AN as the analogous
homotopy colimit.

Remark 3.37 In the simplicial case, the homotopy colimit is given by the diagonal of
the bar construction.

Remark 3.38 If M is a cofibrant A–module, then for any N the derived tensor
product M ˝L

A N is equivalent to the ordinary tensor product M ˝AN .

Lemma 3.39 Let A be a simplicial graded algebra, X a right A–module, and Y a
left A–module. There is a natural quasi-isomorphism

N.X/˝L
N.A/N.Y /!N.X ˝L

A Y /:

Proof There is a natural quasi-isomorphism N.U /˝N.V /! N.U ˝ V / for all
simplicial abelian groups U and V . Thus there is a natural transformation of simplicial
diagrams N.X ˝A˝� ˝ Y /! NX ˝ .NA/˝� ˝NY that is a quasi-isomorphism
levelwise. This implies that the induced map on homotopy colimits is also a quasi-
isomorphism.

Corollary 3.40 Suppose given simplicial augmented graded F2–algebras A, B and C ,
and maps A! B and A! C . Then there is a multiplicative spectral sequence

E2s;t D �s.B˝
L
A �t�s.C //) �t .B˝

L
A C/:

Proof Let P be a cofibrant replacement for NB as an NA–module in Seq.Ch�0
k
/.

Then by Proposition 3.35 we have a spectral sequence

E2s;t D �s.P ˝NA �t�sNC/) �t�s.P ˝NANC/;
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which is multiplicative by Proposition 3.34. Since taking the colimit of a sequence is a
left Quillen functor, P is also a cofibrant replacement for NB as an NA–module, so
we can write this as

E2s;t D �s.NB˝
L
NA �t�sNC/) �t�s.NB˝

L
NANC/:

By Lemma 3.39 we have a natural quasi-isomorphism NB˝L
NANC!N.B˝L

AC/ and,
since �t�sNC Š�t�sC is concentrated in a single degree, a natural quasi-isomorphism
NB˝L

NA �t�sNC !N.B˝L
A �t�sC/. Thus we have a natural isomorphism

E2s;t Š �s.B˝
L
A �t�sC/) �t�s.B˝

L
A C/:

As observed by Turner [32, Proof of Lemma 3.1], this spectral sequence can be used to
get a “Serre spectral sequence” for cofibration sequences of simplicial commutative
algebras:

Corollary 3.41 (“Serre spectral sequence”) Suppose f W A! B is a cofibration of
simplicial augmented graded commutative F2–algebras with cofiber C and �0AD F2 .
Then there is a multiplicative spectral sequence

�s.C /˝F2 �t�s.A/) �t .B/:

Proof By Corollary 3.40 there is a multiplicative spectral sequence

E2s;t D �s.B˝
L
A �t�sA/) �t .B/:

By definition C Š B˝A F2 , and so

C ˝F2 �tAŠ .B˝A F2/˝F2 �tAŠ B˝A �tA;

which is isomorphic to B˝L
A �tA since A!B is a cofibration and the model structure

on simplicial commutative algebras is left proper by Theorem 3.4. Since F2 is a field
we have

�s.C ˝F2 �t�sA/Š �sC ˝F2 �t�sA;

and so we can rewrite the E2–term of the spectral sequence as

E2s;t Š �s.C /˝F2 �t�s.A/:
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4 Derived functors of U

Our goal in this section is to compute ��U.M/ where M is a simplicial unstable A–
module. As a simplicial commutative algebra, U.M/ depends only on the top nonzero
Steenrod operations in M ; in Section 4.1 we consider graded vector spaces equipped
with only these operations, which we call restricted vector spaces, and observe that a
simplicial restricted vector space decomposes up to weak equivalence as a coproduct of
simple pieces. In Section 4.2 we compute the derived functors of U for these simpler
objects, which gives a description of ��U.M/ as a graded commutative algebra with
higher divided square operations. Using this we then give a more functorial description
of ��U.M/ in Section 4.3, which in particular lets us identify the action of the Steenrod
operations.

4.1 Restricted vector spaces

In this subsection we define restricted vector spaces and make some observations about
their structure; in particular, we show that a chain complex of restricted vector spaces
always decomposes up to quasi-isomorphism as a direct sum of certain very simple
complexes.

Definition 4.1 A restricted vector space (over F2 ) is a nonnegatively graded vector
space V equipped with linear maps �i W V i ! V 2i for all i , called the restriction
maps of V , such that �0W V 0! V 0 is the identity. A homomorphism of restricted
vector spaces f W V ! W is a homomorphism of graded vector spaces such that
�if

i D f 2i�i for all i . We write Restr for the category of restricted vector spaces
and restricted vector space homomorphisms. This is an abelian category.

Definition 4.2 For n � 0, let F.n/ be the free restricted vector space with one
generator �n in degree n. Thus F.n/2

rnDF2 with �2rnD id and F.n/i D0 otherwise;
in particular F.0/ is just F2 in degree 0.

For k; n>0, let T .n; k/ be the nilpotent restricted vector space with one generator �n;k
in degree n subject to �k�n;k D 0; that is, T .n; k/DF.n/=�k . Thus T .n; k/2

rnDF2
for r D 0; : : : ; k with �2rn D id for r D 0; : : : ; k� 1, and T .n; k/i is 0 otherwise.

Definition 4.3 Let V be a restricted vector space. A basis S of V consists of sets S i

of elements of V i such that S0 is a basis for V 0 and if i D 2rp with p odd, then the
set .S2

rp [�.S2
r�1p/[ � � � [�r.Sp// n f0g is a basis for V i .

Remark 4.4 It is clear that any restricted vector space has a basis, since we can
inductively choose complements of �.Vi / in V2i . Equivalently, any restricted vector
space decomposes as a direct sum of copies of F.n/ and T .n; k/.
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Definition 4.5 Let C.q/ be the nonnegatively graded chain complex of restricted
vector spaces

� � � ! 0! 0! F.q/;

with F.q/ in degree 0, and let C.q; k/ be the chain complex

� � � ! 0! F.2kq/ ,! F.q/;

with F.q/ in degree 0 and F.2kq/ in degree 1.

Given a chain complex C , we denote by C Œn� the suspended chain complex with
C Œn�i D Ci�n . Then clearly

H�.C.q/Œn�/Š
�
F.q/ if � D n;
0 if � ¤ n;

H�.C.q; k/Œn�/Š
�
T .q; k/ if � D n;
0 if � ¤ n:

Proposition 4.6 Any chain complex of restricted vector spaces is quasi-isomorphic to
a direct sum of copies of C.q/Œn� and C.q; k/Œn�.

Proof Let .V�; d / be a chain complex of restricted vector spaces. Pick a basis Si
of Hi .V�/. For v 2 Sqi define Wv to be F.q/Œi � if �rv is never zero, and C.q; k/Œi � if
�kvD 0 but �rv¤ 0 for r < k . Let yv be a lift of v to Vi ; in the first case yv defines a
map  vW Wv!V� . In the second case, since �k.v/D0 we can pick yw2ViC1 such that
d. yw/D �k.yv/; then yv and yw define a map  v from Wv to V� . Let W WD

L
v2S Wv

and let  W W !V be
L
v2S  v . Then  is a quasi-isomorphism, since it is clear that

on homology  v induces the inclusion in Hi .V�; d / of the subspace generated by v .

By the Dold–Kan correspondence the category Ch.Restr/�0 of nonnegatively graded
chain complexes of restricted vector spaces is equivalent to the category of simplicial
restricted vector spaces. Let’s write KŒn; q� and KŒn; q; k� for the simplicial objects
corresponding to F.q/Œn� and C.q; k/Œn�, respectively, under this equivalence; then
Proposition 4.6 corresponds to:

Corollary 4.7 Any simplicial restricted vector space is weakly homotopy equivalent
to a coproduct of copies of KŒn; q� and KŒn; q; k�.
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4.2 Computation of the derived functors of U

In this subsection we will prove the main technical result of this paper: we compute the
homotopy groups of the free unstable A–algebra on a simplicial unstable A–module. As
an algebra, U.V / depends only on V as a restricted vector space: it is the “enveloping
algebra” of V , given by the free graded commutative algebra on V subject to the relation
x2D �.x/, ie S.V /=.x2D �.x//, where S.V / is the graded symmetric algebra on V .
If V is a simplicial restricted vector space we may ask about ��.UV /. It does not
depend functorially on ��.V /; we do not have Dold’s Theorem 3.15 working for us.
We will describe ��.UV / in terms of ��.V /, but not functorially. Our description will
use the functor S, given to us by Dold’s theorem, such that ��.SV /DS.��.V //. It
is described in detail above, in Theorem 3.17. We will also use the “loops” functor �
and its first derived functor �1 , defined by the exact sequence

0!†�1V !ˆV
�
�! V !†�V ! 0:

where ˆ denotes the “doubling” functor, .ˆV /2qn D V
q
n and .ˆV /2qC1n D 0.

Here is the result:

Theorem 4.8 If V is a simplicial restricted vector space, then there is a (noncanonical)
isomorphism

��UV Š U.�0V /Œ0�˝S.†���>0V /˝S..†�1��>0V /Œ1�/;

where Œ1� denotes a shift by 1 in the simplicial degree. (By noncanonical we mean that
the isomorphism depends on a choice of basis of ��V .)

By Corollary 4.7 we know that any simplicial restricted vector space is weakly equivalent
to a coproduct of copies of KŒn; q� and KŒn; q; k�. To show that this carries over to
a decomposition of U.M/ up to weak equivalence, we observe U preserves weak
equivalences and colimits:

Proposition 4.9 U , considered as a functor from restricted vector spaces to graded
commutative F2–algebras, preserves colimits and weak equivalences.

Proof We first show that U preserves colimits. Let U 0 denote U , regarded as a
functor from restricted vector spaces to augmented graded commutative F2–algebras.
The forgetful functor from augmented algebras to algebras preserves colimits, so it
suffices to show that U 0 preserves colimits. But this is clear since U 0 has a right
adjoint, namely the augmentation ideal functor for augmented graded commutative
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F2–algebras, regarded as a functor to restricted vector spaces with restriction maps
given by squaring.

To see that U preserves weak equivalences, consider the word-length filtration on U.V /
for V a simplicial restricted vector space. This gives rise to a spectral sequence of the
form

�tEs.V /D Es.��V /t ) �tU.V /;

where E is as in Section 3.2 Moreover, since the filtration is natural in V , so is
the spectral sequence. Thus a weak equivalence f W V !W of simplicial restricted
vector spaces induces a morphism of spectral sequences that gives an isomorphism
on the E1–page, since this only depends on the homotopy of the simplicial restricted
vector space. This implies that the map is an isomorphism of spectral sequences and
hence, as these spectral sequences converge, it follows that U.f / is a weak equivalence
of simplicial graded commutative algebras.

Combining this with Corollary 4.7 we see that U.M/, for any simplicial restricted
vector space M , is weakly equivalent to a tensor product of copies of U.KŒn; q�/
and U.KŒn; q; k�/. It thus suffices to prove Theorem 4.8 in these two cases. We begin
with the easiest case, namely ��U.KŒn; q�/ for q > 0. For this we need to recall the
explicit form of the Dold–Kan construction:

Definition 4.10 Let C be an abelian category. The Dold–Kan construction

KW Ch.C/�0! Fun.�op;C/

sends a nonnegatively graded chain complex A to the simplicial object K.A/ defined
as follows: We set

K.A/n D
M

˛W Œn��Œk�

Ak;

where the coproduct is over surjective maps out of Œn�. Then a map K.A/n!K.A/m
is described by a “matrix” of maps f˛;ˇ W Ak!Al from the component corresponding
to ˛W Œn�� Œk� to the component corresponding to ˇW Œm�� Œl �. To define the map
��W K.A/n!K.A/m corresponding to �W Œm�! Œn� in � we take this to be given by

f˛;ˇ WD

8<:
id if l D k and ˇ D ˛�;
d if l D k� 1 and d0ˇ D ˛�;
0 otherwise:

The Dold–Kan correspondence (see Dold [7], Dold and Puppe [8], Kan [17]) is then
that the functor K is an equivalence of categories, with inverse the normalized chain
complex functor.
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Lemma 4.11 Let F2Œn; q� denote the chain complex of graded vector spaces that
is 0 except in the degree n, where it is F2Œq� (the graded vector space with F2 in
degree q and 0 elsewhere). Then for q > 0 we have UKŒn; q�Š S.KF2Œn; q�/, where
KF2Œn; q� is the Dold–Kan construction for graded vector spaces applied to F2Œn; q�.
In particular, we have an isomorphism

��UKŒn; q�ŠSF2Œn; q�

for all n and q > 0.

Proof From the definition of the Dold–Kan functor K we have

KŒn; q�i D
M

Œi��Œn�

F.q/

and so for q > 0 we have

UKŒn; q�i Š
O

Œi��Œn�

UF.q/Š
O

Œi��Œn�

SF2Œq�Š S

� M
Œi��Œn�

F2Œq�

�
Š S.KF2Œn; q�/i :

Moreover, the simplicial structure maps in UKŒn; q� and SKF2Œn; q� are also clearly
the same (on “components” they are either the identity or zero), so these simplicial
graded vector spaces are isomorphic.

For the case q D 0 the algebra UF.0/ is not a symmetric algebra, since we impose
the relation x2 D x on the generator x : it is a Boolean algebra. If V is a vector
space, we write b.V / for the free Boolean algebra s.V /=.x2 D x/ on V (where
s.V / is the ungraded symmetric algebra on V ). By Theorem 3.15, there is a functor
bW grVect! grVect such that ��b.V /D b.��V / for V a simplicial vector space.

Lemma 4.12 Suppose V is a graded F2–vector space. Then

b.V /� D

�
b.V0/ if � D 0;
0 otherwise.

Proof Suppose V is a simplicial vector space. Then Theorem 3.9 implies that
for any element a in degree n > 0 in the chain complex associated to b.V / such
that daD 0, there exists an element ı1a in degree nC1 such that dı1aD �.a/D a .
Thus ��b.V /D 0 for �> 0.

Lemma 4.13 For any n we have an isomorphism UKŒn; 0� Š b.KF2Œn�/Œ0�, the
simplicial graded vector space with b.KF2Œn�/ in degree 0, and so

��UKŒn; 0�D

�
.b.F2//Œ0� if nD 0;
b.0/Œ0�Š F2Œ0� if n¤ 0:
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Proof As in the proof of Lemma 4.11 we have

UKŒn; 0�i Š
O

Œi��Œn�

UF.0/Š
O

Œi��Œn�

b.F2/Œ0�Š b

� M
Œi��Œn�

F2

�
Œ0�Š b.KF2Œn�/Œ0�i ;

and the simplicial structure maps are again the same.

Now we consider the consider the more complicated case, namely UKŒn; q; k�. There
is a cofibration sequence

F.q/Œn�! C.q; k/Œn�! F.2kq/ŒnC 1�

of chain complexes of restricted vector spaces. By the Dold–Kan correspondence this
gives a cofibration sequence

KŒn; q�!KŒn; q; k�!KŒnC 1; 2kq�

of simplicial restricted vector spaces, and so a cofibration sequence

U.KŒn; q�/! U.KŒn; q; k�/! U.KŒnC 1; 2kq�/

of simplicial commutative F2–algebras by Proposition 4.9. We want to apply the
Serre spectral sequence of Corollary 3.41 to this cofibration sequence to compute
��U.KŒn; q; k�/; to do this we first observe that the map U.KŒn; q�/!U.KŒn; q; k�/

is a cofibration of simplicial graded commutative algebras:

Lemma 4.14 The map U.KŒn; q�/! U.KŒn; q; k�/ is almost-free in the sense of
Definition 3.5, and so is a cofibration of simplicial graded commutative algebras.

Proof We have

KŒn; q; k�i D
M

Œi��Œn�

F.q/˚
M

Œi��ŒnC1�

F.2kq/

and UKŒn; q; k�i Š UKŒn; q�i ˝S.Vi / where Vi D
L
Œi��ŒnC1� F2Œ2

kq�. It is clear
that the simplicial structure maps  � take UKŒq; n�� to itself, and are induced by maps
between the Vn except when  is such that for some ˇ and  we have ˇ D d0 ,
since this is the case when the differential in the chain complex occurs in the definition
of  � for KŒn; q; k�.

But the map ˇW Œi �! ŒnC1� is surjective and order-preserving, so it must send 0 to 0.
Thus ˇ will hit 0 in ŒnC 1� for all ˇ if  hits 0 in Œi �, in which case ˇ cannot
be of the form d0 . This is clearly the case for the degeneracies sj W Œi C 1�! Œi � for
all j (as they are surjective) and the face maps d j W Œi � 1�! Œi � for j ¤ 0. Thus the
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structure maps of U.KŒn; q; k�/ corresponding to all degeneracies and all face maps
other than d0 are induced from maps between the Vi .

Proposition 4.15 The Serre spectral sequence for the cofibration sequence

U.KŒn; q�/ ˛!U.KŒn; q; k�/ ˇ!U.KŒnC 1; 2kq�/

collapses at the E2–page.

Proof By Corollary 3.41 the spectral sequence in question is a multiplicative spectral
sequence of the form

E2s;t D �s.UKŒnC 1; 2
kq�/˝�t�s.UKŒn; q�/) �t .UKŒn; q; k�/;

with differentials d r W Ers;t ! Ers�r;t�1 . Write � to denote the fundamental class
in �nKŒn; q�DE20;n and � for the fundamental class in �nC1KŒnC1; 2kq�DE2nC1;nC1 .
Since the spectral sequence is multiplicative, it suffices to show that there are no
nonzero differentials on the classes ıI � and ıI� . Clearly there are no possible nonzero
differentials on ıI �, and the only differential on � that hits a nonzero group is dnC1 ,
but dnC1� cannot be � since they differ in internal grading. Moreover, the groups that
might support differentials hitting � are all zero, so � must survive to E1 .

There is an obvious map of cofibration sequences from

U.KŒn; q�/! U.KŒn; q; k�/! U.KŒnC 1; 2kq�/

to
F2Œ0�! U.KŒnC 1; 2kq�/ id

�!U.KŒnC 1; 2kq�/;

and the map F2Œ0�!U.KŒnC1; 2kq�/ is a cofibration since U.KŒnC1; 2kq�/ is free.
Thus we get a morphism of spectral sequences, given on the E2–page by projection
to ��U.KŒnC 1; 2kq�/ and on the E1–page by ��ˇ . This means that ��ˇ must
send � to the fundamental class �0 in ��U.KŒnC 1; 2kq�/, and so for any admissible
sequence I the class ıI� is mapped to ıI�0 , which is nonzero. This implies that
ıI� must also survive to E1 for all I . By multiplicativity, this means the spectral
sequence has no nonzero differentials, ie it collapses on the E2–page.

Corollary 4.16 There is an isomorphism

��U.KŒn; q; k�/ŠSF2Œn; q�˝SF2ŒnC 1; 2
kq�

of algebras over the triple S.
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Proof The map ��ˇW ��UKŒn; q; k�!��UKŒnC1; 2
kq� is surjective, as we saw in

the proof of Proposition 4.15. Since ��UKŒnC1; 2kq� is free, choosing a preimage of
the generator gives a map ��UKŒnC 1; 2kq�! ��UKŒn; q; k� of S–algebras. Since
the tensor product is the coproduct, we get a map

��UKŒn; q�˝��UKŒnC 1; 2
kq�! ��UKŒn; q; k�

of S–algebras. Filter the left-hand side by degree and the right-hand side by the
filtration from the Serre spectral sequence. The collapse of this spectral sequence
implies that this gives an isomorphism of the graded objects associated to the filtration,
hence this map is an isomorphism of bigraded vector spaces and so also an isomorphism
of S–algebras.

Combining Lemmas 4.11 and 4.13 and Corollary 4.16 now completes the proof of
Theorem 4.8. Applying this to the E2–term of our spectral sequence, we deduce the
following:

Corollary 4.17

(i) If E is a connected spectrum of finite type, the E2–term of the spectral sequence
for H��1E is of the form

E2 Š UD.H�E/Œ0�˝S.†�L�>0D.H�E//˝S.†�1L�>0D.H�E/Œ1�/:

(ii) If in addition the top squares in L�D.H�E/ are all zero for � > 0, then the
E2–term is given by

E2 Š UD.H�E/Œ0�˝E.L�>0D.H�E//:

4.3 A functorial description of the derived functors

The description of ��UM for a simplicial restricted vector space we obtained above is
compatible with the products and ı–operations. However, in the case of interest, M is
the underlying simplicial restricted vector space of a simplicial unstable A–module;
this means that there are also Steenrod operations on ��UM . We will now give a more
functorial description of ��UM that is also compatible with these operations.

If M is a simplicial unstable A–module, we have a natural transformation M!†�M ,
which induces a map ��UM ! ��U†�M . Since the top squares in †�M are all
zero, as a simplicial commutative algebra U†�M is isomorphic to E†�M , and
hence ��U†�M is isomorphic to E.��†�M/. We can also easily describe the
action of the Steenrod operations here, using the following observation of Dwyer:
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Proposition 4.18 [9, Proposition 2.7] Let R be a simplicial unstable algebra over
the Steenrod algebra; then ��R supports both higher divided squares and Steenrod
operations. These are related as follows:

Sqk ıi D
�
0 for k odd,
ıi Sqk=2 for k even,

for i � 2. Moreover, if all squares in R are zero, then the same is true for i D 1.

Proof Write Sq WDSq0CSq1C � � � . By the Cartan formula, SqW R!R is an algebra
homomorphism. Since the operation ıi is natural, this means ıi SqD Sq ıi in ��R .
Considering the homogeneous parts in each internal degree on both sides gives the
result.

We first consider the case where M is a simplicial unstable A–module such that
�0M D 0:

Proposition 4.19 Suppose M is a levelwise projective simplicial unstable A–module
such that �0M D 0. Then there is a natural isomorphism of commutative bigraded
F2–algebras

��UM !S.��†�M/;

compatible with Steenrod operations and higher divided squares.

Proof Observe that if N is a simplicial unstable A–module such that �0N D 0 and
the top squares in N vanish (such as N D †�M ), then we have an isomorphism
E.��N/ŠS.��N/˝S.ı1��N/, compatible with the Steenrod operations. Moreover,
the inclusion S.��N/ ,!E.��N/ and retraction E.��N/!S.��N/ are compatible
with Steenrod operations. Taking N D†�M we thus have a natural map of graded
algebras

��UM ! E.��†�M/!S.��†�M/;

compatible with Steenrod squares and ı–operations. We will show that this map is an
isomorphism.

M is weakly equivalent to a coproduct of copies of KŒn; q� and KŒn; q; k�, by
Corollary 4.7. We know U preserves weak equivalences and colimits by Proposition 4.9,
and � preserves coproducts and weak equivalences between levelwise projective
objects. Thus it suffices to prove the result when M is KŒn; q� or KŒn; q; k�.

In the first case, †�KŒn; q� is K.F2Œn; q�/, and by Lemma 4.11 we know that
UKŒn; q� is SK.F2Œn; q�/ for n > 0, so the map UKŒn; q�! U†�KŒn; q� is the
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natural map SK.F2Œn; q�/!EK.F2Œn; q�/. On homotopy this is just the inclusion of
the factor S.F2Œn; q�/.

When nD 0, we have †�KŒn; 0�' 0, so

��UKŒn; 0�! ��U†�KŒn; 0�!S.��†�KŒn; 0�/

is the identity map on F2Œ0� by Lemma 4.13.

For UKŒn; q; k� we consider the extension sequence

UKŒn; q�! UKŒn; q; k�! UKŒnC 1; 2kq�:

On homotopy, this leads to a commutative diagram

��UKŒn; q� S.��†�KŒn; q�/

��UKŒn; q; k� S.��†�KŒn; q; k�/

��UKŒnC 1; 2
kq� S.��†�KŒnC 1; 2

kq�/:

Here we have already shown that the top and bottom horizontal morphism are isomor-
phisms. But the chain complex †�C.q; k/ is clearly F2Œq�˚†F2Œ2kq�, so the right
vertical maps are a split extension sequence. Moreover, from the proof of Corollary 4.16
we know that the lower left vertical map is surjective, and that choosing a preimage of
the generator gives an isomorphism

S.��†�KŒn; q�/˝S.��†�KŒnC 1; 2
kq�/ �!� ��UKŒn; q; k�:

The composite of this with the map ��UKŒn; q; k�! S.��†�KŒn; q; k�/ is also
an isomorphism (since it is determined by where it sends the generators). Thus by
the 2-out-of-3 property the middle horizontal map here must also be an isomorphism,
which completes the proof.

For a general simplicial unstable A–module M we have a projection M ! �0MŒ0�.
Writing M>0 for the fiber of this map, we have a pushout square

M>0 M

0 M0

where M0 is weakly equivalent to �0MŒ0� (as can be seen from the long exact sequence
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in homotopy groups). Thus we have a pushout diagram

UM>0 UM

F2 UM0

of simplicial unstable A–algebras. On homotopy we thus have maps

��UM>0! ��UM ! U�0MŒ0�;

where the second map is an isomorphism on �0 . We thus have a canonical map
U�0MŒ0�! ��UM , and since the tensor product is the coproduct here we get a map

��UM>0˝U�0MŒ0�! ��UM;

compatible with all the operations in play. Moreover, this is an isomorphism; as usual,
this follows from considering the case where M is KŒn; q� or KŒn; q; k�.

Theorem 4.20 Suppose M is a simplicial unstable A–module, and let M 0 ! M

be a weak equivalence where M 0 is levelwise projective. Then we have a natural
isomorphism of commutative bigraded F2–algebras

S.��>0†�M
0/˝U�0MŒ0� �!� ��UM;

compatible with Steenrod operations and higher divided squares. Moreover, there is a
short exact sequence

0!†�1��>0MŒ1�! ��>0†�M
0
!†���>0M ! 0

of graded unstable A–modules.

Proof Since U preserves weak equivalences by Proposition 4.9, ��UM 0 Š ��UM ,
so the desired isomorphism follows from Proposition 4.19. The short exact sequence is
a consequence of the hyperhomology spectral sequence

†�s�tM ) �sCt†�M

(see for example [14]), which collapses.

Corollary 4.21 Let X be a connected spectrum of finite type. In the infinite loops
spectral sequence for X the E2–term is isomorphic to

S.L�>0.†�D/.H�X//˝UD.H�X/;

compatibly with products, Steenrod operations, and higher divided squares. Moreover,
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there is a short exact sequence

0!†�1L�>0D.H�X/Œ1�! L�>0†�D.H�X/!†�L�>0D.H�X/! 0

of graded unstable A–modules.

Proof Recall the E2–term is obtained by applying UD to a free simplicial resolution
of H�X as an A–module. Applying D to this free resolution gives a levelwise free
simplicial unstable A–module, so this is immediate from Theorem 4.20.

5 Examples

Corollary 4.17 reduces the analysis of the E2–term of our spectral sequence to the
computation of the derived functors of D . In this section we will apply results about
these functors from the literature to describe the spectral sequence in two simple
examples.

5.1 Eilenberg–Mac Lane spectra

The spectral sequence is clearly trivial for Eilenberg–Mac Lane spectra having the
form †kHF2 . For a slightly less trivial example, consider the Eilenberg–Mac Lane
spectra †kHZ and †kHZ=2n , where k must be positive for our convergence result to
apply. The mod-2 cohomology of the spectrum HZ, originally computed by Serre [29],
is the A–module A=Sq1 . Since Sq1 Sq1D 0, this has a simple free resolution, namely

� � � !†2A
�Sq1
�!†A

�Sq1
�!A:

From this we see that, writing F.n/ D D.†nA/ for the free unstable A–module
on a generator in degree n, the derived functors L�D.H�†kHZ/ are given by the
cohomology of the complex

� � � ! F.kC 2/
�Sq1
�!F.kC 1/

�Sq1
�!F.k/:

But it is easy to see that this complex is exact for k > 0, and so L�D.H�†kHZ/
is 0 for �> 0. It follows that our spectral sequence has only a single column, and so
collapses to give

H�.K.Z; k//D H�.�1†kHZ/Š U.F.k/=Sq1/:

Similarly, the spectrum †kHZ=2n has cohomology A=Sq1˚†A=Sq1 , so again D
has no derived functors and H�.K.Z=2n; k//Š U.F.k/=Sq1/˝U.F.kC 1/=Sq1/.
Of course, these results agree with Serre’s computations in [29].
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5.2 Suspension spectra

In this subsection we consider the spectral sequence for infinite loop spaces of the
form �1†1X , where X is a connected space. We will show, by a dimension-counting
argument, that the spectral sequence collapses in this case.

The cohomology H�.†1X/Š zH�X is an unstable A–module. Lannes and Zarati [19]
computed the derived functors L�.D/.M/ for an unstable A–module M . An alter-
native computation (in the dual, homological, case), using a chain complex originally
due to Singer [30], has been given by Kuhn and McCarty [18], and we will use their
formulation of the result. Before stating this, we must introduce some notation:

Definition 5.1 Let M be an A–module. Let RsM be the quotient of the graded
F2–vector space generated by symbols QIx in degree jxj C i1 C � � � C is , where
x 2M and I D .i1; : : : ; is/, by the instability and Adém relations for the Dyer–Lashof
algebra as well as linearity relations (QI .x C y/ D QIx CQIy ). This becomes
an A–module via the (dual) Nishida relation

Sqi Qjx D
X
k

� j�k
i�2k

�
QiCj�k Sqk x:

Let d W Rs.†M/!Rs�1.M/ be defined by d.QI�x/DQi1;:::;is�1.SqisC1 x/; this
is a map of A–modules. Writing RsM WD †Rs†s�1 we can think of d as a map
RsM !Rs�1M .

The result, in the form given by [18, Theorems 4.22 and 4.34], is then:

Theorem 5.2 (Singer, Lannes and Zarati, Kuhn and McCarty) Let M be an A–
module.

(i) The sequence

� � � !RsM
d
!Rs�1M ! � � � !R0M

is a chain complex, and H�.R�M/ is naturally isomorphic to L�.D/.M/.

(ii) If M is an unstable A–module, then the differential in R�M is zero and thus
L�D.M/ŠR�M .

(iii) If M is an unstable A–module, then LsD.M/ is an s–fold suspension of an
unstable module.
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By (iii), it follows that for M unstable all the top squares in LsD.M/ are zero for s >0.
By Corollary 4.17 we therefore have an isomorphism

L�.UD/.M/Š U.M/Œ0�˝E.L�>0D.M//:

Thus if E is a spectrum such that H�E is an unstable A–module, in the E2–term of
our spectral sequence for H�.�1E/ an element v 2 HkE gives:

� �QI�s�1v in degree .�s; kCjI jC s/, where I D .i1; : : : ; is/ is an allowable
sequence, ie it � 2itC1 , and i1 > i2C � � �C isCjvjC s� 1 (for brevity we’ll
denote this element by QIv );

� ıJQ
Iv in degree .�s� jJ j; 2l.kCjI jC s//, for J an admissible sequence of

length l .

The E2–page of the spectral sequence is an exterior algebra on these generators.

Now suppose X is a connected space of finite type; then H�X Š .H�.X//_ . In this
case the spectral sequence for †1X converges by Theorem 2.1. We wish to compare
the E2–page to the known cohomology H�.QX/ Š .H�.QX//_ . Recall that the
homology H�.QX/ can be described in terms of the Dyer–Lashof operations Qj :

Theorem 5.3 (May [6]) If X is a space, the homology H�.QX/ is a polynomial al-
gebra on generators QJ v where v ranges over a basis of H�.X/, and J D .j1; : : : ; js/
is an allowable sequence, meaning jt � 2jtC1 for all t , and j1 > j2C : : :C jsCjvj.
The element QJ v is in degree jvjC jJ j.

To see that the spectral sequence must collapse, it suffices to prove the following:

Proposition 5.4 There is a grading-preserving bijection between the exterior algebra
generators QIx , ıJQIx of the E2–page and the Dyer–Lashof operations QKx ,
together with their powers .QKx/2

r

, for each x in a basis for the reduced cohomology
of X .

Proof Write k WD jxj. Observe that for any allowable sequence I with

i1 > i2C � � �C isC kC s� 1;

the total degree of QIx is the same as the degree of QIx . However, there are more
nonzero Dyer–Lashof operations on x than those given by these sequences: we are
missing those where

i2C � � �C isC k < i1 � i2C � � �C isCjxjC s� 1:
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To relate these to the E2–term, we change the indexing of the Dyer–Lashof operations:
If J D .j1; : : : ; js/ is an allowable sequence, then for QJ v to be nonzero (and not a
square) in H�.QX/ we must have, for positive integers l1; : : : ; ls ,

ji D kC jsC js�1C � � �C jiC1C li :

The allowability condition, expressed in terms of the li , says that li � liC1 . Thus there
exist nonnegative integers a1; : : : ; as (with a1 > 0) such that liC1 D li C aiC1 (and
l1 D a1 ). In terms of the ai the element QJx has degree

2skC

sX
jD1

jX
rD1

2j�1ar D 2
skC

sX
rD1

� sX
jDr

2j�1
�
ar D 2

skC

sX
rD1

.2s � 2r�1/ar :

Let’s write qa1;:::;asx for the element QJx with J of this form. We also extend the
notation by writing q0;a1;:::;asx for .qa1;:::;asx/2 , etc.

Defining xqa1;:::;asx similarly, we see that xqa1;:::;asx and qa1C.s�1/;a2;:::;asx have the
same degree in H�.QX/.

Now suppose ıI is an admissible sequence of ı–operations of length l . Then there exist
nonnegative integers rt such that il D rl � 1 and it D 2itC1C rt for t < l ; in terms
of the rt the admissibility criterion says that r1C� � �Crl � s , and jI j D

P
i .2

i �1/ri .
Then the total degree of ıI xqa1;:::;asx is the same as the degree of qKx , where

K D

�
s�

X
rt ; r1; r2; : : : ; rl�1; a1C rl � 1; a2; : : : ; as

�
:

To see that this gives a bijection between the generators, we describe its inverse:
For qb1;:::;b�x in H�.QX/, let L be the unique integer with 0� L< � such that

b1C � � �C bLCL< � � b1C � � �C bLC1CLC 1:

Then we define

s WD � �L;

rL WD s� b1� � � � � bL�L and rt WD btC1 for t D 1; : : : ; L� 1;

a1 WD bLC1� rLC 1 and ai WD bLCi for i D 2; : : : ; s:

Then

.b1; : : : ; b� /D

�
s�L�

lX
tD1

rt ; r1; : : : ; rL�1; a1C rL� 1; a2; : : : ; as

�
;

so qb1;:::;b� corresponds to ıI xq
a1;:::;asx where I D .i1; : : : ; iL/ is the admissible

sequence determined by the rt , ie with it WD
PL
jDt 2

j�trj .
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Corollary 5.5 For X a connected space of finite type, the spectral sequence

L�.UD/.H�X/) H�.QX/

collapses at the E2–page.
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