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Algebraic & Geometric Topology 16 (2016) 2459–2534

On the homotopy of Q.3/ and Q.5/ at the prime 2

MARK BEHRENS

KYLE M ORMSBY

We study modular approximations Q.`/ , `D 3; 5 , of the K.2/–local sphere at the
prime 2 that arise from `–power degree isogenies of elliptic curves. We develop Hopf
algebroid level tools for working with Q.5/ and record Hill, Hopkins and Ravenel’s
computation of the homotopy groups of TMF0.5/ . Using these tools and formulas of
Mahowald and Rezk for Q.3/ , we determine the image of Shimomura’s 2–primary
divided ˇ–family in the Adams–Novikov spectral sequences for Q.3/ and Q.5/ .
Finally, we use low-dimensional computations of the homotopy of Q.3/ and Q.5/

to explore the rôle of these spectra as approximations to SK.2/ .

55Q45, 55Q51

In [3], motivated by Goerss, Henn, Mahowald and Rezk [9], the p–local spectrum
Q.`/ (p − `) is defined as the totalization of an explicit semi-cosimplicial E1–ring
spectrum of the form

Q.`/� D
�
TMF) TMF0.`/�TMFV TMF0.`/

�
:

The spectrum Q.`/ serves as a kind of approximation to the K.2/–local sphere; see
Section 3.1 for more details on its construction. In [4], it is proven that there is an
equivalence

Q.`/K.2/ ' .E
h�`
2

/h Gal;

where �` is a certain subgroup of the Morava stabilizer group S2 coming from
isogenies of elliptic curves. The subgroup �` is dense if p is odd and ` generates
a dense subgroup of Z�p ; see [6]. Based on this, it is conjectured that there are fiber
sequences

(0.0.1) DK.2/Q.`/! SK.2/

u
�!Q.`/

for such choices of ` (and the case of ` D 2 and p D 3 is handled by explicit
computation in [3], and is closely related to [9]). Density also is used in [5] to show
that, for such `, Q.`/ detects the exact divided ˇ–family pattern for p � 5.
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2460 Mark Behrens and Kyle M Ormsby

However, in the case of p D 2, Z�
2

is not topologically cyclic, and the closure of �`
in S2 is the inverse image of the closure of the subgroup `Z < Z�

2
under the reduced

norm
N W S2! Z�2 :

It is not altogether clear in this case what the analog of the conjecture (0.0.1) should be,
though one possibility is suggested in [6]. Although the 2-primary “duality resolution”
of Bobkova, Goerss, Henn, Mahowald and Rezk (see Henn [10] and Bobkova and
Goerss [7]) seems to take the form of a fiber sequence like (0.0.1), we will observe
that the mod .2; v1/–behavior of Q.3/ actually precludes Q.3/ from being half of
the duality resolution (see Remark 4.5.2). The nondensity of �3 , together with the
appearance of both TMF0.3/ and TMF0.5/ factors in TMF^TMF also suggests that,
from a TMF–resolutions perspective, Q.3/ alone may not be seeing enough homotopy,
and that a combined approach of Q.3/ and Q.5/ may be required at the prime 2.

The goal of this paper is to explore such an approach by extending the work of Mahowald
and Rezk [20] on Q.3/, and initiating a similar study of Q.5/.

The first testing ground for the effectiveness of Q.3/ or Q.5/ at detecting v2–periodic
homotopy at the prime 2 is Shimomura’s 2–primary divided beta family [22]. To the
authors’ surprise, Q.3/ was found to exactly detect Shimomura’s divided beta patterns
on the 2–lines of the E2 term of its Adams–Novikov spectral sequence, as we shall
explain in Section 4. Hence Q.3/ is all that is needed to detect the shape of the divided
beta family. The authors were equally surprised to find no such phenomenon for Q.5/ —
the beta family for Q.5/ has greater v1–divisibility than that for the sphere. On the
other hand, the K.2/–localization of Q.5/ is built out of homotopy fixed point spectra
of groups with larger 2–torsion than Q.3/. This raises the possibility that while Q.5/

may be less effective when it comes to beta elements, it could detect exotic torsion in
higher cohomological degrees that is invisible to Q.3/. This possibility is explored
through some low-dimensional computations.

We now summarize the contents of this paper. In Section 1 we review and expand the
theory of �0.5/–structures on elliptic curves. A �0.5/–structure is an elliptic curve
equipped with a cyclic subgroup of order 5. We recall an explicit description of the
scheme representing �1.5/–structures (elliptic curves with a point of order 5) in terms of
Tate normal form curves and use this description to present several Hopf algebroids that
stackify to the moduli space of �0.5/–structures. We then use these Hopf algebroids
and the geometry of elliptic curves to determine the maps defining Q.5/� .

In Section 2 we compute the homotopy fixed point spectral sequence

H�.F�5 I�� TMF1.5// D) �� TMF0.5/:

Algebraic & Geometric Topology, Volume 16 (2016)



On the homotopy of Q.3/ and Q.5/ at the prime 2 2461

The ring �� TMF1.5/ and the action of F�
5

on it are determined by Tate normal
form, allowing us to produce a detailed group cohomology computation. We then
compute the differentials and hidden extensions in the spectral sequence by a number
of methods: TMF–module structure, transfer-restriction arguments, and comparison
with the homotopy orbit spectral sequence. Our use of the homotopy orbit spectral
sequence to determine hidden extensions is somewhat novel and may find use in other
contexts. Note that the computation of �� TMF0.5/ was first due to Mahowald and Rezk
(unpublished) using this descent spectral sequence. Hill, Hopkins and Ravenel [12]
then rediscovered this computation using the slice spectral sequence.

Since Q.`/ is the totalization of a cosimplicial spectrum, we can compute the E2–term
of its Adams–Novikov spectral sequence as the cohomology of a double complex.
The differentials in the double complex are either internal cobar differentials for
the Weierstrass or �0.5/ Hopf algebroids or external differentials determined by the
cosimplicial structure of Q.`/� . In Section 3 we review formulas for the external
differentials in the `D 3 and `D 5 cases. The Q.3/ formulas are due to Mahowald
and Rezk [20] while those for Q.5/ are derived from Section 1.

In Section 4 we compute several chromatic spectral sequences related to Q.3/ and
Q.5/. Definitions are stated in Section 4.1 and the technique we use is carefully
laid out in Section 4.4. Stated precisely, we compute H 0;�.M 2

0
C �tot.Q.3/// and

H 0;�.M 1
1

C �tot.Q.5///, both of which are related to the divided ˇ–family in the Q.`/

spectra. We compare these groups to Shimomura’s 2–primary divided ˇ–family for
the sphere spectrum (ie the groups Ext0;�.M 2

0
BP�/, reviewed in Theorem 4.2.1). In

Theorem 4.2.2 we find that Ext0;�.M 2
0

BP�/ is isomorphic to H 0;�.M 2
0

C �totQ.3//, so
Q.3/ precisely detects the divided ˇ–family. In contradistinction, Theorem 4.2.4 and
Corollary 4.9.4 show that the divided ˇ–family for Q.5/ has extra v1–divisibility.

Finally, in Section 5 we compute �nQ.3/ and �nQ.5/ for 0 � n < 48. More pre-
cisely, what we actually compute is the portion of these homotopy groups detected by
connective versions of TMF.1 These computations give evidence for some homotopy
which Q.5/ detects which is not detected by Q.3/.

In this paper we assume the reader has some familiarity with the theory of elliptic
curves, level structures, and the stacks which parametrize these objects. We also
assume the reader is familiar with TMF, and its variants. To give extensive background
on these subjects would take us outside of the scope of this paper. For the reader
looking for outside resources, we recommend the 2007 Talbot conference proceedings
[8]. The expository articles contained there should point the inquiring reader in the

1It is likely that what we are computing is a “connective” version of Q.`/ built out of the connective
versions of TMF0.`/ recently constructed in Hill and Lawson [13], though we do not pursue this here.

Algebraic & Geometric Topology, Volume 16 (2016)



2462 Mark Behrens and Kyle M Ormsby

right direction. This paper is itself extending computations of the first author [3] and
Mahowald and Rezk [20]. The reader is encouraged to have some familiarity with
these cases before jumping into the computations contained herein.

Acknowledgements The authors would like to extend their gratitude to Mike Hill,
Mike Hopkins and Doug Ravenel, for generously sharing their slice spectral sequence
computations of the homotopy groups of TMF0.5/. The first author would also like to
express his debt to Mark Mahowald, for sharing his years of experience at the prime 2,
and providing preprints with exploratory computations. The homotopy fixed point
computations were aided by a key insight of Jack Ullman, who pointed out that the
slice spectral sequence agreed with the homotopy orbit spectral sequence in a range,
giving us the idea to use homotopy orbits to resolve hidden extensions. The authors
also would like to thank Agnes Beaudry, Danny Shi and Zhouli Xu for pointing out
some omissions in the computations, and the referee, for his or her careful comments
on many aspects of this paper, in particular on the details of the computation of the
homotopy fixed point spectral sequence for TMF0.5/. The authors were both supported
by grants from the NSF.

1 Elliptic curves with level 5 structures

We consider the moduli problems of �1.5/– and �0.5/–structures on elliptic curves.
An elliptic curve with a �1.5/–structure over a commutative Z

�
1
5

�
–algebra R is a pair

.C;P / where C is an elliptic curve over R, and P 2 C is a point of exact order 5.
An elliptic curve with a �0.5/–structure is a pair .C;H / with C an elliptic curve
over R and H < C a subgroup of order 5. Let Mi.5/ denote the moduli stack

�
over

Spec Z
�

1
5

��
of �i.5/–structures.

Let M1
i .5/ denote the moduli stack of tuples .C;P; v/ (respectively .C;H; v/)

where v is a nonzero tangent vector at 0 2 C . This is equivalent to the moduli
problem in which a nontrivial invariant differential is recorded. Note that in the case
where i D 1, we can use translation by P to equivalently specify this structure as a
tuple .C;P; v0/ where v0 is a nonzero tangent vector at P .

As we proceed, we will freely move between moduli problems of the form Mi.`/ and
M1

i .`/, so we will comment briefly here on the significance in topological modular
forms of recording or not recording a tangent vector. As is customary in the subject,
let ! denote the invertible sheaf of invariant differentials on the moduli stack of elliptic
curves, M, so that sections of !˝t correspond to modular forms of weight t which

Algebraic & Geometric Topology, Volume 16 (2016)
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are meromorphic at the cusp. Recall that the elliptic spectral sequence takes the form

E
s;t
2
DH s.MI!˝t /D) �t�s TMF :

Now consider the stack M1 of elliptic curves with the data of a nonzero tangent vector
at 0. This stack is equipped with a Gm–action

Gm �M1
!M1

that scales this vector, which on points is given by

.z; .C; v// 7! .C; z � v/:

Let � denote the forgetful map

� WM1
!M

which on points is given by
.C; v/ 7! C:

The stack M1 is a Gm–torsor over M, and ! is the associated line bundle over M.
We take a moment to spell this out in more concrete terms.

If X is any scheme or stack with a Gm–action, the structure sheaf admits a decompo-
sition

OX Š
M
t2Z

OX .t/;

where the sections of OX .t/ consist of those functions f on X satisfying

f .z �x/D zt
�f .x/:

One source of Gm–equivariant stacks arises from the stackification of commutative Hopf
algebroids which are graded. Suppose that .T; „/ is a commutative Hopf algebroid
with a grading, and let X be the associated stack:

X D Spec T== Spec„:

In this setting, the grading on T endows the scheme Spec T with a Gm–action, and
the grading on „ ensures that this Gm action descends to the quotient, endowing X
with the structure of a Gm–action.

In the case of the Gm–action on M1 , we have

��OM1.1/D !:

Algebraic & Geometric Topology, Volume 16 (2016)



2464 Mark Behrens and Kyle M Ormsby

The cohomology ring H�.M1IOM1/ inherits an additional integer grading; we will
write this bigraded ring as

H s;t .M1
IOM1/ WDH s.M1

IOM1.t//;

so there is an isomorphism

H s;t .M1
IOM1/ŠH s.MI!˝t /:

Similar statements hold for M1
i .`/. As such, if our interest is in computing the E2–term

of the elliptic spectral sequence for TMFi.`/, then it suffices to study moduli problems
in which we record a nonzero tangent vector (or equivalently a nontrivial invariant
differential). For the remainder of this section, all presentations of Gm–equivariant
moduli stacks by Hopf algebroids shall be implicitly graded, with generators named
“gk ” to implicitly lie in degree k .

The maps in the cosimplicial E1 ring Q.5/� arise by evaluating the TMF–sheaf
Otop on maps M0.5/!M and M0.5/!M0.5/. Recall that the Weierstrass Hopf
algebroid .A; �/ stackifies to M1 ; we review the structure of .A; �/ in Section 1.2. In
this section we produce a Hopf algebroid .B1; ƒ1/ representing M1

0
.5/ and produce

Hopf algebroid formulas for the maps in (the cohomology of) the semi-simplicial stack
associated to Q.`/� .

1.1 Representing M1.5/

In this section we will give explicit presentations of M1.5/ and M1
1
.5/. Consider the

rings
B WD Z

�
1
5
; b; ��1

�
;

B1
WD Z

�
1
5
; a1; a2; a3; �

�1
�
=.a3

2C a2
3� a1a2a3/;

where � is given respectively by

�.b/D b5.b2
� 11b� 1/;

�.a1; a2; a3/D�8a2
1a2

3a2
2C 20a1a3

3a2� a4
1a2

3a2� 11a4
3C a3

1a3
3:

We have the following theorem.

Theorem 1.1.1 The stacks M1.5/ and M1
1
.5/ are affine schemes, given by

M1.5/D Spec B;

M1
1.5/D Spec B1:

Algebraic & Geometric Topology, Volume 16 (2016)
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Proof We first use the techniques of [15, Section 4.4] (which is a recapitulation of a
method from [19]) to produce an explicit model for M1

1
.5/ as an affine scheme. The

procedure is exhibited graphically in Figure 1.

Suppose .C;P / is a �1.5/–structure over a commutative ring R in Weierstrass form
with P D .˛; ˇ/. For r; s; t 2R and � 2R� let 'r;s;t;� denote the coordinate change

x 7! ��2xC r; y 7! ��3yC��2sxC t:

Move P to .0; 0/ via the coordinate change '�˛;0;�ˇ;1W .C;P /! .Ca0 ; .0; 0//, where
Ca0 has Weierstrass form

y2
C a01xyC a03y D x3

C a02x2
C a04x:

(Note that a0
6
D 0 because .0; 0/ is on the curve.) Next eliminate a0

4
by applying the

transformation '0;�a0
4
=a0

3
;0;1 . The result is a smooth Weierstrass curve

(1.1.2) T 1.a1; a2; a3/ W y
2
C a1xyC a3y D x3

C a2x2

with �1.5/–structure .0; 0/ which we call the homogeneous Tate normal form of .C;P /.

'�˛;0;�ˇ;1 '0;�a0
4
=a0

3
;0;1 '0;0;0;a3=a2

Figure 1: The procedure for putting a �1.5/–structure in (homogeneous and
nonhomogeneous) Tate normal form. From left to right: the curves C , Ca0 ,
T1 and T .

Since .0; 0/ has order 5 in T 1.a1; a2; a3/ we must have

(1.1.3) Œ3�.0; 0/D Œ�2�.0; 0/;

where Œn� denotes the Z–module structure of the elliptic curve group law. Explicitly
expanding the left- and right-hand sides of this equation in projective coordinates, we
find that �

a2.�a1a2a3C a2
3/ W a1a2a2

3� a3
2a3� a3

3 W a
3
2

�
D .�a2 W 0 W 1/:

Algebraic & Geometric Topology, Volume 16 (2016)
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It follows that a1; a2; a3 must satisfy

(1.1.4) a3
2C a2

3 D a1a2a3

in order for .T 1.a1; a2; a3/; .0; 0// to be a �1.5/–structure. (The referee points out
that one can also arrive at this condition by contemplating the geometric meaning
of (1.1.3).)

We may compute the discriminant of T 1.a1; a2; a3/ as

(1.1.5) �D�8a2
1a2

3a2
2C 20a1a3

3a2� a4
1a2

3a2� 11a4
3C a3

1a3
3:

Let f 1.a1; a2; a3/ WD a3
2
C a2

3
� a1a2a3 and let

B1
WD ZŒa1; a2; a3; �

�1�=.f 1/:

Then
M1

1.5/D Spec B1:

We now consider �1.5/–structures without distinguished tangent vectors and produce
a (nonhomogeneous) Tate normal form which is the universal elliptic curve for M1.5/.
Begin with a �1.5/–structure .C;P / and change coordinates to put it in homoge-
neous Tate normal form T 1.a1; a2; a3/. Now apply the coordinate transformation
'0;0;0;a3=a2

. (This transformation is permissible because .0; 0/ has order greater
than 3.) After applying the transformation, the coefficients of y and x2 are equal. Let

(1.1.6) T .b; c/ W y2
C .1� c/xy � by D x3

� bx2

denote the resulting smooth Weierstrass curve.

Since .0; 0/ has order 5 we know (1.1.3) holds; it follows that

(1.1.7) b D c

in (1.1.6). Abusing notation, let

(1.1.8) T .b/ W y2
C .1� b/xy � by D x3

� bx2
I

we call this the (nonhomogeneous) Tate normal form of .C;P /. The discriminant
of T .b/ is

(1.1.9) �D b5.b2
� 11b� 1/:

Let
B WD Z

�
1
5
; b; ��1

�
:

The preceding two paragraphs show that

M1.5/D Spec B:

Algebraic & Geometric Topology, Volume 16 (2016)
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Corollary 1.1.10 The moduli space M1
1
.5/ is represented by

Spec Z
�

1
5
; a1;u

˙1; ��1
�
;

where

�D�11u12
C64a1u11

�154a2
1u10
C195a3

1u9
�135a4

1u8
C46a5

1u7
�4a6

1u6
�a7

1u5:

Proof The rings in question are isomorphic via the homomorphism

B1
! Z

�
1
5
; a1;u

˙1; ��1
�

determined by

a1 7! a1; a2 7! u.a1�u/; a3 7! u2.a1�u/:

(Note that u corresponds to a3=a2 , and both a2 and a3 are invertible in B1 .) This
takes T 1.a1; a2; a3/ to the curve

y2
C a1xyCu2.a1�u/y D x3

Cu.a1�u/x2;

whose discriminant may be computed manually.

The simple structure of M1.5/ has an immediate topological corollary that we record
here.

Corollary 1.1.11 The K.2/–localization of TMF1.5/ is a height-2 Lubin–Tate spec-
trum for the formal group law bT .b/ defined over F2 :

TMF1.5/K.2/ 'E2.F2; bT .b//:

Proof The K.2/–localization of TMF1.5/ is controlled by the F2–supersingular locus
M1.5/

ss
F2

of M1.5/. The 2–series of the formal group law for T D T .b/ takes the
form

Œ2� yT .z/D 2zC .b� 1/z2
C 2bz3

C .b2
� 2b/z4

C � � � :

(This is easily deduced from the standard formula for the formal group law of a
Weierstrass curve found, for example, in [23, page 120].) Hence yT is supersingular
over F2 if and only if b D 1. Note that �.T .1// D �11, a unit in Z2 and F2 . It
follows that

M1.5/
ss
F2
D Spec F2:

Let E2 DE2.F2; yT / with �0E2 D Z2ŒŒu1��. The map

Spec�0E2!M1.5/

Algebraic & Geometric Topology, Volume 16 (2016)
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induced by
B! �0E2; b 7! u1C 1

induces the K.2/–localization of TMF1.5/.

1.2 Representing maps M1
1
.5/!M1

There are two important maps M1
1
.5/!M1 which we analyze. On the level of points,

the first is the forgetful map

f WM1
1.5/!M1; .C;P / 7! C:

The second is the quotient map

qWM1
1.5/!M1; .C;P / 7! C=hP i:

Let .A; �/ denote the usual Weierstrass curve Hopf algebroid with

AD ZŒa1; a2; a3; a4; a6; �
�1�; � DAŒr; s; t �

that stackifies to M1 . (Note that � does not have a polynomial generator � precisely
because the coordinate change 'r;s;t;� preserves tangent vectors if and only if �D 1.)

Theorem 1.2.1 The morphisms f and q above are represented by

f �W A! B1; ai 7!

�
ai if i D 1; 2; 3;

0 if i D 4; 6;

and

q�W A! B1; ai 7!

8<:
ai if i D 1; 2; 3;

5a2
1
a2� 10a1a3� 10a2

2
if i D 4;

a4
1
a2� 2a3

1
a3� 12a2

1
a2

2
C 19a3

2
� a2

3
if i D 6:

The associated maps �! B1 take r; s; t to 0 since M1
1
.5/ is a scheme.

Computing q requires that we find a Weierstrass curve representation of C=hP i in terms
of the Weierstrass coefficients of C . This procedure is well-studied by number theorists
under the name Vélu’s formulae (see [24] and [17, Section 2.4]) and is implemented in
the computer algebra system Magma. In fact, if � is an isogeny on C in Weierstrass
form with kernel H , then Vélu’s formulae compute Weierstrass coefficients for the
target of � in terms of the Weierstrass coefficients of C and the defining equations of
the subgroup scheme H . We briefly review the formulae here for reference.
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Suppose H < C is a finite subgroup with ideal sheaf generated by a monic polyno-
mial  .x/, where C is a Weierstrass curve of the form

y2
C a1xyC a3y D x3

C a2x2
C a4xC a6:

For simplicity, assume that the isogeny �W C ! C=H has odd degree. (The even
degree case can be handled as a separate case, but we will not need it in this paper.)
Write

 .x/D xn
� s1xn�1

C � � �C .�1/nsn:

Then C=H has Weierstrass equation

y2
H C a1xH yH C a3yH D x3

H C a2x2
H C .a4� 5t/xH C .a6� b2t � 7w/;

where
t D 6.s2

1 � 2s2/C b2s1C nb4;

w D 10.s3
1 � 3s1s2C 3s3/C 2.b2.s

2
1 � 2s2/C 3b4s1C nb6;

and
b2 D a2

1C 4a2; b4 D a1a3C 2a4; b6 D a2
3C 4a6:

Vélu’s formulae also give explicit equations for the isogeny �W .x;y/ 7! .xH ;yH /,
but they are cumbersome to write down and we will not need them here.

Proof of Theorem 1.2.1 The representation of f is obvious: T 1.a1; a2; a3/ is al-
ready in Weierstrass form with a4; a6 D 0.

Consider the case of C D T .a1; a2; a3/ with H D hP i an order-5 subgroup. Using
the elliptic curve addition law we see that H is the subgroup scheme of C cut out by
the polynomial x.xC a2/. Putting this data into Vélu’s formulae, we find that C=H

has Weierstrass form

(1.2.2) y2
C a1xyC a3y D x3

C a2x2
C .5a2

1a2� 10a1a3� 10a2
2/x

C .a4
1a2� 2a3

1a3� 12a2
1a2

2C 19a3
2� a2

3/;

from which our formula for q follows.

1.3 Hopf algebroids for M1
0
.5/

Recall that a �0.5/–structure .C;H / consists of an elliptic curve C along with
a subgroup H < C of order 5. Unlike the moduli problem of �1.5/–structures,
M0.5/ is not representable by a scheme. Still, it is the case that M1.5/ admits a
C4 D F�

5
–action such that M0.5/ is the geometric quotient M1.5/==F

�
5

. An element
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g 2 F�
5

takes .C;P / to .C; Œzg�P / for zg any lift of g in Z. Similarly, we can write
M1

0
.5/DM1

1
.5/==F�

5
.

While it is typically easier to use this quotient stack presentation of M0.5/ and M1
0
.5/

(and this will be the perspective we will be taking in the computations later in this
paper), we will note that there is also a presentation of these moduli stacks by “.r; s; t/”
Hopf algebroids. Let B1 be as before and define

ƒ1
WD B1Œr; s; t �=�;

where � consists of the relations

3r2
D 2st C a1rsC a3sC a1t � 2a2r;

t2
D r3

C a2r2
� a1r t � a3t;

s6
D�3a1s5

C 9rs4
C 3a2s4

� 3a2
1s4
C 4ts3

C 20a1rs3
C 6a1a2s3

C 2a3s3
� a3

1s3
C 6a1ts2

� 27r2s2
� 18a2rs2

C 12a2
1rs2
� 3a2

2s2
C 3a2

1a2s2

C 3a1a3s2
� 12r ts� 4a2tsC 2a2

1ts� 33a1r2s

� 20a1a2rs� 6a3rsC a3
1rs� 3a1a2

2s� 2a3a2s

C a2
1a3sC 4t2

� 2a1r t � 2a1a2t C 4a3t C 27r3

C 27a2r2
� 2a2

1r2
C 9a2

2r � a2
1a2r � a1a3r:

Theorem 1.3.1 The rings .B1; ƒ1/ form a Hopf algebroid stackifying to M1
0
.5/.

The structure maps are given by

�R.a1/D a1C 2s;  .r/D r ˝ 1C 1˝ r;

�R.a2/D a2C 3r � s2
� a1s;  .s/D s˝ 1C 1˝ s;

�R.a3/D a3C 2t C a1r;  .t/D t ˝ 1C s˝ r C 1˝ t:

Proof The reader will note that the structure maps are identical to those for the
standard Weierstrass Hopf algebroid .A; �/. The relations � are precisely those
required so that 'r;s;t;1 transforms T 1.a1; a2; a3/ (where a3

2
C a2

3
D a1a2a3 ) into

another homogeneous Tate normal curve.

There are forgetful and quotient maps on M1
0
.5/ that on points are given by

f WM1
0.5/!M1; .C;H / 7! C
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and
qWM1

0.5/!M1; .C;H / 7! C=H:

(We elide the tangent vectors for concision.)

Corollary 1.3.2 The maps f and q on M1
0
.5/ are represented by

f �W .A; �/! .B1; ƒ1/; ai 7!

�
ai if i D 1; 2; 3;

0 if i D 4; 6;
r; s; t 7! r; s; t

and

q�W .A; �/.B1; ƒ1/;

ai 7!

8<:
ai if i D 1; 2; 3;

5a2
1
a2� 10a1a3� 10a2

2
if i D 4;

a4
1
a2� 2a3

1
a3� 12a2

1
a2

2
C 19a3

2
� a2

3
if i D 6;

r; s; t 7! r; s; t:

Proof This is a consequence of Theorems 1.2.1 and 1.3.1.

1.4 The Atkin–Lehner dual

We will now compute the Atkin–Lehner dual

t WM1
0.5/!M1

0.5/:

Each �0.5/–structure .C;H / can also be represented as a pair .C; �/ where �W C!C 0

has kernel H . On points, the Atkin–Lehner dual is given by

t WM1
0.5/!M1

0.5/; .C; �/ 7! .C=H; y�/;

where y� is the dual isogeny to � .

We can lift t to stacks closely related to M1
1
.5/. Recall [16, Section 2.8] that for each

�0.5/–structure .C; �/ there is an associated scheme-theoretic Weil pairing

h�;�i� W ker� � ker y�! �5:

Choose a primitive fifth root of unity � . For a �1.5/–structure .C;P / let .C; �P /

denote the associated �0.5/–structure where �P W C!C 0 is an isogeny with kernel hP i.
If we work in M1

1
.5/� , ie M1

1
.5/ considered as a Z

�
1
5
; �
�
–scheme, then there is a

unique element Q 2 ker c�P such that hP;Qi� D � . We define

t� WM1
1.5/�!M1

1.5/�

in the obvious way so that t�.C;P /D .C
0;Q/.
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The maps t and t� fit in the commutative diagram

M1
1
.5/�

t� //

��

M1
1
.5/�

��
M1

0
.5/� t

//M1
0
.5/�

where the vertical maps take .C;P / to .C; �P /.

We can gain some computational control over t via the following method. First, recall
from Corollary 1.1.10 that for each homogeneous Tate normal curve T 1.a1; a2; a3/

there is a unit u such that a2 D u.a1 � u/ and a3 D u2.a1 � u/. Abusing notation,
denote the same curve by T 1.a1;u/, and let H denote the canonical cyclic subgroup
of order 5 generated by .0; 0/. The defining polynomial for H is x.xCu.a1�u//.
Denote the isogeny with kernel H by � . Note that the range of � is the curve C=H

given by Vélu’s formulae in (1.2.2).

Using Kohel’s formulas [17] (as implemented by the computer algebra system Magma),
we can determine that the kernel of y� is the subgroup scheme determined by

f WD x2
C .a2

1� a1uCu2/xC 1
5
.a4

1� 7a3
1u� 11a2

1u2
C 47a1u3

� 29u4/:

Then over the ring R WD Z
�

1
5
; �
�
Œa1;u

˙� the polynomial f splits and we find that

.ker y�/.R/D f1; .x0;y00/; .x0;y01/; .x1;y10/; .x1;y11/g;

where

x0 D
1
5
.�3
C �2

� 2/a2
1C

1
5
.9�3
C 9�2

C 7/a1uC 1
5
.�11�3

� 11�2
� 8/u2;

x1 D
1
5
.��3

� �2
� 3/a2

1C
1
5
.�9�3

� 9�2
� 2/a1uC 1

5
.11�3

C 11�2
C 3/u2;

y00 D
1
5
.�2
C 2�C 2/a3

1C
1
5
.�3
C 7�2

C 17�C 5/a2
1u

C
1
5
.9�3
� 29�2

� 31� � 14/a1u2
C

1
5
.�11�3

C 22�2
C 11�C 8/u3;

y01 D
1
5
.��3

� 2�2
� 2�/a3

1C
1
5
.�10�3

� 16�2
� 17� � 12/a2

1u

C
1
5
.2�3
C 40�2

C 31�C 17/a1u2
C

1
5
.11�3

� 22�2
� 11� � 3/u3;

y10 D
1
5
.2�3
C �C 2/a3

1C
1
5
.16�3

� �2
C 6�C 4/a2

1u

C
1
5
.�40�3

� 9�2
� 38� � 23/a1u2

C
1
5
.22�3

C 11�2
C 33�C 19/u3;

y11 D
1
5
.��3

C �2
� �C 1/a3

1C
1
5
.�7�3

C 10�2
� 6� � 2/a2

1u

C
1
5
.29�3

� 2�2
C 38�C 15/a1u2

C
1
5
.�22�3

� 11�2
� 33� � 14/u3:

Algebraic & Geometric Topology, Volume 16 (2016)



On the homotopy of Q.3/ and Q.5/ at the prime 2 2473

Choose .x0;y00/ as a preferred generator of yH . Let �0 D h.0; 0/; .x0;y00/i� . Then
applying the method of Theorem 1.1.1 we can put .C=H; .x0;y00// in homogeneous
Tate normal form. What we find is a curve T 1.t�

�0
.a1/; t

�
�0
.u// with

(1.4.1)
t��0.a1/D

1
5
.�8�3

� 6�2
� 14� � 7/a1C

1
5
.14�3

� 2�2
C 12�C 6/u;

t��0.u/D
1
5
.��3

� 7�2
� 8� � 4/a1C

1
5
.8�3
C 6�2

C 14�C 7/u:

Remark 1.4.2 We could produce similar formulas for any of the .xi ;yij / and these
would correspond to different choices of �0 for the Atkin–Lehner dual on �1.5/–
structures. The applications below will be independent of this choice.

The equations (1.4.1) permits a description of the Atkin–Lehner dual on the ring
of �0.5/–modular forms. We refer the reader to [11, Section 3.1.1] for a thorough
description of modular forms as global sections. Recall briefly that for a congruence
subgroup � � SL2.Z/, level �–modular forms are precisely the global sections of
(the tensor powers of) the dualizing sheaf !˝� on the moduli stack M.�/ of level
�–structures,

MF.�/DH 0.M.�/I!˝�/:

Let MF.�1.5//� denote the ring of �1.5/–modular forms over the ring Z
�

1
5
; �
�
; it is

isomorphic to Z
�

1
5
; �
�
Œa1;u

˙; ��1� since M1.5/ is a scheme. Then

MF.�0.5//D .MF.�1.5//
Gal
� /F

�
5 ;

where Gal denotes the copy of F�
5

acting on coefficients.

Theorem 1.4.3 The map t�W MF.�0.5//!MF.�0.5// induced by the Atkin–Lehner
dual is the restriction of the unique map on MF.�1.5/�/ determined by (1.4.1).

2 The homotopy groups of TMF0.5/

By étale descent along the cover

M1.5/!M1.5/==F
�
5 DM0.5/;

we have TMF0.5/'TMF1.5/
hF�

5 , and we may thus compute the associated homotopy
point spectral sequence

E
s;t
2
DH s.F�5 I�t TMF1.5//D) �t�s TMF0.5/:

The referee indicates that the first computation of this spectral sequence actually dates
back to as early as 2003, with calculations of Mahowald and Rezk. Hill, Hopkins and
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Ravenel computed �� TMF0.5/ in [12]. As a self-contained homotopy fixed point
spectral sequence computation of �� TMF0.5/ is not yet available in the literature,
we reproduce it in this section (though we note that the homotopy fixed point spectral
sequence is actually a localization of the slice spectral sequence, and therefore the
structure of this spectral sequence can actually be culled from [12]).

2.1 Computation of the E2–term

Consider the representation of M1
1
.5/ implicit in Corollary 1.1.10. In the context of

spectral sequence computations, we will let x D u and let y D a1�u. Let � denote
the reduction of 3 in F�

5
, a generator.

Lemma 2.1.1 The action of F�
5

on �� TMF1.5/DZ
�

1
5
;x;y; ��1

�
is determined by

(2.1.2) � �x D y; � �y D�x:

Proof Consider the Tate normal curve T with a1 D xCy , a2 D xy and a3 D x2y .
(This is the Tate normal curve of Corollary 1.1.10 under our coordinate change x D u,
y D a1 � u.) We can compute Œ2�.0; 0/D .�xy;xy2/. The lemma then amounts to
noting that the Tate normal curve associated with the �1.5/–structure ..�xy;xy2/;T /

has a1 D y �x , a2 D�xy , a3 D xy2 .

Note that we may manually compute the discriminant as

�D x5y5.x2
� 11xy �y2/;

so x and y are invertible elements of �� TMF1.5/.

Theorem 2.1.3 The E2–term of the homotopy fixed point spectral sequence for
TMF0.5/ is given by

H�.F�5 I�� TMF1.5//D Z
�

1
5

�
Œb2; b4; ı; �; �; ; �;�

�1�=�;

where �D ı2.b4� 11ı/ and � consists of the relations

2�D 0; 4� D 0; �� D 0;

2� D 0; �2
D 2�; � D 0;

2 D 0;  2
D .b2

2 C ı/�
2; b2� D ı�

2;

b2� D 0; b2
4 D b2

2ı� 4ı2; b4� D b2
2�C 2ı�C ı�;

b4� D 0; b4 D .b4C ı/b2�; b2 D �.b
2
2 C b4/:
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The generators lie in bidegrees .t � s; s/:

jb2j D .4; 0/; j�j D .3; 1/;

jb4j D jıj D .8; 0/; j j D .5; 1/;

j�j D .1; 1/; j�j D .6; 2/:

�

&

� "

�

1
K

0 5 10 15 20
;
K

5

10

Figure 2: A delocalization of the E2–term of the homotopy fixed point
spectral sequence for TMF0.5/ (the actual E2–term is obtained from this
figure by inverting �)

Figure 2 shows a picture of the subring of the E2–term of the homotopy fixed point
spectral sequence for TMF0.5/ generated

�
as a Z

�
1
5

�
–algebra

�
by

b2; b4; ı; �; �; ; �:

The full E2–term is obtained after inverting �. Here and elsewhere in this paper, we
use boxes � to represent Z

�
or Z

�
1
5

�
in this case

�
, filled circles � to represent Z=2,

and open circles ı to represent Z=4.

The proof of Theorem 2.1.3 is a routine but fairly involved calculation following from
(2.1.2). We will establish this theorem with a series of lemmas. Let T� denote the
graded subring of �� TMF1.5/ generated by x and y , so that

�� TMF1.5/D T�Œ�
�1�:

For a F�
5

–module M , we shall use H�.M / to denote H�.F�
5
IM /.

The first step is to determine the structure of T� as an F�
5

–module. We begin by
setting some notation for F�

5
–modules. Let Z

�
1
5

�
denote the F�

5
–module with trivial
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action, let Z
�

1
5

�
.�1/ denote Z

�
1
5

�
with the sign action � � n D �n, let � D Z

�
1
5

�2
with the twist action � � .m; n/ D .n;m/, and let  D Z

�
1
5

�2 with the cycle action
� � .m; n/D .n;�m/.

Lemma 2.1.4 The graded ring T� admits the following additive decomposition as an
F�

5
–module:

T8n D �fx
4n;x4n�1y; : : : ;x2nC1y2n�1

g˚Z
�

1
5

�
fx2ny2n

g;

T8nC4 D �fx
4nC2;x4nC1y; : : : ;x2nC2y2n

g˚Z
�

1
5

�
.�1/fx2nC1y2nC1

g;

T4nC2 D  fx
2nC1;x2ny; : : : ;xnC1yn

g:

Define the following F�
5

–invariants in T� :

b2 WD x2
Cy2; b4 WD x3y �xy3; ı WD x2y2:

(Warning: the b2 and b4 here are not related to the b2 and b4 mentioned in relation to
Vélu’s formulae, or the b2 and b4 traditionally used in the theory of elliptic curves.)
Note that ı is almost a cube root of �: we have

�D ı2.b4� 11ı/:

The following lemma is fairly easily checked.

Lemma 2.1.5 The ring of F�
5

–invariants of T� admits the presentation

H 0.T�/D Z
�

1
5

�
Œb2; b4; ı�=.b

2
4 � b2

2ıC 4ı2/:

We now turn our attention to the higher cohomology of T� . The following lemma
gives an additive description of these cohomology groups, as a module over

H�
�
Z
�

1
5

��
D Z

�
1
5
; ˇ
�
=.4ˇ/

(where ˇ lies in H 2 ).

Lemma 2.1.6 There is an additive isomorphism of H�
�
Z
�

1
5

��
–modules

H�.T�/Š Z
�

1
5

�
Œb2; b4; ı; �; �; ; ˇ�=�

0;

where �0 consists of the relations

2�D 0; 2 D 0; 2b2ˇ D 0; b2
4 D b2

2ı� 4ı2;

2� D 0; 4ˇ D 0; 2b4ˇ D 0

and

(�)
�
�2
D 0; �� D 0; �2

D 0; � D 0; b4 D 0;

 2
D 0; b2� D 0; � D 0; b4� D 0; b2 D 0:
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The relations marked .�/ in the preceding lemma are not actual multiplicative relations
in H�.T�/, they just yield the correct additive answer. To properly compute the ring
structure of H�.T�/, we need to replace these “fake” relations with true relations.

Proof The invariants introduced in the previous lemma allow for a more convenient
additive description of T� as an F�

5
–module:

T8n D �fx
2
gfb2n�1

2 ; b4b2n�3
2 ; ıb2n�3

2 ; b4ıb
2n�5
2 ; ı2b2n�5

2 ; : : : g

˚ �fx3ygfın�1
g˚Z

�
1
5

�
fın
g;

T8nC4 D �fx
2
gfb2n

2 ; b4b2n�2
2 ; ıb2n�2

2 ; b4ıb
2n�4
2 ; ı2b2n�4

2 ; : : : g

˚Z
�

1
5

�
.�1/fxygfın

g;

T8nC2 D  fxgfb
2n
2 ; b4b2n�2

2 ; ıb2n�2
2 ; b4ıb

2n�4
2 ; ı2b2n�4

2 ; : : : g;

T8nC6 D  fxgfb
2nC1
2

; b4b2n�1
2 ; ıb2n�1

2 ; b4ıb
2n�3
2 ; ı2b2n�3

2 ; : : : g˚ fx3
gfın
g:

To compute the higher cohomology H�.T�/ we begin by noting that

H�
�
Z
�

1
5

��
D Z

�
1
5

�
Œˇ�=4ˇ; H�

�
Z
�

1
5

�
.�1/

�
D Z

�
1
5

�
Œˇ�=2ˇŒ1�;

H�.�/D Z
�

1
5

�
Œˇ�=2ˇ; H�. /D Z

�
1
5

�
Œˇ�=2ˇŒ1�;

where ˇ has cohomological degree 2, Œ1� denotes a cohomological degree shift by 1,
and each cohomology ring has the obvious H�

�
Z
�

1
5

��
–module structure. We define

� 2H 1. fxg/; � 2H 1
�
Z
�

1
5

�
.�1/fxyg

�
;  2H 1. fx3

g/

to be the unique nontrivial elements in their respective cohomology groups. We then
have the following additive presentation of H�.T�/:

H�.T8n/DZ
�

1
5

�
Œˇ�=.2ˇ/fb2n

2 ; b4b2n�2
2 ; ıb2n�2

2 ; b4ıb
2n�4
2 ; ı2b2n�4

2 ; : : : ; b4ı
n�1
g

˚Z
�

1
5

�
Œˇ�=.4ˇ/fın

g;

H�.T8nC4/DZ
�

1
5

�
Œˇ�=.2ˇ/fb2nC1

2
; b4b2n�1

2 ; ıb2n�1
2 ; b4ıb

2n�3
2 ; ı2b2n�3

2 ; : : : g

˚Z
�

1
5

�
Œˇ�=.2ˇ/f�ın

g;

H�.T8nC2/DZ
�

1
5

�
Œˇ�=.2ˇ/f�b2n

2 ; �b4b2n�2
2 ; �ıb2n�2

2 ; �b4ıb
2n�4
2 ; �ı2b2n�4

2 ; : : : g;

H�.T8nC6/DZ
�

1
5

�
Œˇ�=.2ˇ/f�b2nC1

2
; �b4b2n�1

2 ; �ıb2n�1
2 ; �b4ıb

2n�3
2 ; �ı2b2n�3

2 ; : : : g

˚Z
�

1
5

�
Œˇ�=.2ˇ/f ın

g:

The statement of the lemma follows.
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The following proposition fills in the multiplicative structure missing from the previous
lemma.

Proposition 2.1.7 There is an isomorphism of rings

H�.T�/Š Z
�

1
5

�
Œb2; b4; ı; �; �; ; ˇ�=�;

where � consists of the relations

2�D 0; �2
D b2ˇ; � D 0;

2� D 0; �2
D 2ıˇ; � D .b4C b2

2 C 2ı/ˇ;

2 D 0;  2
D .b2

2 C ı/�
2; �� D 0;

4ˇ D 0; b4 D .b4C ı/b2�; b2 D .b
2
2 C b4/�;

b2� D 0; b4� D 0; b2
4 D b2

2ı� 4ı2:

Note that we are able to drop the relations

2b2ˇ D 0 and 2b4ˇ D 0

appearing in Lemma 2.1.6, as they follow from the relations

�2
D b2ˇ and � D .b4C b2

2 C 2ı/ˇ;

respectively.

Proof The following multiplicative relations are immediately deduced from dimen-
sional considerations:

�� D 0; b2� D 0; � D 0:

Moreover, the ring structure on T� restricts to give a pairing

H 1
�
Z
�

1
5

�
.�1/fxyg

�
˝H 0.�fx2

g/!H 1.�fx3yg/D 0

which implies
�b4 D 0:

In order to determine most of the remaining relations, we observe that

H 0.T2=2/D F2fv1g;

H 0.T4=2/D F2fv
2
1 ; ı

1=2
g;

H 0.T6=2/D F2fv
3
1 ; v1ı

1=2
g;

with
v1 WD xCy; ı1=2

WD xy:
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Note that the mod 2 reductions of b2 , b4 , and ı are v2
1

, v2
1
ı1=2 , and .ı1=2/2 , respec-

tively (and this explains the notation “ı1=2 ”). It follows easily from the long exact
sequence

� � � !H 0.T�/
�2
�!H 0.T�/!H 0.T�=2/

@
�!H 1.T�/

�2
�! � � �

that

�D @.v1/; � D @.ı1=2/;  D @.v3
1 C ı

1=2v1/:

We deduce that

b4 D @..v
2
1ı

1=2/.v3
1 C ı

1=2v1//

D @..v2
1ı

1=2
C ı/v2

1 � v1/

D .b4C ı/b2�

and

b2 D @.v
2
1.v

3
1 C v1ı

1=2//

D @..v4
1 C v

2
1ı

1=2/v1/

D .b2
2 C b4/�:

To obtain the relation involving �2 , we note from the exact sequence

H 1
�
Z
�

1
5

�
.�1/fx3y3g

�
�2
// H 1

�
Z
�

1
5

�
.�1/fx3y3g

�
// H 1.F2fx

3y3g/

F2fı�g F2fı�g

that the mod 2 reduction of ı� is nontrivial in H 1.T�=2/. From this it follows that
ı1=2� is nontrivial in H 1.T�=2/, and in particular, it must generate

H 1.F2fx
2y2
g/Š F2:

It then follows from the long exact sequence

H 1
�
Z
�

1
5

�
fx2y2g

�
// H 1.F2fx

2y2g/
@

// H 2
�
Z
�

1
5

�
fx2y2g

�
�2
// H 2

�
Z
�

1
5

�
fx2y2g

�
0 F2fı

1=2�g Z=4fıˇg Z=4fıˇg

that

2ıˇ D @.ı1=2�/D �2:
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A similar argument handles the relation involving �2 . We note from the exact sequence

H 1. fb2xg/
�2
// H 1. fb2xg/ // H 1. =2fb2xg/

F2fb2�g F2fb2�g

that the mod 2 reduction of b2� is nontrivial in H 1.T�=2/. From this it follows that
v1� is nontrivial in H 1.T�=2/, and in particular, it must generate

H 1.�=2fx2
Cxyg/Š F2:

It then follows from the long exact sequence

H 1.�fx2Cxyg/ // H 1.�=2fx2Cxyg/
@

// H 2.�fx2Cxyg/
�2
// H 2.�fx2Cxyg/

0 F2fv1�g F2fˇb2g

that

ˇb2 D @.v1�/D �
2:

The relation involving  2 now follows from the fact that multiplication by b2
2

gives an
injection

� b2
2 W H

2.T12/ ,!H 2.T20/

and we have

b2
2

2
D �2.b2

2 C b4/
2
D b2

2�
2.b2

2 C ı/:

The only relation left is the one involving � . To this end we have the following
1–cochain representatives, whose values on � i 2 F�

5
are given by:

g 1 � �2 �3

�.g/ 0 x xCy y

 .g/ 0 x3 x3Cy3 y3

Each of these 1–cochains �.g/ satisfies the 1–cocycle condition

.ı�/.g1;g2/D g1�.g2/��.g1g2/C�.g2/D 0:
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We also record a 2–cocycle ˇ.g1;g2/ which represents ˇ ; its values on .g1;g2/ are
recorded in the following table:

g2# g1! 1 � �2 �3

1 0 0 0 0

� 0 0 0 1

�2 0 0 1 1

�3 0 1 1 1

Recall for 1–cocycles �.g/ and  .g/ the explicit chain-level formula for the 2–cocycle
� [ (see, for instance, [1]):

.� [ /.g1;g2/D .g1�.g2// .g1/:

Using our explicit cochain representatives, we compute that � Cˇ.b4C b2
2
� 2ı/ is

represented by the 2–cocycle  .g1;g2/ whose values are given by the following table:

g2# g1! 1 � �2 �3

1 0 0 0 0

� 0 x3y �x4�xy3 x4Cx3y �xy3

�2 0 �x4Cx3y �2xy3 x4Cx3y

�3 0 x3y �xy3Cy4 x4�xy3 x4Cx3yCy4

This 2–cocycle is the coboundary of the 1–cochain � given by the following table:

g 1 � �2 �3

�.g/ 0 �xy3 �xy3 x4�xy3

We can now deduce Theorem 2.1.3 from the preceding proposition by observing that

H�.�� TMF1.5//DH�.T�/Œ�
�1�:

Since inverting � inverts ı , we can replace the generator ˇ with the generator

� WD ˇı:

The relations of Theorem 2.1.3 are then easily seen to be equivalent to those of the
preceding proposition after inverting �. The authors find it easier to work with the
generator � in the homotopy fixed point spectral sequence computations which follow,
as it, as well as the other generators in the presentation of Theorem 2.1.3, lies in the first
quadrant of the homotopy fixed point spectral sequence (with traditional Adams-style
indexing).
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As � is the product ı2.b4 � 11ı/, inverting � in Theorem 2.1.3 is a rather opaque
procedure. Clearly it means that ı and b4 � 11ı must be inverted. Inverting ı is
relatively straightforward: the entire cohomology is then ı–periodic, and everything
in H 0 , as well as � multiples on these classes, is a polynomial algebra2 over

zj WD b4=ı 2H 0.�� TMF1.5//:

This class seems to act like a kind of j –invariant in the theory of modular forms
for �0.5/. The relationship to the classical j –invariant is given by the equation

j D
c3

4

�
D
.zj 2� 12zj C 16/3

zj � 11
:

(We are grateful to the referee for suggesting the importance of this element.)

However, inverting b4� 11ı (or equivalently zj � 11) is far more subtle, as there are
many relations involving b4 and hence zj . We propose two perspectives to help analyze
the resulting localized cohomology groups.

Perspective 1 Work 2–locally. The only torsion in TMF0.5/ is 2–torsion, and ar-
guably this spectrum is most interesting from the perspective of 2–local homotopy
theory. We will argue that in this context, the effect of inverting .zj � 11/ can be
analyzed with a simple set of relations.

Perspective 2 (We thank the referee for pointing out this alternative perspective.)
Instead of focusing on b2 , make b4 (or equivalently zj D b4=ı ) the more fundamental
variable to express things in. This perspective has the advantage of making H 0 a free
module over the ring

Z
�

1
5
; zj ; .11� zj /�1; ı˙1

�
at the expense of being able to easily identify b2–periodic (ie 2–primary v1–periodic)
classes.

Perspective 1 is arguably the better perspective to take if the reader is interested in
2–local homotopy theory. Perspective 2 is arguably more appropriate for those readers
interested in TMF0.5/ from a global perspective (ie with only 5 inverted).

Perspective 1 (2–local) We offer the following simple corollary to Theorem 2.1.3,
which is easily deduced from the relations therein.

2By this, we mean that in each bidegree, the resulting localized E2–term takes the form A˝ZŒzj � .
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Corollary 2.1.8 In H�.�� TMF1.5//, we have

11.zj � 11/�1b4 D b2
2.
zj � 11/�1

� 4ı.zj � 11/�1
� b4;

.zj � 11/�1� D �;

.zj � 11/�1 D  C .zj � 11/�1.b4b2ı
�1
C b2/�;

.zj � 11/�1ˇ D .zj � 11/�1.� ı�1
� b2�

2ı�1/�ˇ:

The appearance of the factor of 11 in the first relation of the previous corollary
complicates the situation, but this complication disappears after we invert 11. In
particular, we deduce from this corollary that, at least additively, H�.�� TMF1.5/.2//

can be visualized from Figure 2 by first inverting ı , and then formally adjoining a
polynomial algebra on .zj � 11/�1 on all classes of the form

ıib
j
2
�k ; i 2 Z; j � 0; k � 0:

Remark 2.1.9 If we complete at .2; b2/ (as in the case of the E2–term of the homotopy
fixed point spectral sequence for TMF0.5/K.2/ ), then the situation becomes simpler:
the class .zj � 11/�1 is already invertible in H�..T�/

^
.2;b2/

/Œı�1�.

Perspective 2 (global) The referee, in addition to suggesting the previous far more
streamlined and readable approach to Theorem 2.1.3, found an alternative set of
generators for H�.�� TMF1.5// which gives a cleaner presentation if the reader does
not wish to work 2–locally. Replace the generator  with the generator

z WD  C b2�:

We then have the following presentation of H�.�� TMF1.5//:

H 0.�� TMF1.5//D Z
�

1
5
; zj ; .11� zj /�1; b2; ı

˙1
�
=.b2

2 D .
zj 2
C 4/ı/

and
H�.�� TMF1.5//DH 0.�� TMF1.5//Œˇ; �; �; z �=�;

where � consists of the relations

4ˇ D 0; b2z D ı zj�; �2
D b2ˇ; �� D 0;

2�D 0; b2�D zj z ; z 2
D ıb2ˇ; � z D 0;

2z D 0; zj � D 0; �z D .zj C 2/ıˇ; 2zjˇ D 0;

2� D 0; b2� D 0; �2
D 2ıˇ; 2b2ˇ D 0:
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2.2 The behavior of transfer and restriction in the homotopy fixed point
spectral sequence

Our next task is to compute the differentials in the homotopy fixed point spectral
sequence

(2.2.1) H s.F�5 I�t TMF1.5//) �t�s TMF0.5/:

One might expect this could be accomplished by comparison with the well known
descent spectral sequence for TMF. However, it will turn out that the images of many
elements of �� TMF in �� TMF0.5/ will be detected on different lines of the respective
spectral sequences. An analysis of transfer and restriction maps relating these two
spectral sequences will remedy this complication.

Let M.5/ denote the moduli space of elliptic curves with full level structure, and
TMF.5/ the corresponding spectrum of topological modular forms. Using the portion

M.5/

M0.5/

M

B

GL2.F5/

of [16, Diagram 7.4.3] (where B is the Borel subgroup of upper triangular matrices),
the spectrum TMF.5/ has an action of GL2.F5/, and we have

TMF
�

1
5

�
' TMF.5/h GL2.F5/ and TMF0.5/' TMF.5/hB:

We finally note that the moduli space M.5/ is representable by an affine scheme (see
for example [16]). It follows (see for example [8, Chapter 5]) that the descent spectral
sequences for TMF and TMF0.5/

H s.MI!˝t /
�

1
5

�
) �2t�s TMF

�
1
5

�
and H s.M0.5/I!

˝t / ) �2t�s TMF0.5/

are isomorphic to the Čech descent spectral sequences associated to the étale affine
covers

M.5/!M and M.5/!M0.5/;

respectively. However, as these étale affine covers are in fact Galois, with Galois groups
GL2.F5/ and B , respectively, the Čech descent spectral sequences are precisely the

Algebraic & Geometric Topology, Volume 16 (2016)



On the homotopy of Q.3/ and Q.5/ at the prime 2 2485

homotopy fixed point spectral sequences:

H s.GL2.F5/I�2t TMF.5// ) �2t�s TMF
�

1
5

�
;

H s.BI�2t TMF.5// ) �2t�s TMF0.5/:

We do not need to know anything about �� TMF.5/ to understand these spectral
sequences; the E2–terms are isomorphic to H�.M; !˝�/

�
1
5

�
and H�.M0.5/; !

˝�/,
respectively.

The descent spectral sequence for TMF is computed in many places. For example,
Bauer, in [2], and Hopkins and Mahowald, in [14] (in Part II of [8]), compute the Adams–
Novikov spectral sequence for tmf. It is explained in [18] that the descent spectral
sequence for TMF may be obtained from the Adams–Novikov spectral sequence for
tmf by inverting �. Alternatively, it is also explained in [18] that the descent spectral
sequence for TMF can be obtained from the descent spectral sequence for Tmf by
inverting �, and the descent spectral sequence for Tmf is described in [18] and in [8,
Chapter 13].

The homotopy fixed point spectral sequence

H s.BI�2t TMF.5// ) �2t�s TMF0.5/

is also isomorphic to the homotopy fixed point spectral sequence

H s.F�5 I�2t TMF1.5// ) �2t�s TMF0.5/:

Indeed, the latter is also a Čech descent spectral sequence, but for the affine étale Galois
cover

M1.5/!M0.5/:

Lemma 2.2.2 The transfer-restriction composition

�� TMF
�

1
5

� Res
��! �� TMF0.5/

Tr
�! �� TMF

�
1
5

�
is multiplication by ŒGL2.F5/ W B�D 6.

Proof The theorem is true on the level of homotopy fixed point spectral sequence
E2–terms: the composite

H s.GL2.F5/I�t TMF.5//
Res
��!H s.BI�t TMF.5//

Tr
�!H s.GL2.F5/I�t TMF.5//

is multiplication by ŒGL2.F5/ W B�D 6. Since there are no nontrivial elements of E
s;t
1

with t � s D 0 and s > 0 (see for example [2]), it follows that the transfer-restriction
on the unit 1TMF 2 �0 TMF

�
1
5

�
is given by

Tr Res.1TMF/D 6 � 1TMF:
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We compute, using the projection formula, that for a 2 �� TMF
�

1
5

�
, we have

Tr Res.a/D Tr Res.a � 1TMF/D Tr..Res a/ � 1TMF0.5//D a �Tr.1TMF0.5//D 6 � a:

We deduce the following corollary.

Corollary 2.2.3 Suppose that z 2 �� TMF satisfies 2z ¤ 0. Then the element Res.z/
in �� TMF0.5/ is nonzero. Moreover, if z has Adams–Novikov filtration s1 , and
2z has Adams filtration s2 , then the Adams–Novikov filtration s of Res.z/ satisfies
s1 � s � s2 .

Finally, in order to properly utilize the previous corollary, we record the behavior of
the restriction.

Lemma 2.2.4 Using the notation of [2] for

H s.GL2.F5/I�2t TMF.5//ŠH s.M; !˝t /
�

1
5

�
;

the restriction

H s.GL2.F5/I�t TMF.5//
Res
��!H s.BI�t TMF.5//

has the following behavior on selected elements:

h1 7! �; c4 7! b2
2 � 12b4C 12ı;

h2 7! �; c6 7! �b3
2 C 18b2b4� 72b2ı;

g 7! ı�2 mod .2; b2;  �/; � 7! ı2.b4� 11ı/:

Proof Consider the element a1 of the elliptic curve Hopf algebroid. It is primitive
modulo .2/, and hence gives an element

a1 2H 0.MF2
; !/ŠH 0.GL2.F5/I�2 TMF.5/=2/:

However, in �2 TMF1.5/, we have a1 D x C y , and this gives rise in the proof of
Proposition 2.1.7 to an element

v1 2H 0.F�5 I�2 TMF1.5/=2/ŠH 0.BI�2 TMF.5/=2/:

We therefore have that a1 7! v1 under the restriction map

H 0.GL2.F5/I�2 TMF.5/=2/!H 0.BI�2 TMF.5/=2/:
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Consider the following diagram:

H 0.GL2.F5/I�2 TMF.5/=2/ @ //

Res
��

H 1.GL2.F5/I�2 TMF.5//

Res
��

H 0.BI�2 TMF.5/=2/ @ // H 1.BI�2 TMF.5//

In the proof of Proposition 2.1.7 we showed that @.v1/D �, and the Bockstein spectral
sequence computations of [2] give @.a1/D h1 . We deduce Res.h1/D �.

The restriction of h2 must be nontrivial by Corollary 2.2.3. The element � is the only
nonzero element in the group H 1.BI�4 TMF.5//, so we must have Res.h2/D � .

The restriction of g is computed by computing the restriction modulo .2; a1/ (where
a1 2 �2 TMF.5/ is the image of a1 D xCy 2 �2 TMF1.5/):

ResW H�.GL2.F5/I�� TMF.5/=.2; a1//!H�.BI�� TMF.5/=.2; a1//:

Since the mod 2 supersingular locus of M1.5/ is given by

M1.5/
ss
F2
D Spec�0.TMF1.5=.2; a1//;

the mod 2 supersingular locus of M.5/ is given by

M.5/ss
F2
D Spec�0.TMF.5=.2; a1//:

As such, there are isomorphisms

H s.GL2.F5/I�2t TMF.5/=.2; a1//ŠH s.Mss
F2
; !˝t /

ŠH s.G24I�2tE2=.2; a1//
Gal

and

H s.BI�2t TMF.5/=.2; a1//ŠH s.M0.5/
ss
F2
; !˝t /

ŠH s.C4I�2tE2=.2; a1//
Gal;

where G24 is the automorphism group of the unique supersingular curve over F4 and
GalD Gal.F4=F2/. Under these isomorphisms the mod .2; a1/ restriction map above
is equivalent to the restriction map

ResW H�.G24I��E2=.2;u1//
Gal
!H�.C4I��E2=.2;u1//

Gal:

Note that �24E2=.2;u1/ is F4 , with trivial action by G24 . We therefore have

H 4.G24I�24E2=.2;u1//
Gal
ŠH 4.Q8IF2/Š F2fgg;
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where g is the image of the element

g 2H 4.MI!12/ŠH 4.GL2.F5/I�24 TMF.5//

of [2] under the reduction map

H 4.GL2.F5/I�24 TMF.5//!H 4.GL2.F5/I�24 TMF.5/=.2; a1//

ŠH 4.G24I�24E2=.2;u1//
Gal:

(This follows from the construction of g in [2] using Bockstein spectral sequences.)
We also have

H 4.C4I�24E2=.2;u1//
Gal
ŠH 4.C4IF2/Š F2fˇ

2
g;

and the restriction gives an isomorphism

ResW H 4.Q8IF2/
Š
�!H 4.C4IF2/:

Now, consider the map

redW H�.BI�� TMF.5//=.2; b2/!H�.BI�� TMF.5/=.2; a1//:

Since a1 � xCy and b4 � xy.x2Cy2/, it follows that red.b4/D 0. We therefore
have (using Proposition 2.1.7)

red.�/D red.b4 /D red..b4C b2
2 C 2ı/ˇ/D 0:

Therefore the map red descends to a map

redW H�.BI�� TMF.5//=.2; b2;  �/!H�.BI�� TMF.5/=.2; a1//:

Now
H 4.BI�24 TMF.5//=.2; b2;  �/D F2f�

2ıg

and red.�2ı/ is the generator of H 4.C4IF2/. We therefore have

red Res.g/D Res.g/D red.ı�2/;

and the result concerning the restriction of g follows.

The restrictions of c4 , c6 , and � may be computed from the map of Hopf algebroids
induced by the map f , computed in Theorem 1.2.1 (see Section 3.4).

Corollary 2.2.5 The elements � and � are permanent cycles in the homotopy fixed
point spectral sequence for �� TMF0.5/.
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2.3 Computation of the differentials and hidden extensions

The following sequence of propositions specifies the behavior of the homotopy fixed
point spectral sequence (2.2.1) culminating in Theorem 2.3.12, a complete description
of �� TMF0.5/.

Proposition 2.3.1 In the homotopy fixed point spectral sequence (2.2.1), E2 D E3

and the d3–differentials are determined by

d3b2 D �
3; d3� D ı

�1��2; d3 D ı
�1��;

and d3.b4/D d3.ı/D 0.

��
ud
&

&

�

1
K

�

"�

0 5 10 15 20
;
K

5

10

Figure 3: The d3–differentials in the homotopy fixed point spectral sequence
for TMF0.5/

Figure 3 shows the d3 differentials in the homotopy fixed point spectral sequence
for TMF0.5/. While most terms involving ��1 (and hence ı�1 ) are excluded, those
depicted are shown in gray.

Proof There is no room for d2–differentials.

Note that d3a2
1
h1D h4

1
in the Adams–Novikov spectral sequence for TMF (we use the

notation of [2]). Under the restriction map TMF! TMF0.5/, this differential maps to
d3b2�D �

4 , from which it follows that d3b2 D �
3 , and therefore d3.b

2
2
/D 0.
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Note that since the possible targets of d3.b4/ and d3.ı/ are 2–torsion, we have
d3.ı

2/D d3.b
2
4
/D 0. The element � is a d3–cycle in the Adams–Novikov spectral

sequence for TMF [2]. It follows that

0D d3.ı
2.b4� 11ı//D ı2.d3.b4/C d3.ı//

and therefore
d3.b4/D d3.ı/:

However, we have

0D d3.b
2
4/D d3.b

2
2ı� 4ı2/D b2

2d3.ı/:

Since multiplication by b2
2

is injective on the possible targets of d3.ı/, we conclude

d3.b4/D d3.ı/D 0:

By Corollary 2.2.3, 2� must be detected in the homotopy fixed point spectral sequence
for TMF0.5/ in Adams–Novikov filtration between 1 and 3. Since 2� D 0 in the
E2–page, it follows that in fact the filtration has to be between 2 and 3, and the only
candidates live in filtration 3.

We claim that the filtration 3 class ı�1 � detects 2� in TMF0.5/. To verify this claim,
one can determine from Lemma 2.1.6 and Proposition 2.1.7 that E

3;6
2

is an F2–vector
space. One subtlety to determining this F2–vector space is the fact that inverting � in
H�.T�/ is equivalent to inverting ı and b4� 11ı . However, Corollary 2.1.8, and the
discussion that follows, makes it clear that we have

E
3;6
2
=�3
D F2fı

�1 �g:

Finally, as the d3 differentials determined up to this point completely determine the
differentials supported by the 0–line, we can easily deduce that the image of d3 in E

3;6
2

is precisely the image of �3 . We therefore deduce that ı�1 � is the only potential
candidate to detect 2� on the E3–page of the spectral sequence.

Now observe that as a result of Corollary 2.1.8, and the discussion which follows, we
have

d3 D aı�1��C
X

k;l�0

a0k;l
zj k.zj � 11/�l�4

C

X
m�0

a00m
zj mı�1b4�

4

for coefficients a; a0
k;l
; a00m 2 Z=2 with all but finitely many equal to zero. The class

representing 2�� , ie ı�1�� , must die in the spectral sequence. Since we have already
established all of the terms involving �4 are the targets of established d3–differentials,
this is only possible if aD 1.
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We therefore have, using b2� D ı�
2 ,

d3.b2 /D d3.b2/ C b2d3. /

D

X
k;l�0

a0k;l
zj k.zj � 11/�lb2�

4
C

X
m�0

a00m
zj mb2ı

�1b4�
4:

Turning this around, we haveX
k;l�0

a0k;l
zj k.zj � 11/�lb2�

4
C

X
m�0

a00m
zj mb2ı

�1b4�
4
D d3.b2 /

D d3.�.b
2
2 C b4//

D 0:

We deduce that the coefficients a0
k;l

and a00m are all zero.

Since ı�1 � is a permanent cycle, we have

0D d3ı
�1 � D .d3ı

�1�/ � ı�1�.d3 /:

Hence d3� D ı
�1��2 .

Corollary 2.3.2 The E4 term of the homotopy fixed point spectral sequence is
given by

E4 D Z
�

1
5

�
Œ2b2; b

2
2 ; b4; ı; �; �; �

2; ��;  �; ı�1; .zj � 11/�1�=�;

where � consists of the relations

b2
4 D b2

2ı� 4ı2; �3
D 0; � � D 0;

2�D 0; �3
D 0; b2

2� D 0;

2� D 0; . �/2 D 0; b4� D 0;

2 � D 0; �� D 0; �.��/D 2�2;

4�2
D 0; ��2

D 0; �. �/D 0;

b2
2. �/D 0; 2b2�

2
D 0; b2

2�
2
D 0;

b4�
2
D 2ı�2; .��/. �/D 0; b4. �/D ı�

2.b4C ı/:

Here we have omitted relations like .2b2/
2 D 4b2

2
, .2b2/� D 0 and 2.��/ D 0, as

they follow “from the notation”. Everything is ı–periodic, and multiplication by
.zj � 1/�1 D .ı�1b4� 11/�1 satisfies the following relations (which follow from those
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above):

11.zj � 11/�1b4 D b2
2.
zj � 11/�1

� 4ı.zj � 11/�1
� b4;

.zj � 11/�1� D �;

.zj � 11/�1�2
D��2;

.zj � 11/�1�� D ��;

.zj � 11/�1 � D  �:

��

"�

1
K1 &

"�

;
K

5

10

Figure 4: The E4 DE5 term in the homotopy fixed point spectral sequence
for TMF0.5/.2/

Figure 4 shows the resulting E4–term in the homotopy fixed point spectral sequence for
TMF0.5/.2/ . The authors find this easier to visualize .2/–locally (ie from Perspective 1
of Section 2.1). Terms involving ı�1 are excluded on the 0, 1 and 2–lines, and in
lines greater than 2 are shown in gray. As in the other charts in this paper, solid dots
denote Z=2, and open circles denote Z=4. If we localize at .2/, the other symbols in
the figure denote the following:

�D Z.2/Œ.zj � 11/�1�; �D Z.2/; �D Z=2Œ.zj � 11/�1�:

In the following sequence of propositions, we will establish the rest of the differentials
in the homotopy fixed point spectral sequence. Figure 5 displays these differentials. In
this figure, the gray patterns represent the (infinite rank) bo–patterns.

We will need to observe the following to compute our d5–differentials.
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Lemma 2.3.3 On the level of E5–terms the restriction map (from the homotopy fixed
point spectral sequence for TMF to the homotopy fixed point sequence for TMF0.5/)
sends x� to ı�2 .

Proof In the homotopy fixed point spectral sequence for TMF, the element x� is
detected by g . By Lemma 2.2.4, we have

Res.g/D ı�2 mod .2; b2;  �/:

The lemma follows, as the elements of H 4.F�
5
I�24 TMF1.5// which are divisible by

2, b2 , or � are all killed by d3–differentials.

Corollary 2.3.4 The element ı�2 is a permanent cycle in the homotopy fixed point
spectral sequence for TMF0.5/.

Proposition 2.3.5 In the homotopy fixed point spectral sequence for �� TMF0.5/ we
have E4 DE5 , and the d5–differentials are determined by annihilating

2b2; b2
2 ; b4; �; �;  �

and by the equations

d5.ı/D ı
�1��2; d5.�

2/D ı�2��4; d5.��/D 2ı�2�4:

Proof of Proposition 2.3.5, part 1 There is no room for d4–differentials. We have
already observed that � and � are permanent cycles. Dimensional considerations also
immediately show

d5.2b2/D d5. �/D 0:

Note that the only possible target for a d5–differential on b2
2

or b4 is �ı�1�2 . Since
�2ı�1�2 is nontrivial in E5 , such nontrivial differentials would only be possible if
�b4 or �b2

2
were nontrivial, but this is not the case. We deduce that

d5.b4/D d5.b
2
2/D 0:

The element � 2 �20S is in the Hurewicz image of TMF. In the Adams–Novikov
spectral sequence for TMF, d5�D �� . We deduce that

�ı�2
D d5.ı

2.b4� 11ı//

D 2ıd5.ı/.b4� 11ı/C ı2d5.b4/� 11ı2d5.ı/

D 2ıb4d5.ı/� 33ı2d5.ı/:
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Since the only available class for d5.ı/ to hit is 2–torsion in the E5–page, we deduce
that

ı2d5.ı/D �ı�
2:

We have already observed that ı�2 is a permanent cycle since it detects x� . We may
therefore compute

0D d5.ı�
2/D d5.ı/�

2
C ıd5.�

2/D ı�1��4
C ıd5.�

2/:

We deduce that
d5.�

2/D ı�2��4:

The only class left to handle is �� . We will defer the proof of this differential until
after we establish the d7–differentials.

10

5

20151050

�

"

&

"�

��

25 30

;
&

Figure 5: The E4 term in the homotopy fixed point spectral sequence for
TMF0.5/ with dr –differentials, r � 4

Proposition 2.3.6 In the homotopy fixed point spectral sequence for �� TMF0.5/ we
have E6 DE7 , and the d7–differentials are determined by annihilating

2b2; b2
2 ; �; �; ı�2; ı��;  �; ı �; ıb4

and by the equations

d7.2ı/D d7.b4/D ı
�2 �3; d7.ı

2/D ı�1 �3:
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Proof There is no room for d6–differentials. We have already observed that �, � ,
and ı�2 are permanent cycles, since they are in the Hurewicz image. The elements
2b2 , b2

2
, ı�� ,  � , and ı � are d7–cycles for dimensional reasons.

In order to establish the next round of differentials, we will first determine d7.2ı
3/ and

d7.ı
2b4/ (of course, these differentials are determined by d7.2ı/, d7.b4/, and d7.ı

2/).
Note that 2�� is 0 in �� TMF, from which we deduce that the class represented by
ı�1 �� is 0 in �� TMF0.5/ via the restriction map. The element  �3 detects this
class, so it must be the target of a differential, and the only (not necessarily exclusive)
possibilities at this point are:

Case 1 d7.2ı
3/D  �3 .

Case 2 d7.ı
2�ib4b2i

2
/D  �3 for some i � 0.

Case 3 d7.ı
2�ib2iC2

2
/D  �3 for some i � 0.

Multiplying by the permanent cycle Res.x�/D ı�2 , Case 2 yields

d7.ı
5�i�4b2i

2 C 2ı4�i�2b2i
2 C ı

4�i��/¤ 0:

If i > 0, this is a contradiction because

ı5�i�4b2i
2 D 2ı4�i�2b2i

2 D ı
4�i��D 0

in the E7–page for i > 0. Therefore Case 2 for i > 0 cannot occur. Similarly,
multiplying Case 3 by x� gives

d7.ı
5�ib2i

2 �
4/¤ 0;

again a contradiction. We conclude that either Case 1 or Case 2 with i D 0 must hold.
Therefore

d7.2ı
3/D a �3; d7.ı

2b4/D b �3;

with aD 1 or b D 1. Multiplying both of the above differentials by x� yields

d7.2ı
4�2/D aı �5; d7.2ı

4�2/D bı �5:

We deduce that aD b D 1. Hence we deduce that

d7.2ı
3/D  �3; d7.ı

2b4/D  �
3:

We now turn our attention to d7.2ı/, d7.b4/ and d7.ı
2/. The only possible targets

for these differentials are ı�2 �3 (for d7.2ı/ and d7.b4/) and ı�1 �3 (for d7.ı
2/).

Write

d7.2ı/D cı�2 �3; d7.b4/D dı�2 �3; d7.ı
2/D eı�1 �3:
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Then we have

 �3
D d7.ı

2b4/D d7.ı
2/b4C ı

2d7.b4/D eı�2 �3b4C d �3:

Using the relations we find that ı�2 �3b4 D 0, and we therefore deduce that d D 1.
Similarly, we have

 �3
D d7.2ı

3/D d7.ı
2/2ıC ı2d7.2ı/D 2eı�1 �3

C c �3:

Since 2ı�1 �3 D 0, we deduce that c D 1. We have shown

d7.2ı/D ı
�2 �3; d7.b4/D ı

�2 �3:

To establish the final d7 differential on ı2 , note that the restriction map TMF !
TMF0.5/ takes 2�� to 2�� which is nonzero in �� TMF0.5/. Since 2��� D 0 2

�� TMF, we know 2��� D 0 2 �� TMF0.5/. The element  �3ı3 detects this class.
It follows that ı�1 �3 must be the target of a differential. By the same argument used
earlier, multiplication by x� shows that the only possible sources of a differential killing
ı�1 �3 are ı2 and ıb4 . Write

d7.ı
2/D eı�1 �3; d7.ıb4/D f ı

�1 �3;

so that e or f equals 1 mod 2. Multiplying both of these differentials by x� yields

d7.ı
3�2/D e �5; d7.2ı

3�2/D f �5:

Thus we have e � 1 mod 2, and f � 0 mod 2, and

d7.ı
2/D ı�1 �3; d7.ıb4/D 0:

Proof of Proposition 2.3.5, part 2 We now return to the proof of Proposition 2.3.5
to establish the one remaining differential, d5.��/. We note that

d5.ı��/D 0

since the only possible nontrivial target of such a differential would be 2�2 , and this
supports a nontrivial d7–differential by Proposition 2.3.6. We therefore have

0D d5.ı��/D ı
�1�2�3

C ıd5.��/D ı
�12�4

C ıd5.��/:

We conclude that we have
d5.��/D 2ı�2�4:

To handle the next round of differentials we will need the following lemma.
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Lemma 2.3.7 The Hurewicz image of the element � in �14 TMF restricts to a non-
trivial class in �14 TMF0.5/, detected by �2ı in the homotopy fixed point spectral
sequence.

Proof Applying Corollary 2.2.3 to the class �4� 2�110 TMF of order 4, we find that
Res.�4�/ is nontrivial, and detected in the homotopy fixed point spectral sequence by
a class in filtration between 4 and 14. Given our d5–differentials, the only candidate
is �2ı13 . Since E2 is ı–periodic, and since � is detected in filtration 2 in TMF, it
follows that on the level of E2 pages � restricts to �2ı . The lemma follows, since
�2ı is not the target of a differential.

Proposition 2.3.8 In the homotopy fixed point spectral sequence for �� TMF0.5/,
E8 DE9 DE10 and the d11–differentials are determined by

d11. �/D ı
�4�7:

Proof In �� TMF we have x�3� D 0. The restriction of this element in TMF0.5/ is
detected in the homotopy fixed point spectral sequence by ı4�7 , so the latter must be
the target of a differential. The only possibility is d11.ı

8 �/D ı4�7 . Since ı4 persists
to the E11–page, and there are no nontrivial targets for d11.ı

4/, it follows that E11 is
ı4–periodic, and the proposition follows.

Proposition 2.3.9 In the homotopy fixed point spectral sequence for �� TMF0.5/,
E12 DE13 and the d13–differentials are determined by

d13.ı��/D ı
�4�8; d13.ı

3�2/D ı�2��7:

Proof In �� TMF we have x�6 D 0. Since Res.x�6/ is detected by ı6�12 in the
homotopy fixed point spectral sequence for TMF0.5/, the latter must be the target of a
differential. Since x�ı6�12 is nontrivial in E13 , if dr .x/D ı

6�12 it must be the case
that x� �x ¤ 0. The only such candidate is

d13.ı
11��5/D ı6�12:

Dividing by x�2 , it follows that we have

d13.ı
9��/D ı4�8:

Since ı4 persists to E13 with no possible targets for a nontrivial d13.ı
4/, it follows

that
d13.ı��/D ı

�4�8:
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The differential d13ı
3�2D ı�2��7 actually follows from the differential above, though

perhaps not so obviously, so we will explain in more detail. The element �3� persists
to the E13–page, and there are no possibilities for it supporting a nontrivial d13–
differential. However, by the previous paragraph,

x�4�3� D ı4�11� D d13.ı
9�4�2/¤ 0 2E13:

Dividing by x�2 , we get
d13.ı

7�2/D ı2�7�

and thus
d13.ı

3�2/D ı�2�7�:

This concludes the determination of the differentials in the homotopy fixed point
spectral sequence; there are no further possibilities. We now turn to determining the
hidden extensions in this spectral sequence. To do this, we will recompute �� TMF0.5/

using a homotopy orbit spectral sequence. This different presentation will turn out
to elucidate the multiplicative structure missed by the homotopy fixed point spectral
sequence.

The Tate spectral sequence

yH s.F�5 I�t TMF1.5// ) �t�s TMF1.5/
tF�

5

can be easily computed from the homotopy fixed point spectral sequence — one simply
has to invert � . A picture of the resulting spectral sequence (just from E4 and beyond)
is displayed in Figure 6.

Note that everything dies in this spectral sequence. Therefore, we have established the
following lemma. (There may be other more conceptual ways of proving the following
lemma — for instance, it is well known to hold K.2/–locally, and the unlocalized
statement might follow from the fact that M1.5/!M0.5/ is a Galois cover.)

Lemma 2.3.10 The Tate spectrum TMF1.5/
tF�

5 is trivial, and therefore the norm map

N W TMF1.5/hF�
5
! TMF1.5/

hF�
5

is an equivalence.

Thus the homotopy groups of �� TMF1.5/hF�
5
D �� TMF0.5/ are isomorphic to

�� TMF1.5/
hF�

5 as modules over �� TMF. However, these �� TMF–modules are
computed in an entirely different way by the homotopy orbit spectral sequence

Hs.F
�
5 I�t TMF1.5// ) �sCt TMF0.5/:

Algebraic & Geometric Topology, Volume 16 (2016)



On the homotopy of Q.3/ and Q.5/ at the prime 2 2499

5

10

Figure 6: The E4 term in the Tate spectral sequence for TMF1.5/
tF�

5 with
dr –differentials, r � 4

Nevertheless, the homotopy orbit spectral sequence (with differentials) can be computed
by simply truncating the Tate spectral sequence (and manually computing H0 where
appropriate). The resulting homotopy orbit spectral sequence is displayed in Figure 7.
As with our other spectral sequences, we are displaying the E4–page, with all remaining
differentials. The (infinite rank) bo patterns are displayed in gray.

There are many hidden extensions (as �� TMF modules) in the homotopy orbit spectral
sequence (HOSS) which are not hidden in the homotopy fixed point spectral sequence
(HFPSS). Since �0 TMF0.5/ is seen to be torsion free in the HFPSS, there must be
additive extensions as indicated in Figure 7, and 1 2 �0 TMF0.5/ must be detected on
the s D 12 line. Since the HFPSS shows �, �2 and � are nontrivial in �� TMF0.5/,

Algebraic & Geometric Topology, Volume 16 (2016)



2500 Mark Behrens and Kyle M Ormsby

t-s

s

10

5

302520151050

Figure 7: The E4 term in the homotopy orbit spectral sequence for
TMF1.5/hF�

5
with dr –differentials, r � 4

30250 5 10 15 20

5

10

Figure 8: The hidden extensions in the homotopy fixed point spectral se-
quence for TMF0.5/

there must be corresponding hidden extensions in the HOSS. Multiplying these by x�
in the HOSS yields hidden � and �2 extensions supported by x� .

We will now deduce the hidden extensions in the HFPSS from multiplicative structure
in the HOSS. The resulting extensions are displayed in Figure 8.
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Since �x� and �2x� are seen to be nontrivial in �� TMF0.5/ using hidden extensions in
the HOSS, we obtain corresponding new hidden extensions in the HFPSS. With the
one exception � � ı2 � , all of the other hidden extensions displayed in Figure 8 follow
from nonhidden extensions in the HOSS. The remaining extension is addressed in the
following lemma.

Lemma 2.3.11 In the homotopy fixed point spectral sequence for TMF0.5/, there is
a hidden extension

� � ı2 � D ı�1�6:

Proof Observe that since �3 is nontrivial in �� TMF0.5/, and in �� TMF we have
�3D �� , it must follow that � is detected by ı�2�4 in the HFPSS. Thus x�� is detected
by ı�1�6 . However, x�� is �–divisible in �� TMF. It follows that it must also be
�–divisible in �� TMF0.5/, and the hidden extension claimed is the only possibility to
make this happen.

Theorem 2.3.12 The homotopy groups �� TMF0.5/ are given by the ı4–periodic
pattern in Figure 9; the gray classes in the figure represent infinite direct sums of
bo–patterns, generated (.2/–locally) by classes

ıj b2k
2 �a.zj � 11/�l ; j 2 Z; k > 0; 0� a� 2; l � 0;

ıj b2k
2 b4�

a; j 2 Z; k � 0; 0� a� 2;

2ıj b2kC1
2

.zj � 11/�l ; j 2 Z; k � 0; l � 0;

2ıj b2kC1
2

b4; j 2 Z; k � 0; l � 0:

1
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Figure 9

Remark 2.3.13 One easily sees from the calculation of the d5 and d7–differentials
that zj and hence .zj �11/�1 are permanent cycles in the homotopy fixed point spectral
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sequence. It is reasonable to record how these act on the �� TMF0.5/. Amongst the
classes of the form

2iıj bk
2 b�4�

a.zj � 11/�l

(where we take � 2 f0; 1g, and l D 0 if �D 1), multiplication by zj is easy to compute
using zj D b4ı

�1 and the relation

b2
4 D b2

2ı� 4ı2:

Multiplication by .zj � 11/�1 is governed by the relation

11.zj � 11/�1b4 D b2
2.
zj � 11/�1

� 4ı.zj � 11/�1
� b4:

Amongst all other classes x in the chart not of the form above, we have

zj x D 0 and .zj � 11/�1x D x:

Remark 2.3.14 The relation �x� D �2 in the chart of Theorem 2.3.12 corresponds to
the same relation in the stable homotopy groups of spheres. This relation represents a
hidden �–extension in the classical Adams spectral sequence for the sphere (in the ASS,
c0g D 0 and d2

0
detects the generator of �s

28
). In the homotopy fixed point spectral

sequence above, the relation

.ı�2�4/.ı�2/D ı�1�6

implies that ı�1�6 detects �x� . Actually, this gives an amusing alternative proof of
the relation �x� D �2 in �s

� : the fact that d2
0

is a permanent cycle in the ASS implies
that �2 is nontrivial, and we have just seen that �x� must be nontrivial, because it is
detected in the Hurewicz image of TMF0.5/. Since �s

28
D Z=2, the two classes must

be equal. One could make a similar argument using TMF instead of TMF0.5/, as one
sees �x� in a similar way as a nonhidden extension in the ANSS for TMF.

3 Q.`/–spectra

We now begin working with the Q.`/ spectra in earnest. We review the definition of
Q.`/ in Section 3.1 and in Section 3.2 recall the double complex that computes the
E2–term of its Adams–Novikov spectral sequence.

In previous sections we have focused on data for Q.5/ but in Section 3.3 we review
formulas of Mahowald and Rezk from [20] related to Q.3/. Finally in Section 3.4 we
recall the formulas of Section 1 in forms that will be useful in subsequent calculations.
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3.1 Definitions

In [3], the p–local spectrum Q.`/ (p − `) is defined as the totalization of an explicit
semi-cosimplicial E1–ring spectrum of the form

Q.`/� D
�
TMF) TMF0.`/�TMFV TMF0.`/

�
:

Here a semi-cosimplicial object is the same thing as a cosimplicial object, but without
codegeneracy maps. The above expression is shorthand for a semi-cosimplicial spectrum
Q.`/� in which Q.`/k D � for k > 2. The coface maps from level 0 to level 1 are
given by

d0 D q� � `; d1 D f
�
� 1;

and the coface maps from level 1 to level 2 are given by

d0 D t� ı�2; d1 D f
�
ı�1; d2 D �2;

where �i are the projections onto the components. These maps are induced by the
maps of stacks

 `WM1
!M1; .C; Ev/ 7! .C; ` � Ev/;

f WM1
0.`/!M1; .C;H; Ev/ 7! .C; Ev/;

qWM1
0.`/!M1; .C;H; Ev/ 7! .C=H; .�H /�Ev/;

t WM1
0.`/!M1

0.`/; .C;H; Ev/ 7! .C=H; yH ; .�H /�Ev/;

where �H W .C;H /! C=H is the quotient isogeny. (Note that our t is  d in [3,
page 349], and we have corrected a small typo in its presentation here.) The map
 `W MFk ! MFk is analogous to an Adams operation, and acts by multiplication
by `k . Formulas for f � , q� and t� , on the level of modular forms are typically
computed differently for different choices of `, and are more complicated.

3.2 The double complex

As done in the special case of `D 2 and p D 3 in [3], one can form a total cochain
complex to compute the E2–term for the Adams–Novikov spectral sequence for Q.`/.
Let .A; �/ denote the usual elliptic curve Hopf algebroid, and let .B1.`/;ƒ1.`//

denote a Hopf algebroid which stackifies to give M1
0
.`/. Let C �

�
.A/, C �

ƒ1.`/
.B1/

denote the corresponding cobar complexes, so the corresponding Adams–Novikov
spectral sequences take the form

E
s;2t
2
DH s.M; !˝t /DH s.C �� .A/2t / ) �2t�s TMF;

E
s;2t
2
DH s.M0.`/; !

˝t /DH s.C �
ƒ1.`/

.B1.`//2t / ) �2t�s TMF0.`/:
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Corresponding to the cosimplicial decomposition of Q.`/ we can form a double
complex C �;�.Q.`//:

(3.2.1)

:::
:::

:::

C 1
�
.A/

OO

// C 1
ƒ1.`/

.B1.`//˚C 1
�
.A/ //

OO

C 1
ƒ1.`/

.B1.`//

OO

// � � �

C 0
�
.A/

OO

// C 0
ƒ1.`/

.B1.`//˚C 0
�
.A/ //

OO

C 0
ƒ1.`/

.B1.`//

OO

// � � �

Let C �tot.Q.`// denote the corresponding total complex. Then the Adams–Novikov
spectral sequence for Q.`/ takes the form

E
s;2t
2
DH s.C �tot.Q.`//2t / ) �2t�sQ.`/:

3.3 Recollections about Q.3/

Mahowald and Rezk [20] performed a study of the explicit formulas for Q.3/ similar
to our current treatment of Q.5/. We summarize some of their results here for the
reader’s convenience.

The moduli space M1
1
.3/ is represented by the affine scheme Spec B1.3/ with

B1.3/D Z
�

1
3
; a1; a3; �

�1
�

with
�D a3

3.a
3
1� 27a3/:

The corresponding universal �1.3/ structure is carried by the Weierstrass curve

y2
C a1xyC a3y D x3

with point P D .0; 0/ of order 3. The Gm–action on M1
1
.3/ induces a grading on

B1.3/, for which ai has weight i . It follows that

�� TMF1.3/D Z
�

1
3
; a1; a3; �

�1
�

with topological degrees jai j D 2i . The spectrum TMF1.3/ admits a complex orienta-
tion with v1 D a1 and v2 D a3 .

The group F�
3
D f˙1g acts on M1

1
.5/ by sending an R–point .C;P / (where P is a

point of exact order 3 on C ) to the R–point .C; Œ�1�.P //. This induced action of F�
3
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on the ring B1.3/ is given by

Œ�1�.a1/D�a1; Œ�1�.a3/D�a3:

We have
M1

0.3/DM1
1.3/==F

�
3

and hence an equivalence

TMF0.3/' TMF1.3/
hF�

3 :

The resulting homotopy fixed point spectral sequence takes the form

H s.F�3 I�t TMF1.3// ) �t�s TMF0.3/:

In particular, the ring of modular forms (meromorphic at the cusps) for �0.3/ is the
subring

MF.�0.3//DH 0.F�3 IMF.�1.3//D Z
�

1
3
; a2

1; a1a3; a
2
3; �

�1
�
� B1.3/:

Mahowald and Rezk also compute the effects of the maps

f �; q�W A! B1.3/ and t�W B1.3/! B1.3/

as

f �.a1/D a1; q�.a1/D a1;

f �.a2/D 0; q�.a2/D 0;

f �.a3/D a3; q�.a3/D 3a3;

f �.a4/D 0; q�.a4/D�6a1a3;

f �.a6/D 0; q�.a6/D�.9a2
3C a3

1a3/

and

t�.a2
1/D�3a2

1;

t�.a1a3/D
1
3
a4

1� 9a1a3;

t�.a2
3/D�

1
27

a6
1C 2a3

1a3� 27a2
3:

3.4 The formulas for Q.5/

The moduli space M1
1
.5/ is represented by the affine scheme Spec B1.5/ with

B1.5/D Z
�

1
5
; a1;u; �

�1
�
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with

�D�11u12
C64a1u11

�154a2
1u10
C195a3

1u9
�135a4

1u8
C46a5

1u7
�4a6

1u6
�a7

1u5:

The corresponding universal �1.5/ structure is carried by the Weierstrass curve

y2
C a1xyC .a1u2

�u3/y D x3
C .a1u�u2/x2

with point P D .0; 0/ of order 5. The Gm–action on M1
1
.5/ induces a grading on

B1.5/, for which a1 and u both have weight 1. It follows that

�� TMF1.5/D Z
�

1
5
; a1;u; �

�1
�

with topological degrees ja1j D juj D 2. The spectrum TMF1.5/ admits a complex
orientation with v1 D a1 and v2 � u3 mod .2; v1/.

The group F�
5
Š C4 acts on M1

1
.5/: for 5 − n, the mod 5 reduction Œn� 2 F�

5
acts

by sending an R–point .C;P / (where P is a point of exact order 5 on C ) to the
R–point .C; Œn�.P //. This induced action of the generator Œ2� of F�

5
on the ring B1.5/

is given by
Œ2�.a1/D a1� 2u; Œ2�.u/D a1�u:

These have the more convenient expressions

Œ2�.u/D b1; Œ2�.b1/D�u;

where b1 WD a1�u. We have

M1
0.5/DM1

1.5/==F
�
5

and hence an equivalence

TMF0.5/' TMF1.5/
hF�

5 :

The resulting homotopy fixed point spectral sequence takes the form

H s.F�5 I�t TMF1.5// ) �t�s TMF0.5/:

In particular, the ring of modular forms (meromorphic at the cusps) for �0.5/ is the
subring

MF.�0.5//DH 0.F�5 IMF.�1.5//D
Z
�

1
5
; b2; b4; ı

�
Œ��1�

.b2
4
D b2

2
ı� 4ı2/

� B1.5/

where
b2 WD u2

C b2
1 ; b4 WD u3b1�ub3

1 ; ı WD u2b2
1 :
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Note that ı is almost a cube root of �: we have

�D ı2b4� 11ı3:

The effects of the maps

f �; q�W A! B1.5/; and t�W B1.5/! B1.5/

are

f �.a1/D a1; q�.a1/D a1;

f �.a2/D a1u�u2; q�.a2/D�u2
Ca1u;

f �.a3/D a1u2
�u3; q�.a3/D�u3

Ca1u2;

f �.a4/D 0; q�.a4/D�10u4
C30a1u3

�25a2
1u2
C5a3

1u;

f �.a6/D 0; q�.a6/D�20u6
C59a1u5

�70a2
1u4
C45a3

1u3
�15a4

1u2
Ca5

1u

and

t�.a1/D
1
5
.�8�3

� 6�2
� 14� � 7/a1C

1
5
.14�3

� 2�2
C 12�C 6/u;

t�.u/D 1
5
.��3

� 7�2
� 8� � 4/a1C

1
5
.8�3
C 6�2

C 14�C 7/u:

In the formulas for t� , we use � to denote a 5th root of unity. This results in the
following formulas for f �; q� and t� on rings of modular forms:

f �.c4/D b2
2 � 12b4C 12ı; q�.c4/D b2

2 C 228b4C 492ı;

f �.c6/D�b3
2 C 18b2b4� 72b2ı; q�.c6/D�b3

2 C 522b2b4C 10; 008b2ı

and

t�.b2/D�5b2;

t�.b4/D
1
5
.11b2

2 � 117b4� 88ı/;

t�.ı/D 1
5
.b2

2 � 22b4C 117ı/:

4 Detection of the ˇ–family by Q.3/ and Q.5/

The Miller–Ravenel–Wilson divided ˇ–family [21] is an important algebraic approxi-
mation of the K.2/–local sphere at the prime 2. It was computed for the prime 2 by
Shimomura in [22]. Here we use the standard chain of Bockstein spectral sequences and
the formulas of Section 3.3 and Section 3.4 to compute algebraic chromatic data in the
Q.3/ and Q.5/ spectra. These are compared to Shimomura’s calculations, resulting in
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Theorems 4.2.2 and 4.2.4. The surprising observation is that Q.3/ precisely detects
the divided ˇ–family, while the analogous family in Q.5/ has extra v1–divisibility.

4.1 The chromatic spectral sequence

Following [21], given a BP�–module N , we will let

M n�i
i N WDN=.p; : : : ; vi�1; v

1
i ; : : : ; v

1
n�1/Œv

�1
n �:

If N is a BP� BP–comodule, then so is M n�i
i N . Letting Ext�;�.N / denote the groups

Ext�;�BP� BP.BP�;N /;

there is a chromatic spectral sequence

E
n;s;t
1
D Exts;t .M n

0 N / ) ExtsCn;t .N /:

The groups Ext0;�.M n
0

BP�/ detect the nth Greek letter elements in Ext�;�.BP�/.

The E1–term of this spectral sequence may be computed by first computing the groups
Ext�;�.M 0

n / and then using the vi–Bockstein spectral sequences (BSS) of the form

Ext�;�.M n�i�1
iC1 N /˝Fp Œvi �=.v

1
i / ) Ext�;�.M n�i

i N /:

4.2 Statement of results

For the remainder of this section we work exclusively at the prime 2. Shimomura used
these spectral sequences to make the following computation.

Theorem 4.2.1 [22] The groups Ext0.M 2
0

BP�/ are spanned by the elements

1

2kv
j
1

; j � 1 and k � k.j /I

vm2n

2

2kv
j
1

; 2 −m; k � k.j /; j �

�
a.1/; k D 3; nD 2;

a.n� kC 1/; otherwise;

where

k.j / WD

�
1; j 6� 0 mod 2;

�2.j /C 2; j � 0 mod 2
and a.i/ WD

8<:
1; i D 0;

2; i D 1;

3 � 2i�1; i � 2:
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The “names” vi
2
=2kv

j
1

are not the exact names of BP� BP–primitives in M 2
0

BP� , but
rather the names of the elements detecting them in the sequence of BSSs:

Ext�;�.M 0
2 BP�/˝

F2Œv0; v1�

.v1
0
; v1

1
/
) Ext�;�.M 1

1 BP�/˝
F2Œv0�

.v1
0
/
) Ext�;�.M 2

0 BP�/:

Put a linear order on the monomials vk
0
v

j
1

in F2Œv
k
0
; v

j
1
� by left lexicographical ordering

on the sequence of exponents .k; j /. With respect to this ordering, the actual primitives
correspond to elements

vi
2

2kv
j
1

C terms with smaller denominators:

The main theorem of this section is the following.

Theorem 4.2.2 The map

Ext0.M 2
0 BP�/!H 0.M 2

0 C �tot.Q.3///

is an isomorphism.

Remark 4.2.3 It was observed by Mahowald and Rezk [20] that the map

Ext0.M 1
1 BP�/!H 0.M 1

1 C �tot.Q.3///

is an isomorphism.

However, the same cannot hold for Q.5/. Indeed, the following theorem implies it
does not even hold on the level of M 1

1
.

Theorem 4.2.4 The map

Ext0.M 1
1 BP�/!H 0.M 1

1 C �tot.Q.5///

is not an isomorphism.

4.3 Leibniz and doubling formulas

The group H 0.M 2
0

C �tot.Q.`/// is the kernel of the map

M 2
0 C 0

tot.Q.`//
d0�d1
����!M 2

0 C 1
tot.Q.`//;
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where d0 and d1 are the cosimplicial coface maps of the total complex. Explicitly, we
are applying M 2

0
to the map

DtotW A.2/
.�R��L/˚.q

��f �/˚. `�1/
��������������������! �.2/˚B1.`/.2/˚A.2/:

The projection of Dtot onto the last component is very easy to understand; it is given by

 ` � 1W A!A:

As long as ` generates Z�
2
=f˙1g, in degree 2t the map  ` � 1, up to a unit in Z�

.2/
,

corresponds to multiplication by a factor of 2k.t/ . It therefore suffices to understand
the composite D of Dtot with the projection onto the first two components:

DW A.2/
.�R��L/˚.q

��f �/
��������������! �.2/˚B1.`/.2/:

We shall make repeated use of the following lemma about this map D .

Lemma 4.3.1 The map D satisfies the following two identities:

D.xy/DD.x/�R.y/CxD.y/;(4.3.2)

D.x2/D 2xD.x/CD.x/2:(4.3.3)

Here, � is given the A–module structure induced by the map �L , and B1.3/ is given
the A–module structure induced from the map f � . Consequently, we have

(4.3.4) D.xy/� xD.y/ mod .D.x//:

Proof These identities hold for any map D D d0� d1W R
0!R1 , the difference of

two ring maps:

D.xy/D d0.x/d0.y/� d1.x/d1.y/

D d1.x/.d0.y/� d1.y//C .d0.x/� d1.x//d0.y/

D d1.x/D.y/CD.x/d0.y/I

D.x2/D d0.x/
2
� d1.x/

2

D .d0.x/� d1.x//
2
C 2d0.x/d1.x/� 2d1.x/

2

DD.x/2C 2d1.x/D.x/:
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Observe that using the fact that a1 D v1 , there are isomorphisms

�.2/ Š Z.2/Œv1�Œa2; a3; a4; a6; r; s; t �Œ�
�1�;

B1.3/.2/ Š Z.2/Œv1�Œa3�Œ�
�1�;

B1.5/.2/ Š Z.2/Œv1�Œu�Œ�
�1�:

Express elements of �.2/ (respectively, B1.3/.2/ , B1.5/2 ) “.2; v1/–adically” so that
every element is expressed as a power of the discriminant times a sum of terms

�`
X
k�0

X
j�0

2kv
j
1
ck;j

for ` 2 Z and ck;j 2 F2Œa2; a3; a4; a6; r; s; t � (respectively F2Œa3�, F2Œu�). We shall
compare terms by saying that

2kv
j
1
cj ;k is larger than 2k0v

j 0

1
cj 0;k0

if .k; j / is larger than .k 0; j 0/ with respect to left lexicographical ordering. We shall
be concerned with ordered sums of monomials of the form

v
i0

1
c0;i0
C terms of the form v

j
1
c0;j with j > i0

C 2v
i1

1
c1;i1
C terms of the form 2v

j
1
c1;j with j > i1

C 4v
i2

1
c2;i2
C terms of the form 4v

j
1
c2;j with j > i2

C � � �

C 2nv
in

1
cn;in
C larger terms

for i0 > i1 > � � �> in and n� 1. Note that we permit the coefficients ck;ik
to be zero.

We shall abbreviate such expressions as

(|) v
i0

1
c0;i0
C � � �

C 2v
i1

1
c1;i1
C � � �

C 4v
i2

1
c2;i2
C � � �

C � � �

C 2nv
in

1
cn;in
C � � � :

The following observation justifies considering such representations.

Lemma 4.3.5 Suppose x 2A.2/ is such that D.x/ is of the form (|). Then we have
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(4.3.6) D.x2/D v
2i0

1
c2

0;i0
C � � �

C 2v
i0

1
c0;i0

xC � � �

C 4v
i1

1
c1;i1

xC � � �

C 8v
i2

1
c2;i2

xC � � �

C � � �

C 2nC1v
in

1
cn;in

xC � � � ;

and for m odd we have

(4.3.7) D.xm/D v
i0

1
c0;i0

xm�1
C � � �

C 2v
i1

1
c1;i1

xm�1
C � � �

C 4v
i2

1
c2;i2

xm�1
C � � �

C � � �

C 2nv
in

1
cn;in

xm�1
C � � � :

Proof The identity (4.3.6) follows immediately from (4.3.3). We prove (4.3.7) by
induction on mD 2j C 1. Suppose that we know (4.3.7) for all odd m0 <m. Write
j D 2ts for s odd. Then by the inductive hypothesis, and repeated applications of
(4.3.6), we deduce that

D.xj /D v
i0

1
c00;i0
C � � �

C 2v
i1

1
c01;i1
C � � �

C 4v
i2

1
c02;i2
C � � �

C � � �

C 2nv
in

1
c0n;in
C � � � :

Applying (4.3.6), we have

D.x2j /D v
2i0

1
.c00;i0

/2C � � �

C 2v
i0

1
c00;i0

xj
C � � �

C 4v
i1

1
c01;i1

xj
C � � �

C 8v
i2

1
c02;i2

xj
C � � �

C � � �

C 2nC1v
in

1
c0n;in

xj
C � � � :
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It follows from (4.3.4) that we have

D.x2jC1/DD.x2j x/D v
i0

1
c0;i0

x2j
C � � �

C 2v
i1

1
c1;i1

x2j
C � � �

C 4v
i2

1
c2;i2

x2j
C � � �

C � � �

C 2nv
in

1
cn;in

x2j
C � � � :

4.4 Overview of the technique

The technique for the proof of Theorem 4.2.2 is as follows (following [21] and [22]):

Step 1 Compute the differentials from the s D 0 to the s D 1–lines in the v1–BSS

(4.4.1) H s;�.M 0
2 C �tot.Q.3///˝F2Œv1�=.v

1
1 / ) H s;�.M 1

1 C �tot.Q.3///:

This establishes the existence and v1–divisibility of vi
2
=v

j
1

in H 0;�.C �tot.Q.3///.

Step 2 For i; j as above, demonstrate that vi
2
=2kv

j
1

exists in H 0;�.M 2
0

C �tot.Q.3///

by writing down an element

xi=j ;k D
ai

3

2kv
j
1

C terms with smaller denominators 2M 2
0 A

with Dtot.x/D 0.

Step 3 Given j , find the maximal k such that xi=j ;k exists by using the exact sequence

H 0;�.M 2
0 C �tot.Q.3///

�2
�!H 0;�.M 2

0 C �tot.Q.3///
@
�!H 1;�.M 1

1 C �tot.Q.3///:

Specifically, the maximality of k is established by showing that @.xi=j ;k/¤ 0. The
nontriviality of @.xi=j ;k/ can be demonstrated by considering its image under the
inclusion

H 1;�.M 1
1 C �tot.Q.3/// ,! Coker M 1

1 .Dtot/;

where M 1
1
.Dtot/ is the map

M 1
1 .Dtot/W M

1
1 A!M 1

1 �˚M 1
1 B1.3/˚M 1

1 A

essentially computed in Step 1 by the computation of the differentials from s D 0 to
s D 1 in the spectral sequence (4.4.1).
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4.5 Computation of H �;�.M 0
2

C �
tot.Q.3///

We have [2, Section 7]

H�;�.M 0
2 C �� .A//D F2Œa

˙1
3 ; h1; h2;g�=.h

3
2 D a3h3

1/;

H�;�.M 0
2 C �

ƒ1.3/
.B1//D F2Œa

˙
3 ; h2;1�

with .s; t/–bidegrees

ja3j D .0; 6/; jh1j D .1; 2/; jh2j D .1; 4/; jgj D .4; 24/; jh2;1j D .1; 6/;

and h4
2;1
D g . Moreover, the spectral sequence of the double complex gives

(4.5.1) H s;t .M 0
2 C �� .A//

˚H s�1;t .M 0
2 C �� .A//˚H s�1;t .M 0

2 C �
ƒ1.3/

.B1//

˚H s�2;t .M 0
2 C �

ƒ1.3/
.B1//

) H s;t .M 0
2 C �tot.Q.3///:

In order to differentiate the terms x with the same name (such as a3 ) occurring in
the different groups in the E1–term of spectral sequence (4.5.1), we shall employ the
following notational convention:

x 2 C �� .A/ on the 0–line;

xx 2 C �� .A/ on the 1–line;

x0 2 C �
ƒ1.`/

.B1/ on the 1–line;

xx0 2 C �
ƒ1.`/

.B1/ on the 2–line:

The formulas of Section 3.3 show that the only nontrivial d1 differentials in spectral
sequence (4.5.1) are

d1.g
i.xa3/

j /D h4i
2;1.xa

0
3/

j :

Since g is the image of the element g 2 Ext4;24.BP�/ (the element that detects x� in
the ANSS for the sphere), and the spectral sequence (4.5.1) is a spectral sequence of
modules over Ext�;�.BP�/, we deduce that there are no possible dr –differentials for

Algebraic & Geometric Topology, Volume 16 (2016)



On the homotopy of Q.3/ and Q.5/ at the prime 2 2515

r > 1. We deduce that we have

H�;�.M 0
2 C �tot.Q.3///D F2Œa

˙1
3 ; h1; h2;g�=.h

3
2 D a3h3

1/

˚F2Œxa
˙1
3 ; xg�fxh1; xh2; xh

2
1;
xh2

2;
xh3

2 D xa3
xh3

1g

˚F2Œ.a
0
3/
˙1; h02;1�

˚F2Œ.xa
0
3/
˙1; xg0�fxh02;1; .

xh02;1/
2; .xh02;1/

3
g:

Remark 4.5.2 Note that H�;�.M 0
2

C �tot.Q.3/// is less than half of Ext�;�.M 0
2

BP�/.
This indicates that Q.3/ cannot agree with “half” of the proposed duality resolution of
Goerss, Henn, Mahowald and Rezk at p D 2 [10], despite the fact that it is built from
the same spectra. In particular, the fiber of the map

SK.2/!Q.3/K.2/

cannot be the dual of Q.3/K.2/ .

4.6 Computation of H 0;�.M 1
1

C �
tot.Q.3///

We now compute the differentials in the v1–BSS

(4.6.1) H s;�.M 0
2 C �tot.Q.3///˝F2Œv1�=.v

1
1 / ) H s;�.M 1

1 C �tot.Q.3///

from the s D 0–line to the s D 1–line. This computation was originally done by
Mahowald and Rezk [20], but we redo it here to establish notation, and to motivate the
rationale behind some of the computations to follow.

One computes using the formulas of Section 3.3:

(4.6.2)

D.x0/� a1s2 mod .2; v2
1/;

D.x1/� a2
1a3s mod .2; v3

1/;

D.x2/� .a
0
1/

6.a03/
2 mod .2; v7

1/

for
x0 WD a3C a1a2 � a3 mod .2; v1/;

x1 WD x2
0 C a2

1a4C a2
1a2

2 � a2
3 mod .2; v1/;

x2 WD�� a4
3 mod .2; v1/:
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Remark 4.6.3 The above formulas for xi were obtained by the following method. In
the complex M 0

2
C �
�
.A/, we have

d.a2/D r C � � � ;

d.a4C a2
2/D s4

C � � � ;

d.a6/D t2
C � � � :

These are used in [2, Section 6] to produce a complex which is closely related to the
cobar complex on the double of A.1/� . To arrive at x0 we calculate

D.a3/D a1r C � � � ;

which means that we need to add the correction term a1a2 to arrive at x0 . The
expression for x1 was similarly produced. The definition � is a natural candidate
for x2 , as it is an element of the form a4

3
C� � � which is already known to be a cocycle

in C 0
�
.A/.

It follows from inductively applying (4.3.6) that we have

D.x2n�2

2 /� .a01/
3�2n�1

.a03/
2n�1

mod .2; v3�2n�1C1
1

/:

It follows from (4.3.7) that for m odd we have

D.xm
0 /� a1s2am�1

3 mod .2; v2
1/;

D.xm
1 /� a2

1a2m�1
3 s mod .2; v3

1/;

D.xm2n�2

2 /� .a01/
3�2n�1

.a03/
m2n�2n�1

mod .2; v3�2n�1C1
1

/:

We deduce the following.

Lemma 4.6.4 The v1–BSS differentials in (4.6.1) from the .sD0/–line to the .sD1/–
line are given by

d1

�
am

3

v
j
1

�
D

am�1
3

h2

v
j�1
1

;

d2

�
a2m

3

v
j
1

�
D

a2m�1
3

h1

v
j�2
1

;

d3�2n�1

�
am2n

3

v
j
1

�
D
.a0

3
/m2n�2n�1

v
j�3�2n�1

1

;

where m is odd.
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Corollary 4.6.5 The groups H 0;�.M 1
1

C �tot.Q.3/// are generated by the elements

am2n

3

v
j
1

for m odd and j � a.n/.

4.7 Computation of H 0;�.M 2
0

C �
tot.Q.3///

We now prove Theorem 4.2.2, which is more specifically stated below.

Theorem 4.7.1 The groups H 0;�.M 2
0

C �tot.Q.3/// are spanned by elements

1

2kv
j
1

; j � 1 and k � k.j /I

a
mpn

3

2kv
j
1

; 2 −m; k � k.j /; and j �

�
a.1/; k D 3; nD 2;

a.n� kC 1/; otherwise:

In many cases, the bounds on 2–divisibility will follow from the following simple
observation.

Lemma 4.7.2 Suppose the element

ai
3

2kv
j
1

2H 0;2t .M 2
0 C �tot.Q.3///

exists. Then k � k.t/.

Proof The formula

. 3
� 1/

ai
3

2kv
j
1

D .3t
� 1/

xai
3

2kv
j
1

implies that in order for

0¤Dtot

�
ai

3

2kv
j
1

�
2M 2

0 C 1
tot.Q.3//

we must have k � �2.3
t � 1/.
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Proof of Theorem 4.7.1 Lemma 4.6.4 established that for m odd, am2n

3
=2v

j
1

exists
for 1� j � a.n/. In order to prove the required 2–divisibility of these elements, we
need to prove that

D

�
a4m

3

8v2
1

C � � �

�
D 0;(4.7.3)

D

�
am2n

3

4v
2j
1

C � � �

�
D 0; 2j � a.n� 1/;(4.7.4)

D

�
am2n

3

2kv
j2k�2

1

C � � �

�
D 0; k � 3; j 2k�2

� a.n� kC 1/:(4.7.5)

In light of Lemma 4.7.2, to establish that these are the maximal 2–divisibilities of these
elements, we need only check that

@

�
am

3

2v1

C � � �

�
6� 0 mod D.M 1

1 A/;(4.7.6)

@

�
am2n

3

2v
2j
1

C � � �

�
6� 0 mod D.M 1

1 A/; a.n� 1/ < 2j � a.n/;(4.7.7)

@

�
am2n

3

2k�1v
j2k�2

1

C � � �

�
6� 0 mod D.M 1

1 A/; k � 2;(4.7.8)

a.n� kC 1/ < j 2k�1
� a.n� kC 2/:

Proof of (4.7.6) Using the formulas of Section 3.3, we have

(4.7.9) D.x0/D a1s2
C � � �

C 2.t C rsC s3
C a2s/C � � �

C 2a03C � � � :

It follows from (4.3.7) that we have for m odd

(4.7.10) D.xm
0 /D a1am�1

3 s2
C � � �

C 2am�1
3 .t C rsC s3

C a2s/C � � �

C 2.a03/
m
C � � � :

Since we have

(4.7.11) �R.a1/D a1C 2s
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we deduce from (4.7.10), using (4.3.2),

(4.7.12) D.xm
0 a1/D a2

1am�1
3 s2

C � � �

C 2am
3 sC 2a1am�1

3 .t C rs/C � � �

C 2a01.a
0
3/

m
C � � � :

Reducing modulo the invariant ideal .4; v2
1
/ we deduce

@

�
am

3

2v1

C � � �

�
D

am
3

h1

v2
1

C � � � :

Lemma 4.6.4 implies that this expression is not in D.M 1
1

A/ if m� 3 mod 4. However,
if m � 1 mod 4, then Lemma 4.6.4 implies that am

3
h1=v

2
1

is killed in the v1–BSS
(4.6.1) by d2.a

mC1
3

=v4
1
/. We compute, using the formulas of Section 3.3,

(4.7.13) D.x1/D a2
1a3sC a3

1.t C rs/C � � �

C 2a1a3s2
C � � �

C 2.a01/
3a03C � � � :

We deduce using (4.3.7) that for m odd we have

(4.7.14) D.xm
1 /D a2

1a2m�1
3 sC a3

1a2m�2
3 .t C rs/C � � �

C 2a1a2m�1
3 s2

C � � �

C 2.a01/
3.a03/

2m�1
C � � � :

We deduce that for m� 1 mod 4 we have

D.a3
1xm

0 C 2x
mC1

2

1
/D a4

1am�1
3 s2

C � � �

C 2.a01/
3.a03/

m
C � � � :

Thus we have for m� 1 mod 4

@

�
xm

0

2v1

C � � �

�
D
.a0

3
/m

v1

C � � �

and Lemma 4.6.4 implies that this expression is not in D.M 1
1

A/. This establishes
(4.7.6).

Proof of (4.7.7) for nD 1 Equation (4.7.14) implies that

@

�
a2m

3

v2
1

C � � �

�
D

a2m�1
3

h2

v1

C � � � ;

which, by Lemma 4.6.4, is not in D.M 1
1

A/. This establishes (4.7.7) for nD 1.
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Proof of (4.7.7) for nD 2 We compute using the formulas of Section 3.3

(4.7.15) D.x2/D .a
0
1/

6.a03/
2
C � � �

C 2.a01/
3.a03/

3
C � � � :

Applying (4.3.7), we get for m odd

(4.7.16) D.xm
2 /D .a

0
1/

6.a03/
4m�2

C � � �

C 2.a01/
3.a03/

4m�1
C � � � :

It follows that

@

�
xm

2

2v
2j
1

�
D
.a0

3
/4m�1

v
2j�3
1

C � � �

for a.1/ < 2j � a.2/, which is not in D.M 1
1

A/ by Lemma 4.6.4. This establishes
(4.7.7) for nD 2.

Proof of (4.7.3) We deduce from (4.7.16) that a4m
3
=4v2

1
exists. In order to understand

its 2–divisibility, we compute @.a4m
3
=4v2

1
/, which is the obstruction to divisibility.

To do this we need to compute D.xm
2
=8v2

1
/. Since .8; v4

1
/ is an invariant ideal, we

compute this from D.a2
1
xm

2
/. Since

(4.7.17) D.a2
1/D 4s2

C 4sa1

and

(4.7.18) x2 � a4
3C 2a2

1a2
3a4C a3

3a3
1 mod .4; v4

1/;

we deduce from (4.3.2) that

(4.7.19) D.a2
1xm

2 /D .a
0
1/

8.a03/
4m�2

C � � �

C 2.a01/
5.a03/

4m�1
C � � �

C 4a4m
3 s2

C 4a1a4m
3 sC 4a3

1a4m�1
3 s2

C � � � ;

which gives

D

�
xm

2

8v2
1

�
D

a4m
3

s2

2v4
1

C
a4m

3
s

2v3
1

C
a4m�1

3
s2

2v1

:

Lemma 4.6.4 tells us that a4m
3

h2=v
4
1

is killed by x4mC1
0

=v5
1

. We compute

D.x0/� a1s2
C sa2

1 mod 2

and thus
D.x4

0/� a4
1s8 mod .2; v5

1/:
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Using the fact that
x4m

0 � a4m
3 mod .2; v4

1/

we have

D.x4mC1
0

/� a1a4m
3 s2

C a2
1a4m

3 sC a4
1a4m�3

3 s8 mod .2; v5
1/:

and thus

D

�
xm

2

8v2
1

C
x4mC1

0

2v5
1

�
D

a4m�3
3

s8

2v1

C
a4m�1

3
s2

2v1

:

Since a4C a2
2

kills s4 (see Remark 4.6.3), .a4C a2
2
/2 kills s8 , and we compute

D..a4C a2
2/

2/� s8
C a2

3s2 mod .2; v1/:

Therefore we have

(4.7.20) D

�
xm

2

8v2
1

C
x4mC1

0

2v5
1

C
a4m�3

3
.a4C a2

2
/2

2v1

�
D 0:

This establishes (4.7.3).

Proof of (4.7.4) Iterated application of (4.3.3) to (4.7.16) yields

(4.7.21) D.xm2n�2

2 /D .a01/
3�2n�1

.a03/
m2n�2n�1

C � � �

C 2.a01/
3�2n�2

.a03/
m2n�2n�2

C � � �

C 4.a01/
3�2n�3

.a03/
m2n�2n�3

C � � �

C � � �

C 2n�1.a01/
3.a03/

m2n�1
C � � � :

It follows that

D

�
xm2n�2

2

4v
2j
1

�
D 0; 2j � a.n� 1/:

This establishes (4.7.4).

Proof of (4.7.5) Suppose that j is even. Then the ideal .2k ; v
j2k�2

1
/ is invariant, and

reducing (4.7.21) modulo this invariant ideal gives

D

�
xm2n�2

2

2kv
j2k�2

1

�
D 0; j 2k�2

� a.n� kC 1/:

This establishes (4.7.5) for j even.
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Suppose now that j is odd. Then the ideal .2k ; v
j2k�2C2k�2

1
/ is invariant, and in

order to compute D.xm2n�2

2
=2kv

j2k�2

1
/ we must compute D.a2k�2

1
xm2n�2

2
/ modulo

.2k ; v
j2k�2C2k�2

1
/. Repeated application of (4.3.3) to (4.7.17) yields

(4.7.22) D.a2k�2

1 /� 2k�1a2k�2�2
1 s2

C 2k�1a2k�2�1
1 s mod 2k :

We also note that since

x2 � a4
3C a3

1a3
3C � � � mod 2

we have

(4.7.23) xm2n�2

2 � am2n

3 C a3�2n�2

1 a
3�2n�2C.m�1/2n�2

3
C � � � mod 2

� am2n

3 C a3�2n�2

1 a2n�1Cm2n�2

3
C � � � mod 2:

Applying (4.3.2) to (4.7.21)–(4.7.23), we get

(4.7.24) D.a2k�2

1 xm2n�2

2 /D .a01/
3�2n�1C2k�2

.a03/
m2n�2n�1

C � � �

C 2.a01/
3�2n�2C2k�2

.a03/
m2n�2n�2

C � � �

C 4.a01/
3�2n�3C2k�2

.a03/
m2n�2n�3

C � � �

C � � �

C 2k�1.a01/
3�2n�kC2k�2

.a03/
m2n�2n�k

C � � �

C 2k�1a2k�2�2
1 am2n

3 s2
C 2k�1a2k�2�1

1 am2n

3 s

C 2k�1a3�2n�2

1 a2n�1Cm2n�2

3
s2
C � � � :

We deduce that for j odd and j 2k�2 � a.n� kC 1/ we have

D

�
xm2n�2

2

2kv
j2k�2

1

�
D

am2n

3
s2

2v
j2k�2C2
1

C
am2n

3
s

2v
j2k�2C1
1

:

However, Lemma 4.6.4 implies that am2n

3
h2=v

j2k�2C2
1

is killed by am2nC1
3

=v
j2k�2C3
1

.
It follows from (4.7.9) that we have

D.xm2n

0 /� am2n

1 sm2nC1

C � � � mod 2

and hence

D.xm2nC1
0

/� a1am2n

3 s2
C a2

1am2n

3 sC am2n

1 a3sm2nC1

C � � � mod 2:
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This implies that we have

(4.7.25) D

�
xm2nC1

0

2v
j2k�2C3
1

�
D

am2n

3
s2

2v
j2k�2C2
1

C
am2n

3
s

2v
j2k�2C1
1

and therefore

D

�
xm2n�2

2

2kv
j2k�2

1

C
xm2nC1

0

2v
j2k�2C3
1

�
D 0:

This establishes (4.7.5).

Proof of (4.7.7) for n � 3 It follows from (4.7.21) that for a.n� 1/ < 2j � a.n/,
we have

D

�
xm2n�2

2

4v
2j
1

�
D
.a0

3
/m2n�2n�2

2v
2j�a.n�1/
1

C � � �

and hence

@

�
xm2n�2

2

2v
2j
1

�
D
.a0

3
/m2n�2n�2

v
2j�a.n�1/
1

C � � � :

This element is not in D.M 1
1

A/ by Lemma 4.6.4. This establishes (4.7.7).

Proof of (4.7.8) Suppose that j is even. Then the ideal .2k ; v
j2k�2

1
/ is invariant, and

reducing (4.7.21) modulo this invariant ideal gives

D

�
xm2n�2

2

2kv
j2k�2

1

�
D

.a0
3
/m2n�2n�k

2v
j2k�2�a.n�kC1/
1

C� � � ; a.n�kC1/ < j 2k�2
� a.n�kC2/

and therefore

@

�
xm2n�2

2

2k�1v
j2k�2

1

�
D

.a0
3
/m2n�2n�k

v
j2k�2�a.n�kC1/
1

C� � � ; a.n�kC1/ < j 2k�2
� a.n�kC2/:

Since k � 3, this is not in D.M 1
1

A/ by Lemma 4.6.4. This establishes (4.7.5) for j

even.

Suppose now that j is odd. Then the ideal .2k ; v
j2k�2C2k�2

1
/ is invariant, and in

order to compute D.xm2n�2

2
=2kv

j2k�2

1
/ we must compute D.a2k�2

1
xm2n�2

2
/ modulo

.2k ; v
j2k�2C2k�2

1
/. It follows from (4.7.24) that for j odd and a.n�kC1/< j 2k�2�

a.n� kC 2/ we have

D

�
xm2n�2

2

2kv
j2k�2

1

�
D

am2n

3
s2

2v
j2k�2C2
1

C
am2n

3
s

2v
j2k�2C1
1

C
.a0

3
/m2n�2n�k

2v
j2k�2�a.n�kC1/
1

C � � � :
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Using (4.7.25), we have

D

�
xm2n�2

2

2kv
j2k�2

1

C
xm2nC1

0

2v
j2k�2C3
1

�
D

.a0
3
/m2n�2n�k

2v
j2k�2�a.n�kC1/
1

C � � �

and therefore

@

�
xm2n�2

2

2k�1v
j2k�2

1

�
D

.a0
3
/m2n�2n�k

v
j2k�2�a.n�kC1/
1

C � � � :

Since k � 3, this is not in D.M 1
1

A/ by Lemma 4.6.4. This establishes (4.7.5) for j

odd.

This completes the proof of Theorem 4.7.1.

4.8 Computation of H �;�.M 0
2

C �
tot.Q.5///

We have (as before)

H�;�.M 0
2 C �� .A//D F2Œa

˙1
3 ; h1; h2;g�=.h

3
2 D a3h3

1/;

H�;�.M 0
2 C �

ƒ1.5/
.B1//D F2Œu

˙; h2;1�;

with .s; t/–bidegrees

ja3j D .0; 6/; jh1j D .1; 2/; jh2j D .1; 4/;

jgj D .4; 24/; juj D .0; 2/; jh2;1j D .1; 6/;

and h4
2;1
D g . Moreover, the spectral sequence of the double complex gives

(4.8.1) H s;t .M 0
2 C �� .A//

˚H s�1;t .M 0
2 C �� .A//˚H s�1;t .M 0

2 C �
ƒ1.5/

.B1//

˚H s�2;t .M 0
2 C �

ƒ1.5/
.B1//

) H s;t .M 0
2 C �tot.Q.5///:

As before, we will differentiate the terms x with the same name occurring in the
different groups in the E1–term of spectral sequence (4.8.1). We shall employ the
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following notational convention:

x 2 C �� .A/ on the 0–line;

xx 2 C �� .A/ on the 1–line;

y 2 C �
ƒ1.`/

.B1/ on the 1–line;

xy 2 C �
ƒ1.`/

.B1/ on the 2–line:

The formulas of Section 3.4 show that the only nontrivial d1 differentials in spectral
sequence (4.5.1) are

d1.g
i
xa

j
3
/D h4i

2;1xu
3j :

Since the spectral sequence (4.8.1) is a spectral sequence of modules over Ext�;�.BP�/,
we deduce that there are no possible dr –differentials for r > 1. We deduce that we
have

H�;�.M 0
2 C �tot.Q.5///D F2Œa

˙1
3 ; h1; h2;g�=.h

3
2 D a3h3

1/

˚F2Œxa
˙1
3 ; xg�fxh1; xh2; xh

2
1;
xh2

2;
xh3

2 D xa3
xh3

1g

˚F2Œu
˙1; h2;1�

˚F2Œxu
˙3;g�fxh2;1; .xh2;1/

2; .xh2;1/
3
g

˚F2Œxu
˙3; xh2;1�fxu; xu

2
g:

4.9 Computation of H 0;�.M 1
1

C �
tot.Q.5///

We now compute the differentials in the v1–BSS

(4.9.1) H s;�.M 0
2 C �tot.Q.5///˝F2Œv1�=.v

1
1 / ) H s;�.M 1

1 C �tot.Q.5///

from the s D 0–line to the s D 1–line.

One computes using the formulas of Section 3.4:

D.x0/� a1s2 mod .2; v2
1/;

D.x1/� a2
1a3s mod .2; v3

1/;

D.x2/� a8
1u4 mod .2; v9

1/;

(4.9.2)

for xi as in Section 4.6. The formula for D.x2/ already informs us that the v1–BSS
for Q.5/ differs from the v1–BSS for Q.3/.

It follows from inductively applying (4.3.6) that we have

D.x2n�2

2 /� a2nC1

1 u2n

mod .2; v2nC1C1
1

/:
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It follows from (4.3.7) that for m odd, we have

D.xm
0 /� a1s2am�1

3 mod .2; v2
1/;

D.xm
1 /� a2

1a2m�1
3 s mod .2; v3

1/;

D.xm2n�2

2 /� a2nC1

1 u3m2n�2nC1

mod .2; v2nC1C1
1

/:

We deduce the following.

Lemma 4.9.3 The v1–BSS differentials in (4.6.1) from the .sD0/–line to the .sD1/–
line are given by

d1

�
am

3

v
j
1

�
D

am�1
3

h2

v
j�1
1

;

d2

�
a2m

3

v
j
1

�
D

a2m�1
3

h1

v
j�2
1

;

d2nC1

�
am2n

3

v
j
1

�
D

u3m2n�2nC1

v
j�2nC1

1

;

where m is odd.

Corollary 4.9.4 The groups H 0;�.M 1
1

C �tot.Q.5/// are generated by the elements

1=v
j
1
; j � 1;

am2n

3

v
j
1

; m odd and j �

8<:
1; nD 0;

2; nD 1;

2nC1; n� 2:

In particular, the map

Ext0;�.M 1
1 BP�/!H 0;�.M 1

1 C �tot.Q.5///

is not an isomorphism.

5 Low-dimensional computations

In this section we explore the 2–primary homotopy ��Q.3/ and ��Q.5/ for 0��<48

(everything is implicitly 2–localized). In the case of Q.3/, Mark Mahowald has done
similar computations, over a much vaster range, for the closely related Goerss–Henn–
Mahowald–Rezk conjectural resolution of the 2–primary K.2/–local sphere — there
is definitely some overlap here. In the case of Q.5/ the computations represent some
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genuinely unexplored territory, and give evidence that Q.5/ may detect more non-ˇ–
family v2–periodic homotopy than Q.3/.

We do these low-dimensional computations in the most simple-minded manner, by
computing the Bousfield–Kan spectral sequence

E
s;t
1
.Q.`// ) �t�sQ.`/

with

E
s;t
1
D

8<:
�t TMF; s D 0;

�t TMF0.`/˚�t TMF; s D 1;

�t TMF0.`/; s D 2:

Actually, as the periodic versions of TMF typically have �t of infinite rank, we only
compute a certain “connective cover” of the spectral sequence — we only include holo-
morphic modular forms in this low-dimensional computation (ie we do not invert �).
Thus we are only computing a portion of the spectral sequence, which we shall refer to
as the holomorphic summand. Note that the authors are not claiming that there exists a
bounded-below version of Q.`/ whose homotopy groups the holomorphic summand
converges to (it remains an interesting open question how such connective versions
of Q.`/ could be obtained by extending the semi-cosimplicial complex over the cusps).
Indeed, recent advances by Hill and Lawson [13] may produce such a bounded-below
Q.`/–spectrum, but we do not pursue this possibility here.

In the following calculations, we employ a leading term algorithm, which basically
amounts to only computing the leading terms of the differentials in row echelon
form. Similarly to the previous section, we write everything 2–adically, and employ a
lexicographical ordering on monomials

2iv
j
1
x:

Namely, we say that 2iv
j
1
x is lower than 2i0v

j 0

1
x0 if i < i 0 , or if i D i 0 and j < j 0 .

We will write “leading term” differentials: the expression

x 7! y

indicates that
dr .xC higher terms/D yC higher terms:

5.1 The case of Q.3/

In the case of TMF0.3/, recall that the modular forms for �0.3/ are spanned by those
monomials ai

1
a

j
3

in Z
�

1
3
;a1;a3

�
with iCj even. In this section we will refer to a1 as v1

and a3 as v2 , because that is what they correspond to under the complex orientation.
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Figure 10: The holomorphic summand of the spectral sequence E
s;t
r .Q.3//

in low degrees

Figure 10 shows a low-dimensional portion of the holomorphic summand of the
spectral sequence E

s;t
r .Q.3//. There are many aspects of this chart that deserve

explanation/remark.
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� The copies of �� TMF and �� TMF0.3/ are separated by dotted lines. The bottom
pattern is the s D 0 line of the spectral sequence (�� TMF). The next pattern up is the
�� TMF0.3/ summand of the s D 1 line, followed by the �� TMF summand of the
sD1 line. The top pattern is the sD2 line of the spectral sequence (�� TMF0.3/). The
spectral sequence is Adams-indexed, with the x–axis corresponding to the coordinate
t � s .

� Dots indicate Z=2. Boxes indicate Z.2/ . The solid lines between the dots indicate
2–extensions, and � and � multiplication.

� Horizontal dashed lines denote bo–patterns. Arrows indicate the bo patterns
continue.

� There are two bo–patterns which are denoted “Im J”. These bo–patterns (together
with the bo–patterns which hit them with differentials) combine to form Im J patterns.

� Differentials are indicated with vertical curvy lines. All differentials displayed only
indicate the leading terms of the differentials, as explained in the beginning of this
section. For example, the d1 differential from the 1–line to the 2–line showing

v2
1v

2
2 7! 2v2

2v
2
1

actually corresponds to a differential

d1.v
2
1v

2
2 C v

5
1v2/D 2v2

2v
2
1 C higher terms:

The differentials on the torsion-free portions spanned by the modular forms are com-
puted using the Mahowald–Rezk formulas.

� Differentials on the torsion summand can often be computed by noting that the maps
f , t , q and  3 that define the coface maps of the semi-cosimplicial spectrum Q.3/�

are all maps of ring spectra, and in particular all have the same effect on elements in
the Hurewicz image. There are a few notable exceptions, which we explain below.

� Dashed lines between layers indicate hidden extensions. These (probably) do not
represent all hidden extensions: there are several possible hidden extensions which we
have not resolved.

� The differentials supported by the non-Hurewicz classes x and �x in �17 TMF0.3/

and �18 TMF0.3/ are deduced because they kill the Hurewicz image of ˇ4=4� and
ˇ4=4�

2 , which are zero in ��S .

� The d2–differentials are computed by observing that there is a (zero) hidden
extension �3v6

1
v2

2
Œ1�D 4v5

1
v3

2
Œ2� (where Œs� means s–line).
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v2
1 7! 2v2

1

v1v2 7! v4
1 v4

1 7! 16v1v2

v2
2 7! 2v2

2

v2
1v

2
2 7! 2v2

2v
2
1

v1v
3
2 7! v2

2v
4
1 v4

1v
2
2 7! 8v3

2v1

8� 7! 8v3
2v

3
1 v4

2 7! 2v4
2 v4

1v
2
2 7! 8v3

2v1

v4
2 7! 2v4

2

v4
2v

2
1 7! 2v4

2v
2
1 v8

1v
2
2 7! 8v3

2v
5
1

c4� 7! v4
2v

4
1 v5

2v1 7! v3
2v

7
1 v4

1v
4
2 7! 64v5

2v1

v4
2v

6
1 7! 8v5

2v
3
1 v6

2 7! 2v6
2

v4
2v

8
1 7! 16v5

2v
5
1 v6

2v
2
1 7! 2v6

2v
2
1

v7
2v1 7! v6

2v
4
1 v6

2v
4
1 7! 8v7

2v1 v10
1 v

4
2 7! 8v5

2v
7
1

Table 1: Leading terms of d1 differentials between torsion-free classes on
the 1– and 2–lines of the spectral sequence

� Up to the natural deviations introduced by computing with the Bousfield–Kan
spectral sequence, and not the Adams–Novikov spectral sequence, the divided ˇ–
family is faithfully reproduced on the 2–line with the exception of the additional copy
of Im J (there in fact should be infinitely many copies of such Im J summands) and
one peculiar abnormality: the element ˇ8=8 , detected by 32v1v

5
2

, is 32–divisible. This
extra divisibility does not contradict the results of Section 4 — the results there pertain
to the monochromatic layer M2Q.3/, and not Q.3/ directly.

� Boxes which are targets of differentials are labeled with numbers. A number n

above a box indicates that after all differentials are run, you are left with a Z=2n .

� It is interesting to note that the permanent cycles on the zero line in this range are
exactly the image of the TMF–Hurewicz homomorphism.

We did not label the modular forms generating the boxes in the spectral sequence. In
the case of �� TMF, the dimensions resolve this ambiguity. The remaining ambiguity
is resolved by Table 1, which indicates all of the leading terms of d1 differentials
between torsion-free classes on the 1– and 2–lines of the spectral sequence.
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Figure 11: The holomorphic summand of the spectral sequence E
s;t
r .Q.5//

in low degrees

5.2 The case of Q.5/

Figure 11 displays the spectral sequence for Q.5/. Essentially all of the conventions
and remarks for the Q.3/ computation above extend to the Q.5/ computation. Table 2
contains the leading terms of differentials from the torsion-free elements in the 1–line
to those in the 2–line.
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b2 7! 4b2

b4 7! b2
2 ı 7! 2ı b2

2 7! 16b4

b2ı 7! 4b2ı

b4ı 7! b2
2ı ı2

7! 2ı2 b2
2ı 7! 32b4ı

b2ı
2
7! 4ı2b2 b3

2ı 7! 8b2b4ı

8� 7! 8ı3 b4ı
2
7! b2

2ı
2 4ı3

7! 8b2
2b4ı b2

2ı
2
7! 16b4ı

2

b5
2ı 7! 8b4ıb

3
2 b2ı

3
7! 4b2ı

3 b3
2ı

2
7! 8b4ı

2b2

c4� 7! b2
2ı

3 ı4
7! 2ı4 b4ı

3
7! b4

2b4ı b2
2ı

3
7! 64b4ı

3 b4
2ı

2
7! 64b2

2b4ı
2

b2ı
4
7! 4b2ı

4 b3
2ı

3
7! 8b2b4ı

3 b5
2ı

2
7! 8b3

2b4ı
2

b4ı
4
7! b2

2ı
4 4ı5

7! 8ı5 b4
2ı

3
7! 16b2

2b4ı
3 b2

2ı
4
7! 16b4ı

4 b6
2ı

2
7! 16b4ı

2b4
2

b2ı
5
7! 4b2b4ı

4 b3
2ı

4
7! 8b2ı

5 b5
2ı

3
7! 8ı3b4b6

2 b7
2ı

2
7! 8b5

2b4ı
2

Table 2: Leading terms of differentials from the torsion-free elements in the
1–line to those in the 2–line

We make the following remarks:

� The 2–line now bears little resemblance to the divided ˇ–family. This is in sharp
contrast with the situation with Q.3/. This fits well with our premise that while Q.3/

reproduces the divided ˇ–family almost flawlessly, Q.5/ does not.

� The much more robust torsion in �� TMF0.5/ gives a significant source of homo-
topy in ��Q.5/ which does not appear in ��Q.3/. In particular, the elements

�ı4; �2ı4; �ı4

seem like candidates to detect the elements in ��S with Adams spectral sequence names

h5h2
2; h5h3

2; h5h3h1;

though the ambiguity resulting from the leading term algorithm makes it difficult to
resolve this in the affirmative. These classes are not seen by Q.3/.

� Just as in the case of Q.3/, the permanent cycles on the zero line in this range are
exactly the image of the TMF–Hurewicz homomorphism.
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The number of strings on essential tangle decompositions
of a knot can be unbounded

JOÃO MIGUEL NOGUEIRA

We construct an infinite collection of knots with the property that any knot in this
family has n–string essential tangle decompositions for arbitrarily high n .

57M25, 57N10

1 Introduction

An n–string tangle .B; T / is a ball B together with collection of n disjoint arcs T
properly embedded in B , for n 2N . We say that .B; T / is essential if n is 1 and its
arc is knotted,1 or if n is bigger than 1 and there is no properly embedded disk in B

disjoint from T and separating the components of T in B . Otherwise, we say that the
tangle is inessential. (See Figure 1 for examples.)

Figure 1: Examples of essential tangles (left and middle), and an inessential
tangle (right)

Let K be a knot in S3 and S a 2–sphere in general position with K . Each ball
bounded by S in S3 intersects K in the same number n of arcs. So these balls
together with the arcs of intersection with K are n–string tangles. In this case, we
say that S defines a n–string tangle decomposition of K , and if both tangles are
essential we say that the tangle decomposition of K defined by S is essential. A knot
is composite if and only if it has a 1–string essential tangle decomposition; otherwise

1An arc of T is unknotted if it cobounds a disk embedded in B together with an arc in @B ; otherwise,
it is said to be knotted.
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the knot is prime. Note also that S defines an essential tangle decomposition for K if
and only if the intersection of S with the exterior of K , E.K/,2 is an essential surface
in E.K/; see Definition 3.

A tangle decomposition of a knot is natural and has been relevant for knot theory and
its applications. The concept of a “tangle” was first used in the work of Conway [3],
where he defines and classifies (2–string) rational tangles and uses it as an instrument
to list knots. The concept of an essential tangle was first used in [8], where Kirby
and Lickorish prove that any knot is concordant to a prime knot. They actually define
prime tangle, that is an essential tangle with no local knots.3 Another example is the
work of Lickorish in [9], where he proves, for instance, that if a knot has a 2–string
prime tangle decomposition, then the knot is prime. Tangles are also used in applied
mathematics to study the DNA topology. The paper [2] by Buck surveys the subject
concisely and also explains how tangles are useful to the study of the topological
properties of DNA, an application pioneered by Ernst and Sumners in [5].

This paper addresses the question of if the number of strings on essential tangle
decompositions of a fixed knot is bounded. There are results showing some evidence
for this to be true. For instance, knots with no closed essential surfaces (see Culler,
Gordon, Luecke and Shalen [4]), tunnel number one knots (see Gordon and Reid [6])
and free genus-one knots (see Matsuda and Ozawa [10]) have no essential tangle
decompositions. There also are knots with a unique essential tangle decomposition; see
Ozama [12]. Furthermore, in Proposition 2.1 of [11], Mizuma and Tsutsumi proved
that, for a given knot, the number of strings in essential tangle decompositions, without
parallel strings,4 is bounded. The proof of this result allows a more general statement.
That is, the number of strings that are not parallel to other strings in an essential tangle
decomposition of a fixed knot is bounded. So, from this flow of results and intuition on
essential tangle decompositions, the following theorem and its corollary are surprising.

Theorem 1 There is an infinite collection of prime knots such that, for all n� 2, each
knot has a n–string essential tangle decomposition.

Corollary 2 There is an infinite collection of knots such that, for all n� 1, each knot
has a n–string essential tangle decomposition.

2We denote by E.K/ the exterior of a knot K , that is, S3 � int N.K/ , where N.K/ is a regular
neighborhood of K .

3A tangle .B; T / has no local knots if any 2–sphere intersecting T transversely in two points bounds
a ball in B meeting T in an unknotted arc.

4Two strings of a tangle in a ball B are parallel if there is an embedded disk in B cobounded by these
strings and two arcs in @B .
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Essential surfaces are very important in the study of 3–manifold topology. And as
observed above, to each n–string essential tangle decomposition of a knot corresponds
a meridional essential surface in the exterior of the knot, with 2n boundary compo-
nents. Therefore, from the results in this paper, there are knots with meridional planar
essential surfaces in their exteriors with all possible numbers of boundary components.
Furthermore, from Lemma 1.2 in Bleiler [1], the double cover of S3 along these knots
contains genus-g closed incompressible surfaces, meeting the fixed point set of the
covering action in 2.gC 1/ points, and separating the double cover in irreducible and
@–irreducible components, for all g � 1.

The reference used for standard definitions and results of knot theory is Rolfsen’s book
[13], and throughout this paper we work in the piecewise-linear category.

In Section 2, we show the existence of handlebody-knots (see Definition 4) with
incompressible planar surfaces in their exteriors with b boundary components for all
b�2. In Section 3, we use these handlebody-knots to prove Theorem 1 and its corollary.
The main techniques used are standard in 3–manifold topology. Throughout the paper,
the number of connected components of a topological space X is denoted by jX j.

2 Meridional incompressible planar surfaces
in handlebody-knots complements

To prove Theorem 1, we use the correspondence between n–string essential tangle
decompositions of a knot and meridional planar essential surfaces in the knot exterior.
We start by defining these surfaces.

Definition 3 A planar surface is a surface obtained from a 2–sphere by removing the
interior of a finite number of disks.

Let H be a handlebody embedded in S3 .

A surface P properly embedded in E.H /DS3� int H is meridional if each boundary
component of P bounds a disk in H .

An embedded disk D in E.H / is a compressing disk for P if D\P D @D and @D
does not bound a disk in P . We say that P is incompressible if there is no compressing
disk for P in E.H /.

An embedded disk D in E.H / is a boundary compressing disk for P if @D\P D ˛ ,
with ˛ a connected arc not cutting a disk from P , and @D�˛ D ˇ a connected arc
in @H . We say that P is boundary incompressible if there is no boundary compressing
disk for P in E.H /.

The surface P is essential if it is incompressible and boundary incompressible.
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In this section, we present handlebody-knots whose exteriors contain meridional incom-
pressible planar surfaces with n boundary components for any n� 2. This embedding
will later be used in the proof of Theorem 1. We consider next the definition of
handlebody-knot.

Definition 4 A handlebody-knot of genus g in S3 is an embedded handlebody of
genus g in S3 . A spine  of a handlebody-knot � is an embedded graph in S3 with �
as a regular neighborhood.

Let � be the genus-two handlebody-knot 41 from the list of [7], with spine  , as in
Figure 2. Consider also a collection of distinct knots Ci , for i 2N , and C some other
nontrivial knot. We work with  as if defined by two vertices, two loops e1 and e2

(one for each vertex), and an edge e between the two vertices.

e

e2

e1

Figure 2: The spine  of the handlebody-knot � , with labels of the two
loops e1 and e2 , and of the edge e

Consider two disjoint closed arcs a1 and a2 in e , as in Figure 3 (left). In this figure
we also have represented an embedded 2–sphere S2 in S3 that intersects  in e at
two points, p1 and p2 , and separates the arcs a1 and a2 . Denote the ball bounded
by S2 containing a single component of e by B2;1 and the other by B2;2 . Denote
by l1 and l2 the components of B2;2 \  that contain e1 and e2 , respectively, and
note that lj intersects S2 at pj , for j D 1; 2.

We perform an unusual connected sum operation between  and the knots C and Ci

along the arcs a1 and a2 . That is, we take a ball in S3 intersecting  in a1 , and a ball
in S3 intersecting Ci at a single unknotted arc. A connected sum operation is obtained
by removing both balls and gluing their boundaries through a homeomorphism in a way
that the boundary points of a1 are mapped to the boundary points of the chosen arc
in Ci . A similar operation is obtained from the arc a2 and C . From these operations
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S2

a1

p1

B2;1

p2

a2

Ci

S2

p1

B2;1

p2

C

l1

l2

A1

Figure 3: The arcs a1 and a2 in  and the sphere S2 (left); the spines i of
the handlebody-knots �i and the annulus A1 (right). Note that Ci and C

label the pattern of the respective knots.

we get the handlebody-knots as represented schematically in Figure 3 (right), which
we denote by �i with a respective spine i . For each handlebody-knot �i we consider
the swallow-follow torus Xi defined by the connected sum of C with Ci . A minimal
JSJ–decomposition for the complement of �i is defined by the torus Xi , cutting from
E.�i/ the exterior of Ci #C , and a JSJ–decomposition of E.Ci #C /. Also, the torus Xi

cuts from E.�i/ the only component obtained from the JSJ–decomposition containing
the boundary of E.�i/. Hence, from the unicity of minimal JSJ–decomposition of
compact 3–manifolds, for any other minimal JSJ–decomposition of E.�i/, the torus
cutting the component with the boundary of E.�i/ is isotopic to Xi . Consequently,
if �i is ambient isotopic to �j for i ¤ j , the torus Xi is isotopic to Xj , which means
that E.Ci #C / is ambient isotopic to E.Cj #C /. This is a contradiction with the torus
Ci # C and Cj # C being distinct. Then, the handlebody-knots �i are not ambient
isotopic.

Both loops e1 and e2 cobound an embedded annulus in B2;2 , parallel to the component
of e in B2;2 each encircles, with interior disjoint from i and intersecting S2 in the
other boundary component. Consider such an annulus with a boundary component
in e1 , denoted A1 , as it is illustrated in Figure 3 (right). We proceed with an isotopy
of i along A1 , taking l1 passing through S2 , and we obtain i as in Figure 4 (left).
We refer to this isotopy as an annulus isotopy of i . After this isotopy we denote S2

by S3 , considering its relative position with �i , and the respective balls it bounds
by B3;1 and B3;2 . We assume that l1 intersects S3 at p1 . Note that all intersections
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Ci

S3

l1

B3;1

p1

C

Ci

S4

B4;1

p1
l1

C

Figure 4: The spine i after one (left), and two (right), annulus isotopies,
and the spheres S3 and S4

of i and S3 are in the arc of e between p1 and p2 . Again, we consider an embedded
annulus A2 in B3;1 , cobounded by e1 and its intersection with S3 , parallel to the com-
ponent of e\B3;1 disjoint from e1 and in the direction of the local knot Ci , following
its pattern. By an annulus isotopy of i along A2 taking l1 passing through S3 , we
obtain i as in Figure 4 (right). After this isotopy, we denote S3 by S4 , considering
its relative position with �i , and the respective balls it bounds by B4;1 and B4;2 . The
ball B4;1 intersects i in two parallel arcs, and we still assume that l1 \ S4 is p1 .
Note again that all intersections of i and S4 are in the arc of e between p1 and p2 .

For a canonical position, we isotope e1 along the component of e \B4;2 , disjoint
from e1 and e2 , encircling l2 ; see Figure 5 (left). We can now continue the previous
process. Consider again an annulus A3 in B4;2 , cobounded by e1 and its intersection
with S4 , parallel to the components of e \B4;2 other than l1 , and in the opposite
direction of the local knot C . By an annulus isotopy of i along A3 , taking l1 passing
through S4 , we obtain i as in Figure 5 (right). After this isotopy, we denote S4

by S5 , considering its relative position with �i , and we denote the balls it bounds
by B5;1 and B5;2 . Again, l1 intersects S5 at p1 , and all intersections of S5 with i

are in the arc of e between p1 and p2 . For the next step, proceed with an annulus
isotopy along an annulus A4 in B5;1 cobounded by e1 , parallel to the components of
e\B5;1 disjoint from e1 , in the direction of the local knot Ci , following its pattern.

After 2.k � 1/ (for k D 1; 2; : : :) annulus isotopies as the ones explained above, we
get i as in Figure 6 (left). From S2 , we obtain S2k and the balls it bounds, B2k;1

and B2k;2 . The ball B2k;1 intersects i in k parallel arcs with the pattern of Ci , and
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Ci

S4

B4;1

p1

C

l1

Ci

S5

B5;1

l1

p1

C

Figure 5: The spine i of Figure 4 (left) in a canonical position (left), and i

after another annulus isotopy (right)

the ball B2k;2 intersects i in k � 2 parallel arcs with the pattern of C , another arc
with the pattern of C encircled by l2 , and l1 that encircles all these other components.

After 2k � 1 (for k D 1; 2; : : :) annulus isotopies, we obtain i as in Figure 6 (right).
From S2 , we obtain S2kC1 and the balls it bounds, B2kC1;1 and B2kC1;2 . The ball
B2kC1;1 intersects i in k parallel arcs with the pattern of Ci and l1 encircling these
arcs, and the ball B2kC1;2 intersects i in k � 1 parallel arcs with the pattern of C ,
together with another arc with the pattern of C and l2 which encircles this arc.

Ci

S2k

B2k;1

p1

C

l1

Ci

S2kC1

B2kC1;1

l1
p1

C

Figure 6: The spine i after an even number (left), and an odd number (right),
of annulus isotopies, and the corresponding spheres S2k and S2kC1 , k 2N

Algebraic & Geometric Topology, Volume 16 (2016)



2542 João M Nogueira

Note after each isotopy we assume that lj intersects Sn , for nD 2; 3; : : : , in pj and
that all points of Sn\ i are in the arc between p1 and p2 in e .

We denote S3 � int�i by E.�i/, and S3 � i by E.i/. Let Qn , for nD 2; 3; : : : ,
be the intersection of Sn with E.�i/ in S3 .

Lemma 5 The surface Qn is incompressible in E.�i/.

Proof As �i is a regular neighborhood of i , if Qn is compressible in E.�i/, then Sn

is compressible in E.i/. Hence it suffices to prove that Sn is incompressible in E.i/.

Case 1 Suppose n is even. Then Sn is as in Figure 6 (left).

(i) In this case, the ball Bn;1 intersects i in a collection of k D n=2 parallel knotted
arcs. Then .Bn;1;Bn;1 \ i/ is an essential tangle. In fact, suppose there is a com-
pressing disk D for Sn in Bn;1 � .Bn;1 \ i/. Then D separates the arcs Bn;1 \ i

into two collections. Let s1 and s2 be two arcs in Bn;1 which are separated by D .
As s1 and s2 are parallel, there is a disk E with boundary s1[ s2 and two arcs, ˛1

and ˛2 , in Sn , each with one end in s1 and the other in s2 . Consider D and E in
general position and suppose that jD \Ej is minimal. If D intersects E in simple
closed curves or in arcs with both ends in ˛1 or both in ˛2 , we can reduce jD\Ej

by an innermost arc type of argument, which is a contradiction. Therefore, all arcs of
D\E have one end in ˛1 and the other end in ˛2 . Hence both s1 and s2 are parallel
to outermost arcs of D \E in D , which implies that s1 and s2 are parallel to Sn .
This is a contradiction because the arcs s1 and s2 are knotted by construction.

(ii) If n� 4, then the ball Bn;2 intersects i in l1 and l2 , and when nD 4, also in an
arc encircled by both l1 and l2 . In this case, if there is a compressing disk for Sn in
Bn;2� .Bn;2\ i/ it separates a component l1 or l2 from the other components. This
implies that e1 or e2 bound a disk in the complement of i , which is a contradiction
with �i being a knotted handlebody-knot. Otherwise, suppose that n> 4. Thus Bn;2

intersects i in .n=2/� 2 parallel arcs with the pattern of C , another arc with the
pattern of C encircled by l2 , and the component l1 that encircles the arc encircled
by l1 and the .n=2/� 2 parallel arcs. With exception to l1 and l2 , all other arcs are
parallel as properly embedded arcs in Bn;2 . Thus if a compressing disk for Sn in
Bn;2� .Bn;2\i/ separates these arcs, following an argument as in Case 1(i) we have
a contradiction with these arcs being knotted. Therefore, a compressing disk for Sn in
Bn;2�.Bn;2\i/ separates a single component l1 or l2 from all the other components,
or it separates both components l1 and l2 from the other parallel arcs. As e1 bounds a
disk disjoint from l2 , in both cases e1 bounds a disk in the complement of i , which
is a contradiction with �i being a knotted handlebody-knot.
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Case 2 Suppose now that n is odd. Then Sn is as in Figure 6 (right).

(i) The ball Bn;1 intersects i in a collection of .n� 1/=2 parallel arcs and l1 which
encircles these arcs. If there is a compressing disk D of Sn in Bn;1� .Bn;1\ i/

separating the parallel arcs, following an argument as in Case 1(i) we have a contradic-
tion with these arcs being knotted. If D separates the component l1 from the other
components, following an argument as in Case 1(ii) we have a contradiction with �i

being a knotted handlebody-knot.

(ii) If nD3, the ball Bn;2 intersects i in an arc with pattern C and l2 which encircles
the arc. If there is a compressing disk for Sn in Bn;2� .Bn;2\ i/ in this case, then it
separates the component l2 from the arc with pattern C . From the same argument used
in Case 1(ii), we have a contradiction with �i being a knotted handlebody-knot. If
n> 3, then the ball Bn;2 intersects i in .n�1/=2 parallel arcs and l2 which encircles
one of the previous arcs. Without considering l2 , if a compressing disk for Sn in
Bn;2�.Bn;2\i/ separates the parallel arcs, then following an argument as in Case 1(i)
we have a contradiction with the arcs being knotted. If Sn has a compressing disk in
Bn;2�.Bn;2\i/, then this disk isolates the component l2 from the other components,
and following the argument as in Case 1(ii) we have a contradiction with �i being a
knotted handlebody-knot.

The surface Qn is boundary compressible in E.�i/ as there are boundary compressing
disks over the regular neighborhoods of l1 and l2 . However, our construction of the
handlebody-knots �i could have been made in such a way that the surfaces Qn are
incompressible and boundary incompressible in their complements. For that purpose,
we could do a connected sum of i with two knots along two arcs in e1 and e2 . After
this operation, there won’t be boundary compressing disks of Qn over the regular
neighborhoods of l1 and l2 in E.�i/. And as these are the only possible boundary
compressing disks, because all other components i � i \Sn correspond to knotted
arcs in their respective balls, after these connected sums the surfaces Qn would also
be boundary incompressible in the complement of the handlebody-knots. But for the
purpose of this paper, we will use the handlebody-knots �i .

3 Knots with essential tangle decompositions
with an arbitrarily high number of strings

In this section, we use the handlebody-knots �i to construct infinitely many examples
of knots with essential tangle decompositions for all numbers of strings.

Let N1 and N2 be torus knots in the boundary of the solid tori T1 and T2 (that we
assume to be in different copies of S3 ). Consider a regular neighborhood Bi of an arc
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of Ni intersecting Ti at a ball, for i D 1; 2. We isotope Bi and Bi \Ni away from
the interior of Ti such that Bi intersects Ti at a disk, for i D 1; 2. We proceed with a
connected sum of N1 and N2 by removing the interior of B1 and attaching the exterior
of B2 in such a way that the disks B1\T1 and B2\T2 are identified. Hence the knot
N1 # N2 , denoted by K , is in the boundary of a genus-two handlebody H , obtained
by gluing T1 and T2 along a disk in their boundaries. We denote the identification
disk of T1 and T2 in H by D . In Figure 7, we have the example of this connected
sum with two trefoils, that we will use as reference for the remainder of the paper.

T1

D

T2

Figure 7: The handlebody H with the connected sum of two trefoil knots

Consider disks D1 and D2 parallel to D in H , such that the cylinder C1;2 cut by
D1[D2 from H intersects K in two parallel arcs, each with one end in D1 and the
other in D2 . We also keep denoting by T1 and T2 the solid tori cut from H by D1

and D2 , respectively; see Figure 8. Let s be a spine of H that intersects C1;2 in a
single arc. We denote by di the point Di \ s , and by ti the intersection of s with Ti ,
for i D 1; 2.

T1

D1 D D2
s

d1 d2

T2

Figure 8: The handlebody H and the spine s with the connected sum of two
trefoil knots

We now embed the knot K in �i as follows. Consider an embedding hi of H in S3

taking H homeomorphically to �i , such that hi.s/ D i , hi.dj / D pj , hi.tj / D lj
and also that hi.Tj /DLj , for j D 1; 2.

Proof of Theorem 1 Denote by Ki the knots hi.K/, i 2 N , for a fixed knot K .
To prove that the handlebody-knots �i are distinct, let Xi be the torus cutting from
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E.Ki/ the exterior of Ci # C . The component cut by Xi from E.Ki/ containing the
boundary torus is the same for every knot Ki . Hence, from the unicity of minimal
JSJ–decomposition of compact 3–manifolds, if two knots Ki and Kj are ambient
isotopic, the tori Xi and Xj are also ambient isotopic, contradicting Ci #C and Cj #C

being distinct. Thus the knots Ki define a collection of distinct knots.

To prove the statement of the theorem, we will show that the spheres Sn , for n � 2,
define n–string essential tangle decomposition for the knots Ki , and that these knots
are prime.

We start by proving that Sn defines an n–string essential tangle decomposition of Ki .
Let E.Ki/ be the exterior of Ki in S3 ; that is, E.Ki/ D S3 � int N.Ki/. Let Pn

be the intersection of Sn with E.Ki/ for a fixed n. To prove that Sn defines an
essential tangle decomposition for Ki , we need to prove that Pn is essential in E.Ki/,
ie that Pn is incompressible and boundary incompressible.

First, we observe that Pn is boundary incompressible. In fact, as the strings of K\Bn;i

in Bn;i are knotted for iD1; 2, there is no boundary compressing disk for Pn in E.Ki/.

Now we prove that Pn is incompressible in E.Ki/. Let �j , for j D 1; : : : ; n, be
the disks of intersection between �i and Sn with �1 DL1\Sn and �n DL2\Sn .
Denote by Cj ;jC1 the cylinder cut by �j [�jC1 from �i . Denote also by @�Cj ;jC1

the annulus Cj ;jC1 \ @�i ; that is, @�Cj ;jC1 D @Cj ;jC1 � .�j [�jC1/. Note that
Cj ;jC1\K is a collection of two arcs parallel to @�Cj ;jC1 , each with one end in �j

and the other in �jC1 . We also let @�L1 and @�L2 denote @L1��1 and @L2��n .
Furthermore, we denote by sj the string component of the tangle decomposition of Ki

defined by Sn , in Lj , for j D 1; 2. Note that sj is parallel to @�Lj . We isotope sj

into @�Lj and denote the annulus @�Lj \E.Ki/ by ƒj .

Suppose that Pn is compressible in E.Ki/ with D a compressing disk, properly
embedded in Bn;1 or Bn;2 , in general position with �i . If D is disjoint from �i ,
we have a contradiction with Lemma 5. In this way, we assume that D intersects �i

and that jD \ @�i j is minimal over all isotopy classes of compressing disks of Pn

in E.Ki/.

In particular, assume that D intersects an annulus @�Cj ;jC1 . If D\
Sn�1

jD1 @
�Cj ;jC1

contains a simple closed curve or an arc with both ends in the same disk of �i \Sn ,
by considering an outermost one between such curves and arcs in @�Cj ;jC1 , and by
cutting and pasting along the disk it bounds or cobounds, we get a contradiction with
the minimality of jD \ @�i j. Thus D \

Sn�1
jD1@

�Cj ;jC1 is a collection of arcs with
ends in distinct disks of �i \Sn . Consider an outermost arc of D\

Sn�1
jD1@

�Cj ;jC1

in D , say a, and without loss of generality, suppose it belongs to @�Cj ;jC1 . The arc a
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is parallel to a string of the tangle defined by Sn that is in Cj ;jC1 , which contradicts
the fact that all strings of the tangle decomposition of Ki defined by Sn are knotted.
Consequently, we can assume that D\

Sn�1
jD1@

�Cj ;jC1 is empty.

Then we are assuming that D intersects @�i at @�L1 or @�L2 , or more precisely, at
ƒ1 or ƒ2 . We denote by aj and a0j the arcs of @ƒj parallel to sj in @�Lj , and by
bj and b0j the arcs cut by @aj and @a0j , respectively, in the boundary of @�Lj . The
boundary components of ƒj are aj [ bj and a0j [ b0j . Note that, as D\ sj is empty,
the disk D is disjoint from aj and a0j . Note also that aj[bj is a torus knot in the torus
@�Lj [ .Sn�Lj \Sn/, denoted T 0j . If D intersects ƒj in inessential simple closed
curves or arcs with both ends in bj or both ends in b0j , then by cutting and pasting
along a disk cut by such curve or arc, we have a contradiction with the minimality
of jD \ @�i j. If D intersects ƒj in an essential simple closed curve, then aj [ bj

is parallel to a simple closed curve in D , which contradicts aj [ bj being knotted.
Consequently, D intersects ƒj in a collection of arcs, each with one end in bj and the
other in b0j . Let O be an outermost disk in D cut by the arcs of D\ƒj . Then O is a
disk in a solid torus bounded by T 0j and intersects the torus knot aj [ bj in T 0j at a
single point. As we are working in S3 , either O is parallel to T 0j or it is a meridian to
a solid torus bounded by Tj . In either case, O intersects any torus knot in T 0j at least
in two points, which contradicts O intersecting aj [ bj once.

Therefore, we have that Pn is essential in the complement of Ki , which ends the proof
that Sn defines an n–string essential tangle decomposition of Ki .

Now we prove that the knots Ki are prime. From Theorem 1 of [1], if a knot has a
2–string prime tangle decomposition, that is, if the tangles are essential and with no
local knots, then the knot is prime. We have that the knot Ki has a 2–string essential
tangle decomposition defined by S2 . So to prove that it is prime, we just need to
show that the tangle decomposition defined by S2 has no local knots. The ball B2;1

intersects Ki in two parallel arcs. Hence if there is a 2–sphere intersecting only one
of the arcs at a single component, this component has to be unknotted. The ball B2;2

intersects i in l1 and l2 ; thus it intersects Ki at two strings each with the pattern of a
torus knot. Note that even though the pattern of the knot C is in l2 , it does not affect the
topological type of the string in L2 . Suppose the tangle in B2;2 contains a local knot.
That is, there is a ball Q intersecting only one of the strings, and at a knotted arc. As the
torus knots are prime, this knotted arc contains the whole pattern of the string; that is,
the intersections of Q and B2;2 with this string are topologically the same. Therefore,
as the strings in B2;2 are parallel to the boundary of L1 and L2 , and Q intersects only
one of them, we have that Q contains either e1 or e2 , or we can isotope e1 and e2 in
such a way that Q contains either e1 or e2 . But then, either e1 or e2 bound a disk
in the complement of i and, as in Case 1(ii) from the proof of Lemma 5, we have
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a contradiction with �i being a knotted handlebody-knot. Consequently, the tangle
decomposition defined by S2 contains no local knots, and the knots Ki are prime.

Corollary 2 is now an immediate consequence.

Proof of Corollary 2 In Theorem 1, we proved that the spheres Sn , for n� 2, define
an n–string essential tangle decomposition for the knots Ki . Hence, considering the
knots Ki connected sum with some other knot, we have infinitely many knots with
n–string essential tangle decompositions for all n 2 N , as in the statement of this
corollary.
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The L2–(co)homology of groups with hierarchies

BORIS OKUN

KEVIN SCHREVE

We study group actions on manifolds that admit hierarchies, which generalizes
the idea of Haken n–manifolds introduced by Foozwell and Rubinstein. We show
that these manifolds satisfy the Singer conjecture in dimensions n � 4 . Our main
application is to Coxeter groups whose Davis complexes are manifolds; we show that
the natural action of these groups on the Davis complex has a hierarchy. Our second
result is that the Singer conjecture is equivalent to the cocompact action dimension
conjecture, which is a statement about all groups, not just fundamental groups of
closed aspherical manifolds.

20F65; 20J05

Introduction

In his PhD thesis [10], Foozwell introduced Haken n–manifolds as a higher dimensional
analogue of Haken 3–manifolds. Loosely speaking, these are closed n–manifolds
that can be cut inductively along codimension-1 submanifolds to a disjoint union
of n–balls. The exact definition is somewhat technical. The resulting sequence of
manifolds is called a hierarchy. Foozwell and Rubinstein have explored many properties
of these manifolds, in particular, they have shown [11; 12] that their universal covers
are homeomorphic to Rn and their fundamental groups have solvable word problem.
Both of these properties show that Haken n–manifolds are a special class of aspherical
manifolds; see Davis [4] and Mess [18].

The classical Euler characteristic conjecture, attributed to Hopf, predicts the sign
of the Euler characteristic of a closed aspherical 2n–dimensional manifold M 2n :
.�1/n�.M 2n/ � 0. In a special case of right-angled Coxeter group manifolds, this
conjecture becomes a purely combinatorial statement about flag simplicial triangulations
of .2n�1/–spheres, known as the Charney–Davis conjecture [3].

Another classical conjecture about aspherical manifolds, the Singer conjecture, predicts
that the reduced L2 –homology of the universal cover vanishes except possibly in the
middle dimension. Since one can use L2 –Betti numbers to compute �, the Singer
conjecture immediately implies the Euler characteristic conjecture.
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Edmonds [9] proved the Euler characteristic conjecture for closed Haken 4–manifolds
by showing that it was equivalent to the Charney–Davis conjecture for 3–spheres, which
holds true by a result of Davis and the first author [8], where the Singer conjecture for
4–dimensional right-angled Coxeter group manifolds is proved. The equivalence of
the two conjectures was extended by Davis and Edmonds [6] to all even dimensions.
In fact, they showed this equivalence for generalized Haken 2n–manifolds, where they
allow the hierarchy to end in any compact contractible manifold.

The starting point of this paper was a question of Edmonds whether the Singer conjecture
holds for Haken 4–manifolds.

One advantage of studying homological properties of Haken n–manifolds is that we
can ignore most of the technicalities and study a more general class of manifolds that
is closer to the loose definition above. Since we are interested in group actions that are
not free, and because we think it is simpler, we build the hierarchies out of contractible
manifolds with a proper and cocompact group action.

We say a group G admits a hierarchy if it acts on a contractible manifold M that can
be cut inductively along codimension-1 contractible G–invariant submanifolds to a
disjoint union of compact contractible manifolds. An example to keep in mind is Zn

acting on Rn with quotient the n–torus T n . Cutting T n along T n�1 corresponds
to cutting along Zn –translates of Rn�1 inside Rn . In a similar way, hierarchies for
Haken n–manifolds lift to our hierarchies on the universal covers.

The paper is organized as follows. We develop a general theory of group actions with
hierarchies in Section 1. In Section 2 we prove that Coxeter group manifolds admit
hierarchies. Section 3 recalls the necessary background material on L2 –(co)homology.
Finally, in Section 4 we study various vanishing conjectures about L2 –homology.

Our first result is that the Singer conjecture holds for all groups that admit a hierarchy
in dimension 4. Our main application of this result is to Coxeter groups: Theorem 4.16
generalizes the result in [8] for right-angled Coxeter groups and a later result of
Schroeder [24] for even Coxeter groups.

We also introduce the notion of the cocompact action dimension of a group: the minimal
dimension of a contractible manifold, possibly with boundary, which admits a proper
cocompact action by the group. Our second result is that the Singer conjecture is actually
a statement about all groups, not just about fundamental groups of closed aspherical
manifolds. Namely, we show in the smooth or PL categories that the Singer conjecture
is equivalent to the cocompact action dimension conjecture: the L2 –cohomology of a
group vanishes above half of its cocompact action dimension. We also show that for
type VF groups, the cocompact action dimension conjecture is equivalent to the action
dimension conjecture [8, Conjecture 8.9.1].
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1 Hierarchies for group actions

Definition Let G be a discrete group. A G–space M is a topological space with a
G–action. We say a G–space is proper or cocompact if the action of G is proper or
cocompact respectively. If N is a G –invariant subspace of M then .M;N / is a pair
of G –spaces.

Definition A convex polyhedral cone C in Rn is the intersection of a finite collection
fBCi g of linear half-spaces in Rn (a half-space is linear if its bounding hyperplane Bi

is a linear subspace). C is nondegenerate if it has nonempty interior. A hyperplane
arrangement in a nondegenerate cone C is a finite collection fAig of linear hyperplanes
such that each Ai intersects the interior of C .

We assume that our manifolds are topological and mention explicitly when we require
a smooth or PL structure.

Definition Let M be a proper, cocompact G –manifold, and EDfEig
r
iD0

a collection
of codimension-1 G –submanifolds. .M; E/ is tidy if:
� The components of M are contractible.
� The components of any intersection of the Ei are either contractible, or contained

in @M .
� .M; @M; E/ locally looks like a hyperplane arrangement in a nondegenerate

cone in Rn : every point in M has a chart which maps M into a nondegenerate
cone in Rn , the point to the origin, @M into the boundary of the cone, and
the Ei into a hyperplane arrangement in the cone.

This local structure implies that each component L of any intersection of the Ei is a
manifold and either L� @M or L\@M D @L. In the first case we call L a boundary
component, and in the second an interior component. Moreover, the condition that
hyperplanes intersect the interior of the cone implies that each Ei has only interior
components. Finally, note that if x 2M � @M , the local picture is that of a linear
hyperplane arrangement in Rn .
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In the case where E consists of just one submanifold F , this definition is equivalent to
requiring that F is locally flat as a submanifold with boundary (sometimes called a
neat submanifold), and the components of both M and F are contractible. We will
call such a pair .M;F / a tidy pair.

In this case, since the components of F are contractible, it admits a collar neighborhood,
and since the components of M are contractible, F is separating. By cutting M

along F we mean taking the disjoint union N of the closures in M of components of
M �F . We say that N is M cut-open along F . The action of G on M �F extends
by continuity to a proper cocompact action on N . So N DM 	F is a G –manifold
with boundary @M � @F union two copies of F .

Note that N � @N is naturally identified with M � @M �F . Using this identification,
we can cut any closed G –subspace L of M along F by taking the closure of L�F

in N : L 	 F WD C lN .L � F /. Note that we still have a natural identification
.L	F /� @N DL� @M �F .

Associated to the cut there is an exact sequence of a triple .M;F [ @M; @M /:

� � � !H k�1
c .F [ @M; @M /!H k

c .M;F [ @M /

!H k
c .M; @M /!H k

c .F [ @M; @M /! � � � :

By excision, we have H k
c .F [ @M; @M / Š H k

c .F; @F / and H k
c .M;F [ @M / Š

H k
c .N; @N /, so the above sequence becomes

(1) � � � !H k�1
c .F; @F /!H k

c .N; @N /!H k
c .M; @M /!H k

c .F; @F /! � � � :

Finally, applying Poincaré duality and reindexing, we obtain a sequence

(2) � � � !Hk.F /!Hk.N /!Hk.M /!Hk�1.F /! � � � :

Lemma 1.1 If .M;F / is a tidy pair and N is M cut-open along F , then the compo-
nents of N are contractible manifolds.

Notice that N may or may not have more G –orbits of components than does M .

Proof The van Kampen theorem implies that components of N are simply connected,
and sequence (2) shows that N is acyclic.

Lemma 1.2 Suppose that .M; E/ is tidy, and let N be M cut-open along E0 . Then
.N; fEi 	E0g

r
iD1

/ is also tidy.
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Proof We check the conditions of tidiness. Contractibility of the components of N

follows immediately from Lemma 1.1 since .M;E0/ is a tidy pair. After cutting, the
local picture is mostly preserved, we just have to check near E0 . If x 2E0 , the new
charts come from restricting the old chart to one of the two halfcones bounded by
the hyperplane corresponding to E0 , and taking hyperplanes which pass through the
interior of that halfcone. Note that this description of cutting an arrangement in a
nondegenerate cone along one of the hyperplanes into two nondegenerate cones with
arrangements agrees with the procedure of cutting M and the Ei by E0 described
above in terms of closures.

Next, we show that the interior components of an intersection
T
.Ei˛ 	 E0/ are

contractible. Let L be the union of these interior components. It follows from the local
structure that L is a manifold with @LDL\ @N . Therefore, it’s enough to show that
L�@LDL�@N has contractible components. These components come from cutting
the components of

T
.Ei˛ � @M / which are not contained in E0 . The local picture ofT

.Ei˛ � @M / intersecting E0� @M is of a hyperplane intersecting a subspace, and
we ignore the case when the subspace is contained in the hyperplane, as this would
produce a boundary component. Thus the intersections we are interested are transverse.

So, let D be the union of the interior components of
T

Ei˛ � @M which are not
contained in E0 . Since E0\D has contractible components by hypothesis, it follows
from the above that the pair .D;E0 \D/ satisfies all conditions of tidiness except
cocompactness and L�@LD .D�@D/	.E0\D/. Therefore L�@L has contractible
components by Lemma 1.1. (The cutting procedure and the proof of the lemma did not
use cocompactness.)

Definition An n–hierarchy for an action of a discrete group G on a manifold M is a
sequence

.M0;F0/; .M1;F1/; : : : ; .Mm;Fm/; .MmC1;∅/;

such that

� M0 DM ,

� MmC1 is a disjoint union of compact contractible n–manifolds,

� .Mi ;Fi/ is a tidy pair for each i ,

� MiC1 is Mi cut-open along Fi .

More generally, if .M;N / is a proper, cocompact G –pair of manifolds, we can define a
hierarchy ending in N in the same way, with the one difference being that MmC1DN .
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Definition G admits an n–hierarchy if there exists a contractible, n–dimensional
G –manifold M and a hierarchy for the action.

Lemma 1.3 Let G act on M with a hierarchy, and let M 0
1

be a component of M1 .
Then there is an induced hierarchy for the action of StG.M 0

1
/ on M 0

1
, where StG.M 0

1
/

is the stabilizer of M 0
1

.

Proof We claim the following sequence is a hierarchy for M 0
1

:

.M 0
1 ;F1\M 0

1 /; .M2\M 0
1 ;F2\M 0

1 /; : : : ; .MmC1\M 0
1 ;∅/:

We have that M 0
1

is a contractible StG.M 0
1
/–manifold by Lemma 1.1. Since each Fi is

G –invariant, Fi\M 0
1

is StG.M 0
1
/–invariant, and the other conditions of our hierarchy

follow immediately.

Theorem 1.4 Let M be a proper, cocompact G–manifold, and E D fEig
r
iD0

a col-
lection of submanifolds such that .M; E/ is tidy. If the components of the complement
M �[iEi have compact closure in M , then the action of G on M admits a hierarchy.

Proof The proof is to apply Lemma 1.2 repeatedly, as this implies that if we cut
along each Ei , we get a hierarchy ending in M �[iEi . To be precise, let Fj DEj

cut-along by E0;E1; : : :Ej�1 , and let M0 DM and MjC1 DMj cut along by Fj .
Since each Ei is G –invariant, .Mj ;Fj / is a tidy pair for all j .

2 Coxeter groups

Recall that a Coxeter group W has generators si with relations s2
i D1 and .sisj /

mij D1

for some mij 2N[1. In other words, W is generated by reflections and each pair of
reflections generates a dihedral subgroup (possibly D1/. The nerve of a Coxeter group
is a simplicial complex with vertices corresponding to generators si , and si1

; : : : ; sin
a

simplex if and only if the subgroup generated by si1
; : : : ; sin

is finite. A Coxeter group
is right-angled if mij D 2 or 1 for all i; j .

Definition A mirror structure on a space X is an index set S and a collection of
subspaces fXsgs2S . For each x 2X , let

S.x/ WD fs 2 S j x 2Xsg:

An example to keep in mind is a convex polytope in En or Hn with mirrors the
codimension-1 faces. We will assume that our index set S is finite.
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Definition Let X have a mirror structure, and let W be a Coxeter group with gen-
erators s 2 S . Let WT denote the subgroup generated by s 2 T � S . Let � denote
the following equivalence relation on W �X : .w1;x/� .w2;y/ if and only if x D y

and w1w
�1
2
2WS.x/ . The basic construction is the space

U.W;X / WDW �X=� :

Therefore, U.W;X / is constructed by gluing together copies of X along its mirrors,
with the exact gluing dictated by the Coxeter group. A standard example is where X is
a right-angled pentagon in H2 with mirrors the edges of X , and W is the right-angled
Coxeter group generated by reflections in these edges. Then U.W;X /ŠH2 .

Let W be a Coxeter group with nerve L. Again, L is the simplicial complex with vertex
set corresponding to S and simplices corresponding to subsets of S that generate finite
subgroups of W . Let K be the cone on the barycentric subdivision of L. K admits a
natural mirror structure with Ks the closed star of the vertex corresponding to s in
the barycentric subdivision of L. The Davis complex †.W;S/ is defined to be the
simplicial complex U.W;K/.

Lemma 2.1 [5] †.W;S/ has the following properties:

� W acts properly and cocompactly on †.W;S/ with fundamental domain K .

� † admits a cellulation such that the link of every vertex can be identified with L.
Therefore, if L is a triangulation of Sn�1 , then †.W;S/ is an n–manifold.

� †.W;S/ admits a piecewise Euclidean metric that is CAT.0/.

We assume from now on that W is a Coxeter group with nerve a PL triangulation of
Sn�1 . If w 2W acts as a reflection on †.W;S/, we call the fixed point set a wall,
and denote it †w .

Lemma 2.2 Walls in †.W;S/ have the following properties:

� The stabilizer of each wall acts properly and cocompactly on the wall.

� Each wall and each half-space is a geodesically convex subset of †.W;S/.

� The collection of walls separates †.W;S/ into disjoint copies of the fundamental
domain K .

� The stabilizer of each point in †.W;S/ is a finite Coxeter group, and the walls
containing that point can be locally identified with the fixed hyperplanes of the
standard action of this Coxeter group on Rn .

Algebraic & Geometric Topology, Volume 16 (2016)



2556 Boris Okun and Kevin Schreve

Though each wall of † is a contractible submanifold, a W –orbit of a wall has in
general quite complicated topology. Even in the simple case where W is generated
by reflections in a equilateral triangle in R2 the W –orbit of a wall is not contractible,
as W –translates of a wall can intersect nontrivially. However, passing to a suitable
subgroup fixes this problem.

Theorem 2.3 W has a finite index torsion-free normal subgroup � , and the action
of � on †.W;S/ admits a hierarchy.

Proof The existence of such a subgroup � is well-known. The cutting submanifolds
that we choose will be � –orbits of walls in †.W;S/.

A lemma of Millson and Jaffee [19] shows that any torsion-free normal subgroup of W

has the trivial intersection property: for all  2 � , either †s D†s or †s\†s D∅.
Therefore, each � –orbit is a disjoint union of walls and has contractible components.

Once we have removed all the walls, we are left with disjoint copies of the fundamental
domain K , and since � is of finite index in W , there are only finitely many orbits of
walls to remove, so by Lemma 2.2 this is a tidy collection. Therefore, we are done by
Theorem 1.4.

Remark If W is a Coxeter group with nerve a PL triangulation of Dn�1 , then
†.W;S/ is an n–manifold with boundary, and these groups also virtually admit
hierarchies.

3 L2–homology

Let X be a proper, cocompact G–CW–complex, and let C�.X / denote the usual
cellular chains of X , which we regard as left ZG–modules. The square-summable
chains of X are the tensor product

C
.2/
� .X /DL2.G/˝ZG C�.X /;

where L2.G/ is the Hilbert space of real-valued square-summable functions on G .

The usual boundary homomorphism @W C�.X / ! C��1.X / extends to a bound-
ary operator @W C .2/

� .X / ! C
.2/
��1

.X / whose adjoint is the coboundary operator
ıW C

.2/
� .X /! C

.2/
�C1

.X /.

The (reduced) L2 –(co)homology groups can be defined as the kernel of the Laplacian
operator:

L2H�.X IG/ŠL2H�.X IG/Š ker.@ıC ı@/W C .2/
� .X /! C

.2/
� .X /:
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These are Hilbert G –modules, and one defines L2 –Betti numbers as their von Neumann
dimension. These definitions can be extended to arbitrary topological spaces with G –
action using, for example, singular (co)chains, as follows; see [17, Chapter 6].

Let N .G/ denote the von Neumann algebra of bounded G –equivariant operators on
L2.G/. As explained in [17], given an algebraic N .G/–module A there is a well-
behaved notion of dimension dimN .G/.A/. The key feature of dimN .G/ is additivity
under short exact sequences.

Consider equivariant singular (co)homology with N .G/ coefficients: H G
� .X;N .G// WD

H�.N .G/ ˝ZG C
sing
� .X // and H�

G
.X;N .G// WD H�.HomZG.C

sing
� .X /;N .G///.

The i thL2 –Betti number b
.2/
i .X IG/ is defined to be dimN .G/.H

G
i .X IN .G///. We

will also consider the cohomological version bi
.2/
.X IG/ WD dimN .G/.H

i
G
.X IN .G///.

Since the category of finitely generated projective N .G/–modules is equivalent to the
category of Hilbert G –modules (via completion), the resulting theory is equivalent to
the combinatorial version for G –CW–complexes.

We record as a lemma some of the basic algebraic properties of L2 –homology that we
will need. In the next section we will often use the fact that in the exact sequences a
term between two zero-dimensional terms has to be zero-dimensional itself.

Lemma 3.1 � Functoriality A G –equivariant map f W .X1;Y1/! .X2;Y2/ be-
tween pairs of G –spaces induces a map f�W H G

k
.X1;Y1IN .G//!H G

k
.X2;Y2I

N .G//. If f is a weak G–equivariant homotopy equivalence, then f� is an
isomorphism.

� Exact sequence of a pair Let .X;Y / be a pair of G –spaces, then the sequence

� � � !H G
i .Y IN .G//!H G

i .X IN .G//!H G
i .X;Y IN .G//! � � �

is exact.

� Multiplicativity Let H <G be a subgroup of finite index. If X is a G –space
then b

.2/
i .X IH /D ŒG WH �b

.2/
i .X IG/ and bi

.2/
.X IH /D ŒG WH �bi

.2/
.X IG/

� Excision Suppose .X;A;B/ is a triple of G–spaces such that C lX .B/ �

Int.A/, then the map H G
� .X � B;A � BIN .G//! H G

� .X;AIN .G// is a
isomorphism.

� Poincaré duality If G acts properly, cocompactly, and preserving orientation
on an orientable n–manifold .M; @M /, then H i

G
.M IN .G//ŠH G

n�i.M; @M I

N .G// and H G
i .M IN .G//ŠH n�i

G
.M; @M IN .G//.
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� Induction principle The L2 –homology of a G –space X is induced from the
L2 –homology of its components:

H G
i .X IN .G//D

M
ŒX 0�2�0.X /=G

N .G/˝N .StG X 0/H
StG X 0

i .X 0
IN .StG X 0//;

b
.2/
i .X IG/D

X
ŒX 0�2�0.X /=G

b
.2/
i .X 0;StG X 0/;

where the sums are over representatives of the orbits of the components of X .

� Künneth formula If M is a G –space and Y is an H –space, then

b.2/n .X �Y /D
X

iCjDn

b
.2/
i .X /b

.2/
j .Y /:

Remark The first four statements are quite standard and have analogous versions for
L2 –cohomology. The proofs of the last two statements in [17] strongly depend on
nice properties of dimN .G/ with respect to tensor products and colimits. It’s unclear
whether their cohomological versions hold in this generality.

We will need the following version of Poincaré duality.

Lemma 3.2 If .M; @M / is an n–dimensional proper cocompact G–manifold with
orientable components, then

b
.2/
i .M; @M IG/D

X
ŒM 0�2�0.M /=G

bn�i
.2/ .M

0
IStG M 0/;

where the sums are over representatives of the orbits of the components of M .

Proof By the induction principle,

b
.2/
i .M; @M IG/D

X
ŒM 0�2�0.M /=G

b
.2/
i .M 0; @M IStG M 0/:

Since each M 0 is contractible, it is orientable, and by taking, if necessary, an index 2

subgroup of StG M 0 we get a cocompact orientation preserving action on M 0 . Thus
we can apply Poincaré duality and multiplicativity to each M 0 to finish the proof.

Definition For a discrete group G , define

b
.2/

k
.G/ WD b

.2/

k
.EGIG/;

bk
.2/.G/ WD bk

.2/.EGIG/:
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By the functoriality property, these are well-defined. In fact, one can use L2 –(co)homo-
logy of any proper contractible G –space, since the chain complex of such a space still
gives a projective resolution of Q over the group ring QG , and we are using N .G/
coefficients anyway.

Note that in general the relation between the homological and cohomological versions of
L2 –Betti numbers is unclear, however if X is a proper and cocompact G –CW–complex,
a cellular version of the Hodge decomposition shows bk

.2/.X IG/D b
.2/

k
.X IG/. In the

next two lemmas, we establish some partial results in this direction.

Lemma 3.3 If X is a countable proper G –CW–complex, then bk
.2/
.XIG/�b

.2/

k
.XIG/.

In particular for any group G , bk
.2/
.G/� b

.2/

k
.G/.

Proof X is the colimit of a directed sequence of proper, cocompact G–complexes
fXi j i 2Ng. By [17, Theorems 6.13 and 6.18], we have

b
.2/

k
.X IG/D supi infj�i dimN .G/.im ii;j W H

G
k .Xi/!H G

k .Xj //;

dimN .G/ lim
 ��

H k
G.Xi IG/D supi infj�i dimN .G/.im i i;j

W H k
G.Xj /!H k

G.Xi//:

Since Xi and Xj are cocompact proper G –complexes, the terms on the right-hand side
are equal, and because H k

G
.X / surjects onto lim

 ��
H k

G
.Xi/, we have that bk

.2/
.X IG/�

b
.2/

k
.X IG/.

The last sentence follows, since the standard bar construction gives a countable model
for EG .

Lemma 3.4 If G acts properly and cocompactly on an n–dimensional contractible
manifold without boundary, then b

.2/

k
.G/D bn�k

.2/
.G/D b

.2/

n�k
.G/D bk

.2/
.G/.

Proof Applying Lemma 3.3 and 3.2 twice we get

b
.2/

k
.G/D bn�k

.2/ .G/� b
.2/

n�k
.G/D bk

.2/.G/� b
.2/

k
.G/:

Thus the inequalities above are equalities, and the result is proved.

Remark In general, it is not true that a proper G–action on a manifold M is weak
G–homotopy equivalent to a G–action on a countable CW–complex, even for finite
groups. For example, Ancel and Guilbault [1] proved that doubling an open manifold
along a Z –boundary results in a closed manifold, and therefore any such Z –boundary
is the fixed point set of an involution acting on a closed manifold. The Z–boundaries
may have uncountable fundamental group.
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We will also need the following version of excision.

Lemma 3.5 Let .X;A;B/ be a G–triple of spaces. Suppose that for every open U

in X there is an excision isomorphism H�.U;U\A;R/ŠH�.U�B; .U\A/�B;R/.
Then we have an isomorphism H G

� .X;A;N .G//ŠH G
� .X �B;A�B;N .G//.

Proof For this proof, we will say a G –subspace Y of X “satisfies .A;B/–excision”
if H G

� .Y;Y \A;N .G//ŠH G
� .Y �B; .Y \A/�B;N .G//. If G is finite, we have

H G
� .X;A;N .G//ŠH�.X;A;R/, so by assumption we get the desired isomorphism.

Now, suppose G is infinite.

Consider the collection of open G–invariant subsets V satisfying .A;B/–excision,
partially ordered by inclusion. Since singular homology commutes with direct limits,
it follows by the Zorn lemma that there is a maximal such V . We claim that V DX .

Indeed, otherwise by properness there is a open set U 6� V with finite stabilizer GU ,
and for which gU \U D∅ for g 62GU . We have the relative Mayer–Vietoris sequence
with N .G/ coefficients:

H G
� .GU \V;A/!H G

� .GU;A/˚H G
� .V;A/!H G

� .GU [V;A/:

We have a corresponding Mayer–Vietoris sequences where we have excised B . Note
that GU ŠG �GU

U and GU \V ŠG �GU
.U \V /, since each element of G not

in GU moves U off of itself. Therefore, we have induction isomorphisms:

H G
� .GU;N .G//DN .G/˝N .GU /H

GU
� .U;N .GU //

and
H G
� .GU \V;N .G//DN .G/˝N .GU /H

GU
� .U \V;N .GU //:

By the finite group case, we have .A;B/–excision for U and U \V , and therefore, we
have .A;B/–excision for GU and GU \V . Since we have .A;B/–excision for V ,
by the 5 lemma, this implies excision for GU [V , contradiction.

4 Vanishing conjectures and results

Conjecture (Singer conjecture) If G acts properly and cocompactly on a contractible
n–manifold without boundary, then b

.2/
i .G/D 0 for i ¤ n=2.

In general, it seems this conjecture is stronger than the original Singer conjecture,
which assumed G to be torsion-free. By the multiplicativity of L2 –Betti numbers, the
two versions are equivalent for type VF groups (groups which are virtually finite type).
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The conjecture holds for trivial reasons in dimensions � 2. In dimension 3, Lott and
Lück [16] proved the conjecture for all fundamental groups of manifolds that satisfy
the geometrization conjecture, therefore by Perelman’s work [21; 22; 23] it holds for
all type VF groups acting properly and cocompactly on contractible 3–manifolds. We
record this as a theorem.

Theorem 4.1 The Singer conjecture is true for type VF groups in dimensions n� 3.

Definition The L2 –dimension of a group G , L2dim.G/ is the largest degree n, such
that bn

.2/
.G/¤ 0.

Definition The action dimension actdim.G/ of a group G is the least dimension of a
contractible manifold which admits a proper G –action.

Action dimension was introduced and studied by Bestvina, Kapovich, and Kleiner in [2].
One consequence of their work is that an n–fold product of nonabelian free groups does
not act properly discontinuously on a contractible .2n�1/–manifold. Since nonabelian
free groups have b1

.2/
.Fn/¤ 0, it follows from the Künneth formula that the n–fold

products have nontrivial bn
.2/

. Therefore, as noted in [8], their result is implied by the
following conjecture.

Conjecture (actdim conjecture) actdim.G/� 2L2dim.G/.

Remark In [8], the conjecture is stated in terms of homology. Lemma 3.3 implies
that the above version is potentially stronger than the original.

We note the following bounds, which are well-known for cellular actions.

Lemma 4.2 We have actdim.G/ � cdQ.G/. If G is virtually torsion free, then
actdim.G/� vcd.G/.

Proof We only prove the first inequality, the proof of the second one is entirely
similar. Suppose G acts properly on a contractible n–manifold M n , and let A be a
QŒG�–module. We need to show that H i.GIA/D 0 for i > n. We will use equivariant
sheaf cohomology; see [13, Chapter V].

Denote by A the constant sheaf on M with stalk A, and by AG the sheaf on M=G

whose sections over an open set in M=G are G–invariant sections of A over its
preimage in M . Since the action is proper and the coefficients are rational, [13,
Corollaire to Théorème 5.3.1, page 204] applies and we obtain a spectral sequence
with E2 –term H i.GIH j .M;A// which converges to H iCj .M=G;AG/. Since M is
contractible, the spectral sequence collapses, and we get H i.G;A/DH i.M=G;AG/.
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Since M is a manifold, it is a separable metrizable space, and [20, Theorem 4.3.4]
implies that M=G is also metrizable, in particular paracompact, and dim M=G � n.
Finally, paracompactness of M=G allows us to use Čech cohomology to conclude that
H i.M=G;AG/D 0 for i > n.

Definition The cocompact action dimension cadim.G/ of a group G is the least
dimension of a proper cocompact contractible G –manifold.

Obviously, actdim.G/ � cadim.G/. We do not know of a type VF group G with
actdim.G/ < cadim.G/.

Conjecture (cadim conjecture) cadim.G/� 2L2dim.G/.

Note that these conjectures all have smooth and PL versions.

Lemma 4.3 The actdim conjecture implies the cadim conjecture, which in turn implies
the Singer conjecture.

Proof The first implication is trivial. By considering cohomology with compact
support, we see that a group acting properly and cocompactly on a contractible n–
manifold without boundary has actdimD cadimD cdQD n, so the second implication
follows from Lemma 3.4.

Shmuel Weinberger pointed out that a recent theorem of Craig Guilbault [14] implies
that for type F groups the difference between cadim and actdim is at most 1, at least in
high dimensions.

Theorem 4.4 [14] For an open manifold M n (n� 5), M n�R is homeomorphic to
the interior of a compact .nC 1/–manifold with boundary if and only if M n has the
homotopy type of a finite complex.

If G acts freely and properly on a contractible manifold M , we can apply Guilbault’s
theorem to the interior of M=G to get the following.

Corollary 4.5 If G is type F and actdim.G/� 5, then cadim.G/� actdim.G/C 1.

Although the precise relationship between actdim and cadim is unclear, we can still
show the two conjectures are equivalent, at least for type VF groups.

Theorem 4.6 The cadim and actdim conjectures are equivalent for type VF groups.

Proof We need to show that the cadim conjecture implies the actdim conjecture. So,
let G acting properly on a contractible n–manifold M be a counterexample to the
actdim conjecture, ie 2L2dim.G/�n> 0. By removing the boundary, we can assume
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that M is open. If H is finite index in G and type F , then M=H is an open aspherical
manifold of finite homotopy type, and 2L2dim.H /�n> 0. Note that by the Künneth
formula, by taking direct products of H with itself, we can assume that H acts freely
on a contractible n–manifold M with 2L2dim.H /�n arbitrarily large. (The Künneth
formula applies here since H is type F and therefore homological and cohomological
L2 –Betti numbers are the same.) By Theorem 4.4, M=H �R is the interior of a
compact manifold. Therefore, the action of H on the universal cover of this compact
manifold is a counterexample to the cadim conjecture.

Since Guilbault’s result holds in the PL and smooth categories, the smooth and PL
versions of these conjectures are also equivalent to each other.

Remark These conjectures put restrictions on the embedding dimension of a K.G; 1/–
space. For example, if bi

.2/
.G/¤0, the cadim conjecture implies that no K.G; 1/ space

can embed in R2i�1 .

Since any contractible proper G–manifold can be used to compute bi
.2/
.G/, using

Lemma 3.2 we obtain an equivalent series of conjectures in terms of manifolds.

Conjecture (cadim conjecture in dimension n) Suppose .M; @M / is an n–manifold
with contractible components which admits a proper cocompact G–action. Then
b
.2/
i .M; @M IG/D 0 for i < n=2.

We now consider these conjectures in the context of manifolds with hierarchies. Excision
(Lemma 3.5) allows us to apply the argument used to derive sequence (1) to L2 –
homology to obtain the following.

Lemma 4.7 If .M;F / is a tidy pair and N is M cut-open along F , there is an exact
sequence with N .G/ coefficients

(3) � � � !H G
k .F; @F /

i�
�!H G

k .M; @M /!H G
k .N; @N /!H G

k�1.F; @F /! � � �

Thus we have the following apparently weaker version of the cadim conjecture.

Conjecture (weak cadim conjecture) If .M 2kC1;F2k/ is a tidy pair, then the map
induced by inclusion i�W H

G
k
.F; @IN .G//!H G

k
.M; @IN .G// has zero-dimensional

image.

Lemma 4.8 Suppose that .M n;F / is a tidy G–pair, N is M cut-open by F , and
the cadim conjecture in dimension .n� 1/ holds for F . Then the cadim conjecture in
dimension n holds for M if and only if it holds for N and, if nD 2kC 1 is odd, the
weak cadim conjecture holds for .M;F /.
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Proof First, suppose that the cadim conjecture holds for M . We have b
.2/
i .M;@M /D0

for i < n=2, and b
.2/
i .F; @F /D 0 for i < .n� 1/=2. Then the cadim conjecture holds

for N by sequence (3).

Next, suppose the cadim conjecture holds for N , so that b
.2/
i .N; @N /D 0 for i < n=2,

and b
.2/
i .F; @F / D 0 for i < .n � 1/=2. By the same argument as above, we can

say that b
.2/
i .M; @M /D 0 for i < .nC 1/=2.

Now, we only have to consider the case where nD 2kC 1 and i D kC 1. The weak
cadim conjecture says that the map H G

k
.F; @F IN .G// ! H G

k
.M; @M IN .G// in

sequence (3) has zero-dimensional image. The result follows.

Theorem 4.9 The cadim conjecture in dimension 2k�1 implies the cadim conjecture
in dimension 2k for manifolds with hierarchies. The cadim conjecture in dimension 2k

and the weak cadim conjecture in dimension 2k C 1 imply the cadim conjecture in
dimension 2kC 1 for manifolds with hierarchies.

Proof This is immediate by induction on the length of the hierarchy, using Lemmas 1.3
and 4.8, and noting that the cadim conjecture holds for manifolds with compact
components.

A somewhat surprising result is a converse to the second implication in Lemma 4.3, at
least if we somewhat restrict the category. By the cadim conjecture with PL boundary,
we mean the version of the cadim conjecture where we only allow manifolds whose
boundaries admit PL structures and actions restricted to the boundaries are PL.

Theorem 4.10 The Singer conjecture and the cadim conjecture with PL boundary are
equivalent.

The result follows immediately from the following key lemma and induction.

Lemma 4.11 The Singer conjecture in dimension n and the cadim conjecture with
PL boundary in dimension .n� 1/ imply the cadim conjecture with PL boundary in
dimension n.

In the proof of this lemma we will need the following result, which is probably well-
known to the experts, but we could not find any reference for it.
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Proposition 4.12 Suppose a group G acts PL properly and cocompactly on a polyhe-
dron M . Then M has a G –equivariant PL triangulation.

Proof Using cocompactness choose a finite subpolyhedron P �M , so that GP DM ,
and set F WD ff 2 G j fP \ P ¤ ∅g. By properness, F is finite. Set Q WDS
ffP j f 2 Fg. Let T be a triangulation of Q such that each fP is a subcomplex

of Q. The pullback f �T is a triangulation of P such that f W f �T ! T is simplicial.
Let S be a common subdivision of ff �T j f 2 Fg. Then each f 2 F is a linear map
S! T . For each x 2M set

Cx D

\
fg� j g 2G; � 2 S; g� 3 xg:

Then the collection C D fCx j x 2M g is a G –equivariant cover of M , which restricts
to a cellulation of P , since for x 2 P the last two conditions imply that g 2 F , and
thus Cx is a finite intersection of linear simplices: a closed convex cell. Therefore,
C is a cellulation of M , and taking the barycentric subdivision gives an equivariant
triangulation of M .

Proof of Lemma 4.11 We use the equivariant Davis reflection group trick as in [7;
5]. The idea is that the trick turns the input of the cadim conjecture (a contractible
manifold with boundary and proper cocompact group action) into the input of the
Singer conjecture (a contractible manifold without boundary and proper cocompact
group action). In addition, the newly constructed manifold action admits a hierarchy
ending at a disjoint union of copies of the original. Once this has been established, the
proof is more or less the same as that of Theorem 4.9.

Suppose that G acts properly and cocompactly on a contractible n–manifold with
boundary .M; @M / (if @M D ∅, we are done since we are assuming the Singer
conjecture holds). Let L be a flag PL triangulation of M that is equivariant with
respect to the G–action. Suppose that the stabilizer of any simplex fixes the simplex
pointwise and that g:v\Lk.v/D ∅ for all g 2 G and and v 2 L0 (by subdividing,
these triangulations can always be constructed). We can now apply the equivariant
reflection group trick. Indeed, L determines a right-angled Coxeter group W , and
we can form the basic construction U D U.W;M /. By the conditions imposed on L,
there is an action of G on W which determines a semidirect product W Ì G . Since
U=W Ì G ŠM=G , W Ì G acts cocompactly on U . Here are some key properties of
the reflection group trick:

� Each wall is a codimension-1 contractible submanifold of N .

� There are a finite number of W Ì G –orbits of walls, and each orbit is a disjoint
union of walls.
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� Any component of a nonempty intersection of orbits of walls is itself a Davis
complex and is therefore contractible.

� The stabilizer of each wall acts properly and cocompactly on the wall.

� The collection of walls looks locally like a right-angled hyperplane arrangement
in Rn (this is where we need the triangulation to be PL).

It follows, similarly to Theorem 1.4, that the W Ì G action on U admits a hierarchy
that ends in disjoint copies of M , where the cutting submanifolds are W ÌG –orbits of
walls. Since U has no boundary, and we are assuming that the Singer conjecture holds
for U , the cadim conjecture in dimension n holds for U . Since we are also assuming
the cadim conjecture in dimension n�1, it follows by applying Lemma 4.8 inductively
that the cadim conjecture holds for the original M .

If M is a PL manifold, and the action of G is PL, then the basic construction U and
the action of W Ì G in the above argument are also PL.

If M is a smooth manifold, and the action of G is smooth, the existence of a smooth
equivariant triangulation is part of the main result of [15]. Moreover, in this case the
reflection trick produces a smooth manifold with the smooth action.

Thus we have the following.

Corollary 4.13 The Singer conjecture and the cadim conjecture are equivalent in the
smooth and the PL categories.

Since for a type VF group the reflection trick produces another type VF group,
Theorem 4.6 gives us a corollary.

Corollary 4.14 For type VF groups the Singer conjecture and the action dimension
conjecture are equivalent in the smooth and the PL categories.

Since TOP = PL in dimension 2, Theorem 4.1 and Theorem 4.10 imply another.

Corollary 4.15 The cadim conjecture holds for all type VF groups in dimensions less
than or equal to 3.

Now, Corollary 4.15, Theorem 4.9 and Lemma 4.3 imply our main theorem.

Theorem 4.16 The Singer conjecture holds for all type VF groups that admit a hierar-
chy in dimensions less than or equal to 4.
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Theorem 4.16 and Theorem 2.3 now imply our main applications.

Theorem 4.17 If W is a Coxeter group with nerve a triangulation of S3 , then the
Singer conjecture holds for W acting on †.W;S/.

Theorem 4.18 If W is a Coxeter group with nerve a triangulation of D3 , then
b
.2/
i .W /D 0 for i > 2.

Remark The hierarchies for Coxeter groups have more structure in the following
sense: the hierarchy for †.W;S/ induces a hierarchy on each wall. This means that
if we restrict our attention to Coxeter groups, we can relax many of the assumptions.
For instance, Theorem 4.9 restricted to Coxeter groups need only assume the cadim
conjecture in dimension 2k � 1 for manifolds with hierarchies.
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Combinatorial proofs in bordered Heegaard Floer homology

BOHUA ZHAN

Using bordered Floer theory, we give a combinatorial construction and proof of
invariance for the hat version of Heegaard Floer homology. As part of the proof, we
also establish combinatorially the invariance of the linear-categorical representation
of the strongly based mapping class groupoid given by the same theory.

57R58; 57R56

1 Introduction

Heegaard Floer homology, introduced by Ozsváth and Szabó [14; 15], gives several
kinds of invariants for closed 3–manifolds. The invariants are defined using holo-
morphic curves, so in general they are not directly computable from their definitions.
However, for the hat version of the invariant, denoted cHF, there are ways to give
combinatorial definitions. There are two steps in this process. First, we want to give
to a particular kind of description of a 3–manifold (such as a Heegaard splitting) a
description of cHF associated to that 3–manifold. This means that, at least in principle,
the invariant can be computed algorithmically for any 3–manifold. Second, we want to
give combinatorial proofs for the main properties of cHF, beginning with the statement
that it depends only on the diffeomorphism class of the 3–manifold, rather than on a
particular description of it.

Bordered Floer theory gives a way to extend the hat version of Heegaard Floer homology
to 3–manifolds with one or two boundary components. The theory is also defined
using holomorphic curves. However, some of the invariants associated to certain simple
types of 3–manifolds with boundary have been computed. By breaking an arbitrary
closed 3–manifold into simpler pieces, the theory gives a combinatorial description
of cHF (see Lipshitz, Ozsváth and Thurston [11]) achieving the first step in the process
described above.

In this paper, we give the second step of the process; namely, we prove combinatorially
that the construction of cHF given by bordered Floer theory in fact produces an invariant
of the 3–manifold. One main result we use is an alternative description of bCFAA.IZ/
given by Zhan [21]. This allows us to use a combinatorial construction that is easier to
reason about.
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An intermediate statement in the proof, which may be of independent interest, is that
bordered Floer theory gives a linear-categorical representation of the strongly based
mapping class groupoid, which contains the strongly based mapping class group. By a
linear-categorical representation of a group or groupoid, we mean assigning homotopy
equivalence classes of bimodules to each element of the group (resp. groupoid), in
such a way that composition in the group (resp. groupoid) corresponds to taking an
appropriate tensor product of bimodules.

Sarkar and Wang [16] gave the first combinatorial description of cHF, giving a sys-
tematic way to convert any Heegaard diagram into a nice diagram, in which counting
holomorphic curves is combinatorial. Ozsváth, Stipsicz, and Szabó [13] gave the
first combinatorial proof of invariance for cHF, using another way to convert general
Heegaard diagrams into convenient diagrams — a more restricted kind of nice diagram —
and by studying Heegaard moves on convenient diagrams.

Linear-categorical representations of important groups in topology have also been
investigated before. Bordered Floer theory actually gives a family of representations of
the strongly based mapping class groupoid. For a given genus g , the representations
are indexed by an integer w , called the weight, between �g and g . The representation
that is relevant for 3–manifold invariants, and that we will focus on in this paper,
corresponds to w D 0. The cases w D˙g are trivial. The cases w D˙.g� 1/ are
described combinatorially by Lipshitz, Ozsváth and Thurston [9], and a combinatorial
proof of invariance is given by Siegel [19]. Linear-categorical representations of other
groups occurring in topology have also been studied; see the introduction by Khovanov
and Thomas [7] for a review and a list of references. One major example is linear-
categorical representations of the braid group, studied by, for example, Khovanov and
Seidel [6], Seidel and Thomas [18], Cautis and Kamnitzer [3], Seidel and Smith [17],
and Khovanov [5].

In Section 2, we review the structure of bordered Floer theory, and describe its com-
binatorial construction as considered here. In Section 3, we prove some preliminary
results on type DA bimodules and our construction of the type DA invariants. Using
these results, we prove in Section 4 the intermediate statement on the linear-categorical
representation of the strongly based mapping class groupoid. Finally, we complete the
proof of invariance for closed 3–manifolds in Section 5.

Acknowledgements I would like to thank Peter Ozsváth for offering the ideas which
led to this paper, and to Zoltán Szabó and Robert Lipshitz for many suggestions. I also
want to thank the Simons Center for Geometry and Physics for their hospitality while
part of this work is done. Finally, I thank the referee for many helpful comments.
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1 2 3 4 5 6 7 8 z

Figure 1: Linear pointed matched circle with k D 2

2 Overview of the construction

In the first part of this section, we briefly review the structure of bordered Floer theory,
as is defined analytically in [10; 12]. In the second part, we describe some of the
existing combinatorial constructions given in [11], and then the construction that will
be studied in this paper.

2A Pointed matched circles and strand algebras

In bordered Floer theory, the connected, compact, orientable surfaces that serve as
boundary components of 3–manifolds are specified using pointed matched circles. A
pointed matched circle is a quadruple Z D .Z; z; a;M /, consisting of a circle Z , a
point z 2 Z , a set of 4k points a � Z n fzg, and a two-to-one map M from a to
f1; 2; : : : ; 2kg, pairing the points in a , that satisfies the following condition: if we
thicken the circle Z to an annulus Z � Œ0; 1� and attach a 1–handle to the outside
boundary Z�f1g of the annulus joining each pair of points in a , then the new outside
boundary must be a single circle. Given this requirement, we may glue a disk onto
that boundary, obtaining a genus k surface Fı.Z/ with one boundary component
Z � f0g and a basepoint z on the boundary. We say that the pointed matched circle Z
parametrizes Fı.Z/. Let �Z be the pointed matched circle obtained by reversing
orientation on Z . Then Fı.�Z/ is the orientation reversal of Fı.Z/.

Let F.Z/ be the result of filling the boundary of Fı.Z/ with a disk. Then F.Z/
is a closed surface of genus k , marked with a homotopically trivial circle Z and a
basepoint z 2Z . We will also say F.Z/ is parametrized by Z .

An example of a pointed matched circle for k D 2 is shown in Figure 1.

To each pointed matched circle Z , bordered Floer theory associates a combinatorially
defined DG algebra A.Z/. We refer to the original papers for the description of A.Z/.
Here we just fix some notations and terminologies used in this paper. For any generator
a 2 A.Z/, the multiplicity of a, denoted mult.a/, is an element in H1.Z n fzg; a/

recording how many times the strands in a cover each nonbasepoint interval on Z .
The length of a is the sum of coefficients in mult.a/. Equivalently, it is the sum of

Algebraic & Geometric Topology, Volume 16 (2016)
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lengths of the strands in a. It is clear from the definitions that the algebra A.�Z/ is
the opposite algebra of A.Z/. In particular, there is a canonical identification of their
generators. For any a 2A.Z/, let a denote the corresponding element in A.�Z/. If
i 2 A.Z/ is an idempotent, let o.i/ 2 A.Z/ denote the idempotent complementary
to i . A chord is a single strand on Z . For any given chord � , we define a.�/ 2A.Z/
to be the sum of all generators that result from adding horizontal strands to � .

Given a 3–manifold Y with one boundary component @Y , a parametrization of @Y by
a pointed matched circle Z D .Z; z; a;M / is a diffeomorphism �W F.Z/! @Y . This
marks @Y with a circle and a basepoint on the circle, which by abuse of notation we will
also call Z and z . Bordered Floer theory associates two invariants to a 3–manifold Y

with boundary @Y parametrized by Z :
� A type A invariant bCFA.Y /A.Z/ is a right A1–module over A.Z/.
� A type D invariant A.�Z/ bCFD.Y / is a left type D module over A.�Z/.

They are invariants of Y up to homotopy equivalence of A1–modules or type D

modules. We use the following standard convention in expressing types of actions on
the module: each algebra is written on the side it acts on, subscripts indicate A1–
actions, and superscripts indicate type D actions. These may be omitted when there is
no danger of confusion.

These invariants satisfy the following pairing theorem: let Y1 and Y2 be two 3–
manifolds with boundaries parametrized by Z and �Z , respectively. Let Y DY1[@Y2

be the closed 3–manifold obtained by gluing them along their boundaries (with the
gluing map induced by the parametrizations). Then the chain complex cCF.Y /, whose
homology is cHF.Y /, is given by

(1) cCF.Y /' bCFA.Y1/A.Z/� A.Z/ bCFD.Y2/

[10, Theorem 1.3].

The theory extends to 3–manifolds with two boundary components as follows: given Y

with two boundary components @LY and @RY , fix parametrizations �1W F.Z1/!@LY

and �2W F.Z2/! @RY . This induces circles Z1 and Z2 on @LY and @RY , and
basepoints z1 2 Z1; z2 2 Z2 . We further fix a map  from the framed cylinder
.S1; z/� Œ0; 1� into Y , so that .S1; z/� f0g and .S1; z/� f1g map to .Z1; z1/ and
.Z2; z2/, respectively. We call the totality of the data .Y; @LY; @RY; �1; �2;  / a
strongly bordered 3–manifold with two boundary components. From now on whenever
we mention a 3–manifold Y with two boundary components, we mean a strongly
bordered 3–manifold, omitting the other data when they are clear from context. To a
3–manifold Y with two boundary components, bordered Floer theory associates the
following invariants:

Algebraic & Geometric Topology, Volume 16 (2016)
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� A type AA invariant bCFAA.Y /A.Z1/;A.Z2/ is a right A1–bimodule over A.Z1/

and A.Z2/.

� A type DD invariant A.�Z1/;A.�Z2/ bCFDD.Y / is a left type D bimodule over
A.�Z1/ and A.�Z2/.

� A type DA invariant A.�Z1/ bCFDA.Y /A.Z2/ is a left type D , right A1–bimodule
over A.�Z1/ and A.Z2/.

� A type AD invariant A.�Z2/ bCFAD.Y /A.Z1/ is a right A1 , left type D bimodule
over A.Z1/ and A.�Z2/.

These bimodules satisfy similar pairing theorems, as described in [12, Section 7.1].
The general rule is that box tensor products can be taken between a right A1–action
and a left type D action over the same algebra A.Z/. Taking this box tensor product
corresponds to gluing two boundaries parametrized by Z and �Z .

Following the convention in [21], we will write actions on the various kinds of mod-
ules and bimodules as sums of arrows. For example, if the coefficient of y is 1 in
m1;i;j .xI a1; : : : ; ai I b1; : : : ; bj /, where each ak ; 1 � k � i and bl ; 1 � l � j is a
generator of the appropriate algebra, we say there is an arrow

m1;i;j W .xI a1; : : : ; ai I b1; : : : ; bj /! y :

Likewise, an arrow in the type DA action is of the form

ı1
1Ci W .x; a1; : : : ; ai/! b˝y ;

and an arrow in the type DD action is of the form

ı1
W x! a˝ b˝y :

We will also need the concept of duality on bimodules, called opposite structures in [12,
Definition 2.2.31, 2.2.53]. For a left type DD bimodule A;BM , its dual M A;B is the
type DD bimodule over the same generators, where each arrow ı1

M
W x! a1˝a2˝y

in the type DD action of A;BM corresponds to an arrow ı1

M
W y! a1˝a2˝x in the

type DD action of M A;B . In this way the left actions by A and B (equivalently left
actions by Aopp and Bopp ) become right actions. Thus, we will also write the dual as
Aopp;Bopp

M . Similarly, we can define duals on type DA and type AA bimodules. The
dual commutes with box tensor product, that is,

MA � AN DN A � AM DMAopp � Aopp
N ;

where M and N may have additional actions.

Algebraic & Geometric Topology, Volume 16 (2016)
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2B Gradings on bordered invariants

In this section we give a brief overview of gradings on the bordered invariants. For
details, see [10, Chapter 10] and [12, Section 6.5].

We begin with gradings on the DG algebra A.Z/. There are two kinds of gradings: one
by a larger group G0.Z/, and a refined grading by a smaller group G.Z/. Both G.Z/
and G0.Z/ are noncommutative, equipped with a distinguished central element �.

An element of G0.Z/ is specified by a pair .k; ˛/, where k 2 1
2
Z and ˛ 2H1.Z

0; a/.
With points of a labeled 1; : : : ; 4k , we can write ˛ as a sequence of integers ˛i ; 1� i �

4k � 1, where ˛i is the multiplicity of ˛ at the interval Œi; i C 1�. Then multiplication
on G0.Z/ is defined by

.k; ˛/ � .l; ˇ/D .kC l CL.˛; ˇ/; ˛Cˇ/;

where

L.˛; ˇ/D

4k�2X
iD1

1
2
.˛iˇiC1�˛iC1ˇi/:

Actually, the grading lies in an index 2 subgroup of G0.Z/, but we will not make use
of this here.

For later use, we define an antihomomorphism

RW G0.Z/!G0.�Z/
given by

R.k; ˛1; : : : ; ˛4k�1/D .k;�˛4k�1; : : : ;�˛1/:

To define the grading of a generator of A.Z/, we first define a map

mW H1.Z
0; a/�H0.a/!

1
2
Z:

For an interval ˛ (with orientation from Z ) and a point p , let m.˛;p/ equal 1 if p is
in the interior of ˛ , 1

2
if p is on the boundary, and 0 otherwise. This is then extended

bilinearly to all of H1.Z
0; a/�H0.a/ to define m.

Given a generator a2A.Z/, let � be the nonhorizontal strands of a. Let inv.�/ be the
number of inversions in �, S 2H0.a/ be the starting points of �, and Œa� 2H1.Z

0; a/

be the multiplicity of a. Then

gr0.a/D .inv.�/�m.Œa�;S/; Œa�/:

Next, we consider relative gradings on the type D invariant. Fix a bordered Heegaard
diagram H . Let x;y be generators and B 2 �2.x;y/, define g0.B/ 2G0.Z/ as

g0.B/D .�e.B/� nx.B/� ny.B/; @
@.B//:

Algebraic & Geometric Topology, Volume 16 (2016)
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Here e.B/ is the Euler measure of B , and nx.B/; ny.B/ are multiplicities of B

at x;y (each corner around x or y counts as multiplicity 1
4

), and @@.B/ is the
boundary of B on H1.Z

0; a/.

There is a grading set for each spinc class on H (in most bordered cases we consider here,
there is just one spinc class). The grading set S 0

D
.H; s/ for the Heegaard diagram H

and spinc class s is defined as follows: choose a base generator x0 with spinc class s.
Let P 0.x0/ be the set of g0.P / for all P 2 �2.x0;x0/ (the domains in �2.x0;x0/

are called periodic domains). Then

S 0D.H; s/DG0.�Z/=R.P 0.x0//:

This grading set has an obvious left action by G0.Z/. For another generator x in the
same spinc class, choose a domain B0 2 �2.x0;x/, and set

gr0.x/DR.g0.B0// �R.P
0.x0//:

The type D action respects this relative grading in the sense that, for each arrow
ı1W x! a˝y in the action, we have

��1 gr0.x/D gr0.a/ gr0.y/:

Relative gradings on type A invariants are similar. The grading set is

S 0A.H; s/D P 0.x0/nG
0.Z/:

This carries a natural right action by G0.Z/. For any generator x in the spinc class s,
choose a domain B0 2 �2.x0;x/ and set

gr0.x/D P 0.x0/ �g
0.B0/:

The A1–action respects the relative grading in the sense that, for each arrow

m1;k W .xI a1; : : : ; ak/! y ;

we have
�k�1 gr0.x/ gr0.a1/ � � � gr0.ak/D gr0.y/:

Gradings on bimodules are defined similarly. In particular, a domain in a Heegaard
diagram with two boundary components parametrized by Z1 and Z2 gives rise to an
element of

G0.Z1/��G0.Z2/DG0.Z1/�G0.Z2/=.�1 D �2/:

The grading set is a certain coset of G0.Z1/��G0.Z2/.

Now we briefly discuss refined gradings, which contain essentially the same information,
but are cleaner to work with theoretically.

Algebraic & Geometric Topology, Volume 16 (2016)
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The group G.Z/ can be considered as a subgroup of G0.Z/, generated by � and
elements of the form .0; Œp; q�/, where p; q is a pair of matched points, and Œp; q�
denotes the interval in H1.Z

0; a/ between p and q . An element .k; ˛/ of G0.Z/ is
in G.Z/ if and only if M�.@˛/D 0, where @W H1.Z

0; a/!H0.a/ is the boundary
operator and M�W H0.a/! Z2k is a map sending each matched pair of points to the
same basis element of Z2k .

To construct the refined grading on A.Z/, we first choose a base idempotent s0 in
A.Z/. Then for every idempotent s , choose a grading element  .s/D .k; ˛/ 2G0.Z/
such that M�.@˛/D s� s0 . For an algebra element a with left idempotent s and right
idempotent t , we set

gr.a/D  .s/ gr0.a/ .t/�1:

It is easy to check that this element lies in G.Z/ and that the two conditions on the
grading are satisfied.

Similarly, we can refine the grading on the bordered invariants to use G.Z/ rather
than G0.Z/. We will omit the details here.

We will not perform any detailed grading computations in this paper, but will simply
note that all such computations can be done combinatorially from the Heegaard diagram.
For a module (or bimodule) M of any type, grading imposes a constraint on what kind
of arrows can appear in the A1 or type D action on M . One such constraint is this:
if a domain in a Heegaard diagram with two boundary components touches the two
boundaries at intervals i and i 0 , respectively, then for each arrow in the algebra action
of a bimodule corresponding to that Heegaard diagram, its multiplicities at i and at i 0

must be the same. Such constraints are crucial in establishing uniqueness properties of
bimodule invariants, to be discussed in the following sections.

2C The strongly based mapping class groupoid

An important class of 3–manifolds with two boundary components is the mapping
cylinders of surface diffeomorphisms. Gluing with these 3–manifolds can be considered
as changing the parametrization on the boundary of a bordered 3–manifold.

The strongly based mapping class groupoid of genus g is a category whose objects are
pointed matched circles with 4g points. Each object Z corresponds to a surface Fı.Z/
of genus g , with standard parametrization by Z . The morphisms from Z1 to Z2 in
the category are isotopy classes of diffeomorphisms �W Fı.Z1/! Fı.Z2/, sending
the basepoint z1 2 Fı.Z1/ to the basepoint z2 2 Fı.Z2/. Identity and composi-
tion in the category correspond to the identity diffeomorphism and composition of
diffeomorphisms, respectively.

Algebraic & Geometric Topology, Volume 16 (2016)



Combinatorial proofs in bordered Heegaard Floer homology 2579

If we fix a pointed matched circle Z and only consider morphisms from Z to itself,
we obtain the strongly based mapping class group of Fg;1 (where Fg;1 denotes a
genus g surface with one circle boundary). This is simply the group of isotopy classes
of boundary-preserving self-diffeomorphisms of Fg;1 .

Given a diffeomorphism �W Fı.Z1/!Fı.Z2/, we can construct its mapping cylinder
Y .�/D F.Z2/� Œ0; 1� as a strongly bordered 3–manifold with two boundary compo-
nents, parametrized by �Z1 and Z2 . The left boundary @LY .�/ D F.Z2/� f0g is
parametrized by the induced map ��W �F.Z1/!�F.Z2/ (reverse orientation and
extend over the disk filling the boundary), while the right boundary is parametrized
by the identity map on F.Z2/. The map  W .S1; z/ � Œ0; 1�! Y .�/ is simply the
inclusion .Z; z/� Œ0; 1�! F.Z2/� Œ0; 1�.

This establishes a one-to-one correspondence between strongly bordered 3–manifolds
that are topologically Fg � Œ0; 1�, and morphisms in the strongly based mapping
class groupoid with genus g . For a morphism �W Fı.Z1/ ! Fı.Z2/, we write
bCFAA.�/A.�Z1/;A.Z2/ to denote the type AA invariant bCFAA.Y .�//A.�Z1/;A.Z2/ as-

sociated to the mapping cylinder of � . Likewise, we use notations A.Z1/ bCFDA.�/A.Z2/

and A.Z1/;A.�Z2/ bCFDD.�/ for the other invariants corresponding to Y .�/.

For future reference, we write down the pairing theorems involving DA invariants. For
morphisms �1W F

ı.Z1/! Fı.Z2/ and �2W F
ı.Z2/! Fı.Z3/, the DA invariant for

�2 ı�1W F
ı.Z1/! Fı.Z3/ is given by

(2) A.Z1/ bCFDA.�2 ı�1/A.Z3/ D
A.Z1/ bCFDA.�1/A.Z2/� A.Z2/ bCFDA.�2/A.Z3/:

For a morphism �W Fı.Z1/! Fı.Z2/ and a 3–manifold Y with boundary parametr-
ized by  W F.�Z2/! @Y , let Y 0 be the same manifold with boundary parametrized
by  ı��W F.�Z1/! @Y , then

(3) A.Z1/ bCFD.Y 0/D A.Z1/ bCFDA.�/A.Z2/� A.Z2/ bCFD.Y /:

2D Invariants of the identity diffeomorphism

Let IZ be the identity morphism Fı.Z/!Fı.Z/. All bimodule invariants associated
to IZ have special significance in the theory. First, it can be shown [12, Section 8.1]
that

bCFDA.IZ/' A.Z/IA.Z/;

where the latter denotes the identity type DA bimodule over A.Z/. This is the bimodule
generated over F2 by idempotents of A.Z/, and with the algebra action given by

ı1
2.i; a/D a˝ j ;

Algebraic & Geometric Topology, Volume 16 (2016)
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for any generator a 2A.Z/, where i and j are the left and right idempotents of a.

The type DD invariant A.Z/;A.�Z/ bCFDD.IZ/ and AA invariant bCFAA.IZ/A.�Z/;A.Z/
relate the type A and type D invariants through taking the tensor product. For any
3–manifold Y with one boundary component parametrized by Z , the relations are

bCFA.Y /A.Z/ D bCFAA.IZ/A.�Z/;A.Z/� A.�Z/ bCFD.Y /;(4)

A.�Z/ bCFD.Y /D bCFA.Y /A.Z/� A.Z/;A.�Z/ bCFDD.IZ/:(5)

One implication is that bCFD.Y / and bCFA.Y / contain the same information about Y .
Likewise, there are relations among the bimodule invariants, showing that all bimodule
invariants also contain the same information. For any 3–manifold Y with two boundary
components parametrized by Z1 and Z2 , we have

A.�Z1/ bCFDA.Y /A.Z2/(6)

D bCFAA.IZ2
/A.�Z2/;A.Z2/�A.�Z2/

A.�Z1/;A.�Z2/ bCFDD.Y /;

bCFAA.Y /A.Z1/;A.Z2/(7)

D bCFAA.IZ1
/A.�Z1/;A.Z1/�A.�Z1/

A.�Z1/ bCFDA.Y /A.Z2/;

A.�Z1/ bCFDA.Y /A.Z2/(8)

D bCFAA.Y /A.Z1/;A.Z2/�A.Z1/
A.Z1/;A.�Z1/ bCFDD.IZ1

/;

A.�Z1/;A.�Z2/ bCFDD.Y /(9)

D
A.�Z1/ bCFDA.Y /A.Z2/�A.Z2/

A.Z2/;A.�Z2/ bCFDD.IZ2
/:

The above equations are special cases of the pairing theorems, where one of the bordered
3–manifolds is a cylinder with trivial parametrization. They indicate the importance
of finding combinatorial descriptions of bCFDD.IZ/ and bCFAA.IZ/, which we now
consider.

First, we describe the combinatorial model cDD.IZ/ of A.Z/;A.�Z/ bCFDD.IZ/, given
in [11, Theorem 1]. It is generated over F2 by the set of pairs of complementary
idempotents i ˝ i 0 , with i 2 A.Z/ and i 0 D o.i/ 2 A.�Z/. The type DD action is
given by

(10) ı1.i ˝ i 0 /D
X
�2C

ia.�/Da.�/j

i0a.�/Da.�/j 0

.a.�/˝ a.�//˝ .j ˝ j 0 /;
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where C is the set of chords on Z whose two endpoints are not matched. Intuitively,
the arrows in the type DD action are exactly those whose two algebra outputs both
contain exactly one chord connecting two unpaired points, and covering corresponding
intervals in A.Z/ and A.�Z/.

Next, we consider the invariant bCFAA.IZ/A.�Z/;A.Z/ . A formula for it is given in
[12, Proposition 9.2] as follows (here we simplify A.Z/ to A and A.�Z/ to A0 ):

(11) bCFAA.IZ/A0;A DMorA
�
A0A0A0 �A0

A;A0 bCFDD.IZ/; AIA
�

D
� bCFDD.IZ/A

0;A �A0 A0A0A0

�
�A AAA:

This bimodule has a large number of generators, making it difficult to use for the
computations needed in this paper. The main result of [21] is to describe a bimodulecAA.IZ/ homotopy equivalent to this (and hence is also a combinatorial model of
bCFAA.IZ/), but with a minimal number of generators. The bimodule cAA.IZ/ is

generated over F2 by the set of pairs of complementary idempotents, but with much
more complex A1–bimodule actions. We will briefly review this construction in
Section 3C.

One of the pairing theorems imply the following relation among the combinatorial
models for IZ :

(12) A.Z/IA.Z/ ' cAA.IZ/A.�Z/;A.Z/ �A.�Z/
A.Z/;A.�Z/ cDD.IZ/:

The two sides are not equal but only homotopy equivalent. This homotopy equivalence
is proven combinatorially as Corollary 3.10 in Section 3D.

2E Invariants of arcslides

The strongly based mapping class groupoid is generated by a particularly simple class
of morphisms called arcslides. We will now review their definitions and the invariants
associated to them. The relations among arcslides will be described at the beginning of
Section 3.

Given a pointed matched circle Z1 , and two matched pairs of points B D .b1; b2/ and
C D .c1; c2/ in a�Z1 , such that b1 and c1 are adjacent in a , an arcslide of b1 over c1

moves b1 to be adjacent to c2 , on the side opposite to its original position with respect
to c1 . This results in a new pointed matched circle Z2 . Such a move corresponds to a
certain diffeomorphism Fı.Z1/! Fı.Z2/, which we will also call an arcslide. See
Figure 2 for two examples of arcslides. The first example is an overslide meaning b1

is outside the interval Œc1; c2�. The second example is an underslide meaning b1 is
inside that interval.
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Figure 2: Two examples of arcslides

y

y

Figure 3: Examples of Heegaard diagrams of arcslides

Given an arcslide � W Fı.Z1/! Fı.Z2/, the invariant bCFDD.�/ is a left type DD
bimodule over A.Z1/ and A.�Z2/. Constructing a combinatorial model of this
bimodule, denoted cDD.�/, is the main subject of [11]. This model is computed from
a standard Heegaard diagram for the mapping cylinder Y .�/. For the two arcslides in
Figure 2, these standard Heegaard diagrams are shown in Figure 3. The tiny circles
in the diagrams are 1–handle attachment points, paired according to their vertical
positions. The larger circles are ˇ circles, and all other arcs inside the boundary are
˛–arcs. Later on, we will draw more schematic versions of these diagrams, omitting
some of the ˇ circles and attaching points of 1–handles.
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Each generator of cDD.�/ corresponds to a g–tuple of intersection points between ˛
and ˇ curves, where each ˇ circle contains exactly one point, and each ˛–arc contains
at most one point. The (type D ) idempotent of the generator specifies which pairs
of ˛–arcs are not occupied by the generator. For the standard Heegaard diagram of
arcslides, a generator is uniquely specified by its idempotents on the two sides.

There is an obvious identification between pairs of points on the two sides, using which
we can talk about two idempotents on different sides being complementary, etc. There
are two types of generators in cDD.�/. A generator of type X has complementary
idempotents, and a generator of type Y has idempotents that are complementary except
for both containing the C pair and neither containing the B pair. The type X generators
are those that do not occupy the intersection point y in Figure 3, while the type Y

generators do.

The type DD action on the bimodule can be described as follows: given a pointed
matched circle Z , let C.Z/ denote the collection of sets of chords in Z . For some
� 2 C.Z/, let a.�/ 2 A.Z/ denote the sum of all generators of A.Z/ produced by
adding horizontal strands to � (this definition extends the case where � is a chord). For
any arcslide � W Fı.Z1/! Fı.Z2/, there is a collection of pairs C� � f.�i ; �i/ j �i 2

C.Z1/; �i 2 C.Z2/g such that

(14) ı1.i ˝ i 0 /D
X

.�k ;�k/2C�
ia.�k/Da.�k/j

i0a.�k/Da.�k/j
0

j˝j 0 is a generator

.a.�k/˝ a.�k//˝ .j ˝ j 0 /;

where generators are represented by their type D idempotents.

Intuitively, there is a term in the type DD action whenever the idempotent agrees, and
the moving strands part of the algebra coefficients match one of the fixed patterns.
Depending on whether the arcslide is an underslide or an overslide, there are six or
eight types of elements in C� . See [11, Figures 21 and 28] for diagrams of these
patterns. Note that not all pairs in Figure 28 are actually in C� : there is an additional
choice involved. In the following computations we will only use some of the simpler
pairs, involving algebra elements that have small total length. In particular we will not
need to consider any pair where a choice is necessary.

The following properties of cDD.�/ can be directly verified for the above description:

Relation with Heegaard diagram Every arrow in the type DD action comes from
a domain in the Heegaard diagram. For a Heegaard diagram H , write ˛ and ˇ to
denote the union of ˛ and ˇ curves, respectively. A domain in H is a nonnegative
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integral linear combination of connected components of H n f˛;ˇg. Each arrow
x! a1˝ a2˝y in the type DD action comes from a domain B , such that a1 and
a2 have multiplicities equal to the multiplicities of B at the corresponding boundaries.
Moreover, let @˛B be the part of the boundary of B on the ˛ curves, and let @.@˛B/
be the part of the boundary of @˛B in the interior of the diagram, as a signed sum of
intersection points, then @.@˛B/D x�y . Intuitively, the ˛–boundaries of B start at
points of x and end at points of y , and vice versa for the ˇ–boundary.

Grading There is a refined grading on the generators of cDD.�/ to a particular grading
set S� , which has left-right actions by G.Z1/ and G.Z2/. Both actions are free and
transitive, which means S� induces a group isomorphism G.Z1/!G.Z2/. This group
isomorphism is an invariant of � , up to composing by inner automorphisms of G.Z1/

and G.Z2/. In other words, � induces an element in the set of outer isomorphisms
Out.G.Z1/;G.Z2//. In fact, this outer isomorphism corresponds to the actions of �
on the homology of the surface; see [11, Section 6.2] for details.

Stabilization Given arcslide � W Fı.Z1/! Fı.Z2/, let VZ1 D Z1#Z1 and VZ2 D

Z2#Z1 , where Z1 is the genus 1 pointed matched circle, and # denotes connect sum
on pointed matched circles. Let V� W F. VZ1/! F. VZ2/ be the arcslide acting as identity
on the new handle, and as � elsewhere. This is called the stabilization of � . ThencDD.�/ and cDD. V�/ are related as follows: fix any idempotent io on Z1 (occupying
one of the two possible pairs), then there is an injection from generators of cDD.�/
into generators of cDD. V�/, sending i ˝ i 0 in cDD.�/ to .i#io/˝ .i

0#o.io// in cDD. V�/.
For any generator x in cDD.�/, let Vx be the corresponding generator in cDD. V�/. Then
for any two generators x , y in cDD.�/, there is a one-to-one correspondence between
arrows from x to y in the DD action of cDD.�/ and arrows from Vx to Vy in the
DD action of cDD. V�/ that do not cover any region around the adjoined Z1 , with
x! a˝b˝y corresponding to Vx! Va˝ Vb˝ Vy , where Va and Vb are obtained from a

and b by adjoining the appropriate idempotents.

Duality For any arcslide � W Fı.Z1/! Fı.Z2/, let � W Fı.�Z1/! Fı.�Z2/ be
the arcslide with reversed orientation. Now we have that A.Z1/;A.�Z2/ cDD.�/ and
A.�Z1/;A.Z2/ cDD.�/ are dual to each other (using definition of dual at the end of
Section 2A); that is,

(15) A.Z1/;A.�Z2/ cDD.�/' A.�Z1/;A.Z2/ cDD.�/:

Furthermore, the invariant A.Z2/;A.�Z1/ cDD.��1/ is homotopy equivalent to the right
side of (15), after switching the two algebra actions. This comes from the fact that the
mapping cylinder of ��1 is the mirror image of the mapping cylinder of � .
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2F Main constructions

We now summarize the combinatorial constructions that will be studied in this paper.
From here on, we will no longer use the analytical definitions of invariants, but define
everything combinatorially from scratch. We will use notations such as bCFAA to denote
(combinatorially defined) homotopy equivalence classes of bimodules, and notations
such as cDD , cDA to denote particular combinatorial models in the equivalence classes
of bimodules. For modules with one algebra action, we will use bCFA and bCFD
for both models and equivalence classes, as no confusion will arise there. Since all
combinatorial definitions below use either constructions derived from the analytical
definition, or the appropriate box tensor product, it is clear that the entire construction
agrees with the analytical definitions.

First, we will use models cDD.IZ/, A.Z/IA.Z/ , and cAA.IZ/ to define bCFDD.IZ/,
bCFDA.IZ/, and bCFAA.IZ/, respectively. Then Corollary 3.10 shows (12) holds

for our combinatorial construction. This means box tensoring with bCFDD.IZ/ and
bCFAA.IZ/ are inverse operations on equivalence classes of bimodules.

Next, we define cDA.�/ as the box tensor product

(16) A.Z1/cDA.�/A.Z2/ D
cAA.IZ2

/A.�Z2/;A.Z2/�A.�Z2/
A.Z1/;A.�Z2/ cDD.�/

Given this, we can define cDA.�/ for an arbitrary element � of the strongly based
mapping class groupoid, by factoring � into arcslides. The precise statement is the
following.

Construction 2.1 Given an element �W Fı.Z1/! Fı.ZnC1/ of the strongly based
mapping class groupoid, with factorization � D �n ı � � � ı �1 , where �i W F

ı.Zi/!

Fı.ZiC1/. Write � for the sequence �1; : : : ; �n . Define

A.Z1/cDA.�;�/A.ZnC1/ D
A.Z1/cDA.�1/A.Z2/� � � �� A.Zn/cDA.�n/A.ZnC1/:

Theorem 2.2 The homotopy type of cDA.�;�/ does not depend on the choice of
factorization � . Hence, cDA.�;�/ is an invariant of � up to homotopy equivalence.

This theorem is proven in Section 4. Given this, we can define bCFDA.�/ to be the
equivalence class of cDA.�;�/, for any choice of factorization � .

The other bimodule invariants bCFDD.�/, bCFAA.�/, and bCFAD.�/ for a general
morphism �W Fı.Z1/! Fı.Z2/ can be defined as follows:

A.Z1/;A.�Z2/ bCFDD.�/D A.Z1/ bCFDA.�/A.Z2/�A.Z2/
A.Z2/;A.�Z2/ bCFDD.IZ2

/;

bCFAA.�/A.�Z1/;A.Z2/ D
bCFAA.IZ1

/A.�Z1/;A.Z1/�A.Z1/
A.Z1/ bCFDA.�/A.Z2/;

A.�Z2/ bCFAD.�/A.�Z1/ D
bCFAA.IZ1

/A.�Z1/;A.Z1/�A.Z1/
A.Z1/;A.�Z2/ bCFDD.�/:
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Figure 4: Heegaard diagram for the 0–framed handlebody. The numbers at
bottom label points in Zg . Points in �Zg are labeled in the reverse order.

Since cDD.IZ/ is the quasi-inverse of cAA.IZ/ (that is, inverse up to homotopy
equivalence), we know bCFDD.�/ for an arcslide � can also be represented by cDD.�/.
Also, expanding out the definitions, we see bCFAD.�/' bCFAA.�/� bCFDD.IZ2

/.

This concludes our construction of bimodule invariants (we will not need bimodule
invariants other than those for mapping classes of surface diffeomorphisms). To
construct invariants of closed 3–manifolds, we need one more building block: bCFD
of the 0–framed handlebody Hg . Here Hg is the 3–manifold with one parametrized
boundary given by the Heegaard diagram in Figure 4.

In this diagram, the small circles are 1–handle attachment points, paired consecutively.
The larger circles are ˇ circles, and all other arcs inside the boundary are ˛ arcs. From
the way the ˛ arcs meet the boundary, we see that the boundary of Hg is parametrized
by the split pointed matched circle of genus g , denoted Zg . This is the pointed matched
circle with matching

.1; 3/; .2; 4/; .5; 7/; .6; 8/; : : : ; .4g� 3; 4g� 1/; .4g� 2; 4g/:

While it is true that �Zg DZg , we will usually distinguish them in order to emphasize
orientation changes.

The orientation reversal �Hg is called the 1–framed handlebody. Its boundary
is parametrized by �Zg . The Heegaard diagram for �Hg is the reflection of that
for Hg .

The invariant bCFD.Hg/ has left type D action by A.�Zg/. It can be defined using the
following model: there is a single generator x , corresponding to the set of intersection
points indicated in Figure 4. The idempotent of x contains pairs .2; 4/; .6; 8/; : : :
in �Zg (pairs corresponding to ˛–arcs not occupied by x ; note the labeling of points
in �Zg is reversed). The type D action is

ı1.x/D
X
�2D

a.�/ �x;

where D is the set of chords f2! 4; 6! 8; : : :g. The invariant bCFD.�Hg/ can be
defined to be the dual of bCFD.Hg/.
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We now give the combinatorial construction of cHF.Y / for a closed 3–manifold Y ,
following the spirit of the construction in [11].

Construction 2.3 Let Y be a closed 3–manifold. Choose a Heegaard splitting Y1[uY2

of Y , where uW @Y1!�@Y2 is the gluing map. Fix circle and basepoint .Z; z/ on the
gluing boundary Y1\Y2 , and diffeomorphisms f1W H

g! Y1 and f2W �Hg! Y2 ,
preserving .Z; z/, from the standard handlebodies to Y1 and Y2 . Let f1�W F

ı.Zg/!

@Y1 and f2�W F
ı.�Zg/! @Y2 be the restrictions of f1 and f2 to the boundary. Let

 D f �1
2�
ıuıf1� be the induced gluing map. This is an element of the strongly based

mapping class group on Fı.Zg/. DefinecHF.Y;Y1;Y2;u; f1; f2/

D
� bCFAA. /A.�Zg/;A.Zg/� A.�Zg/ bCFD.Hg/

�
� A.Zg/ bCFD.�Hg/:

Theorem 2.4 The homotopy type of cHF.Y;Y1;Y2;u; f1; f2/ does not depend on the
choice of Heegaard splitting Y D Y1[u Y2 or the parametrizations f1; f2 . Therefore
it gives an invariant of Y up to homotopy equivalence.

We will prove Theorem 2.4 combinatorially in Section 5. Given this theorem, we
can write cHF.Y / for cHF.Y;Y1;Y2;u; f1; f2/, for some choice of Heegaard splitting
and parametrizations. From the construction, it is clear that this is equivalent to the
definition of cHF.Y / using holomorphic curves.

3 Computations on DA invariants

In this section, we prove some preliminary results on type DA bimodules, and perform
some computations on the type DA invariants of arcslides, in preparation for the proof
of Theorem 2.2 in Section 4.

First, we give an outline for the proof of Theorem 2.2. We want to show that the
combinatorial construction of cDA.�;�/ does not depend on the choice of factorization
of � into arcslides � . For this purpose, it is necessary to understand relations among
arcslides. This is studied in detail in [1; 2]. The notions of pointed matched circles
and arcslides correspond to linear chord diagrams and chord slides in these papers. We
now give a summary of the results.

Locally, an arcslide can be viewed as one end of the B pair sliding along the C pair:

)
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In this diagram, the three short segments denote portions of the straight line in the
pointed matched circle. The upper, stationary arc denotes the C pair; and the lower,
moving arc denotes the B pair.

There are five types of relations on arcslides, and together they generate all relations.
The local diagrams for the five types of relations are as follows (see [2, Theorem 6.2,
Figure 6.1]):

� Triangle

) ) )

� Involution
) )

� Commutativity

) )

) )

� Left pentagon

) ) ) ) )

� Right pentagon

) ) ) ) )

Each relation gives one way to factor the identity morphism IZ starting and ending at
some pointed matched circle Z . For proving Theorem 2.2, it suffices to check that for
each such factorization

IZ D �n ı � � � ı �1;

the corresponding homotopy equivalence

(17) A.Z/IA.Z/ ' cDA.�1/� � � �� cDA.�n/

holds. Note that in general, the starting and ending pointed matched circles of each �i

may be different from Z . This is the main reason why we need to consider strongly
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based mapping class groupoids, even if we are only interested in statements about
strongly based mapping class groups.

The overall strategy for verifying (17) is as follows: from the description of cDA.�i/,
we can readily enumerate the set of generators on the right side of the equation. There
are, however, more generators on the right side than on the left side. The cancellation
lemma for type DA bimodules describes conditions under which we can prove that a
bimodule is homotopy equivalent to one with two fewer generators. Using it, we can
remove generators from the right side in pairs, so that the set of remaining generators
matches that on the left side. The cancellation lemma is stated and proven in Section 3A.

It turns out that a type DA bimodule with the same set of generators as A.Z/IA.Z/ , and
with a few more properties in common with A.Z/IA.Z/ , must be homotopy equivalent
to A.Z/IA.Z/ . We prove two lemmas of this kind, which we call rigidity lemmas, in
Section 3B. The first lemma will be used to prove the involution relation, and the second
lemma will be used for all other relations. The idea here is that once the involution
relation is proven, we can show that cDA.�/ is quasi-invertible for any arcslide � ,
which implies that any box tensor product of such bimodules is also quasi-invertible
(recall that a type DA bimodule AMB is quasi-invertible if there exists BNA such that
AMB � BNA '

AIA ). This means checking the quasi-invertibility condition in the
second lemma becomes trivial, and we can avoid checking the more involved condition
in the first lemma that it replaces. We note here that the rigidity lemmas depend on
specific properties of A.Z/, and is not applicable to DG algebras in general.

To apply the cancellation lemma, and in the case of the involution relation, the rigidity
lemma, we need to compute certain arrows in the type DA action of the bimodule on the
right side. To prepare for this, we review the construction of cAA.IZ/ in Section 3C,
and compute in Section 3D some arrows in the type DA action of cDA.�/ for arcslides �
(the components in the tensor product).

3A Cancellation lemmas

In this section we state cancellation lemmas for type D modules and type DA bimodules
over DG algebras. Both are generalizations of the cancellation lemma in the case of
chain complexes. These results are well known; see, for example, [8, Section 2.6].

Let A be a DG algebra over a ground ring k, where k is a direct sum of copies of F2

(in our application, ADA.Z/ and k is generated by the indecomposable idempotents).
Let M be a left type D module over A with a fixed set of generators G . We can
describe the action ı1 on M in terms of coefficients as follows: for any x 2 G , expand
ı1.x/ as

ı1.x/D
X
y2G

cxy ˝y
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x a

b y

Figure 5: Standard example of a zigzag in M . This becomes x !

cxbc�1
ab

cay ˝y in M 0 .

for some choice of cxy .

Here the tensor product is implicitly taken over k, and as a result there is some flexibility
in the choice of cxy . We generally choose cxy to consist of as few generators of A as
possible, except when choosing cxy to be invertible whenever possible.

Now suppose that for some a; b 2 G , the coefficient cab is invertible in A, and
d.cab/ D 0. Then there is a new type D module M 0 , generated by G0 D G n fa; bg
and with type D action

(18) ı10

.x/D
X
y2G0

.cxy C cxbc�1
ab cay/˝y

for any x2G0 . The first part of each term in the sum is simply the original ı1 (excluding
terms involving a and b ). The second part is as follows: for each zigzag in M , as
shown in Figure 5, the term cxbc�1

ab
cay ˝y is added to ı10

x . The coefficient can be
read out by following the arrows from x to y , treating a reversed arrow as taking
inverse.

Theorem 3.1 (cancellation lemma for type D modules) With the above definitions,
the action ı10

on M 0 satisfies the type D structure equation, and the resulting type D

module M 0 is homotopy equivalent to M .

Proof We prove this by giving explicit type D morphisms and homotopies, in terms
of coefficients as we did for the type D action. The necessary data are morphisms
f W M !M 0 and gW M 0!M , and homotopy hW M !M , satisfying the identities
f ıgD IM 0 and g ıf D IM Chı ı1C ı1 ıh. The morphisms f and g are given by

f .a/D 0; f .b/D
X
y2G0

c�1
ab cay ˝y; and f .x/D 1˝x for x 2 G0I(19)

g.x/D 1˝xC cxbc�1
ab ˝ a:(20)

Part of f can be visualized using the zigzag by following arrows from b to y . Likewise,
part of g can be visualized by following arrows from x to a. The homotopy hW M!M

is given by h.b/D c�1
ab
˝ a and h.x/D 0 for any x ¤ b .
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It remains to verify that ı10

satisfies the type D structure equations, and the maps f;g ,
and h satisfy the required identities. This can be done by converting the equations into
their coefficient form. For example, the type D structure equation

.�2˝ IM / ı .IA˝ ı
1/ ı ı1

C .�1˝ IM / ı ı1
D 0;

when written in terms of coefficients, becomes

(21) d.cxy/C
X
z2G

cxzczy D 0

for any x;y 2 G .

The structure equation for a type D morphism �W M !N is

.�2˝ IN / ı .IA˝ ı
1
N / ı�

1
C .�2˝ IN / ı .IA˝�

1/ ı ı1
M C .�1˝ IN / ı�

1
D 0:

For any x 2 G.M / and y 2 G.N /, let �xy be the coefficient of y in �1.x/. Then,
applying the above equation to an arbitrary generator x of M , we see that the structure
equation is equivalent to

(22) d.�xy/C
X

z02G.N /

�xz0cz0y;N C

X
z2G.M /

cxz;M�zy D 0

for any y 2 G.N /.

The composition of two morphisms �W M !N and  W N ! P is given by

. ı�/1 D .�2˝ IP / ı .IA˝ 
1/ ı�1:

In terms of coefficients, this is

(23) . ı�/xy D

X
z2G.N /

�xz zy ;

for any x 2 G.M / and y 2 G.P /.

It is then routine to verify these equations, using the assumption that cab is invertible
and d.cab/D 0.

The cancellation lemma for type DA bimodules follows from that for type D modules,
by viewing type DA bimodules over A0 and A as type D modules over bCob.A/˝A0 ;
see [12, Remark 2.2.35].

Definition 3.2 Given a strand algebra A, let AC be the DG subalgebra of A gen-
erated by the nonidempotent generators. The cobar resolution Cob.A/ is defined as
T �.ACŒ1�

�/, the tensor algebra of the dual of AC . This can be given the structure of
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a DG algebra, whose product is that of tensor algebra, and whose differential consists
of the following arrows:

� a�
1
˝ � � � ˝ b� ˝ � � � ˝ a�

k
! a�

1
˝ � � � ˝ a�i ˝ � � � ˝ a�

k
for each i and term b

in dai ,

� a�
1
˝ � � � ˝ a�i ˝ � � � ˝ a�

k
! a�

1
˝ � � � ˝ b� ˝ b0� ˝ � � � ˝ a�

k
for each i and

generators b; b0 such that bb0 D ai .

Furthermore, we write bCob.A/ to denote the completion of Cob.A/ with respect to
the length filtration, that is, an element of bCob.A/ is a formal sum of elements in
.ACŒ1�

�/˝i for possibly infinitely many i .

The category of type DA bimodules over A0 on the D–side and A on the A–side is
equivalent to the category of type D modules over bCob.A/˝A0 , where the arrow

ı1
1Ci W .xI a1; : : : ; ai/! a0˝y

in the action of a type DA bimodule M corresponds to the arrow

ı1
W x! .a�1˝ � � �˝ a�i /˝ a0˝y

in the action of the type D module corresponding to M .

Using this correspondence, we can define coefficients on a type DA bimodule.

Definition 3.3 Given two generators x;y of M , define the coefficient Cxy to be
the formal sum, in bCob.A0/˝A, of .a�

1
˝ � � �˝ a�i /˝ a0 over all arrows of the form

ı1
1Ci
W .xI a1; : : : ; ai/! a0˝y . As in the type D case, we choose a0 to be invertible

whenever possible when writing the action in terms of arrows.

This allows us to state the cancellation lemma for type DA bimodules, following
immediately from the cancellation lemma in the type D case, and the equivalence of
categories.

Theorem 3.4 (cancellation lemma for type DA bimodules) Let A0

MA be a type DA
bimodule, with a fixed set G of generators. Suppose there are x;y 2 G such that
Cxy D 1˝ a with a 2 A invertible and da D 0. Then C�1

xy D 1˝ a�1 , and the
type DA bimodule M 0 generated by G0 D G n fx;yg and with coefficients C 0

ab
D

CabCCayC�1
xy Cxb is homotopy equivalent to M .
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We end with a remark on grading. If M is graded by a grading set SM , and if every
generator being cancelled is homogeneous in grading, then M 0 is also graded by SM ,
with the grading of each generator in M 0 equal to the grading of the corresponding
generator in M . The arrows that are added to M 0 satisfy the grading constraints,
because they come from traversing a zigzag as in Figure 5, where each of the three
arrows in the zigzag satisfy the grading constraints. The homogeneity condition of the
cancelled generators will be automatically satisfied in our case.

3B Characterization of the identity bimodule

In this section, we prove two lemmas describing conditions under which we can assert
a type DA bimodule A.Z/MA.Z/ is homotopy equivalent to the identity bimodule
A.Z/IA.Z/ . The main result we use is the characterization of cDD.IZ/ given in [11].
We will start by reviewing that result here.

Definition 3.5 [11, Definition 3.1] The diagonal subalgebra of A.Z/˝ A.�Z/
is the algebra generated by a˝ b , where a and b satisfy the following conditions:
mult.a/Dmult.b/, the left idempotents of a and b are complementary, and the right
idempotents of a and b are complementary.

Proposition 3.6 [11, Proposition 3.8, proof of Theorem 1] Let M be a left type DD
bimodule over A.Z/ and A.�Z/, where Z has genus greater than one. Suppose M

satisfies the following conditions, then M is isomorphic to cDD.IZ/:

(1) The generators of M are in one-to-one correspondence with the idempotents
of A.Z/, so that the generator corresponding to idempotent i has (type D )
idempotents i and o.i/.

(2) For any arrow x! a˝ b˝y in the differential of M , the element a˝ b lies
in the diagonal subalgebra.

(3) M is graded by a �–free grading set S , with a left-right G.Z/-G.Z/ action.

(4) The differential in M contains all arrows of the form

x! a.�/˝ a.�/˝y ;

where � is a length-1 chord.

In the case where Z has genus one, if M satisfies an additional stability condition, in
the sense of [11, Definition 1.8], then we can still conclude that M D cDD.IZ/.

The following result will be used in the proof of the second lemma.
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Proposition 3.7 Suppose a type DA bimodule A.Z/MA.Z/ satisfies the following two
conditions:

(1) M is homotopy equivalent to the identity bimodule A.Z/IA.Z/ .
(2) The generators of M are in one-to-one correspondence with the idempotents of

A.Z/, so that the generator corresponding to idempotent i has both left (type D)
and right (type A) idempotent equal to i .

Then the type DA action on M contains all arrows of the form

(24) ı1
2 W .x; a.�//! a.�/˝y ;

where � is a length-1 chord.

Proof Consider generators x;y corresponding to idempotents i; j 2A.Z/, and � a
length-1 chord, such that the idempotent matches in the arrow (24). We want to show
that (24) does exist as an arrow.

Let TD be a type D module over A.Z/ with two generators xD and yD , whose
idempotents are i and j , such that ı1.xD/ D a.�/˝ yD and ı1.yD/ D 0. Since
d.a.�//D 0, it is clear that ı1 satisfies the type D structure equation.

Likewise, let TA be the A1–module over A.Z/ with two generators xA and yA

whose idempotents are i and j , and m1;1W .xA; a.�//! yA is the only arrow in the
A1–action.

Consider the tensor product TA � N � TD , with N D M or N D I . This is a
chain complex with two generators xA˝x˝xD and yA˝y ˝yD , and there is an
arrow between these two if and only if the arrow (24) exists in N for the given x;y

and a.�/. In particular, TA � I � TD has zero homology. By assumption, M ' I ,
so TA � M � TD must also have zero homology. This shows the arrow (24) exists
in M .

Remark The argument in the above proof only works when � has length 1. If
otherwise, we may have d.a.�//¤ 0, and ı1 on TD no longer satisfies the type D

structure equation. Indeed, in the case where � has length 2, we may have:

d
� �

D D � :

Hence, if there are generators xD and yD in TD with arrow xD ! a.�/ ˝ yD ,
where the idempotents of xD and yD contain the middle point, then there must be an
additional generator zD with appropriate arrows from xD to zD and from zD to yD ,
so that the type D structure equation remains satisfied. This is why we may have, for
example, arrow (DA4) instead of (DA2) in A.Z/MA.Z/ , according the computations in
Section 3D1.
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We now state and prove the lemmas on the characterization of A.Z/IA.Z/ .

Lemma 3.8 Let M D A.Z/MA.Z/ be a left-right type DA bimodule over A.Z/-A.Z/.
Suppose M satisfies the following properties, then M is homotopy equivalent to the
identity bimodule A.Z/IA.Z/ .
� (ID-1) The generators of M are in one-to-one correspondence with the idem-

potents of A.Z/, so that the generator corresponding to idempotent i has both
left (type D ) and right (type A) idempotent equal to i .

� (ID-2) M can be graded by a principal left-right G.Z/-G.Z/ set, such that
the induced map � 2 Out.G.Z/;G.Z// (as in [11, Lemma 6.4]) is the identity
map, and there is a choice of refined relative grading with every generator having
grading zero. (The choice of grading refinement for G.Z/ is arbitrary but must
be the same on both sides).

� (ID-3) The type DA action on M contains all arrows of the form

ı1
2 W .x; a.�//! a.�/˝y ;

where � is a length-1 chord.
� (ID-4) M is stable in the sense of [11, Definition 1.8] (this condition is only

necessary when Z is the unique genus 1 pointed matched circle).

Proof Consider the type DD bimodule MDD DM � cDD.IZ/. We check that MDD

satisfies all the conditions of Proposition 3.6, which will show that MDD is isomorphic
to cDD.IZ/. Since cDD.IZ/ is quasi-invertible, this implies M ' I .

Using the fact that relative grading can be chosen on cDD.IZ/ so that every generator
has grading zero, condition (ID-2) on the grading of M implies a similar condition on
the grading of MDD . The constraint that the type DD action must respect the grading
implies that for each arrow

x! a˝ b˝y ;

the multiplicities of a and b must be the same. The idempotent conditions on the
diagonal subalgebra follow from the constraints on idempotents on each arrow, and the
fact that both x and y have complementary idempotents. This verifies condition (2)
of Proposition 3.6.

The other deductions are trivial. (ID-1), (ID-2) and (ID-3) imply conditions (1), (3)
and (4), respectively. Condition (ID-4) implies the stability of MDD , needed for the
genus 1 case.

The condition (ID-3) in the previous lemma can still be difficult to verify in actual
computations. It is possible to replace it as follows.
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Lemma 3.9 With the same notation as in Lemma 3.8, if M satisfies the conditions
(ID-1), (ID-2), (ID-4), and the following condition, then it is homotopy equivalent to I .

� (ID-3’) M is invertible, with a quasi-inverse M 0 that satisfies y conditions
(ID-1) and (ID-2).

Proof It suffices to show that (ID-3’), together with the other conditions, implies
(ID-3). We first show that ı1

1
D 0 on both M and M 0 , that is, there are no arrows of

the form
ı1

1 W x! a˝y :

By the grading constraints on any arrow, the algebra generator a must have multiplicity
zero. That is, it must be an idempotent in A.Z/. However, this would mean that the
grading of x and y differ by �, contradicting the assumption that all generators in M

(or M 0/ have grading zero.

Both M and its quasi-inverse M 0 also satisfy (ID-1), so by [12, Lemma 2.2.50] they
can be represented as A.Z/Œ��A.Z/ and A.Z/Œ�0�A.Z/ respectively, for A1–algebra
morphisms �; �0W A.Z/!A.Z/. Then M 0� M is represented by A.Z/Œ�0 ı��A.Z/ .

Since M 0� M satisfies the grading condition (ID-2), the map �0 ı� must preserve
gradings. This means that for aD a.�/ where � is a length-1 chord, the only possible
term in .�0 ı �/.a/ is a. Since M � M 0 is homotopy equivalent to identity, by
Proposition 3.7, we have .�0 ı �/.a/ D a, which implies �.a/ ¤ 0. By the same
grading argument, either �.a/ D 0 or �.a/ D a. So we must have �.a/ D a. This
shows � is the identity map on length-1 chords, which implies condition (ID-3).

3C Combinatorial model of ĈFAA.IZ/

In this section, we review the construction of the combinatorial model cAA.IZ/ of
bCFAA.IZ/ given in [21], in preparation for computing some arrows in cDA.�/ for

arcslides � in the next section.

The construction begins with (11). After expanding the definitions, this gives a model
of bCFAA.IZ/ generated by the set of pairs Œa1; a2�, where a1 and a2 are generators
of A.Z/, such that the initial idempotents of a1 and a2 are complementary. The
differential and type AA action on these generators are given as [21, Proposition 1].
The smaller model cAA.IZ/ is obtained from this using homological perturbation
theory. This involves finding the homology C 0 of C , the chain complex underlying
the larger model, and giving chain maps f W C ! C 0 , gW C 0 ! C , and homotopy
H W C!C verifying the homotopy equivalence between C and C 0 . The homology C 0

is generated by those Œa1; a2� where both a1 and a2 are idempotents (which are then
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complementary). The chain maps f and g are the obvious projection and inclusion
maps. The homotopy H is summarized in [21, Figures 6 and 9].

From homological perturbation theory, we obtain the following description of the
smaller model: the A1–bimodule cAA.IZ/A.�Z/;A.Z/ is generated by pairs of com-
plementary idempotents i 0˝i , where i 2A.Z/ and i 0D o.i/2A.�Z/. The generator
i 0˝ i has type A idempotents i 0 and i . Each arrow in the type AA action of cAA.IZ/
comes from a sequence of moves between generators of C . There are three types of
moves, the first two of which carry a coefficient.

� Move A1 If cb0 ¤ 0, with b0 2 A.�Z/, move from Œcb0; a2� to Œc; a2� with
coefficient b0 .

� Move A2 If a2b ¤ 0, with b 2 A.Z/, move from Œa1; a2� to Œa1; a2b� with
coefficient b .

� Move H Apply one of the arrows in the homotopy map H .

Each arrow then corresponds to a sequence Œa1;1; a1;2�; : : : ; Œa2n;1; a2n;2� of generators
of C , satisfying the following conditions:

� Œa1;1; a1;2�D Œo.i/; i � and Œa2n;1; a2n;2�D Œo.j /; j � for some idempotents i; j 2

A.Z/.
� Each Œa2k;1; a2k;2� is obtained from Œa2k�1;1; a2k�1;2� by applying either move

A1 or A2 .

� Each Œa2kC1;1; a2kC1;2� is obtained from Œa2k;1; a2k;2� by applying move H .

Let b0
1
; : : : ; b0p be the ordered sequence of coefficients for moves of type A1 , and

b1; : : : ; bq be the ordered sequence of coefficients for moves of type A2 , then such a
sequence of generators of C gives rise to an arrow

m1;p;qW .i
0
˝ i I b01; : : : ; b

0
pI b1; : : : ; bq/! j 0˝ j ;

where i 0 D o.i/ and j 0 D o.j /.

An important property of cAA.IZ/, which follows directly from this construction, is
that for any arrow in the type AA action, the total multiplicity of the A.�Z/ inputs
(that is, the sum of multiplicities of b0

1
; : : : ; b0p ) equals that of the A.Z/ inputs (the

sum of multiplicities of b1; : : : ; bq ). From the definition using holomorphic curves,
this is clear since each arrow comes from a domain in the standard Heegaard diagram
of the identity diffeomorphism. We also note that cAA.IZ/ can be given a refined
relative grading where all generators have grading zero.
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The definition of the homotopy map H involves first defining a specific ordering <Z on
the 4g� 1 intervals of the pointed matched circle Z . This means the determination of
arrows is not local, in the sense that if we restrict to a certain interval of Z , containing
points paired outside the interval, then the type AA arrows restricted to that interval
may depend on how Z is configured outside the interval. However, we note that if
all points are paired within the interval, then the ordering <Z on these points (and
therefore the type AA arrows) is independent of outside configurations (this follows
directly from how the ordering <Z is defined). In particular, cAA.IZ/ behaves well
with respect to stabilization. That is, if VZ D Z#Z1 , then cAA.IZ/ is isomorphic to
the appropriate restriction of cAA.I

VZ/.

3D Certain arrows in dDA of arcslides

In this section we compute some of the arrows in cDA.�/ for a general arcslide � ,
using (16). From its description in the previous section, one can expect arrows incAA.IZ/ to be extremely complicated in general. The same would then be true for
arrows in cDA.�/. We manage this complexity by focusing only on arrows whose
algebra coefficients have a small total length (say length 1 or 2 on each side). It turns
out that these are sufficient to prove the necessary properties of the box tensor products
of cDA.�i/ that we will need to consider.

Since the algebra coefficients have small total length, the domain corresponding to the
arrow is supported in a small part of the Heegaard diagram. For arcslides, the parts of
the Heegaard diagram that we are particularly interested in are the differences with the
Heegaard diagram for the identity diffeomorphism, that is, around the points b1; c1; c2

and b0
1

.

One source of complexity comes from the fact that the definition of the homotopy
map H in the construction of cAA.IZ/ depends on the ordering <Z on the intervals
of the pointed matched circle. In a local situation, if we cannot tell which interval
comes first in the ordering, we will need to cover all possible cases. Note that only
the restriction of <Z to the intervals covered by the algebra coefficients matter for
determining the arrows.

When we show a set of local arrows in a given local situation and restriction of the
ordering <Z , we intend to make the following assertions:
� There is an arrow for every way of extending the local arrow by completing the

pointed matched circle and adding the appropriate number of horizontal lines to
the algebra coefficients.

� Every arrow in the bimodule action whose algebra coefficients lie within the
area shown can be obtained by extending one of the local arrows.
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We now begin with the simplest case: arrows in the type AA action on cAA.IZ/ where
the algebra coefficients have length 1 on either side. The coefficients must then cover
the same interval. The sequence of pairs Œai;1; ai;2� is

A2
�!

H
�!

A1
�! ;

where the middle H is [21, Case 3] of the homotopy map in the multiplicity-one case
given there. This gives the arrow

(AA1) m1;1;1W

�h i
I I

�
!

h i
:

From (AA1), we obtain a simple method of deriving arrows in cDA.�/ from arrows
in cDD.�/, in cases where the second coefficient of the type DD arrow has length 1

(the second algebra action is the one that is involved in the box tensor product). For
each type DD arrow ı1W x! a1˝ a2˝y , where a2 has length 1, there corresponds
a type DA arrow ı1

2
W .x; a2/! a1˝y , where by abuse of notation we use the same

symbol to denote corresponding generators of cDA.�/ and cDD.�/.

As an application, we give a combinatorial proof of the following corollary.

Corollary 3.10 The tensor product cAA.IZ/� cDD.IZ/ is homotopy equivalent to I .

Proof Directly check each of the conditions in Lemma 3.8. For condition (ID-2),
we use the refined relative grading on cAA.IZ/ with all generators having grading
zero. For condition (ID-3), use the type AA arrows computed here. For (ID-4), use the
stabilization property of cAA.IZ/ discussed at the end of Section 3C.

3D1 Type AA on a size-2 interval: the disjoint pairs case The next simplest case
for type AA arrows is the size-2 interval. First, we assume that no two of the three
points are paired with each other. There are four subcases, depending on whether the
middle idempotent is occupied on the left or on the right, and whether the lower or the
upper interval comes first in the ordering <Z .

Case 1 The middle idempotent is on the left, the lower interval comes first in ordering.
The only sequence covering the size-2 interval is

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;
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giving the arrow

(AA2) m1;2;1W

�h i
I ; I

�
!

h i
:

Note that in the first H –move, we shift only the lower part of the strand to the left,
since the lower interval comes first in the ordering.

Case 2 The middle is idempotent on the left, the upper interval comes first in ordering.
The only sequence covering the size-2 interval is

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA3) m1;1;1W

�h i
I I

�
!

h i
:

Here the upper interval comes first, so we shift the entire strand to the left in the first
H –move.

Case 3 The middle idempotent is on the right, the upper interval comes first in ordering.
In this case there are two possible sequences covering the size-2 interval. The first one
is

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA4) m1;1;1W

�h i
I I

�
!

h i
:

The second one is

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;

giving the arrow

(AA5) m1;2;1W

�h i
I ; I

�
!

h i
:
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Case 4 The middle idempotent is on the right, the lower interval comes first in ordering.
The only sequence covering the size-2 interval is

A2
�!

H
�!

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA6) m1;1;2W

�h i
I I ;

�
!

h i
:

As examples, we show the computation of type DA arrows in cAA.IZ/� cDD.IZ/
that cover a size-2 interval. While the results in the remainder of this section will not
be used directly in what follows, it serves as a model for the calculations of similar
arrows in cDA.�/ for an arcslide � .

To compute the type DA arrows, we combine the previous results with what is known
about type DD arrows in cDD.IZ/. On the size-2 interval, the possibilities are given
below (on each line, ı1W x! .a; a0/˝y represents the arrow ı1W x! a˝ a0˝y ,
where a 2A.Z/ and a0 2A.�Z/):

ı1
W

� �
! ˝ ;(DD1)

ı1
W

� �
! ˝ ;(DD2)

ı1
W

� �
! ˝ ;(DD3)

ı1
W

� �
! ˝ ;(DD4)

ı1
W

� �
! ˝ ;(DD5)

ı1
W

� �
! ˝ :(DD6)

It is now a matter of combining these following the rules of the box tensor product. In
the figures below, for both type DD and type AA bimodules, we will show the first
algebra action on the left and the second algebra action on the right. This is purely
for ease of visualization, and does not indicate which side the algebras act on. Indeed,
both actions on the type DD bimodule are on the left, and both actions on the type AA
bimodule are on the right. Nevertheless, we will often talk about left action or left
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�2

Figure 6: Formation of type DA operation, case 1

idempotents to match how the figures are drawn. Moreover, we will put the DD arrows
on the left, and AA arrows on the right, since we are tensoring the second action incDD.IZ/ with the first action in cAA.IZ/.

Each type DA arrow comes from a single type AA arrow and zero or more type DD
arrows. The left outputs (in A.Z/) of the type DD arrows are multiplied together to
give the overall type D output, while the right outputs (in A.�Z/) are given as the
left inputs to the type AA arrow. The overall type A inputs in A.Z/ are given as the
right inputs to the type AA arrow.

The right idempotent of the DD generator must agree with the left idempotent of the AA
generator. The left idempotent of the DD generator and the right idempotent of the AA
generator then combine to form the idempotent of the resulting DA generator.

We now look at each of the four cases.

Case 1 The middle idempotent is on the left, the lower interval comes first in ordering.
This combination is shown in Figure 6. We use (DD1), (DD3), and (AA2). The
resulting arrow is

(DA1) ı1
2 W

�
;

�
! ˝ :

Case 2 The middle idempotent is on the left, the upper interval comes first in ordering;
see Figure 7 We use (DD5) and (AA3). The resulting arrow is the same as in (DA1),
so in this case the order of the two intervals already does not matter at the DA level.
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Figure 7: Formation of type DA operation, case 2

Figure 8: Formation of type DA operation, case 3

Case 3 The middle idempotent is on the right, the upper interval comes first in
ordering; see Figure 8. We use (DD6) and (AA4), and the resulting arrow is

(DA2) ı1
2 W

�
;

�
! ˝ :

Another combination, using (DD4), (DD2), and (AA5), gives the arrow

(DA3) ı1
2 W

�
;

�
! ˝ :

Case 4 The middle idempotent is on the right, the lower interval comes first in ordering,
shown in Figure 9. We use (DD6) and (AA6), and the resulting arrow is

(DA4) ı1
3 W

�
; ;

�
! ˝ :

This arrow shows that the model cAA.IZ/� cDD.IZ/ of bCFDA.IZ/ is not exactly
the same, but only homotopy equivalent to I .
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Figure 9: Formation of type DA operation, case 4

3D2 Pieces of arcslide We now compute some simple arrows in cDA.�/ for an
arcslide � . Since the method used here is similar to that in the previous section, we
will show only the results.

First, we consider the case where b1 is directly above c1 , and compute the arrows incDA.�/ corresponding to the region of the Heegaard diagram around b1 . The Heegaard
diagram around b1 is this:

The possible type DD arrows are the following:

ı1
W

� �
! ˝ ;(DD7)

ı1
W

� �
! ˝ ;(DD8)

ı1
W

� �
! ˝ ;(DD9)

ı1
W

� �
! ˝ ;(DD10)

ı1
W

� �
! ˝ :(DD11)

This comes directly from [11]. The only potentially tricky part is figuring out the
possible locations of idempotents. For example, in the arrow ı1W x! .a.�/; 1/˝y

(third and fourth arrows above; � is the chord c1! b1 ), the left idempotent of y must
be occupied at the B pair and unoccupied at the C pair. Since generators of cDD.�/
either have complementary idempotents or idempotents that are both occupied at C ,
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the right idempotent of y must be occupied at C (so y is of type X ). From the
idempotent of y , we can deduce that of x , and see that x is of type Y . Similar
arguments are used to list possible idempotents in the other cases.

Computing the type DA arrows in this case is relatively straightforward, as we are
combining with the arrow (AA1) on a size-1 interval. The results are as follows, where
(DA5)–(DA9) follow respectively from (DD7)–(DD11):

ı1
2 W

�
;

�
! ˝ ;(DA5)

ı1
2 W

�
;

�
! ˝ ;(DA6)

ı1
1 W

� �
! ˝ ;(DA7)

ı1
1 W

� �
! ˝ ;(DA8)

ı1
2 W

�
;

�
! ˝ :(DA9)

Now we consider other side of the same case, computing arrows in cDA.�/ corre-
sponding to the region around b0

1
. Since b1 is directly above c1 , we have b0

1
directly

below c2 , and the Heegaard diagram around b0
1

is this:

The type DD operations are these:

ı1
W

� �
! ˝ ;(DD12)

ı1
W

� �
! ˝ ;(DD13)

ı1
W

� �
! ˝ ;(DD14)

ı1
W

� �
! ˝ ;(DD15)

ı1
W

� �
! ˝ :(DD16)
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This time we will need to combine with type AA arrows on a size-2 interval, emulating
the method in Section 3D1. The results are the following:

.upper first/ ı1
2 W

�
;

�
! ˝ ;(DA10)

.lower first/ ı1
3 W

�
; ;

�
! ˝ ;(DA11)

ı1
2 W

�
;

�
! ˝ ;(DA12)

ı1
2 W

�
;

�
! ˝ ;(DA13)

ı1
2 W

�
;

�
! ˝ ;(DA14)

ı1
2 W

�
;

�
! ˝ :(DA15)

The first arrow follows from (DD12) and (AA4) only if the upper interval comes first
in the ordering <Z0 for the right pointed matched circle. The second arrow follows
from (DD12) and (AA6) only if the lower interval comes first in the ordering. The third
arrow does not depend on ordering. However, it is formed in different ways for the two
orderings: if upper interval comes first, it follows from (DD13) and (AA3); otherwise it
follows (DD16), (DD15), and (AA2). The last three arrows are independent of ordering.
They follow from (AA1) and respectively (DD14)–(DD16).

The cases where b1 is directly below c1 (and therefore b0
1

is directly above c2 ) are
very similar. Here is the Heegaard diagram around b1 :

The first two DA arrows are the same as (DA5) and (DA6), and the last three are
modified appropriately from (DA7)–(DA9). The Heegaard diagram around b0

1
is this:

The first three DA arrows are the same as arrows are modified appropriately from
(DA13)–(DA15).
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3D3 Type AA on a size-2 interval: the paired case We now consider the case of
a size-2 interval, where the top and bottom points are paired with each other. Here the
lower interval immediately precedes the upper interval in the ordering <Z . There are
no arrows starting at generators where the middle idempotent is on the same side as
the idempotent containing the top and bottom points. Starting at generators where the
middle idempotent is to the right, there is a sequence

A2
�!

H
�!

A2
�!

H
�!

A1
�! ;

giving the arrow

(AA7) m1;1;2W

�h i
I I ;

�
!

h i
:

Starting at generators where the middle idempotent is to the left, there is a sequence

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;

giving the arrow

(AA8) m1;2;1W

�h i
I ; I

�
!

h i
:

Furthermore, there are several infinite series of arrows formed by repeating the moves
used above. We list the two arrows that will be used later in the paper:

A2
�!

H
�!

A2
�!

H
�!

A1
�!

H
�!

A1
�! ;

gives the arrow

(AA9) m1;2;2W

�h i
I ; I ;

�
!

h i
I

and

A2
�!

H
�!

A1
�!

H
�!

A2
�!

H
�!

A1
�! ;

gives the arrow

(AA10) m1;2;2W

�h i
I ; I ;

�
!

h i
:
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Note that in the derivation of the first arrow, we used [21, Case 3] of the homotopy
map H in the multiplicity greater than one case. From this we see that the type AA
bimodule can have infinitely many arrows. However, in our examples, only a finite
number of them will be used when constructing the action on type DA invariants.

3D4 Short underslide Using results from the previous section, we compute type DA
arrows for the short underslide. These are underslides where b1 is the only point
between c1 and c2 . Hence b1 and b0

1
are located in the same region of the Heegaard

diagram, which is the only region of interest. Here is the diagram for the case where b1

is directly above c1 :

The possible type DD arrows are the following:

ı1
W

� �
! ˝ ;(DD17)

ı1
W

� �
! ˝ ;(DD18)

ı1
W

� �
! ˝ ;(DD19)

ı1
W

� �
! ˝ :(DD20)

These give rise to type DA arrows

ı1
1 W

� �
! ˝ ;(DA16)

ı1
2 W

�
;

�
! ˝ ;(DA17)

ı1
2 W

�
;

�
! ˝ ;(DA18)

ı1
3 W

�
; ;

�
! ˝ ;(DA19)

ı1
2 W

�
;

�
! ˝ ;(DA20)

ı1
3 W

�
; ;

�
! ˝ :(DA21)
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Here arrows (DA16)–(DA18) follow respectively from (DD17)–(DD19). Arrow (DA19)
follows from (DD20) and (AA7). Arrow (DA20) follows from (DD19), (DD18), and
(AA8). Arrow (DA21) follows from (DD20), (DD18), and (AA9).

The diagram for the case where b1 is directly below c1 is this:

The possible type DD arrows are the following:

ı1
W

� �
! ˝ ;(DD21)

ı1
W

� �
! ˝ ;(DD22)

ı1
W

� �
! ˝ ;(DD23)

ı1
W

� �
! ˝ :(DD24)

These give rise to type DA arrows:

ı1
1 W

� �
! ˝ ;(DA22)

ı1
2 W

�
;

�
! ˝ ;(DA23)

ı1
2 W

�
;

�
! ˝ ;(DA24)

ı1
3 W

�
; ;

�
! ˝ ;(DA25)

ı1
2 W

�
;

�
! ˝ ;(DA26)

ı1
3 W

�
; ;

�
! ˝ :(DA27)

Here arrows (DA22)–(DA24) follow respectively from (DD21)–(DD23). Arrow (DA25)
follows from (DD24) and (AA7). Arrow (DA26) follows from (DD22), (DD23), and
(AA8). Arrow (DA27) follows from (DD22), (DD24), and (AA10).
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3D5 Type AA on two separated intervals with pairing To consider more local
situations for the arcslide, we will need type AA arrows on two separated intervals,
such that either the two inner positions or the two outer positions are paired. These
two cases are very similar, so we will only write out the first case here.

In this case, the upper interval immediately precedes the lower interval in the order-
ing <Z . If the middle idempotent (consisting of the two paired inner points) is occupied
on the left, then it is not possible to multiply both intervals to the right as the first step.
So the only possible sequence of Œai;1; ai;2� is the following:

A2
�!

H
�!

A2
�!

H
�!

A1
�!

giving the arrow

(AA11) m1;1;2W

 " #
I I ;

!
!

" #
:

In these diagrams, the two middle positions are paired, and there can be an arbitrary
number of points between them in the full pointed matched circle. Since no arrow incDD.IZ/ gives off an algebra element with two separate strands, this cannot be used to
form a type DA arrow for the identity.

If the middle idempotent is occupied on the right, it is possible to multiply both intervals
to the right as the first step, but not possible to multiply only the lower interval. So the
only sequence is

A2
�!

H
�!

A1
�!

H
�!

A1
�!

giving the arrow

(AA12) m1;2;1W

 " #
I ; I

!
!

" #
:

This leads to the following type DA arrow for identity:

(DA28) ı1
2 W

 
;

!
! ˝ :
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3D6 More pieces of arcslide We now compute some arrows whose corresponding
domains touch both c1 and c2 . We focus on the overslide cases; the underslide cases
are similar. First, if b1 is directly above c1 , the local Heegaard diagram is as follows.
We focus on arrows whose domain is restricted inside this diagram:

The two horizontal lines where the 1–handle is attached contain the ˛–arcs for the C

pair. Immediately above and below are the points b1 on the left and b0
1

on the right.
For clarity, we list all type DD and DA arrows in this region, even though some may
already have been covered in previous cases. These are the type DD arrows:

ı1
W

0@ 1A! ˝ ;(DD25)

ı1
W

0@ 1A! ˝ ;(DD26)

ı1
W

0@ 1A! ˝ ;(DD27)

ı1
W

0@ 1A! ˝ :(DD28)

These give rise to the following type DA arrows. Here (DA29)–(DA32) follow respec-
tively from (DD25)–(DD28):

ı1
1 W

0@ 1A! ˝ ;(DA29)

ı1
1 W

0@ 1A! ˝ ;(DA30)
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ı1
2 W

0@ ;

1A! ˝ ;(DA31)

ı1
2 W

0@ ;

1A! ˝ :(DA32)

The case where b1 is directly below c1 is again more complicated. Here is the local
Heegaard diagram:

The type DD arrows are these:

ı1
W

0@ 1A! ˝ ;(DD29)

ı1
W

0@ 1A! ˝ ;(DD30)

ı1
W

0@ 1A! ˝ ;(DD31)

ı1
W

0@ 1A! ˝ :(DD32)

The resulting type DA arrows are the following:

ı1
2 W

0@ ;

1A! ˝ ;(DA33)

ı1
2 W

0@ ;

1A! ˝ ;(DA34)
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ı1
2 W

0@ ;

1A! ˝ ;(DA35)

ı1
3 W

0@ ; ;

1A! ˝ ;(DA36)

ı1
2 W

0@ ;

1A! ˝ :(DA37)

Here, arrows (DA33)–(DA35) follow respectively from (DD29)–(DD31). Arrow
(DA36) follows from (DD32) and (AA11). Arrow (DA37) follows from (DD29),
(DD31), and (AA12).

4 Relations on the mapping class groupoid

In this section, we conclude the proof of Theorem 2.2. In Section 4A, we describe
how to enumerate the set of generators of a box tensor product of cDA.�i/, where �i

are arcslides, and how properties of cDD.�i/ carry over to properties of cDA.�i/ and
their box tensor products. With all these preparations in place, we prove (17) for the
involution relation in Section 4B, and for the other relations in Section 4C.

4A Compositions of arcslides

Given an arcslide � , the description of the set of generators of cDA.�/ follows from
that of cDD.�/ and cAA.IZ/. The generators are classified by their idempotents on
the two sides (type D idempotent on the left and type A idempotent on the right).
As before, we use the canonical identification of pairs of points between the pointed
matched circles on the two sides. There are two types of generators in cDA.�/:
� Type X The idempotents on the two sides contain the same pairs.
� Type Y The idempotents on the two sides differ at exactly one pair, with the

C pair occupied on the left and B pair occupied on the right.

Using this, and the definition of box tensor product, we can enumerate the set of
generators of cDA.�1/� � � �� cDA.�n/

for a sequence of arcslides �1; : : : ; �n . We now describe the procedure in detail.
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First, we combine the identification between pairs of points on the starting and ending
pointed matched circles of a single arcslide to obtain an identification of pairs on all
pointed matched circles appearing in the sequence. Note that even if the starting and
ending pointed matched circle of a sequence is the same, the identification of pairs
between the two, induced by the sequence of arcslides, may not be the identity. See
the triangle relation for an example.

With this identification of pairs throughout a sequence, we can talk about a pair of
points in the sequence. These are pairs of points, one for each pointed matched circle
in the sequence, that are identified to be the same. We assign a number from 1 to d to
each pair of points in the sequence that served as either the B pair or the C pair of
some arcslide, where d is the total number of such pairs.

Each generator of the box tensor product cDA.�1/� � � �� cDA.�n/ is of the form
x1˝ � � � ˝xn , where xi is a generator of cDA.�i/ for each 1 � i � n, and the right
idempotent of xi agrees with the left idempotent of xiC1 for each 1 � i < n. A
generator x1˝ � � �˝xn is determined by the set of occupied pairs at the starting and
ending pointed matched circles, and at each pointed matched circles in the middle. It
is clear that each unnumbered pair must be either occupied throughout or unoccupied
throughout. For the numbered pairs, the only possible changes are as follows: suppose
that for a certain arcslide �i in the sequence, the B pair is numbered bi and the C pair
is numbered ci ; then it is possible to have ci , but not bi , occupied in the left idempotent
of xi , and bi , but not ci , occupied in the right idempotent, with all other pairs staying
the same. This corresponds to choosing xi to have type Y .

We can therefore specify a type of generators by specifying which of the numbered
pairs are occupied at each pointed matched circle. At each arcslide, the generator is
either type X or type Y . In the first case, the occupied pairs must be the same before
and after, and in the second case, the C pair occurs before and is replaced by the
B pair. To choose a specific generator of a given type, it remains to choose which
unnumbered pairs to occupy throughout, so that the total number of occupied pairs
is g (half of the total 2g pairs).

We now study the involution relation as an example. This is the simplest case, which
nevertheless illustrates most of the reasoning required. One possible Heegaard diagram
for the involution relation is shown in Figure 10. There are two numbered pairs, that is,
d D 2. Pair 1 served as the C pair and pair 2 served as the B pair for both arcslides.
The possible types of generators are

. /X. /X. /; .1/X.1/X.1/; .2/X.2/X.2/; .12/X.12/X.12/; .1/X.1/Y.2/; .1/Y.2/X.2/:
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Figure 10: Heegaard diagram for the involution relation

For generators with X at both positions, any combination of occupying pairs is possible.
For generators with X at first position and Y at second position, pair 1 and not pair 2

are occupied in the middle, so 1 can be replaced by 2 at the end. This implies pair 1

and not pair 2 are occupied at the beginning, as well. The same reasoning can be used
for type YX , and to show that type Y Y is not possible.

Later, we may use .�/ to denote an arbitrary subset of the numbered pairs, that stays
the same for a given generator. So for example, we may collect the first four types
above into .�/X.�/X.�/ .

We now state several general facts about cDA.�/ and the box tensor products of such
bimodules. These follow from the corresponding facts about cDD.�/ in Section 2E,
and the definition of cDA.�/ as cAA.IZ/� cDD.�/.

Remark 4.1 (relation with Heegaard diagram) Just as in the type DD case, each
generator of cDA.�/ corresponds to a tuple of points in the standard Heegaard diagram
for the arcslide, with its left (type D ) idempotent the set of unoccupied ˛–arcs on the
left, and its right (type A) idempotent the set of occupied ˛–arcs on the right. When
Heegaard diagrams of arcslides are glued side-by-side along their boundaries, the result
is a larger Heegaard diagram that now contains ˛–circles. Note that the boundaries that
are glued along are removed from the resulting diagram. Each generator x1˝� � �˝xn

of the box tensor product corresponds to a tuple of points, with each ˛ and ˇ circles
containing exactly one point, and each ˛–arc containing at most one point.

As in the type DD case, each arrow in cDA.�/ corresponds to a domain away from
the basepoint in the Heegaard diagram of the arcslide. Likewise, each arrow in the
box tensor product cDA.�1/� � � �� cDA.�n/ corresponds to a domain in the Heegaard
diagram obtained by gluing the diagrams for �1; : : : ; �n in sequence. The multiplicity
of the domain on the left (resp. right) boundary equals the total multiplicity of the
algebra coefficients on the left (resp. right) of the arrow. The relation @.@˛B/D y �x ,
when domain B represents an arrow from x to y , still holds.
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Remark 4.2 (grading) The remarks on the grading set of cDD.�/ for an arcslide �
extends to a similar statement for cDA.�/, and by taking box tensor products, extends
to cDA.�;�/. Given �W Fı.Z1/! Fı.Z2/ and a factorization � of � , the bimodulecDA.�;�/ is graded by a set S with free and transitive left-right actions by G.Z1/

and G.Z2/. The grading set induces an element of Out.G.Z1/;G.Z2//. If � begins
and ends at the same pointed matched circle Z , then it induces an element of the outer
automorphism group Out.G.Z/;G.Z//. That element can be found from the action
of � on the homology of the surface. In particular, the identity morphism on Fı.Z/
induces the identity outer isomorphism on G.Z/.

Remark 4.3 (stabilization) Given � W Fı.Z1/ ! Fı.Z2/ and its stabilization V� W
F. VZ1/! F. VZ2/, the bimodule cDA.�/ is again an appropriate restriction of cDA. V�/.
This follows from the corresponding relations between cAA.Z/ and cAA. VZ/, for any
pointed matched circle Z . Taking box tensor products, the stabilization property
extends to a relation between cDA.�;�/ and cDA. V�; V�/, where V� is the element of the
mapping class groupoid that acts as identity on the adjoined Z1 , and as � elsewhere,
and where V� is the extension of the factorization � .

The corresponding duality statements will be left to the end of Section 4. By then we
will have defined all the other bimodule invariants for surface diffeomorphisms.

4B The involution relation

In this section we will verify the involution relation. Figure 10 shows one of the
possible cases: overslide in the upward direction. The computations for overslide in
the downward direction, and for underslides over a pair of points at distance greater
than 2 from each other, are similar.

Recall that the box tensor product is generated by three types of generators:

.�/X.�/X.�/; .1/X.1/Y.2/; .1/Y.2/X.2/:

For each type XY generator, there is a corresponding type YX generator that occupies
the same unnumbered pairs. The plan is to cancel out pairs of XY and YX generators
using this correspondence, and show that the resulting bimodule satisfies the four
conditions in Lemma 3.8.

There are five domains that contribute type DA arrows of interest. They are shown
in Figure 11. Domain C contributes an arrow with no A–side inputs and idempotent
D–side output from any XY generator to the corresponding YX generator. This
allows us to cancel all XY and YX generators using the cancellation lemma. We now
focus on the resulting bimodule, with the type XX generators.
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Figure 11: Domains A–E are connected components of Hnf˛;ˇg containing
the respective letters. The domains that contribute the type DA arrows of
interest are A , B , C , D C C , and E C C . If the upper point in pair 1

(resp. the visible point in pair 2) is the topmost (resp. bottommost) point in the
pointed matched circle, then the domain DCC (resp. ECC ) does not exist.

This bimodule clearly satisfies (ID-1). Condition (ID-2) can be checked by explicit
grading computations, which use only the combinatorial features of the Heegaard
diagram. In particular, the fact that the induced map � 2 Out.G.Z/;G.Z// is the
identity is equivalent to the fact that the action of this composition of arcslides on
H1.F.Z// is the identity. The stability condition (ID-4) follows from Remark 4.3.

It remains to verify (ID-3). For this, we need to classify all arrows whose coefficients
have length at most one on both boundaries. Such an arrow either exists before applying
the cancellation lemma, or is produced via a zigzag. In the first case, they correspond
to one connected domain between type XX generators. They include trivial horizontal
strips in regions away from the slide, the domain DCC , and the domain ECC . In
the second case, the zigzag must be of the form

XX XY

YX XX:
c1

c2

The coefficient c1 must have length one on the left boundary and length zero on the
right, and c2 must have length zero on the left and length one on the right, or vice-
versa. Looking at the Heegaard diagram, the only possibility is that c1 is produced by
domain A and c2 by domain B .

In what follows, we show that for each of the domains A;B;D C C , and E C C ,
and any starting and ending generators with matching idempotents, there is exactly
one arrow. These arrows, together with the ones coming from simple horizontal strips,
cover each length-1 interval exactly once, which verifies (ID-3).
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Domains A and B are straightforward since they involve only length-1 coefficients.
The next case is the domain DCC . If pair 2 is not occupied, the arrow follows from
(DA5) and (DA12):

If pair 2 is occupied, then the type DA arrows on the left side depends on the ordering.
However, in either case we get the same arrow after box tensoring. If the upper interval
comes first, it follows from (DA6) and (DA10):

Otherwise, it follows from (DA9), (DA7), and (DA11):
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Now for the domain ECC . If pair 1 is occupied, the arrow follows from (DA32) and
(DA37):

If pair 1 is unoccupied, the arrow follows from (DA31), (DA30), and (DA36):

This finishes the verification of the involution relation, except for the case of a short
underslide. The computations in that case involve size-2 intervals where the top and
bottom points are paired, so we consider them separately. The diagram is shown in
Figure 12.
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B

A

Figure 12: Diagram for involution in the short underslide case. Domains A

and B are connected components of H n f˛;ˇg containing the respective
letters.

The only difference in the verification is computing the arrow covering the upper
length-1 interval. This arrow comes from the domain AC 2B , and is produced by
(DA22), (DA24), and (DA21):

This concludes all cases of the involution relation. Two results follow immediately
from this relation.

Corollary 4.4 The bimodule cDA.�/ is quasi-invertible, and the same is true for any
box tensor product of such bimodules.

Proof For a single arcslide, the quasi-inverse is given by cDA.��1/. It is clear that
box tensor products of quasi-invertible bimodules are also quasi-invertible.

The computations here allow us to prove a uniqueness statement on cDD.�/. A similar
statement is proven in [11].

Corollary 4.5 Let � W Fı.Z1/!Fı.Z2/ be an arcslide. If a bimodule A.Z1/;A.�Z2/M

is stable, has the same generators and gradings as cDD.�/, and its type DD action
matches that of cDD.�/ on all arrows with total lengths of coefficients at most 3, then
M is homotopy equivalent to cDD.�/.
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Figure 13: Heegaard diagram for the triangle relation. Domains A , B and C

are connected components of H n f˛;ˇg containing the respective letters.

Proof Let MDA D cAA.I/� M . Since we only used type DD arrows whose coeffi-
cients have total length at most 3 in this section, we can perform the same computations
on MDA as on cDA.�/, showing that

MDA � cDA.��1/' I ' cDA.�/� cDA.��1/:

Since cDA.��1/ is quasi-invertible, we see MDA is homotopy equivalent to cDA.�/.
Since cAA.I/ is also quasi-invertible, we see M is homotopy equivalent to cDD.�/.

4C Other relations on arcslides

For each of the other relations on arcslides, we check the conditions in Lemma 3.9.
Condition (ID-2) is checked by grading computations as before. (ID-3) follows from
Corollary 4.4, with the quasi-inverse M 0 being the box tensor product of the inverse
arcslides in the opposite order. (ID-4) follows from Remark 4.3. It remains to verify
(ID-1); with the same technique given here we can show (ID-1) for the inverse M 0 .

4C1 Triangle For the triangle relation, the Heegaard diagram for one of the possible
cases is shown in Figure 13. The other cases differ from this one only by switching the
ordering of the points and underslides with overslides. The enumeration of generators,
and which pairs of generators can be cancelled, are essentially similar.

The roles of the numbered pairs are as follows:
� Arcslide 1 C D 2;B D 1.
� Arcslide 2 C D 1;B D 2.
� Arcslide 3 C D 2;B D 1.

Only the sequence YXY is forbidden. For that sequence, pair 1 must be occupied
after the first arcslide, and therefore after the second arcslide, so type Y is not possible
at the third arcslide.
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The possible types are these:

.�/X.�/X.�/X.�/; .2/Y.1/X.1/X.1/; .1/X.1/Y.2/X.2/; .2/X.2/X.2/Y.1/;

.2/Y.1/Y.2/X.2/; .1/X.1/Y.2/Y.1/; .2/Y.1/Y.2/Y.1/; .1/X.1/Y.2/X.2/:

There are two domains that give rise to cancellable arrows: domain A and B as shown
in the figure. Domain A gives rise to arrows from Y Y � to XX�, and domain B gives
rise to arrows from �Y Y to �XX . So the cancellable arrows are these:

Y Y Y !XXY; Y Y Y ! YXX;

.1/XY Y.1/! .1/XXX.1/; .2/Y YX.2/! .2/XXX.2/:

We choose to cancel everything except the second set Y Y Y ! YXX (cancelling
the first set of arrows eliminates the option of cancelling the second). These are the
remaining generators:

.2/YXX.1/; .1/XYX.2/; . /XXX. /; .12/XXX.12/:

Since each type of idempotents at the two ends occurs exactly once, we have verified
(ID-1). Note that pair 1 at the left becomes pair 2 at the right, and vice versa, under the
bijection of pairs coming from the equality of pointed matched circles at the two ends.

For the triangle relation, it is not immediately clear that there exists a refined relative
grading where all generators have grading zero, so we give more details on verifying
this condition. Choose a generator in class .2/YXX.1/ as the base generator (with
refined grading zero). To verify that any generator of class .1/XYX.2/ has grading
zero, it suffices to check that any potential domain connecting them has the expected
grading. The domain BCC is such a domain. Its grading can be computed to be the
same as that of a simple horizontal strip in the Heegaard diagram for identity, with
the same boundaries at the two sides. If the genus is greater than 2, then generators
of type . /XXX. / and .12/XXX.12/ exist. They are connected to .2/YXX.1/ or
.1/XYX.2/ by horizontal strips above either A or B . These domains also have the
same gradings as the simple horizontal strips in the diagram for identity with the same
boundaries, so the latter two types of generators must also have grading zero.

4C2 Commutativity The Heegaard diagram for one of the cases of the commutativity
relation is shown in Figure 14; as in the triangle case, the other possibilities are similar.
The role of the numbered pairs are as follows:
� Arcslide 1 C D 1;B D 2.
� Arcslide 2 C D 3;B D 4.
� Arcslide 3 C D 1;B D 2.
� Arcslide 4 C D 3;B D 4.
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Figure 14: Heegaard diagram for the commutativity relation. Domains A

and B are connected components of H n f˛;ˇg containing the respective
letters.

The restriction on the types is that at most one of the types at arcslides 1 and 3 can
be Y , and at most one at arcslides 2 and 4 can be Y . The possibilities are:

.�/X.�/X.�/X.�/X.�/; .1/Y.2/X.2/X.2/X.2/ .3 or 4/;

.1/X.1/X.1/Y.2/X.2/ .3 or 4/; .3/X.3/Y.4/X.4/X.4/ .1 or 2/;

.3/X.3/X.3/X.3/Y.4/ .1 or 2/; .13/Y.23/Y.24/X.24/X.24/;

.13/Y.23/X.23/X.23/Y.24/; .13/X.13/Y.14/Y.24/X.24/; .13/X.13/X.13/Y.23/Y.24/;

where .3 or 4/ means “with pairs 3 and/or 4 possibly added to each idempotent”.

The two domains giving rise to cancellable arrows are labelled A and B in the Figure 14.
Domain A gives rise to arrows from YaXb to XaY b , for any valid choice of a; b 2

fX;Y g. Likewise, domain B gives rise to arrows from aY bX to aXbY . So the
cancellable arrows are:

.1/YXXX.2/! .1/XXYX.2/ .3 or 4/; .3/XYXX.4/! .3/XXXY.4/ .1 or 2/;

.13/Y YXX.24/ ����! .13/YXXY.24/??y ??y

.13/XY YX.24/ ����! .13/XXY Y.24/:

The first two arrows cancel all generators with one Y . For generators with two Y ’s,
we can either cancel both horizontal arrows or both vertical arrows in the square above.
In the end, only generators of type .�/XXXX.�/ remain, which verifies (ID-1).
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Figure 15: Heegaard diagram for the pentagon relation. Domains A , B , and C

are connected components of H n f˛;ˇg containing the respective letters.

4C3 Left and right pentagon The Heegaard diagram for one of the cases of the left
pentagon relation is shown in Figure 15. Other cases of the left and right pentagon
relation are similar.

The role of the numbered pairs are as follows:

� Arcslide 1 C D 2;B D 3.

� Arcslide 2 C D 1;B D 2.

� Arcslide 3 C D 2;B D 3.

� Arcslide 4 C D 1;B D 3.

� Arcslide 5 C D 1;B D 2.

The possible types are:

� .�/X.�/X.�/X.�/X.�/X.�/ ,

� .12/Y.13/Y.23/X.23/X.23/X.23/ ,

� .12/X.12/X.12/Y.13/X.13/Y.23/ ,

� .12/Y.13/X.13/X.13/X.13/Y.23/ ,

� .1/X.1/Y.2/Y.3/X.3/X.3/ ,

� .2/Y.3/X.3/X.3/X.3/X.3/ , .12/Y.13/X.13/X.13/X.13/X.13/ ,

� .1/X.1/Y.2/X.2/X.2/X.2/ , .13/X.13/Y.23/X.23/X.23/X.23/ ,

� .2/X.2/X.2/Y.3/X.3/X.3/ , .12/X.12/X.12/Y.13/X.13/X.13/ ,

� .1/X.1/X.1/X.1/Y.3/X.3/ , .12/X.12/X.12/X.12/Y.23/X.23/ ,

� .1/X.1/X.1/X.1/X.1/Y.2/ , .13/X.13/X.13/X.13/X.13/Y.23/ .
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1 2 3 4

Figure 16: Domain BCC

Domains A, B , and C , respectively, give rise to the following arrows:

XXY ��! YXX ��; �XXY �! �Y YX�; ��YXY !��XYX:

Other domains that may give arrows are BCC and ACB . We first analyze BCC ,
showing that it will always contribute an arrow whenever idempotent matches. The
calculation involves box tensoring the four type DA bimodules as shown in Figure 16.

The arrow needed in the fourth piece is simple. For the third, there are several ways to
cover the domain. First, if pair 3 is unoccupied in the middle pieces, use (DA5):

If pair 3 is occupied, there are two different ways: (DA6), or (DA9) and (DA7):

and

Now looking at the possible arrows in the second piece, we see there is always exactly
one way to continue forming the arrow in the box tensor product to the second piece
(and then trivially to the first piece). If pair 3 is unoccupied, we use (DA12). If pair 3

is occupied, we use either (DA10) or (DA11), depending on the ordering <Z . This
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shows that the domain BCC gives rise to the following arrows:

�.1/X.1/X.1/X.1/Y.2/! �.1/Y.2/X.2/X.2/X.2/;

�.13/X.13/X.13/X.13/Y.23/! �.13/Y.23/X.23/X.23/X.23/:

Finally, we consider the domain ACB . This domain potentially contributes arrows of
the form XXXX�! Y YXX�. The only possible choice of idempotents is

.12/X.12/X.12/X.12/Y.23/X.23/! .12/Y.13/Y.23/X.23/X.23/X.23/:

Rather than computing the type DA arrows for this domain like in the previous case,
we note that the sequence

.12/XXYXY.23/! .12/YXXXY.23/! .12/Y YXXX.23/

must cancel against something in the type DA structure equation. This is possible only
if the domain ACB contributes an arrow.

In summary, the cancellable arrows are these:

.1/XXXXY.2/! .1/XYXXX.2/; .13/XXXXY.23/! .13/XYXXX.23/;

.2/XXYXX.3/! .2/YXXXX.3/; .12/XXYXX.13/! .12/YXXXX.13/;

.1/XXXYX.3/! .1/XY YXX.3/;

.12/XXYXY.23/ ����! .12/YXXXY.23/??y ??y

.12/XXXYX.23/ ����! .12/Y YXXX.23/:

The four types of generators starting with .12/ and ending with .23/ form the square
above, and are cancelled using either the horizontal or vertical arrows. The other ten
types of generators containing at least one Y are cancelled using the first five arrows.
So only generators of type .�/XXXXX.�/ remain, which verifies (ID-1).

This concludes the proof of Theorem 2.2, showing that the bimodule cDA.�;�/ is
independent of the choice of factorization � up to homotopy equivalence. This allows
us to write bCFDA.�/ for the homotopy equivalence class of cDA.�;�/, and define
the other invariants bCFDD.�/; bCFAA.�/, and bCFAD.�/ combinatorially by box
tensoring with appropriate identity bimodules.

We finish with a discussion of how duality on cDD.�/ extends to the other bimodule
invariants.
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Lemma 4.6 For any element �W Fı.Z1/! Fı.Z2/ of the strongly based mapping
class groupoid, we have

(25) A.�Z1/ bCFAD.��1/A.�Z2/ '
A.Z1/ bCFDA.�/A.Z2/:

Proof First, we consider the case of an arcslide � . Using the definition of bCFAD and
the fact that bCFAA.I/ and bCFDD.I/ are quasi-inverses, we have

A.Z2/;A.�Z1/ bCFDD.��1/' A.�Z1/ bCFAD.��1/A.�Z2/� A.Z2/;A.�Z2/ bCFDD.IZ2
/:

On the other hand,

A.�Z1/;A.Z2/ bCFDD.�/' A.Z1/ bCFDA.�/A.Z2/� A.Z2/;A.�Z2/ bCFDD.IZ2
/

'
A.�Z1/ bCFDA.�/A.�Z2/� A.�Z2/;A.Z2/ bCFDD.IZ2

/:

By the remarks on duality at the end of Section 2E, we see bCFDD.��1/ and bCFDD.�/
are homotopy equivalent after switching the two algebra actions. It is also clear from
the construction of bCFDD.IZ2

/ that it is isomorphic to bCFDD.IZ2
/ after switching

the algebra actions. This implies (25) for arcslides � .

For a general surface diffeomorphism � , factor it into arcslides �i . The statement then
follows from the case of arcslides, and the fact that taking duals distributes over the
box tensor product.

5 The 3–manifold invariant

In this section, we prove Theorem 2.4, showing that the homotopy type of the chain
complex cHF given in Construction 2.3 does not depend on the choices made. There
are two main components of the proof, given by the two lemmas below.

Let MCG0.Zg/ denote the strongly based mapping class group on Fg;1 , parametrized
by the genus g split pointed matched circle Zg . Recall that Hg denotes the 0–framed
handlebody, and its orientation reversal �Hg is the 1–framed handlebody.

Lemma 5.1 (stabilization) Let  be an element of MCG0.Zg/. Consider FgC1;1 ,
parametrized by ZgC1 as the surface obtained from Fg;1 by adding a handle in a
neighborhood of the basepoint. Let V be the element of MCG0.ZgC1/ that fixes the
new handle and acts as  elsewhere. Then

(26)
� bCFAA. /� bCFD.Hg/

�
� bCFD.�Hg/

'
� bCFAA. V /� bCFD.H gC1/

�
� bCFD.�H gC1/:
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Definition 5.2 Define MCGˇ
0
.Zg/ to be the subgroup of MCG0.Zg/ consisting of

maps that extend to automorphisms of Hg . Likewise, define MCG˛0.Z
g/ to be the

subgroup of MCG0.Zg/ consisting of maps that extend to automorphisms of �Hg

(using identification Zg D�Zg to consider �Hg as parametrized by Zg ).

Lemma 5.3 (reparametrization of the 0–framed handlebody) For each element � 2
MCGˇ

0
.Zg/, we have

(27) A.�Zg/ bCFAD.�/A.�Zg/� A.�Zg/ bCFD.Hg/' A.�Zg/ bCFD.Hg/:

We first show that these two lemmas imply Theorem 2.4.

Proof of Theorem 2.4 There are two choices made in Construction 2.3: the choice
of Heegaard splitting Y D Y1 [ Y2 , and choice of parametrizations of Y1 and Y2

by standard handlebodies. It is well known that any two Heegaard splittings become
isotopic after a finite number of stabilizations. Also, any stabilization can be isotopied
to the standard one, adding a handle in a neighborhood of the basepoint. If  is a valid
choice of element in MCG0.Zg/ in the second stage of the construction, then V is a
valid choice of element in MCG0.ZgC1/ after a standard stabilization. So Lemma 5.1
implies that Construction 2.3 is invariant under stabilizations.

Now we consider choice of parametrizations of Y1 and Y2 . Recall  D f �1
2�
ıuıf1� ,

where uW @Y1!�@Y2 is the gluing map, f1W H
g! Y1 is the parametrization of Y1

by Hg , and f2W �Hg! Y2 is the parametrization of Y2 by �Hg . Hence, changing
parametrization of Y1 changes  to  0 D  ı �1 , where �1 2 MCGˇ

0
.Zg/, and

changing parametrization of Y2 changes  to  0D ��1
2
ı , where �2 2MCG˛0.Z

g/.

It remains to show the following:

bCFAA. ı�1/� bCFD.Hg/' bCFAA. /� bCFD.Hg/;

bCFAA.��1
2 ı /� bCFD.�Hg/' bCFAA. /� bCFD.�Hg/;

for �1 2MCGˇ
0
.Zg/ and �2 2MCG˛0.Z

g/.

The first equation follows directly from Lemma 5.3:

bCFAA. ı�1/� bCFD.Hg/' bCFAA. /� bCFAD.�1/� bCFD.Hg/

' bCFAA. /� bCFD.Hg/:

For the second equation, by taking the dual of (27), and using Lemma 4.6, we get

(28) A.Zg/ bCFDA.��1/A.Zg/� A.Zg/ bCFD.�Hg/' A.Zg/ bCFD.�Hg/
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� � �

� � �

adjoined

Figure 17: Proof of invariance under stabilization

for any � 2MCGˇ
0
.Zg/. Then the second equation follows, as

bCFAA.��1
2 ı /� bCFD.�Hg/' bCFAA. /� bCFDA.��1

2 /� bCFD.�Hg/

' bCFAA. /� bCFD.�Hg/;

since �2 2MCG˛0.Z
g/ implies �2 2MCGˇ

0
.Zg/.

Proof of Lemma 5.1 Choose factorization � for  , then V� is a factorization for V .
Choose cDA. ;�/ and cDA. V ; V�/ as models for the bCFDA invariants behind the
bCFAA invariants. The lemma then follows from the stabilization property for cDA. ;�/.

We can see this by comparing the Heegaard diagrams underlying the two sides of
(26). First, the Heegaard diagram for cDA. V ; V�/ is constructed from that for cDA. ;�/
by adjoining a horizontal strip of diagrams for the identity diffeomorphism of the genus
1 surface at the top. Likewise, the Heegaard diagrams of H gC1 and �H gC1 are
obtained from that of Hg and �Hg by adjoining diagrams of H 1 and �H 1 to the
top. These constructions are combined in Figure 17.

By Remark 4.1, generators in the chain complex

(29)
� bCFAA. /� bCFD.Hg/

�
� bCFD.�Hg/
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correspond to certain tuples of intersection points in the part of the diagram below the
dashed line in Figure 17, while generators in the chain complex

(30)
� bCFAA. V /� bCFD.H gC1/

�
� bCFD.�H gC1/

correspond to certain tuples of intersection points in the full diagram. Likewise, there is
a correspondence between arrows in the type DA action on the two sides, and domains
in appropriate parts of the diagram.

The choice of intersection points in the adjoined portion of the diagram is forced (as
marked in the figure), which means that it is the same for all generators in (30). So there
is a one-to-one correspondence between generators in (29) and (30). Moreover, since
there are no closed domains above the dashed line, all arrows in (30) automatically
have domains restricted below the dashed line. By Remark 4.3, there is a one-to-one
correspondence between these arrows and the arrows in (29). This shows the chain
complexes (29) and (30) are isomorphic, proving Lemma 5.1.

For Lemma 5.3, we need to show

bCFAD.�/� bCFD.Hg/' bCFD.Hg/

for any � 2 MCGˇ
0
.Zg/. It suffices to verify the equation for a set of generators

of MCGˇ
0
.Zg/.

We find generators for the strongly based mapping class group by appealing to results
on the usual mapping class group. Let Fg be the genus g surface with a basepoint.
Let MCG.Fg/ be the group of isotopy classes of diffeomorphisms on Fg that fixes the
basepoint, with isotopies also required to fix the basepoint. It is related to MCG0.Zg/

by a short exact sequence (see [4, Section 4.2.5]):

0! Z
�@
�!MCG0.Zg/!MCG.Fg/! 0:

Here �@ maps the generator of Z to the boundary Dehn twist in MCG0.Zg/. This is
the element that performs a Dehn twist along a loop parallel to the boundary of Fg;1 .

There is, likewise, a short exact sequence

0! Z
�@
�!MCGˇ

0
.Zg/!MCGˇ.Fg/! 0;

where MCGˇ.Fg/ is the subgroup of MCG.Fg/ consisting of restrictions of automor-
phisms of the 0–framed handlebody Hg . This exact sequence shows that a generating
set of MCGˇ

0
.Zg/ can be obtained by adding the boundary Dehn twist to the lifting of

a generating set of MCGˇ.Fg/.
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A generating set of MCGˇ.Fg/ is given in [20] (the corresponding notation in that paper
is MCG�.Fg/). We reproduce the list of generators, together with the action of each
generator on �1.Fg/ here. For an element  2MCGˇ.Fg/, let  ]W �1.Fg/!�1.Fg/

be its action on �1.Fg/. We let a1; b1; : : : ; ag; bg be a set of standard generators
of �1.Fg/, with each bi contractible in the handlebody, and each ai intersecting bi

once. Let si D a�1
i b�1

i aibi , so that sn � � � s2s1 D 1 is a relation in �1.Fg/. In [20],
a genus g surface is considered as a sphere with g handles attached. Each handle,
together with its immediate base, is called a knob. We refer to that paper for diagrams
and geometric description of these generators.

Theorem 5.4 (Suzuki [20]) The group MCGˇ.Fg/ is generated by �; !1;�1; �12;�12

and �12 , whose actions on �1.Fg/ are the following:

� Cyclic translation of handles �]W ai ! aiC1; bi ! biC1 , where indices are
taken modulo g .

� Twisting a knob !1]W a1! a�1
1

s�1
1
; b1! a�1

1
b�1

1
a1 , aj ! aj , bj ! bj for

2� j � n.

� Twisting a handle, or Dehn twist �1]W a1 ! a1b�1
1

, b1 ! b1 , aj ! aj ,
bj ! bj for 2� j � n.

� Interchanging two knobs �12]W a1 ! s�1
1

a2s1; a2 ! a1 , b1 ! s�1
1

b2s1 ,
b2! b1 , aj ! aj , bj ! bj for 3� j � n.

� Sliding along a2 �12]W a1 ! a1.b
�1
2

a�1
2

b2/, aj ! aj for j ¤ 1, b2 !

a2b2.a
�1
1

b1a1/.b
�1
2

a�1
2

b2/, bj ! bj for j ¤ 2.

� Sliding along b2 �12]W a1!b1a1b�1
2

s2.a
�1
1

b�1
1

a1/, a2!a2b2.a
�1
1

b�1
1

a1/b
�1
2

,
aj ! aj for j ¤ 1; 2, bi! bi for 1� i � g .

Of these, only � is nonlocal in the sense that it is not restricted to a part of the surface
with fixed genus. All other generators are restricted to a genus 1 or 2 part of the
surface. We can remove � in favor of other local generators by writing

��1
D �12 ı �23 ı � � � ı �g�1;g ı .!g]/

�2;

where !g] is similar to !1] , except acting on the gth handle, and �i;iC1 interchanges
the i th and .i C 1/th knobs. The equation can be verified by comparing the actions
of two sides on �1.Fg/: the initial .!g]/

�2 has the effect of conjugating ag and bg

by s�1
g . After interchanging the knobs in succession, the action of the right side on

�1.Fg/ is a1 ! s�1
1

s�1
2
� � � s�1

g agsg � � � s2s1 , a2 ! a1 , a3 ! a2 , and so on, and
similarly for the bi ’s. We then apply the relation sg � � � s2s1 D 1.
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Since the boundary Dehn twist equals �g , the gth power of the cyclic translation of
handles, the same generators also generate the group MCGˇ

0
.Zg/. Thus, we have

proven the following.

Corollary 5.5 The group MCGˇ
0
.Fg/ is generated by !1; !g; �1; �12; �12 and �i;iC1

for 1� i � g� 1.

Each of the generators in Corollary 5.5 is confined to one or two knobs on the surface.
Our strategy will be to check (27) on a surface of the corresponding genus, that is, 1
or 2, then extend the result to the general case. First, we compute a decomposition of
these generators into arcslides. An arcslide with B pair .b1; b2/ and C pair .c1; c2/,
with b1 sliding over c1 , is denoted b1! c1 . The points are always labeled 0 to 4g�1

from left to right. The results are

�12W 3! 4; 6! 7; 5! 6; 4! 5; 2! 3; 5! 6; 4! 5; 3! 4;

1! 2; 4! 5; 3! 4; 2! 3; 0! 1; 3! 4; 2! 3; 1! 2;

�12W 4! 3; 1! 0; 1! 2; 5! 4; 6! 5;

�12W 0! 1; 3! 4; 6! 7; 6! 5; 2! 3; 1! 2; 3! 2;

!1W 2! 3; 1! 2; 2! 3; 1! 2; 2! 3; 1! 2;

�1W 2! 3:

To verify these decompositions, we compute their actions on �1.F
ı.Zg//. For any

pointed matched circle Z , recall that the surface with circle boundary Fı.Z/ is formed
by attaching 1–handles to Z along the matched pairs of points in a�Z , then gluing
in a solid disk on the other side. Choosing z 2Z as the basepoint, the fundamental
group of Fı.Z/ is generated freely by paths through the 1–handles. We choose the
following orientation for the generators of the fundamental group. For the genus 1

cases, we have

!1W

0 1 2 3

a�1
1

b1

�1W

0 1 2 3

a1 b1

and for all genus 2 cases,

0 1 2 3 4 5 6 7

a�1
2

b2 a�1
1

b1

Algebraic & Geometric Topology, Volume 16 (2016)



Combinatorial proofs in bordered Heegaard Floer homology 2633

a1 b1

� � � � � �

)

a1b1
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� � � � � �

)
a1b�1

1 b1

� � � � � �
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� � � � � �
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1
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� � � � � �

Figure 18: Actions of arcslides on the fundamental group (underslide)

An arcslide � W Z1! Z2 induces an action

��W �1.F
ı.Z1//! �1.F

ı.Z2//

on the fundamental groups. We describe this action by expressing each generator of
�1.F

ı.Z2// (corresponding to a pair of matched points in Z2 ) in terms of the images
under �� of generators of �1.F

ı.Z1//. This can be computed from the definition of
arcslides; see, for example, [11, Figure 3]. The results are shown in Figures 18 and 19.
For example, the first diagram means that if the two displayed handles in the starting
pointed matched circle correspond to generators a1 and b1 , then the two displayed
handles in the ending pointed matched circle correspond to ��.a1b1/ and ��.b1/ (the
relation for handles unaffected by the arcslide is clear).

As an example, we verify the decomposition of �12 into arcslides. Only the two middle
pairs, corresponding to generators b2 and a�1

1
, are moved during this sequence of

arcslides. We follow what happens to these two pairs in Table 1. We identify pairs of
points in a sequence of arcslides as before. Each line in the table writes the generator
corresponding to pairs identified with the initial b2 and a�1

1
pairs in terms of ��.�/ of

the initial generators.

After this sequence of arcslides, the two middle pairs have switched positions. So the
action is a�1

1
! b�1

2
a2b2a�1

1
and b2! a2b2a�1

1
b1a1b�1

2
a�1

2
b2 . The first equation

can be rewritten as a1! a1b�1
2

a�1
2

b2 . This agrees with the fundamental group action
given in Theorem 5.4.

Proof of Lemma 5.3 The same argument as in the proof of Lemma 5.1 shows that if
bCFAD.�/� bCFD.Hg/' bCFD.Hg/, then bCFAD. V�/� bCFD.HgC1/' bCFD.HgC1/,
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a1
b1

� � � � � �

)
a�1

1
b1

b1

� � � � � �

a1
b1

� � � � � �

)
b1a�1

1
b1

� � � � � �

a1 b1

� � � � � �

)

a1b1

b1

� � � � � �

a1

b1

� � � � � �

) a1
a1b�1

1

� � � � � �

Figure 19: Actions of arcslides on the fundamental group (overslide)

Arcslide b2 a�1
1

4! 3 b2 b2a�1
1

1! 0 b2 a2b2a�1
1

1! 2 b�1
2

a2b2a�1
1

a2b2a�1
1

5! 4 b�1
2

a2b2a�1
1

a2b2a�1
1

b1

6! 5 b�1
2

a2b2a�1
1

a2b2a�1
1

b1a1b�1
2

a�1
2

b2

Table 1: Trajectories of generators b2 and a�1
1

under various arcslides.

where V� is the element of MCG0.ZgC1/ that fixes the new handle and acts as �
elsewhere. Here there is again an one-to-one correspondence on the generators between
bCFAD.�/� bCFD.Hg/ and bCFAD. V�/� bCFD.H gC1/. There is exactly one domain

in the adjoined portion that can (and does) contribute an arrow. The evaluation there is
equivalent to the evaluation of bCFAD.IZ/� bCFD.H 1/' bCFD.H 1/ on the genus 1

pointed matched circle, giving the arrow in bCFD.H gC1/ that is inside the adjoined
pointed matched circle. The remaining domains must be outside the adjoined region,
showing a one-to-one correspondence between arrows in bCFAD.�/� bCFD.Hg/, and
the remaining arrows in bCFAD. V�/� bCFD.H gC1/. This argument works whether
ZgC1 is formed as Z1#Zg or as Zg#Z1 .

From this, we see that it is sufficient to verify (27) for each of the generators of
MCGˇ

0
.Fg/ in its respective minimum genus (1 or 2) case.
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To do so, we decompose each generator � of MCGˇ
0
.Fg/ (for g D 1 or 2 depending

on � ) into arcslides �n ı � � � ı �1 , as given above. Then we directly compute the left
side of (27) using the constructions for cDA.�i/. This reduces to a finite computation,
which we performed on a computer using a Python program (which implements the
description of cAA.IZ/ and the box tensor product). The code for the computation can
be found at https://github.com/bzhan/auto2. The entire computation took less
than 20 seconds.

This concludes the proof of Lemma 5.3, and therefore Theorem 2.4.
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Quadratic-linear duality and rational homotopy theory
of chordal arrangements

CHRISTIN BIBBY

JUSTIN HILBURN

To any graph and smooth algebraic curve C , one may associate a “hypercurve”
arrangement, and one can study the rational homotopy theory of the complement X .
In the rational case (C DC ), there is considerable literature on the rational homotopy
theory of X , and the trigonometric case (C D C� ) is similar in flavor. The case
when C is a smooth projective curve of positive genus is more complicated due
to the lack of formality of the complement. When the graph is chordal, we use
quadratic-linear duality to compute the Malcev Lie algebra and the minimal model
of X , and we prove that X is rationally K.�; 1/ .

16S37, 52C35, 55P62

1 Introduction

This paper explores the topology of the rational, trigonometric, and projective (in
particular, elliptic) analogues of hyperplane arrangements. The rational case consists
of linear arrangements, which are finite sets of codimension-one linear subspaces of a
complex vector space. The trigonometric case consists of toric arrangements, which
are finite sets of codimension-one subtori in a complex torus. The elliptic case consists
of abelian arrangements, which are finite sets of codimension-one abelian subvarieties
of a product of elliptic curves. We focus our attention on unimodular and supersolvable
arrangements, which are classified by chordal graphs and are therefore called chordal
arrangements. Chordal arrangements can be defined without reference to abelian group
structure and hence make sense for curves of arbitrary genus. When we discuss the
projective case, we will only consider curves of positive genus, as our method does not
apply to P1 (whose cohomology ring is not Koszul).

In each case, we study a differential graded algebra (DGA) that is a model (in the sense
of rational homotopy theory) for the complement of the arrangement.

� For linear arrangements, the complement is formal, which means that the co-
homology algebra with trivial differential is itself a model. A combinatorial
presentation for this algebra is given by Orlik and Solomon [12].
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� For toric arrangements, the complement is also formal, and in the unimodular
case, a combinatorial presentation of the cohomology ring is given by De Concini
and Procesi [6].

� In the projective case, the complement is not necessarily formal, but combinato-
rially presented models (with nontrivial differential) are given by the first author
[2] in the elliptic case and by Dupont [7] in general.

When the matroid associated to the arrangement is supersolvable, the above model
is Koszul; this is due to Shelton and Yuzvinsky for linear arrangements [18], and we
prove it in the toric and projective cases (Theorems 3.3.3, 3.4.3, and 3.5.3). By studying
the quadratic dual of the model, one can obtain a combinatorial presentation for a Lie
algebra and use it to compute the Q–nilpotent completion of the fundamental group
and the minimal model. This is done by Papadima and Yuzvinsky in the linear case [14],
and the toric case is completely analogous. In the projective case, the lack of formality
makes this computation more subtle: we need to use nonhomogeneous quadratic duality,
where the dual to a Koszul differential graded algebra is a quadratic-linear algebra.
With this tool, we extend Papadima and Yuzvinsky’s results to the projective setting
(Theorem 5.2.1).

We also prove that complements of chordal arrangements are rational K.�; 1/ spaces.
In the rational and toric cases, this follows from formality and Koszulity [14]. In the
projective case (where we lack formality) it is not automatic, but we obtain it from our
concrete description of the minimal model (Corollary 5.2.3).

In the projective case, our results were inspired by [1], where Bezrukavnikov constructed
a model of the ordered configuration space of an arbitrary smooth, projective, complex
curve of positive genus; he showed that his model was Koszul, gave a presentation for
the dual Lie algebra, and described the minimal model. In fact, our results generalize
his since the ordered configuration space is the complement of the braid arrangement
(which is chordal).

In Section 2, we review known results on the cohomology of arrangements in each of
our cases, giving explicit presentations for the algebras we will consider. In Section 3,
we review the proof that the cohomology ring of the complement to a chordal linear
arrangement is Koszul, and then we prove the analogous results in the toric and
projective cases. In Section 4, we review definitions and results from rational homotopy
theory and quadratic-linear duality. The reader can skip ahead to Section 5 and refer
back to Section 4 as needed. In Section 5, we review some known results on the rational
homotopy theory of linear arrangements, which also apply to the toric case, and then
we prove the analogous results for the projective case.
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2 Cohomology

In this section, we collect known results about the cohomology of the complement of a
chordal arrangement in each of our cases. Since we will only be considering graphic
arrangements in Sections 3 and 5 (see Remark 3.1.1), we will state all of the results in
graphical language here, as well. Since our goal will be to study the rational homotopy
theory of these spaces, we will also restrict our attention to cohomology with rational
coefficients throughout this paper.

2.1 Definitions

An ordered graph is a graph � D .V; E/ with an ordering on the vertices V . We will
assume throughout that our graphs are simple (that is, they have no loops or multiple
edges). An ordered graph can be considered as a directed graph in the following way:
For each edge e 2 E , label its larger vertex by h.e/ (for “head” of an arrow) and its
smaller vertex by t.e/ (for “tail” of an arrow). An order on the vertices of � induces an
order on the edges by setting e< e0 if h.e/ < h.e0/ or if h.e/D h.e0/ and t.e/ < t.e0/.

Remark 2.1.1 None of the structures in this section will depend on the ordering of
the vertices, but it will simplify the notation. The order chosen will also be necessary
for the proofs in Section 3.

Let � D .V; E/ be an ordered graph. Let C be C , C� , or a complex projective curve,
and let C V be the complex vector space (respectively torus or projective variety) whose
coordinates are indexed by the vertices V . For each edge e 2 E , let

He D fxV 2 C V
j xh.e/ D xt .e/g:

The collection A.�;C /D fHe j e 2 Eg is a graphic arrangement in C V . In each case,
denote the complement of an arrangement A in V by XA WDV n

S
H2A H . In the case

that C is C , C� , or a complex elliptic curve, A.�;C / is a linear, toric, or abelian
arrangement, respectively.

Example 2.1.2 Let C DC , C� , or a complex projective curve. If � is the complete
graph on n vertices, then ADA.�;C / is the braid arrangement, and its complement XA
is the ordered configuration space of n points on C .

Algebraic & Geometric Topology, Volume 16 (2016)
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2.2 Linear arrangements

For linear arrangements, a combinatorial presentation for the cohomology ring was first
given by Orlik and Solomon [12]. The fact that the complement of a linear arrangement
is formal (that is, its cohomology ring is a model for the space; see Section 4.1) is
originally due to Brieskorn [5]. Here, we state these results for graphic arrangements.

Theorem 2.2.1 [13, Theorems 3.126 and 5.89] Let � D .V; E/ be an ordered graph,
and let ADA.�;C/. Then XA is formal and H�.XA;Q/ is isomorphic to the exterior
algebra on the Q–vector space spanned by

fge j e 2 Eg

modulo the ideal generated byX
j
.�1/j ge1

� � � ygej
� � �gek

whenever fe1 < � � �< ekg is a cycle:

2.3 Toric arrangements

De Concini and Procesi studied the cohomology of the complement of a toric arrange-
ment. If A is a unimodular toric arrangement (that is, all multiple intersections of
subtori in A are connected), they show that the complement XA is formal and give a
presentation for the cohomology ring. Here, we state the result for graphic arrangements
(which are always unimodular).

Theorem 2.3.1 [6, Theorem 5.2] Let � D .V; E/ be an ordered graph, and let
A D A.�;C�/. Then XA is formal and H�.XA;Q/ is isomorphic to the exterior
algebra on the Q–vector space spanned by

fxv;ge j v 2 V; e 2 Eg

modulo the ideal generated by the following:

(i) (a) Whenever e0; e1; : : : ; em is a cycle such that t.e0/D t.e1/, h.e0/D h.em/,
and h.ei/D t.eiC1/ for i D 1; : : : ;m� 1 (as pictured below),

e1

e2

em

e0

we have

ge1
ge2
� � �gem

�

X
.�1/jI jCmCsI gei1

� � �geik
 ej1
� � � ejm�k�1

ge0
;

Algebraic & Geometric Topology, Volume 16 (2016)



Quadratic-linear duality and rational homotopy theory of chordal arrangements 2641

where the sum is taken over all I D fi1 < � � � < ikg ¨ f1; : : : ;mg with
complement fj1 < � � �< jm�kg,  e`

D xh.e`/ �xt .e`/ , and sI is the parity
of the permutation .i1; : : : ; ik ; j1; : : : ; jm�k/.

(b) If we again have a cycle, but have some arrows reversed, relabel the arrows
so that e1 < � � �< es < e0 , then take the relation from (i-a) and replace each
 ei

with � ei
and each gei

with �gei
� ei

whenever ei points in the
opposite direction of e0 .

(ii) .xh.e/ �xt .e/ /ge for e 2 E .

The presentation encodes both the combinatorics of the arrangement and the geometry
of the ambient space. The generators xv come from the cohomology of C� , while
the generators ge are similar to that of the Orlik–Solomon algebra for its rational
counterpart. However, the toric analogue of the Orlik–Solomon relation is much more
complicated.

2.4 Abelian arrangements

The elliptic analogue has a very different flavor, since the complement to an arrangement
is not formal. If A is a unimodular abelian arrangement (that is, all multiple intersections
of subvarieties in A are connected), the first author gave a presentation for a model
for XA [2, Theorem 4.1]. The presentation for graphic abelian arrangements is also
a special case of one given by Dupont and Bloch [7], which we state in the next
subsection.

Theorem 2.4.1 Let E be a complex elliptic curve. Let � D .V; E/ be an ordered
graph, and let ADA.�;E/. Define the differential graded algebra A.A/ as the exterior
algebra on the Q–vector space spanned by

fxv;yv;ge j v 2 V; e 2 Eg

modulo the ideal generated by the following relations:

(i)
P

j .�1/j ge1
� � � ygej

� � �gek
whenever fe1 < � � �< ekg is a cycle and

(ii) .xh.e/ �xt .e/ /ge and .yh.e/ �yt .e/ /ge for each e 2 E .

The differential is defined by putting dxv D dyv D 0 and

dge D .xh.e/ �xt .e/ /.yh.e/ �yt .e/ /:

The DGA .A.A/; d/ is a model for XA .

In a similar way to toric arrangements, this algebra encodes both the combinatorics of
the arrangement (with the Orlik–Solomon relation) and the geometry of the ambient
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space. The generators xv;yv come from the cohomology of E , while the ge are from
the Orlik–Solomon algebra of its rational counterpart.

2.5 Higher-genus curves

By the work of Dupont and Bloch, we have the following presentation for graphic
arrangements in the case that C is a complex projective curve of positive genus [7],
which we state here.

Theorem 2.5.1 Let C be a complex projective curve with genus g � 1. Define
the differential graded algebra A.A/ as the exterior algebra on the Q–vector space
spanned by

fxi
v;y

i
v;ge j v 2 V; e 2 E ; i D 1; : : : ;gg

modulo the ideal generated by the following relations:
(i)

P
j .�1/j ge1

� � � ygej
� � �gek

whenever fe1 < � � �< ekg is a cycle,

(ii) .xi
h.e/
�xi

t .e/
/ge and .yi

h.e/
�yi

t .e/
/ge for each e 2 E ,

(iii) (a) xi
vyj

v , xi
vxj

v and yi
vyj

v for i ¤ j , and
(b) xi

vyi
v �xj

v yj
v .

The differential is defined by putting dxi
v D dyi

v D 0 and

dge D x1
h.e/

y1
h.e/
Cx1

t .e/
y1

t .e/
�

gX
iD1

.xi
h.e/

yi
t .e/
Cxi

t .e/
yi

h.e/
/:

The DGA .A.A/; d/ is a model for XA .

Just as before, this algebra encodes both the combinatorics of the arrangement and
the geometry of the ambient space. The generators xi

v;y
i
v come from the cohomology

of C V , and we write these generators and relations here explicitly since we will use this
presentation to show that the algebra is Koszul in Section 3.5. A more elegant way of
writing the differential is to say that the generator ge maps to Œ�e � 2H 2.C V/, where
�e is the diagonal corresponding to the coordinates indexed by h.e/ and t.e/ in C V .

3 Koszulity

In this section, we will show that for chordal arrangements, the algebras presented in
Theorems 2.2.1, 2.3.1, 2.4.1, and 2.5.1 are Koszul. The cohomology of the comple-
ment of a chordal linear arrangement was first shown to be Koszul by Shelton and
Yuzvinsky [18]. In Section 3.2, we outline the proof presented by Yuzvinsky in [20].
The analogous results for toric and abelian arrangements, as well as for higher-genus
curves, are new and presented in Sections 3.3, 3.4, and 3.5, respectively.
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3.1 Chordal arrangements

Let C be C , C� , or a complex elliptic curve, and let � D .V; E/ be a simple graph.
If � is chordal (that is, every cycle with more than three vertices has a chord), then the
graphic arrangement A.�;C / is said to be chordal.

A perfect elimination ordering is an order on the vertices so that for all v 2 V , v is a
simplicial vertex (a vertex whose neighbors form a clique) in the graph

�v WD � �fv
0
2 V j v0 > vg:

Such an ordering exists if and only if � is chordal [9, page 851]. From now on, we
will use such an order when discussing chordal graphs.

We say a set S D fe1 < � � � < ekg is a broken circuit if there is some edge e with
e < e1 such that S [feg is a cycle. A set S � E is nbc (nonbroken circuit) if no subset
of it is a broken circuit. Let F � E be a flat of the matroid of � , and consider the
subgraph �ŒF � of � , which has edges F and vertices adjacent to edges in F . We say
that an nbc set S is associated to F if S � F and S spans �ŒF �.

Remark 3.1.1 In the case of linear, toric, or abelian arrangements, the essential
property that we need for our results is that the arrangement is unimodular (for Theorems
2.3.1 and 2.4.1) and supersolvable (for Theorems 3.3.3 and 3.4.3). We could state all
of our results in the language of unimodular and supersolvable arrangements; however,
this isn’t any more general than the language of chordal graphs. This is because Ziegler
showed that a matroid is unimodular and supersolvable if and only if it is chordal
graphic (Proposition 2.6 and Theorem 2.7 of [21]). In fact, since the edge set of ��v is
a modular hyperplane when v is a simplicial vertex [21, Proposition 4.4], the maximal
chain of modular flats in the matroid corresponds exactly to our ordering on the vertices.

3.2 Linear arrangements

Yuzvinsky proved that the Orlik–Solomon ideal has a quadratic Gröbner basis when A is
supersolvable (eg chordal), which implies that H�.XA/ is Koszul [20, Corollary 6.21].
We outline his technique as we will use similar techniques in the toric and abelian cases.

For ease of notation, whenever C D fe1 < � � �< ekg we will use gC WD ge1
� � �gek

and
@gC WD

P
j .�1/j ge1

� � � ygej
� � �gek

. Let � D .V; E/ be a chordal graph with a perfect
elimination ordering on the vertices (and edges).

First, Yuzvinsky showed that the set G D f@gC j C is a circuitg is a Gröbner basis for
the ideal I D hGi in the exterior algebra ƒ.ge j e 2 E/, with the degree-lexicographic
order such that ge < ge0 whenever e < e0 . The leading (or initial) term of @gC is
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In.@gC / D gC 0 where C 0 � C is the broken circuit associated to C . Recall that a
subset G of an ideal I is a Gröbner basis if In.I/ D hIn.G/i. To prove that this
is a Gröbner basis, Yuzvinsky used the fact that the set of monomials not in In.I/
form a basis for H�.XA/Dƒ.ge/=I . The set of monomials not in In.I/ is the basis
fgC j C is nbcg.

Moreover, since � is chordal, this Gröbner basis can be reduced to a quadratic Gröbner
basis. This is because we have the following property (which follows immediately from
Proposition 6.19 of [20]): S � E is an nbc set if and only if for all distinct e; e0 2S we
have h.e/¤ h.e0/. A circuit C is not nbc, hence there exist distinct edges e; e0 2 C

such that h.e/D h.e0/. But then fe; e0g contains (and hence is) a broken circuit, and
so it is contained in some circuit T with jT j D 3. Thus In.@gT / D gege0 divides
In.@gC /, and we can reduce our Gröbner basis to a quadratic one.

3.3 Toric arrangements

Since the complement to a chordal toric arrangement is formal (as in the linear case),
we want to show that its cohomology ring is Koszul. Our argument will be similar to
(but slightly more complicated than) the linear case. We will provide a Q–basis for
the cohomology ring, use it to show that our generating set of the ideal is a Gröbner
basis, and then reduce the Gröbner basis to a quadratic one.

Lemma 3.3.1 Let � D .V; E/ be a chordal graph. Let F be a flat of the arrangement
ADA.�;C�/, and let S be a nonbroken circuit associated to F . Define IF to be the
ideal generated by

fxh.e/ �xt .e/ j e 2 Fg

in ƒ.xv j v 2 V/ŠH�..C�/V/, and let HF D
T

e2F He � .C�/V .

(1) With the degree-lexicographic order and xv < xv0 whenever v < v0 , the set

GS WD fxh.e/ �xt .e/ j e 2 Sg

is a Gröbner basis for IF .

(2) The set fxi1
� � �xir

j h.e/ =2 fi1; : : : ; ir g for each e 2 Sg is a basis for

H�.HF /Šƒ.xv j v 2 V/=IF ;

and this basis does not depend on the choice of nbc set S .

Proof For linear relations, finding a Gröbner basis is equivalent to Gaussian elimina-
tion, and so consider the matrix MF whose rows are indexed by edges e 2 F , whose
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columns are indexed by the vertices in decreasing order, and whose entries are zero
except .MF /e;h.e/ D 1 and .MF /e;t .e/ D�1 (so that row e corresponds to the element
xh.e/ �xt .e/ ). Note that since jS j D rk.S/D rk.MF /, we may use row operations so
that the rows corresponding to elements of S remain unchanged while all other rows
are zero. Moreover, since jfh.e/ jHe 2 Sgj D jS j, the matrix is in row echelon form.
Thus, GS is a Gröbner basis for IF .

For part (2), by Gröbner basis theory, the set of monomials not in In.IF / form a basis
for H�.HF /. Since the ideal In.IF / is generated by In.GS / D fxh.e/ je 2 Sg, the
monomials not in In.IF / are precisely those stated. Since S is an nbc set associated
to F , it spans the subgraph �ŒF �. Thus fh.e/ j e 2 Fg D fh.e/ j e 2 Sg and the basis
given does not depend on S .

For ease of notation, we will use

xAgC WD xa1
� � �xar

gc1
� � �gck

;

where AD fa1 < � � � < ar g and C D fc1 < � � � < ckg. We will also denote relations
(i-a) and (i-b) from Theorem 2.3.1 by rC for a cycle C .

Lemma 3.3.2 Let � D .V; E/ be a chordal graph, and let ADA.�;C�/. Define P

to be the set of all monomials xAgC such that C is a nonbroken circuit and h.e/ =2A

for all e 2 C . Then P is a basis for H�.XA/.

Proof There is a decomposition into the flats of A [6, Remark 4.3(2)] (see also [2,
Lemma 3.1]), which is given as follows: For a flat F , let HF D

T
e2F He � .C�/V ,

and let VF be the vector space spanned by gC for all nbc sets C associated to F . Then

H�.XA/D
M

F

H�.HF /˝VF :

Denote H�.HF /˝VF by AF . To show that P is a basis for H�.XA/, it suffices to
show that

P \AF D fxAgC j h.c/ =2A for c 2 C; where C is an nbc set associated to Fg

is a basis for AF . But this follows from Lemma 3.3.1.

Theorem 3.3.3 Let A be a chordal toric arrangement. Then H�.XA/ is Koszul.

Proof Fix a degree-lexicographic order on H�.XA/ that is induced by our order on V .
That is, ge < ge0 if e < e0 , and xh.e/ < ge < xh.e/C1 . We will show that

G D f.xh.e/ �xt .e/ /ge; rS j e 2 E and S is a circuitg

is a Gröbner basis with this order which can be reduced to a quadratic Gröbner basis.
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We have
In.G/D fxh.e/ ge; gC j e 2 E and C is a broken circuitg:

Then P is the set of monomials that are not in hIn.G/i. Since hIn.G/i � In.I/, the
monomials that are not in In.I/ are contained in P . Since the set of monomials not in
In.I/ is a basis for H�.XA/ contained in the basis P , and H�.XA/ is finite dimen-
sional, we must have equality throughout. That means that the monomials in hIn.G/i
are exactly the monomials in In.I/. Since these ideals are generated by monomials,
they must be equal. Note that the relations of type (ii) are already quadratic. In a similar
way as in the linear case, we can reduce our relations rC to quadratic ones as well.

3.4 Abelian arrangements

Let �D .V; E/ be a chordal graph, and let E be a complex elliptic curve. For the chordal
abelian arrangement AD A.�;E/, consider the algebra A.A/ from Theorem 2.4.1
(ignoring the differential). In this subsection, we will prove that A.A/ is Koszul. The
proof is very similar to (but slightly more complicated than) the toric case.

Lemma 3.4.1 Let � D .V; E/ be a chordal graph. Let F � E be a flat of the arrange-
ment ADA.�;E/, and let S be a nonbroken circuit associated to F . Define IF to
be the ideal generated by

fxh.e/ �xt .e/ ;yh.e/ �yt .e/ j e 2 Fg

in ƒ.xv;yv j v 2 V/ŠH�.EV/, and let HF D
T

e2F He �EV .

(1) With the degree-lexicographic order and xv < yv < xv0 < yv0 whenever v < v0 ,
the set GS WD fxh.e/ �xt .e/ ;yh.e/ �yt .e/ j e 2 Sg is a Gröbner basis for IF .

(2) The set fxi1
� � �xir

yj1
� � �yjt

j h.e/ =2 fi1; : : : ; ir ; j1; : : : ; jtg for each e 2 Sg is
a basis for

H�.HF /Šƒ.xv;yv j v 2 V/=IF ;

and this basis does not depend on the choice of nbc set S .

Proof Consider the matrix MF from the proof of Lemma 3.3.1. Build a 2� 2 block
matrix, where the upper left and lower right blocks are copies of MF and the other
blocks are zero. In the upper half of the matrix, row e corresponds to xh.e/ � xt .e/ ,
and in the lower half of the matrix, row e corresponds to yh.e/ �yt .e/ . By a similar
argument as before, we can eliminate rows that don’t correspond to elements of S and
we’re left with a matrix in row echelon form. Thus, we have a Gröbner basis.

The proof of the second statement mimics the proof in the toric case, with

In.GS /D fxh.e/ ;yh.e/ j e 2 Sg:
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Lemma 3.4.2 Let � D .V; E/ be a chordal graph, and let A D A.�;E/. Define P

to be the set of all monomials xAyBgC such that C is a nonbroken circuit and
h.e/ =2 .A[B/ for all e 2 C . Then P is a basis for A.A/.

Proof By Lemma 3.1 in [2], there is a decomposition into the flats of A, given by the
following: For a flat F , let HF D

T
e2F He � EV , and let VF be the vector space

spanned by gC for all nbc sets C associated to F . Then

A.A/D
M

F

H�.HF /˝VF :

Denote H�.HF /˝ VF by AF . To show that P is a basis for A.A/, it suffices to
show that

P\AF DfxAyBgC jh.c/ =2.A[B/ for c2C; where C is an nbc set associated to Fg

is a basis for AF . But this follows from Lemma 3.4.1.

Theorem 3.4.3 Let A be a chordal abelian arrangement. Then A.A/ is Koszul.

Proof Fix a degree-lexicographic order on A.A/ that is induced by our order on V .
That is, ge < ge0 if e < e0 , and xh.e/ < yh.e/ < ge < xh.e/C1 < yh.e/C1 . We claim
that

G D f.xh.e/ �xt .e/ /ge; .yh.e/ �yt .e/ /ge; @gS j e 2 E and S is a circuitg

is a Gröbner basis with this order. Here,

In.G/D fxh.e/ ge; yh.e/ ge; gC j e 2 E and C is a broken circuitg;

and P from Lemma 3.4.2 is the set of monomials not in hIn.G/i. By an argument
similar to that in the toric case, we can conclude that G is a Gröbner basis. Moreover,
using the fact that we have a chordal graph, we can again reduce this (in the same way)
to a quadratic Gröbner basis, thus proving Koszulity.

3.5 Higher-genus curves

Let � D .V; E/ be a chordal graph, and let C be a complex projective curve of genus
g > 1. For the chordal arrangement AD A.�;C /, consider the algebra A.A/ from
Theorem 2.5.1 (ignoring the differential). In this subsection, we will prove that A.A/
is Koszul. The proof is very similar to that of the abelian case in Section 3.4.
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Lemma 3.5.1 Let � D .V; E/ be a chordal graph. Let F � E be a flat of the ar-
rangement AD A.�;C /, and let S be a nonbroken circuit associated to F . Denote
HF D

T
e2F He in C V . Then H�.HF /Šƒ.x

i
v;y

i
v j v 2 V; i D 1; : : : ;g/=IF where

IF is the ideal generated by the relations

(i) xi
h.e/
�xi

t .e/
and yi

h.e/
�yi

t .e/
for e 2 F ,

(ii) xi
vxj

v , yi
vyj

v and xi
vyj

v for i ¤ j , and

(iii) xi
vyi

v �xj
v yj

v .

This algebra has basis˚
x1

A1
� � �x

g
Ag

y1
B1
� � �y

g
Bg
j

Ai \Bi D∅ for i > 1I fh.e/ j e 2 Sg\ .Ai [Bi/D∅ for i D 1; : : : ;g
	
;

and this basis does not depend on the choice of S .

Proof Consider the exterior algebra modulo the first relation, which we can write as
the exterior algebra

ƒ.xi
v; yi

v j v =2 fh.e/ j e 2 Sg; i D 1; : : : ;g/

by a similar argument as in the proof of Lemma 3.4.1. Note that, as before,

fh.e/ j e 2 Sg D fh.e/ j e 2 Fg;

and so this does not depend on the choice of S . Now consider relations (ii) and (iii) in
this algebra. This is a Gröbner basis G with

In.G/D
˚
xi

vxj
v ; yi

vyj
v ; xi

vyj
v .i ¤ j /; xi

vyi
v .i > 1/; v =2 fh.e/ j e 2 Sg

	
:

The set of monomials in our proposed basis are exactly those not divisible by In.G/
and are hence a basis.

Lemma 3.5.2 Let � D .V; E/ be a chordal graph, and let A D A.�;C /. Define P

to be the set of all monomials x1
A1
� � �x

g
Ag

y1
A1
� � �y

g
Ag

gS such that S is a nonbroken
circuit, h.e/ =2 .Ai [Bi/ for all e 2 S and all i , and Ai \Bi D∅ for i > 1. Then P

is a basis for A.A/.

Proof There is again a decomposition into the flats of A, given by the following: For
a flat F , let HF D

T
e2F He � C V , and let VF be the vector space spanned by gS

for all nbc sets S associated to F . Then

A.A/D
M

F

H�.HF /˝VF :
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Denote H�.HF /˝ VF by AF . To show that P is a basis for A.A/, it suffices to
show that P \AF is a basis of AF . But this follows from Lemma 3.5.1.

Theorem 3.5.3 Let C be a complex projective curve of genus g > 1, and let A be a
chordal arrangement in C V . Then A.A/ is Koszul.

Proof Fix a degree-lexicographic order on A.A/ that is induced by our order on V .
We claim that

G D f.xi
h.e/
�xi

t .e/
/ge; .y

i
h.e/
�yi

t .e/
/ge; @gS ;R j e 2 E ; and S is a circuitg

is a Gröbner basis with this order, where R denotes the set of relations (iii-a) and (iii-b)
in A.A/. Here,

In.G/D fx1
v y1

v ; xi
h.e/

ge; yi
h.e/

ge; gB j B is a broken circuitg;

and P from Lemma 3.5.2 is the set of monomials not in hIn.G/i. By an argument
similar to the previous cases, we can conclude that G is a Gröbner basis. Moreover,
using the fact that we have a chordal graph, we can again reduce this (in the same way)
to a quadratic Gröbner basis, thus proving Koszulity.

4 Rational homotopy theory and quadratic duality

In this section, we collect definitions and results from rational homotopy theory, qua-
dratic duality, and the relationship between these two subjects. This section is meant
to provide a background on the necessary theory; the reader can skip ahead and refer
back as needed. Throughout this section, all DGAs will be assumed to be connective
(that is, their cohomology has a nonnegative grading). Except in Section 4.3, all DGAs
will be commutative (that is, graded-commutative).

4.1 Rational homotopy theory

The fundamental problem of rational homotopy theory is to understand the topology of
the Q–completion X!Q1.X / of a topological space X as defined in [4, Chapter I.4].
When X is a simply connected CW-complex, we have �iQ1.X /Š .�iX /˝Q and
H�.X;Q/ŠH�.Q1.X /;Q/, but in general the relationship between X and Q1.X /
is more complicated. Still, the homotopy type of Q1.X / is substantially simpler than
that of X as the results of [17; 19; 3] show that the rational homotopy theory of
connected Q–finite spaces is determined by the quasi-isomorphism type of a particular
DGA .APL.X /; d/ with H�.APL.X /; d/ Š H�.X;Q/. A DGA .A.X /; d/ is a
model for X if it is quasi-isomorphic to .APL.X /; d/. The space X is formal if
.H�.X;Q/; 0/ is a model for X .
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Let .B; d/ be a DGA and for n� 0 let .B.n/; d/ be the DG-subalgebra of B generated
by Bi for i �n. Define .B.�1/; d/ to be the DG-subalgebra generated by 12B0 . For
n� 0, there is an increasing filtration .B.n; q/; d/ on .B.n/; d/ defined inductively as
follows: Let .B.n; 0/; d/D .B.n� 1/; d/ and let B.n; qC 1/ be the DG-subalgebra
of B generated by B.n�1/ and fb 2Bnjdb 2B.n; q/g. A commutative DGA .B; d/

is minimal [3, Section 7.1] if it is connected, B is a free commutative graded algebra,
and B.n/D

S
q�0 B.n; q/ for all n.

Sullivan [19] showed that any homologically connected DGA has a minimal model that
is unique up to unnatural isomorphism. Write .M.X /; d/ for the minimal model of
.APL.X /; d/, which is called the minimal model of X . Every minimal DGA .M; d/

has a canonical augmentation determined by the augmentation ideal MC . This lets
us define the homotopy groups �qM D H q.MC=.MC �MC/; d/ of .M; d/. The
following theorem relates the homotopy groups of .M.X /; d/ to those of Q1.X /.

Theorem 4.1.1 [3, Theorem 12.8] There are natural bijections

�qQ1.X /Š HomQ.�
qM.X /;Q/:

They are group isomorphisms for q � 2.

In the next subsection we develop the technology to get more refined information
about �1X from the minimal model. This will be important because the spaces we are
interested in are rational K.�; 1/ spaces.

4.2 Complete Lie algebras and nilpotent completion of groups

When X is not simply connected, we don’t necessarily have the isomorphism

�1Q1.X /Š .�1X /˝Q:

To even make sense of the right hand side when �1X isn’t abelian, we need to review
the Malcev completion (or Q–nilpotent completion) yG ˝Q of a finitely presented
group G . Then we will survey some results that show that yG˝Q is entirely determined
by a complete Lie algebra L.G/, which we call the Malcev Lie algebra of G .

Recall that the lower central series of G is defined by setting �1G D G and then
�qC1G D ŒG; �qG�. As in [10, Section 13.2], we will use a recursive procedure to
define NiG˝Q for each nilpotent group NiG DG=�iG and then define

yG˝Q WD lim
 ��
.NiG/˝Q:
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First we see that N1G D 0 so we can define .N1G/˝QD 0. Now assume that we
have defined .Ni�1G/˝Q. The NiG fit into a series of exact sequences

0! �i�1=�iG!NiG!Ni�1G! 0;

which determine classes �i 2H 2.Ni�1G; �i�1=�iG/ (where �i�1=�iG is given a
trivial Ni�1G –module structure). It can be shown that

H 2.Ni�1; �i�1=�iG/˝QŠH 2
�
.Ni�1G/˝Q; .�i�1=�iG/˝Q

�
;

so the class �i ˝ 1 determines an extension of .Ni�1G/˝Q by .�i�1=�iG/˝Q.
We then define this extension to be NiG˝Q.

For a minimal DGA .M; d/ the analogue of the lower central series of �1X is an
increasing filtration on �1M defined by � i�1 D Im.�1M.1; i � 1/! �1M /.

Theorem 4.2.1 [3, Theorem 12.8] Let .M.X /; d/ be the minimal model of X . Then

HomQ
�
�1M.X /=� i�1M.X /;Q

�
Š .Ni�1X /˝Q:

There is a second construction of yG˝Q that proceeds through the theory of complete
Hopf algebras [17, Appendix A]. In particular, yG˝Q is isomorphic to the group of
group-like elements fx 2QŒG� j�x D x y̋xg in the completion of the group algebra
QŒG� with respect to the augmentation ideal. We can also define a complete Lie algebra
by taking primitive elements

L.G/ WD fx 2QŒG� j�x D 1 y̋xCx y̋ 1g

in QŒG�. Recall that there is a lower central series for Lie algebras defined by �1LDL

and �iC1LD ŒL; �iL�.

The following proposition tells us that understanding the Malcev Lie algebra L.G/

is enough to understand the quotients in the lower central series of G and also the
completion QŒG� with respect to the augmentation ideal.

Proposition 4.2.2 [1, Section 4]

(1) .�i=�iC1G/˝QŠ �i=�iC1. yG˝Q/Š �i=�iC1L.G/.

(2) U.L.G//ŠQŒG� as complete Hopf algebras.

In fact, even more is true. The power series defining log.x/ and ex converge in any
complete Hopf algebra and give an isomorphism between the Lie algebra of primitive
elements and the group of group-like elements [17, Appendix A.2]. Thus, L.G/

completely determines yG˝Q and vice versa.
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4.3 Nonhomogeneous quadratic duality

In this subsection, we describe and outline definitions and results on the nonhomoge-
neous quadratic duality [16; 15; 1] between quadratic differential graded algebras and
weak quadratic-linear algebras. This will give a tractable method for computing the
minimal model .M.X /; d/ and the Malcev Lie algebra L.�1.X // when we have a
quadratic model .A.X /; d/ for a space X .

First we need to establish some conventions on graded and filtered algebras. All graded
and filtered algebras will be locally finite dimensional. All gradings will be concentrated
in nonnegative degree and will be notated with superscripts. All N –filtrations will
be increasing, exhaustive, and indexed by subscripts. The tensor algebra on a k –
vector space V will be denoted by T .V /. It is graded by putting V in degree 1,
equipped with the increasing filtration induced by the grading, and augmented by the
map �W T .V /! k that sends V to 0.

A WQLA (weak quadratic-linear algebra) is an augmented algebra �W B! k , together
with a choice of k –subspace W , satisfying the following:

(i) 1 2W .

(ii) B is generated multiplicatively by W .

(iii) Let V D ker.�jW / and J D ker.T .V /! B/. The ideal J is generated by J2 .

A QLA (quadratic-linear algebra) is an augmented algebra �W B! k equipped with an
exhaustive N –filtration such that gr B is quadratic. In particular this implies that the
choice W D B1 makes B into a WQLA. A morphism of WQLAs f W .B; �;W /!

.B0; �0;W 0/ is a homomorphism of augmented algebras such that f .W /�W 0 . Mor-
phisms of QLAs coincide with homomorphisms of augmented filtered algebras.

A WQLA B has an associated quadratic algebra B.0/ which is defined by generators
V ŠW =k �1 subject to the relations I D J2=J1 . For QLAs, gr BŠB.0/ . We say that
a WQLA B is Koszul if the underlying quadratic algebra B.0/ is Koszul. Every Koszul
WQLA is in fact a QLA [15, Section 3.3]. Denote the category of weak quadratic-linear
algebras by WQLA, and denote its subcategory consisting of Koszul quadratic-linear
algebras by KLA.

A DGA A has an underlying graded algebra given by forgetting the differential. We
say that a DGA is quadratic (respectively Koszul) if its underlying algebra is quadratic
(respectively Koszul). Let QDGA be the category of quadratic differential graded algebras,
and denote its subcategory consisting of Koszul DGAs by KDGA.
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There is a fully faithful contravariant functor DWQLAW WQLA! QDGA that is defined on
objects as follows: Let .B; �;W / be a WQLA. As a graded algebra D.B; �;W /DB.0/!

is the quadratic dual to the quadratic algebra associated to B . Note that J2\T1.V /D 0

and I D J2=J1 . Thus we can represent J2 as the graph of a linear map

.�h;��/W I ! T1.V /D k˚V:

It is easy to see that J2 � ker.�/ implies that hD 0. The map

d1 D �
�
W D.B; �;W /1 Š V �! I� ŠD.B; �;W /2

can be extended to a differential on D.B; �;W /.

On the other hand, there is a contravariant functor DQDGAW QDGA! WQLA defined
on objects as follows: Let .A; d/ be a quadratic DGA and let V D A1 . We can
write A Š T .V /=J . The map d jA1 W V D A1! A2 D .V ˝ V /=J has a dual map
�W J? ! V � , where V � is the dual vector space to V and J? � V �˝ V � is the
annihilator of J . Then D.A; d/D .T .V �/=I; x�;WA/, where I is the ideal generated
by fx � �.x/ j x 2 J?g, x� is the augmentation induced by �W T .V �/ ! k , and
WA D k˚V � .

Proposition 4.3.1 [15, Section 2.5] The functors DWQLA and DQDGA restrict to a
contravariant equivalence of categories between KLA and KDGA.

KLA KDGA

WQLA QDGA

�

If .A; d/ is a commutative QDGA, then S2.V /� J and hence J? �ƒ2.V �/. This
implies that there is a Lie algebra LDL.A/ such that

D.A; d/Š .U.L/; �;WA/:

We call this Lie algebra the Lie algebra dual to A. Note that in general, WA ¤ k˚L,
so the induced filtration is not the order filtration.

Example 4.3.2 We start with a very simple example of the duality we consider in
Section 5. A model for the punctured elliptic curve is given by

ADƒ.x;y;g/=.xg;yg/

with differential defined by dx D dy D 0 and dg D xy . The QL-algebra dual to A is

B D T .a; b; c/=.ab� ba� c/:
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As augmented algebras BŠU.L/, where L is the free Lie algebra on the generators a

and b , but the filtration on B does not coincide with the order filtration on U.L/.

Let L be a finite-dimensional Lie algebra, and consider its universal enveloping algebra
U.L/ equipped with the order filtration. It is an easy exercise to see that the QDGA
dual to U.L/ is the graded algebra ƒ.L�/ equipped with differential dual to the Lie
bracket. This is often called the standard (or Chevalley–Eilenberg) complex of L and is
denoted by .�.L/; d/. We can extend this to the situation when the Lie algebra L� is
N –graded with each graded piece finite dimensional by defining the standard complex
of L� to be the restricted dual subalgebra �.L�/ WD

L
i;j .Œƒ

iL�j /� of ƒ.L�/ with
differential dual to the Lie bracket.

Given a minimal model .M.X /; d/ for a space X , we can reconstruct the Lie algebra
L.�1X / as follows: The commutative DGAs .M.1; i/; d/ are quadratic and hence
dual to Lie algebras Li . Moreover the inclusions M.1; i/!M.1; iC1/ induce maps
LiC1!Li .

Theorem 4.3.3 [10, Theorem 13.2] There are natural isomorphisms

Li ŠL.�1X /=�iL.�1X / and L.�1X /Š lim
 ��

Li :

We can also recover QŒ�1X � from .M.X /; d/. Let .C �;�.A; d/; d1; d2/ be the cobar
bicomplex of .A; d/ as defined in [1, Section 3] (also called the dual bar bicomplex in
[15, Section 3]) and let H�

b
.A; d/ be the cohomology of its totalization.

Lemma 4.3.4 [1, Lemma 3.1] Let .A; d/ be a QDGA. Then H 0
b
.A; d/ is naturally

isomorphic to D.A; d/. The increasing columns filtration on the cobar complex induces
the QLA structure on D.A; d/. The decreasing rows filtration on the cobar complex
induces the filtration by powers of the augmentation ideal of D.A; d/.

Proposition 4.3.5 [1, Proposition 4.0] Let .M.X /; d/ be the minimal model of X .
Then

QŒ�1X �ŠH 0
b
.M.X /; d/;

where the completion on the left is with respect to the augmentation ideal and the
completion on the right is with respect to the decreasing rows filtration.

Suppose that .A; d/ is a quadratic model for a space X . Let L be the Lie algebra dual
to A, and let L.�1X / be the Malcev Lie algebra of X . The following theorem tells
us how to obtain L.�1X / from L, and also how to compute the minimal model of X

when A is Koszul.
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Theorem 4.3.6 Let X be a space with a quadratic model .A.X /; d/, and let L D

L.A.X // be the Lie algebra dual to A.X /.

(1) U.L/ŠQŒ�1X �, where the completions are each with respect to the augmenta-
tion ideal. This isomorphism respects the Hopf algebra structures.

(2) xL Š L.�1X /, where the completion of L is with respect to the filtration by
bracket length.

(3) If A.X / is Koszul, and L is graded by bracket length with Li WDL=�iL finite
dimensional for all i , then .�.L�/; d/ is the minimal model of X .

(4) Under the hypotheses of (3), Q1.X / is a K.�; 1/ space.

Proof Since .A.X /; d/ is a model for X , there is a quasi-isomorphism from the
minimal model .M.X /; d/ to .A.X /; d/. This gives a map on the degree-zero co-
homology of their cobar complexes, H 0

b
.CA.X //!H 0

b
.CM.X //, which induces an

isomorphism on the associated graded quotients with respect to the rows’ filtration on
the complexes [1, Lemma 3.3a]. Thus, there is an isomorphism on the completions
with respect to the row filtration, H 0

b
.CA.X //ŠH 0

b
.CM.X //. Also by Lemma 4.3.4,

H 0
b
.CA.X // is the dual to A.X /, U.L/, and the rows’ filtration is the filtration by the

augmentation ideal. Hence H 0
b
.CA.X // Š U.L/. Moreover, Proposition 4.3.5 says

that H 0
b
.CM.X //ŠQŒ�1X �, completing the proof of (1).

Since the isomorphism in (1) respects the Hopf algebra structures, taking the primitive
elements on each side yields the isomorphism in (2).

The projection f W .U.L/; �;WA.X //! .U.Li/; �;Q˚Li/ is a map of QLAs, and so
it induces a map on the dual DGAs gW .�.Li/; di/! .A.X /; d/. The grading of L by
bracket length induces another grading on U.L/ and on U.Li/ which we call weight,
and the map f is an isomorphism for weight j < i . The weight gradings on U.L/ and
U.Li/ also induce weight gradings on Ext�U.L/.Q;Q/, Ext�U.Li /.Q;Q/, .A.X /; d/,
and .�.Li/; di/. The differentials on .A.X /; d/ and .�.Li/; di/ preserve weight and
hence we have a weight grading on H�.A.X /; d/ and H�.�.Li/; di/. Consider the
following diagram for weight j < i :

H�j .A; d/ H�j .�.Li/; di/

Ext�
U.L/;j

.Q;Q/ Ext�
U.Li /;j

.Q;Q/

g�

f �

Since A.X / and U.Li/ are Koszul, the maps on the right and left are both isomorphisms
[1, Lemma 3.2]. Since U.L/ and U.Li/ agree for weight j < i , one can see that f �
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is an isomorphism for weight j < i by comparing the minimal graded free resolutions
of Q considered as a U.L/–module and as a U.Li/–module. Thus, the map g is a
quasi-isomorphism for weight j < i . Since �.L�/ D lim

 ��i
�.Li/, we have a quasi-

isomorphism from the standard complex of L to A.X /. Moreover, �.L�/ is minimal
and is hence the minimal model of A.X /.

Finally, note that the minimal model �.L�/ is generated in degree 1. By Theorem 4.1.1,
this happens exactly when the space is rationally K.�; 1/.

5 Topology of XA

In this section, we will first review known results on the rational homotopy theory of
linear arrangements. These results will apply to the toric case as well, and so we focus
on proving the analogous results for abelian arrangements. In the projective case (with
curves of positive genus), we compute the quadratic dual to the QDGA .A.XA/; d/ for
a chordal arrangement A and give a combinatorial presentation for the Lie algebra dual
to A.XA/. This then gives us a combinatorial description of QŒ�1XA�, the Malcev
Lie algebra L.�1XA/, and the minimal model .M.XA/; d/. Finally, we will show
that XA is a rational K.�; 1/ space.

5.1 Linear and toric arrangements

Let �D .V; E/ be a chordal graph, and let ADA.�;C/. Papadima and Yuzvinsky [14]
describe the holonomy Lie algebra, L, of XA and show that it is the Lie algebra dual
to the cohomology ring H�.XA/. They also show that the standard complex of L is
the minimal model of XA [14, Propositions 3.1 and 4.4]. Moreover, Kohno [11] shows
that the holonomy Lie algebra is isomorphic to the Malcev Lie algebra L.�1XA/.

This Lie algebra L can be described as the free Lie algebra generated by ce for e 2 E ,
modulo the relations

(i) Œce; ce0 �D 0 if e and e0 are not part of a cycle of size 3, and

(ii) Œce1
; ce2
C ce3

�D 0 if fe1; e2; e3g is a cycle.

If X is a formal space, then H�.X / is Koszul if and only if X is rationally K.�; 1/

[14, Theorem 5.1]. In particular, XA is a rational K.�; 1/ space. Falk first showed that
XA is a rational K.�; 1/ space when studying the minimal model [8, Proposition 4.6],
but the generality of Papadima and Yuzvinsky’s arguments allows us to directly apply
them to toric arrangements, giving the following result:
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Theorem 5.1.1 Let � D .V; E/ be a chordal graph and ADA.�;C�/.
(1) The holonomy Lie algebra of XA is the Lie algebra dual to H�.XA/, denoted

by LDL.H�.XA//.

(2) The minimal model of XA is .�.L�/; d/, the standard complex of L.

(3) XA is a rational K.�; 1/ space.

However, the presentation for the Lie algebra is much more complicated.

5.2 Abelian arrangements and higher genus

For this subsection, fix a projective curve C of genus g > 0 and a chordal graph
� D .V; E/, and consider the chordal abelian arrangement ADA.�;C /. We will use
quadratic-linear duality to study the rational homotopy theory of XA .

Let L be the free Lie algebra generated by ai
v , bi

v and ce for v 2 V , e 2 E and
i D 1; : : : ;g , subject to the following relations:

(i) Œai
v; a

j
w �D Œb

i
v; b

j
w �D 0 for v;w 2 V with v ¤ w ,

(ii) (a) Œbi
h.e/

; ai
t .e/
�D Œbi

t .e/
; ai

h.e/
�D ce for e 2 E ,

(b) Œai
v; b

j
w �D 0 if v¤w and there is no edge connecting v and w , or if i ¤ j ,

(c)
Pg

iD1
Œai

v; b
i
v � D

P
v2fh.e/;t.e/g ce for v 2 V ,

(iii) (a) Œai
v; ce �D Œb

i
v; ce �D 0 for e 2 E and h.e/¤ v ¤ t.e/,

(b) Œai
h.e/
C ai

t .e/
; ce �D Œb

i
h.e/
C bi

t .e/
; ce �D 0 for e 2 E ,

(iv) (a) Œce; ce0 �D 0 whenever e and e0 are not part of a 3–cycle, and

(b) Œce1
; ce2
C ce3

�D 0 whenever fe1; e2; e3g is a cycle.

The following theorem generalizes the main theorem of [1]. Using the Lie algebra dual
to A.A/, this theorem gives a description of the Malcev Lie algebra of XA when A
is chordal.

Theorem 5.2.1 Let � D .V; E/ be a chordal graph, ADA.�;C /, and L be the Lie
algebra described above. Then we have the following:

(1) Consider the universal enveloping algebra U.L/ as a QLA whose first filtered
piece is spanned by ai

v; b
i
v; ce for v 2 V and e 2 E . Then U.L/ is a Koszul QLA

which is the nonhomogeneous quadratic dual to the Koszul DGA A.A/.
(2) U.L/ Š QŒ�1.XA/�, where the completions are each with respect to the aug-

mentation ideal. This isomorphism respects the Hopf algebra structures.

(3) xLŠL.�1.XA//, where the completion of L is with respect to the filtration by
bracket length.
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Proof (1) We can identify the QLA dual to A.A/ with L as follows. Let ai
v , bi

v , ce

be the dual basis to xi
v , yi

v , ge . The relations in the quadratic dual correspond to
quadratic elements of the basis from Lemma 3.5.2 since there is a natural isomorphism
�W I? Š ..V ˝V /=I/� . The four types of relations (i)–(iv) in the presentation for L

come from four types of basis elements for .V ˝V /=I :

(i) xi
vxj

w or yi
vyj

w for v ¤ w ,

(ii) xi
vyj

w for v ¤ w , or v D w and either i ¤ j or i D j D 1,

(iii) xi
vge or yi

vge for v ¤ h.e/,

(iv) ge1
ge2

for fe1; e2g not a broken circuit.

The further subtypes in the relations for L arise when computing ��1 . Since A.A/ is
Koszul by Theorem 3.4.3 or 3.5.3, U.L/ is also Koszul.

Statements (2) and (3) follow from Theorem 4.3.6.

Since A.A/ is a Koszul model for XA , Theorem 4.3.6 gives us the following proposition
and corollary, which describes the minimal model of XA and shows that XA is rationally
K.�; 1/.

Proposition 5.2.2 Let C be a complex projective curve of genus g � 1, � D .V; E/ a
chordal graph, ADA.�;C /, and L be the Lie algebra described above. Consider L�

with the grading by bracket length. Then the standard complex .�.L�/; d/ is the
minimal model for XA .

Corollary 5.2.3 Let C be a complex projective curve of genus g�1 and ADA.�;C /
a chordal arrangement. Then its complement XA is a rational K.�; 1/ space.

Remark 5.2.4 Not only is XA rationally K.�; 1/, but it is not hard to show that
XA is also K.�; 1/. As an easy case, a punctured projective curve is homotopic to
a wedge of circles and hence is K.�; 1/. Then by induction on jVj and using the
long exact sequence in homotopy of a fibration, one can show that if � D .V; E/ is
chordal, then the complement to A.� � v;C / is K.�; 1/. The fibration arises as the
restriction of the projection C V ! C V�v to XA.�;C /!XA.��v;C / , where v 2 V is
the maximum vertex in our perfect elimination ordering. The fiber of this fiber bundle
is homeomorphic to C n fk pointsg where k D jE n .E � v/j.

Remark 5.2.5 The fact that chordal arrangements are rationally K.�; 1/ gives us
a class of examples of abelian arrangements which are not formal. If we did have
formality, then Theorem 5.1 of [14] would imply that the cohomology ring is Koszul.
However, if the arrangement is chordal and has at least one cycle, the cohomology ring
is not even generated in degree one and hence cannot be Koszul.

Algebraic & Geometric Topology, Volume 16 (2016)



Quadratic-linear duality and rational homotopy theory of chordal arrangements 2659

We end with an example computation of the first few terms �.L=�iL/ of the minimal
model lim

 ��i
�.L=�iL/ for the complement of the elliptic braid arrangement of type A2 .

Example 5.2.6 Consider the case of an elliptic curve. The braid arrangement of
type A2 corresponds to the complete graph � on three vertices V D f1< 2< 3g with
edges labeled f12; 13; 23g.

The DGA A.A/ is the quotient of the exterior algebra ƒ.xv;yv;ge/ by the ideal
generated by

(i) .xi �xj /gij , .yi �yj /gij , and

(ii) g12g13�g12g23Cg13g23 ,

with differential dgij D .xi �xj /.yi �yj /.

Recall from the proof of Theorem 4.3.6 that the bracket length defines another grading
on U.L/, which also gives another grading on A.A/ (by assigning the “weight” of
a generator of A.A/ to be the bracket length of its dual in U.L/). Notice that there
is a quasi-isomorphism up to weight less than i between �.L=�iL/ and A.A/, for
each i , which in the limit induces the quasi-isomorphism between �.L/ and A.A/.

(1) L=�1LD 0 and hence �1 DQ, which is isomorphic to the weight-0 part of
A.A/.

(2) L=�2L is the vector space generated by av and bv so that �1 D ƒ.xv;yv/

with differential d2 D 0. This is isomorphic to the weight � 1 part of A.A/.

(3) �.L=�3L/ D ƒ.xv;yv;ge/ with differential d3W gij 7! .xi � xj /.yi � yj /,
which matches A.A/ up to weight 2.

(4) �.L=�4L/Dƒ.xv;yv;ge; ke;a; ke;b/, where

kea
WD Œah.e/ ; ce �

�
D�Œat .e/ ; ce �

�

and
ke;b WD Œbh.e/ ; ce �

�
D�Œbt .e/ ; ce �

�:

The differential d4 restricts to d3 on the subalgebra �.L=L.3//, and we also
have d4ke;a D .xh.e/ �xt .e/ /ge and d4ke;b D .yh.e/ �yt .e/ /ge .

(5) �.L=�5L/Dƒ.xv;yv;ge; ke;a; ke;b; ke;aa; ke;bb; ke;ab; kC / where

ke;aa WD Œah.e/; Œah.e/; ce ��
�
D�Œat .e/; Œah.e/; ce ��

�;

ke;bb WD Œbh.e/; Œbh.e/; ce ��
�
D�Œbt .e/; Œbh.e/; ce ��

�;

ke;ab WD Œah.e/; Œbh.e/; ce ��
�
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and
kC D Œce1

; ce2
�� D�Œce1

; ce3
�� D Œce2

; ce3
��

whenever fe1; e2; e3g is a cycle. The differential is defined by

d5ke;aa D .xh.e/�xt .e//ke;a;

d5ke;bb D .yh.e/�yt .e//ke;b;

d5ke;ab D .xh.e/�xt .e//ke;bC .yh.e/�yt .e//ke;a;

and
d5kC D ge1

ge2
�ge1

ge3
Cge2

ge3
:

References
[1] R Bezrukavnikov, Koszul DG–algebras arising from configuration spaces, Geom.

Funct. Anal. 4 (1994) 119–135 MR

[2] C Bibby, Cohomology of abelian arrangements, Proc. Amer. Math. Soc. 144 (2016)
3093–3104

[3] A K Bousfield, V K A M Gugenheim, On PL de Rham theory and rational homotopy
type, Mem. Amer. Math. Soc. 179 (1976) MR

[4] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Mathematics 304, Springer, Berlin (1972) MR

[5] E Brieskorn, Sur les groupes de tresses [d’après V I Arnol’d], from “Séminaire Bour-
baki, 24ème année (1971/1972)”, Lecture Notes in Math. 317, Springer, Berlin (1973)
[exposé] no. 401, 21–44 MR

[6] C De Concini, C Procesi, On the geometry of toric arrangements, Transform. Groups
10 (2005) 387–422 MR

[7] C Dupont, The Orlik–Solomon model for hypersurface arrangements, Ann. Inst. Fourier
(Grenoble) 65 (2015) 2507–2545 MR

[8] M Falk, The minimal model of the complement of an arrangement of hyperplanes,
Trans. Amer. Math. Soc. 309 (1988) 543–556 MR

[9] D R Fulkerson, O A Gross, Incidence matrices and interval graphs, Pacific J. Math.
15 (1965) 835–855 MR

[10] P Griffiths, J Morgan, Rational homotopy theory and differential forms, 2nd edition,
Progress in Mathematics 16, Springer, New York (2013) MR

[11] T Kohno, On the holonomy Lie algebra and the nilpotent completion of the fundamental
group of the complement of hypersurfaces, Nagoya Math. J. 92 (1983) 21–37 MR

[12] P Orlik, L Solomon, Combinatorics and topology of complements of hyperplanes,
Invent. Math. 56 (1980) 167–189 MR

Algebraic & Geometric Topology, Volume 16 (2016)

http://dx.doi.org/10.1007/BF01895836
http://msp.org/idx/mr/1262702
http://dx.doi.org/10.1090/proc/12937
http://dx.doi.org/10.1090/memo/0179
http://dx.doi.org/10.1090/memo/0179
http://msp.org/idx/mr/0425956
http://dx.doi.org/10.1007/978-3-540-38117-4
http://msp.org/idx/mr/0365573
https://eudml.org/doc/109814
http://msp.org/idx/mr/0422674
http://dx.doi.org/10.1007/s00031-005-0403-3
http://msp.org/idx/mr/2183118
http://dx.doi.org/10.5802/aif.2994
http://msp.org/idx/mr/3449588
http://dx.doi.org/10.2307/2000924
http://msp.org/idx/mr/929668
http://dx.doi.org/10.2140/pjm.1965.15.835
http://msp.org/idx/mr/0186421
http://dx.doi.org/10.1007/978-1-4614-8468-4
http://msp.org/idx/mr/3136262
http://dx.doi.org/10.1017/S0027763000020547
http://dx.doi.org/10.1017/S0027763000020547
http://msp.org/idx/mr/726138
http://dx.doi.org/10.1007/BF01392549
http://msp.org/idx/mr/558866


Quadratic-linear duality and rational homotopy theory of chordal arrangements 2661

[13] P Orlik, H Terao, Arrangements of hyperplanes, Grundl. Math. Wissen. 300, Springer,
Berlin (1992) MR

[14] S Papadima, S Yuzvinsky, On rational KŒ�; 1� spaces and Koszul algebras, J. Pure
Appl. Algebra 144 (1999) 157–167 MR

[15] L E Positsel’skiı̆, Nonhomogeneous quadratic duality and curvature, Funktsional. Anal.
i Prilozhen. 27 (1993) 57–66, 96 MR In Russian; translated in Funct. Anal. Appl. 27
(1993), 197–204

[16] S B Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39–60 MR

[17] D Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205–295 MR

[18] B Shelton, S Yuzvinsky, Koszul algebras from graphs and hyperplane arrangements,
J. London Math. Soc. 56 (1997) 477–490 MR

[19] D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math.
47 (1977) 269–331 MR

[20] S Yuzvinskiı̆, Orlik–Solomon algebras in algebra and topology, Uspekhi Mat. Nauk 56
(2001) 87–166 MR In Russian; translated in Russian Mathematical Surveys 56 (2001)
293–364

[21] G M Ziegler, Binary supersolvable matroids and modular constructions, Proc. Amer.
Math. Soc. 113 (1991) 817–829 MR

Department of Mathematics, University of Western Ontario
London, ON N6A 5B7, Canada

Department of Mathematics, University of Oregon
1380 Lawrence #2, Eugene, OR 97403, United States

cbibby2@uwo.ca, jhilburn@uoregon.edu

Received: 17 October 2014 Revised: 21 July 2015

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-3-662-02772-1
http://msp.org/idx/mr/1217488
http://dx.doi.org/10.1016/S0022-4049(98)00058-9
http://msp.org/idx/mr/1731434
http://mi.mathnet.ru/rus/faa/v27/i3/p57
http://msp.org/idx/mr/1250981
http://dx.doi.org/10.1007/BF01087537
http://dx.doi.org/10.1007/BF01087537
http://dx.doi.org/10.1090/S0002-9947-1970-0265437-8
http://msp.org/idx/mr/0265437
http://dx.doi.org/10.2307/1970725
http://msp.org/idx/mr/0258031
http://dx.doi.org/10.1112/S0024610797005553
http://msp.org/idx/mr/1610447
https://eudml.org/doc/103948
http://msp.org/idx/mr/0646078
http://dx.doi.org/10.4213/rm383
http://msp.org/idx/mr/1859708
http://dx.doi.org/10.1070/RM2001v056n02ABEH000383
http://dx.doi.org/10.1070/RM2001v056n02ABEH000383
http://dx.doi.org/10.2307/2048620
http://msp.org/idx/mr/1068134
mailto:cbibby2@uwo.ca
mailto:jhilburn@uoregon.edu
http://msp.org
http://msp.org




msp
Algebraic & Geometric Topology 16 (2016) 2663–2676

Quasiflats in CAT.0/ 2–complexes

MLADEN BESTVINA

BRUCE KLEINER

MICHAH SAGEEV

We show that if X is a piecewise Euclidean 2–complex with a cocompact isometry
group, then every 2–quasiflat in X is at finite Hausdorff distance from a subset Q

which is locally flat outside a compact set, and asymptotically conical.

20F65

1 Introduction

In a number of rigidity theorems for quasi-isometries, an important step is to determine
the structure of individual quasiflats; this is then used to restrict the behavior of quasi-
isometries, often by exploiting the pattern of asymptotic incidence of the quasiflats.
See Kleiner and Leeb [10; 9], Kapovich and Leeb [7], Eskin and Farb [5], Eskin [4],
and Behrstock, Kleiner, Minsky and Mosher [1]. In this paper, we study 2–quasiflats
in CAT.0/ 2–complexes, and show that they have a very simple asymptotic structure.

Theorem 1.1 Let X be a proper, piecewise Euclidean, CAT.0/ 2–complex with a
cocompact isometry group. Then every 2–quasiflat Q � X lies at finite Hausdorff
distance from a subset Q0 �X which is locally flat, ie locally isometric to R2 , outside
a compact set.

This result, and more refined statements appearing in later sections, are applied to 2–
dimensional right-angled Artin groups by the present authors [2]. The main application
is to show that if X;X 0 are the standard CAT.0/ complexes of 2–dimensional right-
angled Artin groups, then any quasi-isometry X !X 0 between them must map flats
to within finite Hausdorff distance of flats.

The strategy for proving Theorem 1.1 is to replace the quasiflat Q with a canonical
object that has more rigid structure. To that end, we first associate an element ŒQ�
of the locally finite homology group H lf

2
.X /, and then show that the support set

supp.ŒQ�/ of ŒQ� — the set of points x 2 X such that the induced homomorphism
H lf

2
.X /! H2.X;X nfxg/ is nontrivial on ŒQ� — is at bounded Hausdorff distance
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from Q. The support set Q0 WD supp.ŒQ�/ behaves much like a minimizing locally
finite cycle, and this leads to asymptotically rigid behavior, in particular asymptotic
flatness.

Remark 1.2 (1) Support sets were used implicitly in Kleiner and Leeb [9; 11].

(2) The paper Kleiner and Lang [8], which may be viewed as a more sophisti-
cated version of the results presented here, exploits similar geometric ideas
in asymptotic cones, to study k –quasiflats in CAT.0/ spaces which have no
.kC 1/–quasiflats.

(3) Many of the results of this paper (though not Theorem 1.1 itself) can be adapted
to n–quasiflats in n–dimensional CAT.0/ complexes.

(4) One may use the results in this paper to give a new proof that quasi-isometries
between Euclidean buildings map flats to within uniform Hausdorff distance of
flats [9]. This then leads to a (partly) different proof of rigidity of quasi-isometries
between Euclidean buildings.

Acknowledgments This research was supported by NSF grants DMS-1308178 and
DMS-1405899.

2 Preliminaries

CAT.�/ spaces

We recall some standard facts, and fix notation. We refer the reader to [3; 9] for more
detail. Our notation and conventions are consistent with [9].

Let X be a CAT.0/ space.

If x and y are in X , then xy �X denotes the geodesic segment with endpoints x;y .
If p is in X , we let †p.x;y/ denote the angle between x and y at p . This induces a
pseudodistance on X nfpg. By collapsing subsets of zero diameter and completing,
we obtain the space of directions †pX , which is a CAT.1/ space. The quotient map
yields the logarithm logpW X nfpg !†pX ; it associates to x 2X nfpg the direction
at p of the geodesic segment px . The tangent cone at p , denoted CpX , is a CAT.0/
space isometric to the cone over †pX .

Given two constant (not necessarily unit) speed rays 1; 2W Œ0;1/!X , their distance
is defined to be

lim
t!1

d.1.t/; 2.t//

t
:
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This defines a pseudodistance on the set of constant speed rays in X ; the metric space
obtained by collapsing zero diameter subsets is the Tits cone of X , denoted CT X . The
Tits cone is isometric to the Euclidean cone over the Tits boundary @T X . For every
p 2X , there are natural logarithm maps

logpW X ! CpX; logpW CT X !X;

logpW X nfpg !†pX; logpW @T X !†pX:

Definition 2.1 If Z is a CAT.1/ space, Y � Z and z 2 Z , then the antipodal set
of z in Y is

Ant.z;Y / WD fy 2 Y j d.z;y/D �g:

Recall that by our definition, every CAT.1/ space has diameter at most � .

If X is a CAT.0/ complex and p;x 2 X are distinct points, Y � †xX , then the
antipodal set Ant.logx p;Y / is the set of directions in Y which are tangent to extensions
of the geodesic segment px beyond x .

Locally finite homology

Let Z be a topological space. We recall that the k th locally finite (singular) chain group
C lf

k
.Z/ is the collection of (possibly infinite) formal sums of singular k –simplices,

such that for every compact subset Y � Z , only finitely many nonzero terms are
contributed by singular simplices whose image intersects Y . The usual boundary
operator yields a well-defined chain complex C lf

� .Z/; its homology is the locally finite
homology of Z .

Suppose K is a simplicial complex. Then there is a simplicial version of the locally
finite chain complex — the locally finite simplicial chain complex — defined by taking
(possibly infinite) formal linear combinations of oriented simplices of K , where every
simplex � of K touches only finitely many simplices with nonzero coefficients. The
usual proof that simplicial homology is isomorphic to singular homology gives an
isomorphism between the locally finite simplicial homology of K , and the locally
finite homology of its geometric realization jKj, when K is locally finite [6, 3.H,
Exercise 6].

The support set of � 2 H lf
k
.Z/ is the subset supp.�/ � Z consisting of the points

z 2Z for which the inclusion homomorphism

H lf
k .Z/!Hk.Z;Z nfzg/

is nonzero on � . This is a closed subset when Z is Hausdorff.
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Now suppose K is an n–dimensional locally finite simplicial complex, with poly-
hedron Z . Then the simplicial chain groups C lf

k
.K/ vanish for k > n, and hence

H lf
n .Z/ is isomorphic to the group of locally finite simplicial n–cycles Zlf

n.K/. The
support set of a locally finite simplicial n–cycle � 2Zlf

n.Z/ is the union of the closed
n–simplices with nonzero coefficient in � , as follows from excision.

3 Locally finite homology and support sets

The key results in this section are the geodesic extension property of Lemma 3.1,
and the asymptotic conicality result for support sets with quadratic area growth, in
Theorem 3.11. We remark that most of the statements (and proofs) in this section
extend with minor modifications to supports of n–dimensional locally finite homology
classes in n–dimensional CAT.0/ complexes.

In this section X will be a proper, piecewise Euclidean, CAT.0/ 2–complex.

The geodesic extension property and metric monotonicity

The fundamental property of support sets is the extendability of geodesics.

Lemma 3.1 Suppose � 2H lf
2
.X /, and let S WD supp.�/�X be the support of � . If

p is in X and x is in S , the geodesic segment px may be prolonged to a ray in S :
there is a ray x� � S which fits together with px to form a ray p� .

Proof Let  W Œ0;L�!X be the unit speed parametrization of px , and let O W I!X

be a maximal extension of  such that O .I n Œ0;L�/ � S , where I is an interval
contained in Œ0;1/. Since S is a closed subset of the complete space X , either
I D Œ0;R� for some R<1, or I D Œ0;1/.

Suppose I D Œ0;R� for R <1, and let y WD O .R/. Consider the closed ball B WD

B.y; r/, where r is small enough that B is isometric to the r –ball in the tangent
cone CyX . Note that this implies that S \B is also a cone. Let � D Œ�BC ��, where
�B 2 C lf

2
.X / is carried by B (and is therefore a finite 2–chain), � 2 C lf

2
.X / is carried

by X nB.y; r/, and @�B D�@� is carried by @B \S . Consider the singular chain �
obtained by coning off @�B at p . Then @�D @�B , so the contractibility of X implies
that � is homologous to �B relative to @�. Thus �C� belongs to the homology class
of � . Therefore y lies in the carrier of �, for otherwise �C � would be carried by
X nfyg, contradicting the fact that y 2 supp.�/. Thus there is a point z 2 @B\S such
that the segment pz passes through y . Since B \S is a cone, we have yz � S . This
implies that O is not a maximal extension, which is a contradiction.
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Another way to argue the last part of the proof is to observe that �B projects under
logy W X nfyg ! †yX to a nontrivial 1–cycle � in †yX . Therefore, there must be
a direction v 2†yS making an angle � with logy p , since otherwise � would lie in
the open ball of radius � centered at logy p , which is contractible. Then O may be
extended in the direction v , which contradicts the maximality of O .

Remark 3.2 The geodesic extension property has a flavor similar to convexity, but
note that support sets need not be convex. To obtain an example, let Z be the union of
two disjoint circles Y1;Y2 of length 2� with a geodesic segment of length less than �
(so Z is a “pair of glasses”), and let X be the Euclidean cone over Z . Then the cone
over Y1[Y2 is a support set, but is not convex.

Corollary 3.3 (monotonicity and lower density bound) Suppose � 2 H lf
2
.X / and

S WD supp.�/. We have the following properties:

(1) Metric monotonicity For all 0 < r � R, p 2 X , if ˆW X ! X is the map
which contracts points toward p by the factor r=R, then

(3.4) B.p; r/\S �ˆ.B.p;R/\S/:

(2) Monotonicity of density For all 0� r �R,

(3.5)
Area.B.p; r/\S/

r2
�

Area.B.p;R/\S/

R2
:

(3) Lower density bound For all p 2 S , r > 0,

(3.6) Area.B.p; r/\S/� �r2;

with equality only if B.p; r/\S is isometric to an r –ball in R2 .

Here Area.Y / refers to 2–dimensional Hausdorff measure, which is the same as
Lebesgue measure (computed by summing over the intersections with 2–dimensional
faces).

Remark 3.7 Since the map ˆ in Corollary 3.3(1) has Lipschitz constant r=R, the in-
clusion (3.4) can be viewed as a much stronger version of the usual monotonicity formula
for minimal submanifolds in nonpositively curved spaces, which corresponds to (3.5).

Proof of Corollary 3.3 Equation (3.4) follows from Lemma 3.1.

Assertion (2) follows from assertion (1) and the fact that ˆ has Lipschitz constant r=R.

If p 2 S , then � determines a nonzero class †p� 2H1.†pX /, by the composition

H2.X;X nfpg/
@
�!H1.X nfpg/

log†pX

�! H1.†pX /:
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Since †pX is a CAT.1/ graph, supp.†p�/ contains a cycle of length at least 2� . If
r > 0 is small, then B.p; r/\S is isometric to a cone of radius r over supp.†p�/, and
therefore has area at least �r2 . Now (3.5) implies (3.6). Equality in (3.6) implies that
supp.†p�/ is a circle of length 2� , B.p; r0/\S is isometric to an r0 –ball in R2 for
small r0> 0, and that the contraction map ˆ is similarity. This implies assertion (3).

The corollary implies that the ratio

Area.B.p; r/\S/

r2

has a (possibly infinite) limit A as r!1 , which is clearly independent of the basepoint.
When it is finite we say that � has quadratic growth. In this case, Corollary 3.3 implies
that, for all p 2X and r > 0,

(3.8)
Area.B.p; r/\S/

r2
�A:

Asymptotic conicality

We will use Lemma 3.1 and Corollary 3.3 to see that quadratic growth support sets are
asymptotically conical, provided the CAT.0/ 2–complex X satisfies a mild additional
condition. To see why an additional assumption is needed, consider a piecewise
Euclidean CAT.0/ 2–complex X homeomorphic to R2 , whose singular set consists
of a sequence of cone points fpig tending to infinity, where †pi

X is a circle of length
2� C �i , and

P
i �i <1. Then X is the support set of the locally finite fundamental

class ŒX � of the 2–manifold X , but is not locally flat outside any compact subset of X .

To exclude this kind of behavior, one would like to know, for instance, that the cone
angle 2� is isolated among the set of cone angles of points in X . When dealing
with general CAT.0/ 2–complexes, one needs to know that if p 2 X and v 2†pX

is a direction whose antipodal set Ant.v; supp.�// in a 1–cycle � 2 Z1.†pX / has
small diameter, then v is close to a suspension point of � . This condition will hold
automatically if X admits a cocompact group of isometries. The precise condition we
need is the following.

Definition 3.9 A family F of CAT.1/ graphs has isolated suspensions if for every
˛ > 0 there is a ˇ > 0 such that if � is in F , � 2Z1.�/ is a 1–cycle, v is in � , and

diam.Ant.v; supp.�// < ˇ;

then supp.�/ is a metric suspension and v lies at distance less than ˛ from a pole
(ie suspension point) of supp.�//. A CAT.0/ 2–complex X has isolated suspensions
if the collection of spaces of directions f†xX gx2X has isolated suspensions.
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Remark 3.10 It follows from a compactness argument that any finite collection of
CAT.1/ graphs has the isolated suspensions property. In particular, any CAT.0/ 2–
complex with a cocompact isometry group has the isolated suspension property.

For the remainder of this section X will be a piecewise Euclidean, proper CAT.0/
2–complex with isolated suspensions.

Theorem 3.11 Suppose � 2 H lf
2
.X / has quadratic area growth, and S WD supp.�/.

Then for all p 2X there is an r0 <1 such that:

(1) If x is in S nB.p; r0/, then S is locally isometric to a product of the form
R�W near x , where W is an i –pod (ie a cone over a finite set). In particular,
S is locally convex near x .

(2) The map S nB.p; r0/! Œr0;1/ given by the distance function from p is a
fibration with fiber homeomorphic to a finite graph with all vertices of valence at
least 2.

(3) S is asymptotically conical in the following sense. For every p 2X and every
�>0, there is an r <1 such that if x2SnB.p; r/, then the angle (at x ) between
the geodesic segment xp and the R–factor of some local product splitting of S

is less than � .

(4) If the area growth of S is Euclidean, ie

Area.B.p; r/\S/

�r2
! 1 as r !1;

then S is a 2–flat.

Before entering into the proof of this theorem, we point out that the proof is driven
by the following observation. The locally finite cycle � is an area minimizing object
in the strongest possible sense: any compact piece � solves the Plateau problem with
boundary condition @� (ie filling @� with a least area chain); in fact, because of the
dimension assumption, there is only one way to fill @� with a chain. Then we adapt
the standard monotonicity formula from minimal surface theory to see that the support
set is asymptotically conical. Roughly speaking the idea is that the ratio

Area.B.p; r/\ supp.�//
r2

is nondecreasing and bounded above, and hence has limit as r !1. For large r ,
one concludes that the monotonicity inequality is nearly an equality, which leads to
Theorem 3.11(2).
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Proof of Theorem 3.11 We begin with a packing estimate.

Lemma 3.12 For all � > 0 there is an N such that for all r � 0, the intersection
B.p; r/\S does not contain an �r –separated subset of cardinality greater than N .

Proof Take � < 1, and suppose the points

x1; : : : ;xk 2 B.p; r/\S

are �r –separated. Then the collection˚
B
�
xi ;

1
2
�r
�
\S

	
1�i�k

is disjoint, is contained in B.p; 2r/\S , and by Corollary 3.3(2) it has area at least
k�.1

2
�r/2 . Thus (3.8) implies the lemma.

Lemma 3.13 For all ˇ > 0 there is an r <1 such that if x 2 S nB.p; r/, then

(3.14) diam.Ant.logx p; †xS// < ˇ:

Proof The idea is that quadratic area growth bounds the complexity of the support
set from above, which implies that on sufficiently large scales, it looks very much like
a metric cone. On the other hand, failure of (3.14) implies that there is a pair of rays
leaving p which coincide until x , and then branch apart with an angle at least ˇ ;
when x is far enough from p , this will contradict the approximately conical structure
of S at large scales.

Pick ı; � > 0, to be determined later.

By Lemma 3.12 there is finite upper bound on the cardinality of a ır –separated subset
sitting in B.p; r/ \ S , where r ranges over Œ1;1/. Let N be the maximal such
cardinality, which will be attained by some ır0 –separated subset fx1; : : : ;xN g �

B.p; r0/\ S , for some r0 . Applying Lemma 3.1, let 1; : : : ; N W Œ0;1/! X be
constant speed geodesics emanating from p , such that i.r0/D xi , and i.t/ 2 S for
all t 2 Œr0;1/, 1� i �N . The functions

(3.15) t 7!
d.i.t/; j .t//

t

are nondecreasing, and hence for all r 2 Œr0;1/ the collection

1.r/; : : : ; N .r/

is ır –separated, and by maximality, it is therefore a ır –net in B.p; r/\S as well.
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Using the monotonicity (3.15) again, we may find r1 2 Œr0;1/ such that for all
1� i; j �N , and every r 2 Œr1;1/,

(3.16)
d.i.r/; j .r//

r
C� > lim

t!1

d.i.t/; j .t//

t
:

Now suppose x 2SnB.p; r1/, and v1; v2 2Ant.logx p; †xS/ satisfy †x.v1; v2/�ˇ .
The idea of the rest of the proof is to invoke Lemma 3.1 to produce two rays emanating
from p which agree until they reach x , but then diverge at angle at least ˇ ; since
both rays will be well-approximated by one of the i , their separation behavior will
contradict (3.16).

Let r2 WD d.p;x/. By Lemma 3.1 we may prolong the segment px into two rays
p�1;p�2 , such that log†x

�i D vi , and p�i nB.p; r2/ � S . Let �1; �2 be the unit
speed parametrizations of p�1 and p�2 respectively. Applying triangle comparison,
we may choose an r3 � r2 such that

(3.17) d.�1.r3/; �2.r3// > r3 cos 1
2
ˇ:

Pick i; j such that

d.i.r3/; �1.r3// < ır3 and d.j .r3/; �2.r3// < ır3:

By triangle comparison, we have

d.i.r3/; j .r3//� d.�1.r3/; �2.r3//� 2ır3 > r3 cos 1
2
ˇ� 2ır3

while

d.i.r2/; j .r2//� d.i.r2/; �1.r2//C d.�1.r2/; �2.r2//C d.�2.r2/; j .r2//

� 2ır2;

since d.�1.r2/; �2.r2//D 0. On the other hand, by (3.16)

� >
d.i.r3/; j .r3//

r3

�
d.i.r2/; j .r2//

r2

� cos 1
2
ˇ� 4ı:

When �C 4ı < cos 1
2
ˇ this gives a contradiction.

The lemma together with the definition of isolated suspensions implies (1) and (3) of
Theorem 3.11. Part (4) follows from Corollary 3.3.

To prove Theorem 3.11(2), we apply the definition of isolated suspensions with ˛0D
�
4

and let ˇ0 > 0 be the corresponding constant; then we apply Lemma 3.13 with ˇD ˇ0 ,
and let r0 be the resulting radius. For each x 2X nB.p; r0/, the space of directions
†xS is a metric suspension, and the direction logx p 2†xX makes an angle at most
�
4

from a pole of †xS .
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We call a point x 2SnB.p; r0/ singular if its tangent cone is not isometric to R2 ; thus
singular points in S nB.p; r0/ have tangent cones of the form R�W , where W is an
i –pod with i > 2, and the set of regular points forms an open subset which carries the
structure of a flat Riemannian manifold. Using a partition of unity, we may construct a
smooth vector field � on the regular part of S nB.p; r0/ such that:
� �.x/ makes an angle at least 3�

4
with logx p at every regular point x .

� For each singular point x 2 S nB.p; r0/ whose space of directions is the metric
suspension of an i –pod, if we decompose a small neighborhood B.x; �/\S

into a union
C1[ � � � [Ci ;

where the Cj are Euclidean half-disks of radius � which intersect along a
segment � of length 2� , then the restriction of � to Cj extends to a smooth
vector field �j on the manifold with boundary Cj , and �j .y/ is a unit vector
tangent to �D @Cj for every y 2 �.

Now a standard Morse theory argument using a reparametrization of the flow of �
implies that

dpW S nB.p; r0/! Œr0;1/

is a fibration, and that the fiber is locally homeomorphic to an i –pod near each point
x 2 S nB.p; r0/ whose space of directions is the metric suspension of an i –pod. Here
i � 2.

Asymptotic branch points

The next result will be used when we consider support sets associated with quasiflats.

Lemma 3.18 Let � 2H lf
2
.X / be a quadratic growth class with support S , pick p 2X ,

and let
dpW S nB.p; r0/! Œr0;1/

be the fibration as in Theorem 3.11(2). If the fiber has a branch point, then for all
R<1, the support set S contains an isometrically embedded copy of an R–ball

(3.19) BR WD B.z;R/�R�W;

where W is an infinite tripod, and z 2R�W lies on the singular line.

Proof Let � W Y ! S nB.p; r0/ be the universal covering map. Since S nB.p; r0/ is
homeomorphic to G � Œ0;1/, the covering map � is equivalent to the product of the
universal covering zG! G with the identity map Œ0;1/! Œ0;1/. Since G contains a
branch point, we may find a proper embedding �W V ! zG of a tripod V into zG .
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Consider the map  given by the composition

V � Œ0;1/! zG � Œ0;1/! G � Œ0;1/' S nB.p; r0/:

We may put a locally CAT.0/ metric on V � .0;1/ by pulling back the metric from
S nB.p; r0/. For each of the three rays i � V whose union is V , the metric on
i � .0;1/ is locally isometric to a flat metric with geodesic boundary. It follows from
a standard argument that if y 2 V � .0;1/ lies on the singular locus and  .y/ lies
outside B.p; r0CR/, then the R–ball in V � .0;1/ is isometric to BR as in (3.19).
Since  is a locally isometric map of a CAT.0/ space into a CAT.0/ space, it is an
isometric embedding.

4 Quasiflats in 2–complexes

In this section, X is a piecewise flat proper CAT.0/ 2–complex with isolated suspen-
sions.

Theorem 4.1 Let Q�X be an .L;A/–quasiflat. Then there is a nontrivial quadratic
growth, locally finite homology class � 2 H lf

2
.X / whose support set S � X is at

Hausdorff distance at most D DD.L;A/ from Q, with the following properties:
(1) For every p 2 X , there is an r0 2 Œ0;1/ such that S nB.p; r0/ is locally

isometric to R2 .

(2) S is asymptotically conical, in the following sense. For every p 2 X and
every � > 0, there is an r1 2 Œr0;1/ such that if x 2 S nB.p; r1/, then the
angle at x between the geodesic segment xp and S is less than � , and the map
S nB.p; r1/! Œr0;1/ given by the distance function from p is a fibration with
circle fiber.

(3) If the area growth of S is Euclidean, ie

Area.B.p; r/\S/

�r2
! 1 as r !1;

then S is a 2–flat.

Proof Using a standard argument, we may assume without loss of generality (and at
the cost of some deterioration in quasi-isometry constants which will be suppressed),
that Q is the image of a C –Lipschitz .L;A/–quasi-isometric embedding f W R2!X ,
where C D C.L;A/. The mapping f is proper, and hence induces a homomorphism
f�W H

lf
2
.R2/! H lf

2
.X / of locally finite homology groups. We define S to be the

support set of the image of the fundamental class of R2 under f� :

(4.2) S WD supp.f�.ŒR2�//� Im.f /DQ:
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Lemma 4.3 There are constants D DD.L;A/ and aD a.L;A/ such that:

(1) The Hausdorff distance between S and Q is at most D .

(2) For every p 2X , the area of B.p; r/\S is at most a.1C r/2 .

Proof Using the uniform contractibility of R2 , one may construct a proper map
gW Q!R2 such that d.g ıf; idR2/ is bounded by a function of .L;A/. In particular,
the composition of proper maps

R2 f
�!Q

g
�!R2

is properly homotopic to idR2 . Therefore .g ıf /�.ŒR2�/D ŒR2�, so

supp..g ıf /�.ŒR2�//DR2:

On the other hand
supp..g ıf /�.ŒR2�//� g.S/;

which implies that QD Im.f / is contained in a controlled neighborhood of S .

The last assertion follows from the fact that S �Q and Q has quadratic area growth,
being the image of a Lipschitz quasi-isometric embedding.

Therefore Theorem 3.11 applies to S , and by part (2), we get a fibration

dpW S nB.p; r0/! Œr0;1/

whose fiber is homeomorphic to a finite graph G all of whose vertices have valence at
least 2. If G had a branch point, we could apply Lemma 3.18, contradicting the fact
that S is a quasiflat. Thus S is locally isometric to R2 outside B.p; r0/.

5 Square complexes

In this section, X is a locally finite CAT.0/ square complex with isolated suspensions.

Remark 5.1 It is not difficult to show that if F is the collection of CAT.1/ graphs �
all of whose edges have length �

2
, then F has isolated suspensions. In particular, any

CAT.0/ square complex has isolated suspensions. However, we will not need this fact
for our primary applications, so we omit the proof.

Theorem 5.2 Let � 2 H lf
2
.X / be a quadratic growth locally finite homology class

whose support set S is a quasiflat. Then there is a finite collection fH1; : : : ;Hkg of
half-plane subcomplexes contained in S , and a finite subcomplex W � S such that

S DW [
�S

i Hi

�
:
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Proof Pick p 2 X and � 2
�
0; �

2

�
. Let r1 be as in Theorem 4.1, and set Y1 WD

S nB.p; r1/: Then Y1 is a complete flat Riemann surface with concave boundary
@Y1 D S.p; r0/\Y1 . Now pick ˛ 2

�
0; �

8

�
, r2 2 Œr1;1/, and let Y2 WD S nB.p; r2/.

Lemma 5.3 Provided r2 is sufficiently large (depending on ˛), for every x 2 Y2 , and
every semicircle � �†xS such that

d.�; logx p/ > ˛;

there is a subset Z � S isometric to a Euclidean half-plane, such that †xZ D � .

Proof Let y be in Y2 and v 2†yS be a tangent vector such that †y.v; logy p/ > ˛ .
Provided r2 sin˛ > r1 , there will be a unique geodesic ray v � S starting at y with
direction v ; this follows from a continuity argument, since triangle comparison implies
that any geodesic segment with initial direction v remains outside B.p; r1/.

If � �†xS is a semicircle (ie a geodesic segment of length � ) and †x.�; logx p/ is
less than ˛ , then the union of the rays v , for v 2 � , will form a subset of S isometric
to a Euclidean half-plane.

Continuing the proof of Theorem 5.2, we now assume that r2 is large enough that
Lemma 5.3 applies.

Our next step is to construct a finite collection of half-planes in S . Consider the
boundary @Y2 . This is the frontier of the set K WD S \ B.p; r2/ in S . Since K

is locally convex near @K D @Y2 , it follows that for each x 2 @Y2 , there is a well-
defined space of directions †xK , which consists of the directions v 2 †xS such
that †x.v; logx p/� �

2
. Also, there is a normal space �xK �†xS consisting of the

directions v 2 †xS making an angle at least �
2

with †xK . When � is small, the
angle †x.logx p; †xS/ is small, and hence ��†x.v; logx p/ will be small for every
v 2 �xK . In particular, when � is small, for every v 2 �vK there will be a semicircle
�v �†xS such that:

(1) �v makes an angle at least �
8

with logx p .
(2) If Zv�S is the subset obtained by applying Lemma 5.3 to �v , then the boundary

of Zv is parallel to one of the sides of a square P � S which contains x .
(3) The angle between @Zv and v is at least �

8
.

We let Hv�Zv be the largest half-plane subcomplex of Zv . It follows from (2) that Hv

may be obtained from Zv by removing a strip of thickness less than 1 around @Zv .

Now let H be the collection of all half-planes obtained this way, where x ranges over
@Y2 , and v 2 �xK . Observe that this is a finite collection, since each H 2 H has
a boundary square lying in B.p; 1C r2/, and two half-planes H;H 0 2 H sharing a
boundary square must be the same.
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We now claim that Sn
S

H2H H is contained in B
�
p; r2C sec �

8

�
. To see this note that

if y 2 Y2 , then there is a shortest path in S from y to K . Since S is locally convex,
this path will be a geodesic segment yx in X , where x 2 @Y2 . Let v WD logx y 2†xS .
Then yx is contained in Zv , and in view of condition (3) above, all but an initial
segment of length at most sec �

8
will be contained in Hv �Zv . The claim follows.
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String homology, and closed geodesics
on manifolds which are elliptic spaces

JOHN JONES

JOHN MCCLEARY

Let M be a closed, simply connected, smooth manifold. Let Fp be the finite field
with p elements, where p > 0 is a prime integer. Suppose that M is an Fp –elliptic
space in the sense of Félix, Halperin and Thomas (1991). We prove that if the
cohomology algebra H�.M;Fp/ cannot be generated (as an algebra) by one element,
then any Riemannian metric on M has an infinite number of geometrically distinct
closed geodesics. The starting point is a classical theorem of Gromoll and Meyer
(1969). The proof uses string homology, in particular the spectral sequence of Cohen,
Jones and Yan (2004), the main theorem of McCleary (1987), and the structure
theorem for elliptic Hopf algebras over Fp from Félix, Halperin and Thomas (1991).

55P50; 55P35, 55T05, 58E10

1 Introduction

We work over a ground field F and use F as the coefficients of homology and co-
homology. Our main applications are in the case where this ground field is the finite
field Fp with p elements, where p > 0 is a prime integer.

Let HL�.M / denote the string homology algebra of a closed, simply connected mani-
fold M . String homology is a graded commutative F –algebra defined as follows. Let
LM be the free loop space of M . In [4], Chas and Sullivan define the string product

Hp.LM /˝Hq.LM /!HpCq�n.LM /;

where n is the dimension of M . This product is studied from the point of view of
homotopy theory in Cohen and Jones [5]. The string homology algebra is defined by
setting HLs.M /DHsCn.LM / and using the string product to define the product. It is
proved that this string product makes HL�.M / into a graded commutative F –algebra
in both [4] and [5].

Our main result about string homology is the following theorem. In the statement, �X

refers to the based loop space of X .
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2678 John Jones and John McCleary

Theorem 1.1 Let M be a simply connected, closed manifold. Suppose there is a
constant C and an integer K such thatX

i�n

dim Hi.�M IFp/� C nK :

Let K0 be the minimal exponent which can occur in this bound. Then the string
homology algebra HL�.M IFp/ contains a polynomial algebra P over Fp on K0

generators and HL�.M IFp/ is a finitely generated free module over P .

If H�.�M IFp/ satisfies the growth hypotheses in the statement of this theorem, then
we say that H�.�M IFp/ has polynomial growth. The main application of this theorem
is the following result.

Theorem 1.2 Let M be a simply connected, closed manifold. Suppose H�.�M IFp/

has polynomial growth and the algebra H�.M IFp/ cannot be generated by one element.
Then for any metric on M , there is an infinite number of geometrically distinct closed
geodesics on M .

To obtain this result from Theorem 1.1 we use the Gromoll–Meyer theorem relating
closed geodesics and the topology of the free loop space. A metric on M defines a
function, the energy function, on LM given by

 7!

Z
S1

h 0.t/;  0.t/i dt:

If  WS1!M is a closed geodesic parametrised by arc length then  is a critical point
of the energy function, as is the loop n defined by n.z/D  .z

n/. Furthermore every
critical point of the energy function is of the form n , where  is a closed geodesic
parametrised by arc length; see Bott [3].

The circle S1 acts on LM by rotating loops and the energy function is S1 –invariant.
It follows that any closed geodesic  parametrised by arc length generates an infinite
number of critical S1 orbits of the energy function. In general these orbits will not be
isolated, but if there are only a finite number of geometrically distinct closed geodesics
these orbits will be isolated.

We use the following terminology for graded vector spaces V . If each Vi is finite-
dimensional we say V has finite type. If V has finite type then we say it has finite
dimension if dim Vi is zero for all but a finite number of i , infinite dimension if dim Vi

is non-zero for an infinite number of i , and doubly infinite dimension if the sequence of
numbers dim Vi is unbounded. Note that polynomial growth with exponent at least 2 is
the same as doubly infinite dimension. Using Morse–Bott theory, Gromoll and Meyer
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showed in [12] that the relation between critical points of the energy function and
closed geodesics leads to the following theorem.

Theorem 1.3 Let M be a simply connected closed manifold. If H�.LM IF/ has
doubly infinite dimension for some field F , then for any metric on M there is an
infinite number of geometrically distinct closed geodesics on M .

If �1.M / is finite, then we can apply this theorem to the universal cover zM of M .
If �1.M / is infinite and �1.M / has an infinite number of conjugacy classes, then
LM has an infinite number of components. Given a metric on M we can choose a
minimiser of the energy function in each component of LM and it follows that this
metric has an infinite number of geodesics; see Ballmann, Thorbergsson and Ziller [1].
This leaves the case where �1.M / is infinite but only has a finite number of conjugacy
classes. Very little is known about this case; see Bangert and Hingston [2].

In [20] Sullivan and Vigué-Poirrier took up the case where FDQ and, as an application
of the theory of minimal models in rational homotopy, proved the following theorem.

Theorem 1.4 Suppose M is a closed, simply connected manifold and the algebra
H�.M;Q/ is not generated by one element. Then H�.LM;Q/ is doubly infinite.

There are other interesting applications of the Gromoll–Meyer theorem in Halperin
and Vigué-Poirrier [13] and Ndombol and Thomas [18]. Both these papers assume
connectivity hypotheses of the following type: if M is a simply connected closed
manifold of dimension n, then there are explicitly given constants a¤ 0 and b for
which Hi.M IF/D 0 for 2� i � r , where r � anC b .

A very important ingredient in the proof of Theorem 1.2 is the following theorem from
McCleary [14].

Theorem 1.5 Let X be a simply connected space such that the algebra H�.X IFp/

cannot be generated by one element. Then H�.�X IFp/ is doubly infinite.

Indeed the main idea which led to this paper is to use string homology with coefficients
in Fp to convert this theorem into a result about string homology. The first step in this
process is to use the spectral sequence of Cohen, Jones and Yan [6] to relate string
homology and the homology of the based loop space. The second is to use the structure
theorems for elliptic Hopf algebras over Fp from Félix, Halperin and Thomas [9] to
obtain the information about the E2 –term of this spectral sequence required for the
proof.
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This paper is set out as follows. In Section 2 we deal with those aspects of string
homology our main results require. The primary objective in Section 2 is to prove
Theorem 2.1. In Section 3 we give applications of Theorem 2.1. For example we
explain how this theorem applies to the main examples of McCleary and Ziller [15;
16]. In Section 4 we summarise the results from [9] we need and complete the proofs
of the main theorems. Finally in Section 5 we give applications of the main theorem to
homogeneous spaces.

Acknowledgements Both authors would like to acknowledge the support of the Isaac
Newton Institute in Cambridge during the Grothendieck–Teichmüller Groups, Defor-
mations, and Operads (GDO) programme in 2013 where this project began.

2 String homology

In [6, Theorem 1], it is shown that there is a multiplicative second quadrant spectral
sequence .Es;t

r ; d
s;t
r / with

d s;t
r W E

s;t
r !Es�r;tCr�1

r ; E
s;t
2
DH�s.M /˝Ht .�M /;

and converging to HL�.M /. We will refer to it as the CJY spectral sequence.

Here second quadrant means that E
s;t
r is zero if s > 0 or t < 0. Multiplicative means

that each term E
�;�
r is a bigraded algebra, dr is a bigraded derivation of the product,

and the E1 term of the spectral sequence is the bigraded algebra associated to a
filtration of HL�.M /. The edge homomorphism hW HL�.M /!E

0;�
1 �H�.�M / is

the natural algebra homomorphism hW HL�.M /!H�.�M /. This gives us a method
of relating the algebras H�.�M / and HL�.M /.

The simplest way to construct this spectral sequence is to use the string topology
spectrum S.M /DLM�TM introduced in [6]. The skeletal filtration of M induces
a filtration of LM using the evaluation map LM !M , and this in turn induces a
filtration of S.M /. The spectral sequence is the spectral sequence obtained from this
filtration of S.M /.

Our main application of this spectral sequence is the following theorem.

Theorem 2.1 Let M be a closed oriented manifold. Then HL�.M IFp/ contains a
polynomial algebra over Fp on k generators if and only if the centre of H�.�M IFp/

contains a polynomial algebra over Fp on k generators.

The first step is to prove the following lemma.
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Lemma 2.2 Let M be a closed manifold. The kernel of the ring homomorphism
hW HL�.M /!H�.�M / is a nilpotent ideal.

Proof Let
0D F�n�1

� F�n
� � � � � F0

D HL�.M /

be the (negatively indexed) filtration of HL�.M / coming from the CJY spectral se-
quence. Here n is the dimension of the manifold M . Then

F�iF�j
� F�i�j

and so .F�1/nC1 D 0. The proposition follows since F�1 is exactly the kernel of the
edge homomorphism of this spectral sequence.

Next we give a simple but very useful lemma.

Lemma 2.3 Suppose M is a closed, simply connected manifold of dimension n. Let
C be the centre of the algebra H�.�M IFp/. Then for any x 2 C ,

xpn�2

2 im
�
hW HL�.M IFp/!H�.�M IFp/

�
:

Proof Since h is the edge homomorphism in the CJY spectral sequence we know that
an element y 2H�.�M IFp/DE

0;�
2

is in the image of h if and only if it is an infinite
cycle in this spectral sequence. Let x 2 H�.�M IFp/D E

0;�
2

be a central element.
Now x may or may not be a cycle for d2 in the CJY spectral sequence. But d2 is a
derivation and x is central so it follows that

d2xp
D pxp�1d2x:

Since the ground field is Fp it follows that d2xp D 0. It may or may not be the case
that xp is a cycle for d3 but the same argument shows that xp2

D .xp/p is a cycle
for d3 . Because M has dimension n, it follows that dr D 0 for r � nC 1. Since
M is simply connected H 1.M IFp/DH n�1.M IFp/D 0. It follows that there are at
most n�2 differentials on E

0;�
2

which could be non-zero, starting with d2 . Repeating
this argument at most n� 2 times shows that xpn�2

2E
0;�
2

is an infinite cycle and it
follows that xpn�2

is in the image of h.

We will also need the following result of [11].

Theorem 2.4 The image of hW HL�.M IFp/ ! H�.�M IFp/ is contained in the
centre of H�.�M;Fp/.

To prove Theorem 2.1 we simply combine the previous three results.
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Proof of Theorem 2.1 The kernel of hW HL�.M IFp/!H�.�M IFp/ is a nilpotent
ideal, and the image of h is contained in the centre of H�.�M IFp/. So if HL�.M IFp/

contains a polynomial algebra on k generators, then so does the centre of H�.�M IFp/.
On the other hand, if the centre of H�.�M IFp/ contains the polynomial algebra
Fp Œx1; : : : ;xk �, then Lemma 2.3 shows that every element of the subalgebra of the
E2 –term of the CJY spectral sequence

Fp Œ.x1/
pn�2

; : : : ; .xk/
pn�2

��H�.�M IFp/DE
0;�
2

is an infinite cycle. It follows that HL�.M IFp/ contains a polynomial algebra on
k generators.

3 Applications of Theorem 2.1

3.1 Sphere bundles over spheres

Let M be a k –sphere bundle over S l . If l is odd then M has the same cohomology
ring as the product of spheres Sk �S l and the theorem of Sullivan and Vigué-Poirrier,
Theorem 1.4, shows that any metric on M has an infinite number of closed geodesics.
If l is even and k ¤ l � 1 the same argument applies. We are left with the case of a
2n� 1 sphere bundle over S2n . So let QDQ2n;e denote the sphere bundle

S2n�1
!Q! S2n

with Euler class e 2Z. We choose an orientation of S2n to identify the Euler class with
an integer. If e ¤ 0 then the rational cohomology ring of Q2n;e is generated by one
element and so we will not be able to use the theorem of Sullivan and Vigué-Poirrier.

There are three special cases to deal with, 2nD 2; 4; 8. In these dimensions there is a
2n� 1 sphere bundle over S2n with Euler class ˙1 but the non-existence of elements
with Hopf invariant one shows that these are the only dimensions in which this can
happen. In these special cases Q2n;˙1 is a homotopy sphere and we cannot use the
Gromoll–Meyer theorem for any coefficient field F . The remaining cases are dealt
with by the following theorem.

Proposition 3.1 If e ¤ 0;˙1, for any metric on Q D Q2n;e , there is an infinite
number of closed geodesics on Q.

Proof Choose a prime p such that p divides e . Standard basic calculations in
algebraic topology show that

H�.QIFp/DEŒa2n�1; b2n� and H�.�QIFp/D P Œu2n�2; v2n�1�:
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Here E denotes the exterior algebra over Fp and P denotes the polynomial algebra
over Fp . The subscripts are the degrees of the elements. If p D 2, then the algebra
P Œu2n�2; v2n�1� is not graded commutative since v2

2n�1
¤ 0. However the centre

of H�.�QIFp/ is precisely P Œu2n�2; v
2
2n�1

�. Theorem 2.1 shows that HL�.Q/
contains a polynomial algebra on two generators and so H�.LQIFp/ has doubly
infinite dimension. The Gromoll–Meyer theorem shows that for any metric on Q, there
is an infinite number of distinct closed geodesics.

3.2 The Grassmannian of oriented two planes in R2nC1

Let GC
2
.R2nC1/ denote the Grassmannian of oriented 2–planes in R2nC1 . Recall the

following two calculations from the theory of characteristic classes.

Suppose 2 is a unit in the coefficient field F . Then

(1) H�.GC
2
.R2nC1/IF/D P Œx2�=.x

2n
2
/,

(2) H�.GC
2
.R2nC1/IF2/D P Œx2�=.x

n
2
/˝E.y2n/.

So the algebra H�.GC
2
.R2nC1/IFp/ can be generated by a single generator for p¤ 2,

but in the case p D 2 it requires at least two generators. Another standard calculation
in algebraic topology shows that

H�.�GC
2
.R2nC1/IF2/DE.u1/˝P Œv2n�2�˝P Œw2n�1�ŠH�.�.CPn

�S2n/IF2/:

Evidently this contains a central polynomial algebra generated by two elements. The
following theorem follows from the Gromoll–Meyer theorem in the case of F2 coeffi-
cients.

Theorem 3.2 Any metric on GC
2
.R2nC1/ has an infinite number of closed geodesics.

3.3 The list of examples from McCleary–Ziller

There is a list in McCleary and Ziller [15], based on the work of [19], consisting of one
representative from each diffeomorphism class of homogeneous spaces G=K , where
G is a compact connected Lie group and K is a connected closed subgroup, with two
properties:

� G=K is not diffeomorphic to a sphere, a real, complex, or quaternionic projective
space, nor is it diffeomorphic to the Cayley projective plane.

� The algebra H�.G=KIQ/ is generated by one element.
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In other words it is the list of examples of homogeneous spaces to which we would
like to apply the theorem of Gromoll–Meyer, but cannot do so over the ground field Q.
This list contains two infinite families:
� The Stiefel manifold V2.R

2nC1/ of two frames in R2nC1 . This is a 2n� 1

sphere bundle over S2n with Euler class 2, and Proposition 3.1 shows that any
metric on V2.R

2nC1/ has an infinite number of geometrically distinct closed
geodesics.

� The Grassmannian of oriented 2–planes in R2nC1 . Theorem 3.2 shows that any
metric on this manifold has an infinite number of geometrically distinct closed
geodesics.

There are another seven homogeneous spaces on this list. The first two are SU.2/=SO.3/
and Sp.2/=SU.2/, and the other five are homogeneous spaces for G2 . It is possible to
go through these seven examples by direct calculations with loop spaces. However, we
will deal with them in Section 5 as examples of our main theorem.

4 The proof of Theorem 1.1 and Theorem 1.2

We next need results contained in a series of interrelated papers by Félix, Halperin,
Lemaire and Thomas on the homology of based loop spaces. We give a brief summary
of the results we need.

4.1 Elliptic Hopf algebras

Let � be a graded Hopf algebra over the ground field F . The lower central series of
� is the sequence

� D �.0/
� �.1/

� �.2/
� � � � � �.n/

� � � � ;

where �.iC1/D Œ�; �.i/�. By definition � is nilpotent if �.s/DF for some s . Although
the definition of the �.i/ depends only on the algebra structure of � , it is straightforward
to check that the �.i/ are normal Hopf subalgebras of � .

We say that � is connected if �i D 0 when i < 0 and �0 D F , and that � is finitely
generated if it is finitely generated as an algebra. From [9] we have the following
definition.

Definition 4.1 Fix a ground field F . A Hopf algebra � over F is elliptic if it is
connected, co-commutative, finitely generated, and nilpotent.

Note that the only part of the definition of an elliptic Hopf algebra which refers to the
coproduct is the condition that it is co-commutative.
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Here are some examples. In these examples we assume that the Hopf algebras in
question are connected and co-commutative over a fixed ground field F .

(1) If � is a finite-dimensional Hopf algebra, then � is elliptic. To prove this first
note that since � is connected �.i/ is .iC1/–connected. Since � is finite-
dimensional it follows that �.i/ D F for sufficiently large i . So � is nilpotent.
Since � is finite, it is finitely generated.

(2) If � is commutative, then � is elliptic if and only if � is finitely generated.

(3) Let L be a Lie algebra. Let U.L/ be the universal enveloping algebra of L. This
becomes a Hopf algebra by defining the coproduct to be the unique coproduct
which makes the elements of L primitive. Then U.L/ is an elliptic Hopf algebra
if and only if L is a finitely generated nilpotent Lie algebra.

The structure theorem for elliptic Hopf algebras proved in [9] tells us that essentially
these examples generate the class of all elliptic Hopf algebras by taking extensions.

Theorem 4.2 Let F be a field and let � be a connected, finitely generated, co-
commutative Hopf algebra over F .
� If F has characteristic zero, then � is elliptic if and only if � DU.L/, where L

is a finitely generated, nilpotent Lie algebra over F .
� If F has characteristic p¤ 0, then � is elliptic if and only if it contains a finitely

generated, central Hopf subalgebra C , such that �==C is finite.

The statement of the second clause of the theorem is not quite the same as the statement
of [9, Theorem B(ii)] but it is easily seen to be equivalent to it. From [17] we know
that � is isomorphic to C ˝�==C as a C algebra. Since C is finitely generated and
commutative it follows from a theorem of Borel [17] that as an algebra C is isomorphic
to P ˝A, where P is a polynomial algebra over F in a finite number of variables and
A is a finite-dimensional algebra. It follows that � is isomorphic to P ˝A˝�==C

as a P module. Since both A and �==C are finite-dimensional it follows that � is a
finitely generated free module over P . This is the condition given in [9].

4.2 Depth and the Gorenstein condition

Let A be a graded augmented algebra over the ground field F . We will assume that A

is connected. We can form the vector spaces

Exti;j
A
.F ;A/:

The depth of A, depth A, is defined as follows:

depth AD inffs j Exts;�
A
.F ;A/¤ 0g:

Algebraic & Geometric Topology, Volume 16 (2016)



2686 John Jones and John McCleary

If n D depth A, then Exts;t
A
.F ;A/ D 0 for s < n and there is an integer t such that

Extn;t
A
.F ;A/¤0. In particular the depth of A could be infinite, that is, Exts;t

A
.F ;A/D0

for all .s; t/.

The graded algebra A is Gorenstein if there is a pair of integers .n;m/ such that
� Exts;t

A
.F ;A/D 0 if .s; t/¤ .n;m/,

� Extn;m
A

.F ;A/D F .

The definitions of the Gorenstein condition and depth first appeared in classical com-
mutative ring theory. Gorenstein rings generalise complete intersection rings.

It is straightforward to check that
� depth A˝B D depth AC depth B ,
� A˝B is Gorenstein if and only if both A and B are Gorenstein.

In the case of a polynomial algebra F Œx� with one generator of degree k ,

Ext1;k
F Œx�

.F ;F Œx�/D F ; Exts;t
F Œx�

.F ;F Œx�/D 0 .s; t/¤ .1; k/:

In the case where ADF Œx�=.xn/ is a truncated polynomial with generator of degree k ,

Ext0;�k.n�1/
A

.F ;A/D F ; Exts;t
A
.F ;A/D 0 .s; t/¤ .0;�k.n� 1//:

The most elementary method for doing these calculations is to use the minimal resolution
of F over F Œx� and the minimal resolution of F over F Œx�=.xn/. It follows that both
the algebras F Œx� and F Œx�=.xn/ are Gorenstein, and

depth F Œx�D 1; depth F Œx�=.xn/D 0:

The following lemma is [8, Proposition 1.7].

Lemma 4.3 Suppose A is an infinite tensor product of algebras. Then the depth of A

is infinite.

Suppose � is a connected Hopf algebra that is commutative as an algebra. By a theorem
of Borel [17, Theorem 7.11] it follows that � is isomorphic as an algebra to a tensor
product of polynomial algebras and truncated polynomial algebras. If � is not finitely
generated then Lemma 4.3 shows that � has infinite depth. If � is finitely generated,
then it has finite depth and it is isomorphic to P˝A, where P is a polynomial algebra
with mD depth� variables and A is a finite tensor product of truncated polynomial
algebras. This proves Theorem 4.2 in the case where � is commutative. One way to
think of the proof of Theorem 4.2 is that it works by reducing the general case to the
commutative case by using the condition that � is nilpotent.

The results of [7] and [8] show the relevance of the Gorenstein condition to topology.
We summarise these results as the following theorem.
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Theorem 4.4 Let X be a simply connected finite complex.

(1) The Hopf algebra H�.�X IF/ has finite depth. In fact, depth X � LSCat X ,
where LSCat X denotes the Lyusternik–Schnirelman category of X .

(2) If the Hopf algebra H�.�X IF/ is Gorenstein, then X is a Poincaré duality
space.

In [8] Félix, Halperin and Thomas extend the Gorenstein condition to differential graded
algebras and show that a finite complex X is a Poincaré duality space if and only if
the cochain algebra S�.X IF/ is a Gorenstein differential graded algebra. While it is
true that if H�.X IF/ is Gorenstein then so is S�.X IF/, the reverse implication is
not true; see [8, Examples 3.3].

If X is a finite complex, then we know that H�.�X IF/ has finite type and finite
depth. The following theorem gives some useful practical ways to deduce, in addition,
that H�.�X IF/ is elliptic. For the proof see [9, Theorem C].

Theorem 4.5 Suppose � is a connected, co-commutative Hopf algebra over F of
finite type and that � has finite depth. Then the following are equivalent:

(1) � is elliptic.

(2) � is nilpotent.

(3) � has polynomial growth.

(4) � is Gorenstein.

4.3 The proof of Theorem 1.1

If M is a closed, connected, oriented manifold of finite dimension, then H�.�M IFp/

is connected and co-commutative, and it has finite type and finite depth. We are
assuming it has polynomial growth. It follows from Theorem 4.5 that H�.�M IFp/

is elliptic. Therefore, from Theorem 4.2, it is a finitely generated free module over a
central subalgebra P that is a polynomial algebra on a finite number, say l , of variables.
It follows that H�.�M IFp/ has polynomial growth with exponent l and indeed l is
the minimal exponent which can occur in the inequality for polynomial growth. In the
notation of Theorem 1.1, l DK0 . This proves Theorem 1.1.

4.4 The proof of Theorem 1.2

It follows from Theorem 4.2 that if � is an elliptic Hopf algebra over Fp , then � is
doubly infinite if and only if the centre of � contains a polynomial algebra on two
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generators. Now let M be a simply connected closed manifold satisfying the hypotheses
of Theorem 1.2. Then, as in the proof of Theorem 1.1, it follows that H�.�M IFp/ is
an elliptic Hopf algebra. Suppose in addition that the algebra H�.M IFp/ cannot be
generated by one element. From Theorem 1.5, it follows that H�.�M IFp/ is doubly
infinite and so the centre of H�.�M IFp/ contains a polynomial algebra on two
generators. By Theorem 2.1 it follows that HL�.M IFp/ contains a polynomial algebra
on two generators and therefore H�.LM IFp/ is doubly infinite. The Gromoll–Meyer
theorem, Theorem 1.3, completes the proof.

5 Application to homogeneous spaces

The following theorem is [10, Example 3.2].

Theorem 5.1 Let G be a simply connected, compact Lie group and K a connected,
closed subgroup of G . Then the homogeneous space G=K is Fp elliptic for any
prime p .

The proof uses the fibration

�G!�.G=K/!K

for which the fundamental group �1.K/ acts trivially on the groups H�.�GIFp/.
Then a Leray–Serre spectral sequence argument may be applied because K and �G

are both elliptic and hence have polynomial growth.

Now return to the list from [15]. The seven examples of homogeneous spaces in this
list not covered by Proposition 3.1 and Theorem 3.2 are Fp elliptic spaces for any
prime p by Theorem 5.1. Furthermore, in each case, there is a prime p such that
the cohomology algebra of the homogeneous space cannot be generated by a single
element. Therefore by Theorem 1.2 any metric has an infinite number of geometrically
distinct closed geodesics.
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Relative left properness of colored operads

PHILIP HACKNEY

MARCY ROBERTSON

DONALD YAU

The category of C–colored symmetric operads admits a cofibrantly generated model
category structure. In this paper, we show that this model structure satisfies a relative
left properness condition, ie that the class of weak equivalences between †–cofibrant
operads is closed under cobase change along cofibrations. We also provide an example
of Dwyer which shows that the model structure on C–colored symmetric operads is
not left proper.

18D50, 55U35; 18G55, 55P48, 18D20

1 Introduction

Operads are combinatorial devices that encode families of algebras defined by multilin-
ear operations and relations. Common examples are the operads A, C and L whose
algebras are associative, associative and commutative, and Lie algebras, respectively.
Colored operads are a bit more exotic, with what is likely the most famous example
being Voronov’s “Swiss-cheese operad”, which models the genus-zero moduli spaces
that appear in open-closed string theory. Other examples of colored operads1 encode
complicated algebraic structures such as operadic modules, enriched categories, and
even categories of operads themselves. The study of model category structures on
categories of colored operads has found many recent applications, including the recti-
fication of diagrams of operads by Berger and Moerdijk, [4] and the construction of
simplicial models for 1–operads by Cisinski and Moerdijk [7].

Our goal in this paper is to further the study of the Quillen model category structure of
colored operads initiated by the second author [26], Cisinski and Moerdijk [7], and
Caviglia [6]. Specifically, we are interested in understanding if the category of colored,
symmetric operads is left proper; ie we wish to know if weak equivalences between
all colored, symmetric operads are closed under cobase change along cofibrations.
The main result of this paper is to say that this is not the case, but we give sufficient

1Colored operads are also sometimes called (symmetric) multicategories in the literature.
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conditions on a monoidal model category M in order for the model category structure
of M–enriched, colored, symmetric operads to be relatively left proper, ie for the
class of weak equivalences between †–cofibrant operads to be closed under cobase
change along cofibrations (Theorem 3.1.10). Recall that in any model category, the
class of weak equivalences between cofibrant objects is closed under cobase change
along cofibrations. The class of †–cofibrant operads is much larger than the class
of cofibrant operads; in particular, this class includes small examples such as the
associative operad A. If one is instead willing to consider the category of reduced (or
constant-free) operads (those satisfying P

�
c
¿

�
D¿), then Batanin and Berger [1] prove

a strict left properness result.

The question of (relative) left properness for categories of symmetric operads has many
immediate applications. As an example, left properness makes it easier to identify ho-
motopy pushouts since, in a left proper model category, any pushout along a cofibration
is a homotopy pushout. Relative left properness allows us to make similar statements.

Furthermore, understanding when left properness holds allows us to describe the rectifi-
cation of homotopy coherent diagrams and weak maps between homotopy O–algebras,
as first proposed by Berger and Moerdijk in [4, Section 6]. More explicitly, it is
well known that the structure of a model category on the category of M–enriched
operads is important for the study of up-to-homotopy algebras over an operad such as
A1–algebras and E1–algebras which are respectively associative and commutative
“up to homotopy.” The deformations of algebraic structures and morphisms between
algebraic structures are controlled by up-to-homotopy resolutions of (colored) operads.
These resolutions include the W-construction of Boardman and Vogt [5], the cobar-bar
resolutions of Ginzburg and Kapranov [12] and Kontsevich and Soibelman [19], and
the Koszul resolutions of Fresse [10]. In their paper [4], Berger and Moerdijk show that
a coherent theory of up-to-homotopy resolutions of operadic algebras is provided by a
Quillen model category structure on C–colored operads in a general monoidal model
category M. (Relative) left properness is one way to establish when these resolutions
can be rectified, in the sense of being weakly homotopy equivalent to strict O–algebras.

Related work To the knowledge of the authors, the idea of relative left properness, and
much of the inspiration for this paper, was first established in the thesis of Spitzweck [28]
where he considers semi-model structures of categories of operads in general monoidal
model categories. Similarly, Dwyer and Hess [8] and Muro [24] established a left
properness result which is identical to that of Theorem 3.1.10 for nonsymmetric,
monochromatic operads enriched in simplicial sets and monoidal model categories, re-
spectively. Of particular note, Muro’s proof requires that his monoidal model categories
satisfy weaker conditions than those imposed on the monoidal model categories in this
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work. The stronger conditions in Theorem 3.1.10 are due to both the extra complexity
introduced by the addition of the symmetric group actions and the authors’ desire to
exhibit the most direct proof of this result which still applies in many situations.

It must also be noted that one could obtain similar results using the techniques of the
recent paper of Batanin and Berger [1]; see Remark 3.1.11. The actual definition of
relative left properness in [1] is slightly different, though morally the same, as that used
in Spitzweck [28], Muro [24], and this paper, and we have made note of similarities
in their results and our own throughout this paper. Again, the authors of this work have
made stronger assumptions on our enriching monoidal model category, as it is our belief
that these assumptions allowed for greater clarity in the arguments while still being appli-
cable in most cases of interest. These assumptions also allow for generalizations to more
complicated cases such as relative left properness of dioperads and wheeled properads
(see the authors’ [13]), the latter of which is inaccessible to the Batanin–Berger ma-
chinery; see [1, Proposition 10.8]. These generalizations will serve as key components
of the authors’ larger body of work constructing models for 1–wheeled properads.

Acknowledgments The authors would like to thank Giovanni Caviglia and Kathryn
Hess for enlightening discussions and for pointing out errors in earlier drafts of this paper.
We would also like to thank Bill Dwyer for allowing us to use his counterexample
to left properness of colored operads in Section 4. This counterexample was also
independently obtained by Caviglia as part of his thesis work. Finally, the authors
would like to thank the anonymous referee for several insightful comments on an earlier
draft of this paper.

2 Colored operads and algebras

In this section, we briefly recall the definitions of colored operads and algebras over
colored operads.

2.1 Colors and profiles

Throughout, let .M;˝; I/ be a closed, symmetric monoidal category with all small
colimits. Let ¿ denote the initial object of M and Hom.X;Y / 2M the internal hom
object. We will briefly give the necessary definitions and notations regarding colored
objects in M. A more complete discussion of the following definitions can be found
in [31].

Definition 2.1.1 (colored objects) Fix a nonempty set of colors, C.

(1) A C–profile is a finite sequence of elements in C,

c D .c1; : : : ; cm/D c Œ1;m � ;
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with each ci 2 C. If C is clear from the context, then we simply say profile. The
empty C–profile is denoted ¿, which is not to be confused with the initial object
in M. Write jcj Dm for the length of a profile c .

(2) An object in the product category
Q

C MDMC is called a C–colored object
in M; similarly, a map of C–colored objects is a map in

Q
C M. A typical

C–colored object X is also written as fXag with Xa 2M for each color a 2 C.

(3) Fix c 2 C. An X 2MC is said to be concentrated in the color c if Xd D¿ for
all c 6D d 2 C.

(4) Similarly, fix c2C. For f W X!Y 2M, we say that f is said to be concentrated
in the color c if both X and Y are concentrated in the color c .

Now we are ready to define the colored version of †–objects underlying the category
of colored operads. These objects are also sometimes called symmetric sequences,
†–modules, or collections in the literature.

Definition 2.1.2 (colored symmetric sequences) Fix a nonempty set C.

(1) If a and b are C–profiles, then a map (or left permutation) � W a ! b is a
permutation � 2†jaj such that

�aD .a��1.1/; : : : ; a��1.m//D b:

This necessarily implies jaj D jbj Dm.

(2) The groupoid of C–profiles, which has C–profiles as the objects and left permu-
tations as the isomorphisms, is denoted by †C . The opposite groupoid, †op

C , is
the groupoid of C–profiles with right permutations

a� D .a�.1/; : : : ; a�.m//

as isomorphisms.

(3) The orbit of a profile a is denoted by Œa�. The maximal connected subgroupoid
of †C containing a is written as †Œa� . Its objects are the left permutations of a.
There is an orbit decomposition of †C :

(2.1.2.1) †C Š

a
Œa �2†C

†Œa� ;

where there is one coproduct summand for each orbit Œa� of a C–profile.

(4) Define the diagram category

(2.1.2.2) SymSeqC.M/DM†
op
C �C;
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whose objects are called C–colored symmetric sequences or just symmetric
sequences when C is understood. The decomposition (2.1.2.1) implies that there
is a decomposition

(2.1.2.3) SymSeqC.M/Š
Y

. Œc � Id/2†
op
C �C

M†
op
Œc �
�fdg

;

where †op
Œc � � fdg Š†

op
Œc � .

(5) For X 2 SymSeqC.M/, we write

(2.1.2.4) X
� d

Œc�

�
2M†

op
Œc �
�fdg
ŠM†

op
Œc �

for its .Œc�I d/–component. For .cI d/2†op
C �C (ie c is a C–profile and d 2 C),

we write

(2.1.2.5) X
� d

c

�
2M

for the value of X at .cI d/.
(6) Write N.C/ for the set Ob.†op

C �C/; ie an element in N.C/ is a pair .cI d/ 2
†

op
C �C.

Remark 2.1.3 In the case where CD f�g, for each integer n� 0, there is a unique
C–profile of length n, usually denoted by Œn�. We have †Œn� D†n , which is just the
symmetric group †n regarded as a one-object groupoid. So we have

N.C/DN; †C D

a
n�0

†n D† and SymSeqC.M/DM†
op
C �C DM†op

:

So one-colored symmetric sequences are symmetric sequences (also known as †–
objects and collections) in the usual sense.

Unless otherwise specified, we will assume that C is a fixed, nonempty set of colors.

2.2 Colored circle product

We define C–colored operads to be monoids in SymSeqC.M/ with respect to the
C–colored circle product. In order to define the latter, we need the following definition.

Definition 2.2.1 (tensored over a groupoid) Suppose D is a small groupoid, X 2

MDop
, and Y 2MD . Define the object X ˝D Y 2M as the colimit of the composite

D
Š�
���! Dop

�D
.X ;Y /
����!M�M

˝
��!M;

where the first map is the composite of the diagonal map and the isomorphism D�DŠ
Dop �D .
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We mainly use the construction ˝D when D is the finite connected groupoid †Œc � for
some orbit Œc� 2†C .

Convention 2.2.2 For an object A 2M, we take A˝0 to mean I , the ˝–unit in M.

Definition 2.2.3 (colored circle product) Suppose X;Y 2 SymSeqC.M/, d 2 C,
c D .c1; : : : ; cm/ 2†C , and Œb�D Œ.b1; : : : ; bm/� 2†C is an orbit.

(1) Define the object Y c 2M†
op
C Š

Q
Œb �2†C

M†
op
Œb � as having the Œb�–component

(2.2.3.1) Y c.Œb�/D
a

f Œbj �2†Cg1�j�m

Lan
†

op
Œb �

� mO
jD1

Y
� cj

Œbj �

��
2M†

op
Œb � :

The Kan extension in (2.2.3.1) is defined as shown:

Qm
jD1†

op
Œbj�

concatenation
��

Q
Y .cj
�/

//M�m

˝

��

†
op
Œb�

Lan
†

op
Œb� Œ

N
Y .
:::/�

left Kan extension
//M

(2) Considering left permutations of c in (2.2.3.1), we obtain Y Œc � 2M†
op
C �†Œc � ŠQ

Œb �2†C
M†

op
Œb�
�†Œc � with components

(2.2.3.2) Y Œc � .Œb�/ 2M†
op
Œb �
�†Œc � :

(3) Using the product decomposition (2.1.2.3) of SymSeqC.M/, the C–colored
circle product X ıY 2 SymSeqC.M/ is defined to have components

(2.2.3.3) .X ıY /
� d

Œb�

�
D

a
Œc �2†C

X
� d

Œc�

�
˝†Œc �

Y Œc � .Œb�/ 2M†
op
Œb �
�fdg

;

where the coproduct is indexed by all the orbits in †C , as d runs through C and
Œb� runs through all the orbits in †C . The construction ˝†Œc �

is as defined in
Definition 2.2.1.

Remark 2.2.4 In the one-colored case (ie CD f�g), the C–colored circle product is
equivalent to the circle product of †–objects in [25, Section 2.2.3]. An anonymous
referee made the authors aware that the idea to first define the circle product through
Day’s convolution belongs to G M Kelly [18].

The following observation is the colored version of [14, Proposition 4.13].
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Proposition 2.2.5 With respect to ı, SymSeqC.M/ is a monoidal category.

Remark 2.2.6 We consider MC as a subcategory of MN.C/ via the inclusion

C �!N.C/; c 7�!
� c

¿
�

We use this to consider O B� as a functor with domain MC in Example 2.3.5.

2.3 Colored operads as monoids

In the previous section we show that the category of C–colored operads is a category
of monoids “with many objects”. We make this explicit below.

Definition 2.3.1 For a nonempty set C of colors, denote by OperadC.M/, or OperadC

when M is understood, the category of monoids [20, Section VII.3] in the monoidal
category .SymSeqC.M/; B /. An object in OperadC is called a C–colored operad in M.
We write ¿C for the initial object in OperadC .

Remark 2.3.2 Unpacking Definition 2.3.1, a C–colored operad is equivalent to a
triple .O; ;u/ consisting of

� O 2 SymSeqC.M/,

� a C–colored unit map

I
uc
��! O

� c

c

�
2M

for each color c 2 C, and

� operadic composition

(2.3.2.1) O
� d

c

�
˝

mO
iD1

O
� ci

bi

�

��! O

� d

b

�
2M

for all d 2 C, c D .c1; : : : ; cm/ 2 †C with m � 1, and bi 2 †C , where b D

.b1; : : : ; bm/.

The triple .O; ;u/ is required to satisfy the obvious associativity, unity, and equivari-
ance axioms, the details of which can be found in [31, Definition 11.14] . The detailed
axioms in the one-colored case can also be found in [23]. This way of expressing a
C–colored operad is close to the way an operad was defined in [22].
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Remark 2.3.3 In the case C D f�g, write Operad for OperadC . Objects of this
category are called 1–colored operads or monochromatic operads. In this case, we
write O.n/ for the .Œn�I �/–component of O 2 Operad, where Œn� is the orbit of the
f�g–profile consisting of n copies of � (this orbit has only one object). Our notion
of a 1–colored operad agrees with the notion of an operad in, eg [23] and [14]. Note
that even for 1–colored operads, our definition is slightly more general than the one
in [21, Section II.1.2] because, in our definition, the 0–component O.0/ corresponds
to the empty profile, f�g. In general, the purpose of the 0–component (whether in
the one-colored or the general colored cases) is to encode units in O–algebras. Also
note that in [22], where an operad was first defined in the topological setting, the
0–component was required to be a point.

Definition 2.3.4 Suppose n� 0. A C–colored symmetric sequence X is said to be
concentrated in arity n if

jcj 6D n D) X
� d

c

�
D¿ for all d 2 C.

Example 2.3.5 (1) A C–colored symmetric sequence concentrated in arity 0 is
precisely a C–colored object. In the C–colored circle product X BY (2.2.3.3),
if Y is concentrated in arity 0, then so is X BY because, by (2.2.3.1),

b 6D¿ D) Y c.Œb�/D¿

for all c . In other words, there is a lift:

MC //

��

MC

��

SymSeqC.M/
OB�

// SymSeqC.M/

So if O is a C–colored operad, then the functor

(2.3.5.1) O B�WMC
�!MC

defines a monad [20, Section VI.1] whose monadic multiplication and unit are
induced by the multiplication O BO! O and the unit ¿C! O, respectively.

(2) A C–colored operad O concentrated in arity 1 is exactly an M–enriched category
with object set C. In this case, the nontrivial operadic compositions correspond to
the categorical compositions. Restricting further to the 1–colored case .CDf�g/,
a 1–colored operad concentrated in arity 1 is precisely a monoid in M.
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2.4 Algebras over colored operads

The category of representations over an operad O is referred to, for classical reasons,
as the category of algebras over an operad.

Definition 2.4.1 Suppose O is a C–colored operad. The category of algebras over the
monad [20, Section VI.2]

O B�WMC
�!MC

in (2.3.5.1) is denoted by Alg.OIM/ or simply Alg.O/ when M is understood. Objects
of Alg.O/ are called O–algebras (in M).

Definition 2.4.2 Suppose A D fAcgc2C 2 MC is a C–colored object. For c D

.c1; : : : ; cn/ 2†C with associated orbit Œc�, define the object

(2.4.2.1) Ac D

nO
iD1

Aci
DAc1

˝ � � �˝Acn
2M

and the diagram AŒc � 2M†Œc � with values

(2.4.2.2) AŒc � .c
0/DAc0

for each c0 2 Œc�. All the structure maps in the diagram AŒc � are given by permuting
the factors in Ac .

Remark 2.4.3 (unwrapping O–algebras) From the definition of the monad O B�,
an O–algebra A has a structure map �W O BA!A 2MC . For each color d 2 C, the
d –colored entry of O BA is

(2.4.3.1) .O BA/d D
a

Œc �2†C

O
� d

Œc�

�
˝†Œc �

AŒc � :

So the d –colored entry of the structure map � consists of maps

O
� d

Œc�

�
˝†Œc �

AŒc �

�
��!Ad 2M

for all orbits Œc� 2†C . The ˝†Œc �
here means that we can unpack � further into maps

(2.4.3.2) O
� d

c

�
˝Ac

�
��!Ad 2M

for all d 2 C and all objects c 2 †C . Then an O–algebra is equivalent to a C–
colored object A together with structure maps (2.4.3.2) that are associative, unital,
and equivariant in an appropriate sense, the details of which can be found in [31,
Corollary 13.37] . The detailed axioms in the 1–colored case can also be found in [23].
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Note that when c D¿, the map (2.4.3.2) takes the form

(2.4.3.3) O
� d

¿
�

�
��!Ad

for d 2 C. In practice, this 0–component of the structure map gives A the structure of
d –colored units. For example, in a unital associative algebra, the unit arises from the
0–component of the structure map.

Remark 2.4.4 The C–colored endomorphism operad, End.A/, is defined by

End
� d

c

�
D HomM.Ac ;Ad /:

It is an elementary exercise to check that, for an C–colored operad O, an O–algebra A

is equivalent to a map of C–colored operads

O
�
��! End.A/:

Some important examples of colored operads and their algebras follow.

Example 2.4.5 (free operadic algebras) Fix a C–colored operad O. There is an
adjoint pair

(2.4.5.1) MC
OB�
����! ����Alg.O/

in which the right adjoint is the forgetful functor. The left adjoint takes a C–colored
object A to the object O BA which has the canonical structure of an O–algebra, called
the free O–algebra of A. In particular, free O–algebras always exist.

Example 2.4.6 If O is an M–enriched category, then the category of O–algebras is
the M–enriched functor category ŒO;M�.

Example 2.4.7 (C–colored operads as operadic algebras) First, recall that N.C/D
Ob.†op

C �C/. For each nonempty set of colors C, there exists an N.C/–colored operad
OpC and an isomorphism

(2.4.7.1) OperadC Š Alg.OpC/:

So C–colored operads are equivalent to algebras over the N.C/–colored operad OpC .
This is a special case of [31, Lemma 14.4], which describes any category of generalized
props (of which OperadC is an example) as a category of algebras over some colored
operad; in the case C D f�g, this construction appears in [4, Example 1.5.6]. As
mentioned in Example 2.4.5, it follows that free C–colored operads (D free OpC–
algebras) always exist. The construction of OpC begins with an N.C/–colored operad
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OpCSet in the symmetric monoidal category of sets and Cartesian products. There is a
strong symmetric monoidal functor

(2.4.7.2) Set �!M; S 7�!
a
S

I:

The colored operad OpC is the entrywise image of OpCSet under this strong symmetric
monoidal functor. Therefore, if M has a model structure in which I is cofibrant, then
OpC is entrywise cofibrant. In fact, when I is cofibrant, a careful inspection of OpC

shows that its underlying symmetric sequence is cofibrant in SymSeqC.M/. This is a
key example for us, and we will elaborate on it more later.

2.5 Limits and colimits of colored operadic algebras

Limits of Alg.O/ are taken in the underlying category of colored objects MC via the
free-forgetful adjoint pair

MC
OB�
����! ����Alg.O/

in (2.4.5.1) for a C–colored operad. The following observation is the colored version
of a well known result (see, for example [25, Proposition 2.3.5], [14, Proposition 5.15],
or the closely related [9, Proposition II.7.2]).

Proposition 2.5.1 Suppose O is a C–colored operad. Then the category Alg.O/ has
all small limits and colimits, with reflexive coequalizers and filtered colimits preserved
and created by the forgetful functor Alg.O/!MC .

2.6 Model structure on colored operadic algebras

In this section, we will assume that our cocomplete, closed, symmetric monoidal
category M comes with a compatible cofibrantly generated Quillen model category
structure; ie we assume that M is a monoidal model category [27, Definition 3.1] with
cofibrant tensor unit.

The category of C–colored objects, MC , admits a cofibrantly generated model category
structure where weak equivalences, fibrations, and cofibrations are defined entrywise, as
described in [15, Proposition 11.1.10]. In this model category, a generating cofibration
in MC D

Q
C M (ie a map in I) is a generating cofibration of M, concentrated in one

entry. Similarly, the set of generating acyclic cofibrations is J� C. In addition, the
properties of being simplicial, or proper, are inherited from M.

A functor F between two symmetric monoidal categories is called symmetric monoidal
if there is a unit I! F.I/ and a binatural transformation

F.�/˝F.�/) F.�˝�/

satisfying unit, associativity, and symmetry conditions [20].
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Definition 2.6.1 We say that M admits functorial path data if there exist a symmetric
monoidal functor Path on M and monoidal natural transformations

sW Id) Path and d0; d1W Path) Id

such that for any fibrant X in M,

X
s
�! Path.X /

d0�d1
����!X �X

is a path object (ie s is a weak equivalence and d0 � d1 is a fibration).

Remark 2.6.2 The definition of functorial path data is adapted from Fresse [11,
Fact 5.3]. As a particular example, Fresse showed that functorial path data exists if M
is the category of chain complexes over a ring of characteristic 0 or the category of
simplicial modules.

One way to check if M admits functorial path data is to check if M admits an interval
object defined as follows.

Definition 2.6.3 We say that M admits a cocommutative, coassociative coalgebra
interval J if the fold map I t I! I can be factored as

I t I
˛
��! J

ˇ
��! I;

in which ˛ is a cofibration, ˇ is a weak equivalence, J is a coassociative cocommutative
comonoid in M, and ˛ and ˇ are both maps of comonoids.

For example, the categories of compactly generated spaces and simplicial sets admit
such cocommutative coalgebra intervals. The category of unbounded chain complexes
over a ring which is not characteristic 0 admits an interval which is coassociative, but
not cocommutative.

Lemma 2.6.4 [17, Proposition 3.10] If M admits a coassociative, cocommutative
coalgebra interval and I is cofibrant, then M admits functorial path data.

Definition 2.6.5 A symmetric monoidal fibrant replacement functor is a functor
f WM!M together with a natural transformation r W Id) f such that

� rX W X ! f .X / is a fibrant replacement for each object X ,

� f is a symmetric monoidal functor, and
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� for every X and Y in M, the following diagram commutes:

X ˝Y

rX˝rY

��

rX˝Y
// f .X ˝Y /

fX ˝f Y

77

Throughout this paper, we will want our monoidal model category M to satisfy a
number of conditions, as we want M to have a symmetric monoidal fibrant replacement
functor. To simplify the listing of these conditions, we make the following definition.

Definition 2.6.6 A monoidal model category M is called nice if

� M is strongly cofibrantly generated, ie the domain of each generating (acyclic)
cofibration is small with respect to the entire category;

� there is a symmetric monoidal fibrant replacement functor;
� there is functorial path data;
� every object is cofibrant;
� weak equivalences are closed under filtered colimits.

Examples of nice monoidal model categories are sSet, Z–graded chain complexes in
characteristic zero, and simplicial presheaves.

Remark 2.6.7 The definition of a nice monoidal model category automatically implies
that our monoidal model categories are what are called “strongly h-monoidal” in Batanin
and Berger [1, Propositions 1.8, 2.5], and that our monoidal model categories satisfy
the monoid axiom of Schwede and Shipley [27, Definition 3.3], which also makes an
appearance in the work of Muro [24].

The following is a restricted version of [4, Theorem 2.1] and is a colored operad analogue
of [17, Theorem 3.11] which dealt with the more complicated case of colored props.

Theorem 2.6.8 Suppose M is a nice monoidal model category and that O is a C–
colored operad in M. Then Alg.O/ admits a strongly cofibrantly generated model
category structure, in which:

� fibrations and weak equivalences are created in MC ,
� the set of generating cofibrations is O B I, where I is the set of generating

cofibrations in MC , and
� the set of generating acyclic cofibrations is OB J, where J is the set of generating

acyclic cofibrations in MC .
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Example 2.6.9 The category of simplicial sets, sSet, is a Cartesian closed, cofibrantly
generated, monoidal model category that admits a coassociative, cocommutative interval.
As a symmetric monoidal fibrant replacement functor, we can choose either the Ex1

functor or the singular chain complex of the geometric realization functor, since both
are product-preserving. Similarly, the category of Z–graded chain complexes over a
field K with the projective model structure [16, Chapter 2] satisfies the conditions of
Theorem 2.6.8.

Corollary 2.6.10 If M is a nice monoidal model category, then Alg.OpC/ŠOperadC

admits a cofibrantly generated model structure.

Definition 2.6.11 � The fibrant C–colored operads are those which are locally
fibrant; ie P

�
d
c

�
is fibrant in M for all profiles .cI d/.

� A C–colored operad is called †–cofibrant if P is cofibrant as an object in
SymSeqC.M/DM†

op
C �C .

Every cofibrant operad is, in particular, †–cofibrant [3, Proposition 4.3].

Example 2.6.12 The associative operad A is the prototypical †–cofibrant operad
which is not cofibrant. In sSet, the commutative operad C is neither †–cofibrant nor
cofibrant.

3 Relative left properness of operads with fixed colors

In this section, we show that the model category structure of Corollary 2.6.10 satisfies a
property close to that of left properness, to which we will refer as relative left properness.

Definition 3.0.1 The model category OperadC is called left proper relative to the class
of †–cofibrant operads if pushouts by cofibrations preserve weak equivalences whose
domain and codomain are †–cofibrant.

3.1 The pushout filtration

Relative left properness of OperadC comes down to a study of pushouts of C–colored op-
erads where one of the defining maps is a free morphism of free operads (Lemma 3.1.6).
To perform this analysis, we make use of the language of colored, planar trees such as
those in [2, Section 5.8], [12] or [3, Section 3]. The following definition comes from
[30, Chapter 3].
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Definition 3.1.1 A rooted n–tree is a nonempty, finite, connected, directed graph with
no directed cycles in which

(1) there are n distinguished vertices, called inputs, each with exactly one outgoing
edge and no incoming edges;

(2) there is a distinguished vertex that is not an input, called the root, with exactly
one incoming edge and no outgoing edges;

(3) each vertex away from the set of inputs and the root has exactly one outgoing edge.

A planar rooted tree is a rooted tree in which the set of incoming edges at each vertex
is equipped with a linear ordering.

Remark 3.1.2 For a planar rooted tree T , we write in.T / for the set of its input
edges. Since T is planar, the input edges (or leaves) have a linear order, and we write
�.T / for the set of all such orderings

f1; : : : ; ng �! in.T /;

where nD jin.T /j. It is fairly easy to check that one can identify the set �.T / of all
linear orderings of the input edges of T with the group of permutations †n .

Definition 3.1.3 Let A 2 SymSeqC.M/ (Definition 2.1.2), and suppose that m � 1

and t; sj 2N.C/ for 1� j �m.

(1) Denote by Tree.t/ the groupoid of directed, planar, rooted, C–colored trees
in which the input-output profile is given by t . The morphisms in Tree.t/ are
nonplanar isomorphisms of C–colored trees.

(2) Denote by Tree.fsj g
m
1
I t/ the groupoid of pairs .T; ds/ such that

� T 2 Tree.t/, and
� ds� Vt.T / such that the set of vertex profiles in ds is the set fsj g

m
1

.

Vertices in ds are called distinguished vertices. Vertices in the complement

n.T /� Vt.T / n ds

are called normal vertices. Isomorphisms of Tree.fsj gI t/ are isomorphisms of
C–colored trees which preserve the distinguished vertices and colorings of edges.

(3) A pair .T; ds/ 2 Tree.fsj gI t/ is said to be well-marked if every flag of a distin-
guished vertex is part of an internal edge whose other end vertex is normal.

(4) A pair .T; ds/ 2 Tree.fsj gI t/ is said to be reduced if it is well-marked and there
are no adjacent normal vertices, ie every vertex adjacent to a normal vertex is
distinguished. The groupoid of such reduced trees is denoted by rTree.fsj gI t/.
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(5) Given a vertex u in a tree T , write A.u/ for the component of the symmetric
sequence A corresponding to the profiles of u. In other words, if the profiles of u

are .cI d/ 2N.C/, then A.u/D A
�
d
c

�
. We also say that A.u/ is a decoration

of u by A and that u is A–decorated. A tree with each vertex decorated by A

is said to be A–decorated.

Definition 3.1.4 Suppose that f W H !G is a homomorphism of groups. Then there
is an adjoint pair

.�/ �H GWMH op
��! ��MGop

Wf �;

which is actually a Quillen adjunction [3, Lemma 2.5.1]. If f is a subgroup inclusion
and X 2M is an object with a right H action (ie X 2MH op

), we have

X �H G Š
a

G=H

X;

where the coproduct is indexed over the cosets of H in G .

The following definition appears in [14, Definition 7.10].

Definition 3.1.5 (Q–construction) Suppose there is a map i W X ! Y 2M. The
object Qt

q 2M†t is given as follows.

� Qt
0
DX˝t .

� Qt
t D Y ˝t .

� For 0< q < t , there is a pushout in M†t :

(3.1.5.1)

ŒX˝.t�q/˝Q
q
q�1

� �†t�q�†q
†t

.id;i�/
��

//

H
)

Qt
q�1

��

ŒX˝.t�q/˝Y ˝q � �†t�q�†q
†t

// Qt
q

Lemma 3.1.6 For A 2 OperadC and a map i W X ! Y in M, regarded as a map in
MN.C/ concentrated in the s–entry for some s 2N.C/, consider a pushout

OpC BX

i�
��

f
//

H
)

A

h

��

OpC BY // A1
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in OperadC . Then for a fixed orbit Œr �, with r 2N.C/, the Œr �–entry of the map h is a
countable composition

A.Œr �/DA0.Œr �/
h1
��!A1.Œr �/

h2
��!A2.Œr �/

h3
��! � � � �!A1.Œr �/;

where, for k � 1, the hk are inductively defined as the following pushout in M†Œr � :

(3.1.6.1)

`
ŒT;ds�

˚�N
u2n.T /A.u/

�
˝Qk

k�1

	
�Aut.T;ds/†Œr �

q.id˝i�k/˝Aut.T;ds/id

��

f k�1
�

//

H
)

Ak�1.Œr �/

hk

��`
ŒT;ds�

˚�N
u2n.T /A.u/

�
˝Y ˝k„ ƒ‚ …

normal/dist. vertex decorations

	
�Aut.T;ds/ †Œr �„ƒ‚…

input labeling
�k

// Ak.Œr �/

In this pushout:

(1) The top horizontal map f k�1
� is induced by f and the operad structure map of A.

(2) Each coproduct on the left is indexed by the set of weak isomorphism classes
of reduced trees .T; ds/ such that

� the input profile of T is in the orbit Œr �, and
� ds consists of k distinguished vertices, all with profiles in the orbit Œs�.

Proof This theorem is a special case of Proposition 4.3.16 in [29] by taking ODOpC ;
we sketch the proof. For each r 2N.C/, define

B.Œr �/D colim
k

Ak.Œr �/:

Then B has a canonical C–colored operad structure given as follows.

� Its colored units are those of A; ie I!A
�

c
c

�
! B

�
c
c

�
for each c 2 C.

� The operadic ıi compositions are given by the grafting of reduced trees, where
the colored operad structure of A is used to bring the grafted tree to a reduced
one if necessary.

� Its equivariant structure is given by the factors †j in.T /j .

The operad map A! B is induced by A0! B . The map Y ! B is induced by �1
(for the s–corolla whose only vertex is distinguished) and A1! B . That B is the
pushout A1 follows from its inductive definition.
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For any finite group G , the category of G–objects, MG , has a natural structure of
a cofibrantly generated model category, where weak equivalences and fibrations are
defined entrywise, as described in [15, Proposition 11.1.10]. In this model category, a
generating (acyclic) cofibration is a G –equivariant (acyclic) cofibration in the category
of M–objects with G–action. Because it will be important to keep track of which
group we are working with, we will denoted these sets of generating cofibrations by
I ŒG� and generating acyclic cofibrations by J ŒG�.

The following lemma, due to Berger and Moerdijk [2, Lemma 5.10] and Spitzweck [28,
Lemma 4], gives an equivariant version of the pushout product axiom.

Lemma 3.1.7 Let G and � be finite groups with � acting from the right on G . For
any �–cofibration i W X ! Y and any map of right G Ì � –objects A! B whose
underlying map is a cofibration in a nice monoidal model category M, the induced map

.X ˝B/qX˝A .Y ˝A/ �! Y ˝B

is a G Ì� –cofibration, where G Ì� acts on Y ˝B by .y˝ b/.g; / D y ˝ b.g; / .

In practice, � will be the symmetric group acting on the inputs of a tree T in rTree.

Lemma 3.1.8 In the context of Lemma 3.1.6, suppose that
� M is a nice monoidal model category,
� i W X ! Y 2M is a cofibration, and
� A is a †–cofibrant operad.

Then each map �N
u2n.T /A.u/

�
˝Qk

k�1

id˝i�k

���N
u2n.T /A.u/

�
˝Y ˝k

is an Aut.T; ds/–cofibration.

Proof As in [2, Lemma 5.9], each .T; ds/ has a grafting decomposition as

.T; ds/D tn..T1; ds1/; : : : ; .Tn; dsn//;

where
� tn is the n–corolla,
� dsD ds1q� � �q dsn if the top vertex is not distinguished, and
� dsD ds1q� � �q dsnq tn if the top vertex is distinguished.

Algebraic & Geometric Topology, Volume 16 (2016)
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Let
.Tj1

; dsj1
/; : : : ; .Tjk

; dsjk
/ 2 f.T1; ds1/; : : : ; .Tn; dsn/g

be such that each .T`; ds`/ is isomorphic to exactly one .Tji
; dsji

/, and let

ni D
ˇ̌˚
.T`; ds`/ j .T`; ds`/Š .Tji

; dsji
/
	ˇ̌
:

There is a decomposition of the automorphism group,

Aut.T; ds/Š
� kY

iD1

Aut.Tji
; dsji

/�ni

„ ƒ‚ …
G

�
Ì
� kY

iD1

†ni„ ƒ‚ …
�

�
;

where each ni � 1 and n1C � � �C nk D n.

(1) The map i�k is a cofibration in M by the pushout-product axiom. Furthermore,
it has a right Aut.T; ds/–action (ie a G Ì �–action) because isomorphisms
preserve distinguished vertices.

(2) Since A.r/ is � –cofibrant (where r is the vertex at the root) and � acts onN
n.T /nr A.u/ by permuting tensor factors, we know that

N
n.T /A.u/ is � –

cofibrant.

These two facts and Lemma 3.1.7 together imply that

id˝i�k
D

h
¿ �!

O
A.u/

i
� i�k

is a G Ì� –cofibration.

Lemma 3.1.9 Suppose that M is a nice monoidal model category, and that i W X ! Y

is a cofibration in M, regarded as a map in MN.C/ concentrated at the s–entry for
some s 2N.C/. Suppose we have a diagram

(3.1.9.1)

OpC BX

i�
��

//

H
)

A

hA

��

f

�
//

H
)

B

hB

��

OpC BY // A1
f1
// B1

in Alg.OpC/ Š OperadC in which both squares are pushouts and f W A ! B is a
weak equivalence between †–cofibrant operads. Then f1 is also a weak equivalence
between †–cofibrant operads.

Algebraic & Geometric Topology, Volume 16 (2016)
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Proof Weak equivalences in Alg.OpC/ are created entrywise in M. The outer rectan-
gle in (3.1.9.1) is also a pushout. It follows that hA

k
and hB

k
are filtered in such a way

that for each orbit Œr �, the Œr �–entry of the k th map is a pushout as in (3.1.6.1). There
is a commutative ladder diagram in M†Œr � :

A.Œr �/

f

��

A0.Œr �/

f0

��

hA
1
// A1.Œr �/

f1

��

hA
2
// � � � // colim Ak.Œr �/DA1.Œr �/

f1
��

B.Œr �/ B0.Œr �/
hB

1
// B1.Œr �/

hB
2
// � � � // colim Bk.Œr �/D B1.Œr �/

We now argue that all the horizontal maps hA
k

and hB
k

are cofibrations in M†Œr � , and
all the objects in the ladder diagram are cofibrant in M†Œr � . Each coproduct summand
map on the left of (3.1.6.1) is a † Œr � –cofibration since

.�/ �Aut.T;ds/† Œr � WMAut.T;ds/
�!M†Œr �

is a left Quillen functor and each id˝i�k is an Aut.T; ds/–cofibration by Lemma 3.1.8.
But cofibrations are closed under coproducts and pushouts, so each hA

k
and hB

k
is

a cofibration in M†Œr � . The fact that all objects are cofibrant now follows from the
†–cofibrancy of A and B .

By [15, Proposition 15.10.12(1)], in order to show that the map f1 is a weak equiv-
alence between cofibrant objects in M†Œr � , it suffices to show that all the vertical
maps fk , with 0� k <1, are weak equivalences by induction on k .

The map f0 is a weak equivalence by assumption. Suppose k � 1. Consider the
commutative cube in M†Œr � , where the coproducts are taken over the same sets of
trees as in (3.1.6.1):`˚�N

A.u/
�
˝Qk

k�1

	
�Aut.T;ds/†Œr �

`
.Id˝i�k/�

��

f� --

// Ak�1.Œr �/
fk�1

��

��

`˚�N
B.u/

�
˝Qk

k�1

	
�Aut.T;ds/†Œr �

��

// Bk�1.Œr �/

��

`˚�N
A.u/

�
˝Y ˝k

	
�Aut.T;ds/†Œr �

f� --

// Ak.Œr �/
fk

��`˚�N
B.u/

�
˝Y ˝k

	
�Aut.T;ds/†Œr �

// Bk.Œr �/

Both the back face (with As) and the front face (with B s) are pushout squares, and
the maps from the back square to the front square are all induced by f . Moreover,
fk�1 is a weak equivalence by the induction hypothesis. By Lemma 3.1.8, all the
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objects in the diagram are cofibrant in M† Œr � , and the vertical and diagonal maps are
† Œr � –cofibrations. To see that fk in the above diagram is a weak equivalence, it is
enough to show, by the cube lemma [16, Lemma 5.2.6], that both maps labeled as f�
are weak equivalences.

To see that the top f� in the above diagram is a weak equivalence, note that a coprod-
uct of weak equivalences between cofibrant objects is again a weak equivalence by
Ken Brown’s lemma [16, Lemma 1.1.12]. The left Quillen functor (Definition 3.1.4)
.�/ �Aut.T;ds/† Œr � takes Aut.T; ds/–cofibrations between Aut.T; ds/–cofibrant objects
to † Œr � –cofibrations between † Œr � –cofibrant objects. Now Ken Brown’s lemma again
says that it is enough to show that within each coproduct summand, the map

(3.1.9.2)
hO

A.u/
i
˝Qk

k�1

f�
���!

hO
B.u/

i
˝Qk

k�1

is a weak equivalence between Aut.t; ds/–cofibrant objects. Recall that weak equiva-
lences in any diagram category in M are defined entrywise. The maphO

A.u/
i

f�
���!

hO
B.u/

i
is a finite tensor product of entries of f , each of which is a weak equivalence in M.
So this f� is a weak equivalence between cofibrant objects, and tensoring this map
with Qk

k�1
yields a weak equivalence.

A similar argument with Y ˝k in place of Qk
k�1

shows that the bottom f� in the
commutative diagram is also a weak equivalence. Therefore, as discussed above, fk is
a weak equivalence, finishing the induction.

Theorem 3.1.10 If M is a nice monoidal model category, then the cofibrantly gener-
ated model structure on Alg.OpC/Š OperadC in Corollary 2.6.10 is left proper relative
to the class of †–cofibrant operads.

Proof The set of generating cofibrations in Alg.OpC/Š OperadC is OpC B I, where I

is the set of generating cofibrations in MN.C/ , each of which is concentrated in one
entry and is a generating cofibration of M there. A general cofibration in Alg.OpC/

is a retract of a relative .OpC B I/–cell complex. So a retract and transfinite induction
argument reduces the proof to the situation in Lemma 3.1.9.

Remark 3.1.11 An anonymous referee has pointed out that an alternative proof of
Lemma 3.1.9 and Theorem 3.1.10 can be obtained using the machinery developed
in [1]. Specifically, a modification of the proof of [1, Theorem 8.1], together with [1,
Theorem 2.11, Proposition 2.14] would reproduce these results. The filtration on the
pushout (3.1.9.1) would be different from the one we have used here, instead being
based on “classifiers.”
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4 Categories of operads are not left proper

In this section, we present an illuminating counterexample to the category of C–colored
operads being left proper. The example is due to Bill Dwyer, and we thank him for
allowing us to present it in this paper.

Let M be the category of simplicial sets with the standard (Kan) model category
structure, and fix CD f�g. In other words, we are working in just regular simplicial
operads. Let ¿ denote the initial operad, and let ¿C denote the operad constructed by
attaching a singleton in arity 0. In other words,

¿.n/D
�
fidg nD 1;

¿ n¤ 1;
¿C.n/D

8<:
� nD 0;

fidg nD 1;

¿ n> 1:

The inclusion i W ¿!¿C is a cofibration of operads.

Given an operad A, we can construct the pushout

¿

i

��

// A

��

¿C // AC

where AC.0/D j̀ A.j /=†j , and the map A!AC is a cofibration of simplicial op-
erads. If OperadC were left proper, then in the pushout diagram

¿

i

��

// A

��

f
// B

��

¿C // AC
fC
// BC

we would have that if f is a weak equivalence, then fC is a weak equivalence.
Taking A to be an E1–operad and B to be the commutative operad, we know that
f W A! B is a weak equivalence. On the other hand, in arity 0, fC is the map

fC.0/W
a
j

A.j /=†j D

a
j

E†j=†j D

a
j

B†j �!

a
j

B.j /=†j D

a
j

�:

This is not a weak equivalence since B†j is not contractible for j > 1.
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Function spaces and classifying spaces
of algebras over a prop

SINAN YALIN

The goal of this paper is to prove that the classifying spaces of categories of algebras
governed by a prop can be determined by using function spaces on the category of
props. We first consider a function space of props to define the moduli space of
algebra structures over this prop on an object of the base category. Then we mainly
prove that this moduli space is the homotopy fiber of a forgetful map of classifying
spaces, generalizing to the prop setting a theorem of Rezk.

The crux of our proof lies in the construction of certain universal diagrams in cat-
egories of algebras over a prop. We introduce a general method to carry out such
constructions in a functorial way.

18D10, 18D50, 18G55, 55U10

Introduction

Associative algebras, Lie algebras, Poisson algebras and their variants play a key role
in algebra, topology, category theory, differential and algebraic geometry, mathematical
physics. They all share the common feature of being defined by operations with several
inputs and one single output (the associative product, the Lie bracket, the Poisson
bracket). A powerful device to handle such kinds of algebraic structure is the notion
of operad, which has proven to be a fundamental tool to study algebras such as the
aforementioned examples, feeding back important outcomes in these various fields.
However, algebraic structures equipped not only with products but also with coproducts
play a crucial role in various places in mathematics. It is worth mentioning, for instance,
the following important examples: Hopf algebras in representation theory and mathe-
matical physics, Frobenius algebras encompassing the Poincaré duality phenomenon in
algebraic topology (which corresponds to unitary and counitary Frobenius bialgebras,
see Kock [16]), Lie bialgebras introduced by Drinfeld in quantum group theory (see
Drinfel’d [6; 7]), involutive Lie bialgebras originally encoding operations on free loops
on surfaces in the work of Turaev [24] and then generalized to higher dimensional
manifolds by Chas and Sullivan [4] in string topology [3]. A convenient way to handle
such kinds of structure is to use the formalism of props, a generalization of operads
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encoding algebraic structures based on operations with several inputs and several
outputs. A dg prop is a collection of complexes P D fP .m; n/gm;n2N , where each
P .m; n/ represents formal operations with m inputs and n outputs. This collection P

is equipped with composition products grafting and concatenating these operations in a
compatible way.

This paper is a follow-up to Yalin [25], where we set up a homotopy theory for algebras
over (possibly colored) differential graded (dg for short) props. The crux of our approach
lies in the proof that the Dwyer–Kan classifying spaces attached to categories of algebras
over dg props are homotopy invariants of the dg prop. Such spaces have been introduced
by Dwyer and Kan in their seminal work on simplicial localization of categories; see
[10; 8; 9]. Recall from these papers that the classifying space of a category with weak
equivalences (for instance a model category) is the nerve of its subcategory of weak
equivalences. It encodes information about homotopy types and internal symmetries of
the objects, ie their homotopy automorphisms. The goal of the present paper is to give
another description of these classifying spaces, in terms of function spaces of dg prop
morphisms, in order to make their homotopy theory accessible to computation. These
function spaces are moduli spaces of algebra structures, that is, simplicial sets PfX g

whose vertices are dg prop morphisms P ! EndX representing a P –algebra structure
on an object X of the base category. For us, the base category is the category Ch of
Z–graded chain complexes over a field K. Let ChP be the category of P –algebras
and wChP be its subcategory obtained by restriction to morphisms which are quasi-
isomorphisms in Ch. Let us denote by N .�/ the nerve of a category. Our main theorem
reads as follows.

Theorem 0.1 Let P be a cofibrant dg prop defined in the category Ch of chain
complexes and let X 2 Ch. The commutative square

PfX g

��

// N wChP

��

fX g // N wCh

is a homotopy pullback of simplicial sets.

As a consequence, we get the following decomposition of function spaces in terms of
homotopy automorphisms.

Corollary 0.2 We have

PfX g �
a
ŒX �

L wChP .X;X /;

Algebraic & Geometric Topology, Volume 16 (2016)
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where L.�/ is the simplicial localization functor of Dwyer–Kan [8], and ŒX � ranges
over the weak equivalence classes of P –algebras having X as underlying object. In
particular, the simplicial monoids of homotopy automorphisms L wChP .X;X / are
homotopically small in the sense of Dwyer–Kan, that is, their homotopy groups are all
small as sets.

Theorem 0.1 is a broad generalization of the first main result of Rezk’s thesis [21,
Theorem 1.1.5], which concerns the case of operads in simplicial sets and simplicial
modules. However, the method of [21] relies on the existence of a model category
structure on algebras over operads, which does not exist anymore for algebras over
dg props. The crux of the proof of Theorem 0.1 lies in the construction of functorial
diagram factorizations in categories of algebras over dg props. We use a new approach,
relying on universal categories of algebras over dg props, to perform such constructions
in our context. This method enables us to get around the lack of model structure.

We would like to emphasize some links with two other objects encoding algebraic
structures and their deformations. Theorem 0.1 asserts that we can use a function space
of dg props, the moduli space PfX g, to determine classifying spaces of categories
of algebras over dg props N wChP . The homotopy groups of this moduli space,
in turn, can be approached by means of a Bousfield–Kan-type spectral sequence.
The E2 –page of this spectral sequence is identified with the cohomology of certain
deformation complexes. These complexes have been studied in Frégier, Markl and
Yau [11], Markl [18] and Merkulov and Vallette [19]. These papers prove the existence
of an L1–structure on such complexes which generalizes the intrinsic Lie bracket of
Schlessinger and Stasheff [23]. We aim to apply this spectral sequence technique and
provide new results about the deformation theory of bialgebras in an ongoing work.
To complete this outlook, we point out that Ciocan-Fontanine and Kapranov in [5]
used a similar approach to that of Rezk in order to define a derived moduli space of
algebras structures in the formalism of dg schemes. The author recently proved in [27],
by different methods, that the simplicial moduli spaces considered in the present paper
are also the global points of derived moduli stacks in the setting of Toën and Vezzosi’s
derived algebraic geometry, and that the deformation complexes of [19] really compute
the tangent complexes of these stacks.

Organization In Section 1, we briefly recall several properties of dg props and their
algebras, and we define the notion of moduli space of algebraic structures. In Section 2,
we revisit the notion of a colored dg prop as a symmetric monoidal dg category generated
by words of colors. Then we carry out the main technical construction of this section:
a dg category associated to the data of a small category J and a colored dg prop PI
encoding I–diagrams of P –algebras, where I is a subcategory of J . This category
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of “formal variables” is used to explain how a functorial I–diagram of P –algebras
can be extended to a functorial J –diagram of P –algebras under several technical
assumptions. This construction applies in particular to the functorial factorizations of
morphisms provided by the axioms of model categories. In Section 3, we prove that
the classifying space of quasi-isomorphisms of P –algebras is weakly equivalent to the
classifying space of acyclic surjections of P –algebras. For this, we need to examine in
Section 3 how the internal and external tensor products of a diagram category behave
with respect to its injective and projective model structures. The projective case is more
subtle and does not appear in the literature. Then we combine the results of Section 2,
those of Section 3 and Quillen’s Theorem A to provide this weak equivalence (induced
by an inclusion of categories). Finally, in Section 4 we rely on the previous results to
generalize [21, Theorem 1.1.5] to the dg prop setting.

Acknowledgements I would like to thank Benoit Fresse for his useful remarks. I also
thank the referee for careful reading and useful comments.

1 Props, algebras and moduli spaces

Throughout this paper, we work in the category Ch of Z–graded chain complexes over
a field K. We write “dg” as an abbreviation for “differential graded”. We briefly recall
our conventions and the main definitions concerning dg props in this section. We refer
to [12] for a more comprehensive account.

1.1 Background on props and their algebras

An S–biobject in Ch is a double sequence fM.m; n/ 2 Chg.m;n/2N2 , where each
M.m; n/ is equipped with a right action of the symmetric group on m letters †m , a
left action of the symmetric group on n letters †n , such that these actions commute
with each other.

Definition 1.1 A dg prop is an S–biobject in Ch endowed with associative horizontal
composition products

ıhW P .m1; n1/˝P .m2; n2/! P .m1Cm2; n1C n2/;

vertical associative composition products

ıvW P .k; n/˝P .m; k/! P .m; n/

and units �W K! P .n; n/. These products satisfy the exchange law

.f1 ıh f2/ ıv .g1 ıh g2/D .�1/jg1jjf2j.f1 ıv g1/ ıh .f2 ıv g2/
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and are compatible with the actions of symmetric groups and with the differentials.
Morphisms of dg props are equivariant morphisms of collections compatible with the
composition products. We denote by Prop the category of dg props.

The following definition shows how a given dg prop encodes algebraic operations on
the tensor powers of a chain complex.

Definition 1.2 (1) The endomorphism dg prop of a chain complex X is given by
EndX .m; n/ D HomCh.X

˝m;X˝n/, where HomCh.�;�/ is the internal hom
bifunctor of Ch. The horizontal composition is given by the tensor product of
homomorphisms and the vertical composition is given by the composition of
homomorphisms.

(2) Let P be a dg prop. A P –algebra is a chain complex X equipped with a dg
prop morphism P ! EndX .

Hence any “abstract” operation of P is sent to an operation on X , and the way abstract
operations compose under the composition products of P tells us the relations satisfied
by the corresponding algebraic operations on X .

One can carry out similar constructions in the category of colored S–biobjects in order
to define colored dg props and their algebras.

Definition 1.3 Let C be a non-empty set, called the set of colors.

(1) A C –colored S–biobject M is a double sequence of chain complexes

fM.m; n/g.m;n/2N2 ;

where each M.m; n/ admits commuting right †m action and left †n action as
well as a decomposition

M.m; n/D
M

ci ;di2C

M.c1; : : : ; cmI d1; : : : ; dn/

compatible with these actions. The objects M.c1; : : : ; cmI d1; : : : ; dn/ should
be thought of as spaces of operations with colors c1; : : : ; cm indexing the m

inputs and colors d1; : : : ; dn indexing the n outputs.

(2) A C –colored dg prop P is a C –colored S–biobject endowed with a horizontal
composition

ıhW P .c11; : : : ; c1m1
I d11; : : : ; d1n1

/˝ � � �˝P .ck1; : : : ; ckmk
I dk1; : : : ; dkn1

/

! P .c11; : : : ; ckmk
I dk1; : : : ; dknk

/� P .m1C � � �Cmk ; n1C � � �C nk/
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and a vertical composition

ıvW P .c1; : : : ; ck I d1; : : : ; dn/˝P .a1; : : : ; amI b1; : : : ; bk/

! P .a1; : : : ; amI d1; : : : ; dn/� P .m; n/;

which is equal to zero unless bi D ci for 1 � i � k . These two compositions
satisfy associativity axioms (we refer the reader to [14] for details).

Definition 1.4 (1) Let fXcgC be a collection of chain complexes. The C –colored
endomorphism dg prop EndfXcgC

is defined by

EndfXcgC
.c1; : : : ; cmI d1; : : : ; dn/D HomCh.Xc1

˝ � � �˝Xcm
;Xd1

˝ � � �˝Xdn
/:

(2) Let P be a C –colored dg prop. A P –algebra is the data of a collection of
objects fXcgC and a C –colored dg prop morphism P ! EndfXcgC

.

Remark 1.5 Let I be a small category and let P be a dg prop. We can build an ob.I/–
colored dg prop PI such that the PI –algebras are the I–diagrams of P –algebras
in Ch in the same way as in [17]. We refer the reader to Definition 2.3 where this
construction is made explicit.

We provide Ch with the model category structure such that the weak equivalences
are quasi-isomorphisms and fibrations are degreewise surjections. The category of
S–biobjects is a diagram category over Ch, so it inherits a cofibrantly generated model
category structure in which weak equivalences and fibrations are defined componentwise.
The free dg prop functor [12, Appendix A] gives rise to an adjunction ChS � Prop
between the category of S–biobjects ChS and the category of dg props Prop, which
transfers this model category structure to the category of dg props.

Theorem 1.6 (see [12, Theorem 4.9] and [14, Theorem 1.1]) (1) Suppose that
char.K/> 0. The category Prop0 of dg props with non-empty inputs (or outputs)
equipped with the classes of componentwise weak equivalences and component-
wise fibrations forms a cofibrantly generated semi-model category.

(2) Suppose that char.K/ D 0. Then the entire category of dg props inherits a
cofibrantly generated model category structure with the weak equivalences and
fibrations as above.

(3) Suppose that char.K/ D 0. Let C be a non-empty set. Then the category
PropC of C –colored dg props forms a cofibrantly generated model category
with fibrations and weak equivalences defined componentwise.
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A semi-model category structure is a slightly weakened version of a model category
structure where the lifting axioms only work for cofibrations with cofibrant domain,
and where the factorization axioms only work for a map with a cofibrant domain (see
the relevant section of [12]). The notion of a semi-model category is sufficient to apply
the usual constructions of homotopical algebra. A dg prop P has non-empty inputs if
it satisfies

P .0; n/D

�
K if nD 0;

0 otherwise:

We define in a symmetric way a dg prop with non-empty outputs. Such dg props usually
encode algebraic structures without unit or without counit, for instance Lie bialgebras.

We will use all the time the existence of a (semi)-model category structure on dg props.
Our results hold over a field of any characteristic: we can work alternatively with
every dg prop in characteristic zero or with dg props with non-empty inputs/outputs in
positive characteristic.

Finally, we recall from [12] the construction of the endomorphism dg prop associated
to a diagram F W J ! Ch,

EndF .m; n/ WD

Z
i2J

HomCh.X
˝m
i ;X˝n

i /;

where Xi D F.i/. This end can equivalently be defined as a coreflexive equalizer

EndF .m; n/ //
Y
i2J

HomCh.X
˝m
i ;X˝n

i /
d0
//

d1

//

Y
uW i!j

HomCh.X
˝m
i ;X˝n

j /

s0

ee

where d0 is the product of the maps

u� D .F.u/
˝n
ı�/W HomCh.X

˝m
i ;X˝n

i /! HomCh.X
˝m
i ;X˝n

j /

induced by the morphisms uW i ! j of J , and d1 is the product of the maps

u� D .�ıF.u/˝m/W HomCh.X
˝m

j ;X˝n
j /! HomCh.X

˝m
i ;X˝n

j /:

The section s0 is the projection on the factors associated to the identities idW i ! i .
This construction allows us to characterize a diagram of P –algebras F W J ! ChP ,
where ChP is the category of P –algebras in chain complexes, as a dg prop morphism

P ! EndU.F /;

where U.F / is the diagram of chain complexes underlying F .
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1.2 Moduli spaces of algebra structures

Throughout the text, we use the Kan–Quillen model category structure on simplicial sets.
A moduli space of algebra structures over a dg prop P , on a given chain complex X ,
is a simplicial set whose points are the dg prop morphisms P ! EndX and connected
components are homotopy classes of P –algebra structures on X . Such a moduli space
can be more generally defined on diagrams of chain complexes. We then deal with
endomorphism dg props of diagrams. To properly construct such a simplicial set and
give its first fundamental properties, we have to recall some results about cosimplicial
and simplicial resolutions in a model category. For the sake of brevity and clarity, we
refer the reader to [13, Chapter 16] for a complete treatment of the notions of simplicial
resolutions, cosimplicial resolutions and Reedy model categories.

Definition 1.7 Let M be a model category and let X be an object of M.

(1) A cosimplicial resolution of X is a cofibrant approximation to the constant
cosimplicial object cc�X in the Reedy model category structure on cosimplicial
objects M� of M.

(2) A simplicial resolution of X is a fibrant approximation to the constant simplicial
object cs�X in the Reedy model category structure on simplicial objects M�op

of M.

Definition 1.8 Let M be a model category and let X be an object of M.

(1) A cosimplicial frame on X is a cosimplicial object zX in M, together with a
weak equivalence zX ! cc�X in the Reedy model category structure of M� .
It has to satisfy the two following properties: the induced map zX 0!X is an
isomorphism, and if X is cofibrant in M then zX is cofibrant in M� .

(2) A simplicial frame on X is a simplicial object zX in M, together with a weak
equivalence cs�X ! zX in the Reedy model category structure of M� . It
has to satisfy the following two properties: the induced map X ! zX 0 is an
isomorphism, and if X is fibrant in M then zX is fibrant in M�op

.

Proposition 1.9 [13, Proposition 16.1.9] Let M be a model category. There exist
functorial simplicial resolutions and functorial cosimplicial resolutions in M.

Proposition 1.10 [13, Proposition 16.6.3] Let X be an object of M.

(1) If X is cofibrant then every cosimplicial frame of X is a cosimplicial resolution
of X .

(2) If X is fibrant then every simplicial frame of X is a simplicial resolution of X .
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In a model category M, one can define homotopy mapping spaces MapM.�;�/, which
are simplicial sets equipped with a composition law defined up to homotopy. There
are two possible definitions. We can take either MapM.X;Y /DMorM.X ˝��;Y /,
where .�/˝�� is a cosimplicial resolution, or MapM.X;Y /DMorM.X;Y �

�

/, where
.�/�

�

is a simplicial resolution. When X is cofibrant and Y is fibrant, these two
definitions give the same homotopy type of mapping space and have also the homotopy
type of Dwyer and Kan’s hammock localization LH .M; wM/.X;Y /, where wM is
the subcategory of weak equivalences of M; see [9]. Moreover, the set of connected
components �0 MapM.X;Y / is the set of homotopy classes ŒX;Y �M in Ho.M/.

Proposition 1.11 [13, Corollaries 16.5.3 and 16.5.4] Let M be a model category
and C a cosimplicial resolution in M.

(1) If Y is a fibrant object of M, then MorM.C;Y / is a fibrant simplicial set.

(2) If pW X � Y is a fibration in M, then p�W MorM.C;X /� MorM.C;Y / is a
fibration of simplicial sets, acyclic if p is so.

(3) If pW X !
�

Y is a weak equivalence of fibrant objects in M, then

p�W MorM.C;X /!
� MorM.C;Y /

is a weak equivalence of fibrant simplicial sets.

Definition 1.12 Let P be a cofibrant dg prop in Ch. Let X be a chain complex. The
moduli space of P –algebra structures on X is the simplicial set defined by

PfX g DMorProp.P ˝�
�;EndX /;

where .�/˝�� is a functorial cosimplicial frame on Prop. We get a functor

Prop! sSet; P 7! PfX g;

where sSet is the category of simplicial sets.

We can already get two interesting properties of these moduli spaces.

Lemma 1.13 Let P be a cofibrant dg prop. For any chain complex X , the moduli
space PfX g is a fibrant simplicial set.

Proof Every chain complex is fibrant, and fibrations of dg props are defined compo-
nentwise, so EndX is a fibrant dg prop. Given that P is cofibrant, the mapping space
PfX g is fibrant.
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In this case, the connected components of this moduli space are exactly the homotopy
classes of P –algebra structures on X .

To conclude, let us note that these moduli spaces are a well defined homotopy invariant
of algebraic structures over a given object.

Lemma 1.14 Let X be a chain complex. Every weak equivalence of cofibrant dg props
P !
�

Q gives rise to a weak equivalence of fibrant simplicial sets

QfX g !
�

PfX g:

Proof Let 'W P !Q be a weak equivalence of cofibrant dg props. According to [13,
Proposition 16.1.24], the map ' induces a Reedy weak equivalence of cosimplicial
resolutions P ˝��!

�
Q˝�� . The dg prop EndX is fibrant, so we conclude by [13,

Corollary 16.5.5] that this weak equivalence of cosimplicial resolutions induces a weak
equivalence between the corresponding moduli spaces.

Remark 1.15 The reader may have noticed that, using the existence of functorial
cosimplicial resolutions, Definition 1.12, Lemma 1.13 and Lemma 1.14 could have
been stated without the cofibrancy assumption on P . In this case, let

P �!
� cc�P

be such a cosimplicial resolution of a dg prop P , and

APfX g DMorProp.P
�;EndX /

be this alternative construction of the moduli space. Let

P1!
�

P

be a functorial cofibrant resolution of P . Then a cosimplicial frame on P1 is a
cosimplicial resolution of P1 by Proposition 1.10, hence a cosimplicial resolution
of P as well. By [13, Proposition 16.1.13], any two cosimplicial resolutions of a given
object are related by a zigzag whose middle object is a fibrant cosimplicial resolution,
and by [13, Corollary 16.5.5] a Reedy weak equivalence of cosimplicial resolutions
induces a weak equivalence of mapping spaces, hence

APfX g DMorProp.P
�;EndX /'MorProp.P1˝�

�;EndX /D P1fX g:

Our alternative construction of a moduli space directly from a dg prop P thus has the
homotopy type of the moduli space of homotopy P –algebra structures constructed in
Definition 1.12 from a cofibrant resolution of P .
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2 Dg categories associated to colored dg props

2.1 Colored dg props as symmetric monoidal dg categories

We revisit the definition of colored dg props by explaining how they can alternatively
be defined as symmetric monoidal dg categories “monoidally” generated by the set of
colors. We start with two simple examples before explaining the general construction.

Example 2.1 Any dg prop in Ch can alternatively be defined as a dg monoidal category
cat.P / such that ob.cat.P // D fx˝n; n 2 Ng (where x is a formal variable), the
tensor product is given by x˝m˝x˝n D x˝.mCn/ and the complexes of morphisms
by

Homcat.P/.x
˝m;x˝n/D P .m; n/:

The category of P –algebras consists of enriched symmetric monoidal functors

cat.P /! Ch

with their natural transformations.

Example 2.2 Let P be a (1–colored) dg prop. There exists a 2–colored dg prop Px!y

such that the category of Px!y –algebras is the category of morphisms f W X ! Y in
the category of P –algebras ChP . It has two colors x;y and it is generated for the com-
position products by P .x; : : : ;xIx; : : : ;x/D P .m; n/, by P .y; : : : ;yIy; : : : ;y/D

P .m; n/, and by an element f 2P .x;y/ which represents an abstract arrow f W x!y .
The associated dg monoidal category cat.Px!y/ is defined in the following way. Let
Freemon.x;y/ be the monoid freely generated by the two generators x and y , ie the
set of words in two letters w 2 Freemon.x;y/. Then the objects of cat.Px!y/ are the
“monoidal words”

ob.cat.Px!y//D fw˝.x;y/; w 2 Freemon.x;y/g;

where w˝.x;y/ is the formal tensor product corresponding to the word w . The
complexes of morphisms are

Homcat.Px!y/.w˝.x;y/; v˝.x;y//D Px!y.w; v/

where w is the ordered sequence of letters, ie colors, appearing in the word w . Algebras
over Px!y are enriched symmetric monoidal functors cat.Px!y/! Ch. A Px!y –
algebra is equivalent to a diagram of P –algebras f�! �g ! ChP .

These constructions can be generalized to arbitrary diagrams as follows.
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Definition 2.3 Let I be a small category. Then there exists an ob.I/–colored dg
prop PI consisting of abstract objects xi associated to i 2 I , and the morphisms of PI
are generated by operations p 2 PI.x

˝m
i ;x˝n

i / associated to each p 2 P .m; n/ and
each variable xi , as well as abstract arrows f W xi! xj associated to the morphisms
of I . The corresponding dg monoidal category cat.PI/ is defined as follows:

ob.cat.PI//D fw˝.xi ; i 2 ob.I//; w 2 Freemon.xi ; i 2 ob.I//g:

The tensor product is defined by

w˝.xi ; i 2 ob.I//˝ v˝.xi ; i 2 ob.I//D .w � v/˝.xi ; i 2 ob.I//:

The complexes of morphisms are

Homcat.PI/.w˝.xi ; i 2 ob.I//; v˝.xi ; i 2 ob.I///D PI.w; v/:

The composition on the dg hom is the vertical composition product of PI , and the
tensor product of morphisms is the horizontal composition product of PI .

In other words, the category cat.PI/ is a differential graded monoidal category
monoidally generated on objects by the set of colors of PI . This can be generalized in
any symmetric monoidal category, giving an alternative definition of a colored dg prop.

Definition 2.4 (1) A C –colored dg prop is a small symmetric monoidal dg category
monoidally generated by C .

(2) A PI –algebra is a symmetric monoidal dg functor cat.PI/! Ch.

Proposition 2.5 A PI –algebra corresponds to an I–diagram of P –algebras.

This result follows from the construction of PI in terms of generators and relations.
For more details we refer the reader to [17, Section 2], where such a construction is
carried out in the case of colored dg operads.

2.2 Categories of universal twisted sums and functorial diagrams
of algebras

Let PJ be a colored prop on a small category J . The category cat.PJ / reflects the
universal structures of the symmetric monoidal category defined by a P –algebra in the
category of chain complexes. But for some constructions of homotopy theory, we need
operations of the ambient category of chain complexes which lie outside the image of this
category cat.PJ /. Namely, we need to perform direct sums C ˚D , suspensions †C ,
and twisted complexes .C; d/ which we form by adding a twisting homomorphism
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d 2 Hom.C;C / to the internal differential of a chain complex ıW C ! C . These
operations can clearly not be formed within the image of cat.PJ / in the category
of chain complexes in general. Therefore, we define a universal enriched category
TwSum.PJ / generated by the formal image of the tensor products w.xj ; j 2 J / 2
ob.cat.PJ // under such direct sum, suspension and twisting operations. If we put
all these operations together, then we get the notion of a twisted direct sum which we
formalize in our definition. Let us simply mention that we use formal tensor products
Ke ˝ V , where Ke is the free K–module spanned by a homogeneous element of
degree d D deg.e/, to create a d –fold suspension operation †d W C 7!†dC . In the
sequel, our idea is to define universal models of the homotopical construction which
we need to work out our problems in this enriched category TwSum.PJ /.

2.2.1 Construction of the category of universal twisted sums Let J be a small
category and PJ the associated ob.J /–colored dg prop. Our goal is to build from
cat.PJ / a certain dg monoidal category TwSum.PJ / called its category of universal
twisted sums. The objects are pairs�M

˛2A

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�
;

where

� the first term
L
˛2A is a formal sum over a finite set A of multi-indices ˛ D

.˛1; : : : ; ˛n/ of formal tensor products .Ke˛/˝.x˛1
˝� � �˝x˛n

/, where x˛1
˝

� � �˝x˛n
is an object of cat.PJ / and we consider the graded K–module Ke˛

generated by a homogeneous element e˛ of a certain degree d˛ D deg.e˛/;

� the second term represents a collection of homomorphisms

tw˛ ˇ 2 e˛˝ e_ˇ ˝Homcat.PJ /.xˇ1
˝ � � �˝xˇm

;x˛1
˝ � � �˝x˛n

/;

indexed by the couples .˛; ˇ/ 2 A2 , homogeneous of degree �1, that satisfy
the relation of twisting cochains

ı.tw˛ˇ/C
X
2A

tw˛ ı twˇ D 0

in the dg-module

e˛˝ e_ˇ ˝Homcat.PJ /.xˇ1
˝ � � �˝xˇm

;x˛1
˝ � � �˝x˛n

/;

for every couple .˛; ˇ/2A2 of sequences of colors. The notation e_
ˇ

represents
an element which is dual to eˇ , homogeneous of degree deg.e_

ˇ
/D� deg.eˇ/,

and we use the relation e_
ˇ
.eˇ/D 1 when we form the composites tw˛  ı tw ˇ .
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We define the dg-modules of homomorphisms of TwSum.PJ / as the twisted sums of
dg-modules; that is, for

LD

�M
ˇ2B

.Keˇ/˝ .xˇ1
˝ � � �˝xˇm

/; twL

�
;

K D

�M
˛2A

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; twK

�
;

we define

HomTwSum.PJ /.L;K/ WD� M
.ˇ ˛/2B�A

Ke˛˝Ke_ˇ ˝Homcat.PJ /.xˇ1
˝ � � �˝xˇm

;x˛1
˝ � � �˝x˛n

/; @

�
;

with twisting homomorphism @W .fˇ ˛/ 7! .@.f /ˇ ˛/ such that

@.f /ˇ ˛ D
X
2B

twˇ  ıf ˛ �
X
2A

sign.f /fˇ  ı tw ˛

for every couple .˛; ˇ/ of sequences of colors, where sign.f / is a sign depending
on f .

Claim This endows TwSum.PJ / with a dg category structure.

Proof We equip this dg hom HomTwSum.PJ /.K;L/ with the total differential ıC @,
where ı is the internal differential induced by the differential of P and @ is the twisting
homomorphism. The fact that .ı C @/2 D 0 follows from the relation of twisting
cochains satisfied by the tw with respect to ı . Indeed, for each ˇ 2B; ˛ 2A, we have

.ıC @/2.f /ˇ;˛ D .ı.@/C @
2/.f /ˇ;˛;

where ı.@/ is the usual differential of a homomorphism defined by the commutator

ı.@/D ı ı @� .�1/deg.@/@ ı ı D ı ı @C @ ı ı:

We have

ı.@/.f /ˇ;˛ D ı.@.f /ˇ;˛/C @.ı.f //ˇ;˛ D ı.twˇ;˛/.f /;
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and

@2.f /ˇ;˛ D @.@.f //ˇ;˛ D
X
2B

twˇ  ı @.f / ˛ �
X
2A

sign.@.f //@.f /ˇ  ı tw ˛

D

X
2B

twˇ  ı @.f / ˛C
X
2A

sign.f /@.f /ˇ  ı tw ˛

D

�X
2B

twˇ  ı tw ˛

�
.f /

because sign.@.f //D sign.f /� 1 (the homomorphism @ is of degree �1), so

.ıC @/2.f /ˇ;˛ D

�
ı.twˇ;˛/C

X
2B

twˇ  ı tw ˛

�
.f /D 0:

For each object

K D

�M
˛

Ke˛˝ .x˛1
˝ � � �˝x˛n

/; twK

�
of TwSum.PJ /, the associated identity element in the dg hom HomTwSum.PJ /.K;K/ is
the 0–cycle defined by M

˛

.Ke˛/˝Ke_˛ ˝ idx˛1
˝���˝x˛n

;

where idx˛1
˝���˝x˛n

is the identity on the object x˛1
˝ � � � ˝ x˛n

of cat.PJ /. The
composition law

HomTwSum.PJ /.K;L/˝HomTwSum.PJ /.L;M /! HomTwSum.PJ /.K;M /

on such dg homs is then defined by the composition of dg homs in cat.PJ / and the
relation e_˛ .e˛/D 1 on matching colors. The compatibility of this composition with
the twisted differentials of the dg homs is automatic.

2.2.2 The tensor structure on a category of universal twisted sums The category
TwSum.PJ / is equipped with a dg enriched symmetric monoidal structure, defined by
the natural distribution formula at the level of objects; that is, for

K D

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛m

/; twK

�
;

LD

�M
ˇ

.Keˇ/˝ .xˇ1
˝ � � �˝xˇn

/; twL

�
;
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we define

K˝L WD

�M
˛;ˇ

.Ke˛˝eˇ/˝.x˛1
˝� � �˝x˛m

˝xˇ1
˝� � �˝xˇn

/; twK˝idCid˝twL

�
;

where we use the horizontal compositions�
Ke ˝Ke_˛ ˝Homcat.PJ /.x˛1

˝ � � �˝x˛m
;x1
˝ � � �˝xp

/
�

˝
�
Keı˝Ke_ˇ ˝Homcat.PJ /.xˇ1

˝ � � �˝xˇn
;xı1
˝ � � �˝xıq

/
�

˝
�! .Ke ˝Keı/˝ .Ke˛˝Keˇ/

_
˝Homcat.PJ /.x˛1

˝� � �˝x˛m
˝xˇ1

˝� � �˝xˇn
;

x1
˝ � � �˝xp

˝xı1
˝ � � �˝xıq

/

to define the formal twisted cochain twK ˝ idC id˝ twL of this object K˝L. An
analogous construction holds at the level of homomorphisms.

Each object x˛1
˝ � � �˝x˛n

2 cat.PJ / is naturally identified with the trivial twisted
sum KD .Ke0˝.x˛1

˝� � �˝x˛n
/; 0/ in TwSum.PJ /, where deg.e0/D0)Ke0DK.

In particular, to each x˛i
corresponds a trivial twisted sum K˛i

D .Ke0 ˝ x˛i
; 0/.

This defines a functor

cat.PJ /! TwSum.PJ /:

The category of universal twisted sums satisfies the following universal property with
respect to this functor.

Lemma 2.6 For every symmetric monoidal dg functor RW cat.PJ /! Ch (that is,
every PJ –algebra), there exists a canonical factorization:

cat.PJ /

��

R
// Ch

TwSum.PJ /

zR

::

Proof We construct zR by first setting zR.K˛i
/DR.x˛i

/ so that the diagram commutes.
Then, for any object �M

˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�
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of TwSum.PJ /, we define

zR

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�

D

�M
˛

.Ke˛/˝ .R.x˛1
/˝ � � �˝R.x˛n

//;R.tw/
�
;

where the left-hand term is built with the direct sum and tensor product of Ch. The
differential of zR

�L
˛.Ke˛/˝.x˛1

˝� � �˝x˛n
/; tw

�
is then defined on each component

of this direct sum by the sum of the differential of R.x˛1
/˝ � � � ˝R.x˛n

/ with a
twisting cochain R.tw/ defined as follows. Since R is a symmetric monoidal dg
functor, it induces a morphism of chain complexes

Rxˇ1
˝���˝xˇm ;x˛1

˝���˝x˛n
W Homcat.PJ /.xˇ1

˝ � � �˝xˇm
;x˛1

˝ � � �˝x˛n
/

! HomCh.R.xˇ1
/˝ � � �˝R.xˇm

/;R.x˛1
/˝ � � �˝R.x˛n

//;

so that the collection R.tw/D fR.tw˛ ˇ/g˛ ˇ is well defined by

R.tw˛ ˇ/DRxˇ1
˝���˝xˇm ;x˛1

˝���˝x˛n
.tw˛ ˇ/

2 e˛˝ e_ˇ ˝HomCh.R.xˇ1
/˝ � � �˝R.xˇm

/;R.x˛1
/˝ � � �˝R.x˛n

//:

This collection satisfies the relation of twisting cochains because R is a symmetric
monoidal dg functor and the collection ftw˛ ˇg˛ ˇ satisfies the relation of twisting
cochains in TwSum.PJ /.

2.2.3 Functorial diagrams of algebras Our purpose is to use categories of universal
twisted sums to construct diagrams of dg P –algebras “functorial in their variables” in
a suitable sense.

Recall that the colored dg prop PJ parametrizing J –diagrams of P –algebras is
equivalent to the datum of a symmetric monoidal dg category cat.PJ /. Algebras
over PJ are then strict symmetric monoidal dg functors cat.PJ /!Ch, and morphisms
of PJ –algebras are natural transformations preserving the strict symmetric monoidal
dg structures. Such a natural transformation corresponds to a natural transformation of
J –diagrams of P –algebras.

Now let A;BW cat.PJ / ! Ch be two such algebras, and �W A ) B be a strict
symmetric monoidal dg natural transformation. Recall that, according to Lemma 2.6,
such functors lift to strict symmetric monoidal dg functors zA; zBW TwSum.PJ /! Ch.
We want to prove that such a lift works similarly for symmetric monoidal dg natural
transformations between such functors.
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Lemma 2.7 The natural transformation � lifts to a strict symmetric monoidal dg
natural transformation z�W zA) zB .

Proof To see this, let us first recall from [15] the notion of enriched natural transfor-
mation in the case where the categories are enriched over Ch. Let F;GW C!D be two
dg functors and HomC.�;�/, HomD.�;�/ be respectively the dg homs of C and D .
A dg natural transformation � W F )G is a collection of chain morphisms

f�.x/W K! HomD.F.x/;G.x//gx2ob.C/;

that is, of 0–cycles in the complexes HomD.F.x/;G.x// indexed by the objects x

of C . For every x;y 2 ob.C/, this collection makes the following diagram commutative:

HomC.x;y/

Š

��

Š
// HomC.x;y/˝K

Gx;y˝�.x/

��

K˝HomD.x;y/

�.y/˝Fx;y

��

HomD.G.x/;G.y//

˝HomD.F.x/;G.x//

ıD

��
HomD.F.y/;G.y//

˝HomD.F.x/;F.y//
ıD

// HomD.F.x/;G.y//

For any object

K D

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; twK

�
of TwSum.PJ /, we define the associated 0–cycle z� in

HomCh

��M
˛

.Ke˛/˝ .A.x˛1
/˝ � � �˝A.x˛n

//;A.twK /

�
;�M

˛

.Ke˛/˝ .B.x˛1
/˝ � � �˝B.x˛n

//;B.twK /

��
by

z�.K/D
M
˛

.Ke˛/˝ .�.x˛1
/˝ � � �˝�.x˛n

//:

We have to prove that this form a 0–cycle, thus that

.ıCB.twK // ı z�.K/D z�.K/ ı .ıCA.twK //:

The equality
ı ı z�.K/D z�.K/ ı ı
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follows from the fact that each �.x˛i
/W A.x˛i

/! B.x˛i
/ is a morphism of chain

complexes and the differential ı is the differential of B.x˛1
/˝ � � �˝B.x˛n

/ on the
left-hand side of the equality and of A.x˛1

/˝ � � � ˝A.x˛n
/ on the right-hand side.

The equality

B.twK / ı z�.K/D z�.K/ ıA.twK /

follows from the definition of A.twK / as

A.twK /D fAxˇ1
˝���˝xˇm ;x˛1

˝���˝x˛n
..twK /˛ ˇ/g˛ ˇ

(and the same for B.twK /), the fact that � is a dg natural transformation between A

and B , and the definition of z�.K/ in terms of the �.x˛i
/.

Concerning the monoidality of our collection fz�.K/gK2ob.TwSum.PJ // of 0–cycles,
recall from Section 2.2.2 that the tensor product of two objects of TwSum.PJ / is
defined by�M

˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛m

/; twK

�
„ ƒ‚ …

K

˝

�M
ˇ

.Keˇ/˝ .xˇ1
˝ � � �˝xˇn

/; twL

�
„ ƒ‚ …

L

WD

�M
˛;ˇ

.Ke˛˝ eˇ/˝ .x˛1
˝ � � �˝x˛m

˝xˇ1
˝ � � �˝xˇn

/; twK ˝ idC id˝ twL

�
„ ƒ‚ …

DK˝L

and that the functors zA; zBW TwSum.PJ /! Ch associated to A;BW cat.PJ /! Ch are
defined by

zA

�M
˛

.Ke˛/˝ .x˛1
˝ � � �˝x˛n

/; tw
�

D

�M
˛

.Ke˛/˝ .A.x˛1
/˝ � � �˝A.x˛n

//;A.tw/
�
:

We have natural isomorphisms

aK˝LW
zA.K˝L/!

Š
zA.K/˝ zA.L/; bK˝LW

zB.K˝L/!
Š
zB.K/˝ zB.L/;

induced by natural isomorphisms

A. � ˝ � /!
Š

A. � /˝A. � /; B. � ˝ � /!
Š

B. � /˝B. � /;
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since A and B are symmetric monoidal functors. We have to check the commutativity
of the square below:

zA.K˝L/

aK˝L

��

z�.K˝L/
// zB.K˝L/

bK˝L

��

zA.K/˝ zA.L/
z�.K /˝z�.L/

// zB.K/˝ zB.L/

By construction of zA, zB and z� , which are defined by applying A, B and � to each
variable of the tensor powers defining the objects of TwSum.PJ /, this boils down to
the commutativity of such a monoidality square for A, B and � , which holds because
� is a monoidal natural transformation.

The naturality of fz�.K/gK2ob.TwSum.PJ // follows directly from the naturality of � .

We consequently get two functors

zA�; zB�W TwSum.PJ /
P
! ChP ;

that carry any P –algebra in TwSum.PJ /, represented by a symmetric monoidal functor
zC W cat.P / ! TwSum.PJ /, to the P –algebra in Ch represented by the composite
functors zA zC ; zB zC W cat.P /!Ch. We also have a natural transformation z��W zA�) zB�
between these functors on P –algebras.

For any small category I , we get strict symmetric monoidal dg functors

zA�; zB�W .TwSum.PJ /
P /I ! .ChP /I

and a strict symmetric monoidal dg natural transformation z��W zA�) zB� . This trans-
formation consists in a collection of natural transformations of I–diagrams of dg
P –algebras

z��.Y /W zA�.Y /) zB�.Y /

for every Y 2 .TwSum.PJ /
P /I .

Thus, whenever we have an I–diagram of P –algebras in TwSum.PJ /, say Y , we can as-
sociate an I–diagram of dg P –algebras zA�.Y / to any J –diagram of dg P –algebras A,
and a natural transformation of I–diagrams of dg P –algebras z��.Y /W zA�.Y /) zB�.Y /
to any natural transformation of J –diagrams of dg P –algebras �W A)B . This result
is equivalent to the following statement.

Proposition 2.8 Given an I–diagram Y of P –algebras in TwSum.PJ /, the above
construction determines a functor

.ChP /J ! .ChP /I :
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The main example to which we want to apply this construction is the following. Let
f W X!Y be a morphism of chain complexes. Then it admits a functorial factorization
by an acyclic cofibration (ie acyclic injection) followed by a fibration (ie a surjection).
This factorization is explicitly given by

„.f W X ! Y / W

X

X //

i

�
//

idX

33

f ++

Z

s
>> >>

p
    

Y

where

Z D .Ke0˝X ˚Ke01˝Y ˚Ke1˝Y; dZ /;

with deg.e0/D deg.e1/D 0 and deg.e01/D�1. The differential dZ can be expressed
in this direct sum by the matrix0@dX 0 0

f �dY �id
0 0 dY

1AD
0@dX 0 0

0 �dY 0

0 0 dY

1AC
0@0 0 0

f 0 �id
0 0 0

1A ;
where the first matrix of the sum is the differential of the direct sum

Ke0˝X ˚Ke01˝Y ˚Ke1˝Y

and the second is a twisting twZ , a map of degree �1 satisfying tw2
Z
D 0. The map

i sends x 2X to x˚ 0˚f .x/ and s and p are respectively projections on the first
and the third factor; that is, we have

i D
�
id 0 f

�
; s D

0@id
0

0

1A and p D

0@0

0

id

1A :
There is a diagram of chain complexes

„W Mor.Ch/! Fun.Y; Ch/;

functorial in its variables, where Mor.Ch/ is the category whose objects are morphisms
of chain complexes and morphisms are commutative squares, and Y is the small

Algebraic & Geometric Topology, Volume 16 (2016)



2736 Sinan Yalin

category whose objects and arrows are given by

Y WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�

� //

33

++

�

??

��
�

9>>>>>>>=>>>>>>>;
:

Our goal is to prove that for any cofibrant dg prop P , this functor induces a functor

„W Mor.ChP /! Fun.Y; ChP /;

that is, a functor
„W .ChP /�!�! .ChP /Y :

This means the following.

Theorem 2.9 Let P be a cofibrant dg prop. The functorial factorization of morphisms
of chain complexes described above lifts to a functorial factorization of P –algebra
morphisms into an acyclic injection followed by a surjection.

Proof The general strategy is to prove that the diagram in TwSum.Px!y/ associ-
ated to „.f W X ! Y / is actually a diagram in TwSum.Px!y/

P , and then apply
Proposition 2.8.

Let f W X ! Y be a morphism of chain complexes and Px!y the 2–colored dg prop
of P –algebra morphisms. In this proof, we will use the short notation

Tw WD TwSum.Px!y/:

We can associate to the diagram of chain complexes „.f W X ! Y / a diagram
„.f W x ! y/ in Tw so that Proposition 2.8 applies. For this, recall that the colors
x and y are embedded into Tw as the objects .Ke0˝ x; 0/ and .Ke1˝ y; 0/. We
will denote by f both the operation of Px!y corresponding to f and the morphism
.Ke0˝x; 0/! .Ke1˝y; 0/ in Tw. The object z of Tw corresponding to Z is defined
to be

.Ke0˝x˚Ke01˝y˚Ke1˝y; twz/;

with

twz D

0@ tw0;0 tw01;0 tw1;0

tw0;01 tw01;01 tw1;01

tw0;1 tw01;1 tw1;1

1AD
0@ 0 0 0

e01˝ e_
0
˝f 0 e01˝ e_

1
˝�id

0 0 0

1A
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representing the twisting part twZ of Z . The maps i and p of „.f W x ! y/ are
then defined similarly to those of „.f W X ! Y /.

The endomorphism dg prop End.„.f Wx!y/;Tw/ projects to the endomorphism dg prop
End.f;Tw/ of the subdiagram f W x! y , hence we have a fibration of dg props

End.„.f Wx!y/;Tw/ � End.f;Tw/ :

We will denote these dg props by End„.f Wx!y/ and Endf for short. We have to prove
that this fibration is acyclic. For this, we consider the following commutative diagram
of S–biobjects:

Endz D Homzz

.i�;p�/

))

p�

))

i�

))

Homxz �Homxy
Homzy

��

// Homzy

i�

��

Homxz p�
// Homxy

where Homzz.m; n/DHomTw.z
˝m; z˝n/. Limits of S–biobjects are created pointwise,

so for every .m; n/ 2N2 we have a commutative diagram as follows:

HomTw.z
˝m; z˝n/

..i˝m/�;.p˝n/�/

''

.p˝n/�

((

.i˝m/�

%%

pullback

��

// HomTw.z
˝m;y˝n/

.i˝m/�

��

HomTw.x
˝m; z˝n/

.p˝n/�

// HomTw.x
˝m;y˝n/

We have to check that ..i˝m/�; .p˝n/�/ is an acyclic fibration. Since acyclic fibrations
of S–biobjects are determined pointwise, we deduce that

.i�;p�/W Endz
�� Homxz �Homxy

Homyz

is an acyclic fibration of †–objects. Let us consider now the base extensions

Endx �Homxz
Endz �Homzy

Endy D End„.f Wx!y/;

Endx �Homxz
.Homxz �Homxy

Homzy/�Homzy
Endy D Endf :
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Acyclic fibrations are stable under base extensions, and acyclic fibrations of dg props
are determined in the category of S–biobjects under the forgetful functor, so we finally
get the desired acyclic fibration of dg props

Endx �Homxz
.i�;p�/�Homzy

Endy W End„.f Wx!y/

�� Endf :

Now let us denote Xb D Ke0 , Yb D Ke1 and fbW Xb ! Yb the morphism sending
e0 to e1 . This morphism admits a factorization

Xb
//

ib

�
// Zb pb

// // Yb:

Our goal is to prove that for all natural integers m and n, we have isomorphisms of
chain complexes

HomTw.z
˝m; z˝n/Š HomCh.Z

˝m
b

;Z˝n
b
/˝P .m; n/;

HomTw.z
˝m;y˝n/Š HomCh.Z

˝m
b

;Y ˝n
b
/˝P .m; n/;

HomTw.x
˝m; z˝n/Š HomCh.X

˝m
b

;Z˝n
b
/˝P .m; n/:

The method is exactly the same for the three cases, so we just write the argument for
the third isomorphism. We need to determine the tensor powers of z . For every natural
integer n, the object z˝n is given by the direct sum of shufflesM

1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

��
�
.Ke0˝x/˝n�i ; ��..Ke01˝y/˝j ; .Ke1˝y/˝i�j /

�
;

where the action ��.A
˝k ;B˝l/ of a .k; l/–shuffle � on a pair of tensor powers

.A˝k ;B˝l/ permutes the variables of the tensor product A˝k ˝B˝l . The twisting
of z˝n is determined by

tw˝n
0;01
D e˝n

01
˝ .e_0 /

˝n
˝f ıhn and tw˝n

1;01
D e˝n

01
˝ .e_1 /

˝n
˝ .�id/ıhn;

where ıh is the horizontal composition product of the dg prop Px!y . We get:

HomTw.x
˝m; z˝n/

D

M
1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

HomTw
�
x˝m; ��..Ke0˝x/˝n�i ; ��..Ke01˝y/˝j ; .Ke1˝y/˝i�j //

�

Š

M
1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

Ke˝n�i
0
˝Ke˝j

01
˝Ke˝i�j

1
˝HomTw

�
x˝m; ��.x

˝n�i; ��.y
˝j;y˝i�j //

�

Algebraic & Geometric Topology, Volume 16 (2016)



Function spaces and classifying spaces of algebras over a prop 2739

Moreover, we have

HomTw
�
x˝m; ��.x

˝n�i ; ��.y
˝j ;y˝i�j //

�
D Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///;

where Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y/// has m copies of the color x as
input, and as output n� i copies of color x and i copies of color y permuted by the
shuffles � and � . We want to build an isomorphismM

1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

Ke˝n�i
0
˝Ke˝j

01
˝Ke˝i�j

1
˝Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///

Š

M
1�j�i�n
�2Sh.i;m�i/
�2Sh.j ;m�j/

HomCh
�
X˝m

b
; ��.X

˝n�i
b

; ��.Yb Œ�1�˝j ;Y
˝i�j

b
//
�
˝P .m; n/;

where Œ�1� is the degree shift applied to the chain complex Yb . For this, we define in
each component .i; j ; �; �/ of the direct sum an isomorphism

Ke˝n�i
0

˝Ke˝j
01
˝Ke˝i�j

1
˝Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///

! HomCh
�
X˝m

b
; ��.X

˝n�i
b

; ��.Yb Œ�1�˝j ;Y
˝i�j

b
//
�
˝P .m; n/;

which sends any

� 2 Px!y.x; : : : ;xI ��.x; : : : ;x; ��.y; : : : ;y///

to

����˝ ��.f
ıhn�i ; idıhi/ ıv �;

where ���� is the unique homomorphism sending e˝m
0

to ��.e˝n�i
0

; ��.e
˝j
01
; e˝i�j

1
//

and ��.f ıhn�i ; idıhi/ is the permutation of the variables in the iterated horizontal
product f ıh � � � ıh f ıh id ıh � � � ıh id by � .

Finally, since ..i˝m/�; .p˝n/�/ is the tensor product of ..i˝m
b

/�; .p˝n
b
/�/ by P .m; n/,

it remains to apply the methods of [12, Lemma 8.3] in the category of chain complexes,
for Xb and Yb , to prove that ..i˝m

b
/�; .p˝n

b
/�/ is an acyclic fibration. We write the
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arguments here for the sake of clarity. We have the following commutative diagram:

HomCh.Z
˝m
b

;Z˝n
b
/

..i
˝m

b
/�;.p

˝n

b
/�/

''

.p
˝n

b
/�

))

.i
˝m

b
/�

%%

pullback

��

// HomCh.Z
˝m
b

;Y ˝n
b
/

.i
˝m

b
/�

��

HomCh.X
˝m
b

;Z˝n
b
/
.p
˝n

b
/�

// HomCh.X
˝m
b

;Y ˝n
b
/

Recall that chain complexes over a field are all cofibrant and fibrant in the model
structure of Ch. The map ib is a cofibration and Xb is cofibrant, so by the pushout-
product axiom, for every integer n the map i˝n

b
W X˝n!Z˝n is a cofibration. The

category Ch satisfies the limit monoid axioms [12, Section 6] and Yb is fibrant, so
for every integer n the map p˝n

b
W Z˝n

b
! Y ˝n

b
is a fibration [12, Proposition 6.7].

Moreover, by the pushout-product axiom, the tensor product preserves acyclic cofibra-
tions between cofibrant objects, so by Brown’s lemma it preserves weak equivalences
between cofibrant objects. Given that Zb and Yb are cofibrant, it implies that p˝n

b
is

an acyclic fibration. According to the dual pushout-product axiom, the fact that i˝m
b

is a cofibration and p˝n
b

is an acyclic fibration implies that ..i˝m
b

/�; .p˝n
b
/�/ is an

acyclic fibration.

3 The subcategory of acyclic fibrations

The goal of this section is to prove that the classifying space of weak equivalences
of P –algebras is weakly equivalent to the classifying space of acyclic fibrations of
P –algebras.

Theorem 3.1 Let P be a cofibrant dg prop. The inclusion i W f wChP ,! wChP of
categories gives rise to a weak equivalence of simplicial sets, N f wChP

!
� N wChP .

Remark 3.2 Actually, the methods of [26] can be transposed in our setting to prove
the following much stronger statement. We refer the reader to the seminal papers [10;
8; 9] for the notions of simplicial localization, hammock localization and Dwyer–Kan
equivalences of simplicial categories. The inclusion of categories i W f wChP ,! wChP

induces a Dwyer–Kan equivalence of hammock localizations

LH .ChP; f wChP /!
�

LH .ChP;wChP /:
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We refer the reader to [26] for more details about this proof, which relies on the
properties of several models of .1; 1/–categories (simplicial categories [2], relative
categories [1] and complete Segal spaces [22]).

To prove this theorem, we use Quillen’s Theorem A [20]: we have to check that for
every chain complex X , the nerve of the comma category .X # i/ is contractible. For
this aim, we prove the following more general result.

Proposition 3.3 Let I be a small category. Every simplicial map NI!N .X # i/ is
null up to homotopy.

As a consequence we get:

Proposition 3.4 The simplicial set N .X # i/ is contractible.

To prove Proposition 3.4, we apply Proposition 3.3, for every n 2N , to the subdivision
category of a simplicial model of the n–sphere Sn . We take @�nC1 as simplicial
model of Sn and denote by sd @�nC1 its subdivision category. We then use general
arguments of homotopical algebra.

Proposition 3.5 Let F W C � D WG be a Quillen adjunction. It induces natural isomor-
phisms

MapD.F.X /;Y /ŠMapC.X;G.Y //;

where X is a cofibrant object of C and Y a fibrant object of D .

Proof We will use the definition of mapping spaces via cosimplicial frames. The proof
works as well with simplicial frames. The adjunction .F;G/ induces an adjunction at
the level of diagram categories

F W C� � D� WG:

Now let �W A� � B� be a Reedy cofibration between Reedy cofibrant objects of C� .
This is equivalent, by definition, to saying that for every integer r , the maps

.�; �/r W L
r B

a
Lr A

Ar � Br

induced by � and the latching object construction L�A are cofibrations in C . Let us
consider the following pushout:

Lr A //

Lr�
��

Ar

��

Lr B // Lr B
`

Lr A Ar
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The fact that � is a Reedy cofibration implies that for every r , the map Lr� is a
cofibration. Since cofibrations are stable under pushouts, the map Ar!Lr B

`
Lr A Ar

is also a cofibration. By assumption, the cosimplicial object A� is Reedy cofibrant,
so it is, in particular, pointwise cofibrant. We deduce that Lr B

`
Lr A Ar is cofibrant.

Similarly, each Br is cofibrant since B� is Reedy cofibrant. The map .�; �/r is a
cofibration between cofibrant objects and F is a left Quillen functor, so F..�; �/r /

is a cofibration of D between cofibrant objects. Recall that the r th latching object
construction is defined by a colimit. As a left adjoint, the functor F commutes with
colimits so we get a cofibration

Lr F.B�/
a

Lr F.A�/

F.Ar /� F.Br /:

This means that F.�/ is a Reedy cofibration in D� . Now, given that Reedy weak
equivalences are the pointwise equivalences, if � is a Reedy weak equivalence between
Reedy cofibrant objects then it is, in particular, a pointwise weak equivalence between
pointwise cofibrant objects, hence F.�/ is a Reedy weak equivalence in D� . We
conclude that F induces a left Quillen functor between cosimplicial objects for the
Reedy model structures. In particular, it sends any cosimplicial frame of a cofibrant
object X of C to a cosimplicial frame of F.X /.

Remark 3.6 The isomorphism above holds if the cosimplicial frame for the left-hand
mapping space is chosen to be the image under F of the cosimplicial frame of the
right-hand mapping space. But recall that cosimplicial frames on a given object are all
weakly equivalent, so that for any choice of cosimplicial frame we get at least weakly
equivalent mapping spaces.

Now, recall that the geometric realization functor and the singular complex functor
induce a Quillen equivalence

j�jW sSet � Top WSing
�
.�/

between topological spaces and simplicial sets. We have

MapsSet.N sd @�nC1;N .X # i//'MapsSet.N sd @�nC1;Sing
�
.jN .X # i/j//

'MapTop.jN sd @�nC1
j; jN .X # i/j/

'MapTop.S
n; jN .X # i/j/;

hence ˇ̌
MapsSet.N sd @�nC1;N .X # i//

ˇ̌
'
ˇ̌
MapTop.S

n; jN .X # i/j/
ˇ̌
I
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in particular

�0

ˇ̌
MapsSet.N sd @�nC1;N .X # i//

ˇ̌
Š ŒSn; jN .X # i/j �Ho.Top/:

Proposition 3.3 means that for every integer n, the spaceˇ̌
MapsSet.N sd @�nC1;N .X # i//

ˇ̌
has only one connected component (the component of the zero map); that is, the
homotopy groups of jN .X # i/j are trivial.

Proof of Proposition 3.3 The category .X # i/ has weak equivalences X !
�

Y as
objects and acyclic fibrations as morphisms. It contains the initial object X !

D
X of

.X # Ch/.

Every simplicial map NI!N .X # i/ comes from a functor I! .X # i/, ie an I–
diagram in .X # i/. Let F be such a functor. Let X be the initial I–diagram, that is the
constant diagram on X!

D
X . In order to simplify notation, we write Y for a morphism

X ! Y (an object of .X # Ch/) and Y ! Y 0 for a commutative triangle relating
X ! Y to X ! Y 0 (a morphism of .X # Ch/). The diagram F �X W I! .X # Ch/ is
defined on objects by F�X .k/DF.k/�X and on arrows by F�X .�/DF.�/�idX .
Applying the functorial factorization of Theorem 2.9 to the unique initial morphism
X ! F �X , we get a decomposition in .X # Ch/P into a diagram Y given by

X

X

D
//

//

//

i

�
// G

p1

== ==

p2

!! !!

F

where the functor G is defined pointwise by the functorial factorization of Theorem 2.9.
The map .p1;p2/W G � F �X is a pointwise fibration and i is a pointwise acyclic
cofibration of chain complexes. Since the map .p1;p2/W G � F �X is a pointwise
fibration and F and X are pointwise fibrant, the maps p1 and p2 are pointwise acyclic
fibrations: the product F �X is given by the pullback

F �X
p1

//

p2
��

X

��

F // �

and pointwise fibrations are stable under pullbacks so p1 and p2 are pointwise fibra-
tions. Since idX D p1 ı i and X ! F D p2 ı i are weak equivalences, the maps p1

and p2 are acyclic by the two-out-of-three property.
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The functors X and F take their values in .X # i/ by definition. This implies
that the functor G sends morphisms of I to acyclic fibrations by definition of the
functorial factorization in chain complexes. We consequently obtain a zigzag of natural
transformations X  G! F of functors I! .X # i/. This zigzag implies that NF

is homotopic to NX , which is itself null up to homotopy. This concludes the proof of
Proposition 3.3.

4 Moduli spaces of algebraic structures as homotopy fibers

4.1 Moduli spaces of algebra structures on fibrations

The results of this subsection holds for algebras in E over a prop in C , where the
category C is a cofibrantly generated symmetric monoidal model category and the
category E is a cofibrantly generated symmetric monoidal model category over C .
However, for the sake of simplicity we explain only the case E D C D Ch.

We start by recalling [12, Lemma 7.2]. Let f W A!B be a morphism of Ch. Then we
have a pullback

End
fA

f
!Bg

d0
//

d1

��

EndB

f �

��

EndA
f�

// HomAB

where HomAB is defined by HomAB.m; n/D HomCh.A
˝m;B˝n/.

Lemma 4.1 [12, Lemma 7.2] (1) If f is a (acyclic) fibration then so is d0 .

(2) If f is a cofibration, then d1 is a fibration. If f is also acyclic then d1 is an
acyclic fibration and d0 a weak equivalence.

Remark 4.2 Lemma 4.1 is a generalization in the prop context of [21, Proposi-
tions 4.1.7 and 4.1.8].

Lemma 4.3 Let Xn � � � �� X1 � X0 be a chain of fibrations of chain complexes.
For every 0� k � n� 1, the map d0 in the pullback

EndfXn�����X0g

d0
//

d1

��

EndfXk�����X0g

��

EndfXn�����XkC1g
// HomXkC1Xk
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is a fibration. Moreover, if the fibrations in the chain Xn � � � �� X1 � X0 are
acyclic then so is d0 .

Proof We prove this lemma by induction. The case nD 1 is Lemma 4.1. Now suppose
that our lemma is true for a given integer n� 1. Let XnC1 � � � �� X1 � X0 be a
chain of fibrations of complexes. We distinguish two cases:

Case kD n We have the pullback

EndfXnC1�����X0g

d0
//

d1

��

EndfXn�����X0g

��

EndXnC1 f�

// HomXnC1Xn

where f W XnC1 � Xn . The fact that f is a fibration implies that f� is a fibration, so
d0 is a fibration because of the stability of fibrations under pullback, and the acyclicity
of f implies the acyclicity of d0 . The detailed proof of these statements is done in the
proof of [12, Lemma 7.2].

Case 0� k� n� 1 We have that

d0 D EndfXnC1�����X0g
! EndfXn�����X0g

! EndfXk�����X0g

is the composite of an map satisfying the induction hypothesis with the map of the case
k D n, so the conclusion follows.

Remark 4.4 This lemma is the generalization of [21, Proposition 4.1.9] in the prop
context.

We deduce from Lemmata 4.1 and 4.3 the following properties of our moduli spaces.

Proposition 4.5 Let f W X ! Y be a chain complex morphism and P be a cofibrant
dg prop. The pullback of Lemma 4.1 gives rise to the following diagram of simplicial
sets:

PfX g
.d1/�
 � Pff g

.d0/�
�! PfY g

(1) If f is a cofibration then .d1/� is a fibration. Moreover, if f is acyclic then
.d0/� and .d1/� are weak equivalences.

(2) If f is a fibration then .d0/� is a fibration. Moreover, if f is acyclic then .d0/�
and .d1/� are weak equivalences.
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Proof (1) If f is a cofibration then d1 is a fibration. So .d1/� is a fibration of
simplicial sets according to Proposition 1.11. If f is acyclic, then d0 and d1 are weak
equivalences. Every chain complex is fibrant and cofibrant, and fibrations of props are
determined componentwise, so EndX and EndY are fibrant props. This implies that
Endff g is also fibrant. We deduce from this and Proposition 1.11 that .d0/� and .d1/�
are weak equivalences.

(2) The proof is the same as in the previous case.

By induction we can also prove the following proposition.

Proposition 4.6 Let Xn
�� � � �

�� X1
�� X0 be a chain of acyclic fibrations and P

be a cofibrant dg prop. For every 0� k � n� 1, the map .d0/� is an acyclic fibration
and .d1/� a weak equivalence in the diagram below:

PfXn
�� � � �

�� XkC1g
.d1/�
 � PfXn

�� � � �
�� X0g

.d0/�
�! PfXk

�� � � �
�� X1g

Remark 4.7 Propositions 4.5 and 4.6 are generalizations in the prop context of [21,
Propositions 4.1.11, 4.1.12 and 4.1.13].

4.2 Proof of Theorem 0.1

We have now all the key results to generalize Rezk’s theorem to algebras over dg props.
The remaining arguments are the same as those of Rezk, so we will not repeat them
with all details but essentially show how our Theorem 3.1, as well as the main theorem
of [25], fit in the proof.

Let P be a cofibrant dg prop, and N wChP˝�� the bisimplicial set defined by�
N wChP˝��

�
m;n
D
�
.N wChcf /P˝�

n�
m
:

The dg prop P is cofibrant, thus so is P ˝ �n for every n � 0. According to
Theorem 3.1, we have a weak equivalence induced by an inclusion of categories

N f wChP˝�n

!
� N wChP˝�n

:

Moreover, for every n; n0 � 0, the map �n ! �n0 induces a weak equivalence of
cofibrant dg props P ˝�n! P ˝�n0 and thereby a weak equivalence of simplicial
sets

N wChP˝�n0

!
� N wChP˝�n

according to [25, Theorem 0.1]. We obtain a zigzag of weak equivalences

diagN f wChP˝��
!
� diagN wChP˝��

 
� N wChP :
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We use an adaptation of a slightly modified version of Quillen’s Theorem B (see [20]),
namely [21, Lemma 4.2.2], in order to determine the homotopy fiber of the map
diagN f wChP˝��

!N f wCh. To prove that our map verifies the hypotheses of this
lemma we use the propositions of Section 4.1 exactly in the same way as Rezk in the
operadic case. Then we check that diag.U #X /' PfX g, where U W f wChP˝��

!

f wCh is the forgetful functor (by using again the propositions of Section 4.1) and finally
we get the following diagram:

PfX g //

��

diagN f wChP˝��

��

�
// diagN wChP˝�� N wChP�

oo

��

pt // N f wCh �
// N wCh

The proof of Theorem 0.1 is complete.

Remark 4.8 Note that we can recover the transfer theorem of bialgebra structures
of [12, Theorem A] as a consequence of Theorem 0.1. Indeed, let P be a cofibrant
dg prop in Ch. Let X !

�
Y be a morphism of Ch such that Y is endowed with a

P –algebra structure. We have a homotopy pullback of simplicial sets

PfX g

��

p
// N wChP

NU

��

fX g // N wCh

which induces an exact sequence of pointed sets

�0PfX g ! �0N wChP
! �0N wCh :

The base point of the set �0N wCh is the weak equivalence class of X , denoted by ŒX �.
The weak equivalence X !

�
Y in Ch implies that we have the equality ŒY �D ŒX � and

thus �0NU.ŒY �P / D ŒX �, where ŒY �P is the weak equivalence class of Y in ChP .
The exactness of the above sequence implies that �0p.PfX g/D .�0NU /�1.ŒX �/ so
ŒY �P 2 �0p.PfX g/. This means that there exists a P –algebra structure on X such
that we have a zigzag of P –algebra morphisms

X  
�
� � � !
�

Y;

which are weak equivalences of Ch.

Remark 4.9 We do not address the case of simplicial sets. However, [14, Theorem 1.4]
endows the algebras over a colored prop in simplicial sets with a model category
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structure. Moreover, the free algebra functor exists in this case. Therefore one can
transpose the methods used in the operadic setting to obtain a simplicial version of
[25, Theorem 0.1]. Theorem 0.1 in simplicial sets can be proved by following Rezk’s
original proof step by step. We also conjecture that our results have a version in
simplicial modules which would follow from arguments similar to ours.
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Solvable Lie flows of codimension 3

NAOKI KATO

In Appendix E of Riemannian foliations [Progress in Mathematics 73, Birkhäuser,
Boston (1988)], É Ghys proved that any Lie g–flow is homogeneous if g is a nilpotent
Lie algebra. In the case where g is solvable, we expect any Lie g–flow to be homoge-
neous. In this paper, we study this problem in the case where g is a 3–dimensional
solvable Lie algebra.

57R30; 53C12, 22E25

1 Introduction

Throughout this paper, we suppose that all manifolds are connected, smooth and
orientable and all foliations are smooth and transversely orientable. In this paper, flows
mean orientable 1–dimensional foliations.

Lie foliations were first defined by E Fedida [4]. A classical example of a Lie foliation
is a homogeneous one. Through the results of several authors, it is recognized that the
class of homogeneous Lie foliations is a large class in the class of Lie foliations, though
of course these classes do not coincide. Therefore deciding which Lie foliations belong
to the class of homogeneous Lie foliations is an important problem in Lie foliation
theory.

P Caron and Y Carrière [2] proved that any Lie Rq–flow without closed orbits is
diffeomorphic to a linear flow on the .qC1/–dimensional torus, which is homoge-
neous. Carrière [3] proved that any Lie a.2/–flow is homogeneous. S Matsumoto and
N Tsuchiya [13] proved that any Lie a.2/–foliation of a 4–dimensional manifold or
its double covering is homogeneous.

In the case where g is semisimple, M Llabrés and A Reventós constructed an example
of Lie sl2.R/–flow which is not homogeneous [12, Example 5.3].

In the case where g is nilpotent, É Ghys [7] proved that any Lie g–flow is homogeneous.
In the case where g is solvable, we conjecture that any Lie g–flow is homogeneous.

In this paper, we study this problem in the case where g is a 3–dimensional solvable
Lie algebra.
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If a Lie g–flow F on M has a closed orbit, then any orbit is closed and M is an oriented
S1–bundle. In this case, the base space is diffeomorphic to a homogeneous space �nG
and hence g is unimodular. The total space M is, in general, not diffeomorphic to a
homogeneous space. However, in the case where g is of type (R) or g is 3–dimensional,
we can prove that the total space is a homogeneous space. More precisely, we obtain
the following theorem.

Theorem A Let g be a solvable Lie algebra and F be a Lie g–flow on a closed
manifold M . Suppose that F has a closed orbit.

(i) If g is of type (R) and unimodular, then F is diffeomorphic to the flow in
Example 3.1.

(ii) If the dimension of g is three and g is isomorphic to g0
3

, then F is diffeomorphic
to the flow in Example 3.1.

In particular, if g is a 3–dimensional solvable Lie algebra and F has a closed orbit,
then F is diffeomorphic to the flow in Example 3.1.

In the case where F has no closed orbits, we obtain the following theorem.

Theorem B Let g be a 3–dimensional solvable Lie algebra and F be a Lie g–flow
on a closed manifold. Suppose that F has no closed orbits.

(i) If g is isomorphic to either R3 or n.3/, then F is diffeomorphic to the flow in
Example 3.1.

(ii) If g is isomorphic to a.3/, then F is isomorphic to the flow in Example 3.3.

(iii) If g is isomorphic to gk
2

, then F is isomorphic to the flow in Example 3.4.

(iv) If g is isomorphic to gh
3

and h 6D 0, then F is isomorphic to the flow in
Example 3.5.

(v) If g is isomorphic to g0
3

, then F is isomorphic to the flow in Example 3.6.

Since (see Llabrés and Reventós [12]) there does not exist a Lie g1–flow on a closed
manifold, we have the following corollary.

Corollary 1.1 For any 3–dimensional solvable Lie algebra g, any Lie g–flow on a
closed manifold is homogeneous.

Algebraic & Geometric Topology, Volume 16 (2016)
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The contents of this paper are the following: Section 2 is devoted to recalling some
basic definitions and properties of Lie foliations and Lie algebras. In Section 2A, we
recall some basic definitions of Lie algebras. In Section 2B, we recall the classification
of 3–dimensional solvable Lie algebras. In Section 2C, we recall the definition and
some properties of Lie foliations. In Section 3, we construct some important examples
of Lie g–flows, which are models of codimension-3 solvable Lie g–flows. In Section 4,
we prove Theorem A. In Section 5, we construct a diffeomorphism between Lie flows
without closed orbits according to the construction of Ghys [7]. In Section 6, by using
the diffeomorphism constructed in Section 5, we prove Theorem B.

2 Preliminaries

2A Solvable Lie groups and solvable Lie algebras

Let g be a q–dimensional real Lie algebra. The descending central series of g is
defined inductively by

C 0gD g and C kgD Œg;C k�1g�:

Similarly the derived series of g is defined inductively by

D0gD g and DkgD ŒDk�1g;Dk�1g�:

A Lie algebra g is nilpotent if there exists an integer k such that C kgD f0g, and a
connected Lie group G is nilpotent if the Lie algebra of G is nilpotent. Similarly a Lie
algebra g is solvable if there exists an integer k such that DkgD f0g, and a connected
Lie group G is solvable if the Lie algebra of G is solvable.

Let H and G be Lie groups, and let ˆW H ! Aut.G/ be a homomorphism. Then
we can construct a new Lie group H Ëˆ G , which is called the semidirect product of
H and G with respect to ˆ, as follows. The semidirect product H Ëˆ G is the direct
product of the sets H and G endowed with the group structure via

.h1;g1/ � .h2;g2/D .h1 � h2; g1 �ˆ.h1/.g2//:

The Lie group H is naturally a subgroup of H Ëˆ G , and G is naturally a normal
subgroup of H Ëˆ G .

Let g be a Lie algebra and adW g! gl.g/ be the adjoint representation of g.

Definition 2.1 A solvable Lie algebra g is said to be of type (R) if all the eigenvalues
of ad.X / 2 gl.g/ are real for any X 2 g. A simply connected solvable Lie group is
said to be of type (R) if the Lie algebra of G is of type (R).
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It is well known that simply connected solvable Lie groups of type (R) have similar
properties of simply connected nilpotent Lie groups; see [9].

2B Classification of 3–dimensional solvable Lie algebras

It is well known that 1–dimensional Lie algebras are isomorphic to R and that
2–dimensional Lie algebras are isomorphic to either R2 or a.2/, where

a.2/D

��
t x

0 0

� ˇ̌̌
t;x 2R

�
is the Lie algebra of A.2/, which is the affine transformation group of the real line.

Let V D hT;X;Y iR be a 3–dimensional vector space and consider the following Lie
brackets on V :

� R3 (abelian): ŒT;X �D ŒT;Y �D ŒX;Y �D 0;

� n.3/ (Heisenberg): ŒT;Y �DX and ŒT;X �D ŒX;Y �D 0;

� a.3/ (affine): ŒT;X �DX and ŒT;Y �D ŒX;Y �D 0;

� g1 : ŒT;X �DX CY; ŒT;Y �D Y and ŒX;Y �D 0;

� gk
2

: ŒT;X �DX; ŒT;Y �D kY and ŒX;Y �D 0 where k 6D 0;

� gh
3

: ŒT;X �D Y; ŒT;Y �D�X C hY and ŒX;Y �D 0 where h2 < 4.

Then any 3–dimensional solvable Lie algebra is isomorphic to one of the above Lie
algebras.

It is well known that n.3/ is the Lie algebra of the 3–dimensional Heisenberg group

N.3/D

8<:
0@1 t x

0 1 y

0 0 1

1A9=; :
We will need an explicit description of simply connected Lie groups corresponding to
the Lie algebras a.3/, gk

2
and gh

3
. These Lie groups are given by

A.3/D

8<:
0@et 0 x

0 1 y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
Gk

2 D

8<:
0@et 0 x

0 ekt y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
GhD0

3 DESO.2/Ë R2;

Algebraic & Geometric Topology, Volume 16 (2016)
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and

G
h¤0
3
D

8<:
0@c.t/ cos.�C t/ �c.t/ sin t x

c.t/ sin t c.t/ cos.� � t/ y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
where ESO.2/Ë R2 is the universal covering of the group of rigid motions SO.2/ËR2 ,
c.t/D .2=˛/eˇt , ˇ D tan� D h=˛ , and ˛ D

p
4� h2 ; see [5].

Note that G0
3

is isomorphic to the semidirect product RË�R2 , where �W R!Aut.R2/

is given by

�.t/D

�
cos t � sin t

sin t cos t

�
:

Note also that the Lie group G
h 6D0
3

has another description

G
h 6D0
3
D

8<:
0@eˇt cos t �eˇt sin t x

eˇt sin t eˇt cos t y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
where ˇ D tan� D h=˛ and ˛ D

p
4� h2 . In this paper, we will use this description.

Lie algebras gk
2

and gk0

2
are isomorphic if and only if k D k 0 or k D 1=k 0 and

the Lie algebras gh
3

and gh0

3
are isomorphic if and only if hD h0 or hD�h0 . The Lie

algebra gk
2

is unimodular if and only if k D �1. The Lie algebra gh
3

is unimodular
if and only if hD�1. The Lie algebra gh

3
is not of type (R) for any h and the other

3–dimensional solvable Lie algebras are of type (R).

2C Lie foliations

Let F be a codimension-q foliation of a closed manifold M and g be a q–dimensional
real Lie algebra. A g–valued 1–form ! on M is said to be a Maurer–Cartan form
if ! satisfies the equation d! C 1

2
Œ!; !� D 0 and nonsingular if !x W TxM ! g is

surjective for each x 2M .

Definition 2.2 A codimension-q foliation F is a Lie g–foliation if there exists a
nonsingular g–valued Maurer–Cartan form ! such that Ker.!/D TF .

Let F1 and F2 be foliations of M1 and M2 , respectively. A smooth map f W M1!M2

preserves foliations if f .L/ 2 F2 for every leaf L 2 F1 . We denote such a map
by f W .M1;F1/ ! .M2;F2/. We call two foliations F1 of M1 and F2 of M2

diffeomorphic if there exists a foliation preserving map f W .M1;F1/! .M2;F2/ such
that f W M1!M2 is a diffeomorphism.
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In this paper, we call two Lie g–foliations F1 and F2 diffeomorphic if F1 is diffeo-
morphic to F2 as a foliation.

Fedida [4] proved that Lie g–foliations have a special property.

Theorem 2.3 [4] Let F be a codimension-q Lie g–foliation of a closed manifold M

and G be the simply connected Lie group of g. Let pW �M ! M be the universal
covering of M . Fix a Maurer–Cartan form ! 2A1.M I g/ of F . Then there exists a
locally trivial fibration DW �M !G and a homomorphism hW �1.M /!G such that

(1) D.˛ � x̃/D h.˛/ �D.x̃/ for any ˛ 2 �1.M / and any x̃ 2 �M, and
(2) the lifted foliation �F D ��F coincides with the fibers of the fibration D .

The fibration D is called the developing map, the homomorphism h is called the
holonomy homomorphism and the image of h is called the holonomy group of the Lie
g–foliation F with respect to the Maurer–Cartan form ! .

Conversely, if there exist D and h which satisfy condition (1) above, then the set of
fibers of D defines a Lie g–foliation F of M such that the developing map is D and
the holonomy homomorphism is h.

Example 2.4 Let G be a simply connected Lie group and �G a simply connected Lie
group with a uniform lattice �. Suppose that there exists a short exact sequence

0!K! �G D0
�!G! 0:

Then the map D0 defines a Lie g–foliation F0 of the homogeneous space �n�G .

We call Lie g–foliations constructed as in Example 2.4 homogeneous Lie g–foliations.

Definition 2.5 A Lie g–foliation F of a closed manifold M is homogeneous if F is
diffeomorphic to a homogeneous Lie g–foliation.

Let DW �M !G be the developing map and hW �1.M /!G be the holonomy homo-
morphism of a Lie g–foliation F . Let � D h.�1.M // be the holonomy group of F .
Since the developing map D is h–equivariant, the map D induces a fibration

DW M ! �nG;

where � is the closure of � . This fibration D is called the basic fibration, the
homogeneous space �nG the basic manifold, and the dimension of �nG the basic
dimension of F .

Let F be the foliation of M defined by the fibers of the fibration D . By the definition
of D , we can see that any leaf F of F is saturated by F and the foliation F jF is
a minimal foliation of F . Moreover the basic fibration DW M ! �nG induces a
diffeomorphism from the leaf space M=F to �nG .
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3 Models of Lie flows

In this section, we construct some examples of homogeneous Lie flows which are
important examples in this paper.

Example 3.1 Let
1!R! �G D0

�!G! 1

be a central exact sequence of Lie groups and � be a uniform lattice of �G . Then the
surjective homomorphism D0W

�G!G defines a Lie g–flow F0 on �n�G .

The Lie g–flow construction in Example 3.1 is a special case of the construction of
homogeneous Lie g–flows.

In the case in which the dimension of g is three, by using the classification of
4–dimensional solvable Lie algebras (see [1]), we have more explicit descriptions
of �G and D0 .

Example 3.2 Let g be a unimodular 3–dimensional solvable Lie algebra and G be
the simply connected Lie group with the Lie algebra g. Then any central extension

1!R! �G D0
�!G! 1

of G by R is given as follows:

(1) If g is abelian, then �G is isomorphic to either R4 DR�R3 or R�N.3/. If �G
is isomorphic to R4 , then D0W R

4 DR�R3!R3 is given by the natural projection

D0W .t;x;y; z/ 7! .x;y; z/:

If �G is isomorphic to R�N.3/, then D0W R�N.3/!R3 is given by

D0W

 
s;

0@1 t x

0 1 y

0 0 1

1A! 7!A

0@s

t

y

1A ;
where A 2 GL.3IR/.

(2) If g is isomorphic to n.3/, then �G is isomorphic to R�N.3/ or to

N.4/D

8̂̂̂<̂
ˆ̂:
0BBB@

1 t 1
2
t2 x

0 1 t y

0 0 1 z

0 0 0 1

1CCCA
ˇ̌̌̌
ˇt;x;y; z 2R

9>>>=>>>; :
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If �G is isomorphic to R�N.3/, then D0W R�N.3/!N.3/ is given by the natural
projection. If �G is isomorphic to N.4/, then D0W N.4/!N.3/ is given by0BB@

1 t 1
2
t2 x

0 1 t y

0 0 1 z

0 0 0 1

1CCA 7!
0@1 at C cz 1

2
.abt2C cdz2/C .ad � 1/tzCy

0 1 bt C dz

0 0 1

1A ;
where either�

a b

c d

�
D

�
0 �1

1 0

�
or

�
a b

c d

�
D

�
1 0

k 1

�
for k 2R:

(3) If g is isomorphic to g�1
2

, then �G is isomorphic to R�G�1
2

or the semidirect
product R Ëˆ N.3/ with respect to the homomorphism ˆW R! Aut.N.3// defined
by

ˆ.s/W

0@1 t x

0 1 y

0 0 1

1A 7!
0@1 est x

0 1 e�sy

0 0 1

1A :
If �G is isomorphic to R�G�1

2
, then D0W R�G�1

2
! G�1

2
is given by the natural

projection. If �G is isomorphic to R Ëˆ N.3/, then the homomorphism

D0W R Ë� N.3/!G�1
2

is given by

D0W

 
s;

0@1 t x

0 1 y

0 0 1

1A! 7!0@es 0 t

0 e�s y

0 0 1

1A :
(4) If g is isomorphic to g0

3
, then �G is isomorphic to either R�G0

3
or the semidirect

product R Ë‰ N.3/ with respect to the homomorphism ‰W R! Aut.N.3// defined
by 0@1 t x

0 1 y

0 0 1

1A 7!
0@1 t cos s�y sin s x� ty sin2 sC 1

4
.t2�y2/ sin 2s

0 1 t sin sCy cos s

0 0 1

1A :
If �G is isomorphic to G0

3
�R, then D0W R�G0

3
!G0

3
is given by the natural projection.

If �G is isomorphic to R Ë‰ N.3/, then the homomorphism

D0W R Ë‰ N.3/!G0
3 DR Ë� R2

is given by

D0W

 
s;

0@1 t x

0 1 y

0 0 1

1A! 7! �
s;

�
t

y

��
:
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Define two classes of 4–dimensional solvable Lie groups �Gk
2

and �Gh
3

by

�Gk
2 D

8̂̂<̂
:̂
0BB@

et 0 0 x

0 ekt 0 y

0 0 e�.1Ck/t z

0 0 0 1

1CCA
ˇ̌̌̌
ˇ t;x;y; z 2R

9>>=>>;
and

�Gh
3 D

8̂̂<̂
:̂
0BB@

eˇt cos t �eˇt sin t 0 x

eˇt sin t Ceˇt cos t 0 y

0 0 d t z

0 0 0 1

1CCA
ˇ̌̌̌
ˇ t;x;y; z 2R

9>>=>>; ;
where k 2R, 0< h2< 4, and d D e�2ˇ 2R. We construct homogeneous Lie g–flows
on the homogeneous spaces �n�Gk

2
and �n�Gh

3
.

Example 3.3 Let � be a uniform lattice of �G0
2

. Define a homomorphism

D0W
�G!A.3/ by

0BB@
et 0 0 x

0 1 0 y

0 0 e�t z

0 0 0 1

1CCA 7!
0@et 0 x

0 1 y

0 0 1

1A :
Then D0 defines a homogeneous Lie a.2/–flow on �n�G .

Example 3.4 Assume that the Lie group �Gk
2

has a uniform lattice �. Define a
homomorphism D0W

�Gk
2
!Gk

2
by

D0W

0BB@
et 0 0 x

0 ekt 0 y

0 0 e�.1Ck/t z

0 0 0 1

1CCA 7!
0@et 0 x

0 ekt y

0 0 1

1A :
Then D0 defines a homogeneous Lie gk

2
–flow on �n�G .

Example 3.5 We assume that �Gh
3

has a uniform lattice �. Define a homomorphism
D0W

�Gh
3
!Gh

3
by

D0W

0BB@
eˇt cos t �eˇt sin t 0 x

eˇt sin t eˇt cos t 0 y

0 0 d t z

0 0 0 1

1CCA 7!
0@eˇt cos t �eˇt sin t x

eˇt sin t eˇt cos t y

0 0 1

1A :
Then D0 defines a homogeneous Lie g

h 6D0
3

–flow on �n�Gh
3

.
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Example 3.6 Let � be a uniform lattice of G0
3
�R. Let D0W G

0
3
�R!G0

3
be the

natural homomorphism. Then D0 defines a homogeneous Lie g0
3
–flow on �nG0

3
.

Remark We can extend the definition of �Gh
3

to the case when h D 0. Then �G0
3

coincides with SO.2/Ë R2 �R, which is not simply connected. The homomorphism
D0W G

0
3
�R!G0

3
defined in Example 3.6 coincides with the lifted homomorphism

D0W SO.2/Ë R2 �R! SO.2/Ë R2 defined in Example 3.5.

4 Proof of Theorem A

Let F be a Lie g–flow on a closed manifold M . Assume that F has a closed orbit.
Then any orbit of F is closed.

Let DW �M !G be the developing map and hW �1.M /!G be the holonomy homo-
morphism. Since any orbit of F is closed, the holonomy group � is discrete in G and
the basic fibration DW M ! �nG is an oriented S1–bundle over the homogeneous
space �nG .

Let g� be the dual of g, which is naturally identified with the set of left-invariant
1–forms on G . Consider the inclusion map

�W
V�g!A�.�nG/

and the induced map
�W H�.g/!H�dR.�nG/;

where H�.g/ is the cohomology of the Lie algebra g, A�.�nG/ is the de Rham
complex of �nG , and H�dR.�nG/ is the de Rham cohomology of �nG . We call
a k –form ! 2Ak.�nG/ algebraic if ! is in �.Ak.g//.

Let e.D/ 2 H 2
dR.�nG/ be the real Euler class of the S1–bundle D . We use the

following lemma, which is a special case of [12, Theorem 5.1].

Lemma 4.1 If e.D/ is represented by an algebraic 2–form, then F is homogeneous.

Suppose the Euler class e.D/ is represented by an algebraic 2–form �.ˇ/ 2A2.�nG/.
Then there exists a homogeneous Lie g–flow .�n�G;F0/ which is diffeomorphic
to .M;F/. By the proof of [12, Theorem 5.1], the Lie algebra zg of �G coincides with
the central extension

0!R!zg! g! 0

of g by R with the Euler class �2Œˇ� 2H 2.g/. Hence �G is a central extension of G

by R. Therefore we have the following proposition.
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Proposition 4.2 If e.D/ is represented by an algebraic 2–form, then F is diffeomor-
phic to the Lie g–flow in Example 3.1.

Proof of Theorem A First, we assume that g is a solvable Lie algebra of type (R).
Let e.D/ 2H 2

dR.�nG/ be the real Euler class of the oriented S1–bundle.

Since g is of type (R), by Hattori [9, Theorem 4.1], the homomorphism

�W H�.g/!H�dR.�nG/

is an isomorphism. Therefore e.D/ is represented by an algebraic 2–form. Hence, by
Proposition 4.2, F is diffeomorphic to the Lie g–flow in Example 3.1.

Next, we assume that g is isomorphic to g0
3

. By the classification of uniform lattices
of G0

3
, the homogeneous space �nG0

3
is isomorphic to the mapping torus

T 3
A D T 2

�R=.x; t C 1/� .Ax; t/;

where A 2 SL.2IZ/ such that Ap D I for some p 2 Z. If AD I , then the mapping
torus T 3

A
is the three-dimensional torus T 3 .

Define left-invariant 1–forms �T , �X and �Y on G0
3
DR Ë� R2 by

�T D dt; �X D cos t � dxC sin t � dy and �Y D� sin t � dxC cos t � dy:

Then the second cohomology H 2.g0
3
/ of the Lie algebra g0

3
is generated by the

cohomology class Œ�X ^ �Y �D Œdx ^ dy�.

On the other hand, we have

H 2
dR.T

3
A/D

�
RŒdt ^ dx�˚RŒdt ^ dy�˚RŒdx ^ dy� if AD I ,
RŒdx ^ dy� if A 6D I .

Therefore if A 6D I , then H 2
dR.T

3
A
/ is isomorphic to H 2.g0

3
/ and the Euler class e.D/

is represented by an algebraic 2–form. Hence F is diffeomorphic to the Lie g0
3
–flow

in Example 3.1.

In the case where A D I , by the following lemma, there exists a diffeomorphism
f W T 3! T 3 such that the pullback f �e.D/ is represented by an algebraic 2–form.
Then the S1–bundle M is diffeomorphic to the S1–bundle f �M , which is diffeo-
morphic to the Lie g–flow in Example 3.1.

Lemma 4.3 For any Œ!�DaŒdt ^ dx�C bŒdt ^ dy�C cŒdx ^ dy� 2H 2.T 3IZ/, there
exists an integer matrix A 2 SL.3IZ/� Diff.T 3/ such that A�Œ!� 2 ZŒdx ^ dy�.
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Proof By the Smith normal form, we can show that there exist an integer d and an
invertible 3� 3 integer matrix B such that

B

0@a

b

c

1AD
0@d

0

0

1A :
Therefore there exists A 2 SL.3IZ/ and an integer n such that A�Œ!�D nŒdx ^ dy�

for some n 2 Z.

5 A construction of a diffeomorphism of flows

Let F1 and F2 be Lie g–flows on closed manifolds M1 and M2 and let �1 and �2

be the holonomy groups of F1 and F2 , respectively. Suppose that F1 and F2 have no
closed orbits and �1 is conjugate to �2 in G .

By replacing the developing map D1W
�M1! G and the holonomy homomorphism

h1W �1.M1/!G of F1 by

g �D1W
�M1!G and g�1

� h1 �gW �1.M1/!G

for some g2G , we may assume that F1 and F2 have the same holonomy group � . The
aim of this section is to construct a diffeomorphism between .M1;F1/ and .M2;F2/

according to Ghys’s method; see [7; 6; 14].

By results of Haefliger [8, Section 3], a Lie g–foliation of a closed manifold M is a clas-
sifying space for .G; �/ if every leaf of F is contractible. Thus .M1;F1/ and .M2;F2/

are classifying spaces for .G; �/. By the uniqueness of classifying spaces, there exists
a homotopy equivalence f W M1!M2 , which we may assume is smooth, such that
f �F2 D F1 . In general, this map f is not a diffeomorphism. However, by using the
averaging technique (see [7; 6]), we can modify f to a diffeomorphism from .M1;F1/

to .M2;F2/.

Parametrize F1 and F2 by �t
1

and �t
2

, respectively. Then we can define a smooth
function

uW M1 �R!R

by the equation
f .�t

1.x//D �
u.x;t/
2

.f .x//:

The function u satisfies the cocycle condition

u.x; sC t/D u.x; t/Cu.�t
1.x/; s/:

By this equation and by the compactness of M , we obtain the following lemma.
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Lemma 5.1 There exists a constant C > 0 such thatˇ̌̌̌
@

@t
u.x; t/

ˇ̌̌̌
< C

for any x 2M and t 2R.

Let �1 D D1W M1 ! Q1 D �nG be the basic fibration of F1 . Fix a fiber F1

of �1W M1!Q1 . Let f.Ui ;gi/g
k
iD1

be a local trivialization of �1 , where fUig
k
iD1

is an open covering of Q1 and gi W �
�1
1
.Ui/! Ui �F1 is a diffeomorphism as fiber

bundles. Let fV1; : : : ;Vkg be a refinement of fU1; : : : ;Ukg such that the closure V i

is contained in Ui for each i D 1; : : : ; k .

Since f is transverse to the flow F2 , by replacing V1; : : : ;Vk with smaller ones if
necessary, for each i there exists a codimension-one open ball Di � F1 such that

(1) Ni WD g�1
i .Vi �Di/ is transverse to F1 ,

(2) f .Ni/ is transverse to F2 , and

(3) the restriction f jNi
W Ni! f .Ni/ is a diffeomorphism.

Lemma 5.2 There exists T0> 0 such that, for any i D 1; : : : ; k and any x 2��1
1
.V i/,

the orbit O�1
.xI .0;T0// WD f�

t
1
.x/ j 0< t < T0g intersects Ni .

Proof Define a function ri W �
�1
1
.Ui/!R by

ri.x/D infft > 0 j �t
1.x/ 2Nig:

Since F1 is minimal on each fiber, the function ri is well-defined and upper semi-
continuous. Since ��1

1
.V i/ is compact, for each i 2 f1; : : : ; kg, there exists an upper

bound Ti . Then we should take T0 DmaxfT1; : : : ;TkgC 1.

For any x 2 Ni , we define si.x/ 2 Z to be the number of times that the orbit
O�2

�
f .x/I .�2C T0 � ı; 2C T0C ı/

�
intersects f .Ni/, where ı is a small positive

number and C and T0 are the constants in Lemmas 5.1 and 5.2, respectively. By the
choice of Ni , the function sW Ni! Z is bounded.

For any x 2Ni , we consider the set

Ti.x/D
˚
t 2R

ˇ̌
�t

1.x/ 2Ni and ju.x; t/j< 2C T C ı
	
:

If t and t 0 satisfy u.x; t/D u.x; t 0/ and �t
1
.x/ and �t 0

1
.x/ are in Ni , then we have

f .�t
1
.x// D f .�t 0

1
.x//. Since f jNi

is a diffeomorphism, we have �t
1
.x/ D �t 0

1
.x/.

Since F1 has no closed orbits, this implies that t D t 0 . Hence, if t and t 0 are distinct

Algebraic & Geometric Topology, Volume 16 (2016)



2764 Naoki Kato

points of Ti.x/, then u.x; t/ 6D u.x; t 0/. Therefore the number of elements of Ti.x/

is less than si.x/ and hence bounded.

For an arbitrary point x 2 Ni , we can take a sufficiently small connected neighbor-
hood Ax of x in Ni and a sufficiently large number tx > 0 such that tx is an upper
bound of Ti.y/ for any y 2Ax . Then we have

ju.y; t/j � 2C T0C ı > 2C T0

if t > tx , y 2Ax and �t
1
.y/ 2Ni . Since the basic manifold Q1 D �nG is compact,

we can choose connected open subsets Ai1
; : : : ;Aiki

of Ni and large numbers tij such
that

(1) f�1.Aij / j i D 1; : : : ; k; j D 1; : : : ; kig is a refinement of fV1; : : : ;Vkg, and

(2) tij is an upper bound of Ti.y/ for any y 2Aij .

Let t0 > maxftij j i D 1; : : : ; k; j D 1; : : : ; kig be an arbitrary number. Then, for
any x 2Aij , we have

ju.x; t/j> 2C T0

if t � t0 and �t
1
.x/ 2Ni .

Lemma 5.3 For any ij , one of the following holds:

(a) u.x; t/ > C T0 for any x 2Aij and any t � t0 .

(b) u.x; t/ < �C T0 for any x 2Aij and any t � t0 .

Proof Let x 2Aij be an arbitrary point. Let t0 D s0 < s1 < s2 < � � � be the maximal
sequence such that �sl

1
.x/ 2Ni for l � 1. By Lemma 5.2, we obtain slC1� sl < T0

for any l � 0. On the other hand, we have ju.x; sl/j> 2C T0 for any l � 1.

Lemma 5.1 implies that

ju.x; slC1/�u.x; sl/j< C.slC1� sl/ < C T0:

Hence we have either u.x; sl/ > 2C T0 for any l � 1 or u.x; sl/ < �2C T0 for
any l � 1.

For any t � t0 , there exists l � 0 such that sl � t � slC1 . By Lemma 5.1, we have

ju.x; slC1/�u.x; t/j � C.slC1� t/ < C.slC1� sl/ < C T0:

Therefore we have either u.x; t/>C T0 for any t � t0 or u.x; t/<�C T0 for any t � t0 .
By the continuity of u, we have either u.x; t/ > C T0 for any x 2Aij and any t � t0
or u.x; t/ < �C T0 for any x 2Aij and any t � t0 .
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Let Wij D �1.Aij / and Eij D �
�1
1
.Wij /.

Lemma 5.4 There exists �0 such that, for each Eij , one of the following holds:

(a) u.x; t/ > 0 for any x 2Eij and any t � �0 .

(b) u.x; t/ < 0 for any x 2Eij and any t � �0 .

Proof By Lemma 5.2, we have

Sij D sup
x2Eij

infft > 0 j �t
1.x/ 2Aij g<1

for any ij . Let
S DmaxfSij j 1� i � k; 1� j � kig;

˛C Dmaxfu.x; t/ j x 2M; 0� t � Sg;

˛� Dmaxf�u.x; t/ j x 2M; 0� t � Sg;

and
˛ Dmaxf˛C; ˛�g:

Take an integer n and a constant �0 satisfying

nC T0 > ˛ and �0> n.t0CS/:

Fix ij . By Lemma 5.3, we have either u.y; t/ > C T0 for any x 2Aij and any t � t0
or u.x; t/ < �C T0 for any x 2Aij and any t � t0 .

First, we suppose that u.x; t/ > C T0 for any x 2Aij and any t � t0 . Fix an arbitrary
point x 2Eij and any t � �0 . Define a sequence 0� v1 < v2 < � � �< vn inductively
as follows: Let v1 be the first arrival time of x to Aij . Thus we have �v1

1
.x/ 2 Aij

and 0 � v1 � S . For l � 1, let vlC1 be the first arrival time to Aij of x after the
time vl C t0 . Thus we have �vlC1

1
2Aij and vl C t0 � vlC1 � vl C t0CS .

Since v1 � S and vlC1� vl � t0CS , we have

vn � S C .n� 1/.t0CS/ < �0� t0 � t � t0:

Since vlC1� vl � t0 and t � vn > t0 , we have

u.x; t/D u

�
x; v1C

n�1P
lD1

.vlC1� vl/C t � vn

�

D u.x; v1/C
n�1P
lD1

u.�
vl

1
.x/; vlC1� vl/Cu.�

vn

1
.x/; t � vn/

> �˛�C .n� 1/C T0CC T0

> �˛C nC T0 > 0:
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In the case where u.x; t/ < �C T0 for any x 2 Aij and any t � t0 , by the same
argument, we have

u.x; t/D u

�
x; v1C

n�1P
lD1

.vlC1� vl/C t � vn

�
D u.x; v1/C

n�1P
lD1

u.�
vl

1
.x/; vlC1� vl/Cu.�

vn

1
.x/; t � vn/

< ˛C� .n� 1/C T0�C T0

< ˛� nC T0 < 0:

Finally, we prove the following lemma.

Lemma 5.5 One of the following holds:

(a) u.x; t/ > 0 for any x 2M1 and any t � �0 .

(b) u.x; t/ < 0 for any x 2M1 and any t � �0 .

Proof By the continuity of u and the connectedness of M , if there exists ij such
that u.x; t/ > 0 for any x 2Eij and any t � �0 , then u.x; t/ > 0 for any x 2M and
any t � �0 . Similarly, if there exists ij such that u.x; t/ < 0 for any x 2 Eij and
any t � �0 , then u.x; t/ < 0 for any x 2M and any t � �0 .

We construct a diffeomorphism from .M1;F1/ to .M2;F2/. Let T 2R be a positive
constant such that T � �0 . Define �T W M1!R and fT W M1!M2 by

�T .x/D
1

T

Z T

0

u.x; �/ d� and fT .x/D �
�.x/
2

.f .x//:

By the equation

�T .�
t
1.x//D

1

T

Z T

0

u.�t
1.x/; �/ d�

D
1

T

Z T

0

fu.x; t C �/�u.x; t/g d�;

we have

fT .�
t
1.x//D �

1
T

R T

0 u.x;tC�/d�

2
.f .x//:

Therefore, for any x 2M1 , we have

d

dt

�
1

T

Z T

0

u.x; t C �/ d�

�
D

1

T
.u.x; t CT /�u.x; t//

D
1

T
u.�t

1.x/;T /:
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By Lemma 5.5, u.x;T / 6D 0 for any x 2M1 . Therefore fT W M1!M2 is a local
diffeomorphism. Since M1 is closed, fT is a covering map. Since fT is homotopic
to f via

F W M1 � Œ0; 1�!M2 defined by F.x; t/D �
t�.x/
2

.f .x//

and f is a homotopy equivalence, the map fT is a diffeomorphism.

Therefore we obtain the following theorem.

Theorem 5.6 [7] Let F1 and F2 be Lie g–flows on closed manifolds M1 and M2 ,
respectively. Suppose F1 and F2 have no closed orbits and the holonomy group of F1

is conjugate to the holonomy group of F2 in G . Then F1 and F2 are diffeomorphic.

6 Proof of Theorem B

Let g be a 3–dimensional solvable Lie algebra and let F be a Lie g–flow on a closed
manifold M which has no closed orbits. Let � be the holonomy group of F . Since
F has no closed orbits, the holonomy homomorphism hW �1.M /! G is injective.
Hence the fundamental group �1.M / is isomorphic to the holonomy group � .

If the Lie algebra g is nilpotent, then the Lie algebra g is isomorphic to either R3

or n.3/. By the theorem of Ghys [7, Section 2], .M;F/ is diffeomorphic to a homo-
geneous Lie g–flow .�n�G;F0/, where �G is a simply connected nilpotent Lie group.
Since any 1–dimensional ideal of a nilpotent Lie algebra is contained in its center, the
kernel of the induced homomorphism

dD0W zg! g

is contained in the center of zg. Hence �G is a central extension of G by R and F is
diffeomorphic to the Lie g–flow in Example 3.1.

We suppose that g is not nilpotent. First, we consider the case where g is isomorphic
to a.3/.

6A a.3/ case

Let F be a Lie a.3/–flow on a closed manifold M without closed orbits, and fix a
nonsingular a.3/–valued Maurer–Cartan form ! of F . The Lie algebra a.3/ has the
explicit description

a.3/D

8<:
0@t 0 x

0 0 y

0 0 0

1A ˇ̌̌̌ˇ t;x;y 2R

9=; :
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Then there exist nonsingular 1–forms !T , !X and !Y on M such that

! D

0@!T 0 !X

0 0 !Y

0 0 0

1A :
Since ! is a Maurer–Cartan form, we have the following equations:

d!T D 0 and d!X D
1
2
!T ^!X and d!Y D 0:

Therefore !T and !Y are nonsingular closed 1–forms and

!0 D

�
!T !X

0 0

�
is a nonsingular a.2/–valued Maurer–Cartan form of M . The nonsingular closed
1–form !T and the nonsingular Maurer–Cartan form !0 define two foliations G and F 0

of M whose codimensions are one and two, respectively. Since !0 is a a.2/–valued
Maurer–Cartan form, the foliation F 0 is a Lie a.2/–foliation. By an observation of
Matsumoto and Tsuchiya [13, Section 7], we can see that the closed 1–form !T

is a rational form. Therefore each leaf of G is compact and the leaf space M=G is
diffeomorphic to S1 .

Let � W M ! S1 DM=G be the natural projection and fix a fiber N of � . Since the
tangent bundle TF coincides with Ker.!/ and Ker.!T / includes Ker.!/, each orbit
of the Lie a.3/–flow F is tangent to the fibers of � .

Let F jN be the foliation defined by the restriction of F to the fiber N .

Lemma 6.1 The fiber N is diffeomorphic to the 3–dimensional torus and the flow F jN
is diffeomorphic to a linear flow.

Proof The tangent bundle TN coincides with Ker.!T jN /. By the equation

d!X D
1
2
!T ^!X ;

the 1–form !X jN on N is a nonsingular closed 1–form. Since TF coincides with

Ker.!/D Ker.!T /\Ker.!X /\Ker.!Y /;

TF jN coincides with Ker.!X jN /\Ker.!Y jN /. Since the 1–forms !X jN and !Y jN

are closed, the nonsingular R2–valued 1–form

�N D

�
!X jN

!Y jN

�
is a Maurer–Cartan form. Hence the flow F jN is a Lie R2–flow on N . By the
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theorem of Caron and Carrière [2, Theorem 1], the manifold N is diffeomorphic to T 3

and the flow F jN is diffeomorphic to a linear flow.

By Lemma 6.1, the manifold M is a T 3–bundle over S1 . Let F 2 DiffC.T 3/ be
the monodromy map of the T 3–bundle � W M ! S1 . Fix generators ˛1 , ˛2 and ˛3

of �1.T
3/'Z3 and an element ˇ of �1.M / such that ��.ˇ/2�1.S

1/ is a generator.
Then the induced map F�W �1.T

3/! �1.T
3/ defines an integer matrix A 2 SL.3IZ/

and the fundamental group �1.M / is isomorphic to Z ËA Z3 .

Set AD .aij /. Then we have

ˇ j̨ˇ
�1
D ˛

a1j

1
˛

a2j

2
˛

a3j

3
for j D 1; 2; 3:

Since F has no closed orbits, the holonomy homomorphism hW �1.M /! � is an iso-
morphism. Let � 0 be the abelian subgroup of � generated by h.˛1/, h.˛2/ and h.˛3/.
Since �1.N / is a normal subgroup of �1.M /, � 0 is a normal subgroup of � .

Lemma 6.2 Let H be an abelian subgroup of A.3/. Then H is contained in either

R2
D

8<:
0@1 0 x

0 1 y

0 0 1

1A ˇ̌̌̌ˇ x;y 2R

9=; or H.t0;x0/ D

8̂<̂
:
0B@et 0 1�et

1�et0
x0

0 1 y

0 0 1

1CA ˇ̌̌̌ˇ t;y 2R

9>=>;
for some x0 2R and t0 6D 0.

Proof Suppose that H is not contained in R2 . Then there exists

g0 D

0@et0 0 x0

0 1 y0

0 0 1

1A 2H

such that t0 6D 0. Let

g D

0@et 0 x

0 1 y

0 0 1

1A 2H

be an arbitrary element. Since H is abelian, we have g0g D gg0 . Then we obtain the
equation

x D
1� et

1� et0
x0:

Lemma 6.3 The abelian subgroup � 0 of � is contained in R2 .
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Proof Suppose that � 0 is not contained in R2 . By Lemma 6.2, � 0 is contained
in H.t0;x0/ for some x0 2R and t0 6D 0. Since � 0 6�R2 , there exists

g D

0B@et 0 1�et

1�et0
x0

0 1 y

0 0 1

1CA 2 � 0
such that t 6D 0.

Set

h.ˇ/D

0@et 0

0 x0

0 1 y0

0 0 1

1A 2A.3/:

Since � 0 is normal in � , we have

h.ˇ/gh.ˇ/�1
2 � 0 �H.t0;x0/:

Then we obtain the equation

.1� et /
˚
.1� et0/x0� .1� et 0

/x0

	
D 0:

Since t 6D0, this equation implies that h.ˇ/2H.t0;x0/ . Thus � is contained in H.t0;x0/ .
However, this contradicts the fact that the holonomy group � is uniform in A.3/.
Therefore � 0 is contained in R2 .

Set

h.˛i/D

0@1 0 xi

0 1 yi

0 0 1

1A for i D 1; 2; 3 and h.ˇ/D

0@et0 0 x0

0 1 y0

0 0 1

1A :
Since � is uniform in A.3/, we have t0 6D 0. Moreover, by conjugating in A.3/, we
may assume that x0 D 0.

Lemma 6.4 A is conjugate to the matrix0@et0 0 0

0 e�t0 0

0 0 1

1A :
Proof By the equation

ˇ j̨ˇ
�1
D ˛

a1j

1
˛

a2j

2
˛

a3j
3
;
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we have 0@1 0 et0xj

0 1 yj

0 0 1

1AD
0@1 0 a1j x1C a2j x2C a3j x3

0 1 a1j y1C a2j y2C a3j y3

0 0 1

1A :
Thus we have the equations

tA

0@x1

x2

x3

1AD et0

0@x1

x2

x3

1A and tA

0@y1

y2

y3

1AD
0@y1

y2

y3

1A :
Since � is uniform in A.3/, we can show that0@x1

x2

x3

1A 6D 0 and

0@y1

y2

y3

1A 6D 0:

Therefore et0, 1 and e�t0 are the eigenvalues of A.

Define elements y̨i and y̌ of �G�1
2

by

y̨i D

0BB@
1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

1CCA and y̌ D

0BB@
et0 0 0 0

0 1 0 y0

0 0 e�t0 0

0 0 0 1

1CCA ;
where 0@z1

z2

z3

1A
is an eigenvector of A corresponding to the eigenvalue et0 . Let � be the subgroup
of �G�1

2
generated by y̨1 , y̨2 , y̨3 and y̌. Since0@x1

x2

x3

1A ;
0@y1

y2

y3

1A and

0@z1

z2

z3

1A
are eigenvectors of A 2 SL.3IZ/ corresponding to the eigenvalues et0, 1 and e�t0 ,
respectively, the subgroup � is discrete in �G�1

2
. Therefore � is a uniform lattice

of �G�1
2

.
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Define an submersion homomorphism D0W
�G�1

2
!A.3/ by

D0W

0BB@
et 0 0 x

0 1 0 y

0 0 e�t z

0 0 0 1

1CCA 7!
0@et 0 x

0 1 y

0 0 1

1A :
Then D0 defines a Lie a.3/–flow F0 on �n�G�1

2
whose holonomy group coincides

with � . Therefore, by Theorem 5.6, the Lie a.3/–flow F is diffeomorphic to F0 .
Hence F is diffeomorphic to the flow in Example 3.3.

6B gk
2

case

We consider the case where g is isomorphic gk
2

. In this case, the basic dimension of F
is one; see [5; 11]. Hence the manifold M is diffeomorphic to a T 3–bundle over S1 .

Let ˛1 , ˛2 , ˛3 and ˇ be the same as defined in Section 6A. Then there exists an integer
matrix AD .aij / 2 SL.3IZ/ such that the fundamental group �1.M / is isomorphic
to Z ËA Z3 .

Let � 0 be the normal abelian subgroup of � generated by h.˛1/, h.˛2/ and h.˛3/.

Lemma 6.5 Let H be an abelian subgroup of Gk
2

. Then H is contained in either

R2
D

8<:
0@1 0 x

0 1 y

0 0 1

1A9=; or H.t0;x0;y0/ D

8̂̂̂<̂
ˆ̂:
0BBB@

et 0 1�et

1�et0
x0

0 ekt 1�ekt

1�ekt0
y0

0 0 1

1CCCA
ˇ̌̌̌
ˇ t 2R

9>>>=>>>;
for some x0;y0 2R and t0 6D 0.

Proof Suppose that H is not contained in R2 . Then there exists

g0 D

0@et0 0 x0

0 ekt0 y0

0 0 1

1A 2H

such that t0 6D 0. Let

g D

0@et 0 x

0 ekt y

0 0 1

1A 2H

be an arbitrary element. Then gg0 D g0g implies the equations

.1� et0/x D .1� et /x0 and .1� et0/x D .1� et /y0:

Since t0 6D 0, these equations imply that g 2H.t0;x0;y0/ .
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Lemma 6.6 The normal abelian subgroup � 0 of � is contained in R2 .

Proof Suppose that � 0 is not contained in R2 . By Lemma 6.5, there exist x0;y0 2R
and t0 6D 0 such that � 0 is contained in H.t0;x0;y0/ . Since � 0 6�R2 , there exists

g D

0@et 0 x

0 ekt y

0 0 1

1A 2 � 0
such that t 6D 0.

Set

h.ˇ/D

0@et 0

0 x0

0 ekt 0

y0

0 0 1

1A :
Since � 0 is a normal subgroup of � , we have

h.ˇ/gh.ˇ/�1
2 � 0 �H.t0;x0;y0/:

Thus we obtain the equations

.1�et /
˚
.1�et

0/x0�.1�et 0

/x0

	
D 0 and .1�ekt /

˚
.1�ekt /x0�.1�ekt 0

/x0

	
D 0:

Since t 6D 0, these equations imply that h.ˇ/ 2H.t0;x0;y0/ . This contradicts the fact
that � is uniform in Gk

2
. Therefore we have that � 0 is contained in R2 .

Set

h. j̨ /D

0@1 0 xj

0 1 yj

0 0 1

1A and h.ˇ/D

0@et0 0 x0

0 ekt0 y0

0 0 1

1A :
Since � is uniform in Gk

2
, we have t0 6D 0. Moreover, by conjugating in Gk

2
, we may

assume that x0 D 0 and y0 D 0.

By the same argument as the proof of Lemma 6.4, we can prove the following lemma.

Lemma 6.7 A 2 SL.3IZ/ is conjugate to the matrix0B@et0 0 0

0 ekt0 0

0 0 e.�1�k/t0

1CA :
Algebraic & Geometric Topology, Volume 16 (2016)
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Define elements y̨i and y̌ of �Gk
2

by

y̨i D

0BB@
1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

1CCA and y̌ D

0BB@
et0 0 0 0

0 ekt0 0 0

0 0 e�.1Ck/t0 0

0 0 0 1

1CCA ;
where 0@z1

z2

z3

1A
is an eigenvector of A corresponding to the eigenvalue et0 . Let � be the subgroup
of �Gk

2
generated by y̨1 , y̨2 , y̨3 and y̌. Then � is a uniform lattice of �Gk

2
. Since �

coincides with � via the homomorphism DW �Gk
2
!Gk

2
defined in Example 3.4, the

Lie gk
2
–flow F is diffeomorphic to the Lie gk

2
–flow in Example 3.4.

6C g
h 6D0

3
case

In the case in which g is isomorphic to g
h 6D0
3

, the basic dimension of F is one;
see [5; 11]. Hence the manifold M is diffeomorphic to a T 3–bundle over S1 and
�1.M /D Z ËA Z3 for some A 2 SL.3IZ/.

By the same argument as in Section 6B, we can prove the following lemma.

Lemma 6.8 The normal subgroup � 0 of � is contained in R2 .

By Lemma 6.8, we have

h.˛i/D

0@1 0 xi

0 1 yi

0 0 1

1A and

0@eˇt0 cos t0 �eˇt0 sin t0 x0

eˇt0 sin t0 eˇt0 cos t0 y0

0 0 1

1A :
Since � is uniform in Gh

3
, we have t0 6D 0. By conjugating in Gh

3
, we may assume

that x0 D 0 and y0 D 0.

By the equation
ˇ j̨ˇ

�1
D ˛

a1j

1
˛

a2j

2
˛

a3j
3
;

we have

Ax D eˇt0.cos t0x� sin t0y/ and Ay D eˇt0.sin t0xC cos t0y/;
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where

x D

0@x1

x2

x3

1A and y D

0@y1

y2

y3

1A :
By an easy calculation, we can show that x 6D 0 and y 6D 0. Hence xC iy and x� iy

are eigenvectors corresponding to the eigenvalues e.ˇCi/t0 and e.ˇ�i/t0 , respectively.

Let d t0 D e�2ˇt0 be the other eigenvalue of A, and let

zD

0@z1

z2

z3

1A
be an eigenvector of A corresponding to the eigenvalue d t0 . Let

y̨i D

0BB@
1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

1CCA and y̌ D

0BB@
eˇt0 cos t0 �eˇt0 sin t0 0 0

eˇt0 sin t0 eˇt0 cos t0 0 0

0 0 d t0 0

0 0 0 1

1CCA
be elements of �Gh

3
and � be the subgroup of �Gh

3
generated by y̨1 , y̨2 , y̨3 and y̌.

Then the subgroup � is a uniform lattice of �Gh
3

Since � coincides with � via the homomorphism DW �Gh
3
!Gh

3
defined in Example 3.5,

the Lie gh
3
–flow F is diffeomorphic to the Lie gh

3
–flow in Example 3.5.

6D g0
3

case

Suppose that g is isomorphic to g0
3

. By [10, Corollaries 2.4 and 2.7] and the theorem
of Caron and Carrière [2, Theorem 1], the manifold M is diffeomorphic to the 4–
dimensional torus T 4 .

Fix generators ˛1 , ˛2 , ˛3 and ˛4 of �1.M /' Z4 and set

h.˛i/D

�
ti ;

�
xi

yi

��
2G0

3 DR Ë� R2:

Since � is uniform in G0
3

, � is not contained in f0g�R2 . Hence we may assume that
t1 6D 0.

Lemma 6.9 ti 2 2�Z, for each i .
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Proof Suppose that there exists i such that ti 62 2�Z. We may assume that t1 62 2�Z.

Since � is abelian, we can show that � is contained in H , where

H D

(�
t;

�
1� cos t sin t

� sin t 1� cos t

��
x0

1

y0
1

�� ˇ̌̌̌
t 2R

)
is a simply connected 1–dimensional closed subgroup of G0

3
and�

x0
1

y0
1

�
D

�
1� cos t1 sin t1
� sin t1 1� cos t1

��1 �
x1

y1

�
:

Since � is uniform in G0
3

, the homogeneous space HnG0
3

is compact.

On the other hand, HnG0
3

is homeomorphic to R2 , since H is a simply connected
1–dimensional closed subgroup of G0

3
. This is a contradiction.

By Lemma 6.9, we have ti D 2�ni . Define a diffeomorphism F W G0
3
!R3 by

F W

�
t;

�
x

y

��
7!

0@ t

x

y

1A :
Then F j� W �!R3 is a homomorphism and F is F j� –equivariant, that is,

F. �g/D F j�. / �F.g/

for any  2 � and any g 2G0
3

. Therefore the rank of the matrix0@2�n1 2�n2 2�n3 2�n4

x1 x2 x3 x4

y1 y2 y3 y4

1A
is three.

We may assume that 0@2�n1

x1

y1

1A ;
0@2�n2

x2

y2

1A ;
0@2�n3

x3

y3

1A
are linearly independent. Consider the subgroup � of G0

3
�RDRË�R2�R generated

by y̨1 , y̨2 , y̨3 and y̨4 , where

y̨i D

�
2�ni ;

�
xi

yi

�
; 0

�
for i D 1; 2; 3 and y̨4 D

�
2�n4;

�
x4

y4

�
; 1

�
:
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Then � is a uniform lattice of G0
3
�R and � coincides with � via the homomorphism

DW G0
3
�R!G0

3
in Example 3.6. Therefore the Lie g0

3
–flow is diffeomorphic to the

flow in Example 3.6.
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Homological stability for families of Coxeter groups

RICHARD HEPWORTH

We prove that certain families of Coxeter groups and inclusions W1 ,!W2 ,! � � �

satisfy homological stability, meaning that in each degree the homology H�.BWn/ is
eventually independent of n . This gives a uniform treatment of homological stability
for the families of Coxeter groups of type A , B and D , recovering existing results
in the first two cases, and giving a new result in the third. The key step in our proof is
to show that a certain simplicial complex with Wn –action is highly connected. To do
this we show that the barycentric subdivision is an instance of the “basic construction”,
and then use Davis’s description of the basic construction as an increasing union of
chambers to deduce the required connectivity.

20F55; 20J06

1 Introduction

1.1 Overview

A family of groups G1 ,!G2 ,!G3 ,! � � � is said to satisfy homological stability if
the induced maps Hi .BGn�1/!Hi .BGn/ are isomorphisms when n is sufficiently
large relative to i . Homological stability is known for many families of groups,
including symmetric groups (see Nakaoka [23]), general linear groups (see Quillen [24]),
mapping class groups of surfaces (see Harer [11]) and 3–manifolds (see Hatcher and
Wahl [15]), diffeomorphism groups of highly connected manifolds (see Galatius and
Randal-Williams [10]), and automorphism groups of free groups (see Hatcher [12] and
Hatcher and Vogtmann [14]). Coxeter groups are abstract reflection groups, appearing in
many areas of mathematics, such as root systems and Lie theory, geometric group theory,
and combinatorics. See the books of Bourbaki [3], Davis [8] and Björner and Brenti [1]
for introductions to Coxeter groups from each of these three viewpoints. In this paper
we will show that homological stability holds for certain families of Coxeter groups.

Recall that a Coxeter matrix on a set S is an S �S symmetric matrix M , with values
in N [f1g, satisfying mst D 1 if s D t and mst > 2 otherwise. The corresponding
Coxeter group is the group generated by the elements of S , subject to the relations
.st/mst D e for s; t 2 S . (When mst D1 no relation is imposed.) It is common to

Published: 7 November 2016 DOI: 10.2140/agt.2016.16.2779
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2780 Richard Hepworth

represent a Coxeter matrix by the equivalent Coxeter diagram. This is the graph with
vertices S and edges fs; tg for mst > 3. The edge fs; tg is labelled mst if mst > 4.

Now consider a sequence of finite Coxeter diagrams .�n/n>1 of the form

�1 �2 �3

where every diagram has a preferred vertex, and each diagram is obtained from its
predecessor by attaching a new preferred vertex to the old one by an unlabelled edge.
Writing Wn for the Coxeter group determined by �n , the inclusion �n�1 ,!�n induces
an inclusion Wn�1 ,!Wn , and our main result states that the family

W1 ,!W2 ,!W3 ,!W4 ,! � � �

satisfies homological stability.

Main Theorem The map H�.BWn�1/!H�.BWn/ is an isomorphism in degrees
satisfying 2�6 n. Here homology is taken with arbitrary constant coefficients.

Observe that while the diagrams �n are assumed to be finite, it is not necessary for the
groups Wn to be finite.

1.2 Homological stability for Coxeter groups of type A , B and D

The Main Theorem gives a uniform treatment of homological stability for the families
of Coxeter groups of type An , Bn and Dn . Recall that these are the Coxeter groups
corresponding to the following diagrams, in which n always denotes the total number
of vertices:

An

4

Bn Dn

These families have an important place in the theory of Coxeter groups, since the
classification of finite Coxeter groups states that a finite irreducible Coxeter group
has type An , Bn or Dn , or is dihedral, or is one of six exceptional examples. (See
Appendix C of [8].) The sequences .An/n>1 , .BnC1/n>1 and .DnC2/n>1 all have
the form .�n/n>1 described above, with the rightmost vertex taken as the preferred
vertex, and therefore we may apply the main theorem to each one. In what follows we
will use concrete descriptions of the groups of type An , Bn and Dn that can be found
in Section 6.7 of [8].
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1.2.1 Coxeter groups of type A For the sequence of diagrams .An/n>1 , the corre-
sponding sequence of Coxeter groups is

†2 ,!†3 ,!†4 ,!†5 ,! � � �

where †n is the symmetric group on n letters and the inclusions are given by extending
permutations by the identity. Applying the Main Theorem, we recover the following
classical result.

Corollary (Nakaoka) The map H�.B†n/! H�.B†nC1/ is an isomorphism in
degrees 2�6 n. Here homology is taken with arbitrary constant coefficients.

In fact, Nakaoka computed H�.B†nIFp/ for all primes p in Theorem 6.3 of [23].
From this he deduced stability with Fp coefficients in Corollary 6.7 of [23]. The
case of arbitrary coefficients follows. Nakaoka’s computations can be used to show
that Hk.B†2k�1IF2/ ! Hk.B†2kIF2/ is not surjective for k > 1, so that the
bound 2� 6 n appearing in the corollary is sharp. Alternative proofs of Nakaoka
stability, that do not rely on complete computations of H�.B†nIFp/, can be found in
the Ph D thesis of Maazen [21] and the papers of Kerz [19] and Randal-Williams [25].

1.2.2 Coxeter groups of type B For the sequence of diagrams .BnC1/n>1 , the
corresponding sequence of Coxeter groups

C2 o†2 ,! C2 o†3 ,! C2 o†4 ,! C2 o†5 ,! � � �

consists of the wreath products of the symmetric groups with the group C2 of order 2,
and the inclusions are again given by extending permutations by the identity. Applying
the Main Theorem gives the following result.

Corollary The map H�.B.C2 o†n//! H�.B.C2 o†nC1// is an isomorphism in
degrees 2�6 n. Here homology is taken with arbitrary constant coefficients.

This result can be found in a number of places in the literature. In particular, May
computed H�.B.C2 o†n/IFp/ for all n> 1 and all primes p . (See Cohen, Lada and
May [7, Chapter I, Theorem 4.1] in the case X D BC2 t f�g.) From this computation
one obtains the corollary above in the case of Fp coefficients, and the case of arbitrary
coefficients follows. The corollary also follows from existing stability results such as
Theorem A of [25] and Proposition 1.6 of Hatcher and Wahl’s paper [15]. Observe that
the bound 2�6 n is again sharp, since C2 o†n is a split extension of †n .
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1.2.3 Coxeter groups of type D For the sequence of diagrams .DnC2/n>1 , the
corresponding sequence of Coxeter groups is

H3 ,!H4 ,!H5 ,!H6 ,! � � �

where Hn denotes the kernel of the homomorphism C2 o†n ! C2 that takes the
product of the C2 –components. (We regard C2 as the set f˙1g under multiplication.)
The Main Theorem gives the following result.

Corollary Let Hn denote the Coxeter group of type Dn . Then the inclusion map
HnC1 ,! HnC2 induces an isomorphism H�.BHnC1/! H�.BHnC2/ in degrees
where 2�6 n. Here homology is taken with arbitrary constant coefficients.

We believe that the result is new in the stated generality. However, Swenson [27] gave a
generating set for the ringH�.BHnIF2/, and deduced that the mapHk.BH2kC1IF2/!

Hk.BH2kIF2/ is not surjective. (See Theorem 6.4.1 and the paragraph that follows it
in [27].) It follows that Hk.BH2kIF2/!Hk.BH2kC1IF2/ is not injective, so that
the bound 2�6 n in the corollary is sharp.

1.3 The superideal simplex reflection groups

The Main Theorem applies to interesting families besides those of type An , Bn and Dn

already considered. For example, if we fix an integer m> 7, then the main theorem
shows that homological stability holds for the family of Coxeter groups associated to
the sequence of diagrams .�n/n>1

m

�n

in which �n has a total of .nC 1/ vertices, the rightmost one preferred. These are the
superideal simplex reflection groups that appear in recent work of Calegari [6]. The
first group is finite, while the rest are all infinite hyperbolic.

It is not difficult to construct other sequences of hyperbolic groups to which our main
theorem applies. For example, we can construct sequences .Wn/n>1 in which the Wn

are all hyperbolic and have the same, arbitrary, virtual cohomological dimension (vcd).
To do this we choose for W1 an arbitrary hyperbolic right-angled Coxeter group with the
desired vcd (see Januszkiewicz and Świątkowski [18]). Then by choosing a preferred
element of the generating set of W1 we extend to a sequence .Wn/n>1 of the kind
appearing in the main theorem. By Moussong’s condition [22, Theorem 17.1] (or see
[8, Corollary 12.6.3]), the Wn are all hyperbolic. By construction, the nerves Ln of
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the Wn satisfy LnC1 Š CLn . (See [8, Section 7.1] for the definition of the nerve.)
Then by Davis’s computation of the vcd of Coxeter groups [8, Corollary 8.5.5] they all
have the same vcd.

1.4 Homology of Coxeter groups in low degrees

The Main Theorem was to some extent inspired by existing results on the homology of
Coxeter groups in degree 1 and 2, as we now explain.

In degree 1 our main theorem states that the map H1.BWn�1/! H1.BWn/ is an
isomorphism for n > 2. This result has a simple proof. Let W be a Coxeter group
corresponding to Coxeter diagram � . Then one sees from the presentation of W that
the abelianization Wab is naturally isomorphic to the elementary abelian 2–group on
the path-components of the graph obtained from � by deleting the edges with even
or infinite label. In our situation �n is obtained from �n�1 by attaching a single new
vertex using an edge with label 3, so that .Wn�1/ab! .Wn/ab is an isomorphism, and
our stability result in degree 1 follows.

In degree 2 our main theorem states that the map H2.BWn�1/! H2.BWn/ is an
isomorphism for n>4. The second homology groups H2.BW IZ/ of the finite Coxeter
groups were computed by Ihara and Yokonuma in [17]. They showed that the result is
an elementary abelian 2–group, and computed its rank. In particular, they observed
that for the groups of type A, B and C the rank of H2.BW IZ/ stabilizes, and the
stability range exactly corresponds to our result. Howlett [16] extended the work of
Ihara and Yokonuma to arbitrary Coxeter groups. In our situation, his result shows
that H2.BWnIZ/ is an elementary abelian 2–group whose rank is constant for n> 3,
so that the isomorphism type of H2.BWn/ (now with arbitrary coefficients) is constant
for n> 3. Thus Howlett’s result almost implies our stability result in degree 2, since it
shows that the domain and range of the map in question are isomorphic.

1.5 Outline of the proof of the main theorem

The proof of the Main Theorem is modelled closely on existing techniques for prov-
ing Nakaoka’s stability result for symmetric groups, which is the statement that the
map H�.B†n/ ! H�.B†nC1/ is an isomorphism for 2� 6 n. So we begin by
explaining an approach to Nakaoka stability.

The proof of Nakaoka stability is by induction on n, the initial case n D 0 being
trivial. The inductive step uses the “complex of injective words”, which we denote
by X . This is the semisimplicial set whose k–simplices are ordered .kC1/–tuples
in f1; : : : ; nC 1g, with each element appearing at most once. It admits an action
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of †nC1 , and this action is transitive on k–simplices with stabilizer †n�k�1 . Moreover,
the realization kXk is .n�1/–connected. We now consider the spectral sequence arising
from the filtration of EWn �Wn

kXk induced by the skeleta of kXk. Properties of the
action of †nC1 on X allow us to identify the E1 –page of this spectral sequence in
terms of the H�.B†n�k�1/ and the stabilization maps between them. The inductive
hypothesis then allows us to compute the remaining pages of the spectral sequence in
a range of degrees. The connectivity of kXk guarantees that the sequence converges
to H�.B†n/ in a range of degrees. From that point the result follows easily.

The hardest step here is the proof that kXk is .n�1/–connected. There are several
proofs of this in the literature; see Remark 39. The approach relevant to us is the
following. Observe that X is isomorphic to .�n/ord , the semisimplicial set of simplices
of �n equipped with an ordering of their vertices. Now �n is weakly Cohen–Macaulay
of dimension n, meaning that it and the links of simplices within it satisfy certain
connectivity bounds. A result of Randal-Williams [28, Proposition 7.9] states that if a
complex C is weakly Cohen–Macaulay of dimension n, then the realization kC ordk

is .n�1/–connected. Applying this to �n , we obtain the connectivity of kXk.

Now here is a sketch of the proof of the main theorem. It follows the sketch proof
of Nakaoka stability given above, and reduces to it in the case of Coxeter groups of
type A.

(1) We construct a simplicial complex Cn with an action of Wn . For Coxeter groups
of type A, the complex Cn is the n–simplex �n . We prove that Cn is weakly
Cohen–Macaulay of dimension n.

(2) We form a semisimplicial set Dn with an action of Wn . For Coxeter groups
of type A, this is the complex of injective words X . We show that Dn is the
semisimplicial set of ordered simplices in Cn and conclude that it is .n�1/–
connected.

(3) Third, we use the spectral sequence associated to the filtration of EWn�Wn
kDnk

induced by the skeleta of kDnk to prove the theorem.

For Coxeter groups of type A, the proof that Cn is weakly Cohen–Macaulay of
dimension n is trivial. In general, we prove it as follows. We first prove that links
of simplices in Cn are copies of Cm for appropriate m < n, so that the required
connectivity bounds all follow if we can show that Cn is .n�1/–connected. To prove
the latter, we make use of the “basic construction”, a technique for constructing spaces
with actions of Coxeter groups. (See [8, Chapters 5 and 8] and Section 2.5 below.) We
identify the barycentric subdivision of Cn as an instance of the basic construction, and
then use results of Davis on the topology of the basic construction (see Section 2.6) to
conclude that it is .n�1/–connected.
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Outline of the paper In Section 2 we recall background material on Coxeter groups,
then in Section 3 we establish some notation and discuss the groups of type A, B
and D in detail. In Section 4 we study the subgroups Wi of Wn , establishing important
properties that will be used in the rest of the paper. Next, we move on to the simplicial
complex Cn : in Section 5 we define it, in Section 6 we study the links of its simplices,
and in Section 7 we show that jsd Cnj is .n�1/–connected. Then we define Dn in
Section 8, we show that it is isomorphic to the semisimplicial set of ordered simplices
in Cn , and conclude that it is .n�1/–connected. The proof of the Main Theorem is
completed in Section 9.

Acknowledgements My thanks to Jarek Kędra, Ian Leary and Oscar Randal-Williams
for helpful conversations as this work was being carried out, to Rachael Boyd for a
careful reading of the paper, and to the referee for numerous helpful comments.

2 Background on Coxeter groups

Here we will recall some of the basic facts about the theory of Coxeter groups, giving
references to [8] where possible. Hopefully this covers all of the material we will use
in the rest of the paper. Alternative introductions to Coxeter groups are [3; 1].

2.1 Coxeter systems

In Section 1.1 we defined Coxeter matrices, Coxeter diagrams, and the Coxeter group
associated to a Coxeter matrix or diagram. A Coxeter system is a pair .W; S/ consisting
of a group W and a collection of involutions S �W satisfying the following property:
Let zW denote the Coxeter group associated to the Coxeter matrix M on S defined by

mst D order of st:

Then the homomorphism zW !W extending the identity S ! S is an isomorphism.
See Section 3.3 of [8].

2.2 Words

Let .W; S/ be a Coxeter system. A word in S is an ordered tuple .t1; : : : ; tr/ of
elements of S . The word .t1; : : : ; tr/ has length r and it represents the element
wD t1 � � � tr of W . Every element w 2W is represented by some word, and its length
`.w/ is the minimum length of a word representing it. A word is reduced if it has
minimum length for the element of W it represents.

Algebraic & Geometric Topology, Volume 16 (2016)



2786 Richard Hepworth

2.3 The word problem

An M –operation on a word in S is a composite of the following elementary M –
operations:

� Delete a subword .s; s/.

� Replace an alternating subword .s; t; : : :/ of length m.s; t/ with the subword
.t; s; : : :/ of the same length.

Observe that these operations do not alter the element of W represented by the word,
since all elements of S are involutions, and since the relation .st/m.s;t/ D e can be
rewritten as .st � � � /D .ts � � � /, where each side is an alternating word of length m.s; t/.
Observe also that these operations either preserve or reduce the length of a word. Tits’
solution to the word problem in Coxeter groups states that a word is reduced if and only
if it cannot be shortened by an M –operation, and that two reduced words represent the
same element if and only if they are related by a sequence of elementary M –operations
of the second kind. See Section 3.4 of [8].

2.4 Special subgroups

Let .W; S/ be a Coxeter system. Given T � S , we denote by WT the subgroup of W
generated by T , and we refer to WT as a special subgroup of W . Then .WT ; T / is
again a Coxeter system. (This is why our sequence of homomorphisms W1!W2!� � �

is in fact a sequence of inclusions.) See Section 4.1 of [8].

Given T;U �S we say that w2W is .T; U / reduced if it cannot be represented by a re-
duced word starting with an element of T or ending with an element of U . If x is .T; U /
reduced then a result of Kilmoyer, Solomon and Tits shows that WT \ xWUx

�1DWV ,
where V DT \xUx�1 . See Lemma 2 of [26]. In particular, this shows that if T;U �S
then WT \WU DWT\U . See Theorem 4.1.6 of [8] for a proof of this special case.

2.5 The basic construction

The “basic construction” is a method for building spaces with an action of a Coxeter
group. It can be used, for example, to study the topology of the Coxeter complex and
Davis complex of a Coxeter group. (Our discussion is tailored to the case of Coxeter
groups. For an approach to the basic construction that applies to more general groups
see Chapter II.12 of [5].)

Let .W; S/ be a Coxeter system. A mirrored space over S is a space X together
with subspaces Xs � X , called mirrors, one for each s 2 S . We assume that X is
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a CW–complex and that the mirrors are subcomplexes. The basic construction is the
space

U.W;X/D .W �X/=�;

where .v; x/� .w; y/ if and only if xDy and v�1w belongs to the subgroup generated
by the s 2 S for which x 2 Xs . The basic construction is equipped with the action
of W by left translation, and we identify X with the image of feg �X in U.W;X/.
Observe that U.W;X/ has the structure of a CW–complex in which each translate wX
is a subcomplex. See Section 5.1 of [8].

2.6 The increasing union of chambers

For us the most important feature of the basic construction is that it can be described
as an increasing union of chambers, meaning copies of X , as we now recall from
Section 8.1 of [8]. Given w 2W , let

In.w/D fs 2 S j `.ws/ < `.w/g

denote the set of letters with which a reduced expression for w can end, and let

X In.w/
D

[
s2In.w/

Xs

denote the corresponding union of mirrors. Order the elements of W as w0; w1; w2; : : : ,
where w0 D e and `.wm/6 `.wmC1/ for m> 0. Define

Pm D

m[
iD0

wiX;

so that U.W;X/ is the increasing union of the subcomplexes Pm . Then

Pm D Pm�1[wmX and Pm�1\wmX D wmX
In.wm/:

The latter equation is by Lemma 8.1.1 of [8]. It will be useful to us since it specifies
exactly how each chamber is attached to its predecessor, so that we can study the
topology of U.W;X/ inductively by adding one chamber at a time.

3 Notation and examples

In this section we establish some notation that will be used throughout the rest of the
paper. We also establish in more detail the Coxeter groups of type A, B and D , which
will be used for illustration throughout the rest of the paper. Fix a sequence .�n/n>1

of the kind described in the introduction.
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Definition 1 (the elements s1; : : : ; sn ) For n > 1 we define sn to be the preferred
vertex of �n , as in the following diagram:

s1 s2 sn�1 sn

Thus the special subgroup of Wn generated by s1; : : : ; sn is a copy of the Coxeter
group of type An , and so is isomorphic to †nC1 . See Example 2 below.

Example 2 (groups of type A) Consider the sequence of diagrams .An/n>1 :

An s1 s2 sn�1 sn

In this case the group Wn may be identified with †nC1 , the symmetric group on
letters 1; : : : ; .nC1/, where si is the adjacent transposition .i iC1/. See Example 6.7.1
of [8].

Example 3 (groups of type B ) Consider the sequence of diagrams .BnC1/n>1 :

BnC1
t

4

s1 s2 sn�1 sn

The group Wn may be identified with the wreath product C2 o †nC1 , where t is
identified with the generator of C2 and si is again identified with the adjacent trans-
position .i i C 1/. For concreteness, we further identify C2 o†nC1 with the set of
permutations � of f˙1; : : : ;˙.nC 1/g that satisfy �.�i/D��.i/ for all i . In this
setting t is the permutation that sends ˙1 to �1 and fixes all other elements, while si
is the permutation that sends ˙i to ˙.iC1/ and vice versa and fixes all other elements.
See Example 6.7.2 of [8].

Example 4 (groups of type D ) Consider the sequence of diagrams .DnC2/n>1 :

DnC2

t

u

s1 s2 sn�1 sn

The group Wn may be identified as the kernel of the homomorphism C2 o†nC2! C2

that takes the product of the C2 –components. Regarding C2 o†nC2 as a group of
permutations of f˙1; : : : ;˙.nC2/g, this kernel consists of the permutations that send
an even number of the positive elements to negative ones. Under this identification,
t corresponds to the element that negates ˙1 and ˙2 and fixes all other elements;
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u transposes 1 and 2, �1 and �2, and fixes all other elements; and si sends ˙.iC1/
to ˙.i C 2/ and vice versa and fixes all other elements. See Example 6.7.3 of [8].

Definition 5 (the additional diagrams �0 and ��1 ) We extend the sequence .�n/n>1

to the left by two terms as follows. Define �0 to be the diagram obtained from �1 by
deleting the preferred vertex, and define ��1 to be the diagram obtained from �1 by
deleting the preferred vertex and all vertices that shared an edge with it.

Example 6 (�0 and ��1 for Coxeter groups of type A, B and D ) For the se-
quence .An/n>1 , the diagrams A0 and A�1 are both empty. For .BnC1/n>1 , the
diagram B0C1 consists of the single vertex t and B�1C1 is empty. For .DnC2/n>1 ,
the diagram D0C2 consists of the two vertices t and u with no edge, and D�1C2 is
empty.

Definition 7 (the generating sets Sn ) Let .�n/n>1 be a sequence of the kind de-
scribed in the introduction, and let .�n/n>�1 be the extension just described. Then
for n> �1 we define Sn to be the set of vertices of �n . Thus .Wn; Sn/ is a Coxeter
system for each n> �1.

4 The subgroups W�1 � W0 � W1 � � � � � Wn

From this point onwards, unless stated otherwise, we fix a sequence .�n/n>1 and an
integer n> 1.

This section will study the sequence of subgroups W�1 � W0 � � � � � Wn , and in
particular the cosets of Wk in Wn for k < n. We do this now because the geometric
objects that will appear later in the paper are constructed by considering these cosets.
Throughout the section we will illustrate the results using the sequences .An/n>1 ,
.BnC1/n>1 and .DnC2/n>1 that were explained in Examples 2, 3 and 4. The key idea
to bear in mind is that Wn=Wn�1 is “the natural set for Wn to act on”. For example,
for groups of type A, where Wn D†nC1 , we will see that Wn=Wn�1 is isomorphic
to f1; : : : ; nC 1g with the permutation action.

Proposition 8 (left cosets of Wn�1 ) (1) Let i lie in the range 1 6 i 6 n. Then
left-multiplication by the element si fixes the set

fs1 � � � snWn�1; s2 � � � snWn�1; : : : ; snWn�1; Wn�1g:

It acts on the set by transposing si � � � snWn�1 and siC1 � � � snWn�1 , and fixing
the remaining elements. Here the product .siC1 � � � sn/ is omitted when i D n.
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(2) For c 2Wn the cosets

c.s1 � � � sn/Wn�1; : : : ; csnWn�1; cWn�1

are pairwise distinct.

Proof One can verify the identities

si .sj � � � sn/D .sj � � � sn/si for i < j � 1;

si .siC1 � � � sn/D si � � � sn;

si .si � � � sn/D siC1 � � � sn;

si .sj � � � sn/D .sj � � � sn/si�1 for i > j;

and then the first part follows immediately. (The product siC1 � � � sn is omitted
when i D n.) For the second part, if csj � � � snWn�1 D csk � � � snWn�1 with j < k ,
then .sn � � � sj /.sk � � � sn/ 2Wn�1 . But

.sn � � � sj /.sk � � � sn/D .sk�1 � � � sn � � � sk�1/.sk�2 � � � sj /;

where the second factor on the right is omitted in the case j D k � 1. This implies
that sn 2Wn�1 , which is a contradiction.

Example 9 (Wn=Wn�1 for groups of type A, B and D ) We illustrate Proposition 8
for the sequence .An/n>1 here. As explained in Example 2, we may regard Wn

as the group †nC1 of permutations of the set f1; : : : ; n C 1g. This allows us to
identify Wn=Wn�1 via the isomorphism

Wn=Wn�1
Š
��! f1; : : : ; nC 1g; �Wn�1 7�! �.nC 1/;

which respects the Wn action on each side, and which maps the coset si � � � snWn�1 to
the letter i . (When i D nC1 the product si � � � sn is omitted.) So for these groups, the
first part of the proposition above amounts to the fact that si transposes the elements i
and i C 1. For � 2Wn , the cosets

�.s1 � � � sn/Wn�1; : : : ; �snWn�1; �Wn�1

correspond under the isomorphism above to the elements �.1/; : : : ; �.nC 1/. So the
second part of the proposition amounts to the fact that these elements are distinct since
� is a permutation.

A similar account can be given for the sequences .BnC1/n>1 and .DnC2/n>1 , this
time using Examples 3 and 4. For .BnC1/n>1 the account is identical after replac-
ing f1; : : : ; nC 1g with f˙1; : : : ;˙.nC 1/g. For .DnC2/n>1 the set being acted on
is now f˙1; : : : ;˙.nC 2/g, and the isomorphism sends �Wn to �.nC 2/.
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Proposition 10 Wi�1\ .si � � � snWn�1sn � � � si /DWi�2 for 16 i 6 n.

Proof The element si � � � sn is .Wi�1; Wn�1/–reduced, meaning that it does not
have a reduced representative beginning with an element of Wi�1 or ending with a
representative of Wn�1 . Thus, as we recalled in Section 2.4, the intersection

Wi�1\ si � � � snWn�1sn � � � si

is the subgroup generated by T D Si�1\ .si � � � snSn�1sn � � � si /. So it will be enough
to show that T D Si�2 . If j 6 i � 2 then sn � � � sisj si � � � sn D sj , and consequently
Si�2 � T . So suppose that t 2 T nSi�2 . Thus t 2 Si�1 nSi�2 and sn � � � si tsi � � � sn 2
Sn�1 . By the first condition we have msi t > 3. By the second condition the word
.sn; : : : ; si ; t; si ; : : : ; sn/ represents an element of Sn�1 , so is not reduced. By the
solution to the word problem recalled in Section 2.3, we must therefore be able to
apply an M –operation to this word, but by inspection this is only possible if msi t is
exactly 3. But in that case .sn; : : : ; si ; t; si ; : : : ; sn/ is already reduced, contradicting
the second condition (see Sections 2.2 and 2.3).

Example 11 In the case of the sequence .An/n>1 , the previous proposition can be
explained as follows. The group Wn is identified with the symmetric group †nC1 on
the set f1; : : : ; nC1g, and Wk�1 is the subgroup that fixes .kC1/; : : : ; .nC1/. Thus:

� Wi�1 is the subgroup that fixes .i C 1/; : : : ; .nC 1/.

� si � � � snWn�1sn � � � si is the subgroup that fixes i .

� Wi�2 is the subgroup that fixes i; : : : ; .nC 1/.

This makes the proposition’s claim that Wi�1\ .si � � � snWn�1sn � � � si /DWi�1 imme-
diate. For the sequences .BnC1/n>1 and .DnC2/n>1 one can give a similar account.

Proposition 12 Let i lie in the range 16 i 6 n. If �; � 2Wn satisfy

�sj : : : snWn�1 D �sj : : : snWn�1 for j D i; : : : ; nC 1;

then ��1� 2Wi�2 . Here the product .sj � � � sn/ is omitted when j D nC 1.

Proof The proposition is equivalent to the claim that

Wn�1\ .snWn�1sn/\ � � � \ .si � � � snWn�1sn � � � si /DWi�2;

which is proved by downward induction on i . The initial case i D nC 1 is immediate,
and the induction step follows from Proposition 10.
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5 The simplicial complex Cn

Now we introduce the simplicial complex Cn that will be central to our proof of the
Main Theorem. The definition of Cn is motivated by the case of Coxeter groups of
type A, where Wn is the symmetric group †nC1 , and Cn is nothing other than the
n–simplex. As explained in Section 1.5, this is relevant since the semisimplicial set of
ordered simplices in the n–simplex is the “complex of injective words”, which appears
in several existing proofs of homological stability for the symmetric groups. In the
general case, Cn is designed so that its semisimplicial set of ordered simplices can play
the role of the complex of injective words in a proof of homological stability for the
sequence .Wn/n>1 .

The main result of this section is that Cn is weakly Cohen–Macaulay of dimension n.
The proof relies on propositions that will be established in the following two sections.

Definition 13 (the simplicial complex Cn ) Given n > 0, we define Cn to be the
n–dimensional simplicial complex with vertex set Wn=Wn�1 and with k–simplices
given by the subsets

C D fc.sn�kC1 � � � sn/Wn�1; : : : ; csnWn�1; cWn�1g

for 06 k 6 n and c 2Wn . Proposition 8 shows that C does indeed have cardinality
.kC 1/. In this situation we call c a lift of the simplex C .

Remark 14 We chose the name “lift” to emphasize the formal similarity with the
concept of the same name that appears in Definition 2.1 of Wahl [28].

A given simplex can have many lifts. Choosing a lift for a simplex induces an ordering
of its vertices, and all orderings occur in this way. For if c lifts a k–simplex C

then so does csn�kCiC1 , and the induced orderings differ by transposition of the i th

and .iC1/st vertices (see Proposition 8). This makes it simple to verify that Cn is
indeed a simplicial complex, for if C is a simplex of Cn and D � C is a nonempty
subset, then we may choose a lift c of C such that D is a terminal segment in the
induced ordering. Then c is also a lift of D .

The natural action of Wn on Wn=Wn�1 extends to an action on Cn . For if C is a
simplex of Cn with lift c , and if w 2Wn , then wC is a simplex of Cn with lift wc .

We now give a concrete description of Cn for the families of Coxeter groups of type A,
B and D . See Examples 2, 3 and 4 for the description of these groups, and Example 9
for a description of Wn=Wn�1 in each case.
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Example 15 (Cn for groups of type A) For the sequence of diagrams .An/n>1 we
saw in Example 2 that WnD†nC1 is the symmetric group on .nC1/ letters. Then Cn

is the n–dimensional simplex �n with the action of †nC1 that permutes the vertices.
For as in Example 9 the vertex set Wn=Wn�1 of Cn is isomorphic to f1; : : : ; nC1g via
the map that sends �Wn�1 to �.nC 1/. Under this isomorphism, an element � 2Wn

is a lift of the k–simplex

C D f�.n� kC 1/; : : : ; �.nC 1/g;

and every subset of f1; : : : ; nC 1g arises in this way.

Example 16 (Cn for groups of type B ) For the sequence of diagrams .BnC1/n>1 we
saw in Example 3 that Wn is the group of permutations � of the set f˙1; : : : ;˙.nC1/g
satisfying the rule �.�i/ D ��.i/ for all i . In this case Cn is isomorphic to the
hyperoctahedron of dimension n, which is the simplicial complex whose vertex set
is f˙1; : : : ;˙.nC 1/g and whose simplices are the subsets containing at most one
element from each pair fi;�ig. In particular, its realization is homeomorphic to
the n–sphere. To obtain this description, we use the isomorphism Wn=Wn�1 !

f˙1; : : : ;˙.n C 1/g sending �Wn�1 to �.n C 1/, as in Example 9. Under this
isomorphism an element � lifts the k–simplex

C D f�.n� kC 1/; : : : ; �.nC 1/g;

so that a subset of f˙1; : : : ;˙.nC 1/g spans a simplex of Cn if and only if it does
not contain any element and its negative.

Example 17 (Cn for groups of type D ) For the sequence of diagrams .DnC2/n>1

we saw in Example 4 that Wn is the group of permutations of f˙1; : : : ;˙.nC2/g that
satisfy the rule �.�i/D��.i/ and that send an even number of the positive elements to
negative ones. In this case Cn is the n–skeleton of the .nC1/–dimensional hyperocta-
hedron. In other words, it is the simplicial complex with vertex set f˙1; : : : ;˙.nC2/g,
and whose simplices are the subsets of size at most nC1 containing at most one element
from each pair fi;�ig. (Compare with Example 16.) In particular, the realization
of Cn has the homotopy type of the wedge of .2n� 1/ copies of the n–dimensional
sphere. To obtain this description recall from Example 9 that the vertex set Wn=Wn�1

is identified with f˙1; : : : ;˙.nC2/g via the map sending �Wn�1 to �.nC2/. Under
this identification the k–simplex with lift � is

C D f�.n� kC 2/; : : : ; �.nC 2/g;

so that a subset of f˙1; : : : ;˙.nC2/g spans a simplex if and only if it does not contain
any element and its negative and has size at most n.
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Recall from Definition 3.4 of [15] that a simplicial complex is called weakly Cohen–
Macaulay of dimension n if it is .n�1/–connected and the link of each p–simplex
is .n�p�2/–connected. In each of the three examples above, Cn has the homotopy
type of a wedge of n–dimensional spheres, and so is .n�1/–connected. In fact, it is
not hard to see that in these examples Cn is weakly Cohen–Macaulay of dimension n.
This is an instance of the following general fact.

Theorem 18 Cn is weakly Cohen–Macaulay of dimension n.

The proof of this theorem relies on Propositions 19, 26 and 27, which are proved over
the course of the next two sections.

Proof By Proposition 19, if C is a p–simplex of Cn then lkCn.C / Š Cn�p�1 . It
therefore suffices to show that Cn is .n�1/–connected for all n, or equivalently that
the barycentric subdivision sd Cn is .n�1/–connected for all n. Now Proposition 26
shows that jsd Cnj is homeomorphic to the basic construction U.Wn; j�j/, while
Proposition 27 shows that U.Wn; j�j/ is .n�1/–connected.

6 Links of simplices of Cn

The aim of this section is to prove the following proposition, which was used in the
proof of Theorem 18 above.

Proposition 19 Let C be a p–simplex of Cn . Then lkCn.C /Š Cn�p�1 .

In the next section we prove that Cn is .n�1/–connected. This, combined with the
proposition above, shows that the links of p–simplices in Cn are .n�p�2/–connected,
and consequently that Cn is weakly Cohen–Macaulay of dimension n.

Example 20 (links in Cn for groups of type A, B and D ) In Examples 15, 16 and 17
we gave concrete descriptions of Cn for each of the sequences .An/n>1 , .BnC1/n>1

and .DnC2/n>1 . These descriptions can be used to illustrate Proposition 19. For
example, if we take the sequence .BnC1/n>1 , then Cn is the hyperoctahedron of
dimension n, ie, the simplicial complex with vertices f˙1; : : : ;˙.nC 1/g in which a
subset of the vertices spans a simplex if and only if it does not contain any element and
its negative. Thus C2 , C1 and C0 are as shown in Figure 1 (in C1 and C0 the dashed
parts are not included). We see that in C2 the link of the vertex f3g is a copy of C1 ,
while the link of the edge f2; 3g is a copy of C0 .
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Figure 1: The hyperoctohedra C2; C1; C0

Proof of Proposition 19 Choose a lift c of C . Define

�W Wn�p�1=Wn�p�2!Wn=Wn�1

by �.dWn�p�2/D cdsn�p � � � snWn�1 for d 2Wn�p�1 . This is well defined since
every generator of Wn�p�2 commutes with sn�p; : : : ; sn . Observe that the domain
and range of � are the vertex sets of Cn�p�1 and Cn respectively.

Claim 1 The map � is an injection.

To prove this claim, let d; d 0 2Wn�p�1 satisfy

cd.sn�p � � � sn/Wn�1 D cd
0sn�p � � � snWn�1:

Then
d�1d 0 2Wn�p�1\ .sn�p � � � sn/Wn�1.sn � � � sn�p/DWn�p�2;

the latter equation by Proposition 10. Thus d 0Wn�p�2 D dWn�p�2 .

Claim 2 The map � sends simplices of Cn�p�1 to simplices of lkCn.C /.

To prove this, suppose that D is an i –simplex of Cn�p�1 . Let d 2Wn�p�1 be a lift
of D . Then

�D D fcdsn�p�i � � � snWn�1; : : : ; cdsn�p � � � snWn�1g

while

C D fcsn�pC1 � � � snWn�1; : : : ; csnWn�1; cWn�1g;

D fcdsn�pC1 � � � snWn�1; : : : ; cdsnWn�1; cdWn�1g:

Thus �D\C D∅ by Proposition 8, and �D[C is a simplex of Cn with lift cd , so
that �D is a simplex of lkCn.C / as claimed.
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Claim 3 Every simplex of lkCn.C / has the form �D for some simplex D of Cn�p�1 .

To prove this, suppose that D is an i –simplex of lkCn.C /. Then D\C D∅ and D[C
is a simplex of Cn . Let c0 be a lift of D[C , and assume without loss that the ordering
it induces on D[C contains D as an initial segment and C as a terminal segment
with the ordering induced by c . Thus

D D fc0.sn�p�i � � � sn/Wn�1; : : : ; c
0.sn�p � � � sn/Wn�1g

and

c0.sn�pCk � � � sn/Wn�1 D c.sn�pCk � � � sn/Wn�1

for kD 1; : : : ; pC1, where the product .sn�pCk � � � sn/ is omitted for kDpC1. The
latter gives c�1c0 2Wn�p�1 by Proposition 12, so that c0D cd for some d 2Wn�p�1 .
Then D D �D , where D is the i –simplex of Cn�p�1 with lift d .

We can now prove the proposition. Combining the first claim with the third in the case
of 0–simplices, we see that � is an isomorphism between the vertex sets of Cn�p�1

and lkCn.C /. The second and third claims then show that � induces an isomorphism
of simplicial complexes from Cn�p�1 to lkCn.C /.

7 The barycentric subdivision of Cn and the basic
construction

Our aim now is to complete the proof of Theorem 18 by proving Propositions 26
and 27 below. These results make use of the basic construction, whose definition
we now recall from Section 2.5. Let .W; S/ be a Coxeter system. A mirrored space
over S is a space X equipped with a mirror Xs � X for each s 2 S . Given such
a mirrored space, the basic construction U.W;X/ is then the quotient .W �X/=�,
where .w; x/� .v; y/ if and only if x D y and w�1v lies in the subgroup generated
by those s 2 S for which x 2Xs .

We will show in Proposition 26 that jsd Cnj is the basic construction U.Wn; X/ for
an appropriate choice of mirrored space X . Then in Proposition 27 we will show
that U.Wn; X/ is .n�1/–connected. Together these show that the barycentric subdivi-
sion sd Cn is .n�1/–connected, completing the proof of Theorem 18.

We begin by defining the required mirrored space X over Sn . To do this we will
identify a simplex � of sd Cn and make its realization j�j into a mirrored space.
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Definition 21 (the simplex �) For i D 0; : : : ; n, let ai denote the .n�i/–simplex
of Cn defined by

ai D f.siC1 � � � sn/Wn�1; : : : ; snWn�1; eWn�1g:

Each ai has lift e 2Wn . Now let � denote the n–simplex of sd Cn defined by

�D fa0; : : : ; ang:

It is a simplex of sd Cn since a0 � � � � � an .

Definition 22 (the subcomplexes �s ) For each s 2 Sn , we define a subcomplex �s

of � as follows. If s D si for i D 1; : : : ; n, then �si
is the face

�si
D fa0; : : : ; bai ; : : : ; ang

of �. If s 2 S0 nS�1 then �s is the face

�s D fa1; : : : ; ang

of �. And finally, if s 2 S�1 then

�s D�:

Definition 23 (the mirrored space j�j) We make j�j into a mirrored space over Sn

by defining j�js D j�sj � j�j for s 2 Sn .

Example 24 (� and �s for Coxeter groups of type A) For the sequence .An/n>1 ,
we saw in Example 2 that Wn is the symmetric group †nC1 , and in Example 15
that Cn can be identified with the n–simplex �n . Under this identification the ver-
tex siC1 � � � snWn�1 is identified with i . Thus

ai D fsiC1 � � � snWn�1; : : : ; snWn�1; Wn�1g D fi C 1; : : : ; ng:

Consequently � is the n–simplex of sd�n with vertices

f1; : : : ; nC 1g; : : : ; fn; nC 1g; fnC 1g:

This is illustrated in Figure 2 in the case n D 2. Observe that in this case every
2–simplex of sd�2 is a translate of � by an element of †3 , and that every simplex
of sd�2 is a face of such a translate.

The subcomplex �si
of � is simply the face opposite the vertex ai D fi C 1; : : : ; ng.

This is illustrated in Figure 3 in the case nD 2. Observe that s1 fixes �s1
vertexwise,

and that s2 fixes �s2
vertexwise.
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3

1 2

f3g

f1g f2g

f2; 3gf1; 3g

f1; 2g

f1; 2; 3g

a2

a1

a0

Figure 2: The simplex �2 (left), its subdivision sd�2 (middle) and the
simplex � (right)

a2

a1

a0

a2

a1

a0

Figure 3: The faces �s1
(left) and �s2

(right)

The inclusion j�j ,! jsd Cnj extends uniquely to a Wn –equivariant map Wn � j�j !

jsd Cnj. We want this to reduce to a map

U.Wn; j�j/! jsd Cn
j;

and so we must check that it respects the equivalence relation � on Wn � j�j that
defines U.Wn; j�j/. This is an immediate consequence of the following lemma.

Lemma 25 Under the action of Wn on jsd Cnj, the mirror j�js � j�j � jsd Cnj is
fixed pointwise by s .

Proof Let i > 0. If s 2 Si nSi�1 , then s fixes aj for j ¤ i . For i > 1 this follows
from Proposition 8, and for i D 0 it follows because s commutes with sk for k > 2.
Similarly, if s 2 S�1 then s fixes aj for all j . In all cases it follows that s fixes every
vertex of �s , so that s fixes j�js D j�sj pointwise.

We can now state the main results of this section.

Proposition 26 The map U.Wn; j�j/! jsd Cnj is a homeomorphism.

Proposition 27 U.Wn; j�j/ is .n�1/–connected.
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Example 28 (the map U.W1; j�j/! jsd C1j for groups of type B ) Let us illustrate
Proposition 26 in the case of the sequence .BnC1/n>1 and nD 1. As in Example 3,
the Coxeter diagram of W1 is as follows:

B2
t

4

s1

In this case � is the simplex with vertex set fa0; a1g, while �s1
and �t are the faces

with vertices a0 and a1 respectively. Thus j�j is an interval and j�js1
and j�t j are

its endpoints. We draw j�j as follows, with j�js1
represented by a hollow vertex

and j�jt represented by a solid vertex:

j�j

j�js1
j�jt

Then by definition U.W1; j�j/ is the union of the translates of j�j by elements of W1 ,
where for each w 2W1 , the solid vertices of wj�j and wt j�j are identified, as are
the hollow vertices of wj�j and ws1j�j. Thus U.W1; j�j/ is as shown on the left of
Figure 4.

ej�j

s1j�js1t j�j

s1ts1j�j

ts1ts1j�j

ts1t j�j ts1j�j

t j�j

f1g

f�1g

f2gf�2g

f1; 2g

f�1; 2gf�1;�2g

f1;�2g

j�j

Figure 4: The spaces U.W1; j�j/ and jsd C1j

Recall from Example 16 that C1 is the square with vertices f˙1;˙2g, with each
vertex being opposite to its negative, where t and s1 act as the permutations .1;�1/
and .1; 2/.�1;�2/ respectively. Thus jsd C1j is as shown on the right of Figure 4
with the subspace j�j labelled. Now the map U.W1; j�j/! jsd C1j is the one that is
evident from the drawings. It is the identity on the copy of j�j within each space, it is
equivariant with respect to the W1 –actions, and it is clearly a homeomorphism.

We now work towards the proof of Proposition 26. It relies on the following two
lemmas. Roughly speaking, these correspond to surjectivity and injectivity of the
map U.Wn; j�j/! jsd Cnj respectively.
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Lemma 29 Every n–simplex of sd Cn is a translate of �, and every simplex of sd Cn

is a face of such a translate.

Proof Let C DfC0; : : : ; Cng be an n–simplex of sd Cn with C0� � � � �Cn . Then C

induces a natural ordering of the vertices of Cn by declaring that each Ci consists of
an initial segment. Let c be a lift of Cn that induces this ordering. Then, by inspecting
the definition of the induced order, one sees that C D c �� as required. This proves
the first part. Now observe that every simplex of Cn is a face of an n–simplex, since
a simplex with a given lift is a face of the n–simplex with that lift. The second part
follows.

Lemma 30 Let F be a face of �. Then the stabilizer of F under the action of Wn is
the subgroup generated by those s 2 Sn for which F ��s .

Proof The stabilizer of a simplex of sd Cn coincides with the intersection of the
stabilizers of its vertices. To see this, let w 2 Wn and let C D fC0; : : : ; Ckg be a
simplex of sd Cn that is fixed by w . Then each Ci is a simplex of Cn itself, and without
loss C0 � � � � � Ck . The assumption w �C D C means that w permutes the Ci . But
since each Ci has a different cardinality, this means that w must in fact fix each Ci .
So the stabilizer of C is contained in the intersection of the stabilizers of its vertices.
The converse is immediate. See [4, page 115].

For the purposes of this proof, given i > 0 we write SDi for the difference Si nSi�1 .
So for i > 1 we have SDi D fsig, while SD0 is the set of elements of S0 that do not
commute with s1 .

Fix i > 0, and consider the vertex ai of sd Cn . We will show that the stabilizer of ai

is the subgroup of Wn generated by

Sn nSDi D Si�1[fsiC1; : : : ; sng:

To see this, recall that the vertices of ai (when ai is regarded as a simplex of Cn ) are

siC1 � � � snWn�1; : : : ; snWn�1; Wn�1:

Observe that if s 2 Si�1 then s commutes with siC1; : : : ; sn , and so fixes the vertices
of ai , and so fixes ai itself. And if s2fsiC1; : : : ; sng, then by Proposition 8, s permutes
the vertices of ai , and so fixes ai itself. So the subgroup generated by SnnSDi fixes ai .
Conversely, suppose that w 2Wn fixes ai . Proposition 8 shows that any permutation
of the vertices of ai can be achieved using the subgroup generated by siC1; : : : ; sn .
So after left-multiplying w by an element of the subgroup generated by siC1; : : : ; sn ,
we may assume that w fixes every vertex of ai . Proposition 12 now shows that w lies
in the subgroup generated by Si�1 , as required.
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Let F Dfai1
; : : : ; air

g. Then according to the first paragraph, the stabilizer of F is the
intersection of the stabilizers of the aij . By the last paragraph this is the intersection
of the subgroups generated by the sets Sn nSDij , and by the general results described
in Section 2.4, this is the subgroup generated by

T
.Sn nSDij /D Sn n

S
SDij .

It remains to show that Sn n
S
SDij is the set of s such that F � �s . Now by the

definition of �s , we see that F ��s for all s 2 S�1 , and that F ��s for s 2 SDi if
and only if ai … F . Thus the set of s such that F ��s is S n

S
SDij as required.

Example 31 Let us illustrate the proof of Lemma 30 for the sequence .An/n>1

and nD 2. We described C2 , sd C2 , � and the �s for this case in Example 24. The
following points correspond to the paragraphs of the proof.

� First observe that the action of W2D†3 on the vertices of sd C2 has three orbits,
namely the three vertices of the triangle (which are the 0–simplices of C2 ), the
midpoints of the edges of the triangle (which are the 1–simplices of C2 ), and the
barycentre of the triangle (which is the single 2–simplex of C2 ). Each simplex of
sd C2 contains at most one vertex from each orbit. So the stabilizer of a simplex
is the intersection of the stabilizers of its orbits.

� We have S2D fs1; s2g, S1D fs1g and S0D∅. Thus SD2D fs2g, SD1D fs1g

and SD0 D∅.

� Next, observe that the stabilizers of a0 , a1 and a2 are hs1; s2i, hs2i and hs1i
respectively, and these are indeed the subgroups generated by the sets S2 nSD0 ,
S2 nSD1 and S2 nSD2 respectively. So si stabilizes aj if and only if i ¤ j .

� By the first point, the stabilizer of a face F of � is the intersection of the
stabilizers of its vertices, and by the previous point this is the subgroup generated
by the si for which ai is not contained in F .

� On the other hand, F ��si
if and only if F does not contain ai . This, combined

with the previous point, shows that the stabilizer of F is generated by the s for
which F ��s .

Proof of Proposition 26 The map is surjective because any point of jsd Cnj is in
a translate of j�j. This follows from Lemma 29, which shows that every simplex
of sd Cn is a face of a translate of �.

To show that the map is injective, suppose that Œw; x�; Œv; y� 2 U.Wn; j�j/ have the
same image in jsd Cnj, or in other words that w � x D v � y . We will show that
.w; x/� .v; y/ so that Œw; x�D Œv; y�. First we show that xD y . There is a canonical
map sd Cn ! �n that sends a vertex C of sd Cn , or in other words a simplex C
of Cn , to the vertex jC j of �n . By construction this is Wn –invariant and restricts
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to an isomorphism � ! �n . Taking realizations, we obtain a Wn –invariant map
jsd Cnj !�n that restricts to a homeomorphism j�j !�n . Since w � x D v �y , we
therefore have x D y . Next we show that w�1v lies in the subgroup generated by
those s 2 Sn for which x 2 j�js . Write F for the unique face of � for which x
lies in the interior of F . Then x 2 j�js D j�sj if and only if F � �s . Moreover,
since w � x D v �y and x D y , we see that w�1v lies in the stabilizer of x , which is
exactly the stabilizer of F . Then w�1v lies in the claimed subgroup by Lemma 30.
Consequently .w; x/� .v; y/ as required.

The map is a homeomorphism because jsd Cnj has the weak topology with respect
to the realizations of its simplices. By Lemma 29 this coincides with the weak topol-
ogy with respect to the realizations of its n–simplices. This is exactly the topology
of U.Wn; j�j/.

We now work towards the proof of Proposition 27. We will make use of the increasing
union of chambers, which we described in Section 2.6. Recall in particular that
if w 2 Wn then In.w/ D fs 2 S j `.ws/ < `.w/g is the set of letters with which a
reduced expression for w can end. We begin with two lemmas.

Lemma 32 For w 2Wn , w ¤ e , the space j�jIn.w/ is .n�2/–connected.

Proof The set In.w/ is nonempty since w ¤ e . Thus j�jIn.w/ is either j�j, or it is a
nonempty union of facets of j�j. In the first case it is contractible, and in the second
case it is either contractible (if not all facets are in the union) or it is @j�j Š Sn�1 (if
all facets are in the union). In all cases it is .n�2/–connected.

Lemma 33 Let n> 1. Suppose that .X IA;B/ is a CW–triad in which A and B are
.n�1/–connected and C D A\B is .n�2/–connected. Then X is .n�1/–connected.

Proof For nD 1 this is immediate since the union of two path-connected spaces with
nonempty intersection is path-connected. So we assume that n> 2. The pairs .A; C /
and .B; C / are .n�1/–connected, and C is path-connected, so Theorem 4.23 of [13]
can be applied to show that �i .A; C /! �i .X;B/ is an isomorphism for i < 2n� 2,
and in particular for i 6 .n�1/. Thus .X;B/ is .n�1/–connected, and the same then
follows for X itself.

Proof of Proposition 27 If n D 0 then the claim is that U.Wn; j�j/ is nonempty,
which holds vacuously. So we may assume that n> 1.
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As in Section 2.6, order the elements of Wn as w0; w1; w2; : : : starting with the
identity and respecting the length. Then U.Wn; j�j/ is the union of subcomplexes
P0 � P1 � P2 � � � � , where P0 D j�j and

Pm D Pm�1[wmj�j with Pm�1\wmj�j D wmj�j
In.wm/:

It will suffice to show that each Pm is .n�1/–connected. We do this by induction
on m.

In the initial case mD0 we have P0Dej�j, which is contractible and so the claim holds.
For the induction step we take m>1 and assume that Pm�1 is .n�1/–connected. Then
PmDPm�1[wmj�j is the union of the subcomplexes Pm�1 and wmj�j, and their in-
tersection wmj�j

In.wm/ is .n�2/–connected by Lemma 32. Thus .PmIPm�1; wmj�j/

is a CW–triad in which the subspaces Pm�1 and wmj�j are .n�1/–connected and their
intersection is .n�2/–connected. It now follows from Lemma 33 that Pm is .n�1/–
connected as required.

8 The semisimplicial set Dn

In this section we introduce a semisimplicial set Dn with an action of Wn . It will be used
in the next section to give the proof of the Main Theorem. As explained in Section 1.5,
the definition of Dn is inspired by the “complex of injective words” (see Example 35)
which is used in existing proofs of homological stability for symmetric groups, for
example [21; 19; 25]. Indeed, we first obtained Dn by writing every aspect of the
complex of injective words in terms of the symmetric groups and adjacent transpositions,
and then abstracting this definition to our sequences of Coxeter groups .Wn/n>1 . This
may leave the definition of Dn a little unmotivated, but we hope that it will become
apparent over this section and the next that Dn is precisely the object required to
complete the proof of the main theorem.

The main result of the section is that the realization kDnk is .n�1/–connected. This
is proved by identifying Dn as the semisimplicial set of ordered simplices in Cn , and
then using the fact that Cn is weakly Cohen–Macaulay of dimension n to deduce that
the geometric realization kDnk is .n�1/–connected. We learned this approach from
Wahl’s paper[28], in particular Proposition 7.9, which is due to Randal-Williams.

In this section and the next we will use semisimplicial spaces and their realizations.
The background material we require can be found in Section 2 of [25].

Definition 34 Let Dn denote the semisimplicial set with k–simplices

Dn
k D

�
Wn=Wn�k�1 for k 6 n;

∅ for k > n;
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and with face maps

di W Wn=Wn�k�1!Wn=Wn�k;

defined by

di .cWn�k�1/D c.sn�kCi � � � sn�kC1/Wn�k

for i D 0; : : : ; k . Here the product .sn�kCi � � � sn�kC1/ is omitted when i D 0.

One can verify directly that the face maps di satisfy the relations di ı dj D dj�1 ı di

for i < j . Alternatively, it is a consequence of the proof of Proposition 37 below.

Example 35 (Dn for groups of type A, B and D ) In order to illustrate the definition
above, we recall the definition of the complex of injective words. Let L be a set. An
injective word in L is a finite sequence of distinct elements of L. The complex
of injective words in L is the semisimplicial set whose k–simplices are injective
words in L of length .k C 1/, and in which the face map di sends .x0; : : : ; xk/

to .x0; : : : ; bxi ; : : : ; xk/.

For the family .An/n>1 , the semisimplicial set Dn is the complex of injective words
in f1; : : : ; n C 1g. Recall from Example 2 that Wn is the group of permutations
of f1; : : : ; nC 1g. Thus Wn=Wn�k�1 can be identified with the set of injective words
of length .kC 1/ in f1; : : : ; nC 1g via the isomorphism

�Wn�k�1 7�! .�.n� kC 1/; : : : ; �.nC 1//:

To see that the face map di corresponds to the map that deletes the i th letter, we must
show that�
�sn�kCi � � � sn�kC1.n� kC 2/; : : : ;�sn�kCi � � � sn�kC1.nC 1/

�
D
�
�.n� kC 1/; : : : ; 5�.n� kC i/; : : : ; �.nC 1/�:

This follows because sn�kCi � � � sn�kC1 decreases each of .n�kC2/; : : : ; .n�kC i/
by one, sends .n� kC i/ to .n� kC 1/, and fixes .n� kC i C 1/; : : : ; .nC 1/.

For the family .BnC1/n>1 , Dn is the subset of the complex of injective words
in f˙1; : : : ;˙.nC 1/g in which each word features at most one entry from each
pair fi;�ig. For the family .DnC2/n>1 , we have that Dn is the subset of the complex
of injective words in f˙1; : : : ;˙.nC 2/g in which each word again features at most
one entry from each pair fi;�ig. These two facts can be proved by the method of the
previous example, this time making use of Examples 3 and 4.
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Definition 36 Let X be a simplicial complex. By an ordered simplex of X , we mean
a simplex of X equipped with an ordering of its vertices. The semisimplicial set of
ordered simplices in X , denoted Xord , has for its k–simplices the ordered k–simplices
in X , with face maps di given by forgetting the i th vertex of an ordered simplex.

Proposition 37 Dn is isomorphic to Cn;ord .

Proof We define �k W Dn
k
! Cn;ord

k
by

�k.cWn�k�1/D fc.sn�kC1 � � � sn/Wn�1; : : : ; csnWn�1; cWn�1g

for cWn�k�1 2Wn=Wn�k�1 . In other words, �k.cWn�k�1/ is the k–simplex with
lift c , equipped with the ordering induced by c . The map �k is well defined be-
cause the generators of Wn�k�1 all commute with sn�kC1; : : : ; sn . It is surjective
because by definition every simplex admits a lift, and any ordering of a simplex is
afforded by some lift (see the paragraph following Definition 13). It is injective
because if �k.cWn�k�1/D �k.c

0Wn�k�1/ then csi � � � snWn�1D c
0si � � � snWn�1 for

i D n� kC 1; : : : ; nC 1, so that cWn�k�1 D c
0Wn�k�1 by Proposition 12.

To complete the proof we must show that the face maps in Cn;ord and Dn are compatible
under the �k . In other words, given 06 i 6 k 6 n, we must show that

�k�1 ı di D di ı�k :

Observe from the definition of di in Dn that di .cWn�k�1/D di�1.csn�kCiWn�kC1/

for i > 1. Proposition 8 shows that �k.cWn�k�1/ and �k.csn�kCiWn�k�1/ differ
only by the transposition of their .i�1/st and i th vertices, so that di .�k.cWn�k�1//D

di�1.�k.csn�kCiWn�k�1//. Thus the claim will follow by induction on i so long as
we can show that

�k�1 ı d0 D d0 ı�k :

This follows by inspection.

Corollary 38 kDnk is .n�1/–connected.

Proof Theorem 18 shows that Cn is weakly Cohen–Macaulay of dimension n. It
was shown in Proposition 7.9 of [28] that if a simplicial complex X is weakly Cohen–
Macaulay of dimension n, then kXordk is .n�1/–connected. Consequently kCn;ordk

is .n�1/–connected, and by Proposition 37 the same holds for kDnk.

Remark 39 In the case of the sequence .An/n>1 , when Dn is the complex of injective
words in f1; : : : ; nC 1g, the connectivity of kDnk is well-known: see [9; 2; 19; 25].
(Strictly speaking, the first and third references deal with the homology of kDnk, rather
than its homotopy type.)
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9 Completion of the proof

We now complete the proof of the Main Theorem. This section is modelled closely on
Section 5 of [25], from which there is little essential difference. It is also similar to the
proof of Theorem 2 of [19].

We regard Dn as a simplicial space by equipping its constituent sets with the discrete
topology. Then we form a semisimplicial space

EWn �Wn
Dn

by setting .EWn �Wn
Dn/k DEWn �Wn

Dn
k

and using the face maps obtained from
those of Dn .

Lemma 40 The projection EWn �Wn
Dn

0 ! BWn makes EWn �Wn
Dn into an

augmented simplicial space over BWn , and the induced map kEWn�Wn
Dnk!BWn

is .n�1/–connected.

Proof The composites of the projection with d0 and d1 coincide, so that the projection
is indeed an augmentation. Since the map EWn! BWn is a locally trivial principal
Wn –bundle, it follows that kEWn �Wn

Dnk ! BWn is a locally trivial bundle with
fibre kWn �Wn

Dnk Š kDnk, which is .n�1/–connected by Corollary 38, so that the
map itself is .n�1/–connected.

Lemma 41 There are homotopy equivalences EWn �Wn
Dn

k
' BWn�k�1 under

which the face maps di W EWn �Wn
Dn

k
! EWn �Wn

Dn
k�1

are all homotopic to the
stabilization map BWn�k�1! BWn�k , and under which the composite

EWn �Wn
Dn

0 !kEWn �Wn
Dn
k! BWn

is homotopic to the stabilization map BWn�1! BWn .

Proof There is an isomorphism

EWn �Wn
Dn

k DEWn �Wn
.Wn=Wn�k�1/

Š
��!EWn=Wn�k�1

sending the orbit of .x; cWn�k�1/ to the orbit of c�1x . This identifies di with the
map

EWn=Wn�k�1!EWn=Wn�k

sending the Wn�k�1 –orbit of x to the Wn�k –orbit of .sn�kC1 � � � sn�kCi /x . We claim
that this map is homotopic to the one sending the Wn�k�1 –orbit of x to the Wn�k –orbit
of x . Indeed, EWn is contractible, and Wn�k�1 acts on it freely. Moreover, when we
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equip EWn with its natural CW–structure as the realization of a simplicial set, then this
action is cellular. It follows that any two Wn�k�1 –equivariant maps from EWn to itself
are Wn�k�1 –equivariantly homotopic. (This can be proved by induction on the cells.
Alternatively, see [20, Definition 1.8 and Theorem 1.9] in the case where GDWn�k�1

and F consists of the trivial subgroup.) Since .sn�kC1 � � � sn�kCi / commutes with
every element of Wn�k�1 , the map EWn ! EWn given by left-multiplication by
.sn�kC1 � � � sn�kCi / is Wn�k�1 –equivariant, and is therefore Wn�k�1 –equivariantly
homotopic to the identity map. The claim now follows by taking Wn�k�1 –orbits in
the domain and Wn�k –orbits in the codomain.

Now the equivariant homotopy equivalences

EWn�k�1!EWn and EWn�k!EWn

induce homotopy equivalences

BWn�k�1!EWn=Wn�k�1 and BWn�k!EWn=Wn�k

under which the map EWn=Wn�k�1 ! EWn=Wn�k just described becomes the
stabilization map.

The skeletal filtration of kEWn �Wn
Dnk leads to a first-quadrant spectral sequence

E1
k; l DHl.EWn �Wn

Dn
k/ H) HkCl.kEWn �Wn

Dn
k/;

in which the differential d1 is given by the alternating sum
Pk

iD0.�1/
i .di /� of

the maps induced by the face maps. Lemma 41 allows us to identify the E1 –term
of this spectral sequence: E1

k; l
D Hl.BWn�k�1/, and d1W E1

k; l
! E1

k�1; l
is the

map Hl.BWn�k�1/!Hl.BWn�k/ induced by stabilization if k is even, and is zero
if k is odd.

Lemma 42 For allm<n, assume that the stabilization mapHl.BWm�1/!Hl.BWm/

is an isomorphism in degrees 2l 6 m. Then the spectral sequence has the following
properties:

(1) E1
0; l
D � � � DE2

0; l
DE1

0; l
for 2l 6 n.

(2) E1
k; l
D 0 for k > 0 and 2.kC l/6 n.

Proof The assumption allows us to deduce that E2
k; l
D 0 when k > 1 is odd and

2l C kC 1 6 n, and that E2
k; l
D 0 when k > 2 is even and 2l C k 6 n. For in the

first case
d1
W E1

kC1; l !E1
k; l

Algebraic & Geometric Topology, Volume 16 (2016)
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is the stabilization map

Hl.BWn�k�2/!Hl.BWn�k�1/;

and in the second case
d1
W E1

k; l !E1
k�1; l

is the stabilization map

Hl.BWn�k�1/!Hl.BWn�k/;

and our assumption means that both are isomorphisms in the given range. Figure 5
shows the E1 –page, where the left-hand shaded region consists of terms with total
degree satisfying 2�6 n and the right-hand shaded region consists of terms that vanish
on the E2 -page.

� �� ��

� �� ��

� �� ���

�

�b
n
2
c

b
n�2

2
c

b
n�4

2
c

b
n
2
c 2bn

2
c

Figure 5: The spectral sequence .Er
s;t /

To prove the first claim, observe that, since d1W E1
1; l ! E1

0; l
is zero, E2

0; l
D E1

0; l
.

The remaining differentials with target in bidegree .0; l/ are

dk
W Ek

k; l�kC1!Ek
0; l

with k > 2, and these have domain zero since

2.l � kC 1/C k 6 2.l � kC 1/C kC 1D 2l � kC 26 2l 6 n

so that E2
k; l�kC1

D 0. To prove the second claim, observe that if 2.k C l/ 6 n

and k > 0, then certainly

2l C k < 2l C kC 16 2.l C k/6 n;

Algebraic & Geometric Topology, Volume 16 (2016)
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so that E2
k; l
D 0.

We can now complete the proof of the main theorem, showing by induction on n> 0

that Hl.BWn�1/!Hl.BWn/ is an isomorphism for 2l 6 n. (In the main theorem
this claim was made only for n > 2, but the proof by induction relies on the cases
obtained by extending to the left.) For nD 0 the claim is that H0.BW�1/!H0.BW0/

is an isomorphism, which is trivial since BW�1 and BW0 are both path connected.
Take n > 1 and suppose that the theorem holds for all smaller integers. Lemma 41
shows that the composite

Hl.BWn�1/DE
1
0; l !E10; l !Hl.kEWn �Wn

Dn
k/!Hl.BWn/;

is the stabilization map, and we must show that this is an isomorphism for 2l 6 n.
Lemma 42 shows that the first two arrows are isomorphisms in this range, while
Lemma 40 shows that the last map is an isomorphism for l 6 n � 1, which holds
since 2l 6 n and n> 2.
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The extended Goldman bracket determines
intersection numbers for surfaces and orbifolds

MOIRA CHAS

SIDDHARTHA GADGIL

In the mid eighties Goldman proved that an embedded closed curve could be isotoped
to not intersect a given closed geodesic if and only if their Lie bracket (as defined in
that work) vanished. Goldman asked for a topological proof and about extensions
of the conclusion to curves with self-intersection. Turaev, in the late eighties, asked
about characterizing simple closed curves algebraically, in terms of the same Lie
structure. We show how the Goldman bracket answers these questions for all finite
type surfaces. In fact we count self-intersection numbers and mutual intersection
numbers for all finite type orientable orbifolds in terms of a new Lie bracket operation,
extending Goldman’s. The arguments are purely topological, or based on elementary
ideas from hyperbolic geometry.

These results are intended to be used to recognize hyperbolic and Seifert vertices and
the gluing graph in the geometrization of three-manifolds. The recognition is based
on the structure of the string topology bracket of three-manifolds.

57M50

Dedicated with deep and grateful admiration to Bill Thurston (1946–2012)

1 Introduction

Goldman [10] discovered in the eighties an intriguing Lie algebra structure on the free
abelian group generated by the set of free homotopy classes of closed directed curves
on an oriented surface F . The definition of the Goldman bracket combines intersection
structure with the usual based loop product in the following way: given two closed
free homotopy classes a and b with representatives A and B respectively, intersecting
only in transversal double points,

(1) Œa; b�D
X

P2A\B

sign.P /BA �P B ;

where sign.p/ is the sign of the intersection between the curves A and B at P , A �p B

is the loop product of A and B both viewed as based at P , and eC is the free homotopy

Published: 7 November 2016 DOI: 10.2140/agt.2016.16.2813
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class of a curve C . This bracket is extended by linearity to the free module generated
by free homotopy classes of curves. Goldman showed that this bracket is well-defined,
skew-symmetric and satisfies the Jacobi identity.

Clearly, if a and b are free homotopy classes that have disjoint representatives, then
Œa; b� is zero. Goldman [10] also showed (using Thurston’s earthquakes) that this
bracket has the remarkable property that if one of the classes, a or b , has a simple
representative, then the bracket Œa; b� vanishes if and only if a and b can be represented
by disjoint curves. Goldman asked for a topological proof and about extensions of the
conclusion to curves with self-intersection. Turaev, in the late eighties, asked about
characterizing simple closed curves algebraically in terms of this Lie structure.

Later on Chas [7] proved that if either a or b has a simple representative then the
bracket of a and b counts the geometric intersection number between a and b (by
geometric intersection number we mean the minimum number of points, counted with
multiplicity, in which representatives of a and b intersect).

On the other hand, there are examples of classes a and b with no disjoint representatives
and such that Œa; b�D 0; see for instance [6, Example 9.1]. The bracket is a homotopy
invariant like the set of conjugacy classes in the fundamental group which is, in some
sense, simpler than the fundamental group itself. Since intersection and self-intersection
numbers of closed curves on surfaces play such a critical role in several areas of low-
dimensional topology, it is highly desirable to find characterizations of the intersection
numbers. A result of this nature, obtained by Chas and Krongold [8], was that for the
subset of compact orientable surfaces with non-empty boundary, the bracket Œa; a3�

determines the self-intersection number of a.

Finally, after twenty five years since Goldman’s paper [10] we show here how the
bracket answers the question about disjunction and simplicity of closed curves for all
finite type surfaces. We also count self-intersection numbers and mutual intersection
numbers for all finite type orientable orbifolds in terms of a new Lie bracket operation,
extending Goldman’s. Our results fill in most of the lacunae in partial results that have
resisted extension over the intervening years. The arguments are purely topological,
using group theory ideas of Freedman, Scott and Hass [17; 9], or they are based on
elementary geometrical ideas from hyperbolic geometry.

By a Fuchsian group we mean a discrete group of orientation-preserving isometries of
the hyperbolic plane. Below are the two main results of this paper.

Mutual Intersection Theorem Let x and y be non-conjugate hyperbolic elements
in a finitely generated Fuchsian group. Consider the generalized Goldman bracket
Œ � ; � � of the pth power of x with the qth power of y , where p and q are such that the

Algebraic & Geometric Topology, Volume 16 (2016)
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ratio p=q is different from the ratio of the translation length of x and the translation
length of y . Then for all but finitely many values of p and q (which are explicit from
the proof), the geometric intersection number of x and y is given by the number of
terms in Œhxpi; hyqi�, counted with multiplicity, divided by p � q .

Self-Intersection Theorem For x a hyperbolic element in a finitely generated Fuch-
sian group, which is not a proper power of another element, the geometric self-
intersection number of x is given by the number of terms (counted with multiplicity)
divided by p � q of Œhxpi; hxqi�, for all but finitely many pairs of distinct positive
integers p and q . (Once more, the excluded pairs are determined explicitly by the
proof.)

Our proof is based on the word hyperbolicity of Fuchsian groups rather than small-
cancellation theory as in [8]. By extending the result of [8] for surfaces with boundary
to closed surfaces we complete the answer to Goldman’s question [10, Subsection 5.17]
as to whether his topological result (that if a and b are two free homotopy classes
of curves on a surface such that a has a simple representative and Œa; b�D 0, then a

and b have disjoint representatives) has a topological proof.

The main lemma of this work states that if at least one of p and q is sufficiently large
and the lengths of xp and yq are different, then there is no cancellation of terms in
the bracket Œhxpi; hyqi�. In other words, if the representatives A and B intersect in
the minimum number of points, then two intersection points P and Q with different
sign do not give the same free homotopy class of curves, that is, BA �P B ¤BA �Q B .

We show this by constructing quasigeodesic representatives of a lift of a loop repre-
senting A �P B . These quasigeodesics are the concatenations of certain segments of
translates of the axis of x and the axis of y . As quasigeodesics are not too far from
geodesics, it follows that if two points of intersection give the same free homotopy
class, then there is a pair of corresponding quasigeodesics that are close, which then
implies that they are equal. We deduce that the two points correspond to terms with
the same sign in the Goldman bracket.

For the final step (deducing that two points correspond to terms with the same sign),
rather than using general ı–hyperbolicity arguments as sketched above, we use hyper-
bolic geometry and the fact that the quasigeodesic curves we construct are actually
piecewise geodesic and are explicitly described. This gives a sharper result than one
would get with general arguments: for our result, we only require that one of the
exponents p and q is large, while coarser geometric arguments would require both to
be large.

Algebraic & Geometric Topology, Volume 16 (2016)
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These results are intended to be applied to recognize hyperbolic and Seifert vertices
and the gluing graph in the geometrization of three-manifolds. The recognition is based
on the structure of the string topology bracket of three-manifolds.

For a typical irreducible three-manifold, the cyclic homology of the group ring of the
fundamental group lives in two degrees: zero and one. Degree one is a Lie algebra and
degree zero is a Lie module for degree one. The Lie algebra breaks into a direct sum
corresponding to the pieces and the module structure tells how they are combined in
the graph.

One can show that the Goldman bracket on the linear space with basis the set of free
homotopy classes and the power operations on this basis determine the Fuchsian group
of an orbifold. Thus, the Goldman bracket solves the “recognition problem” for two-
dimensional orbifolds. More significantly, now that the proof of the Geometrization
conjecture has enabled a classification of three-manifolds, there arises the need to
calculate the geometrization in examples like knots, ie the “recognition problem for
three-manifolds”. Our work directly applies to that since the string topology bracket
in three-manifolds will be used to describe the canonical graph of the geometrization
picture as well as which vertices are hyperbolic and which are Seifert fibered spaces.
This bracket is largely concentrated on the Seifert pieces. On these pieces it depends
on the orbifold bracket defined here. The orbifold part of the story seemed sufficiently
interesting to present independently with the details of the application to three-manifolds
coming next.

We emphasize though that the above characterization is a new one for closed curves on
closed surfaces, and should be of interest even in this case.

Others have considered string topology operations for orbifolds and manifold stacks in
a more abstract setting, see for instance Ángel, Backelin and Uribe [1], Behrend, Ginot,
Noohi and Xu [3], and Lupercio, Uribe and Xicotencatl [15]. It would be interesting to
relate those results to the concrete results here.
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Outline In Section 2 we review the group theoretic definition of intersection number
from [9] and [17] as well as the definition of the geometric intersection number of
closed curves in a two-dimensional, orientable orbifold. Section 3 is devoted to the
extension of the Goldman bracket to oriented orbifolds (a crucial part of this definition
is the elementary geometric fact that if two hyperbolic transformations x and y have
intersecting axes, then x �y is hyperbolic). In Section 4 we prove the Jacobi identity for
the extension of the Goldman bracket (interestingly enough, this proof boils down to
the proposition of geometry that if a line intersects a side of a triangle, then it intersects
one of the other two sides). In Section 5 we give examples of the bracket in the modular
surface (a beautiful and computable example of orbifolds). In Section 6 we show that
geodesics are quantitatively separated for hyperbolic surfaces (and orbifolds): namely
if two closed geodesics are sufficiently close and parallel after lifting to the universal
cover, they must coincide. In Section 7 we prove the main non-cancellation lemma,
stating that if the conjugacy classes of the two terms of the bracket coincide, then the
two quasigeodesics associated to these two terms coincide. Finally in Section 8 we
give the proofs of the intersection theorem and the self-intersection theorem.

2 The geometric intersection number and the group theoretic
intersection number

Let G be a discrete subgroup of orientation-preserving isometries of the hyperbolic
plane H . (The set of isometries of H , Isom.H/ has the compact-open topology.)

Each isometry g of the hyperbolic plane extends to the circle at infinity, where, if
g ¤ 1, it fixes at most 2 points. An isometry is called elliptic, parabolic or hyperbolic
according as it fixes 0, 1 or 2 points respectively in the circle at infinity. A hyperbolic
isometry g fixes the (hyperbolic) line joining its two fixed points at infinity. This line
is called the axis of g . Further, the sets of fixed points at infinity of two isometries
contained in a discrete subgroup G are either disjoint or coincide. If the sets of fixed
points at infinity of a pair of elements of G coincide and are non-empty, then the
isometries are both powers of the same element of G .

In this paper, an orbifold H=G is the quotient of the hyperbolic plane H by a discrete
group of orientation-preserving isometries G , provided with the induced metric. The
pertinent finer notion of free homotopy for orbifolds is described in Section 2.1. (Note
that we are using the word “orbifold” in a narrower sense than the usual.)

In this section we review the definition of closed curves, homotopy and geometric inter-
section number for curves for an orbifold (Section 2.1), the group theoretic definition
of intersection number in orbifolds (Section 2.2), and show these two definitions agree.

Algebraic & Geometric Topology, Volume 16 (2016)
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(The reader is referred to [18, Chapter 13], [4, Chapter 2] and [13, Section 6.2] for a
more general definition of orbifolds and orbifold homotopy. See also [16, Section 13.3]
for a formidable discussion of based orbifold homotopy in terms of charts.)

2.1 Orbifold homotopy and the geometric intersection number

A cone point P in H=G is the projection of a point in H which is fixed by some
non-trivial element of G . The order of a cone point P is the cardinality of the maximal
cyclic subgroup of G fixing P .

Consider the projection map, …W H!H=G . A representative of a closed oriented
curve in an orbifold H=G is a continuous map ˛W S1!H=G (with H=G thought of
as a topological space), passing through at most finitely many cone points, together
with the choice of a full lift Ǫ W R!H , so that …ı Ǫ D ˛ı‚, where ‚W R!R=2�Z
is the usual projection. Two representatives of closed curves are equivalent if their full
lifts are related by an element of the group G . A closed curve on the orbifold H=G is
an equivalence class of representatives of closed curves.

Definition 2.1 Two closed oriented curves ˛ and ˛0 in H=G are H=G –homotopic if
they are related by a finite sequence of moves. Each of these moves is either a homotopy
in the complement of the cone points or is one of the skein relations or moves depicted
in Figures 1 and 2. There, the disk where the move happens contains exactly one cone
point P , and n denotes the order of P . An arc with no self-intersection in the disk
and passing through P is H=G–homotopic relative to endpoints to an arc spiraling
around P in either direction .n� 1/=2 times if n is odd (Figure 2), or n=2 times if n

is even (Figure 1). Also, if n is odd, the endpoints of the arc are antipodal and if n is
even, the endpoints coincide.

Remark 2.2 The skein relations depicted in Figures 1 and 2 imply that a loop going
n times in either direction around a point of order n can be “erased” from a closed
curve (Figure 3). However, note that the skein relation in Figure 3 is less precise than
Definition 2.1. Namely, this relation does not “tell” as Definition 2.1 does tell how to
homotope a curve passing through a cone point. Since some geodesics do pass through
cone points, we need the skein relation in Definition 2.1 that deals with those cases.

The proof of the next result is very similar to that of the (standard) proof of a bijection
between free (usual) homotopy classes of closed curves on a path-connected space
and conjugacy classes of the fundamental group of the space (see, for instance, [12,
Chapter 1, Exercise 6]).

Theorem 2.3 There is a natural bijection between the set of conjugacy classes of G

and the set of H=G –free homotopy classes of closed oriented curves in H=G .
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H=G

H � �

� �

b bb b

b b b

Figure 1: Skein relations for points of order nD 4 (bottom) and the corre-
sponding lifts (top)

H=G

H � �

� �

b b

b b b

Figure 2: Skein relations for points of order nD 5 (bottom) and the corre-
sponding lifts (top)

If a and b in are two elements of H=G , the intersection number of a and b is the
minimum number (counted with multiplicity) of transversal intersection points of pairs
of loops representing a and b not passing through cone points.

Remark 2.4 If at least one of the elements, a or b , belongs to the conjugacy class
of a non-hyperbolic element of G then the intersection number of a and b is zero.
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Case n D 3

Case n D 2 � �

� �

b b b

b b b

Figure 3: Consequence of skein relations for points of order nD 2 (top) and
nD 3 (bottom)

(Conjugacy classes of elements of G are identified with free homotopy classes of
curves on H=G via Theorem 2.3.)

2.2 Labeling intersection points: the group theoretic intersection number

A hyperbolic isometry x acts on its axis Ax by translation by a real number �x , the
translation length of x . We orient the axis Ax so that for each point P in Ax , the
direction from P to xP is positive.

Let x;y 2G . Denote by XnG=Y the space of double cosets XgY where g 2G , and
X and Y denote the cyclic subgroups generated by x and y respectively. If x or y is
not hyperbolic, set I.x;y/D∅, otherwise, set

I.x;y/D fXgY 2XnG=Y such that Ax \gAy ¤∅g:

Scott [17] discusses intersection numbers of closed curves on compact surfaces. The
next proposition can be proven by arguments completely analogous to those of Scott
[17, Section 1]. The point is that H=G–homotopy after lifting becomes exactly like
usual homotopy in the universal cover. Thus our discussion and Scott’s are the same,
mutatis mutandis, as far as the proposition below is concerned. (In the next proposition,
the identification of conjugacy classes in G and H=G –free homotopy classes of closed
curves in H=G given by Theorem 2.3 is used.)

Proposition 2.5 Let x and y be elements of G . Then the intersection number of the
conjugacy classes of x and y equals the cardinality of I.x;y/.
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3 The Goldman bracket for orbifolds

Recall that C denotes the set of conjugacy classes of elements in G . Consider ZŒC�,
the free module generated by C . For x 2G , let hxi denote the conjugacy class of x .
In particular, hxi 2 ZŒC�.

In this section we will define a linear map Œ � ; � �W ZŒC�˝ZŒC�! ZŒC� and show in
Section 4 that it is a Lie bracket. This bracket generalizes Goldman’s to orientable
two-dimensional orbifolds and will be defined (as Goldman’s) on two elements of the
basis of ZŒC� by considering the intersection points of a certain pair of representatives
(see Section 2.2), assigning a signed free homotopy class to each of these points (the
signed product at the intersection point) and adding up all those terms.

For elements a and x in G , let xa denote axa�1. If x is hyperbolic, the isometry xa

is also hyperbolic, has the same translation length as x , ie �xa D �x , and the axis of xa

is given by a �Ax . From now on, fix an orientation of H . Also, for x and y in G set
�.x;y/ to be zero if x or y are elliptic or parabolic or if the axes of x and y do not
cross, and to be the sign of the crossing, otherwise. Finally, set

(2) Œhxi; hyi�D
X

X bY 2I.x;y/

�.x;yb/hxyb
i:

Notation 3.1 Let P be a point in the axis Ax of a hyperbolic transformation x . If r

is a positive real number, S.x;P; r/ denotes the segment of Ax of length r starting
(and including) P , but not the other endpoint, in the positive direction of Ax . If r

is a negative number, S.x;P; r/ denotes the segment of Ax starting at a point Q at
distance r from P in the negative direction, containing Q but not P .

Remark 3.2 Fix a point P in Ax and let r be the translation length of x . Let

J.x;y;P /D fgY 2G=Y W S.x;P; r/\gAy ¤∅g:

Then there is a bijection between I.x;y/ and J.x;y;P /. Since G is a discrete group,
both sets have finite cardinality. Moreover,

(3) Œhxi; hyi�D
X

gY 2J .x;y;P/

�.x;yg/hxyg
i:

Remark 3.3 The conjugacy classes of elliptic and parabolic elements of G are in the
center of the Lie algebra; that is, the bracket between these classes and all other classes
is zero.
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Remark 3.4 By [2, Theorem 7.38.6], if x and y are hyperbolic isometries whose
axes intersect then xy is also hyperbolic. Moreover, the axis of xy and its translation
length can be determined as follows (see [2] for details). Denote by P the intersection
point of Ax and Ay . Denote by Q the point on Ax at distance �x=2 from P in the
positive direction of Ax and by R the point on Ay at distance �y=2 from P in the
negative direction of Ay . The axis of Axy is the oriented line from R to Q and the
translation length of xy equals twice the distance between R and Q. (See Figure 4;
this is one of the “triangles” mentioned in the introduction which are used to unravel
the Jacobi relation.)

�x=2 �y=2

�xy=2

b
P

b

Q
b

R

Ax Ay

Axy

Figure 4: The axis of xy

Remark 3.5 Consider the set of pairs of cosets G=X �G=Y . The group G acts
on the set G=X �G=Y by .gX; hY / 7! .agX; ahY /, for each a 2 G . Denote by
D.x;y/ the quotient under this action. Set f W D.x;y/! XnG=Y by mapping the
equivalence class of .gX; hY / to Xg�1hY . A straightforward computation shows
that f is well defined and it is a bijection. Also, the preimage under f of an element
XkY of I.x;y/ is the set of equivalence classes of pairs of cosets .gX; hY / such that
gAx \ hAy ¤∅ and g�1hD k . Moreover,

(4) Œhxi; hyi�D
X

.aX ;bY /2D.x;y/

�.xa;yb/hxayb
i:

4 Triple brackets and the Jacobi identity

The Jacobi identity for the extended bracket can probably be proved by arguments
analogous to those used by Goldman in his proof that the bracket of curves on surfaces
satisfies it.

In this section we present a geometric proof of the Jacobi identity, that does not use
transversality.

Let x be a hyperbolic isometry. The next result is stated using Notation 3.1.
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Lemma 4.1 The following equation holds (see Figure 5):�
Œhxi; hyi�; hzi

�
D

X
.XgY;X hZ/2T

�.x;yg/�.x; zh/hxygzh
i

C

X
.XgY;Y hZ/2U

�.x;yg/�.yg; zh/hxygzh
i;

where

T D
˚
.XgY;XhZ/ W for some P 2Ax , Ax \gAy D fPg;S.x;P; �x/\ hAz ¤∅;

hAz \ .S.y
g;P;��y=2/[S.yxg;xP; �y=2/D∅

	
;

U D
˚
.XgY;Y hZ/ W for some P 2Ax , Ax \gAy D fPg;

.S.yg;P;��y=2/[S.yxg;xP; �y=2//\ hAz ¤∅;
S.x;P; �x/\ hAz D∅

	
:

Proof Let g2G such that Ax\gAy¤∅. We can retrace the steps of the construction
described in Remark 3.4 to find Axyg (Figure 5). Next, we compute Œhxygi; hzi�.
Denote by P the intersection point between Ax and gAy , by S the intersection point
of Ax with Axyg and by R the intersection point of gAy and Axyg . Finally, denote
by Z the cyclic group generated by z . By Remark 3.2,

Œhxyg
i; hzi�D

X
hZ2G=Z;

S.xyg;R;�xy/\hAz¤∅

�.xyg; zh/hxygzh
i:

Let hZ 2 G=Z . Observe that the inequality S.xyg;R; �xy/ \ hAz ¤ ∅ holds if
and only if hAz crosses either the triangle with vertices R;P;S or the triangle with
vertices S;xP;xygR (Figure 5). Thus, hAz intersects S.xyg;R; �xy/ if and only if
exactly one of the following holds:

(1) S.x;P; �x/\hAz¤∅ and .S.yg;P;��y=2/[S.yxg;xP; �y=2//\hAzD∅, or

(2) S.x;P; �x/\ hAz D∅ and .S.yg;P;��y=2/[S.yxg;xP; �y=2/\ hAz ¤∅.

The first pair of conditions corresponds to a term in the first sum, and the second pair
of conditions corresponds to terms in the second sum.

This concludes the proof.

A corollary is the Jacobi identity.
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b
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b
xyg.R/

b

b

b b

b

b

P

xP

S

Ax gAy

xgAy

hAz

Axyg

b
R

b
xyg.R/

b

b

b b

b

b

P

xP

S
b

R
b

xyg.R/

Ax gAy

xgAy

hAz

Axyg

b
R

b
xyg.R/

b

b

b b

b

b

P

xP

S
b

R
b

xyg.R/

Ax gAy

xgAy

Axyg

hAz

b
R

b
xyg.R/

b

b

b b

b

b

P

xP

S
b

R

Ax gAy

xgAy

hAz
.xyg/�1hAz

Axyg

Figure 5: Jacobi identity

Theorem 4.2 For x;y; z 2G ,�
Œhxi; hyi�; hzi

�
C
�
Œhyi; hzi�; hxi

�
C
�
Œhzi; hxi�; hyi

�
D 0:

Therefore, Œ � ; � �W ZŒC�˝ZŒC�! ZŒC� is a Lie bracket.

Proof The three terms of the Jacobi relation after applying Lemma 4.1 decompose
into six groups of terms. Among these, the pairs corresponding to the triangles of
Figure 5 cancel.
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5 Examples

Consider the modular group PSL.2;Z/, that is, the group consisting of all transforma-
tions z! .azC b/=.czC d/, where a; b; c; d 2 Z and ad � bc D 1. This group is
generated by T .z/D zC 1 and S.z/D�1=z , with relations S2 D 1 and .ST /3 D 1.
The modular group is a finitely generated, discrete subgroup of orientation-preserving
isometries of the hyperbolic plane. Therefore, the bracket can be defined on the free
module generated by conjugacy classes.

Orient the hyperbolic plane clockwise.

By computing the traces, one can see that the elements xDTSTT and yDTTTSTTT

of PSL.2;Z/ are hyperbolic and not conjugate.

T �4Ay T 2Ay T �3Ay T 3Ay

P TSTT .P /

Figure 6: Translates of Ay (in black), and a fundamental domain of Ax (in
thick red) where x D TSTT and y D TTTSTTT

As shown in Figure 6, there are exactly four translates of y by PSL.2;Z/ that intersect
the segment of Ax from the point P to TTST .P /.

In this example, I.x;y/DfXT �4Y;XT �3Y;XT 2Y;XT 3Y g. The term correspond-
ing to the double coset XT �4Y has positive sign and is the conjugacy class of ST 6

because xT �4yT 4 D TSTST 7 D ST 6 . The term corresponding to XT 3Y has
negative sign and is the conjugacy class of xT 3yT �3 D TST 8S . This element is
conjugate to STST 8 D T �1ST �1T 8 . Thus the term corresponding to the double
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coset XT 3Y is �hST 6i Also, the terms associated to XT �3Y and XT 2Y are
ChSTTST 7i and �hSTTST 7i. Thus Œhxi; hyi�D 0.

In order to study the brackets of hxpi and hyqi when p and q are larger than one,
one can use the criteria given in [14] for conjugacy in SL.2;Z/ (and therefore in
PSL.2;Z/). Doing so, one can check that Œhxi; hy3i�¤ 0. Moreover, the number of
terms of the bracket Œhxi; hy3i� (counted with multiplicity) equals twelve, which is
three times the intersection number of hxi and hyi.

In the same way one can see that Œhxi; hx2i�D 0 and Œhxi; hx3i� has 24 terms, which
is six times the self-intersection number of hxi.

The above calculations are computer-assisted: one looks at Figure 6 (done with Cin-
derella) to identify the terms, then uses Mathematica to calculate the terms, and study
cancellation.

6 Quantitative separation of geodesics

From now on, we assume that the discrete subgroup G of Isom.H/ is finitely generated.

Definition 6.1 Fix ı > 0, two geodesics � and � 0 and two (not necessarily distinct)
points P and Q in � and � 0 respectively. We say that � and � 0 are ı–close at P and
Q if d.P;Q/ < ı and, if ‡ denotes a geodesic passing through P and Q, then the
absolute value of the difference between the corresponding angles between ‡ and Ax

and between ‡ and Ay (in the positive direction of both axes) is less than ı . If there
exist points P and Q such that two geodesics � and � 0 are ı–close at P and Q, then
we say that � and � 0 are ı–close.

The next lemma is well known to experts but we include a proof here because we were
unable to find one in the literature.

Lemma 6.2 For each L > 0 there exists a ı > 0 such that if x and y are two
hyperbolic transformations in G such that �x � L and �y � L and Ax and Ay are
ı–close, then Ax DAy .

Proof Denote by � the hyperbolic convex hull of the limit set of G . (Recall that the
limit set of G is the set of accumulation points of any G–orbit in H .) Since G is
finitely generated, by [11, Lemma 1.3.1 and Theorem 1.3.2], there exists a subset ��

of �, invariant under G , such that the quotient of �� by G is compact and the axis
of every hyperbolic transformation in G intersects �� . Thus, there exists a compact,
convex subset C of H such that �� �G �C .
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Fix a positive number L and denote by C 0 the closure of the .LC 1/–neighborhood
of C .

Claim 1 Given " > 0 there exists a ı > 0 such that if x and y are hyperbolic
transformations whose axes are ı–close and whose transformation lengths are bounded
above by L, then d.R; Œx;y�R/ < " for all R 2 C 0 .

We argue by contradiction. Suppose that there exist " > 0 and two sequences fxng and
fyng of hyperbolic transformations with translation length bounded above by L and
such that for each n, xn and yn are 1=n–close, Axn

¤Ayn
and there exists a point

Rn 2 C 0 that satisfies d.Rn; Œxn;yn�Rn/ > ".

Claim 2 For each n, we can assume that the points Pn and Qn in Axn
and Ayn

realizing Definition 6.1 are in C 0 .

Indeed, denote by P 0n and Q0n the points in Axn
and Ayn

realizing Definition 6.1.

The axis Axn
projects to a closed geodesic an in H=G . Since the translation length

of xn is bounded above by L, so is the length of an . On the other hand, Axn

intersects G �C . Hence, the projection of P 0n to H=G is at distance at most L from
the projection of G �C . Thus there is an element g 2G such that gP 0n is at distance at
most L from C . Since Q0n is close to P 0n , we have that Q0n is also in C 0 . The proof
of Claim 2 is completed by replacing the sequences fxng and fyng by the sequences
fgxng�1g and fgyng�1g.

Claim 3 The sequences fxng and fyng have subsequences converging to hyperbolic
transformations x and y respectively.

Consider the sequences fTng and fSng of endpoints of fAxn
g in the circle at infinity in

the negative and positive directions respectively. Since the circle is compact, by taking
subsequences, we can assume that fTng and fSng converge to T and S respectively.
Since each Axn

intersects the compact set C 0 , we get T ¤ S . Analogously, the
sequence f�xn

g of translation lengths is bounded above by L. Therefore, it has a
convergent subsequence. Thus, Claim 3 follows.

Since Axn
and Ayn

are 1=n–close, we get Ax D Ay . Hence, Œx;y�P D P for all
P 2 H . On the other hand, by taking a convergent subsequence of fRng, we see
that d.R; Œx;y�R/ � " for some R 2 C 0 . This contradiction completes the proof of
Claim 1.

To finish the proof of the lemma, observe that since G is discrete, there exists an open
subset U of isometries of H such that the identity is the only element of G in U . Let

V� D fg 2 PSL.2;R/ j d.R;gR/ < � for all R in C 0g:
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There exists an " > 0 such that V" � U . On the other hand, by Claim 1, there exists a
ı > 0 such that if the axes of x and y are ı–close, then Œx;y� 2 V" . Thus, the bracket
Œx;y� equals the identity, which implies Ax DAy .

Corollary 6.3 For each L > 0 and each C > 0 there exists a constant M > 0 such
that for every pair of hyperbolic elements x and y in G with different axes and such
that �x <L and �y <L, the set Ax\NC .Ay/ is a (possibly empty) geodesic segment
of length at most M .

Proof Let ı be as in Lemma 6.2 for L and G and let N be the length of the (possibly
empty) segment Ax \NC .Ay/.

If Ax and Ay intersect at an angle � , then by Lemma 6.2, sin.�/ � sin.ı/. By the
rule of sines, sinh.N=2/ � sinh.C /= sin.ı/ (see Figure 7, left). Then N is bounded
above by a constant depending on C and ı .

If Ax and Ay are parallel, by Lemma 6.2 they are at distance at least ı . Since the
distance between Ax and Ay is realized, there is a quadrilateral as in Figure 7, right,
with all angles except � being right angles, A� ı and B � C .

Ay

Ax

� N=2

� C
� Ax

A B

Ay

N=2

�
X

Figure 7: Proof of Corollary 6.3

By [2, Theorem 7.17.1(i)], sinh.N=2/D cos.�/= sinh.A/� 1= sinh.ı/ (see Figure 7,
right). This implies that cosh.N=2/ is bounded above by a bound depending on ı . An
elementary computation gives the desired result.

7 The non-cancellation lemma

Let K be a real positive number. A piecewise-smooth embedding  of R in the
hyperbolic plane is a K–quasigeodesic if for any pair of points P and Q in  , the
length of the path in  joining P and Q is at most K � d.P;Q/.
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Fix a pair of hyperbolic elements x and y in G whose axes intersect at a point P . We
will describe the construction of a piecewise-smooth embedding  of R (depending
on x and y ) and show it is a quasigeodesic.

Let ˛W Œ0; 1�! H be the curve from ˛.0/ D y�1P to ˛.1/ D xP , whose image is
given by the concatenation of the geodesic segment of Ay from y�1P to P with the
geodesic segment of Ax from P to xP . Since xy.˛.0//D ˛.1/, ˛ can be extended
by periodicity to a map  .x;y/W R! H such that  .x;y/.t/ D ˛.t/ for t 2 Œ0; 1�

and  .x;y/.t C 1/D xy .x;y/.t/ for all t .

The map  .x;y/ is a piecewise geodesic curve consisting of segments of length �x

(included in the axes of conjugates of Ax by some power of xy ) alternating with
segments of length �y (included in the axes of conjugates of Ay by some power of xy ).

We remark that we will be using more than just that  .x;y/ is a quasigeodesic, but
also its geometric nature. Indeed purely abstract results about quasigeodesics suffice to
prove a weaker version of our result, where we need to assume that both p and q are
large.

Lemma 7.1 For each L> 0 there exists a constant K > 0 depending on G such that
if x and y are hyperbolic transformations in G whose axes are distinct and intersect,
and whose translation lengths are bounded above by L, then for each pair of positive
integers p and q , the curve  .xp;yq/ is a K–quasigeodesic. Moreover, the oriented
angles between any pair of consecutive maximal segments of  .xp;yq/ are congruent.

Proof Fix p and q and repeat the construction of Remark 3.4 for the hyperbolic
isometries xp and yq . The transformation xp maps the angle determined by y�qP ,
P , xp.P / to the angle xpy�qP , xpP , x2p.P / (Figure 8). Thus, these two angles
are congruent. The angle xpy�qP , xpP , x2p.P / is congruent to the angle P ,
xpP , xpyq.P / because they are opposite at the intersection of Ax and xpyq.Ay/D

Axpyx�p . This implies that the angles determined by y�qP , P , xp.P / and by P ,
xp.P /, yqxp.P / are congruent. Therefore the angles formed by the consecutive
maximal segments of  .xp;yq/ (labeled with �1 in Figure 8) are all congruent.

Denote by T the triangle with vertices y�qP , P , xp.P / and by T 0 the triangle with
vertices P , xp.P / and xpyq.P /, see Figure 8. Since T and T 0 have an angle and
the two adjacent sides to the angle congruent, they are congruent.

Set g D xpyq . Then Ag is invariant under g , so Ag crosses the middle of the bandS
k2Z gk.T [T 0/.

To prove that  .xp;yq/ is a quasigeodesic, observe that triangles

gs.T /;gs.T 0/;gsC1.T /;gsC1.T 0/; : : : ;g.T /;g.T 0/; : : : ;gr .T /;gr .T 0/
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b x2p.P /
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y�q.P / P
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g2.P /
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b

R

b Q

T

T 0

Figure 8: Quasigeodesic associated to x , y , p and q (here g D xpyq )

form a polygon �. On the other hand, since the angles �1 , �2 and �3 (see Figure 8)
are the interior angles of a triangle, they add up to at most � . This implies that the
polygon � is convex. Therefore, the geodesic between two points in the curve 
is in the interior of �. By elementary hyperbolic geometry, there exists a positive
constant K such that  is a K–quasigeodesic. (Note that K can be taken so that it
depends only on the lower bound of the angle between intersecting elements of axes of
hyperbolic elements in G given by Lemma 6.2.)

We can (and will) assume without loss of generality that K � 1.

Lemma 7.2 Let L> 0 and let K > 0 be the constant of Lemma 7.1. Then there exists
a constant C > 0 depending on G such that if x and y are hyperbolic transformations
in G whose axes are distinct and intersect, and whose translation lengths are bounded
above by L, then for each pair of positive integers p and q , the K–quasigeodesic
 .xp;yq/ satisfies  .xp;yq/ � NC=2.Ag/ and Ag � NC=2. .x

p;yq//, where
g D xpyq .

Proof Denote by d Œp; q� the distance between P (the point in Ax \Ay ) and Ag .
Consider the region � bounded by the axes Ax and Ay and the arc of the circle of
center P and radius d Œp; q�. The area of � equals 2�1 sinh2.d Œp; q�=2/. Also, � is
included in the triangle T , of area bounded above by � � �1 (see Figure 9). Hence,

2 sinh2.d Œp; q�=2/� .� � �1/=�1 � �=ı:

Therefore, there exists a constant C1> 0 such that d Œp; q��C1 for all positive integers
p and q . Observe (Figure 8) the distance between any point in  .xp;yq/ and Ag is
smaller than d Œp; q�. This implies  .xp;yq/�NC1

.Ag/.
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�1
y�q.P /

P

xp.P /
Ag

Figure 9: The region �

Denote by R the intersection point of Ag with Ax and by Q the intersection point of
Ag with Ay (see Figure 8).

Consider the triangle with vertices P , Q and R. Triangles in the hyperbolic plane H2

are ln.1C
p

2/–thin [5, Fact 4, page 90]. In particular, the side of the triangle included
in Ag is at distance at most ln.1C

p
2/ from the union of the other two sides.

By taking C D 2 maxfln.1C
p

2/;C1g the desired result follows.

Let x and y be two hyperbolic transformations in G whose axes intersect at a point P

and whose length is less than L. Let p and q be positive integers. Denote by I the
segment of Ax from P to xp.P /.

For a subsegment J of I with endpoints S and R, we consider a rectangular neigh-
borhood U D U.J;C / defined as follows. Let s (resp. r ) be the open half-plane
bounded by the line perpendicular to Ax through S (resp. R), containing the point
xpP (resp. P ). Set U D s\ r \NC .I/.

Note that the boundary of U consists of vertical segments contained in the boundaries of
s and r and horizontal segments contained in the boundary of NC .I/. By elementary
hyperbolic geometry, the distance between the vertical segments is the length of the
geodesic J .

Lemma 7.3 Let L> 0 and let x and y be two hyperbolic transformations in G whose
axes intersect at a point P and whose length is less than L. Let p and q be positive
integers such that p ��x � 6KC , where K and C are as in Lemmas 7.1 and 7.2. Denote
by I the segment of Ax from P to xp.P /.

Let S and R be the points in Ax at distance 3KC from P and xpP , and let J be the
segment from S to R. Let U D U.J;C / be the associated rectangular neighborhood.

Then closure.U /\NC .�/D∅ for all maximal geodesic segments of � of  .xp;yq/

distinct from I .
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Proof Let Q 2 �, where � is a maximal segment of  .xp;yq/ different from I ,
and let T 2 I be a point. Then by construction the length of a path in  .xp;yq/

from Q to T is at least 3KC . As  .xp;yq/ is a K–quasigeodesic, it follows that
d.Q;T / > 3C . As Q was an arbitrary point of � and U � NC .�/ it follows that
closure.U /\NC .L/D∅.

Observe that U contains the open subsegment J of length at least p � �x � 6KC .

The following lemma is key to the paper.

Lemma 7.4 For each L> 0 there exists a positive integer p0 such that for each pair
of integers p and q satisfying p � p0 , and for each pair of hyperbolic transformations
x , y and x1 , y1 whose axes are distinct and intersect, and whose translation length
is bounded above by L, if xpyq D x

p
1

y
q
1

, x1 is conjugate to x , and y1 is conjugate
to y , then  .xp;yq/D  .x

p
1
;y

q
1
/.

Proof We start by informally describing the two parts of the proof. First, in the situation
above, the two corresponding quasigeodesics are such that one is in a C –neighborhood
of the other. In particular, segments of one quasigeodesic are in C –neighborhoods
of segments of the other quasigeodesic. By making the integer p large enough, we
obtain a “long” geodesic segment in a C –neighborhood of other geodesic segment.
This implies that these two segments intersect in an interval.

Second, we use the fact that the quasigeodesics are constructed by translating two
consecutive maximal segments by powers of g , to show if the two intersecting segments
are distinct, an impossible figure is obtained.

Here are the details of the proof. For each finitely generated, discrete subgroup G of
Isom.H/, there exists a positive constant �0 such that for each hyperbolic transformation
x 2G , one has �x � �0 (see, for instance, [11, Theorem 1.4.2])

Let C and K be as in Lemmas 7.1 and 7.2. Let M be the constant of Corollary 6.3.
We will show that p0 DK.3M C 6C /=�0 gives the desired conclusion.

Since xpyq D x
p
1

y
q
1

, we have Axpyq DAx
p

1
y

q

1
. By Lemma 7.2,

 .x
p
1
;y

q
1
/�NC=2.Ag/�NC . .x

p;yq//:

Let U and J respectively be the neighborhood and the segment given by Lemma 7.3,
so J � U , J � I �  .xp;yq/ and the length of J is at least p�x � 6KC .

Observe that  .xp
1
;y

q
1
/ must intersect U , for otherwise  .xp

1
;y

q
1
/ is included in

NC . .x
p;yq/ n J /, which has two components. Furthermore,  .xp

1
;y

q
1
/ must in-

tersect both components, contradicting the fact that  .xp
1
;y

q
1
/ is connected. By
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Lemma 7.3, NC .L/\ closure.U /D∅ for all maximal segments � of  .xp;yq/ dis-
tinct from I . Hence,  .xp

1
;y

q
1
/ does not intersect the horizontal boundary components

of U , as otherwise we obtain points in  .xp
1
;y

q
1
/ whose distance from  .xp;yq/ is

greater than C .

By hypothesis, the length of J is at least p�x � 6KC so it is at least 3KM .

2C 2C

U

 .x
p

1
; y

p

1
/

Figure 10: The intersection of neighborhood U of J with  .xp
1
;y

q
1
/

Thus, the components of the set U \ .x
p
1
;y

q
1
/ are piecewise linear curves starting and

ending at the vertical sides of U (see Figure 10). Let ˇ be one of these components.
We claim that ˇ contains a segment l of length greater than M . Indeed, if ˇ contains
three or more vertices of  .xp

1
;y

q
1
/ then one segment of ˇ is a maximal segment of

 .x
p
1
;y

q
1
/ included in a translate of x

p
1

. Therefore, it must have length at least p0�x .
Otherwise, ˇ consists of at most three segments. Denote by m the length of the longest
of these segments. As the distance between the vertical boundary components of U is
the length of J ,

3KM � p�x � 6KC � 3m:

Since K > 1, m>M . Thus the claim is proved.

The segment l of ˇ of length at least M is included in some segment I 0 of  .xp
1
;y

q
1
/.

Thus I 0\NC .J / contains a segment longer than M . By Corollary 6.3, I 0 intersects I

in a subsegment. This concludes the first part of the proof. We will show that the
assumption I ¤ I 0 leads to a contradiction.

If I ¤ I 0 , by interchanging the roles of I and I 0 if necessary, we can assume that
there is a vertex v of I which is not in I 0 . Let v0 be the vertex of I 0 closest to v .
Denote by � (resp. �0 ) the maximal segment of  .xp;yq/ (resp.  .xp

1
;y

q
1
/) such that

I and � (resp. I 0 and �0 ) are adjacent and intersect in v (resp. v0 ).

Recall that  .xp;yq/ (resp.  .xp
1
;y

q
1
/) is constructed by taking two consecutive

maximal segments and translating them by powers of g . To simplify the notation, we
write g D xpyq . The segment adjacent to � (resp. �0 ) different from I (resp. I 0 )
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is g.I/ (resp. g.I 0/). Denote by u (resp. u0 ) the other vertex of I (resp. I 0 ). Note
that v and g.u/ (resp. v0 and g.u0/) are the vertices of � (resp. �0 ).

Suppose first that u is in I 0 . By Lemma 7.1, the angles u, v , g.u/ and v , g.u/, g.v/

are congruent. Hence there is a convex quadrilateral with vertices v , v0 , g.u/, g.u0/,
see Figure 11. By Lemma 7.1, the sum of the interior angles of this quadrilateral is 2� ,
a contradiction in hyperbolic geometry. This implies that u is not in I 0 .

v

I 0 I

�0 �

b
g.v/

b
g.v0/

b
u
b

v0

b
u0

b

b
g.u0/

b
g.u/

g.I/

Figure 11: Length of I equals the length of I 0

Denote by l the geodesic through v and g.u/. By Lemma 7.1, the angles u, v ,
g.u/ and v , g.u/, g.v/ are congruent. This implies that u and g.v/ are in different
sides of l . On the other hand, u and v0 (resp. g.v/ and g.u0/) are on the same side
of l . Then v0 and g.u0/ are on different sides of l . Hence � intersects �0 and the
quasigeodesics are arranged as in Figure 12.

In particular, the segments � and �0 intersect at a point z . The triangles with vertices
z , v0 , v and z , g.u/, g.u0/ have congruent corresponding angles. Hence, these two
triangles are congruent. Thus, z is the middle point of �, and also of �0 . Since the
segments with vertices u, u0 and g.u/, g.u0/ are congruent, the segments with vertices
u, u0 and v0 , v are congruent.

Denote by w the middle point of I . Observe that w is also the middle point of I 0 (as
segments with vertices u, u0 and v , v0 are congruent). As x1 is conjugate to x and y1 is
conjugate to y , the length of the arc of  .xp

1
;y

q
1
/ from w to z equals .p�xCq�y/=2.

Also, the length of the arc of  .xp;yq/ from w to z equals .p�xC q�y/=2. By the
triangle inequality, this is impossible. Thus we conclude that v D v0 , and hence also
uD u0 .

Thus, we see that I D I 0 and �D �0 . It follows that the quasigeodesics  .xp;yq/ and
 .x

p
1
;y

q
1
/ coincide as they are the unions of translates under g of I [� and I 0[�0 ,

respectively.
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�
�0

w
b

z b

v0

b
u0

b
v
b

u
b

b
g.u/

b
g.u0/

b
g.v0/

b
g.v/

g.I/

Figure 12: Length of I is larger than length of I 0

Theorem 7.5 For each L > 0 there exists a positive integer p0 such that for each
pair p � p0 and q of positive integers, if x and y (resp. x1 and y1 ) are hyperbolic
transformations whose axes are distinct and intersect, x is conjugate to x1 , y is
conjugate to y1 , the translation lengths of x , x1 , y , y1 are bounded above by L,
p�x ¤ q�y , and xpyq D x

p
1

y
q
1

, then there exists an h 2 G such that x1 D xh and
y1 D yh .

Proof Since xpyq D x
p
1

y
q
1

, we have Axpyq D Ax
p

1
y

q

1
. Moreover, both axes are

oriented in the same direction. If p0 is the positive integer given by Lemma 7.4, then
 .xp;yq/ D  .x

p
1
;y

q
1
/. Hence, by the definition of  .xp;yq/, if g D xpyq there

exists an n 2 Z such that one of the following holds:

(1) x
p
1
D .xp/g

n

and y
q
1
D .yq/g

n

.

(2) x
p
1
D .yq/g

nC1

and y
q
1
D .xp/g

n

.

Since p�x ¤ q�y , (2) is impossible. Thus the result follows by taking hD gn .

8 Proof of the main theorem

An element z in ZŒC� can be uniquely represented as a sum
Pk

iD1 nihxii so that the
conjugacy classes hxii are all distinct and the integers ni are non-zero. We define the
Manhattan norm of z by

M

� kX
iD1

nihxii

�
D

kX
iD1

jni j:

We are now in a position to prove our main theorem. Denote by Xp and Yq the cyclic
groups generated by xp and yq respectively. Note that by definition

Œhxp
i; hyq

i�D
X

XpbYq2I.xp;yq/

�.xp; .yq/b/hxp.yq/bi:
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bc
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Figure 13: Values of p and q in the main theorem, p0 D 5 , p=q ¤ 3
2

, p in x–axis

Our first step is to collate terms in this expression. There is a natural quotient map from
XpnG=Yq to XnG=Y , mapping Xpng=Yq to Xng=Y . Observe that �.xp; .yq/b/D

�.x;yb/. Further observe that if Xpng=Yq and Xpng
0=Yq map to the same element

in XgY , then hxp.yq/gi D hxp.yq/g
0

i D hxp.yg0/qi. The lemma below follows by
grouping terms corresponding to their images in I.x;y/.

Lemma 8.1 We have

Œhxp
i; hyq

i�D pq

� X
X bY 2I.x;y/

�.x;yb/hxp.yb/qi

�
:

We are now ready to prove our main result.

Main Theorem Let G be a finitely generated, discrete group of Isom.H/ and let
L > 0. There exists a p0 such that if p and q are integers at least one of which is
larger than p0 , then the following holds:

(1) If x and y are hyperbolic transformations in G such that neither is conjugate
to a power of the other, with translation lengths bounded above by L and such
that p�.x/¤ q�.y/, then M Œxp;yq �=.p � q/ equals the geometric intersection
number of x and y .

(2) If p ¤ q , and x is a hyperbolic transformation in G , not a proper power, and
has translation length bounded above by L, then M Œxp;xq �=.2 �p � q/ equals
the geometric self-intersection number of x .

Proof Interchanging x and y if necessary, we can assume that p � p0 .

Suppose that hxp.yb/qi D hxp.yb0/qi. Then for some h 2G ,

xp.yb/q D .xp.yb0/q/h D .xp/h.yq/hb0
D .xh/p.yhb0/q:
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By Theorem 7.5, there is an element g that conjugates x to xg and yb to ygb0. In
particular, the signs �.x;yb/ and �.xg;ygb0/ coincide, so there is no cancellation. This
concludes the proof.
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Center of the Goldman Lie algebra

ARPAN KABIRAJ

We show that the center of the Goldman Lie algebra associated to a closed orientable
surface is generated by the class of the trivial loop. For an orientable nonclosed
surface of finite type, the center is generated by closed curves which are either
homotopically trivial or homotopic to boundary components or punctures.

57M50; 57M07, 57M05

1 Introduction

Let F be an oriented surface. Given two free homotopy classes of oriented closed
curves ˛ and ˇ , consider two oriented closed curves x and y representing ˛ and ˇ ,
respectively. Performing a small homotopy if necessary, we can assume that x and y

intersect transversally in double points. Goldman [10] defined the bracket of ˛ and ˇ
as the sum,

Œ˛; ˇ�D
X

p2x\y

�.p/hx �p yi;

where x \y denotes the set of all intersection points between x and y , �.p/ denotes
the sign of the intersection between x and y at p , .x �p y/ denotes the loop product
of x and y at p , and hzi denotes the free homotopy class of a curve z .

Let C be the set of all free homotopy classes of oriented closed curves in F . This
bracket is extended by linearity to Z.C/, the free module generated by C . Goldman
[10] showed that this bracket is well defined, skew-symmetric and satisfies the Jacobi
identity. Therefore, this is a Lie bracket, and it gives a Lie algebra structure on Z.C/,
which we denote by L.F /. Recall that the center of a Lie algebra L is the set of all
elements x in L such that Œx;y�D 0 for all y in L. The main object of this paper is
to study the center of L.F /.

The structure of the Goldman Lie algebra for surfaces of nonnegative Euler characteristic
is either trivial or well understood; see Chas [3, Lemma 7.6] for the torus case.

Chas and Sullivan conjectured that, for a closed surface F , the center of the Goldman
algebra is generated by the trivial loop. It is natural to conjecture (see Chas [4,
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Open Problem 1], [3, Problem 13.1] and Kawazumi and Kuno [12, Section 8.3])
that, for a surface F with nonempty boundary, the center of L.F / is generated by
the free homotopy classes of oriented closed curves which are either homotopic to a
point, homotopic to a boundary, or homotopic to a puncture. In this paper, we prove
these conjectures.

Main Theorem The center of the Goldman Lie algebra of any closed orientable
surface F is one-dimensional, and is generated by the class of the trivial loop. If F is
an orientable surface of finite type with boundary, then the center of L.F / is generated
by the set of all free homotopy classes of oriented closed curves which are homotopic
to either a point, a boundary component, or a puncture.

Remark 1 The closed case was done by Etingof in [8] using representation theory,
but that proof did not address the case of surfaces with boundary. Our proof of both
cases uses different ideas from hyperbolic geometry.

Goldman discovered this bracket while studying the Weil–Petersson symplectic form on
Teichmüller spaces. Using Wolpert’s [15] result on length and twist flow, he showed that
if the Goldman bracket between two closed curves is zero and one of them has a simple
representative, then their geometric intersection number is zero. The combinatorial
structure of L.F / has also been studied. Using combinatorial topology and group
theory, Chas [3] proved a stronger version of Goldman’s result, namely if one of the
curves has a simple representative, then the number of terms in the Goldman bracket is
the same as their geometric intersection number. Chas and Krongold [6] proved that,
for a compact surface with nonempty boundary, Œx;x3� determines the self-intersection
number of x . Using hyperbolic geometry, Chas and Gadgil [5] proved that there exists
a positive integer m0 such that, for all m � m0 , the geometric intersection number
between x and y is the number of terms in Œxm;y� divided by m. There is a Lie
cobracket defined by Turaev [14] on Z.C/ which is the dual object of the Goldman
bracket. This structure has been studied by Chas and Krongold [7; 2].

Idea of the proof Our proof is based on hyperbolic geometry. Given an oriented
surface of negative Euler characteristic, we fix a hyperbolic metric on it with geodesic
boundary. There are two key ideas behind our proof.

The first idea is from [5]. Given two closed oriented curves x and y intersecting
transversally, we construct lifts of .x �p y/ in the hyperbolic plane H for each in-
tersection point p . By [5, Lemma 7.1], the lifts are quasigeodesics. Hence they are
homotopic to unique geodesics. Therefore, if two terms .x �p y/ and .x �q y/ cancel
each other, then the corresponding geodesics will be the same. By [5, Main Theorem],
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there exists m0 such that if we take a power m �m0 of x , then we can ensure that
if the geodesics are the same, then the quasigeodesics are also the same, and hence
the terms have the same sign. Therefore, there is no cancellation between the terms of
Œxm;y�.

The second key idea is that all lifts of a simple closed geodesic are disjoint. Now, if an
element y D

Pk
iD1yi of L.F / belongs to the center, then we consider a simple closed

curve x which intersects at least one of the curves yi nontrivially. Taking sufficiently
large powers of x we can ensure that the same terms of Œxm;yi � have the same sign.
Then, using that the lifts of x are disjoint, we show that if one term of Œxm;yi � and
another term of Œxm;yj � are the same, then yi and yj are conjugate.

Therefore, if Œx;y� is zero for all closed curves x , then each yi is disjoint from every
simple closed curve, and hence each yi is either homotopic to a point or to a boundary
component or to a puncture.

Organization of the paper Throughout the paper we follow the notation and defini-
tions from [5].

In Section 2, we recall some basic facts about hyperbolic surfaces and closed curves on
hyperbolic surfaces. We also mention a well-known result about hyperbolic elements
of the fundamental group of a hyperbolic surface.

In Section 3, we recall from [5] the algebraic definition of the Goldman bracket between
conjugacy classes of elements. Throughout the paper, we use this as the definition of
Goldman bracket.

In Section 4, we recall from [5] the description of the lifts of the terms of Goldman
bracket. We also state the lemma that these lifts are quasigeodesic and, therefore, in a
neighborhood of a geodesic, following [5].

In Section 5, we show that if we take a sufficiently high power of a simple closed curve,
then there is no cancellation between the terms of the Goldman bracket with any other
closed curve.

In Section 6, we mention a classical theorem and prove the main theorems.
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2 Closed curves on a hyperbolic surface

In this section, we recall some basic facts about hyperbolic surfaces and closed curves
on hyperbolic surfaces. We use the same notation as [5]. References for the results
mentioned in this section are [1; 5; 11; 13].

Let F be an orientable surface of finite type with negative Euler characteristic; ie
F is a surface of genus g with b boundary components and n punctures such that
2�2g�b�n< 0. By [9, Theorem 1.2], we can endow F with a hyperbolic metric. By
a hyperbolic surface we mean an orientable surface with negative Euler characteristic
and with a given hyperbolic metric. Given a hyperbolic surface F , we identify the
fundamental group �1.F / of F with a discrete subgroup of PSL2.R/, the group of
orientation preserving isometries of the upper half plane H . The action of �1.F / on H
is properly discontinuous without fixed points, and the quotient space is isometric to F .
Henceforth, by an isometry of H we mean an orientation preserving isometry, and by
a closed curve we mean an oriented closed curve.

A homotopically nontrivial closed curve in F is called essential if it is not homotopic
to a puncture. A closed curve is called peripheral if it is homotopic to a power of a
simple closed curve bounding a once-punctured disc. By a lift of a closed curve 
to H , we mean the image of a lift R!H of the map  ı� , where � W R! S1 is the
usual covering map.

There is a bijective correspondence between the set of all free homotopy classes
of oriented closed curves in F and the set of all conjugacy classes in �1.F / [5,
Theorem 2.3]. Given an oriented closed curve  in F , we denote both its free homotopy
class and the corresponding conjugacy class in �1.F / by h i. Abusing notation, we
sometimes denote the conjugacy class of  by  itself. Given a;g 2�1.F /, we denote
gag�1 by ag and the translation length of a by �a . If a is hyperbolic, then ag is also
hyperbolic with �ag D �a and Aag D gAa for all g 2 �1.F /, where Aa denotes the
axis of a.

The geometric intersection number between two free homotopy classes of closed curves
x and y , denoted by i.x;y/, is defined to be the minimal number of intersection points
between a representative curve in the class hxi and a representative curve in the class hyi
which intersect transversally in double points.

Every free homotopy class of an essential closed curve contains a unique closed geodesic
whose length is the same as the translation length of any element of the corresponding
conjugacy class. By a slight abuse of notation, we denote the free homotopy classes of
essential closed curves by their geodesic representatives.

The following lemma is a well-known result. See [5, Corollary 6.3] for a proof.
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Lemma 2.1 Let G be a discrete subgroup of PSL2.R/. Given two nonzero positive
numbers L and C , there exists a constant M > 0 such that for every pair of hyperbolic
elements x and y in G with �x �L and �y �L, the set

fx 2Ax W d.x;Ay/ < C g

is either empty or a geodesic segment of length at most M .

3 Goldman bracket

In this section, we recall from [5] the algebraic definition of the Goldman bracket
between two curves intersecting transversally (not necessarily in double points). For
the equivalence of this definition with the previous one, see [5, Section 3].

Given two hyperbolic transformations x and y whose axes Ax and Ay , respectively,
intersect in a point P , let I.x;y/ denote the segment of Ax of length �x starting
from P in the positive direction of Ax , containing P but not containing xP .

Definition 3.1 Let hxi and hyi be two nontrivial conjugacy classes in �1.F /. Define

Œhxi; hyi�D

( P
gY 2J .x;y/

�.x;yg/hxygi if both x and y are hyperbolic,

0 if either x or y is parabolic,

where Y is the cyclic subgroup generated by y ,

J.x;y/D fgY 2 �1.F /=Y W I.x;y/\gAy ¤∅g;

and �.x;y/ denotes the sign of intersection between the axes of x and y if they
intersect and 0 otherwise.

Remark 2 This definition is independent of the type of the intersection points of
the representative curves. Therefore, we can use the geodesic representatives of the
corresponding conjugacy classes (which intersect transversally but not necessarily in
double points). Henceforth, we use this as the definition of the Goldman bracket.

4 Terms of the Goldman bracket

In this section we recall the description of the lifts of the terms of the Goldman bracket
from [5, Section 7].

Let x and y be two hyperbolic elements in �1.F / whose axes intersect at the point P .
Denote the projections of Ax and Ay in F by x1 and y1 respectively. Let p be the
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x2.P /

Ah

h2.P /

I1
yg

I1
x

I0
yg

x.P / h.P /

I0
x

I�1
yg

.yg/�1.P / P

gAy

Ax

Figure 1: Lift of a term in the Goldman bracket

projection of P in F . By [5, Remark 3.2], there exists a unique g 2 �1.F / such that
gY 2 J.x;y/ and gY corresponds to p . A lift of .x1 �p y1/ is a bi-infinite piecewise
geodesic passing through P , which we denote by  .x;yg/; see Figure 1.

Let hD xyg . If we denote the geodesic arc from P to x.P / by I0
x and the geodesic

segment from x.P / to h.P / by I0
yg , then  .x;yg/ consists of geodesic segments of

the form hk.I0
x/ and hk.I0

yg/ occurring alternately.

Remark 3 Denote hk.I0
x/ by Ik

x and hk.I0
yg/ by Ik

yg . From the definition, the length
of Ik

x is �x and the length of Ik
yg is �y for all k 2 Z. Hence, by the description of

the axis of the product of two isometries given in [5, Remark 3.4], Ah intersects Ik
x

and Ik
yg in their midpoint for all k 2 Z.

For the definition of quasigeodesic and the proof of the following lemma, see [5,
Section 7, Lemmas 7.1 and 7.2].

Lemma 4.1 Given L> 0, there exist K � 1 and C > 0, depending on �1.F /, such
that if x and y are two hyperbolic elements in �1.F / whose axes are distinct with
�x �L and �y �L, then for any g 2�1.F / and m2N , if Ax and Ayg intersect, then:

(1)  .xm;yg/ is a K–quasigeodesic, and  .xm;yg/ is homotopic to Ah , where
hD xmyg ;

(2)  .xm;yg/�NC=2.Ah/ and Ah �NC=2. .x
m;yg//, where NC .Ah/ denotes

the C neighborhood of Ah .
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5 Noncancellation lemma

Denote the length of a curve x by l.x/. For the proof of the following lemma, see [5,
Lemma 7.3].

Lemma 5.1 Let L;K and C be as in Lemma 4.1. For hyperbolic elements x;y 2

�1.F / with �x �L and �y �L, let m be a positive integer such that m�x > 6KC .

Let S and R be the points in I0
xm at distance 3KC from P and xmP (see Figure 2).

Let s (respectively r ) be the open half-plane bounded by the line perpendicular to Ax

through S (respectively R), containing the point xmP (respectively P ).

Set U D s \ r \NC .I
0
xm/. Then U contains an open segment J of I0

xm such that
NC .I

0
xm/nU is disconnected, l.J /�m�x�6KC , U �NC .I

0
xm/, xU\NC .I

k
xm/D∅

for all k ¤ 0 and xU \NC .I
k
y /D∅ for all k 2Z .

The following lemma is the main lemma of this paper. The proof is based on the proof
of [5, Lemma 7.4, Claims 1 and 2] and the idea that lifts of simple closed geodesics
are disjoint.

Lemma 5.2 Let x be a hyperbolic element in �1.F / such that the geodesic represen-
tative in the free homotopy class of x is simple. Let x1 D xh for some h 2 �1.F /.
Suppose y and y1 are two distinct hyperbolic elements in �1.F / whose axes are
distinct and intersect the axes of x and x1 , respectively. Let L be a positive number
such that the translation lengths of x;y and y1 are bounded above by L. Then
there exists m0 such that for any m>m0 , we have  .xm;y/D  .xm

1
;y1/ whenever

xmy D xm
1

y1 . Moreover, there exists u 2 �1.F / such that x1 D xu and y1 D yu .

I0
y

xm.P /

I0
xm

R
U

J

r

s

S

P
I�1

y

Figure 2: The open segment J as in Lemma 5.2
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Proof Let �0 be the systole, ie the length of a shortest length closed geodesic of F .

Let C , K and M be the constants defined in Lemmas 4.1 and 2.1 and let m >m0 .
Define m0 DK.3M C 10C /=�0 .

Since xmyDxm
1

y1 , we have AxmyDAxm
1

y1
. Let gDxmyDxm

1
y1 . By Lemma 5.1,

(1)  .xm
1 ;y1/�NC=2.Ag/�NC . .x

m;y//:

Let J and U be as in Lemma 5.1 corresponding to  .xm;y/. Therefore, J � U ,
J � I0

xm �  .x
m;y/, and length.J /�m�x � 6KC .

Claim 1 The curve  .xm
1
;y1/ intersects U and does not intersect the part of the

boundary of U contained in the boundary of NC . .x
m;y//.

Proof of claim If  .xm
1
;y1/ does not intersect U , by (1),  .xm

1
;y1/ is contained

in NC . .x
m;y// n U D NC . .x

m;y/ n J /, which is disconnected. Hence by (1),
 .xm

1
;y1/ should intersect both components, which contradicts that  .xm

1
;y1/ is

connected. By Lemma 5.1, xU \NC .I
k
xm/D∅ for all k ¤ 0 and xU \NC .I

k
y /D∅

for all k 2Z . Therefore,  .xm
1
;y1/ does not intersect the part of the boundary of U

contained in the boundary of NC . .x
m;y//.

Therefore, any component of U \  .xm
1
;y1/ consists of piecewise geodesic arcs

starting and ending at the sides of U of length 2C .

Claim 2 Let ˇ be a component of  .xm
1
;y1/ \ U . Then ˇ contains a geodesic

segment l of length greater than M.

Proof of claim Case 1 Suppose ˇ contains more than three vertices. Then ˇ

contains I
k
xm

1
for some k 2Z and length.Ik

xm
1
/Dm�x1

>m0�0DK.3MC10C />M .

Case 2 Suppose ˇ contains at most three vertices. Then ˇ consists of at most
three segments. Let � be the longest segment of ˇ and let r D l.�/. By hypothesis,
l.J /�m�x � 6KC > 3KM C 4KC . Using the triangle inequality and the properties
of m and K , we have

.3M C 4C /�K.3M C 4C / <m�x � 6KC � l.J /� 2C C 3r C 2C D 3r C 4C:

Hence r >M which proves Claim 2.

The geodesic segment � is contained in  .xm
1
;y1/ and � � NC .I

0
xm/. Therefore,

by Lemma 2.1, � intersects I0
xm in a geodesic segment. Hence I0

xm and  .xm
1
;y1/

intersect in a geodesic segment.
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Claim 3 If  .xm;y/ and  .xm
1
;y1/ intersect in a geodesic segment contained in I0

xm ,
then they are equal, and there exists u 2 �1.F / such that x1 D xu and y1 D yu .

Proof of claim As I0
xm intersects  .xm

1
;y1/ in a geodesic segment, I0

xm intersects
either I

k
xm

1
or Ik

y1
in a geodesic segment.

Now l.I
k
xm

1
/Dm�x1

Dm�x D l.I0
xm/ for all k 2Z, and Ag intersects I0

xm and I
k
xm

1

in their midpoints. So if I0
xm intersects I

k
xm

1
in a geodesic segment, then they are equal.

If I0
xm intersects Ik

y1
in a geodesic segment for some k 2 Z, then by the construc-

tion of  .xm;y/, we see that Ax intersects I
kC1
xm

1
, which lies in a translate of the

geodesic Ax1
and hence in a translate of Ax (as x and x1 are conjugates). As the

geodesic representative in the free homotopy class of x is simple, all translates of Ax

are disjoint. Hence I0
xm cannot intersect Ik

y1
for any k 2 Z.

Since I0
xm can not intersect Ik

y1
in a geodesic segment, I0

xm intersects I
k
xm

1
for some

k 2 Z. Thus I0
xm D I

k
xm

1
. Since I0

y and Ik
y1

are the unique geodesic segments joining
the end point of I0

xm D I
k
xm

1
with the image of the starting point of I0

xm D I
k
xm

1
under g ,

we see that I0
y D Ik

y1
. By the periodic property of the definition of  .xm;y/ and

 .xm
1
;y1/, they are equal. Since gnI0

xm D I
0
xm

1
and gnI0

y D I0
y1

for some n, taking
uD gn , we have x1D xu and y1D yu . This proves the claim and thus the lemma.

6 Center of the Goldman Lie algebra

Lemma 6.1 Let F be a hyperbolic surface. Suppose x is an essential simple closed
curve and y is an essential closed curve. If i.x;y/¤ 0, then there exists m0 such that
Œxm;y�¤ 0 for all m>m0 .

Proof Let LDmaxf�x; �yg and m0 be as in Lemma 5.2. If m>m0 , then

Œxm;y�Dm

� X
kB2J .xm;y/

�.xm;yk/hxmyk
i

�
:

Suppose hxmyki D hxmyk1i. Then for some g 2 �1.F /,

xmyk
D .xmyk1/g D .xm/g.y/k1g:

By Lemma 5.2, there exists u 2 �1.F / such that x is conjugate to xg and yk is
conjugate to yk1g by the element u. Therefore,

�.xm;yk/D �..xm/u; .yk/u/D �.xmg;yk1g/D �.xm;yk1/:

Hence Œxm;y�¤ 0.
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The following lemma is a classical result.

Lemma 6.2 Let F be a hyperbolic surface of finite type with geodesic boundary.
Let  be a closed curve whose geometric intersection number with any other nontrivial
simple closed geodesic is zero. Then  is either homotopically trivial or homotopic to
a boundary curve or peripheral.

Theorem 6.3 Let F be a hyperbolic surface of finite type with geodesic boundary.
Let y D

Pn
iD1 ciyi 2 L.F /, where each yi is a geodesic and yi ¤ yj for i ¤ j . If y

belongs to the center of L.F /, then i.x;yi/D∅ for every simple closed geodesic x

and for all i 2 f1; 2; : : : ; ng.

Proof We show that, given any simple closed geodesic x , if i.x;yi/¤∅ for some
i 2 f1; 2; : : : ; ng, then there exists m 2N such that Œxm;y�¤ 0.

Let x be a simple closed geodesic which intersects at least one yi . If some yk is
disjoint from x , then the Goldman bracket between x and yk is zero; therefore,
without loss of generality, assume that x intersects yj for all j 2 f1; 2; : : : ; ng. Let
L D maxf�x; �y1

; �y2
; : : : ; �yn

g. Hence by Lemma 5.2, there exists mi for every
i 2 f1; 2; : : : ; ng such that, if m >maxfmig with xm

1
D .xm/h for some h 2 �1.F /,

then  .xm;yi/D  .x
m
1
;yj / whenever xmyi D xm

1
yj . Also there exists g 2 �1.F /

such that x1 D xg and yj D yi
g . Since Œxm;

Pn
iD1 ciyi � D

Pn
iD1 ci Œx

m;yi �, by
Lemma 6.1, it is enough to show that the terms of Œxm;yi � are distinct from the terms
of Œxm;yj � for i ¤ j .

Suppose hxmy
ki

i i D hx
my

kj

j i. Hence there exists h 2 �1.F / such that

xmy
ki

i D .x
my

kj

j /h D .xm/h.yj /
kj h:

By Lemma 5.2, y
ki

i and y
kj

j are conjugates of each other in �1.F /. Therefore,
yi and yj are freely homotopic to each other. Hence the geodesic representative
corresponding to yi and yj are the same, which contradicts the assumption.

The Main Theorem follows at once from Lemma 6.2 and Theorem 6.3.
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The beta family at the prime two and
modular forms of level three

HANNO VON BODECKER

We use the orientation underlying the Hirzebruch genus of level three to map the
beta family at the prime p D 2 into the ring of divided congruences. This procedure,
which may be thought of as the elliptic Greek letter beta construction, yields the
f –invariants of this family.

55Q45; 11F11, 55Q51, 58J26

1 Introduction and statement of the results

The Adams–Novikov spectral sequence (ANSS) serves as a powerful tool to understand
the structure of the stable homotopy groups of the sphere ��S0 : working locally at a
fixed prime p , we have

Es;t
2
D Exts;tBP� BP.BP�;BP�/) .�t�sS0/.p/;

and much insight can be gained by resolving its E2 –term into vn –periodic components
(see eg Ravenel’s book [11]). In their seminal paper propagating this chromatic ap-
proach, Miller, Ravenel, and Wilson [10] introduced the so-called Greek letter map, and
computed the 1–line (for all primes) and the 2–line (for odd primes), generated by the
alpha and beta families, respectively. The computation of the 2–line for p D 2, which
we outline here, is due to Shimomura [12]. Let us concentrate on the beta elements at
pD 2 (where there are also products of alpha elements). Starting from certain elements
xi 2 v

�1
2

BP� and yi 2 v
�1
1

BP� , put

a0 D 1; a1 D 2; ak D 3 � 2k�1 for k � 2I

then, for n� 0, odd s � 1, j � 1, i � 0, subject to the conditions

n� i; 2i
jj ; j � an�i ; and j � 2n if s D 1 and i D 0;

the simplest beta elements are given by [12, (1.3.1)]

(1) ˇs�2n=j ;iC1 D �.x
s
n=2

iC1v
j
1
/;

where � is the universal Greek letter map (see [10, (3.6)]). In fact, it is sometimes
possible to improve divisibility: namely, for n, s , j , and i as above with the additional

Published: 7 November 2016 DOI: 10.2140/agt.2016.16.2851
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conditions that

n� i C 1� 2; j D 2 and s � 3 if nD 2; j � an�i�1 if n� 3;

Shimomura defines [12, (1.3.2)]

(2) ˇs�2n=j ;iC2 D �.x
s
n=2

iC2ym
i /; where mD j=2i ;

and shows the following relations between the beta elements given by (1) and (2) [12,
Lemma 3.10]:

(i) ˇs�2n=j ;iC2 D ˇs�2n=j ;.iC1/C1 if 2iC1jj ,
(ii) 2ˇs�2n=j ;iC2 D ˇs�2n=j ;iC1 .

There are striking number-theoretical patterns lurking in the stable stems which become
visible from the chromatic point of view, eg the (nowadays) well-known relation
between the 1–line and the (denominators of the) Bernoulli numbers. Concerning the
2–line, Behrens [1] established a precise relation between the beta family for primes
p � 5 and the existence of modular forms satisfying appropriate congruences. On
the other hand, using an injection of the 2–line into the ring of divided congruences
(tensored with Q=Z), Laures [9] introduced the f –invariant as a higher analog of
the e–invariant. Subsequent work (see Behrens and Laures [2]) has shown how these
approaches can be merged and used to derive the f –invariant of the beta family, albeit
still only for p� 5. A different route has been taken by Hornbostel and Naumann in [8],
where the f –invariant is represented using Artin–Schreier theory; however, although
no longer limited to primes p� 5, the calculations actually carried out in that reference
only take care of two subfamilies (namely ˇt for p − t and ˇs2n=2n for p D 2).

Since there has been some progress on our geometrical understanding of the f –invariant
through analytical techniques (see eg work of the author [3] and Bunke and Naumann
[5]), it is desirable to have some sort of “comparison table”; to this end, we compute
the f –invariant of the beta family1 at the prime pD 2. More precisely, we take a look
at the following diagram for p D 2 and N D 3:

(3)

Ext0.BP�; v�1
2

BP� =.p1; v11 //
//

��

Ext2;�.BP�;BP�/

��

Ext0.E�1.N /
� ;E

�1.N /
� =.p1; v1

1
// //

++

Ext2;�.E�1.N /
� ;E

�1.N /
� /

��

D
�1.N /
� ˝Q=Z.p/

1The situation of products of permanent alpha elements has been studied in [4].
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The upper horizontal arrow in this diagram produces the beta family; as a brief reminder
of this construction (referring to [10; 12; 11] for details), note that an element of this
family is annihilated by some power of 2, say 2i0 . Thus, it is the image of an element
in Ext1.BP�;BP� =.2i0// under the connecting homomorphism associated to the short
exact sequence BP�! BP�! BP� =.2i0/. As this Ext1 –group admits multiplication
by (suitable powers of) v1 , the same argument shows that its vi1

1
–torsion elements

can be obtained from Ext0.BP�;BP� =.2i0 ; v
i1

1
//. In particular, it turns out that, under

the conditions quoted before, xs
n is invariant mod .2iC1; v

j
1
/, thus giving rise to an

element in Ext0.BP�;BP� =.2iC1; v
j
1
// (despite the v�1

2
appearing in its definition)

which in turn leads to the element ˇs�2n=j ;iC1 .

For the second row of the diagram, recall from Hirzebruch’s book [7] that, for each
level N > 1, there is a complex genus taking values in the ring of modular forms for
the congruence subgroup �1.N /� SL.2IZ/; furthermore, as explained by the work of
Franke [6], these genera give rise to complex oriented elliptic (co-)homology theories.
Thus, working locally at the prime p , the orientation yields a map of coefficient
rings BP�!E

�1.N /
� and induces the upper vertical arrows.

The composition of the vertical arrows on the right-hand side can now be chosen to
account for the algebraic portion of Laures’ f –invariant [9], ie chosen to capture the
p–local information of the second map in the factorization

(4) f W �2kS0
! Ext2;2kC2.MU�;MU�/!D

�1.N /

kC1
˝Q=Z:

So, in order to compute the f –invariant of a member of the beta family, we chase its
preimage through the composition of the vertical arrow on the left-hand side with the
dotted arrow; put differently, we carry out (a sufficiently large portion of) an elliptic
analog of the Greek letter construction explicitly. The result can be summarized as
follows (where, as usual, we abbreviate ˇk=j D ˇk=j ;1 and ˇk D ˇk=1 ):

Theorem 1 The f –invariants of the beta elements of order two are given as follows:

(i) For odd s � 3, f .ˇs/�
1

2

�
E2

1
� 1

4

�s

mod D
�1.3/
3s�1

.

(ii) For odd s � 1, f .ˇ2s=j /�
1

2

�
E2

1
� 1

4

�2s

mod D
�1.3/
6s�j

.

(iii) For l � 0 and odd s � 1,

f .ˇ4s�2l =j /�
1

2

�
E2

1
� 1

4

�4s�2l

C
1

2

�
E2

1
� 1

4

�.4s�1/2l

mod D
�1.3/

12s�2l�j

�
1

2

�
E2

1
� 1

4

�4s�2l

if j � 3 � 2l :
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Theorem 2 The f –invariants of the beta elements of higher order are given as follows:

(i) For odd s � 1, f .ˇ4s=2;2/�
1

4

�
E2

1
� 1

4

�4s

mod D
�1.3/
12s�2

.

(ii) For l � 0, i � 1, j Dm � 2i � alC2 , odd s � 1, and modulo D
�1.3/

3s�2lCiC2�j
,

f .ˇs�2lCiC2=j ;iC1/�
1

2iC1

�
E2

1
� 1

4

�s�2lCiC2

C
1

2

�
E2

1
� 1

4

�.s�2iC2�1/2l

�
1

2iC1

�
E2

1
� 1

4

�s�2lCiC2

if j � 3 � 2l :

(iii) For k � 2, f .ˇ4k=2;3/�
1C4k

8

�
E2

1
� 1

4

�4k

mod D
�1.3/

12k�2
:

(iv) For l � 0, i � 1, j Dm � 2i � alC2 , odd s � 1, and modulo D
�1.3/

3s�2lCiC3�j
,

f .ˇs�2lCiC3=j ;iC2/�
1

2iC2

�
E2

1
� 1

4

�s�2lCiC3

C
1

2

�
E2

1
� 1

4

�.s�2iC3�1/2l

�
1

2iC2

�
E2

1
� 1

4

�s�2lCiC3

if j � 3 � 2l :

The proof presented in the following section turns out to be a pretty straightforward
calculation: After a brief recollection of the relevant definitions, we study the image
(under the orientation underlying the Hirzebruch genus) of the elements xi and yi

occurring in the definition of the beta elements. Then, we sketch our approach to
the argument given in [2, Section 4], ie we explain how to carry out the Greek letter
construction on the level of (holomorphic) modular forms. The final step consists of
performing this computation explicitly.

2 Proof of the theorems

2.1 Preliminaries

Working with the congruence subgroup �1.N / � SL.2IZ/ for a fixed level N > 1,
modular forms will be thought of in terms of their q–expansions at the cusp i1,
where q D e2�i� . Setting Z�1.N / D ZŒ�N ; 1=N �, where �N D e2� i=N , we then
denote by M

�1.N /
� the graded ring of modular forms with respect to �1.N / which

expand integrally, ie which lie in Z�1.N /ŒŒq��. Now recall from [7, Section 7] that the
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power series associated to the Hirzebruch elliptic genus of level N may be expressed
as

(5) Q�1.N /.x/D x
ˆ.�;x� 2� i=N /

ˆ.�;x/ˆ.�;�2� i=N /
;

where the ˆ–function is given by

ˆ.�; z/D 2 sinh.z=2/
Y
n�1

.1� ezqn/.1� e�zqn/

.1� qn/2
:

By the splitting principle, the power series (5) determines a homomorphism

��1.N /W MU�!M
�1.N /
� ;

where MU� is the coefficient ring of the complex cobordism spectrum, and integrality
of the image follows by noting that each term in the q–expansion corresponds to a
twisted Todd genus. Furthermore, as mentioned in the introduction, the Hirzebruch
elliptic genus can be used to construct periodic complex oriented (co-)homology
theories [6]: upon inverting, for example, the discriminant form, the Landweber exact
functor theorem applies.

Finally, let us explain the map (4) in more detail. To this end, recall from [9] that
the ring of divided congruences D�1.N / consists of those rational combinations of
modular forms which expand integrally, and that this ring can be filtered by setting

D
�1.N /

kC1
D
˚
f D

PkC1
iD0 fi

ˇ̌
fi 2M

�1.N /
i ˝Q; f 2 Z�1.N /ŒŒq��

	
I

furthermore, we put

D
�1.N /

kC1
DD

�1.N /

kC1
CM

�1.N /
0

˝QCM
�1.N /

kC1
˝Q:

Temporarily switching to the ANSS based on MU, an element in the stable stems of
positive even dimension is in second filtration; thus, it can be projected to the 2–line
of the E1–page which in turn injects into the 2–line of the E2 –page (as there are
no differentials hitting it). This explains the first part of the map (4). For the second
part, we regard Ext2;�.MU�;MU�/ as a subquotient of .MU�˝Q/˝2 and consider
a representative of an element; under a similar identification, its image under the
orientation (determined by the Hirzebruch genus) is represented by a sum of tensor
products of modular forms. This sum becomes a rational combination of modular
forms (hence an element in the rationalized ring of divided congruences) by replacing,
say, each second factor in the sum by the constant term in its q–expansion. Working
locally at a prime p − N , the induced composite map is injective by the results of [9],
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completing the definition of the f –invariant; on the other hand, switching back to BP,
we arrive at the right-hand side of our diagram (3).

2.2 The image under the orientation

Henceforth, we fix p D 2 and N D 3, abbreviating � D �1.3/. Then the ring of
modular forms is given by (see eg [8, Section 3.2])

M �
� D Z� ŒE1;E3�;

where

E1 D 1C 6

1X
nD1

X
d jn

�
d

3

�
qn; E3 D 1� 9

1X
nD1

X
d jn

�
d

3

�
d2 qn

are the odd Eisenstein series of the indicated weight at the level N D3 (and . �
�
/ denotes

the Legendre symbol); in passing, we note that .E3
1
�E3/=27 2 ZŒŒq��. Furthermore,

the following basic congruence can be read off from the q–expansions:

(6) E3� 1�
E2

1
� 1

4
mod 2D�

3 :

Returning to the Hirzebruch elliptic genus, one may use [7, Appendix I, Theorem 6.2]
(see also [3, Appendix C]) to verify that the first few terms of the power series (5),
when expressed in terms of the generators E1 and E3 of M �

� , read:

Q�.x/D 1C
iE1

2
p

3
xC

E2
1

12
x2
C

iE3
1
� iE3

18
p

3
x3
C

13E4
1
� 16E1E3

2160
x4

C
iE2

1
.E3

1
�E3/

216
p

3
x5
C

121E6
1
� 152E3

1
E3C 40E2

3

272160
x6

C
iE1
p

3

7E6
1
� 11E3

1
E3C 4E2

3

19440
x7
CO.x8/:

Thus, the genus of the following complex projective spaces is readily evaluated:

w1 D �
�.CP1/D

i
p

3
E1;

w3 D �
�.CP3/D

i
p

3

5E3
1
� 2E3

9
;

w7 D �
�.CP7/D

i
p

3

70E4
1
E3� 14E1E2

3
� 65E7

1

243
:

We remind the reader that Hazewinkel’s generators of BP� are recursively defined, and
that they are in fact integral, ie they live in MU� (see eg [11, Appendix A2]). The
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same recursive procedure can be used to determine their respective images under the
Hirzebruch genus, which, by abuse of notation, we still denote by vi , leading to

v1 D w1 D
i
p

3
E1;

v2 D
w3�w

3
1

2
D

i
p

3

4E3
1
�E3

9
;

v3 D
w7

4
�
w7

1
Cw1w

2
3

8
D

iE1
p

3

5E3
1
E3�E2

3
� 4E6

1

81
I

in particular, we see that v3 becomes decomposable in M �
� :

(7) v3 D
iE1
p

3

�
4E3

1
E3�E2

3

81
�

4E6
1
�E3

1
E3

81

�
D

iE1
p

3

�
i
p

3

4E3
1
�E3

9

��
�

i

3
p

3
.E3�E3

1/

�
D 3v1v2.v2C v

3
1/:

Continuing with our abuse of notation, we now consider the xi as elements in v�1
2

M �
� ,

where, due to (7), their original definition [12, (1.1)] simplifies to

(8)

x0 D v2;

x1 D v
2
2 � v

2
1v
�1
2 v3 D v

2
2 � 3v3

1.v2C v
3
1/;

x2 D x2
1 � v

3
1v

3
2 � v

5
1v3 D v

4
2 � 7v3

1v
3
2 C 15v9

1v2C 9v12
1 ;

xi D x2
i�1 i � 3;

showing that the (images of the) xi are actually holomorphic. On the other hand,
unless i D 0, this is not true for the yi 2 v

�1
1

M �
� , which read:

y0 D v1;

y1 D v
2
1 � 4v�1

1 v2;

yi D y2
i�1; i � 2:

However, for i � 1 and m� 1, we may introduce

(9) zi;m D v
m�2i

1 �m � 2iC1vm�2i�3
1 v2;
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which are holomorphic for m � 2i � 4 and satisfy

zi;m � ym
i mod 2iC2v�1

1 M �
�

� 1 mod 2iC2Z� ŒŒq��;

the second line being an immediate consequence of (6).

2.3 Determining “elliptic” beta elements

Requiring p > 3 and working with the full modular group, Behrens and Laures have
shown in [2, Section 4] how an element in Ext0.M�;M�=.p1;E1p�1

// gives rise
to an element in D ˝Q=D

�
1
6

�
CMk ˝QCQ; clearly, the other primes can be

treated analogously by working with a smaller congruence subgroup. Let us rephrase
their argument in a language closer to the original formulation of the Greek letter
construction:

Still working at the prime p D 2 and the level N D 3, we choose a (holomorphic)
modular form � 2M �

j�j
and a pair of positive integers .i0; i1/ such that

�i1 � 1 mod 2i0D�
i1j�j
I

in particular, this ensures that .2i0 ; �i1/ is regular on M �
� .

Now, given a modular form z't 2M �
t , we can use the natural inclusion

M �
t ,!D�

t

and ask whether z't satisfies

(10) z't � �
i1't=i1j�j; i0

mod 2i0D�
t

for some

't=i1j�j;i0
2D�

t�i1j�j
=2i0D�

t�i1j�j
:

Let us call a modular form satisfying (10) invariant mod .2i0 ; �i1/. Moreover, we have
the obvious composition:

. � /W D�
k =2

i0D�
k ŠD�

k ˝Z=2i0 !D�
k ˝Q=Z!D�

k ˝Q=Z; 'k 7! '
k
:

Then it is easy to see that, for a modular form z't satisfying (10), the assignment

z't 7! '
t=i1j�j; i0
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depends only on the reduction of z't mod .2i0 ; �i1/, hence descends to a well-defined
map

(11) ker.M �
t =.2

i0 ; �i1/!D�
t =.2

i0 ; �i1//!D�
t�i1j�j

˝Q=Z

which we may think of as the “elliptic” Greek letter beta map and which corresponds
to the dotted arrow in our diagram (3). More precisely, by removing the constant term
of the q–expansion, we obtain another map

d W M �
t !D�

t ; d.z't /D z't � q0.z't /;

which might look like a more natural choice with respect to which invariance should
be defined, see [2, Section 4]. However, we have q0.z't /� �

i1q0.z't / mod 2i0D�
t ,

hence both choices agree up to a shift of 't=i1j�j; i0
by the constant q0.z't /; as the

latter maps to zero in D�
t�i1j�j

˝Q=Z, our construction is visibly equivalent to the
one leading to [2, Theorem 4.2].

2.4 Explicit computations

Computing the effect of the elliptic Greek letter map (11) on the preimage of Shimo-
mura’s beta elements now amounts to exhibiting appropriate congruences; the elements
defined by (1) are dealt with easily, since .2iC1; v

j
1
/ is regular on M �

� provided
that j Dm � 2i ; moreover, for k � 0 this implies:

(12)
�

E2
1
� 1

4

�k

� v
j
1

�
E2

1
� 1

4

�k

mod 2iC1D�
2kCj :

Furthermore, the following two results are useful:

Lemma 3 For i � 0, l � 0, m � 2i D j � 6 � 2l , we have

Es�2lCiC2

3 �

�
E2

1
� 1

4

�s�2lCiC2

mod 2iC1D�
12s�2lCi C v

j
1
�M �

12s�2lCi�j
:

Proof It is easy to see that for l � 0 and i � 0, we have

E2lCiC2

3 � .E3� v
3
1/

2lCiC2

C 2iC1.v6
1E2

3/
2l

E
2lC2.2i�1/
3

mod .2iC2; v12�2l

1 /;

and the basic congruence (6) implies

.E3� v
3
1/

2k

�

�
E2

1
� 1

4

�2k

mod 2kC1D�
3�2k :

This concludes the proof.
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Lemma 4 For i � 0, l � 0, 1� j � 6 � 2l , we have

E
.s�2iC2�1/2l

3
�

�
E2

1
� 1

4

�.s�2iC2�1/2l

mod 2D�
12s�2lCi C v

j
1
�M �

12s�2lCi�j

� 0 if j � 3 � 2l :

Proof Noting that

E
.s�2iC2�1/2l

3
� v3�2l

1 .E3� v
3
1/
.s�2iC2�1/2l

mod 2D�
12s�2lCi C v

j
1
�M �

12s�2lCi�j

� .E3� 1/.s�2
iC2�1/2l

mod 2D�
12s�2lCi C v

j
1
�M �

12s�2lCi�j
;

the claim follows from (6).

Proof of Theorem 1 For part (i), we observe that

xs
0 D v

s
2

�Es
3 mod 2D�

3s

� .E3� v
3
1/

s mod 2D�
3sC v1 �M

�
3s�1

�

�
E2

1
� 1

4

�s

mod 2D�
3sC v1 �M

�
3s�1:

Similarly, for part (ii) we have:

xs
1 � v

2s
2 mod vj

1

�E2s
3 mod 2D�

6sC v
j
1
�M �

6s�j

� .E3� v
3
1/

2s mod 2D�
6sC v

j
1
�M �

6s�j

�

�
E2

1
� 1

4

�2s

mod 2D�
6sC v

j
1
�M �

6s�j ;

and since j � alC2 D 6 � 2l (and j � 2lC2 if s D 1), for part (iii) we conclude

xs
2Cl � v

4s�2l

2 C v3�2l

1 v
.4s�1/2l

2
mod .2; valC2

1
/

�E4s�2l

3 CE
.4s�1/2l

3
mod 2D�

12s�2l C v
j
1
�M �

12s�2l�j

�

�
E2

1
� 1

4

�4s�2l

C

�
E2

1
� 1

4

�.4s�1/2l

mod 2D�
12s�2l C v

j
1
�M �

12s�2l�j
:

In view of (12), this completes the proof.
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Remark 5 Since x0 D v2 is sent to zero under the map (11) with respect to .2; v1/,
we see that in order to obtain something interesting, we have to impose s � 3 in part (i).
In a similar vein, the condition j � 2lC2 if s D 1 in part (iii) is needed to ensure that
D�

8s�2lCj
�D�

12s�2l when using (12).

Now we turn our attention to the elements ˇ4s�2l =j ; iC1 for i � 1.

Proof of Theorem 2(i) The choice nD 2 and i D 1 in (1) dictates j D 2, hence we
compute

xs
2 � v

4s
2 mod .4; v2

1/

�E4s
3 mod 4D�

12sC v
2
1 �M

�
12s�2

�

�
E2

1
� 1

4

�4s

mod 4D�
12sC v

2
1 �M

�
12s�2:

Combined with (12), this yields the claim.

Lemma 6 For l � 0 and i � 0, we have

xlCiC3 � v
2lCiC3

2 C 2iC1v3�2l

1 v
.2iC3�1/2l

2
mod .2iC2; v

alC2

1
/:

Proof Since .aC b/2
lC1

� a2lC1

C b2lC1

C 2.ab/2
l

mod 4 for l � 0, we compute

xlC3 D x2lC1

2 � v8�2l

2 C 2.v3
1v2/

2l

v6�2l

2 mod .4; valC2

1
/

and use the binomial theorem.

Proof of Theorem 2(ii) In order to treat the remaining cases of our computation of
xs

n mod .2iC1; v
j
1
/, we notice that since (1) requires j Dm � 2i � an�i , and since all

cases with i D 0 and the case i D 1 for n D 2 have already been taken care of, it
suffices to consider nD lC i C 2 where l � 0 and i � 1; now, for odd s � 1 we have
(by Lemma 6 in a reindexed form)

xs
lCiC2 � v

s�2lCiC2

2 C 2iv3�2l

1 vs�2lCiC2�2l

2 mod .2iC1; v
alC2

1
/

�Es�2lCiC2

3 C 2iEs�2lCiC2�2l

3 mod 2iC1D�
12s�2lCi C v

j
1
�M �

12s�2lCi�j
;

from which the desired result follows.

Finally, we treat the beta elements defined by (2):
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Proof of Theorem 2(iii) In order to compute the f –invariant of ˇ4k=2;3 , we are
going to show that, although z1;1 D y1 D v

2
1
� 4v�1

1
v2 is not holomorphic, we can

still make sense out of the map (11) with respect to .8; z1;1/ if t D 12k � 24. To this
end, we observe

v6
1 D z1;1v

4
1 C 4v3

1v2 D z1;1.v
4
1 C 4v1v2/C 16v2

2 ;

hence we compute

xk
2 � v

4k
2 C kv3

1v
4k�1
2 mod .8; v6

1/

� .1C 4k/v4k
2 mod .8; z1;1/

� .1C 4k/E4k
3 mod 8D�

12k C z1;1 �M
�
12k�2;

where z1;1 �M
�
12k�2

�M �
12k

for dimensional reasons. Finally, we note that

E4k
3 �

�
E2

1
� 1

4

�4k

mod 8D�
12k C z1;1 �M

�
12k�2

�

�
E2

1
� 1

4

�4k

v4
1z1;1 mod 8D�

12k C z1;1 �M
�
12k�2 if k � 2I

as v4
1
� 1 mod 8, the claim follows.

Proof of Theorem 2(iv) Recall that in the definition (2) we have to impose j D

m � 2i � an�i�l for n � 3; since the situation m D i D 1 has already been dealt
with in the previous part (iii), it is sufficient to consider the case n D l C i C 3,
4�m � 2i D j � alC2 , where l � 0, i � 1. In order to compute the f –invariants, we
calculate the effect of the map (11) with respect to .2iC2; zi;m/. Since

(13)
v6�2l

1 D zi;mv
6�2l�j
1

C 2j v6�2l�3
1 v2;

v9�2l

1 D zi;m.v
9�2l�j
1

C 2j v
9�2l�j�3
1

v2/C 4j 2v9�2l�6
1 v2

2 ;

we calculate, for l � 0, i � 1, and odd s � 1,

xs
lCiC3

�vs�2lCiC3

2 C 2iC1v3�2l

1 v
.s2iC3�1/2l

2
C 3s � 2iv6�2l

1 v
.s2iC3�2/2l

2
mod .2iC2; v9�2l

1 /

�vs�2lCiC3

2 C 2iC1v3�2l

1 v
.s2iC3�1/2l

2
mod .2iC2; zi;m/;

hence

xs
lCiC3�Es�2lCiC3

3 C2iC1E
.s�2iC3�1/2l

3
mod 2iC2D�

24s�2lCi C zi;m �M
�
24s�2lCi�j

:
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Furthermore, the proof of Lemma 3 shows

E2lC.iC1/C2

3 �

.E3� v
3
1/

2lC.iC1/C2

C 2.iC1/C1.v6
1E2

3/
2l

E2lC2

3 .2iC1
� 1/ mod .2.iC1/C2; v12�2l

1 /:

Thus, it follows that

E2lC.iC1/C2

3 � .E3� v
3
1/

2lC.iC1/C2

mod .2iC2; v12�2l

1 /;

and due to (13), application of Lemma 3 and Lemma 4 yields the claim.
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On toric generators in the unitary and
special unitary bordism rings

ZHI LÜ

TARAS PANOV

We construct a new family of toric manifolds generating the unitary bordism ring.
Each manifold in the family is the complex projectivisation of the sum of a line
bundle and a trivial bundle over a complex projective space. We also construct a
family of special unitary quasitoric manifolds which contains polynomial generators
of the special unitary bordism ring with 2 inverted in dimensions > 8 . Each manifold
in the latter family is obtained from an iterated complex projectivisation of a sum of
line bundles by amending the complex structure to make the first Chern class vanish.

57R77; 14M25

1 Introduction

Finding geometric representatives of bordism classes is a classical problem on the
borders of geometry and topology. The theory of bordism and cobordism is one of
the deepest and most influential parts of algebraic topology, which experienced a
spectacular development in the 1960s. Although the original definition of bordism,
going back to Pontryagin and Thom, was very geometric, it soon became clear that
elaborate homotopy-theoretic, algebraic and number-theoretic techniques were required
to obtain structural results on bordism groups and (co)bordism rings.

Most calculations of bordism rings of a point for the classical series of Lie groups were
settled by coordinated efforts of many topologists by the end of the 1960s (with the
notable exception of symplectic bordism, whose structure is still not described com-
pletely). These results were summarised in the monograph by Stong [16]. Nevertheless,
it has remained a challenging task to describe particular geometric representatives
for generators of bordism rings (which tend to be rings of polynomials when 2 is
inverted) and other “special” bordism classes. The importance of this problem was
much emphasised in the original works such as Conner and Floyd [7].

Over the rationals, the bordism rings are generated by projective spaces, but the integral
generators are more subtle as they involve divisibility conditions on characteristic
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2866 Zhi Lü and Taras Panov

numbers. One of the few general results on geometric representatives for bordism classes
known from the early 1960s is that the complex bordism ring ˝U , which is an integral
polynomial ring, can be generated by the so-called Milnor hypersurfaces H.n1; n2/.
These are hyperplane sections of the Segre embeddings of products CPn1 �CPn2

of complex projective spaces. Similar generators exist for unoriented and oriented
bordism rings.

The early progress was impeded by the lack of examples of higher-dimensional (stably)
complex manifolds for which the characteristic numbers can be calculated explicitly.
With the appearance of toric varieties in the late 1970s and subsequent development of
toric topology (see Buchstaber and Panov [2]), a host of concrete examples of complex
manifolds with large symmetry groups has been produced for which characteristic
numbers can be calculated effectively using combinatorial-geometric techniques.

In [5], Buchstaber and Ray constructed a set of generators for ˝U consisting entirely of
complex projective toric manifolds B.n1; n2/, which are projectivisations of sums of
line bundles over bounded flag manifolds. Later it was shown in Buchstaber, Panov
and Ray [3] that one can get a geometric representative in every complex bordism class
if toric manifolds are relaxed to quasitoric ones, the latter still have a “large torus”
action, but are only stably complex instead of being complex. Characteristic numbers
of toric manifolds satisfy quite restrictive conditions (eg their Todd genus is always 1)
which prevent the existence of a toric representative in every bordism class; quasitoric
manifolds enjoy more flexibility. We note that representing polynomial generators
of ˝U by toric manifolds remains open; some progress has been made by Wilfong[17].

Here we consider a family of projective toric manifolds obtained by iterated projec-
tivisation of sums of line bundles, starting from a complex projective space. Such
iterated projectivisations are also known as generalised Bott manifolds (see Masuda and
Suh [12], and Buchstaber and Panov [2, Section 7.8]). Our first result (Theorem 3.8)
shows that the complex bordism ring ˝U can be generated by the most simple nontrivial
two-stage projectivisations: manifolds L.n1; n2/D CP .�/, where � is the sum of a
tautological line bundle and an n2 –dimensional trivial bundle over CPn1 . This new
toric generator set is somewhat simpler than either of the set of Milnor hypersurfaces
fH.n1; n2/g or Buchstaber and Ray’s toric set fB.n1; n2/g.

We proceed by providing explicit families of quasitoric SU–manifolds which contain
polynomial generators of the SU–bordism ring ˝SU˝Z

�
1
2

�
(Theorem 4.19). In fact,

our quasitoric SU–manifolds are genuinely indecomposable and indivisible elements in
˝SU (integrally, without inverting any prime), however ˝SU is not a polynomial ring.

We recall that a stably complex (or unitary) manifold M is special unitary (an
SU–manifold for short) if c1.M /D 0. A renewed interest to this class of manifolds
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has been stimulated by the development of geometry motivated by physics; the notion
of a Calabi–Yau manifold plays a central role here. By a Calabi–Yau manifold one
usually understands a Kähler SU–manifold; it has a Ricci flat metric by the theorem of
Yau. We note however that our SU–manifolds are rarely Kähler.

As was observed by Lü and Wang in [11], quasitoric SU–manifolds can be constructed
by taking iterated complex projectivisations (which are projective toric manifolds) and
then amending the stably complex structure so that the first Chern class becomes zero.
The underlying smooth manifold of the result is still toric, but the stably complex
structure is not the standard one. Examples of this sort were known to Conner and
Floyd and used in their constructions [7], however the existence of a torus action was
not emphasised and their amended stably complex structures were actually not SU.

The characteristic numbers of SU–manifolds satisfy intricate divisibility conditions.
Ochanine’s theorem [14] asserting that the signature of an .8kC4/–dimensional
SU–manifold is divisible by 16 is one of the most famous examples. We therefore find
it quite miraculous that polynomial generators for the SU–bordism ring ˝SU occur
within the most basic families of examples that one can produce using toric methods:
two-stage complex projectivisations, and three-stage projectivisations with the first
stage being just CP1 . The proof of Theorem 4.19 involves calculating the characteristic
numbers and checking various divisibility conditions. We use both classical and more
recent results on binomial coefficients modulo a prime.

We note also that the existence of large torus actions indicates possible applications of
our examples in the equivariant setting. Applicability of toric methods in equivariant
bordism is currently being explored (see Buchstaber, Panov and Ray [4], Buchstaber
and Panov [2, Chapter 9], and Lü [10]).

Acknowledgements We thank Peter Landweber and the referee for their most help-
ful comments. Lü was supported by the NSFC, grants 11371093, 11431009 and
11661131004. Panov was supported by the Russian Foundation for Basic Research
(grants 14-01-00537 and 16-51-55017) and a grant from Dmitri Zimin’s “Dynasty”
foundation. Both authors were supported by the Key Laboratory of Mathematics for
Nonlinear Sciences in Fudan University, Chinese Ministry of Education.

2 Toric and quasitoric manifolds, cohomology
and Chern classes

Here we collect the necessary information about toric varieties and quasitoric manifolds;
the details can be found in [2].

Algebraic & Geometric Topology, Volume 16 (2016)
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A toric variety is a normal complex algebraic variety V containing an algebraic
torus .C�/n as a Zariski open subset in such a way that the natural action of .C�/n

on itself extends to an action on V . We only consider nonsingular complete (compact
in the usual topology) toric varieties, also known as toric manifolds.

There is a bijective correspondence between the isomorphism classes of complex
n–dimensional toric manifolds and complete regular fans in Rn . A fan is a finite
collection †D f�1; : : : ; �sg of strongly convex cones �i in Rn such that every face
of a cone in † belongs to † and the intersection of any two cones in † is a face of
each. A fan † is regular if each of its cones �j is generated by part of a basis of the
lattice Zn � Rn (we choose the standard lattice for simplicity). In particular, each
1–dimensional cone of † is generated by a primitive vector ai 2 Zn . A fan † is
complete if the union of its cones is the whole Rn .

Projective toric varieties are particularly important. A projective toric manifold V is
defined by a lattice Delzant polytope P . Given a simple n–dimensional polytope P

with vertices in the lattice Zn , one defines the normal fan †P as the fan whose
n–dimensional cones �v correspond to the vertices v of P , and �v is generated by the
primitive inside-pointing normals to the facets of P meeting at v . The polytope P is
Delzant precisely when its normal fan †P is regular. The fan †P defines a projective
toric manifold VP . Different lattice Delzant polytopes with the same normal fan
produce different projective embeddings of the same toric manifold.

Irreducible torus-invariant divisors on V are the toric subvarieties of complex codimen-
sion 1 corresponding to the 1–dimensional cones of †. When V is projective, they
also correspond to the facets of P . We assume that there are m 1–dimensional cones
(or facets), denote the corresponding primitive vectors by a1; : : : ; am , and denote the
corresponding codimension-1 subvarieties by V1; : : : ;Vm .

Theorem 2.1 Let V be a toric manifold of complex dimension n, with the corre-
sponding complete regular fan †. The cohomology ring H�.V IZ/ is generated by the
degree-two classes vi dual to the invariant submanifolds Vi , and is given by

H�.V IZ/Š ZŒv1; : : : ; vm�=I; deg vi D 2;

where I is the ideal generated by elements of the following two types:
(a) vi1

� � � vik
such that ai1

; : : : ; aik
do not span a cone of †;

(b)
Pm

iD1hai ;xivi , for any vector x 2 Zn .

It is convenient to consider the integer n�m–matrix

(2-1) �D

0@a11 � � � a1m
:::

: : :
:::

an1 � � � anm

1A
Algebraic & Geometric Topology, Volume 16 (2016)
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whose columns are the vectors ai written in the standard basis of Zn . Then the ideal (b)
of Theorem 2.1 is generated by the n linear forms aj1v1C� � �Cajmvm corresponding
to the rows of �.

Theorem 2.2 There is the following isomorphism of complex vector bundles:

T V ˚Cm�n
Š �1˚ � � �˚ �m;

where T V is the tangent bundle, Cm�n is the trivial .m�n/–plane bundle, and �i is
the line bundle corresponding to Vi , with c1.�i/D vi . In particular, the total Chern
class of V is given by

c.V /D .1C v1/ � � � .1C vm/:

Example 2.3 A basic example of a toric manifold is the complex projective space CPn .
The cones of the corresponding fan are generated by proper subsets of the set of
m D nC 1 vectors e1; : : : ; en;�e1 � � � � � en , where ei 2 Zn is the i th standard
basis vector. It is the normal fan of the lattice simplex �n with the vertices at 0
and e1; : : : ; en . The matrix (2-1) is given by0@1 0 0 �1

0
: : : 0

:::

0 0 1 �1

1A :
Theorem 2.1 gives the cohomology of CPn as

H�.CPn/ŠZŒv1; : : : ; vnC1�=.v1 � � �vnC1; v1�vnC1; : : : ; vn�vnC1/ŠZŒv�=.vnC1/;

where v is any of the vi . Theorem 2.2 gives the standard decomposition

T CPn
˚C Š x�˚ � � �˚ x� (nC 1 summands),

where �DO.�1/ is the tautological (Hopf) line bundle over CPn , and x�DO.1/ is
its conjugate, or the line bundle corresponding to a hyperplane CPn�1 �CPn .

Example 2.4 An example which will be important for our constructions is the complex
projectivisation of a sum of line bundles over projective space.

Given two positive integers n1 , n2 and a sequence of integers .i1; : : : ; in2
/, consider

the projectivisation V D CP .�˝i1 ˚ � � � ˚ �˝in2 ˚C/, where �˝i denotes the i th

tensor power of � over CPn1 when i > 0 and the i th tensor power of x� otherwise.
The manifold V is the total space of a bundle over CPn1 with fibre CPn2 . It is also a
projective toric manifold with the corresponding matrix (2-1) given by

Algebraic & Geometric Topology, Volume 16 (2016)
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0BBBBBBBBB@

n1‚ …„ ƒ
1 0 0 �1

0
: : : 0

::: 0
0 0 1 �1

i1 1 0 0 �1

0 ::: 0
: : : 0

:::

in2
0 0 1 �1„ƒ‚…

n2

1CCCCCCCCCA
:

The polytope P here is combinatorially equivalent to a product �n1 ��n2 of two
simplices. Theorem 2.1 gives the cohomology of V as

H�.V /Š ZŒv1; : : : ; vn1C1; vn1C2; : : : ; vn1Cn2C2�=I;

where I is generated by the elements

v1 � � � vn1C1; vn1C2 � � � vn1Cn2C2; v1� vn1C1; : : : ; vn1
� vn1C1;

i1vn1C1C vn1C2� vn1Cn2C2; : : : ; in2
vn1C1C vn1Cn2C1� vn1Cn2C2:

In other words,

(2-2) H�.V /Š ZŒu; v�
ı�

un1C1; v.v� i1u/ � � � .v� in2
u/
�
;

where uD v1 D � � � D vn1C1 and v D vn1Cn2C2 . Theorem 2.2 gives

(2-3) c.V /D .1Cu/n1C1.1C v� i1u/ � � � .1C v� in2
u/.1C v/:

If i1 D � � � D in2
D 0, we obtain V DCPn1 �CPn2 .

The same information can be retrieved from the following well-known description of
the tangent bundle and the cohomology ring of a complex projectivisation:

Theorem 2.5 (Borel and Hirzebruch [1, Section 15]) Let pW CP .�/! X be the
projectivisation of a complex n–plane bundle � over a complex manifold X , and let 
be the tautological line bundle over CP .�/. Then there is an isomorphism of vector
bundles

T CP .�/˚C Š p�T X ˚ .x ˝p��/;

where C denotes a trivial line bundle over CP .�/. Furthermore, the integral cohomol-
ogy ring of CP .�/ is the quotient of the polynomial ring H�.X /Œv� on one generator
v D c1.x / with coefficients in H�.X / by the single relation

(2-4) vn
C c1.�/v

n�1
C � � �C cn.�/D 0:

Algebraic & Geometric Topology, Volume 16 (2016)
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The relation above is just cn.x ˝p��/D 0.

In the case considered above, � D �˝i1 ˚ � � �˚ �˝in2 ˚C over X DCPn1 . We then
have H�.X /DZŒu�=.un1C1/ where uD c1.x�/, so that equation (2-4) becomes v.v�
i1u/ � � � .v�in2

u/D0 and the ring H�.CP .�// given by Theorem 2.5 is precisely (2-2).
Further, the total Chern class of p�TX ˚ .x ˝p��/ is given by (2-3).

The quotient of the projective toric manifold VP by the action of the compact torus
T n � .C�/n is the polytope P .

A quasitoric manifold over a combinatorial simple n–dimensional polytope P is a
manifold M of dimension 2n with a locally standard action of T n such that the
quotient M=T n is homeomorphic, as a manifold with corners, to P . (An action of T n

on M 2n is locally standard if every point x 2M 2n is contained in a T n –invariant
neighbourhood equivariantly homeomorphic to an open subset in Cn with the standard
coordinatewise action of T n twisted by an automorphism of the torus; the orbit space
of a locally standard action is a manifold with corners.) We therefore have a projection
� W M ! P whose fibres are orbits of the T n –action.

Not every simple polytope can be the quotient of a quasitoric manifold. Nevertheless,
quasitoric manifolds constitute a much larger family than projective toric manifolds,
and enjoy more flexibility for topological applications.

If F1; : : : ;Fm are facets of P , then each Mi D �
�1.Fi/ is a quasitoric submanifold

of M of codimension 2, called a characteristic submanifold. The characteristic sub-
manifolds Mi �M are analogues of the invariant divisors Vi on a toric manifold V .
Each Mi is fixed pointwise by a closed 1–dimensional subgroup (a subcircle) Ti � T n

and therefore corresponds to a primitive vector �i 2 Zn defined up to a sign. Choos-
ing a direction of �i is equivalent to choosing an orientation for the normal bundle
�.Mi �M / or, equivalently, choosing an orientation for Mi , provided that M itself
is oriented. An omniorientation of a quasitoric manifold M consists of a choice of
orientation for M and each characteristic submanifold Mi , 1 6 i 6 m.

The vectors �i are analogues of the generators ai of the 1–dimensional cones of the
fan corresponding to a toric manifold V (or analogues of the normal vectors to the
facets of P when V is projective). However, the �i need not be the normal vectors to
the facets of P in general.

There is an analogue of Theorem 2.1 for quasitoric manifolds:

Theorem 2.6 Let M be an omnioriented quasitoric manifold of dimension 2n over
a polytope P . The cohomology ring H�.M IZ/ is generated by the degree-two

Algebraic & Geometric Topology, Volume 16 (2016)
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classes vi dual to the oriented characteristic submanifolds Mi , and is given by

H�.M IZ/Š ZŒv1; : : : ; vm�=I; deg vi D 2;

where I is the ideal generated by elements of the following two types:

(a) vi1
� � � vik

such that Fi1
\ � � � \Fik

D¿ in P ;

(b)
Pm

iD1h�i ;xivi , for any vector x 2 Zn .

By analogy with (2-1), we consider the integer n�m–matrix

(2-5) �D

0@�11 � � � �1m
:::

: : :
:::

�n1 � � � �nm

1A
whose columns are the vectors �i written in the standard basis of Zn . Changing a
basis in the lattice results in multiplying � from the left by a matrix from GL.n;Z/.
The ideal (b) of Theorem 2.6 is generated by the n linear forms �j1v1C � � �C�jmvm

corresponding to the rows of �. Also, � has the property that det.�i1
; : : : ; �in

/D˙1

whenever the facets Fi1
; : : : ;Fin

intersect at a vertex of P .

There is also an analogue of Theorem 2.2:

Theorem 2.7 For a quasitoric manifold M of dimension 2n, there is an isomorphism
of real vector bundles:

(2-6) T M ˚R2.m�n/
Š �1˚ � � �˚ �m;

where �i is the real 2–plane bundle corresponding to the orientable characteristic
submanifold Mi �M , so that �i jMi

D �.Mi �M /.

3 Unitary bordism

Here we provide a new set of toric generators for the unitary bordism ring. The general
information about unitary (or complex) bordism can be found in [16].

Elements of the unitary bordism ring ˝U are the complex bordism classes of stably
complex manifolds. A stably complex manifold is a pair .M; cT / consisting of a smooth
manifold M and a stably complex structure cT , where the latter is determined by a
choice of an isomorphism

(3-1) cT W T M ˚RN Š
���! �
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between the stable tangent bundle of M and a complex vector bundle � . We omit cT
in the notation when it is clear from the context. We denote by ŒM � 2˝U the bordism
class of a stably complex manifold M . The sum in ˝U is the disjoint union, and the
product is induced by the Cartesian product of manifolds. The ring ˝U is graded by
the dimension of manifolds.

A complex manifold M (in particular, a toric manifold) has a canonical stably complex
structure arising from the complex structure on T M . An omniorientation of a quasitoric
manifold M gives it a stably complex structure by means of the isomorphism of
Theorem 2.7, because a choice of orientation for each real 2–plane bundle �i is
equivalent to endowing it with a complex structure.

Example 3.1 The canonical stably complex structure on CPn (as a complex manifold)
is given by the isomorphism

T CPn
˚R2

Š x�˚ � � �˚ x� (nC 1 summands).

On the other hand, CPn , viewed as a quasitoric manifold over �n , has nC 1 charac-
teristic submanifolds, and therefore 2nC2 different omniorientations. Each of these
omniorientations gives rise to a stably complex structure, obtained by replacing some
of the line bundles x� above with �, or by reversing the global orientation. Some of
these stably complex structures are equivalent, of course.

We have H�.BU.n//ŠZŒc1; : : : ; cn�, deg ciD2i , where the ci are the universal Chern
characteristic classes. For any sequence ! D .i1; : : : ; in/ of nonnegative integers, there
is the monomial c! D c

i1

1
� � � c

in
n of degree 2k!k D 2

Pn
kD1kik and the corresponding

characteristic class c!.�/ of a complex n–plane bundle � . The corresponding tangential
Chern characteristic number of a stably complex manifold M is defined by c! ŒM �D

c!.T M /hM i. Here hM i is the fundamental homology class of M , and T M is
regarded as a complex bundle via the isomorphism (3-1). The number c! ŒM � is
assumed to be zero when 2k!k ¤ dim M .

Theorem 3.2 Two stably complex manifold M and N represent the same bordism
classes in ˝U if and only if their sets of Chern characteristic numbers coincide.

Another important characteristic class is sn . It is defined as the polynomial in c1; : : : ; cn

obtained by expressing the symmetric polynomial xn
1
C � � �C xn

n via the elementary
symmetric functions �i.x1; : : : ;xn/ and then replacing each �i by ci . Define the
corresponding characteristic number as snŒM �D sn.T M /hM i.

The ring ˝U was described by Milnor and Novikov (see [13], and Stong [16]):

Algebraic & Geometric Topology, Volume 16 (2016)
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Theorem 3.3 The ring ˝U is a polynomial ring on generators in every even degree:

˝U
Š ZŒai ; i > 0�; deg ai D 2i:

Then the bordism class of a stably complex manifold M 2i may be taken to be the
2i –dimensional generator ai if and only if

si ŒM
2i �D

�
˙1 if i C 1¤ ps for any prime p;

˙p if i C 1D ps for some prime p and integer s > 0.

There is no universal description of connected manifolds representing the polynomial
generators an 2˝

U . However, there are known explicit families of manifolds whose
bordism classes generate the whole ring ˝U .

The classical family of generators for the ring ˝U consists of the Milnor hypersur-
faces H.n1; n2/. Each H.n1; n2/ is a hyperplane section of the Segre embedding
CPn1 �CPn2 !CP .n1C1/.n2C1/�1 and may be given explicitly by the equation

z0w0C � � �C zn1
wn1
D 0

in the homogeneous coordinates Œz0 W � � � W zn1
� 2 CPn1 and Œw0 W � � � W wn2

� 2 CPn2 ,
assuming that n1 6 n2 . Also, H.n1; n2/ can be identified with the projectivisation
CP .�/ of a certain n2 –plane bundle over CPn1 . The bundle � is not a sum of line
bundles when n1 > 1, so H.n1; n2/ is not a toric manifold in this case (see [2,
Section 9.1]).

Buchstaber and Ray [5] introduced a family B.n1; n2/ of toric generators of ˝U . Each
B.n1; n2/ is the projectivisation of a sum of n2 line bundles over the bounded flag
manifold BFn1

. Then B.n1; n2/ is a toric manifold, because BFn1
is toric and the

projectivisation of a sum of line bundles over a toric manifold is toric.

We have H.0; n2/D B.0; n2/DCPn2�1 , so

sn2�1ŒH.0; n2/�D sn2�1ŒB.0; n2/�D n2:

Furthermore,

(3-2) sn1Cn2�1ŒH.n1; n2/�D sn1Cn2�1ŒB.n1; n2/�D�
� n1Cn2

n1

�
for n1 > 1I

see [2, Section 9.1] for the details.

We shall need the following two facts from number theory:
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Theorem 3.4 (Lucas) Let p be a prime, and let

nD n0C n1pC � � �C nk�1pk�1
C nkpk ;

mDm0Cm1pC � � �Cmk�1pk�1
Cmkpk

be the base p expansions of positive integers m and n. Then� n

m

�
�

� n0

m0

�� n1

m1

�
� � �

� nk

mk

�
mod p:

Here the standard convention
�
m
n

�
D 0 if m< n is used.

For the proof, see eg [15, Lemma 2.6].

Proposition 3.5 For any integer n> 0, we have

gcd
n� n

i

�
; 0< i < n

o
D

�
1 if n¤ ps for any prime p;

p if nD ps for some prime p and integer s > 0.

Proof Assume nD ps . Then each
�
n
i

�
with 0< i < n is divisible by p . On the other

hand,
� ps

ps�1

�
is not divisible by p2 , eg by Kummer’s theorem.

Now assume n¤ ps . Write the base p expansion

nD n0C n1pC � � �C nk�1pk�1
C nkpk ;

where we may assume nk > 0. Take

i D n0C n1pC � � �C nk�1pk�1
C .nk � 1/pk :

Then i ¤ 0 as otherwise nD pk . By Theorem 3.4,
�
n
i

�
� nk 6� 0 mod p .

The fact that each of the families fŒH.n1; n2/�g and fŒB.n1; n2/�g generates the unitary
bordism ring ˝U follows from (3-2), Proposition 3.5 and Theorem 3.3.

We proceed to describe another family of toric generators for ˝U .

Construction 3.6 Given two positive integers n1 and n2 , we define the manifold
L.n1; n2/ as the projectivisation CP .�˚Cn2/, where � is the tautological line bundle
over CPn1 . This L.n1; n2/ is a particular case of manifolds from Example 2.4, so it
is a projective toric manifold with the corresponding matrix (2-1) given by
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(3-3)

0BBBBBBBBB@

n1‚ …„ ƒ
1 0 0 �1

0
: : : 0

::: 0
0 0 1 �1

1 1 0 0 �1

0 0 0
: : : 0

:::

0 0 0 1 �1„ ƒ‚ …
n2

1CCCCCCCCCA
:

The cohomology ring is given by

(3-4) H�.L.n1; n2//Š ZŒu; v�
ı
.un1C1; vn2C1

�uvn2/

with un1vn2hL.n1; n2/i D 1. There is an isomorphism of complex bundles

(3-5) T L.n1; n2/˚C2
Š p�x�˚ � � �˚p�x�„ ƒ‚ …

n1C1

˚.x ˝p��/˚ x ˚ � � �˚ x„ ƒ‚ …
n2

;

where  is the tautological line bundle over L.n1; n2/ D CP .�˚Cn2/. The total
Chern class is

(3-6) c.L.n1; n2//D .1Cu/n1C1.1C v�u/.1C v/n2

with uD c1.p
�x�/ and vD c1.x /. We also set L.n1; 0/DCPn1 and L.0; n2/DCPn2 ,

then the identities (3-4)–(3-6) still hold.

Lemma 3.7 For n2 > 0, we have

sn1Cn2
ŒL.n1; n2/�D

� n1Cn2

0

�
�

� n1Cn2

1

�
C � � �C .�1/n1

� n1Cn2

n1

�
C n2:

Proof Using (3-6) and (3-4) we calculate

sn1Cn2
.L.n1; n2//D .v�u/n1Cn2Cn2v

n1Cn2

D

�n1Cn2

0

�
vn1Cn2�

�n1Cn2

1

�
uvn1Cn2�1

C� � �

C.�1/n1

�n1Cn2

n1

�
un1vn2Cn2v

n1Cn2

D

��n1Cn2

0

�
�

�n1Cn2

1

�
C� � �C.�1/n1

�n1Cn2

n1

�
Cn2

�
un1vn2 ;

and the result follows by evaluating at hL.n1; n2/i.

Theorem 3.8 The bordism classes ŒL.n1; n2/� 2˝
U
2.n1Cn2/

generate the ring ˝U .
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Proof Assuming ŒL.n1; n2/�D 0 when n1 < 0, we calculate using Lemma 3.7:

sn1Cn2

�
L.n1; n2/� 2L.n1� 1; n2C 1/CL.n1� 2; n2C 2/

�
D .�1/n1�1

�n1Cn2

n1�1

�
C .�1/n1

�n1Cn2

n1

�
� 2.�1/n1�1

�n1Cn2

n1�1

�
D .�1/n1

�n1Cn2C1

n1

�
:

The result follows from Proposition 3.5 and Theorem 3.3.

Theorem 3.8 implies that any unitary bordism class can be represented by a disjoint
union of products of projective toric manifolds. Products of toric manifolds are toric,
but disjoint unions are not, as toric manifolds are connected. In bordism theory, a
disjoint union may be replaced by a connected sum, representing the same bordism
class. However, connected sum is not an algebraic operation, and a connected sum
of two algebraic varieties is rarely algebraic. This can be remedied by appealing to
quasitoric manifolds, as explained next. Recall that an omnioriented quasitoric manifold
has an intrinsic stably complex structure, arising from the isomorphism of Theorem 2.7.
One can form the equivariant connected sum of quasitoric manifolds, as explained
in Davis and Januszkiewicz [8], but the resulting invariant stably complex structure
does not represent the cobordism sum of the two original manifolds. A more intricate
connected sum construction is needed, as outlined below. The details can be found
in [3] or [2, Section 9.1].

Construction 3.9 The construction applies to two omnioriented 2n–dimensional
quasitoric manifolds M and M 0 over n–polytopes P and P 0 respectively. The
connected sum will be taken at the fixed points of M and M 0 corresponding to
vertices v 2 P and v0 2 P 0 . We need to assume that v is the intersection of the first n

facets of P , ie v D F1 \ � � � \Fn , and the corresponding characteristic matrix (2-5)
of M is in the refined form, ie

�D .I j�?/ D

0@1 0 0 �1;nC1 � � � �1;m

0
: : : 0

:::
: : :

:::

0 0 1 �n;nC1 � � � �n;m

1A ;
where I is the unit matrix and �? is an n� .m�n/–matrix. The same assumptions
are made for M 0 , P 0 , v0 and �0 .

The next step depends on the signs of the fixed points, �.v/ and �.v0/. The sign
of v is determined by the omniorientation data; it is C1 when the orientation of
TvM induced from the global orientation of M coincides with the orientation arising
from �1˚ � � �˚ �njv , and is �1 otherwise.
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If �.v/ D ��.v0/, then we take the connected sum M # M 0 at v and v0 . It is a
quasitoric manifold over P # P 0 with the characteristic matrix .�? j I j�0?/.

If �.v/ D �.v0/, then we need an additional connected summand. Consider the
quasitoric manifold S D S2 � � � � � S2 over the n–cube In , where each S2 is the
quasitoric manifold over the segment I with the characteristic matrix .11/. It represents
zero in ˝U , and may be thought of as CP1 with the stably complex structure given by
the isomorphism T CP1˚R2

Šx�˚�: The characteristic matrix of S is therefore .I jI/.
Now consider the connected sum M #S #M 0 . It is a quasitoric manifold over P #In#P 0

with the characteristic matrix .�? j I j I j�0?/.

In either case, the resulting omnioriented quasitoric manifold M # M 0 or M # S # M 0

with the canonical stably complex structure represents the sum of bordism classes
ŒM �C ŒM 0� 2˝U

2n
.

The conclusion, which can be derived from the above construction and any of the toric
generating sets fB.n1; n2/g or fL.n1; n2/g for ˝U , is as follows:

Theorem 3.10 [3] In dimensions > 2, every unitary bordism class contains a qua-
sitoric manifold, necessarily connected, whose stably complex structure is induced by
an omniorientation, and is therefore compatible with the torus action.

4 Special unitary bordism

Basics

A special unitary structure (an SU–structure for short) on a manifold M is a stably
complex structure cT with a choice of an SU–structure on the complex bundle � ;
see (3-1). A stably complex manifold .M; cT / admits an SU–structure if and only
if c1.�/ D 0. Bordism classes of SU-manifolds form the special unitary bordism
ring ˝SU .

The ring structure of ˝SU is more subtle than that of ˝U . Novikov [13] described
˝SU˝Z

�
1
2

�
(it is a polynomial ring). The 2–torsion was described by Conner and

Floyd [7]. For the description of the ring structure in ˝SU (which is not a polynomial
ring, even modulo torsion), see [16]. We shall need the following facts:
Theorem 4.1 (a) The kernel of the forgetful map ˝SU!˝U consists of torsion

elements.

(b) Every torsion element in ˝SU has order 2.

(c) ˝SU˝Z
�

1
2

�
is a polynomial algebra on generators in every even degree > 2:

˝SU
˝Z

�
1
2

�
Š Z

�
1
2

�
Œyi W i > 1�; deg yi D 2i:
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For the further analysis of the ring ˝SU we need to consider an auxiliary ring W ,
apparently named after C T C Wall. We describe it following [7] and [16].

Let @W ˝U
2n
! ˝U

2n�2
be the homomorphism sending a bordism class ŒM 2n� to the

bordism class ŒV 2n�2� of a submanifold V 2n�2 � M dual to c1.M /. There is a
line bundle  over M corresponding to c1.M /, and the restriction of  to V is the
normal bundle �.V � M /. The stably complex structure on V is defined via the
isomorphism T M jV Š T V ˚ �.V �M /. Then V is an SU–manifold, so @2 D 0.
The homomorphism @ is not a derivation of ˝U though; it satisfies the identity

@.a � b/D a � @bC @a � b� ŒCP1� � @a � @b:

Let W2n be the subgroup of ˝U
2n

consisting of bordism classes ŒM 2n� such that every
Chern number of M 2n of which c2

1
is a factor vanishes. The forgetful homomorphism

decomposes as ˝SU
2n
!W2n!˝U

2n
, and the restriction of the boundary homomorphism

@W W2n!W2n�2 is defined.

The direct sum W D
L

i>0 W2i is not a subring of ˝U : one has ŒCP1� 2W2 , but
c2

1
ŒCP1�CP1�D8¤0, so ŒCP1��ŒCP1� 62W4 . However, W becomes a commutative

ring with unit with respect to the twisted product

(4-1) a� b D a � bC 2ŒV 4� � @a � @b;

where � denotes the product in ˝U and where V 4 is a stably complex manifold
with c2

1
ŒV 4�D�1. One may take V 4DCP1�CP1�CP2 with the standard complex

structure, or V 4 DCP2 with the stably complex structure defined by the isomorphism
T CP2˚R2

Š x�˚x�˚ �.

We shall use the notation

mi D

�
1 if i C 1¤ ps for any prime p;

p if i C 1D ps for some prime p and integer s > 0,

so that ŒM 2i � 2˝U
2i

represents a polynomial generator whenever si ŒM
2i �D˙mi .

Theorem 4.2 W is a polynomial ring on generators in every even degree except 4:

W Š ZŒx1;xi W i > 2�; x1 D ŒCP1�; deg xi D 2i;

with si Œxi �Dmimi�1 , and the boundary operator @W W!W , @2 D 0, given by

@x1 D 2; @x2i D x2i�1;

satisfies the identity

@.a� b/D a� @bC @a� b�x1 � @a� @b:
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The forgetful map ˛W ˝SU ! W is a ring homomorphism; this follows from (4-1)
because @˛.x/D 0 for any x 2˝SU .

The fundamental result relating ˝SU and W is as follows:

Theorem 4.3 There is an exact sequence of groups

0 �!˝SU
2n�1

�
�!˝SU

2n

˛
�!W2n

ˇ
�!˝SU

2n�2

�
�!˝SU

2n�1 �! 0;

where � is the multiplication by the generator � 2 ˝SU
1
Š Z2 , ˛ is the forgetful

homomorphism, and ˛ˇ D�@.

Analysing the exact sequence above, one obtains the following information about the
free and torsion parts of ˝SU :

Theorem 4.4 (a) Torsion.˝SU
n /D 0 unless nD 8kC 1 or 8kC 2, in which case

Torsion.˝SU
n / is a Z2 –vector space of rank equal to the number of partitions

of k .

(b) ˝SU
2i
=Torsion is isomorphic to Ker.@W W!W/ if 2i 6� 4 mod 8 and is isomor-

phic to Im.@W W!W/ if 2i � 4 mod 8.

(c) There exist SU–bordism classes w4k 2 ˝
SU
8k

, k > 1, such that Im˛= Im @ Š

Z2Œw4k �: Every torsion element of ˝SU is uniquely expressible in the form P ��

or P � �2 where P is a polynomial in w4k with coefficients 0 or 1.

Note that we have

(4-2) W˝Z
�

1
2

�
Š Z

�
1
2

�
Œx1;x2k�1; 2x2k �x1x2k�1 W k > 1�;

where x2
1
D x1 �x1 is a @–cycle, and each x2k�1 , 2x2k �x1x2k�1 is a @–cycle.

Theorem 4.5 There exist elements yi 2˝
SU
2i

, i > 1, such that si.yi/Dmimi�1 if i

is odd, s2.y2/D�48, and si.yi/D 2mimi�1 if i is even and i > 2. These elements
are mapped as follows under the forgetful homomorphism ˛W ˝SU!W :

y2 7! 2x2
1 ; y2k�1 7! x2k�1; y2k 7! 2x2k �x1x2k�1; k > 1;

where the xi are polynomial generators of W . In particular, ˝SU˝Z
�

1
2

�
embeds into

(4-2) as the polynomial subring generated by x2
1

, x2k�1 and 2x2k �x1x2k�1 .
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Quasitoric SU–manifolds

Omnioriented quasitoric manifolds whose stably complex structures are SU can be
detected using the following simple criterion:

Proposition 4.6 [4] An omnioriented quasitoric manifold M has c1.M /D 0 if and
only if there exists a linear function 'W Zn! Z such that '.�i/D 1 for i D 1; : : : ;m.
Here the �i are the columns of matrix (2-5).

In particular, if some n vectors of �1; : : : ; �m form the standard basis e1; : : : ; en ,
then M is SU if and only if the column sums of � are all equal to 1.

Proof By Theorem 2.7, c1.M /D v1C � � �C vm . By Theorem 2.6, v1C � � �C vm is
zero in H 2.M / if and only if

v1C � � �C vm D

X
i

'.�i/vi

for some linear function 'W Zn! Z, whence the result follows.

Corollary 4.7 A toric manifold V cannot be SU.

Proof If '.�i/D 1 for all i , then the vectors �i lie in the positive halfspace of ' , so
they cannot span a complete fan.

A more subtle result also rules out low-dimensional quasitoric manifolds:

Theorem 4.8 [4, Theorem 6.13] A quasitoric SU–manifold M 2n represents 0

in ˝U
2n

whenever n< 5.

The reason for this is that the Krichever genus 'KW ˝
U!RK vanishes on quasitoric

SU–manifolds, but 'K is an isomorphism in dimensions < 10.

Examples of quasitoric SU–manifolds representing nonzero bordism classes in ˝U
2n

for all n > 5, except n D 6, were constructed in [11]. We modify this construction
to present two particular families of quasitoric SU–manifolds representing nonzero
bordism classes in ˝U

2n
for all n > 5, including nD 6.

Construction 4.9 Assume that n1D 2k1 is positive even and n2D 2k2C1 is positive
odd, and consider the manifold L.n1; n2/ from Construction 3.6. We change the stably
complex structure (3-5) to the following:

T L.n1; n2/˚R4

Š p�x�˚p��˚ � � �˚p�x�˚p��„ ƒ‚ …
2k1

˚p�x�˚ .x ˝p��/˚ x ˚  ˚ � � �˚ x ˚ „ ƒ‚ …
2k2

˚
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and denote the resulting stably complex manifold by zL.n1; n2/. Its cohomology ring
is given by the same formula (3-4), but

(4-3) c. zL.n1; n2//D .1�u2/k1.1Cu/.1C v�u/.1� v2/k2.1� v/;

so zL.n1; n2/ is an SU–manifold of dimension

2.n1C n2/D 4.k1C k2/C 2:

Viewing L.n1; n2/ as a quasitoric manifold with the omniorientation coming from the
complex structure, we see that changing a line bundle �i in (2-6) to its conjugate results
in changing �i to ��i in (2-5). By applying this operation to the corresponding columns
of (3-3) and then multiplying from the left by an appropriate matrix from GL .n;Z/,
we obtain that zL.n1; n2/ is the omnioriented quasitoric manifold over �n1 ��n2

corresponding to the matrix

0BBBBBBBBBBBBBBBBBB@

n1 D 2k1‚ …„ ƒ
1 0 0 � � � 0 1

0 1 0 � � � 0 �1
:::
: : :

: : :
: : :

:::
::: 0

0 0 0 1 0 1

0 0 0 0 1 �1

1 1 0 � � � 0 1

0 1 � � � 0 �1

0 :::
: : :

: : : 0
:::

0 0 0 1 1„ ƒ‚ …
n2 D 2k2C 1

1CCCCCCCCCCCCCCCCCCA

:

The column sums of this matrix are 1 by inspection.

Construction 4.10 The previous construction can be iterated by considering projec-
tivisations of sums of line bundles over L.n1; n2/. We shall need just one particular
family of this sort.

Given positive even n1 D 2k1 and odd n2 D 2k2 C 1, consider the omnioriented
quasitoric manifold zN .n1; n2/ over �1 ��n1 ��n2 with the characteristic matrix
shown in Figure 1. The column sums are 1 by inspection, so zN .n1; n2/ is a quasitoric
SU–manifold of dimension 2.1C n1C n2/D 4.k1C k2/C 4.

It can be seen that zN .n1; n2/ is a projectivisation of a sum of n2C1 line bundles over
CP1 �CPn1 with an amended stably complex structure.
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0BBBBBBBBBBBBBBBBBBBBB@

1 1

1 0 0 � � � 0 1

0 1 0 � � � 0 �1

0 :::
: : :

: : :
: : :

:::
::: 0

0 0 0 1 0 1

0 0 0 0 1 �1„ ƒ‚ …
�1 n1 D 2k1 0 1 0 0 � � � 0 1

1 0 0 1 0 � � � 0 �1

0 1 0 0 1 � � � 0 1

0 :::
:::
:::
: : :

:::
:::

0 0 0 0 1 1„ ƒ‚ …
n2 D 2k2C 1

1CCCCCCCCCCCCCCCCCCCCCA

:

Figure 1: Characteristic matrix for the omnioriented quasitoric manifold
zN .n1; n2/ over �1 ��n1 ��n2

The cohomology ring given by Theorem 2.6 is

(4-4) H�. zN .n1; n2//Š ZŒu; v; w�
ı�

u2; vn1C1; .w�u/2.vCw/wn2�2
�

with uvn1wn2h zN .n1; n2/i D 1. The total Chern class is

(4-5) c. zN .n1; n2//D .1�v
2/k1.1Cv/.1�.w�u/2/.1�v�w/.1�w2/k2�1.1Cw/:

Quasitoric representatives for polynomial generators of ˝SU ˝ Z
�

1
2

�
Our goal is to show that elements yi 2˝

SU
2i

described in Theorem 4.5 can be represented
by quasitoric SU–manifolds when i > 5. This will be done by calculating the char-
acteristic numbers of zL.n1; n2/ and zN .n1; n2/ and then checking several divisibility
conditions for binomial coefficients. We shall need the following generalisation of
Lucas’ theorem:

Theorem 4.11 [9, Theorem 1] Suppose that prime power pq and positive integers
mD nC r are given. Write

nD n0C n1pC � � �C nk�1pk�1
C nkpk

in base p , and let

Nj D nj C njC1pC � � �C njCq�1pq�1; j > 0:
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Also make the corresponding definitions for mj , Mj , rj , Rj . Let ej be the number of
indices i > j for which ni <mi . Then

1

pe0

� n

m

�
� .˙1/eq�1

N0!p

M0!p R0!p
�

N1!p

M1!p R1!p
� � �

Nk !p

Mk !p Rk !p
mod pq;

where ˙1 is �1 except if p D 2 and q > 3, and n!p denotes the product of those
positive integers 6 n that are not divisible by p .

Lemma 4.12 For n1 D 2k1 > 0 and n2 D 2k2C 1> 0, we have

sn1Cn2

�
zL.n1; n2/

�
D�

� n1Cn2

1

�
C

� n1Cn2

2

�
� � � � �

� n1Cn2

n1�1

�
C

� n1Cn2

n1

�
:

Proof Using (4-3) and (3-4) we calculate

sn1Cn2

�
zL.n1; n2/

�
D .v�u/n1Cn2 C .k2C 1/.�1/n1Cn2vn1Cn2 C k2v

n1Cn2

D .v�u/n1Cn2 � vn1Cn2

D

�
�

�n1Cn2

1

�
C

�n1Cn2

2

�
� � � � �

�n1Cn2

n1�1

�
C

�n1Cn2

n1

��
un1vn2 ;

and the result follows by evaluating at h zL.n1; n2/i.

Note that s3. zL.2; 1// D 0 in accordance with Theorem 4.8. On the other hand,
s2Cn2

. zL.2; n2//¤ 0 for n2 > 1, providing an example of a non-bounding quasitoric
SU–manifold in each dimension 4kC 2 with k > 1.

Lemma 4.13 For k > 1, there is a linear combination y2kC1 of SU–bordism classes
Œ zL.n1; n2/� with n1C n2 D 2kC 1 such that s2kC1.y2kC1/Dm2kC1m2k .

Proof By the previous lemma,

sn1Cn2

�
zL.n1; n2/� zL.n1� 2; n2C 2/

�
D

� n1Cn2

n1

�
�

� n1Cn2

n1�1

�
:

The result follows from the next lemma.

Lemma 4.14 For any integer k > 1, we have

gcd
n� 2kC1

2i

�
�

� 2kC1

2i�1

�
; 0< i 6 k

o
Dm2kC1m2k :

Remark This result has been obtained independently in a recent work of Buchstaber
and Ustinov on the coefficient rings of universal formal group laws [6, Section 9].
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Proof of Lemma 4.14 We need to establish the following two facts:

(a) The largest power of 2 which divides each number
�
2kC1

2i

�
�
�
2kC1
2i�1

�
with

0< i 6 k is 2 if 2kC 2D 2s and is 1 otherwise.

(b) The largest power of odd prime p which divides each number
�
2kC1

2i

�
�
�
2kC1
2i�1

�
with 0< i 6 k is p if 2kC 1D ps and is 1 otherwise.

We prove (a) first.

Case 1 (2kC 2D 2s ) Then s > 2, as k > 1. For 0< i 6 k , we have� 2kC1

2i

�
�

� 2kC1

2i�1

�
�

� 2s�1

2i

�
C

� 2s�1

2i�1

�
D

� 2s

2i

�
� 0 mod 2

by Proposition 3.5. On the other hand,� 2s�1

2

�
�

� 2s�1

1

�
D .2s

� 1/.2s�1
� 1� 1/D 2.2s

� 1/.2s�2
� 1/ 6� 0 mod 4:

Case 2 (2kC 2¤ 2s ) Write the base 2 expansion

2kC 2D n12C � � �C nl�12l�1
C 2l

with ni D 1 or 0. Set 2i D n12 C � � � C nl�12l�1 . Then we have 2i ¤ 0, as
otherwise 2kC 2D 2l . Then

�
2kC1

2i

�
�
�
2kC1
2i�1

�
�
�
2kC2

2i

�
� 1 mod 2 by Theorem 3.4.

Now we prove (b).

Case 1 (2k C 1 D ps ) Then
�
2kC1

2i

�
�
�
2kC1
2i�1

�
� 0 mod p for 0 < i 6 k by

Proposition 3.5. On the other hand, setting 2i D ps�1C 1, we get�2kC1

2i

�
�

�2kC1

2i�1

�
D

2k�4iC2

2i

�2kC1

2i�1

�
D

ps�2ps�1�1

ps�1C1

� ps

ps�1

�
6� 0 mod p2:

This follows from the fact that ps�2ps�1�1> 0 as k > 1, and
� ps

ps�1

�
is not divisible

by p2 by Kummer’s theorem.

Case 2 (2kC 1¤ ps ) Write the base p expansion

2kC 1D n0C n1pC � � �C nl�1pl�1
C nlp

l

with 0 6 ni 6 p� 1 (for i D 0; : : : ; l ) and nl > 0.

Assume that n0 > 1. Then we set

2i D n0C n1pC � � �C nl�1pl�1
C .nl � 1/pl :
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We have
�
2kC1

2i

�
� nl mod p by Theorem 3.4. Also,

2i � 1D .n0� 1/C n1pC � � �C nl�1pl�1
C .nl � 1/pl > 0

and
�
2kC1
2i�1

�
� nln0 mod p . Therefore,

�
2kC1

2i

�
�
�
2kC1
2i�1

�
� nl.1� n0/ 6� 0 mod p .

Assume that n0 D 1. Then we set 2i D 2k . We have� 2kC1

2k

�
D 2kC 1� 1 mod p and

� 2kC1

2k�1

�
D k.2kC 1/� 0 mod p;

so that � 2kC1

2k

�
�

� 2kC1

2k�1

�
6� 0 mod p:

Finally, assume that n0 D 0. Then we set

2i D n0C n1pC � � �C nl�1pl�1
C .nl � 1/pl

D nqpq
C � � �C nl�1pl�1

C .nl � 1/pl ;

where q > 0 and nq > 0. We have 2i > 0, as otherwise 2k C 1 D pl . Then�
2kC1

2i

�
� nl mod p . Also,

2i�1D .p�1/C.p�1/pC� � �C.p�1/pq�1
C.nq�1/pq

C� � �Cnl�1pl�1
C.nl�1/pl ;

and
�
2kC1
2i�1

�
� 0 mod p by Theorem 3.4. Therefore,

�
2kC1

2i

�
�
�
2kC1
2i�1

�
6� 0 mod p .

Now we turn our attention to the manifolds zN .n1; n2/ from Construction 4.10.

Lemma 4.15 For n1 D 2k1 > 0 and n2 D 2k2 C 1 > 0, set n D n1 C n2 C 1, so
that dim zN .n1; n2/D 2nD 4.k1C k2C 1/. Then

sn

�
zN .n1; n2/

�
D 2

�
�

� n

1

�
C

� n

2

�
� � � � �

� n

n1�1

�
C

� n

n1

�
� n1

�
:

Proof Using (4-5) and (4-4) we calculate

(4-6) sn

�
zN .n1; n2/

�
D 2.w�u/nC .vCw/nC .2k2� 1/wn

D 2wn
� 2nuwn�1

Cwn
C

�n

1

�
vwn�1

C � � �

C

� n

2k1

�
v2k1w2k2C2

C .2k2� 1/wn

D�2nuwn�1
C .n� n1/w

n
C

�n

1

�
vwn�1

C � � �C

� n

n1

�
vn1wn�n1 :
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Now we have to express each monomial above via uvn1wn2 using the identities in
(4-4), namely

(4-7) u2
D 0; vn1C1

D 0; wn2C1
D 2uwn2 � vwn2 C 2uvwn2�1:

We have

uwn�1
D uwn1�1wn2C1

D uwn1�1.2uwn2 � vwn2 C 2uvwn2�1/(4-8)

D�uvwn�2
D � � � D .�1/j uvjwn�j�1

D � � � D uvn1wn2 :

Also, we show that

(4-9) vjwn�j
D .�1/j 2uvn1wn2 ; 0 6 j 6 n1;

by verifying the identity successively for j D n1; n1� 1; : : : ; 0. Indeed,

vn1wn�n1 D vn1wn2C1
D 2uvn1wn2

by (4-7). Now, we have

vj�1wn�jC1
D vj�1wn1C1�jwn2C1

D vj�1wn1C1�j .2uwn2�vwn2C2uvwn2�1/

D 2uvj�1wn�j
� vjwn�j

C 2uvjwn�1�j
D�vjwn�j ;

where the last identity holds because of (4-8). The identity (4-9) is therefore verified
completely. Plugging (4-8) and (4-9) into (4-6) we obtain

sn

�
zN .n1; n2/

�
D

�
�2nC 2.n� n1/� 2

�n

1

�
C 2

�n

2

�
� � � � � 2

� n

n1�1

�
C 2

� n

n1

��
uvn1wn2 :

The result follows by evaluating at h zN .n1; n2/i.

Note that s4. zN .2; 1// D 0 in accordance with Theorem 4.8. On the other hand,
sn. zN .2; n2//D n2� 3n� 4> 0 for n> 4, providing an example of a non-bounding
quasitoric SU–manifold in each dimension 4k with k > 2. This includes a 12–
dimensional quasitoric SU–manifold zN .2; 3/, which was missing in [11].

Lemma 4.16 For k > 2, there is a linear combination y2k of SU–bordism classes
Œ zN .n1; n2/� with n1C n2C 1D 2k such that s2k.y2k/D 2m2km2k�1 .

Proof The result follows from Lemma 4.15 and Lemmata 4.17 and 4.18 below.

Lemma 4.17 For k > 2, the largest power of 2 which divides each number

ai D�

� 2k

1

�
C

� 2k

2

�
� � � � �

� 2k

2i�1

�
C

� 2k

2i

�
� 2i; 0< i < k;

is 2 if 2k D 2s and is 1 otherwise.
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Proof First assume that 2k D 2s . Then ai � 0 mod 2 by Proposition 3.5. On the
other hand, we have

a1 D�2s
C 2s�1.2s

� 1/� 2 6� 0 mod 4;

because s > 2.

Now assume that 2k ¤ 2s . We have ai � ai�1 �
�
2k
2i

�
mod 2, so it is enough to find i

such that
�
2k
2i

�
¤ 0 mod 2. This was done in the proof of Lemma 4.14.

Lemma 4.18 For k > 2, the largest power of odd prime p which divides each

ai D�

� 2k

1

�
C

� 2k

2

�
C � � � �

� 2k

2i�1

�
C

� 2k

2i

�
� 2i; 0< i < k;

is p if 2kC 1D ps and is 1 otherwise.

Proof Using the identity

2C

2k�1X
jD1

.�1/j
� 2k

j

�
D 0

we obtain ak�1 D 0 and

(4-10) ai C ak�i�1 D

� 2k

2iC1

�
� 2k; 0< i < k � 1:

Case 1 (2kC 1D ps ) We have� 2k

2iC1

�
D

�ps�1

2iC1

�
D

�ps�1

2i�1

�.ps � 2i/.ps � 2i � 1/

2i.2i C 1/
��1 mod p

by induction starting from i D 0. Therefore,

ai D ai�1�

� 2k

2i�1

�
C

� 2k

2i

�
� 2D ai�1C

ps � 4i

2i

�ps�1

2i�1

�
� 2� 0 mod p

by induction starting from a0 D 0. In view of (4-10), it suffices to find i , where
0< i < k � 1, such that � 2k

2iC1

�
� 2k 6� 0 mod p2:

If s D 1, then p > 5 as k > 2. We set 2i C 1D 3, so that� 2k

2iC1

�
� 2k D

�p�1

3

�
� .p� 1/D

p.p� 1/.p� 5/

6
6� 0 mod p2:
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Now assume that s > 1. We set 2i C 1 D ps�1 and use Theorem 4.11 to calculate�
2k

2iC1

�
mod p2 . In the notation of Theorem 4.11, we have q D 2,

nD ps
� 1D n0C n1pC � � �C ns�2ps�2

C ns�1ps�1

D .p� 1/C .p� 1/pC � � �C .p� 1/ps�2
C .p� 1/ps�1;

N0 D � � � DNs�2 D p2
� 1; Ns�1 D p� 1;

mD ps�1
Dm0Cm1pC � � �Cms�2ps�2

Cms�1ps�1;

M0 D � � � DMs�3 D 0; Ms�2 D p; Ms�1 D 1;

r D ps
�ps�1

� 1D r0C r1pC � � �C rs�2ps�2
C rs�1ps�1

D .p� 1/C .p� 1/pC � � �C .p� 1/ps�2
C .p� 2/ps�1;

R0 D � � � DRs�3 D p2
� 1; Rs�2 D p2

�p� 1; Rs�1 D p� 2;

and e0 D e1 D 0. Therefore, Theorem 4.11 gives�ps�1

ps�1

�
�

.p2� 1/!p

p!p .p2�p� 1/!p
�
.p� 1/!p

1!p .p� 2/!p
D
.p2� 1/ � � � .p2�pC 1/

.p� 1/!
� .p� 1/

� p� 1 mod p2;

and we obtain � 2k

2iC1

�
� 2k D

�ps�1

ps�1

�
� .ps

� 1/� p mod p2:

Case 2 (2kC 1¤ ps ) In view of (4-10), it suffices to find i , where 0< i < k � 1,
such that

�
2k

2iC1

�
� 2k 6� 0 mod p . Write the base p expansion

2k D n0C n1pC � � �C nl�1pl�1
C nlp

l

with 0 6 ni 6 p� 1 (for i D 0; : : : ; l ) and nl > 0. We have 2k � n0 mod p .

Assume that n0 D 0. Then we set

2i C 1D n0C n1pC � � �C nl�1pl�1
C .nl � 1/pl :

We have
�

2k
2iC1

�
� 2k � nl 6� 0 mod p .

Assume that 0< n0 <p�2. If 2k <p , then n0D 2k > 5. We set 2iC1D 3, so that

(4-11)
� 2k

2iC1

�
� 2k �

� n0

3

�
� n0 D

n0.n0� 4/.n0C 1/

6
6� 0 mod p:
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If 2k > p , then we set

2i C 1D

�
n0C 1 if n0 is even;
n0C 2 if n0 is odd.

We have 2i C 1< 2k and
�

2k
2iC1

�
� 2k ��n0 6� 0 mod p .

Assume that n0 D p� 2. If p D 3, then n0 D 1. We set 2i C 1D 5< 2k , so that� 2k

2iC1

�
� 2k �

� n0

2

�� n1

1

�
� 1D�1 6� 0 mod p:

If p > 3, then we set 2i C 1D 3, so that
�

2k
2iC1

�
� 2k 6� 0 mod p by (4-11).

Assume that n0 D p� 1 and nl < p� 1. Then we set

2i C 1D n0C n1pC � � �C nl�1pl�1
C .nl � 1/pl :

We have
�

2k
2iC1

�
� 2k � nl � n0 6� 0 mod p .

Finally, assume that n0 D p � 1 and nl D p � 1. As 2k ¤ ps � 1, there exists j ,
where 0< j < l , such that nj < p� 1. Then we set

2i C 1D n0C n1pC � � �C nj�1pj�1
C .nj C 1/pj :

We have 2i C 1< 2k and
�

2k
2iC1

�
� 2k ��n0 6� 0 mod p .

We now can prove our main result:

Theorem 4.19 There exist quasitoric SU–manifolds M 2i , i > 5, with si.M
2i/ D

mimi�1 if i is odd and si.M
2i/D 2mimi�1 if i is even. These quasitoric manifolds

represent polynomial generators of ˝SU˝Z
�

1
2

�
.

Proof It follows from Lemmata 4.13 and 4.16 that there exist linear combinations of
SU–bordism classes represented by quasitoric SU–manifolds with the required proper-
ties. We observe that application of Construction 3.9 to two quasitoric SU–manifolds
M and M 0 produces a quasitoric SU–manifold representing their bordism sum. Also,
the SU–bordism class �ŒM � can be represented by the omnioriented quasi-toric
SU–manifold obtained by reversing the global orientation of M . Therefore, we can
replace the linear combinations obtained using Lemmata 4.13 and 4.16 by appropriate
connected sums, which are quasitoric SU–manifolds.
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Concluding remarks

By analogy with Theorem 3.10, we may ask the following:

Question 4.20 Which SU–bordism classes of dimension > 8 can be represented by
quasitoric SU–manifolds?

Theorem 4.19 provides quasitoric representatives for the elements yi 2˝
SU
2i

described
in Theorem 4.5 for i > 5. The elements y2 , y3 , y4 cannot be represented by quasitoric
manifolds because of Theorem 4.8. Any polynomial in these elements cannot be repre-
sented by a quasitoric manifold for the same reason: the Krichever genus 'KW ˝

U!RK

vanishes on quasitoric SU–manifolds, but 'K is nonzero on any polynomial in y2 , y3 ,
and y4 . We thank Michael Wiemeler for this observation.

The element x2
1
2 W4 (see Theorem 4.2) is represented by 9 CP1 �CP1 � 8CP2 ,

which is also the bordism class of a toric manifold over a 12–gon, with characteristic
numbers c2

1
D 0 and c2 D 12 (so s2 D �24). The element y2 D 2x2

1
2 ˝SU

4
is

represented by a K3 surface, but not by a toric manifold.

The 6–sphere S6 has a T 2 –invariant almost complex structure as the homogeneous
space G2=SU.3/ of the exceptional Lie group G2 (see [1]), and therefore represents an
SU–bordism class in ˝SU

6
. Its characteristic numbers are c3

1
D c1c2 D 0 and c3 D 2.

Therefore, s3ŒS
6�D 6Dm3m2 , so S6 represents y3 2˝

SU
6

.

It would be interesting to find good geometric representatives for y4 2 ˝
SU
8

, and
also for the elements w4k 2˝

SU
8k

that control the 2–torsion in Theorem 4.4(c). The
image of w4k under the forgetful homomorphism ˛W ˝SU

8k
! W8k is x4k

1
, so it is

decomposable in ˝U and has s4k Œw4k � D 0. The conditions on the characteristic
numbers specifying w4k are given in [7, (19.3)].
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Higher rank lattices are not coarse median

THOMAS HAETTEL

We show that symmetric spaces and thick affine buildings which are not of spherical
type Ar

1 have no coarse median in the sense of Bowditch. As a consequence, they
are not quasi-isometric to a CAT.0/ cube complex, answering a question of Haglund.
Another consequence is that any lattice in a simple higher rank group over a local
field is not coarse median.

20F65, 51E24, 51F99, 53C35

Introduction

A metric space .X; d/ is called metric median if for each .x; y; z/ 2 X3 , the three
intervals I.x; y/, I.y; z/ and I.x; z/ intersect in a single point, where the interval
I.x; y/ is given by fp 2 X j d.x; p/C d.p; y/ D d.x; y/g. This point is called the
median of x , y and z . The rank of .X; d/ is then defined as the maximal dimension r
of an embedded cube f0; 1gr . The relationship between groups and median metric
spaces is rich and has been studied through many points of view, such as the Haagerup
property, property (T), actions on a CAT.0/ cube complex, and actions on a space
with (measured) walls. (See Chepoi [12], Chatterji, Drut,u and Haglund [8], Chatterji,
Fernós and Iozzi [9], Chatterji and Niblo [10], and Bowditch [5; 6], for example.)

Bowditch recently introduced the notion of a coarse median on a metric space (see [3]),
in order to gather in the same setting CAT.0/ cube complexes and Gromov hyperbolic
spaces. A metric space is Gromov-hyperbolic if and only if every finite subset admits
a good metric comparison with a tree (see for instance Ghys and de la Harpe [14,
Théorème 12, page 33]). Bowditch’s definition of a coarse median is having a good
metric comparison of every finite subset with a metric median space, or equivalently
with a CAT.0/ cube complex according to Chepoi (see [12]).

Definition (Bowditch) Let .X; d/ be a metric space. A map �!X3!X is called
a coarse median if there exist k 2 Œ0;C1/ and h!N! Œ0;C1/ such that:

� For all a; b; c; a0; b0; c0 2X , we have

d
�
�.a; b; c/; �.a0; b0; c0/

�
6 k

�
d.a; a0/C d.b; b0/C d.c; c0/

�
C h.0/:
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� For each finite nonempty set A�X , with jAj6 p , there exists a finite median
algebra .…;�…/ and maps � W A ! … and �W … ! X such that for every
x; y; z 2X , we have

d.��….x; y; z/; �.�x; �y; �z//6 h.p/;

and for every a 2 A, we have d.a; �.�.a///6 h.p/.

If … can be chosen (independently of p ) to have rank at most r , we say that � has
rank at most r .

A finitely generated group is said to be coarse median if some Cayley graph has a
coarse median (not necessarily equivariant under the group action). Bowditch showed
that a coarse median group is finitely presented, and has at most quadratic Dehn
function (see [3, Corollary 8.3]). Furthermore, Chatterji and Ruane’s criterion (see
[11]) applies to show that a coarse median group of finite rank has the rapid decay
(RD) property (see [5, Theorem 9.1]). Moreover, if a group has a coarse median of rank
at most r , there is no quasi-isometric embedding of RrC1 into that group. Bowditch
also showed that the existence of a coarse median is a quasi-isometry invariant, that
a group is Gromov hyperbolic if and only if it is coarse median of rank 1, and that
a group hyperbolic relative to coarse median groups is itself coarse median (see [4]).
Furthermore, Bowditch showed that the mapping class group of a surface of genus g
with p punctures is coarse median of rank 3g� 3Cp , hereby recovering Behrstock
and Minsky’s result that the mapping class group has property (RD) (see [2]), and the
rank theorem (see Hammenstädt [16] and Behrstock and Minsky [1]).

Since most known examples of coarse median groups have some nonpositive curvature
features, Bowditch asked in [3] whether higher rank symmetric spaces, or even CAT.0/
spaces, admit coarse medians. In this article, we give a negative answer to this question.

Theorem A Let X be a thick affine building of spherical type different from Ar
1 .

There is no locally convex Lipschitz median on X .

By considering asymptotic cones and using work of Kleiner and Leeb, and of Bowditch,
we deduce the following:

Theorem B Let X be a symmetric space of noncompact type, or a thick affine building,
of spherical type different from Ar

1 . Then X has no coarse median.

A consequence of this result is the classification of symmetric spaces of noncompact
type and affine buildings which are coarse median.

Algebraic & Geometric Topology, Volume 16 (2016)
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Theorem C Let X be a symmetric space of noncompact type, or a thick affine building.
There exists a coarse median on X if and only if the spherical type of X is Ar

1 .

Note that the coarse median is not assumed to be equivariant by any group.

Haglund asked if a higher rank symmetric space or affine building is quasi-isometric to
a CAT.0/ cube complex, and we give a negative answer:

Theorem D Let X be a symmetric space of noncompact type, or a discrete, thick
affine building. Then X is quasi-isometric to a CAT.0/ cube complex if and only if the
spherical type of X is Ar

1

Note that the CAT.0/ cube complex is not assumed to be of finite dimension, and it
could also be endowed with the Lp distance for any p 2 Œ1;1�.

Also note that Theorem D still holds if we consider nondiscrete thick affine buildings
and nondiscrete CAT.0/ cube complexes.

Furthermore, for uniform lattices in semisimple Lie groups, property (RD) implies
the Baum–Connes conjecture without coefficient (see Lafforgue [20]). Property (RD)
has been proved notably for uniform lattices in SL.3;K/, where K is a local field
(see Ramagge, Robertson and Steger [23], Lafforgue [21] and Chatterji [7]). Valette
conjectured that uniform lattices in semisimple Lie groups satisfy property (RD). Since
being coarse median implies property (RD), one could ask if this could be a way to
prove property (RD) for higher rank uniform lattices. Even though it might follow
from [23] that looking only at coarse medians is not enough for SL.3;K/, the following
makes it clear.

Theorem E Let K be a local field, let G be the group of K–points of a simple
algebraic group without compact factors and let � be a lattice in G . If � is coarse
median, then G has K–rank 1.

Note that, due to property (T), higher rank lattices do not admit unbounded actions on
median metric spaces (see [8]). But in the coarse median setting this is not a consequence
of property (T), since, for instance, every hyperbolic group with property (T) is coarse
median.

In the K–rank 1 case, finding which nonuniform lattices are coarse median is harder.
Here we summarize what is known.

Proposition F Let K be a local field, let G be the group of K–points of a simple
algebraic group without compact factors of K–rank 1, and let � be a lattice in G .

Algebraic & Geometric Topology, Volume 16 (2016)
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� If � is uniform in G , then � is coarse median.
� If G is locally isomorphic to SO0.n; 1/ for some n> 2, then � is coarse median.
� If G is locally isomorphic to SU.2; 1/, then � is not coarse median.

In the proof of Theorem A, we establish the following result, which is of independent
interest:

Proposition G Let X be a connected metric space, with a Lipschitz locally convex
median of rank r . There exists a median, bi-Lipschitz embedding of the r –cube Œ0; 1�r

into X with convex image.

Organization of the paper In Section 1, we recall the general definitions of median
algebras. In Section 2, we recall work of Kleiner and Leeb and of Bowditch on
asymptotic cones, and we prove that Theorem A implies Theorems B and C.

Sections 3 and 4 are devoted to the proof of Theorem A. We consider a thick affine
building X which has a locally convex Lipschitz median. In Section 3 we prove
Proposition G, which provides us with a convex cube in X . In Section 4, by considering
a tangent cone of X in the cube we can assume that some apartment F of X is
isomorphic to a vector space with the standard L1 median. Considering singular
geodesics in F , we prove that X has spherical type Ar

1 .

Finally in Section 5, we prove the main consequences of Theorem C, which are
Theorem D, Theorem E and Proposition F.
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would like to thank the anonymous referee, who made insightful comments and ex-
plained the subtlety of the rank one case. The author would also like to thank Linus
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this work. The author would also like to thank Samuel Tapie and Jean Lécureux, for
interesting discussions at an early stage of this work.

1 Median algebras

Definition 1.1 Let X be a set. A map �W X3!X is called a median on X if for all
a; b; c; d; e in X , it satisfies

�.a; b; c/D �.b; a; c/D �.b; c; a/; ie � is symmetric;

�.a; a; b/D a;

�.a; b; �.c; d; e//D �.�.a; b; c/; �.a; b; d/; e/:(1)
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The pair .X; �/ is called a median algebra.

Remark � There is a unique median on the set f0; 1g.

� We can consider the product median on the n–cube f0; 1gn .

Definition 1.2 Let .X; �/ and .X 0; �0/ be median algebras. A map f W X ! X 0 is
called median if for every x; y; z 2X , we have �0.f .x/; f .y/; f .z//D f .�.x; y; z//.
If furthermore f is injective, it is called a median embedding.

Definition 1.3 Let .X; �/ be a median algebra. If every median embedding of an
n–cube f0; 1gn!X satisfies n6 r , we say that X has rank at most r .

Definition 1.4 Let .X; �/ be a median algebra. If a; b 2X , the interval between a
and b is I.a; b/D fc 2 X j�.a; b; c/D cg. A subset C � X is called convex if for
every a; b 2 C , we have I.a; b/� C .

If .X; d/ is a metric space, a weakening of the notion of metric median is the following:

Definition 1.5 Let .X; d/ be a metric space. An abstract median � on X is called

� continuous if �W X3!X is a continuous map,

� Lipschitz if there exists a constant k 2 Œ0;C1/ such that � is k–Lipschitz with
respect to each variable, ie for every a; b; c; a0; b0; c0 2X , we have

d
�
�.a; b; c/; �.a0; b0; c0/

�
6 k

�
d.a; a0/C d.b; b0/C d.c; c0/

�
;

� locally convex if each point of X has a basis of neighborhoods consisting of
convex subsets of X .

Here is an example of a continuous median on R2 which is not Lipschitz: consider the
image � of the standard L1 median by some non-Lipschitz diffeomorphism of R2 .
If we consider R2 with the standard L1 distance and the new median �, then � is a
continuous (even differentiable) median, but it is not Lipschitz.

Definition 1.6 Let .X; d/ be a metric space, let � be a continuous median on X ,
and let C � X be a nonempty closed, locally compact convex subset of X . Then
for each x 2 X , there exists a unique �C .x/ 2 C , called the gate projection of x
onto C , such that for every y 2 C , we have �C .x/ 2 I.x; y/. The map �C W X ! C

is called the gate projection, it is a continuous map. If � is k–Lipschitz, then �C is a
k–Lipschitz map.

Algebraic & Geometric Topology, Volume 16 (2016)
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Now we recall the definition of walls in a median algebra.

Definition 1.7 Let .X; �/ be a median algebra. Then a wall in X is defined to be
a pair W D fHC.W /;H�.W /g, where HC.W / and H�.W / are nonempty convex
disjoint subsets of X whose union is equal to X .

Lemma 1.8 [3, Lemma 6.1] Let .X; �/ be a median algebra, and let A;B be disjoint
convex subsets of M . There exists a wall W D fHC.W /;H�.W /g in X separating
A from B , ie such that A�H˙.W / and B �H�.W /.

Lemma 1.9 [3, Lemma 7.3] Let .X; d/ be a metric space, and let � be a contin-
uous locally convex median on X . Let a; b be distinct points of X . There exists
a wall W D fHC.W /;H�.W /g in X strongly separating a from b , ie such that
a 2XnH�.W / and b 2XnHC.W /.

Lemma 1.10 [3, Lemma 7.5] Let X be a metric space, and let � be a continuous
locally convex median on X . For each wall W DfHC.W /;H�.W /g in X , the subset
L.W / D HC.W /\H�.W / is a convex median subalgebra of X , of rank at most
r � 1 if the rank of � is r .

2 Ultralimits of spaces and coarse medians

In [18], Kleiner and Leeb developed a geometric definition of spherical and affine
buildings, and in particular they studied their asymptotic cones.

Theorem 2.1 [18, Theorem 1.2.1] Let X be a symmetric space of noncompact type
or a thick affine building. Then any asymptotic cone of X is a thick affine building of
the same spherical type as X .

They also proved that any tangent cone of an affine building is an affine building:

Theorem 2.2 [18, Theorem 5.1.1] Let .X; d/ be an affine building, let ! be a
nonprincipal ultrafilter on N , let .xn/n2N be a sequence in X and let .�n/n2N be
a sequence in .0;C1/ such that lim! �n D C1. Letting .X1; d1; x1/ be the
!–ultralimit of .Xn; �nd; xn/, then .X1; d1/ is an affine building. Furthermore,
if X is thick, then X1 is thick. The affine Weyl group of X1 acts transitively on each
apartment of X1 .

One motivation for Bowditch’s definition of coarse median is that it behaves well when
one considers asymptotic cones.

Algebraic & Geometric Topology, Volume 16 (2016)
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Theorem 2.3 [3, Theorem 2.3] Let .X; d/ be a metric space, and let � be a
.k; h/–coarse median on X . Then on any asymptotic cone .X1; d1/ of .X; d/,
� defines a k–Lipschitz, locally convex median �1 .

We can now prove that Theorem A implies Theorem B.

Proof Let X be a symmetric space of noncompact type, or a thick affine building,
of spherical type different from Ar

1 . By Theorem 2.1 any asymptotic cone X1 is
a thick affine building. If there existed a coarse median � on X , it would give rise
by Theorem 2.3 to a locally convex Lipschitz median on X1 , which contradicts
Theorem A since the spherical type of X1 is not Ar

1 . Hence there is no coarse median
on X .

We can also prove that Theorem B implies Theorem C.

Proof Let X be a symmetric space of noncompact type or an affine building of
spherical type Ar

1 . If X is a symmetric space, it is a product of rank 1 symmetric
spaces, which are Gromov hyperbolic, so X has a coarse median. If X is an affine
building, if we endow it with the L1 metric it becomes a metric median space. In
particular, this median is a coarse median with respect to any usual metric on X , which
is equivalent to the L1 metric.

3 Existence of a convex cube

In this Section, we will prove Proposition G, which we recall here.

Proposition G Let X be a connected metric space, with a Lipschitz locally convex
median of rank r . There exists a median, bi-Lipschitz embedding of the r –cube Œ0; 1�r

into X with convex image.

Fix X a geodesic metric space, and �W X3!X a Lipschitz median.

Definition 3.1 A continuous path pW I !X , where I �R is an interval, is said to
be monotone if for each t1 < t2 < t3 in I , we have �.p.t1/; p.t2/; p.t3//D p.t2/.

To prove Proposition G, we will need the following two lemmas:

Lemma 3.2 Let X be a connected metric space, with a continuous locally convex
median �, and let f W f0; 1gr!X be a median embedding of the r –cube, and let W be
a wall in X strongly separating f .0; : : : ; 0/ and f .1; 0; : : : ; 0/. There exists a median
embedding gW f0; 1gr!X such that for every t 2f0g�f0; 1gr�1 , we have g.t/Df .t/
and for every t 2 f1g � f0; 1gr�1 , we have g.t/ 2 L.W /.

Algebraic & Geometric Topology, Volume 16 (2016)
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Proof Note that if we knew that L.W / was locally compact, projecting the half-cube
f1g�f0; 1gr�1 using the gate projection onto L.W / would immediately give the result.

Intervals are connected, so we can consider a 2 I.f .0; : : : ; 0/; f .1; 0; : : : ; 0//\L.W /.
Define

gW f0; 1gr !X;

t 2 f0g � f0; 1gr�1
7! f .t/;

t 2 f1g � f0; 1gr�1
7! �.f .0; t2; : : : ; tr/; a; f .t//:

Since L.W / is convex, we deduce that for every t 2 f1g � f0; 1gr�1 , we have that
g.t/ 2 L.W /.

Using repeatedly property (1), we prove that g is a median map. As a consequence, if
for some t; t 0 2 f0; 1gr we have g.t/D g.t 0/, then

f .0; t2; : : : ; tr/D �.g.0; t2; : : : ; tr/; g.t/; g.0; t
0
2; : : : ; t

0
r//

D �.g.0; t2; : : : ; tr/; g.t
0/; g.0; t 02; : : : ; t

0
r//

D f .0; t 02; : : : ; t
0
r/;

hence .0; t2; : : : ; tr/D .0; t 02; : : : ; t
0
r/, so t D t 0 and hence g is injective.

Lemma 3.3 Let .X; �/ be a median algebra. Assume there exists a median embedding
of the r –cube f W Œ0; 1�r ! X , such that the image by f of any edge of Œ0; 1�r is
convex. Then the image of f is convex in X .

Proof For each k 2 ŒŒ1; r��, let ek D .0; : : : ; 0; 1; 0; : : : ; 0/, where the 1 is in the kth

position. Let x 2 I.f .0/; f .e1 C � � � C er//. For each k 2 ŒŒ1; r��, since the image
by f of the edge Œ0; ek� is convex, we deduce that I.f .0/; f .ek//D f .Œ0; ek�/, so
there exists tk 2 Œ0; 1� such that �.f .0; : : : ; 0/; x; f .ek//D f .tkek/. We will show
by induction on k 2 ŒŒ0; r�� that f .t1e1C � � �C tkek/D �.f .0/; x; f .e1C � � �C ek//.

For k D 0 this is immediate using property (1), so assume that for some k < r we
have f .t1e1C � � �C tkek/D �.f .0/; x; f .e1C � � �C ek//. Then

f .t1e1C � � �C tkC1ekC1/

D �
�
f .t1e1C � � �C tkek/; f .tkC1ekC1/; f .e1C � � �C ekC1/

�
D �

�
�.f .0/; x; f .e1C � � �C ek//; �.f .0/; x; f .ekC1//; f .e1C � � �C ekC1/

�
D �

�
f .0/; x; �.f .e1C � � �C ek/; f .ekC1/; f .e1C � � �C ekC1//

�
D �

�
f .0/; x; f .e1C � � �C ekC1/

�
:
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As a consequence, for k D r we deduce that

f .t1e1C � � �C trer/D �.f .0/; x; f .e1C � � �C er//D x;

as x 2 I.f .0/; f .e1C � � �C er//. So we have proved that the image of f is equal to
the interval I.f .0/; f .e1C � � �C er//, which is convex.

We can now prove Proposition G.

Proof of Proposition G Since the rank of the median � is r , consider a median
embedding f W f0; 1gr ! X . Applying Lemma 3.2 2r times, up to replacing f by
another median embedding of f0; 1gr into X , we can assume that for each i 2 ŒŒ1; r��
and " 2 f0; 1g, the image under f of the codimension-1 face

f0; 1gi�1
� f"g � f0; 1gr�1�i

is included in a closed convex subspace L.Wi;"/ of X , where Wi;" is a wall of X .
According to Lemma 1.10, each L.Wi;"/ has rank at most r � 1, and since it contains
the image by f of the .r�1/–cube f0; 1gi�1�f"g�f0; 1gr�1�i , we deduce that each
L.Wi;"/ has rank r � 1.

For i; j 2 ŒŒ1; r�� distinct and "; "0 2 f0; 1g, since

L.Wi;"/\L.Wj;"0/D L.L.Wi;"/\Wj;"0/;

where L.Wi;"/\Wj;"0 is a wall in the rank r � 1 median algebra L.Wi;"/, we deduce
by Lemma 1.10 that L.Wi;"/\L.Wj;"0/ has rank r � 2.

By induction, we prove that for each p 2 ŒŒ1; r��, for each distinct i1; : : : ; ip 2 ŒŒ1; r��
and each "1; : : : ; "p 2 f0; 1g, the intersection

T
16k6pL.Wik ;"k

/ has rank r �p .

For each k 2 ŒŒ1; r��, let ek D .0; : : : ; 0; 1; 0; : : : ; 0/, where the 1 is in the kth position.
Hence for each k 2 ŒŒ1; r��, the points f .0/ and f .ek/ are contained in a convex rank 1
closed subspace. In particular, there exists an injective, monotone, bi-Lipschitz path pk

from f .0/ to f .ek/, with convex image.

We will show by induction on k 2 ŒŒ0; r�� that we can extend f to a bi-Lipschitz median
embedding from Œ0; 1�k � f0; 1gr�k into X . The case k D 0 is already true. Assume
we have extended f to a bi-Lipschitz median embedding f W Œ0; 1�k � f0; 1gr�k!X

for some k < r . Define

f W Œ0; 1�k � Œ0; 1�� f0; 1gr�k�1
!X

.t; u; v/ 2 Œ0; 1�k � Œ0; 1�� f0; 1gr�k�1
7! �.f .t; 0; v/; pkC1.u/; f .1; : : : ; 1//:

Algebraic & Geometric Topology, Volume 16 (2016)
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f .1; : : : ; 1/

f .t; 0; v/

pkC1.u/
f .t; u; v/

Figure 1: Extending f

See Figure 1. Since pkC1 and � are bi-Lipschitz, we deduce that f is bi-Lipschitz
on Œ0; 1�k � Œ0; 1�� f0; 1gr�k�1 .

So f is extended to a bi-Lipschitz map f W Œ0; 1�r !X . If t 2 Œ0; 1�r and k 2 ŒŒ1; r��,
notice that in Œ0; 1�r the median of .t; 0; ek/ is equal to tkek . Therefore,

�.f .t/; f .0/; f .ek//D f .tkek/D pk.tk/:

Since each path p1; : : : ; pr is injective, we deduce that f itself is injective.

By using property (1) several times, we prove that f preserves the medians. Hence f
is a median embedding, and by Lemma 3.3 the image of f is convex.

Let us recall Bowditch’s definition of the separation dimension of a space, which is a
good notion of dimension when working with medians on a metric space.

Definition 3.4 (Bowditch) If X is a Hausdorff topological space, define the separa-
tion dimension of X inductively as follows:

� If X D∅, then the separation dimension of X is �1.

� X has separation dimension at most n 2N if for any distinct x; y 2X , there
exist closed subsets A, B of X such that x …B , y …A, X DA[B and A\B
has dimension at most n� 1.

Remark If X is a Hausdorff metric space, then the inductive dimension of X is at
most equal to the separation dimension. Conversely, we have the following:

Lemma 3.5 [17, Section III.6] If X is a locally compact Hausdorff metric space,
then the inductive dimension of X equals the separation dimension.

The following lemma is immediate:
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Lemma 3.6 Let X; Y be Hausdorff topological spaces, and let f W X ! Y be a
continuous injective map. Then the separation dimension of X is at most equal to the
separation dimension of Y .

We deduce the following:

Corollary 3.7 Let X be a connected metric space, with a Lipschitz locally convex
median of rank r . Then the separation dimension of X equals r .

Proof According to [3, Theorem 2.2], the separation dimension of X is bounded
above by r . According to Proposition G, there exists an embedding of Œ0; 1�r into X ,
so according to Lemma 3.6 the separation dimension of X is precisely equal to r .

Finally, for affine buildings, we have the following:

Corollary 3.8 Let X be an affine building of rank r . Then any locally convex
Lipschitz median on X has rank r .

Proof According to [19, Theorem B], X has separation dimension equal to r . Ac-
cording to Corollary 3.7, any locally convex Lipschitz median on X has rank r .

4 Proof of Theorem A

Consider a thick affine building X . Assume that there exists a k–Lipschitz, locally
convex median � on X . We will show that X has spherical type Ar

1 .

Proposition 4.1 There exists x 2X such that in a tangent cone .X1; d1; x1; �1/
of .X; d; x; �/ at x , the ultralimit F1 of some apartment F containing x is convex
and median-isomorphic to .Rr ; L1/ by an affine isomorphism.

Proof According to Corollary 3.8, the median � has rank r , and according to
Proposition G, there exists a bi-Lipschitz, median embedding f of Œ0; 1�r into X
with convex image. According to [18, Corollary 6.2.3], the image of f intersects
finitely many apartments of X . Consider a nonempty open subset U of Œ0; 1�r such
that f .U / lies in one apartment F of X . The map f jU W U !F is bi-Lipschitz, hence
it is differentiable almost everywhere: Pick a point t 2 U where f is differentiable.
Since f is bi-Lipschitz, the differential of f at t is invertible. Then in any tangent
cone of .X; d; x; �/ at xD f .t/, the ultralimit of F is convex and median-isomorphic
to .Rr ; L1/, by an affine isomorphism.
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According to Proposition 4.1, up to considering a tangent cone of X and using
Theorem 2.2, we can assume that there exists a convex apartment F of X with a
median, affine isomorphism with .Rr ; L1/. Since F is convex, closed and locally
compact, we can consider �F W X ! F the gate projection onto F .

Lemma 4.2 For each x 2XnF , and for each apartment F 0 of X containing x such
that F \F 0 is a half-apartment, we have �F .x/ 2 F \F

0 .

Proof By contradiction, assume that there exists such an x 2XnF and an apartment
F 0 containing x such that F \F 0 is a half-apartment, and such that �F .x/ … F \F

0 .
Fix a Lipschitz embedding � of the .r�1/–ball Br�1 into F \ F 0 . Extend � to a
Lipschitz embedding of the half r –ball Br;C into F 0n

ı

F , where Br�1 is the equatorial
sphere of Br . Extend � to a Lipschitz map �W Br!F[F 0 by setting �.z/D�F .�.�z//,
for z 2Br;� . Since �F .x/2F nF

0 and � is Lipschitz, we deduce .�.Br/n�.@Br//\F

has nonempty interior.

For each z 2 .@Br/C D Sr�1;C , we have �.�z/D �F .�.z//. Consider the following
map:

z�0W Sr�1;C
� Œ0; 1�!X

.z; t/ 7! �
�
�.z/; �F .�.z//; Œ.1� t /�.z/C t�F .�.z//�

�
;

where Œ.1� t /�.z/C t�F .�.z//� is the unique point on the CAT.0/ geodesic segment
between �.z/ and �F .�.z// at distance td.�.z/; �F .�.z/// from �.z/ (see Figure 2).

x

�F .x/

�.z/

�.�z/

�0.z; t/

F 0

F

Sr�1;C

Sr�1;�

Figure 2: The sphere Sr in X
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The map z�0 is Lipschitz and satisfies z�0.z; t//Dz�0.z; t 0/ for every z 2 @Sr�1;CD @Br�1

and every t; t 0 2 Œ0; 1�, since �.z/ 2 F \F 0 and hence �F .�.z//D �.z/. Consider the
quotient of Sr�1;C � Œ0; 1� by the equivalence relation defined for every z 2 @Sr�1;C

and t; t 0 2 Œ0; 1� by .z; t/� .z; t 0/: it is a topological ball Br . So z�0 induces a Lipschitz
map �0W Br !X such that �jSr�1 D �0jSr�1 . This defines a Lipschitz map ˛W Sr !X .

In ˛.Sr/, if we collapse the complement of a small open ball in F nF 0 , we obtain
a topological sphere Sr . As a consequence, Hr.˛.Sr// ¤ 0. According to [19,
Theorem B], X has topological dimension r , and since ˛.Sr/ is a compact subspace
of X , we deduce that Hr.˛.Sr// ! Hr.X/ is an injection (see for instance [17,
Theorem VIII.3’]). Since X is contractible, this is a contradiction.

We can now conclude the proof of Theorem A. By contradiction, assume that X
has not spherical type Ar

1 . Since X is thick, there exists a Weyl wall W in F ,
and two singular geodesics ;  0 in X , each intersecting W , such that  and  0

intersect in XnF . Let x D  \  0 2 XnF . Since  is singular, the intersection of
all apartments F 0 containing  such that F 0 \F is a half-apartment is equal to  .
According to Lemma 4.2, we deduce that �F .x/ 2  \F . Similarly, �F .x/ 2 

0\F .
This contradicts the assumption that  and  0 intersect in XnF .

As a consequence, X has spherical type Ar
1 . This concludes the proof of Theorem A,

as well as Theorem B and Theorem C.

5 Proof of the main consequences

We will now prove the main consequences of Theorem C, namely Theorem D and
Theorem E, and also give the proof of Proposition F.

Proof of Theorem D In one direction, assume that X is a symmetric space or affine
building of spherical type Ar

1 . If X is a discrete affine building of spherical type Ar
1 , if

we endow it with the L1 metric, X becomes an actual CAT.0/ cube complex. If X is
a symmetric space, it is isometric to a product of rank 1 symmetric spaces. According
to [15, Theorem 1.8], every word-hyperbolic group is quasi-isometric to a CAT.0/
cube complex. So each rank 1 symmetric space is quasi-isometric to a CAT.0/ cube
complex, hence X itself is quasi-isometric to a CAT.0/ cube complex.

Conversely, assume that the symmetric space or affine building X is quasi-isometric to
a CAT.0/ cube complex .Y; dp/, possibly of infinite dimension, endowed with the Lp

distance for some p 2 Œ1;1�. Since .Y; dp/ is quasi-isometric to the metric space X
which has finite dimension, we deduce that .Y; dp/ is quasi-isometric to .Y; d1/. Since
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.Y; d1/ is a metric median space, we deduce that there exists a coarse median on X .
According to Theorem C, we deduce that the spherical type of X is Ar

1 .

Proof of Theorem E Assume that � is coarse median. Since nonuniform lattices do
not have property (RD), � is cocompact in G . So � , endowed with a word metric, is
quasi-isometric to G , endowed with a left G–invariant metric. Let X be the symmetric
space of noncompact type of G (if KDR or C ) or the Bruhat–Tits Euclidean building
of G (if K is nonarchimedean). Then G is quasi-isometric to X , and so X has a
coarse median. According to Theorem C, X has spherical type Ar

1 , so G has relative
type Ar

1 . Since G is simple, r D 1, and G has K–rank 1.

We will now consider the rank 1 case, and give the proof of Proposition F.

Proof of Proposition F If � is a uniform lattice in G , then � is hyperbolic and hence
coarse median.

If G is locally isomorphic to SO0.n; 1/ for some n> 2, � is hyperbolic relative to a
family P1; : : : ; Pm of parabolic subgroups. Each parabolic subgroup Pi is virtually
isomorphic to Zn�1 . In particular, each Pi is coarse median, so by [4] � itself is
coarse median.

If G is locally isomorphic to SU.2; 1/, � is hyperbolic relative to a family P1; : : : ; Pm

of parabolic subgroups. Each parabolic subgroup Pi is virtually isomorphic to the
3–dimensional Heisenberg group H3 , which has cubic Dehn function (see [13]). This
implies that � has cubic Dehn function (see [22]), so by [5] � is not coarse median.
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On a spectral sequence for the cohomology
of infinite loop spaces

RUNE HAUGSENG

HAYNES MILLER

We study the mod-2 cohomology spectral sequence arising from delooping the
Bousfield–Kan cosimplicial space giving the 2–nilpotent completion of a connective
spectrum X . Under good conditions its E2–term is computable as certain nonabelian
derived functors evaluated at H�.X/ as a module over the Steenrod algebra, and it
converges to the cohomology of �1X . We provide general methods for computing
the E2–term, including the construction of a multiplicative spectral sequence of Serre
type for cofibration sequences of simplicial commutative algebras. Some simple
examples are also considered; in particular, we show that the spectral sequence
collapses at E2 when X is a suspension spectrum.

18G40, 55P47

1 Introduction

This paper explores the relationship between the F2–cohomology H�E D H�.EIF2/
of a connective spectrum E and that of its associated infinite loop space �1E .

The starting point is the stabilization map H�.E/ ! H�.�1E/, induced by the
adjunction counit †1�1E!E . This factors through the maximal unstable quotient
DH�.E/ of the A–module H�.E/ (where A is the Steenrod algebra), and this map
then extends over the free unstable algebra UDH�.E/. This construction provides the
best approximation to H�.�1E/ functorial in the A–module H�.E/.

We study a spectral sequence that converges (for E connected and of finite type)
to H�.�1E/ and has E2–term given by the nonabelian derived functors of UD applied
to H�.X/. This is the cohomology spectral sequence associated to the cosimplicial
space obtained by applying �1 to a cosimplicial Adams (or Bousfield–Kan) resolution
of the spectrum E .

This construction is analogous and in a sense dual to that of [21], where Miller
constructed a spectral sequence that converges to H�.E/ by forming a simplicial
resolution of E by suspension spectra and applying the zero-space functor �1 . The
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best approximation to the homology of E functorial in the homology of the infinite
loop space �1E is given by the indecomposables of H�.�1E/ with respect to
the Dyer–Lashof operations and products, which are annihilated by the natural map
H�.�1E/ ! H�.E/, and the E2–term of the spectral sequence is given by the
nonabelian left derived functors of these indecomposables applied to H�.�1E/.

The spectral sequence we study here is hardly new, and has been previously considered
(in unpublished work) by Bill Dwyer, Paul Goerss, and no doubt others. Our main contri-
bution here is related to the computation of the E2–term, which is of the form ��.UV�/,
where V� is a simplicial unstable A–module. We show that this is determined by a
natural short exact sequence of graded unstable modules over the Steenrod algebra,
in which the end terms are explicitly given in terms of the graded A–module ��.V�/.
This yields an explicit but mildly nonfunctorial description of the E2–term.

This reduces the analysis of the E2–term of the spectral sequence to the computation of
the derived functors L�D . These derived functors of destabilization have been studied
by many authors, including Singer [30; 31], Lannes and Zarati [19], Goerss [11], Kuhn
and McCarty [18], and Powell [24].

As an outcome of our computation, we find that the spectral sequence must collapse
when X is a connected suspension spectrum, X D †1B for B a connected space.
While the spectral sequence collapses by construction when X is a mod-2 Eilenberg–
Mac Lane spectrum, its collapse for suspension spectra is a bit of a surprise. This
does not yet constitute an independent calculation of the cohomology of �1†1B ,
however, since to prove that the spectral sequence collapses we simply compare the
size of the E2–term with that of the known homology of �1†1B . It is possible that
the collapse follows from Dwyer’s description [9] of the behavior of differentials in a
spectral sequence of this type.

It would be interesting to compare the spectral sequence we study to that arising from the
Goodwillie–Taylor tower of the functor †1�1 , as studied by Kuhn and McCarty [18].
Those authors also relate their spectral sequence to derived functors of destabilization,
though in a less direct way than they occur in our spectral sequence; we would like to
better understand the relationship between these constructions, which seems analogous
to the relationship between the Bousfield–Kan unstable Adams spectral sequence and
the spectral sequence arising from the lower central series.

1.1 Overview

We construct the spectral sequence in Section 2, and review some background ma-
terial on simplicial commutative F2–algebras in Section 3. Then in Section 4 we
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compute ��U.M/ in terms of ��M , where M is any simplicial A–module. We end
by discussing some simple examples of the spectral sequence in Section 5.

Acknowledgements Haugseng thanks Vigleik Angeltveit, Paul Goerss and Justin
Noel for helpful conversations about this project. Haugseng also thanks the American–
Scandinavian Foundation and the Norway–America Association for financial support
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this work were carried out. The project was jump-started by conversations with Nick
Kuhn at a BIRS workshop, and benefited from guidance from Bill Dwyer along the
way. This research was carried out in part under NSF grant 0905950.

2 Definition and convergence of the spectral sequence

In this section we define the spectral sequence we are interested in, observe that
its E2–term is described by certain derived functors, and show that it converges under
suitable finiteness and connectivity assumptions. More precisely, our goal is to prove
the following:

Theorem 2.1 Suppose X is a connected spectrum of finite type, ie ��X is 0 for �� 0
and is a finitely generated abelian group for �> 0. Then there is a convergent spectral
sequence

E
s;t
2 D L�s.UD/.H�X/t ) HtCs.�1X/:

Here L�.UD/ denotes the nonabelian derived functors of UD , which can be defined
as ��UD.M�/ where M� is the simplicial free resolution of the A–modules H�X .

To define the spectral sequence, recall that for any spectrum X the Eilenberg–Mac Lane
ring spectrum HF2 gives a cosimplicial spectrum

P �
WDX ^HF^.�C1/2 :

The homotopy limit of P � is the 2–nilpotent completion X^2 of X . Since the func-
tor �1 preserves homotopy limits, the cosimplicial space �1P � has homotopy
limit �1.X^2 /. This gives a spectral sequence in cohomology,

E
s;t
2 D ��sH

t .�1P �/) HtCs.�1.X^2 //:

Proposition 2.2 (Bousfield) If X is a connected spectrum of finite type (ie all its
homotopy groups are finitely generated), then this spectral sequence converges.
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Proof This follows from (the dual of) the convergence result of [3, Section 4.5].

Lemma 2.3 Suppose X is a connected spectrum of finite type. Then the map
�1X !�1.X^2 / exhibits �1.X^2 / as the HF2–localization of �1X . In par-
ticular, it induces an equivalence in HF2–cohomology.

Proof If X is connected, then by [2, Theorem 6.6] the 2–nilpotent completion X^2
is equivalent to the HF2–localization of X ; in particular the natural map X ! X^2
induces an equivalence in HF2–cohomology.

Moreover, under the stated assumptions on X the map X !X^2 induces an isomor-
phism .��X/˝Z^2 �!

� ��X
^
2 , by [2, Proposition 2.5]. Since X is connected, the

space �1X is nilpotent, and so by [4, Example VI.5.2] the map �1X ! .�1X/^2
also induces an isomorphism .���

1X/˝Z^2 �!
� ��.�

1X/^2 . Since �1.X^2 / is
2–complete, the map �1X ! �1.X^2 / factors through .�1X/^2 ; we know that
two of the maps in the resulting commutative diagram

��.�
1X/˝Z^2

��.�
1X/^2 ��.�

1.X^2 //

are isomorphisms, hence the map .�1X/^2!�
1.X^2 / is a weak equivalence. The re-

sult follows since under our assumptions the map �1X!.�1X/^2 exhibits .�1X/^2
as the HF2–localization of �1X by [4, Proposition VI.5.3].

Under these finiteness assumptions the spectral sequence thus converges to the mod-2
cohomology of �1X . To describe the E2–term more algebraically, we appeal to
Serre’s computation of the cohomology of Eilenberg–Mac Lane spaces. To state this
we must first recall some definitions:

Definition 2.4 Let ModA be the category of (graded) A–modules, and let U be the
full subcategory of unstable modules, ie A–modules M such that if x 2 Mn then
Sqi x D 0 for i > n. We define DW ModA ! U to be the destabilization functor,
which sends an A–module M to its quotient by the submodule generated by Sqi x
where x 2Mn and i > n; the functor D is left adjoint to the inclusion U ,!ModA .

Definition 2.5 Let K be the category of unstable algebras over the Steenrod alge-
bra A, ie augmented commutative A–algebras R that are unstable as A–modules,
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with x2DSqn x for all x 2Rn . We define U W U ! K to be the free unstable algebra
functor, which sends M 2 U to

S.M/=.x2�Sqjxj x/;

where S is the free graded symmetric algebra functor; this functor is left adjoint to the
forgetful functor K! U .

Theorem 2.6 (Serre [29]) If M is an Eilenberg–Mac Lane spectrum of finite type,
then the natural map H�.M/! H�.�1M/ induces an isomorphism

UD.H�M/ �!� H�.�1M/:

For any n > 0 the spectrum X ^ HF^n2 is a wedge of suspensions of Eilenberg–
Mac Lane spectra, so this theorem allows us to rewrite the E2–term of our spectral
sequence as

E
s;t
2 D ��sUD.H

�P �/t :

But by the Künneth theorem H�.P n/ is isomorphic to H�.X/˝A˝nC1 , and in fact
the simplicial A–module H�.P �/ is the standard cotriple resolution of H�X . The
A–modules ��UD.H�P �/ can therefore be interpreted as the (nonabelian) derived
functors L�.UD/ of UD evaluated at H�X . This completes the proof of Theorem 2.1.

Remark 2.7 Our spectral sequence is of the type considered by Dwyer in [9], so by
[9, Proposition 2.3] it is a spectral sequence of A–algebras. By (the dual of) results of
Hackney [15] it is actually a spectral sequence of Hopf algebras.

3 Simplicial commutative F2–algebras

In this section we first review some background material on simplicial commutative
(graded) algebras: we recall the model category structure on simplicial commutative
algebras in Section 3.1 and in Section 3.2 we review the higher divided square operations
in the homotopy groups of simplicial commutative algebras. Then in Section 3.3 we
discuss filtered algebras and modules from an abstract point of view, and finally in
Section 3.4 we use this material to construct a “Serre spectral sequence” for cofiber
sequences of simplicial commutative algebras.
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3.1 Model category structure

We will make use of a model category structure on simplicial augmented commuta-
tive graded F2–algebras. This is an instance of a general class of model categories
constructed by Quillen [25], and is also described by Miller [22]:

Theorem 3.1 There is a simplicial model category structure on the category of sim-
plicial augmented graded commutative F2–algebras where a morphism is a weak
equivalence or fibration if the underlying map of simplicial sets is a weak equivalence
or Kan fibration.

Remark 3.2 For us graded will mean N –graded rather than Z–graded. To avoid
confusion, let us also mention that we do not require that a graded F2–algebra A
has A0 D F2 , as is sometimes assumed in the literature.

Remark 3.3 Since a simplicial graded commutative F2–algebra is a simplicial group,
a morphism f W A!B is a fibration if and only if the induced map A!B��0B �0A

is surjective. In particular, every object is fibrant.

Theorem 3.4 (Rezk) This model structure on simplicial augmented graded commu-
tative F2–algebras is proper.

Proof This follows from the properness criterion of [26, Theorem 9.1], since polyno-
mial algebras are flat and thus tensoring with them preserves weak equivalences.

We now recall Miller’s description of the cofibrations in this model category:

Definition 3.5 A morphism f W A! B of simplicial augmented commutative F2–
algebras is almost-free if for every n� 0 there is a subspace Vn of the augmentation
ideal IBn and maps

ıi W Vn! Vn�1 for 1� i � n;

�i W Vn! VnC1 for 0� i � n;

so that the induced map An ˝ S.Vn/ ! Bn is an isomorphism for all n and the
following diagrams commute:

An˝S.Vn/ Bn

An�1˝S.Vn�1/ Bn�1;

di ˝S.ıi / di

An˝S.Vn/ Bn

AnC1˝S.VnC1/ BnC1:

si ˝S.�i / si
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In other words, all the face and degeneracy maps except d0 are induced from maps
between the Vn .

Remark 3.6 The definition of almost free morphisms in [22] is wrong and was
corrected in [23].

Theorem 3.7 (Miller, [22, Corollary 3.5]) A morphism of simplicial augmented
commutative F2–algebras is a cofibration if and only if it is a retract of an almost-free
morphism.

3.2 Higher divided square operations

In this subsection we review the higher divided square operations on the homotopy
groups of simplicial commutative F2–algebras. These operations were initially intro-
duced by Cartan [5], and have subsequently also been studied by Bousfield [1] and
Dwyer [10].

Definition 3.8 If V is a simplicial F2–vector space, we write C.V / for the unnor-
malized chain complex of V (obtained by taking the alternating sum of the face maps
as the differential) and N.V / for the normalized chain complex, given by

NkX D
\
i¤0

ker.di W Xk!Xk�1/

with differential d0 . These chain complexes are quasi-isomorphic, and their homology
groups are the same as the homotopy groups of V , regarded as a simplicial set.

Theorem 3.9 (Dwyer [10]) Let A be a simplicial commutative F2–algebra.

(i) There are maps ıi W C.A/n!N.A/nCi for i � 1 that satisfy

dıi .a/D

8̂̂̂<̂
ˆ̂:

ıi .da/ if n > i > 1;
ı1.da/C�.a/ if i D 1 and n > 1;

a da if i D n > 1;
a daC�.a/ if nD i D 1:

Here �.a/ denotes the image in N.A/ of the square a2 of a in the multiplication
on An .

(ii) In particular, there are higher divided square operations ıi W �n.A/! �nCi .A/

for 2 � i � n. If a2 D 0 for all a 2 A, then there is also an operation
ı1W �n.A/! �nC1.A/ for n� 1.

(iii) These operations have the following properties:
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(1) ıi W �nA! �nCiA is an additive homomorphism for 2 � i < n, and ın
satisfies

ın.xCy/D ın.x/C ın.y/C xy:

(2) ıi acts on products as follows:

ıi .xy/D

8<:
x2ıi .y/ if x 2 �0A;
y2ıi .x/ if y 2 �0A;
0 otherwise:

(3) (“Adém relations”) If i < 2j then

ıiıj .x/D
X

.iC1/=2�s�.iCj /=3

� j�iCs�1
j�s

�
ıiCj�sıs.x/:

Remark 3.10 Part (i) is not quite true using Dwyer’s definition of the chain-level
operations in [10], but is correct for the variant due to Goerss [12].

Remark 3.11 The upper bound in the “Adém relation” above differs from that in [10],
which does not give a sum of admissible operations; this form of the relation was proved
by Goerss and Lada [13] and implies, by the same proof as for Steenrod operations,
that composites of ı–operations are spanned by admissible composites:

Definition 3.12 A sequence I D .i1; : : : ; ik/ is admissible if it � 2itC1 for all t . A
composite ıI WD ıi1ıi2 � � � ıik is admissible if I is.

Corollary 3.13 Any composite of ı–operations can be written as a sum of admissible
ones.

Remark 3.14 For any x in ��A in positive degree we have x2 D 0. Therefore
Theorem 3.9(iii)(1)–(2) imply that the top operation ın on �n is a divided square,
whence the name “higher divided squares” for the ıi –operations.

Dwyer proves Theorem 3.9 by computing the homotopy groups in the universal case,
namely the symmetric algebra s.V / on a simplicial vector space V . We will now recall
the result of this computation, as well as the analogous result for exterior algebras
(both of which are originally due to Bousfield [1]). To state this we make use of the
following theorem of Dold:

Theorem 3.15 (Dold [7, 5.17]) Let Vect be the category of F2–vector spaces, and
grVect that of graded F2–vector spaces. For any functor F W Vect�n ! Vect there
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exists a functor FW grVect�n! grVect such that for V1; : : : ; Vn simplicial F2–vector
spaces there is a natural isomorphism

��F.V1; : : : ; Vn/Š F.��V1; : : : ; ��Vn/;

where on the left-hand side we take the homotopy of the diagonal of the multisimplicial
F2–vector space F.V1; : : : ; Vn/.

Example 3.16 The Eilenberg–Zilber theorem implies that if F is the tensor product
functor, then F is the graded tensor product of graded vector spaces.

In the symmetric algebra case, the functor s such that ��s.V / D s.��V / has the
following description:

Theorem 3.17 (Bousfield [1], Dwyer [10]) The functor s sends a graded vector
space V to that freely generated on V by a commutative product and operations ıi
satisfying the relations stated in Theorem 3.9 above as well as the relation x2 D 0 for
all x of positive degree.

If B is a graded basis for V , then s.��.V // is the free commutative algebra (modulo
the relation x2D 0 for jxj>0) generated by elements ıIv in degree jvjC i1C� � �C ik
for admissible sequences I D .i1; : : : ; ik/ with ik �2 of excess e.I / WD i1�i2�� � ��ik
at most jvj, as v runs over B .

Let sk.V / be the subspace of the symmetric algebra s.V / spanned by products of
length k ; it also is a functor Vect! Vect. Implicit in Theorem 3.17 is the following
description of the functor sk such that ��sk.V /D sk.��V /.

Theorem 3.18 Suppose V is a graded vector space. Define inductively a weight
function on products ıI1.v1/ � � � ıIn.vn/ where vi 2 V and the Ii are admissible
sequences by

wt.v/D 1 for v in V;

wt.xy/D wt.x/Cwt.y/;

wt.ıi .x//D 2wt.x/:

Then sk.V / is the subspace of s.V / spanned by elements of weight k .

Let e.V / denote the exterior algebra on V and ek.V / its subspace of products
of length k . Then there are functors e and ek such that ��e.V / D e.��V / and
��ek.V /D ek.��V / for a simplicial vector space V . These were also computed
by Bousfield:
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Theorem 3.19 (Bousfield [1]) The functor e sends a graded vector space V to that
freely generated on V by a commutative product and operations ıi (now with i D 1
allowed) satisfying the same relations as in the symmetric case, and with x2 D 0 for
all x . Thus e.V / is generated by v 2 V and symbols ıIv for admissible sequences
I D .i1; : : : ; ik/ (now with ik � 1) of excess � jvj; the element ıIv is again in
degree jvjC i1C� � �C ik . Defining the weight of such a generator as before, the graded
vector space ekV is the subspace of eV spanned by elements of weight k .

Remark 3.20 The same results hold in the graded case. We will use capital letters
for the graded versions of the functors considered above: so S.V / denotes the free
graded symmetric algebra on the graded vector space V , etc. The higher divided power
operations ıi double the internal degree.

3.3 An abstract approach to filtered algebras and modules

Given filtered algebras A, B and C , and maps A!B and A! C , we would like to
construct a filtration on the relative tensor product B˝AC whose associated graded is
the relative tensor product E0B˝E0AE

0C of graded algebras, where E0A denotes
the associated graded algebra of the filtered algebra A. Our goal in this section is to
show that this is possible, provided we allow ourselves to take cofibrant replacements
of these algebras in a suitable model category. We will do this by considering filtered
objects, and in particular filtered modules over a filtered algebra, from an abstract
perspective.

Let N denote the partially ordered set of natural numbers 0; 1; : : : , considered as a
category. If C is a category, we write Seq.C/ for the category Fun.N;C/ of sequences
of morphisms in C. A filtered object of C, if C is for example the category of
chain complexes of abelian groups, can then be thought of as a certain kind of object
of Seq.C/.

Addition of natural numbers is a symmetric monoidal structure on N, so if C is
a category with finite colimits and a symmetric monoidal structure that commutes
with finite colimits in each variable (for short, C is a symmetric monoidal category
compatible with finite colimits) we can equip Seq.C/ with the Day convolution tensor
product. This has as unit the constant sequence

I ! I ! � � �

with value the unit I in C, and if A and B are sequences in C their tensor product A˝B
is given by

.A˝B/n D colim
iCj�n

Ai ˝Bj :
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Remark 3.21 A simple cofinality argument shows that this colimit is isomorphic to
the iterated pushout

An˝B0qAn�1˝B0 An�1˝B1qAn�2˝B1 � � �qA0˝Bn�1
A0˝Bn;

which we can also describe as the coequalizer of the two obvious mapsa
sCtDn�1

As˝Bt �
a

iCjDn

Ai ˝Bj :

In other words, .A˝B/n is the quotient of
`
iCjDnAi ˝Bj where we identify the

images of As˝Bt with sC t D n� 1 in AsC1˝Bt and As˝BtC1 .

If A is an algebra object in Seq.C/, the Day convolution on Seq.C/ induces a relative
tensor product on the category ModA.Seq.C// of A–modules, given by the (reflexive)
coequalizer

M ˝A˝N �M ˝N !M ˝AN;

where M and N are A–modules in Seq.C/. If C is, for instance, chain complexes,
then a filtered algebra A in C is in particular an algebra object of Seq.C/, and filtered
A–modules M and N are also modules for A in Seq.C/. The tensor product of
A–modules then yields an object M ˝AN in Seq.C/, but in general this need not be
a filtered object of C, as the maps in this sequence need no longer be monomorphisms.
However, we can use a model structure on C to deal with this: If C is a combinatorial
model category, we can equip Seq.C/ with the projective model structure. A cofibrant
object in Seq.C/ is then a sequence

A0! A1! � � �

where the objects Ai are all cofibrant, and the morphisms Ai ! AiC1 are all cofibra-
tions. If cofibrations in C are monomorphisms, as they are for chain complexes or
simplicial algebras, then a cofibrant object of Seq.C/ is thus in particular a filtered
object.

The Day convolution tensor product interacts well with this model structure:

Proposition 3.22 (Isaacson) Let C be a symmetric monoidal combinatorial model
category that satisfies the monoid axiom. Then Seq.C/ is also a symmetric monoidal
combinatorial model category with respect to the Day convolution and satisfies the
monoid axiom.

Proof This is a special case of [16, Proposition 8.4].

We can now apply results of Schwede and Shipley to get the following:
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Corollary 3.23 Let C be a symmetric monoidal combinatorial model category that
satisfies the monoid axiom, and suppose A is a commutative algebra object in Seq.C/.
Then:

(i) The category Alg.Seq C/ of associative algebra objects of Seq.C/ is a combina-
torial model category. The forgetful functor to Seq.C/ creates weak equivalences
and fibrations, and the free-forgetful adjunction

Seq.C/� Alg.Seq.C//

is a Quillen adjunction.

(ii) If the unit of C is cofibrant, then the forgetful functor Alg.Seq.C//! Seq.C/
preserves cofibrant object.

(iii) The category ModA.Seq.C// of A–modules is a symmetric monoidal combinato-
rial model category satisfying the monoid axiom. The forgetful functor to Seq.C/
creates weak equivalences and fibrations, and the free-forgetful adjunction

FAW Seq.C/� ModA.Seq.C// WUA

is a Quillen adjunction.

(iv) If the underlying object of A is cofibrant in Seq.C/ then the forgetful functor UA
also preserves cofibrations.

Proof (i), (ii) and (iii) follow from [27, Theorem 4.1], and (iv) is an easy consequence
of the construction of the model structure using [27, Lemma 2.3]: If I is a set of
generating cofibrations in Seq.C/, then FA.I / is a set of generating cofibrations
in A–modules. The triple UAFA is A˝ –, which is a left Quillen functor if A is
cofibrant in Seq.C/. Thus UA takes the generating cofibrations to cofibrations. But
UA also preserves colimits, so as any cofibration is a transfinite composite of pushouts
of generating cofibrations this means it preserves all cofibrations.

Corollary 3.24 Let C be a symmetric monoidal combinatorial model category that
satisfies the monoid axiom, and suppose A is a commutative algebra object in Seq.C/
whose underlying object in Seq.C/ is cofibrant. If M and N are cofibrant A–modules,
then M ˝AN is a cofibrant object of Seq.C/.

This is the result we need to make our spectral sequence: if A is a suitable filtered
algebra in, say, chain complexes, and M and N are filtered A–modules, we can take
cofibrant replacements for them in the model structure on ModA.Seq.C// to get a
cofibrant relative tensor product over A, which is in particular a filtered object and so
gives a spectral sequence.
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Next we want to analyze the associated graded object of such a relative tensor product,
which will allow us to describe the E1–page of our spectral sequence:

Definition 3.25 Let C be a category with finite colimits and a zero object 0. Denote
the product

Q1
iD0 C by Gr.C/ and write TrivW Gr.C/! Seq.C/ for the functor that

sends .Xi /i2N to the sequence

X0
0
!X1

0
!� � � :

This has a left adjoint E0W Seq.C/! Gr.C/, the associated graded functor. We have
.E0A/0 D A0 and .E0A/n for n > 0 is the quotient An=An�1 , ie the pushout

An�1 An

0 An=An�1:

If C has a symmetric monoidal structure, then we can equip Gr.C/ with a graded
tensor product (another Day convolution), given by

.X ˝Y /n D
a

iCjDn

Xi ˝Yj :

The unit is .I; 0; 0; : : :/.

Proposition 3.26 Let C be a symmetric monoidal category compatible with finite
colimits that has a zero object. Then the functor E0W Seq.C/! Gr.C/ is symmetric
monoidal.

Proof E0 clearly preserves the unit, so it suffices to show that there is a natural
isomorphism E0M ˝E0N �!� E0.M ˝N/.

By definition, E0n.M ˝N/ is the cofiber of .M ˝N/n�1! .M ˝N/n . For n 2 N,
let .N � N/�n denote the full subcategory of N � N spanned by the objects .i; j /
with i C j � n; if M �N denotes the composite functor

N�N M�N
���!C�C ˝

�!C;

then .M˝N/n is by definition given by the colimit of M�N restricted to .N�N/�n .
Let ˛ denote the inclusion .N � N/�.n�1/ ,! .N � N/�n ; then .M ˝ N/n�1 is
isomorphic to the colimit of the left Kan extension ˛Š.M �N/j.N�N/�.n�1/

. Thinking
of 0 as the constant diagram of shape .N�N/�n with value 0, we can write E0n.M˝N/
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as the pushout of two maps between colimits of diagrams of the same shape. Moreover,
these maps arise from natural transformations, so since colimits commute we can
identify E0n.M ˝N/ with the colimit of the functor ˇW .N�N/�n! C that assigns
to .i; j / the cofiber of the map

�i;j W .˛Š.M �N/j.N�N/�.n�1/
/.i; j /! .M �N/.i; j /:

If i C j < n then, since .N � N/�.n�1/ is a full subcategory of .N � N/�n , the
map �i;j is an isomorphism, so ˇ.i; j /Š 0. It follows that the colimit of ˇ is just
the coproduct

`
iCjDn ˇ.i; j /, and it remains to show that ˇ.i; j / is isomorphic

to E0i M ˝E
0
j N .

If i C j D n, let .N � N/<.i;j / be the full subcategory of N � N spanned by the
objects .x; y/ with x � i and y � j , except for .i; j /. Then by definition we have that
˛Š..M �N/j.N�N/�.n�1/

/.i; j / is the colimit of M �N restricted to .N�N/<.i;j / .

Write .N�N/0
<.i;j /

for the full subcategory

.i � 1; j / .i � 1; j � 1/! .i; j � 1/

of .N�N/<.i;j / . We claim the inclusion .N�N/0<.i;j / ,! .N�N/<.i;j / is cofinal, and
so gives an isomorphism of colimits. By [20, Theorem IX.3.1], to see this it suffices to
show that the categories

..N�N/0<.i;j //.x;y/= D .N�N/0<.i;j / �.N�N/<.i;j/ ..N�N/<.i;j //.x;y/=

are nonempty and connected. But this category is either all of .N�N/0<.i;j / if x� i�1
and y � j � 1, or the single object .i; j � 1/ if x D i , or the single object .i � 1; j /
if y D j ; these are certainly all nonempty and connected. We may thus identify
˛Š..M�N/j.N�N/�.n�1/

/.i; j / with the pushout Mi˝Nj�1qMi�1˝Nj�1
Mi�1˝Nj

and ˇ.i; j / with the total cofiber of the square

Mi�1˝Nj�1 Mi�1˝Nj

Mi ˝Nj�1 Mi ˝Nj :

The cofibers of the columns here are E0i M ˝Nj�1 and E0i M ˝Nj , since the tensor
product preserves colimits in each variable, and so the total cofiber ˇ.i; j / is isomorphic
to the cofiber of the map E0i M ˝Nj�1! E0i M ˝Nj , which is E0i M ˝E

0
j N , as

required.
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Corollary 3.27 Suppose A is a commutative algebra object of Seq.C/, where C is as
above. Then the adjunction E0 a Triv induces an adjunction

E0W ModA.Seq.C//� ModE0A.Gr.C// WTriv

such that E0 is symmetric monoidal.

This is immediate from Proposition 3.26 and the following easy formal observation:

Lemma 3.28 Let C and D be symmetric monoidal categories, and suppose

F W C � D WG

is an adjunction such that F is symmetric monoidal. If A is a commutative algebra
object of C, this induces an adjunction

FAW ModA.C/� ModFA.D/ WGA

such that FA is symmetric monoidal.

This allows us to identify the associated graded of a relative tensor product:

Corollary 3.29 Let C be a symmetric monoidal category compatible with finite
colimits that has a zero object. Suppose A is a commutative algebra object in Seq.C/
and that M and N are A–modules. Then there is a natural isomorphism

E0.M ˝AN/ŠE
0M ˝E0AE

0N:

Finally, we check that the colimit of a relative tensor product is the expected one:

Proposition 3.30 Suppose C is a symmetric monoidal category compatible with small
colimits. Then the colimit functor Seq.C/! C is symmetric monoidal.

Proof The unit for the tensor product on Seq.C/ is the constant sequence with value I ,
the unit for the tensor product on C. Thus colim preserves the unit. It remains to show
that the natural map colimn.A˝B/n! colimnAn˝ colimnBn is an isomorphism.
But the object colimn.A˝B/n is clearly the colimit over .i; j / 2 N�N of Ai ˝Bj .
Since the tensor product on C preserves colimits in each variable, this colimit is indeed
equivalent to .colimi2NAi /˝ .colimi2NBi /.

Applying Lemma 3.28, we get:
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Corollary 3.31 Let C be as above. Suppose A is a commutative algebra object in
Seq.C/ with colimit A. Then the colimit-constant adjunction induces an adjunction

colimW ModA.Seq.C//� ModA.C/ Wconst

where the left adjoint is symmetric monoidal.

Corollary 3.32 Suppose A is a commutative algebra object in Seq.C/ with colimit A,
and M and N are A–modules with colimits M and N . Then colimM ˝A N is
naturally isomorphic to M ˝AN .

3.4 A Serre spectral sequence for simplicial commutative algebras

In this subsection we construct a multiplicative “Serre spectral sequence” for the
homotopy groups of the cofiber of a cofibration of simplicial commutative algebras.
We derive this by studying a spectral sequence for filtered modules over a filtered
differential graded algebra. Our spectral sequence has the same form as one constructed
by Quillen [25], but his construction does not give the multiplicative structure.

Remark 3.33 We will implicitly assume that all filtrations we consider are nonnega-
tively graded and exhaustive, in the sense that if F0A� F1A� � � � is a filtration of A,
then A is the union of the subobjects FiA.

Proposition 3.34 Suppose A is a filtered commutative differential graded k–algebra,
nonnegatively graded, where k is a field, and B and C are filtered A–modules, also
nonnegatively graded.

(i) If B and C are cofibrant in the model structure on A–modules in sequences of
maps of chain complexes of Corollary 3.23, then the tensor product B˝AC has
a canonical filtration with associated graded

E0�.B˝A C/ŠE
0
�B˝E0�A

E0�C:

(ii) Suppose B and C are in addition filtered A–algebras. Then the filtration
of (i) makes B ˝A C a filtered algebra, so the associated spectral sequence is
multiplicative.

Proof Since k is a field, every k–module is projective, hence in the projective model
structure on the category Ch�0

k
of nonnegatively graded chain complexes of k–modules

every object is cofibrant. Thus in the projective model structure on Seq.Ch�0
k
/ the

cofibrant objects are precisely those that are sequences of monomorphisms, ie those that
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correspond to filtered chain complexes. Part (i) then follows from Corollaries 3.24, 3.29
and 3.32 applied to the projective model structure on chain complexes of k–modules.

If B and C are filtered A–algebras, then we may regard them as associative algebra
objects in the category ModA.Seq.Ch�0

k
//. Their relative tensor product is then also an

associative algebra object in this category, and by (i) its underlying object in Seq.Ch�0
k
/

corresponds to a filtered chain complex. Thus B ˝A C is a filtered algebra, and so
yields a multiplicative spectral sequence.

Proposition 3.35 Suppose A is a commutative differential graded k–algebra and B
and C are A–modules, all nonnegatively graded. Filter A and B by degree, and
give C the trivial filtration with FpC D C for all p � 0. Let B 0 and C 0 be cofibrant
replacements of B and C as A–modules in Seq.Ch�0

k
/. Then in the spectral sequence

associated to the induced filtration on B 0˝A C 0 we have:

(i) E1s;t D .B
0˝A �t�sC/s , where A acts on ��C via the map A! �0A.

(ii) E2s;t D �s.B
0˝A �t�sC/.

Proof The graded tensor product E0�B
0˝E0�A

E0�C
0 has in degree .s; t/ the coequal-

izer of M
iCjCkDs
�C�C�Dt

E0i B
0
�˝E

0
j A� ˝E

0
kC
0
� �

M
mCnDs
˛CˇDt

E0mB
0
˛˝E

0
nC
0
ˇ :

In our case E0
l
B 0 and E0

l
A are zero unless l D  , and E0

l
C 0 is zero unless l D 0,

so this is the coequalizer ofM
iCjDs

B 0i ˝Aj ˝C
0
t�s � B 0s˝C

0
t�s:

Now observe that the map Aj ˝C 0t�s ! C 0t�s is zero unless j D 0, since Aj is in
filtration j and so the product must lie in .E0j C

0/t�s D 0. Thus we can describe this
coequalizer as killing all elements of the form a � b with a 2 A and b 2 B 0 , giving
.B 0˝A �0A/s˝�0A C

0
t�s Š .B

0˝�0A C
0
t�s/s .

The differential in B 0˝AC 0 satisfies the Leibniz rule, so if b˝ c is in filtration s then
d.b˝ c/D db˝ cCb˝dc . Here db is in lower filtration than b , since it is in lower
degree, hence d0 comes from the differential in C 0 . Thus

E1s;t Š .B
0
˝�0A �t�sC/s:

Similarly, the next differential d1 comes from the differential in B , giving

E2s;t Š �s.B
0
˝�0A �t�sC/:
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The Dold–Kan correspondence extends to a Quillen equivalence of model categories
(see [28, Section 4]) between simplicial modules and chain complexes, where the
weak equivalences in the two categories are the ��–isomorphisms and the quasi-
isomorphisms, respectively. Using these model structures we can define derived tensor
products as follows:

Definition 3.36 If A is a simplicial graded F2–algebra, M is a right A–module, and
N is a left A–module, then the derived tensor product M˝L

AN is the homotopy colimit
of the simplicial diagram given by the bar construction, M ˝A˝�˝N . Similarly, if A
is an algebra in chain complexes of graded F2–vector spaces, M is a right A–module,
and N is a left A–module, we define a derived tensor product M˝L

AN as the analogous
homotopy colimit.

Remark 3.37 In the simplicial case, the homotopy colimit is given by the diagonal of
the bar construction.

Remark 3.38 If M is a cofibrant A–module, then for any N the derived tensor
product M ˝L

A N is equivalent to the ordinary tensor product M ˝AN .

Lemma 3.39 Let A be a simplicial graded algebra, X a right A–module, and Y a
left A–module. There is a natural quasi-isomorphism

N.X/˝L
N.A/N.Y /!N.X ˝L

A Y /:

Proof There is a natural quasi-isomorphism N.U /˝N.V /! N.U ˝ V / for all
simplicial abelian groups U and V . Thus there is a natural transformation of simplicial
diagrams N.X ˝A˝� ˝ Y /! NX ˝ .NA/˝� ˝NY that is a quasi-isomorphism
levelwise. This implies that the induced map on homotopy colimits is also a quasi-
isomorphism.

Corollary 3.40 Suppose given simplicial augmented graded F2–algebras A, B and C ,
and maps A! B and A! C . Then there is a multiplicative spectral sequence

E2s;t D �s.B˝
L
A �t�s.C //) �t .B˝

L
A C/:

Proof Let P be a cofibrant replacement for NB as an NA–module in Seq.Ch�0
k
/.

Then by Proposition 3.35 we have a spectral sequence

E2s;t D �s.P ˝NA �t�sNC/) �t�s.P ˝NANC/;
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which is multiplicative by Proposition 3.34. Since taking the colimit of a sequence is a
left Quillen functor, P is also a cofibrant replacement for NB as an NA–module, so
we can write this as

E2s;t D �s.NB˝
L
NA �t�sNC/) �t�s.NB˝

L
NANC/:

By Lemma 3.39 we have a natural quasi-isomorphism NB˝L
NANC!N.B˝L

AC/ and,
since �t�sNC Š�t�sC is concentrated in a single degree, a natural quasi-isomorphism
NB˝L

NA �t�sNC !N.B˝L
A �t�sC/. Thus we have a natural isomorphism

E2s;t Š �s.B˝
L
A �t�sC/) �t�s.B˝

L
A C/:

As observed by Turner [32, Proof of Lemma 3.1], this spectral sequence can be used to
get a “Serre spectral sequence” for cofibration sequences of simplicial commutative
algebras:

Corollary 3.41 (“Serre spectral sequence”) Suppose f W A! B is a cofibration of
simplicial augmented graded commutative F2–algebras with cofiber C and �0AD F2 .
Then there is a multiplicative spectral sequence

�s.C /˝F2 �t�s.A/) �t .B/:

Proof By Corollary 3.40 there is a multiplicative spectral sequence

E2s;t D �s.B˝
L
A �t�sA/) �t .B/:

By definition C Š B˝A F2 , and so

C ˝F2 �tAŠ .B˝A F2/˝F2 �tAŠ B˝A �tA;

which is isomorphic to B˝L
A �tA since A!B is a cofibration and the model structure

on simplicial commutative algebras is left proper by Theorem 3.4. Since F2 is a field
we have

�s.C ˝F2 �t�sA/Š �sC ˝F2 �t�sA;

and so we can rewrite the E2–term of the spectral sequence as

E2s;t Š �s.C /˝F2 �t�s.A/:
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4 Derived functors of U

Our goal in this section is to compute ��U.M/ where M is a simplicial unstable A–
module. As a simplicial commutative algebra, U.M/ depends only on the top nonzero
Steenrod operations in M ; in Section 4.1 we consider graded vector spaces equipped
with only these operations, which we call restricted vector spaces, and observe that a
simplicial restricted vector space decomposes up to weak equivalence as a coproduct of
simple pieces. In Section 4.2 we compute the derived functors of U for these simpler
objects, which gives a description of ��U.M/ as a graded commutative algebra with
higher divided square operations. Using this we then give a more functorial description
of ��U.M/ in Section 4.3, which in particular lets us identify the action of the Steenrod
operations.

4.1 Restricted vector spaces

In this subsection we define restricted vector spaces and make some observations about
their structure; in particular, we show that a chain complex of restricted vector spaces
always decomposes up to quasi-isomorphism as a direct sum of certain very simple
complexes.

Definition 4.1 A restricted vector space (over F2 ) is a nonnegatively graded vector
space V equipped with linear maps �i W V i ! V 2i for all i , called the restriction
maps of V , such that �0W V 0! V 0 is the identity. A homomorphism of restricted
vector spaces f W V ! W is a homomorphism of graded vector spaces such that
�if

i D f 2i�i for all i . We write Restr for the category of restricted vector spaces
and restricted vector space homomorphisms. This is an abelian category.

Definition 4.2 For n � 0, let F.n/ be the free restricted vector space with one
generator �n in degree n. Thus F.n/2

rnDF2 with �2rnD id and F.n/i D0 otherwise;
in particular F.0/ is just F2 in degree 0.

For k; n>0, let T .n; k/ be the nilpotent restricted vector space with one generator �n;k
in degree n subject to �k�n;k D 0; that is, T .n; k/DF.n/=�k . Thus T .n; k/2

rnDF2
for r D 0; : : : ; k with �2rn D id for r D 0; : : : ; k� 1, and T .n; k/i is 0 otherwise.

Definition 4.3 Let V be a restricted vector space. A basis S of V consists of sets S i

of elements of V i such that S0 is a basis for V 0 and if i D 2rp with p odd, then the
set .S2

rp [�.S2
r�1p/[ � � � [�r.Sp// n f0g is a basis for V i .

Remark 4.4 It is clear that any restricted vector space has a basis, since we can
inductively choose complements of �.Vi / in V2i . Equivalently, any restricted vector
space decomposes as a direct sum of copies of F.n/ and T .n; k/.
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Definition 4.5 Let C.q/ be the nonnegatively graded chain complex of restricted
vector spaces

� � � ! 0! 0! F.q/;

with F.q/ in degree 0, and let C.q; k/ be the chain complex

� � � ! 0! F.2kq/ ,! F.q/;

with F.q/ in degree 0 and F.2kq/ in degree 1.

Given a chain complex C , we denote by C Œn� the suspended chain complex with
C Œn�i D Ci�n . Then clearly

H�.C.q/Œn�/Š
�
F.q/ if � D n;
0 if � ¤ n;

H�.C.q; k/Œn�/Š
�
T .q; k/ if � D n;
0 if � ¤ n:

Proposition 4.6 Any chain complex of restricted vector spaces is quasi-isomorphic to
a direct sum of copies of C.q/Œn� and C.q; k/Œn�.

Proof Let .V�; d / be a chain complex of restricted vector spaces. Pick a basis Si
of Hi .V�/. For v 2 Sqi define Wv to be F.q/Œi � if �rv is never zero, and C.q; k/Œi � if
�kvD 0 but �rv¤ 0 for r < k . Let yv be a lift of v to Vi ; in the first case yv defines a
map  vW Wv!V� . In the second case, since �k.v/D0 we can pick yw2ViC1 such that
d. yw/D �k.yv/; then yv and yw define a map  v from Wv to V� . Let W WD

L
v2S Wv

and let  W W !V be
L
v2S  v . Then  is a quasi-isomorphism, since it is clear that

on homology  v induces the inclusion in Hi .V�; d / of the subspace generated by v .

By the Dold–Kan correspondence the category Ch.Restr/�0 of nonnegatively graded
chain complexes of restricted vector spaces is equivalent to the category of simplicial
restricted vector spaces. Let’s write KŒn; q� and KŒn; q; k� for the simplicial objects
corresponding to F.q/Œn� and C.q; k/Œn�, respectively, under this equivalence; then
Proposition 4.6 corresponds to:

Corollary 4.7 Any simplicial restricted vector space is weakly homotopy equivalent
to a coproduct of copies of KŒn; q� and KŒn; q; k�.
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4.2 Computation of the derived functors of U

In this subsection we will prove the main technical result of this paper: we compute the
homotopy groups of the free unstable A–algebra on a simplicial unstable A–module. As
an algebra, U.V / depends only on V as a restricted vector space: it is the “enveloping
algebra” of V , given by the free graded commutative algebra on V subject to the relation
x2D �.x/, ie S.V /=.x2D �.x//, where S.V / is the graded symmetric algebra on V .
If V is a simplicial restricted vector space we may ask about ��.UV /. It does not
depend functorially on ��.V /; we do not have Dold’s Theorem 3.15 working for us.
We will describe ��.UV / in terms of ��.V /, but not functorially. Our description will
use the functor S, given to us by Dold’s theorem, such that ��.SV /DS.��.V //. It
is described in detail above, in Theorem 3.17. We will also use the “loops” functor �
and its first derived functor �1 , defined by the exact sequence

0!†�1V !ˆV
�
�! V !†�V ! 0:

where ˆ denotes the “doubling” functor, .ˆV /2qn D V
q
n and .ˆV /2qC1n D 0.

Here is the result:

Theorem 4.8 If V is a simplicial restricted vector space, then there is a (noncanonical)
isomorphism

��UV Š U.�0V /Œ0�˝S.†���>0V /˝S..†�1��>0V /Œ1�/;

where Œ1� denotes a shift by 1 in the simplicial degree. (By noncanonical we mean that
the isomorphism depends on a choice of basis of ��V .)

By Corollary 4.7 we know that any simplicial restricted vector space is weakly equivalent
to a coproduct of copies of KŒn; q� and KŒn; q; k�. To show that this carries over to
a decomposition of U.M/ up to weak equivalence, we observe U preserves weak
equivalences and colimits:

Proposition 4.9 U , considered as a functor from restricted vector spaces to graded
commutative F2–algebras, preserves colimits and weak equivalences.

Proof We first show that U preserves colimits. Let U 0 denote U , regarded as a
functor from restricted vector spaces to augmented graded commutative F2–algebras.
The forgetful functor from augmented algebras to algebras preserves colimits, so it
suffices to show that U 0 preserves colimits. But this is clear since U 0 has a right
adjoint, namely the augmentation ideal functor for augmented graded commutative
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F2–algebras, regarded as a functor to restricted vector spaces with restriction maps
given by squaring.

To see that U preserves weak equivalences, consider the word-length filtration on U.V /
for V a simplicial restricted vector space. This gives rise to a spectral sequence of the
form

�tEs.V /D Es.��V /t ) �tU.V /;

where E is as in Section 3.2 Moreover, since the filtration is natural in V , so is
the spectral sequence. Thus a weak equivalence f W V !W of simplicial restricted
vector spaces induces a morphism of spectral sequences that gives an isomorphism
on the E1–page, since this only depends on the homotopy of the simplicial restricted
vector space. This implies that the map is an isomorphism of spectral sequences and
hence, as these spectral sequences converge, it follows that U.f / is a weak equivalence
of simplicial graded commutative algebras.

Combining this with Corollary 4.7 we see that U.M/, for any simplicial restricted
vector space M , is weakly equivalent to a tensor product of copies of U.KŒn; q�/
and U.KŒn; q; k�/. It thus suffices to prove Theorem 4.8 in these two cases. We begin
with the easiest case, namely ��U.KŒn; q�/ for q > 0. For this we need to recall the
explicit form of the Dold–Kan construction:

Definition 4.10 Let C be an abelian category. The Dold–Kan construction

KW Ch.C/�0! Fun.�op;C/

sends a nonnegatively graded chain complex A to the simplicial object K.A/ defined
as follows: We set

K.A/n D
M

˛W Œn��Œk�

Ak;

where the coproduct is over surjective maps out of Œn�. Then a map K.A/n!K.A/m
is described by a “matrix” of maps f˛;ˇ W Ak!Al from the component corresponding
to ˛W Œn�� Œk� to the component corresponding to ˇW Œm�� Œl �. To define the map
��W K.A/n!K.A/m corresponding to �W Œm�! Œn� in � we take this to be given by

f˛;ˇ WD

8<:
id if l D k and ˇ D ˛�;
d if l D k� 1 and d0ˇ D ˛�;
0 otherwise:

The Dold–Kan correspondence (see Dold [7], Dold and Puppe [8], Kan [17]) is then
that the functor K is an equivalence of categories, with inverse the normalized chain
complex functor.
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Lemma 4.11 Let F2Œn; q� denote the chain complex of graded vector spaces that
is 0 except in the degree n, where it is F2Œq� (the graded vector space with F2 in
degree q and 0 elsewhere). Then for q > 0 we have UKŒn; q�Š S.KF2Œn; q�/, where
KF2Œn; q� is the Dold–Kan construction for graded vector spaces applied to F2Œn; q�.
In particular, we have an isomorphism

��UKŒn; q�ŠSF2Œn; q�

for all n and q > 0.

Proof From the definition of the Dold–Kan functor K we have

KŒn; q�i D
M

Œi��Œn�

F.q/

and so for q > 0 we have

UKŒn; q�i Š
O

Œi��Œn�

UF.q/Š
O

Œi��Œn�

SF2Œq�Š S

� M
Œi��Œn�

F2Œq�

�
Š S.KF2Œn; q�/i :

Moreover, the simplicial structure maps in UKŒn; q� and SKF2Œn; q� are also clearly
the same (on “components” they are either the identity or zero), so these simplicial
graded vector spaces are isomorphic.

For the case q D 0 the algebra UF.0/ is not a symmetric algebra, since we impose
the relation x2 D x on the generator x : it is a Boolean algebra. If V is a vector
space, we write b.V / for the free Boolean algebra s.V /=.x2 D x/ on V (where
s.V / is the ungraded symmetric algebra on V ). By Theorem 3.15, there is a functor
bW grVect! grVect such that ��b.V /D b.��V / for V a simplicial vector space.

Lemma 4.12 Suppose V is a graded F2–vector space. Then

b.V /� D

�
b.V0/ if � D 0;
0 otherwise.

Proof Suppose V is a simplicial vector space. Then Theorem 3.9 implies that
for any element a in degree n > 0 in the chain complex associated to b.V / such
that daD 0, there exists an element ı1a in degree nC1 such that dı1aD �.a/D a .
Thus ��b.V /D 0 for �> 0.

Lemma 4.13 For any n we have an isomorphism UKŒn; 0� Š b.KF2Œn�/Œ0�, the
simplicial graded vector space with b.KF2Œn�/ in degree 0, and so

��UKŒn; 0�D

�
.b.F2//Œ0� if nD 0;
b.0/Œ0�Š F2Œ0� if n¤ 0:
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Proof As in the proof of Lemma 4.11 we have

UKŒn; 0�i Š
O

Œi��Œn�

UF.0/Š
O

Œi��Œn�

b.F2/Œ0�Š b

� M
Œi��Œn�

F2

�
Œ0�Š b.KF2Œn�/Œ0�i ;

and the simplicial structure maps are again the same.

Now we consider the consider the more complicated case, namely UKŒn; q; k�. There
is a cofibration sequence

F.q/Œn�! C.q; k/Œn�! F.2kq/ŒnC 1�

of chain complexes of restricted vector spaces. By the Dold–Kan correspondence this
gives a cofibration sequence

KŒn; q�!KŒn; q; k�!KŒnC 1; 2kq�

of simplicial restricted vector spaces, and so a cofibration sequence

U.KŒn; q�/! U.KŒn; q; k�/! U.KŒnC 1; 2kq�/

of simplicial commutative F2–algebras by Proposition 4.9. We want to apply the
Serre spectral sequence of Corollary 3.41 to this cofibration sequence to compute
��U.KŒn; q; k�/; to do this we first observe that the map U.KŒn; q�/!U.KŒn; q; k�/

is a cofibration of simplicial graded commutative algebras:

Lemma 4.14 The map U.KŒn; q�/! U.KŒn; q; k�/ is almost-free in the sense of
Definition 3.5, and so is a cofibration of simplicial graded commutative algebras.

Proof We have

KŒn; q; k�i D
M

Œi��Œn�

F.q/˚
M

Œi��ŒnC1�

F.2kq/

and UKŒn; q; k�i Š UKŒn; q�i ˝S.Vi / where Vi D
L
Œi��ŒnC1� F2Œ2

kq�. It is clear
that the simplicial structure maps  � take UKŒq; n�� to itself, and are induced by maps
between the Vn except when  is such that for some ˇ and  we have ˇ D d0 ,
since this is the case when the differential in the chain complex occurs in the definition
of  � for KŒn; q; k�.

But the map ˇW Œi �! ŒnC1� is surjective and order-preserving, so it must send 0 to 0.
Thus ˇ will hit 0 in ŒnC 1� for all ˇ if  hits 0 in Œi �, in which case ˇ cannot
be of the form d0 . This is clearly the case for the degeneracies sj W Œi C 1�! Œi � for
all j (as they are surjective) and the face maps d j W Œi � 1�! Œi � for j ¤ 0. Thus the
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structure maps of U.KŒn; q; k�/ corresponding to all degeneracies and all face maps
other than d0 are induced from maps between the Vi .

Proposition 4.15 The Serre spectral sequence for the cofibration sequence

U.KŒn; q�/ ˛!U.KŒn; q; k�/ ˇ!U.KŒnC 1; 2kq�/

collapses at the E2–page.

Proof By Corollary 3.41 the spectral sequence in question is a multiplicative spectral
sequence of the form

E2s;t D �s.UKŒnC 1; 2
kq�/˝�t�s.UKŒn; q�/) �t .UKŒn; q; k�/;

with differentials d r W Ers;t ! Ers�r;t�1 . Write � to denote the fundamental class
in �nKŒn; q�DE20;n and � for the fundamental class in �nC1KŒnC1; 2kq�DE2nC1;nC1 .
Since the spectral sequence is multiplicative, it suffices to show that there are no
nonzero differentials on the classes ıI � and ıI� . Clearly there are no possible nonzero
differentials on ıI �, and the only differential on � that hits a nonzero group is dnC1 ,
but dnC1� cannot be � since they differ in internal grading. Moreover, the groups that
might support differentials hitting � are all zero, so � must survive to E1 .

There is an obvious map of cofibration sequences from

U.KŒn; q�/! U.KŒn; q; k�/! U.KŒnC 1; 2kq�/

to
F2Œ0�! U.KŒnC 1; 2kq�/ id

�!U.KŒnC 1; 2kq�/;

and the map F2Œ0�!U.KŒnC1; 2kq�/ is a cofibration since U.KŒnC1; 2kq�/ is free.
Thus we get a morphism of spectral sequences, given on the E2–page by projection
to ��U.KŒnC 1; 2kq�/ and on the E1–page by ��ˇ . This means that ��ˇ must
send � to the fundamental class �0 in ��U.KŒnC 1; 2kq�/, and so for any admissible
sequence I the class ıI� is mapped to ıI�0 , which is nonzero. This implies that
ıI� must also survive to E1 for all I . By multiplicativity, this means the spectral
sequence has no nonzero differentials, ie it collapses on the E2–page.

Corollary 4.16 There is an isomorphism

��U.KŒn; q; k�/ŠSF2Œn; q�˝SF2ŒnC 1; 2
kq�

of algebras over the triple S.
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Proof The map ��ˇW ��UKŒn; q; k�!��UKŒnC1; 2
kq� is surjective, as we saw in

the proof of Proposition 4.15. Since ��UKŒnC1; 2kq� is free, choosing a preimage of
the generator gives a map ��UKŒnC 1; 2kq�! ��UKŒn; q; k� of S–algebras. Since
the tensor product is the coproduct, we get a map

��UKŒn; q�˝��UKŒnC 1; 2
kq�! ��UKŒn; q; k�

of S–algebras. Filter the left-hand side by degree and the right-hand side by the
filtration from the Serre spectral sequence. The collapse of this spectral sequence
implies that this gives an isomorphism of the graded objects associated to the filtration,
hence this map is an isomorphism of bigraded vector spaces and so also an isomorphism
of S–algebras.

Combining Lemmas 4.11 and 4.13 and Corollary 4.16 now completes the proof of
Theorem 4.8. Applying this to the E2–term of our spectral sequence, we deduce the
following:

Corollary 4.17

(i) If E is a connected spectrum of finite type, the E2–term of the spectral sequence
for H��1E is of the form

E2 Š UD.H�E/Œ0�˝S.†�L�>0D.H�E//˝S.†�1L�>0D.H�E/Œ1�/:

(ii) If in addition the top squares in L�D.H�E/ are all zero for � > 0, then the
E2–term is given by

E2 Š UD.H�E/Œ0�˝E.L�>0D.H�E//:

4.3 A functorial description of the derived functors

The description of ��UM for a simplicial restricted vector space we obtained above is
compatible with the products and ı–operations. However, in the case of interest, M is
the underlying simplicial restricted vector space of a simplicial unstable A–module;
this means that there are also Steenrod operations on ��UM . We will now give a more
functorial description of ��UM that is also compatible with these operations.

If M is a simplicial unstable A–module, we have a natural transformation M!†�M ,
which induces a map ��UM ! ��U†�M . Since the top squares in †�M are all
zero, as a simplicial commutative algebra U†�M is isomorphic to E†�M , and
hence ��U†�M is isomorphic to E.��†�M/. We can also easily describe the
action of the Steenrod operations here, using the following observation of Dwyer:
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Proposition 4.18 [9, Proposition 2.7] Let R be a simplicial unstable algebra over
the Steenrod algebra; then ��R supports both higher divided squares and Steenrod
operations. These are related as follows:

Sqk ıi D
�
0 for k odd,
ıi Sqk=2 for k even,

for i � 2. Moreover, if all squares in R are zero, then the same is true for i D 1.

Proof Write Sq WDSq0CSq1C � � � . By the Cartan formula, SqW R!R is an algebra
homomorphism. Since the operation ıi is natural, this means ıi SqD Sq ıi in ��R .
Considering the homogeneous parts in each internal degree on both sides gives the
result.

We first consider the case where M is a simplicial unstable A–module such that
�0M D 0:

Proposition 4.19 Suppose M is a levelwise projective simplicial unstable A–module
such that �0M D 0. Then there is a natural isomorphism of commutative bigraded
F2–algebras

��UM !S.��†�M/;

compatible with Steenrod operations and higher divided squares.

Proof Observe that if N is a simplicial unstable A–module such that �0N D 0 and
the top squares in N vanish (such as N D †�M ), then we have an isomorphism
E.��N/ŠS.��N/˝S.ı1��N/, compatible with the Steenrod operations. Moreover,
the inclusion S.��N/ ,!E.��N/ and retraction E.��N/!S.��N/ are compatible
with Steenrod operations. Taking N D†�M we thus have a natural map of graded
algebras

��UM ! E.��†�M/!S.��†�M/;

compatible with Steenrod squares and ı–operations. We will show that this map is an
isomorphism.

M is weakly equivalent to a coproduct of copies of KŒn; q� and KŒn; q; k�, by
Corollary 4.7. We know U preserves weak equivalences and colimits by Proposition 4.9,
and � preserves coproducts and weak equivalences between levelwise projective
objects. Thus it suffices to prove the result when M is KŒn; q� or KŒn; q; k�.

In the first case, †�KŒn; q� is K.F2Œn; q�/, and by Lemma 4.11 we know that
UKŒn; q� is SK.F2Œn; q�/ for n > 0, so the map UKŒn; q�! U†�KŒn; q� is the
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natural map SK.F2Œn; q�/!EK.F2Œn; q�/. On homotopy this is just the inclusion of
the factor S.F2Œn; q�/.

When nD 0, we have †�KŒn; 0�' 0, so

��UKŒn; 0�! ��U†�KŒn; 0�!S.��†�KŒn; 0�/

is the identity map on F2Œ0� by Lemma 4.13.

For UKŒn; q; k� we consider the extension sequence

UKŒn; q�! UKŒn; q; k�! UKŒnC 1; 2kq�:

On homotopy, this leads to a commutative diagram

��UKŒn; q� S.��†�KŒn; q�/

��UKŒn; q; k� S.��†�KŒn; q; k�/

��UKŒnC 1; 2
kq� S.��†�KŒnC 1; 2

kq�/:

Here we have already shown that the top and bottom horizontal morphism are isomor-
phisms. But the chain complex †�C.q; k/ is clearly F2Œq�˚†F2Œ2kq�, so the right
vertical maps are a split extension sequence. Moreover, from the proof of Corollary 4.16
we know that the lower left vertical map is surjective, and that choosing a preimage of
the generator gives an isomorphism

S.��†�KŒn; q�/˝S.��†�KŒnC 1; 2
kq�/ �!� ��UKŒn; q; k�:

The composite of this with the map ��UKŒn; q; k�! S.��†�KŒn; q; k�/ is also
an isomorphism (since it is determined by where it sends the generators). Thus by
the 2-out-of-3 property the middle horizontal map here must also be an isomorphism,
which completes the proof.

For a general simplicial unstable A–module M we have a projection M ! �0MŒ0�.
Writing M>0 for the fiber of this map, we have a pushout square

M>0 M

0 M0

where M0 is weakly equivalent to �0MŒ0� (as can be seen from the long exact sequence
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in homotopy groups). Thus we have a pushout diagram

UM>0 UM

F2 UM0

of simplicial unstable A–algebras. On homotopy we thus have maps

��UM>0! ��UM ! U�0MŒ0�;

where the second map is an isomorphism on �0 . We thus have a canonical map
U�0MŒ0�! ��UM , and since the tensor product is the coproduct here we get a map

��UM>0˝U�0MŒ0�! ��UM;

compatible with all the operations in play. Moreover, this is an isomorphism; as usual,
this follows from considering the case where M is KŒn; q� or KŒn; q; k�.

Theorem 4.20 Suppose M is a simplicial unstable A–module, and let M 0 ! M

be a weak equivalence where M 0 is levelwise projective. Then we have a natural
isomorphism of commutative bigraded F2–algebras

S.��>0†�M
0/˝U�0MŒ0� �!� ��UM;

compatible with Steenrod operations and higher divided squares. Moreover, there is a
short exact sequence

0!†�1��>0MŒ1�! ��>0†�M
0
!†���>0M ! 0

of graded unstable A–modules.

Proof Since U preserves weak equivalences by Proposition 4.9, ��UM 0 Š ��UM ,
so the desired isomorphism follows from Proposition 4.19. The short exact sequence is
a consequence of the hyperhomology spectral sequence

†�s�tM ) �sCt†�M

(see for example [14]), which collapses.

Corollary 4.21 Let X be a connected spectrum of finite type. In the infinite loops
spectral sequence for X the E2–term is isomorphic to

S.L�>0.†�D/.H�X//˝UD.H�X/;

compatibly with products, Steenrod operations, and higher divided squares. Moreover,
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there is a short exact sequence

0!†�1L�>0D.H�X/Œ1�! L�>0†�D.H�X/!†�L�>0D.H�X/! 0

of graded unstable A–modules.

Proof Recall the E2–term is obtained by applying UD to a free simplicial resolution
of H�X as an A–module. Applying D to this free resolution gives a levelwise free
simplicial unstable A–module, so this is immediate from Theorem 4.20.

5 Examples

Corollary 4.17 reduces the analysis of the E2–term of our spectral sequence to the
computation of the derived functors of D . In this section we will apply results about
these functors from the literature to describe the spectral sequence in two simple
examples.

5.1 Eilenberg–Mac Lane spectra

The spectral sequence is clearly trivial for Eilenberg–Mac Lane spectra having the
form †kHF2 . For a slightly less trivial example, consider the Eilenberg–Mac Lane
spectra †kHZ and †kHZ=2n , where k must be positive for our convergence result to
apply. The mod-2 cohomology of the spectrum HZ, originally computed by Serre [29],
is the A–module A=Sq1 . Since Sq1 Sq1D 0, this has a simple free resolution, namely

� � � !†2A
�Sq1
�!†A

�Sq1
�!A:

From this we see that, writing F.n/ D D.†nA/ for the free unstable A–module
on a generator in degree n, the derived functors L�D.H�†kHZ/ are given by the
cohomology of the complex

� � � ! F.kC 2/
�Sq1
�!F.kC 1/

�Sq1
�!F.k/:

But it is easy to see that this complex is exact for k > 0, and so L�D.H�†kHZ/
is 0 for �> 0. It follows that our spectral sequence has only a single column, and so
collapses to give

H�.K.Z; k//D H�.�1†kHZ/Š U.F.k/=Sq1/:

Similarly, the spectrum †kHZ=2n has cohomology A=Sq1˚†A=Sq1 , so again D
has no derived functors and H�.K.Z=2n; k//Š U.F.k/=Sq1/˝U.F.kC 1/=Sq1/.
Of course, these results agree with Serre’s computations in [29].
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5.2 Suspension spectra

In this subsection we consider the spectral sequence for infinite loop spaces of the
form �1†1X , where X is a connected space. We will show, by a dimension-counting
argument, that the spectral sequence collapses in this case.

The cohomology H�.†1X/Š zH�X is an unstable A–module. Lannes and Zarati [19]
computed the derived functors L�.D/.M/ for an unstable A–module M . An alter-
native computation (in the dual, homological, case), using a chain complex originally
due to Singer [30], has been given by Kuhn and McCarty [18], and we will use their
formulation of the result. Before stating this, we must introduce some notation:

Definition 5.1 Let M be an A–module. Let RsM be the quotient of the graded
F2–vector space generated by symbols QIx in degree jxj C i1 C � � � C is , where
x 2M and I D .i1; : : : ; is/, by the instability and Adém relations for the Dyer–Lashof
algebra as well as linearity relations (QI .x C y/ D QIx CQIy ). This becomes
an A–module via the (dual) Nishida relation

Sqi Qjx D
X
k

� j�k
i�2k

�
QiCj�k Sqk x:

Let d W Rs.†M/!Rs�1.M/ be defined by d.QI�x/DQi1;:::;is�1.SqisC1 x/; this
is a map of A–modules. Writing RsM WD †Rs†s�1 we can think of d as a map
RsM !Rs�1M .

The result, in the form given by [18, Theorems 4.22 and 4.34], is then:

Theorem 5.2 (Singer, Lannes and Zarati, Kuhn and McCarty) Let M be an A–
module.

(i) The sequence

� � � !RsM
d
!Rs�1M ! � � � !R0M

is a chain complex, and H�.R�M/ is naturally isomorphic to L�.D/.M/.

(ii) If M is an unstable A–module, then the differential in R�M is zero and thus
L�D.M/ŠR�M .

(iii) If M is an unstable A–module, then LsD.M/ is an s–fold suspension of an
unstable module.
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By (iii), it follows that for M unstable all the top squares in LsD.M/ are zero for s >0.
By Corollary 4.17 we therefore have an isomorphism

L�.UD/.M/Š U.M/Œ0�˝E.L�>0D.M//:

Thus if E is a spectrum such that H�E is an unstable A–module, in the E2–term of
our spectral sequence for H�.�1E/ an element v 2 HkE gives:

� �QI�s�1v in degree .�s; kCjI jC s/, where I D .i1; : : : ; is/ is an allowable
sequence, ie it � 2itC1 , and i1 > i2C � � �C isCjvjC s� 1 (for brevity we’ll
denote this element by QIv );

� ıJQ
Iv in degree .�s� jJ j; 2l.kCjI jC s//, for J an admissible sequence of

length l .

The E2–page of the spectral sequence is an exterior algebra on these generators.

Now suppose X is a connected space of finite type; then H�X Š .H�.X//_ . In this
case the spectral sequence for †1X converges by Theorem 2.1. We wish to compare
the E2–page to the known cohomology H�.QX/ Š .H�.QX//_ . Recall that the
homology H�.QX/ can be described in terms of the Dyer–Lashof operations Qj :

Theorem 5.3 (May [6]) If X is a space, the homology H�.QX/ is a polynomial al-
gebra on generators QJ v where v ranges over a basis of H�.X/, and J D .j1; : : : ; js/
is an allowable sequence, meaning jt � 2jtC1 for all t , and j1 > j2C : : :C jsCjvj.
The element QJ v is in degree jvjC jJ j.

To see that the spectral sequence must collapse, it suffices to prove the following:

Proposition 5.4 There is a grading-preserving bijection between the exterior algebra
generators QIx , ıJQIx of the E2–page and the Dyer–Lashof operations QKx ,
together with their powers .QKx/2

r

, for each x in a basis for the reduced cohomology
of X .

Proof Write k WD jxj. Observe that for any allowable sequence I with

i1 > i2C � � �C isC kC s� 1;

the total degree of QIx is the same as the degree of QIx . However, there are more
nonzero Dyer–Lashof operations on x than those given by these sequences: we are
missing those where

i2C � � �C isC k < i1 � i2C � � �C isCjxjC s� 1:
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To relate these to the E2–term, we change the indexing of the Dyer–Lashof operations:
If J D .j1; : : : ; js/ is an allowable sequence, then for QJ v to be nonzero (and not a
square) in H�.QX/ we must have, for positive integers l1; : : : ; ls ,

ji D kC jsC js�1C � � �C jiC1C li :

The allowability condition, expressed in terms of the li , says that li � liC1 . Thus there
exist nonnegative integers a1; : : : ; as (with a1 > 0) such that liC1 D li C aiC1 (and
l1 D a1 ). In terms of the ai the element QJx has degree

2skC

sX
jD1

jX
rD1

2j�1ar D 2
skC

sX
rD1

� sX
jDr

2j�1
�
ar D 2

skC

sX
rD1

.2s � 2r�1/ar :

Let’s write qa1;:::;asx for the element QJx with J of this form. We also extend the
notation by writing q0;a1;:::;asx for .qa1;:::;asx/2 , etc.

Defining xqa1;:::;asx similarly, we see that xqa1;:::;asx and qa1C.s�1/;a2;:::;asx have the
same degree in H�.QX/.

Now suppose ıI is an admissible sequence of ı–operations of length l . Then there exist
nonnegative integers rt such that il D rl � 1 and it D 2itC1C rt for t < l ; in terms
of the rt the admissibility criterion says that r1C� � �Crl � s , and jI j D

P
i .2

i �1/ri .
Then the total degree of ıI xqa1;:::;asx is the same as the degree of qKx , where

K D

�
s�

X
rt ; r1; r2; : : : ; rl�1; a1C rl � 1; a2; : : : ; as

�
:

To see that this gives a bijection between the generators, we describe its inverse:
For qb1;:::;b�x in H�.QX/, let L be the unique integer with 0� L< � such that

b1C � � �C bLCL< � � b1C � � �C bLC1CLC 1:

Then we define

s WD � �L;

rL WD s� b1� � � � � bL�L and rt WD btC1 for t D 1; : : : ; L� 1;

a1 WD bLC1� rLC 1 and ai WD bLCi for i D 2; : : : ; s:

Then

.b1; : : : ; b� /D

�
s�L�

lX
tD1

rt ; r1; : : : ; rL�1; a1C rL� 1; a2; : : : ; as

�
;

so qb1;:::;b� corresponds to ıI xq
a1;:::;asx where I D .i1; : : : ; iL/ is the admissible

sequence determined by the rt , ie with it WD
PL
jDt 2

j�trj .
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Corollary 5.5 For X a connected space of finite type, the spectral sequence

L�.UD/.H�X/) H�.QX/

collapses at the E2–page.

References
[1] A K Bousfield, Operations on derived functors of nonadditive functors, unpublished

manuscript, Brandeis University (1967)

[2] A K Bousfield, The localization of spectra with respect to homology, Topology 18
(1979) 257–281 MR

[3] A K Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J.
Math. 109 (1987) 361–394 MR

[4] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Mathematics 304, Springer (1972) MR

[5] H Cartan, Puissances divisées, from “Séminaire Henri Cartan, 1954/1955 (Exposé 7)”,
volume 7, Secrétariat Mathématique, Paris (1955)

[6] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes
in Mathematics 533, Springer (1976) MR

[7] A Dold, Homology of symmetric products and other functors of complexes, Ann. of
Math. 68 (1958) 54–80 MR

[8] A Dold, D Puppe, Homologie nicht-additiver Funktoren: Anwendungen, Ann. Inst.
Fourier Grenoble 11 (1961) 201–312 MR

[9] W G Dwyer, Higher divided squares in second-quadrant spectral sequences, Trans.
Amer. Math. Soc. 260 (1980) 437–447 MR

[10] W G Dwyer, Homotopy operations for simplicial commutative algebras, Trans. Amer.
Math. Soc. 260 (1980) 421–435 MR

[11] P G Goerss, Unstable projectives and stable Ext: with applications, Proc. London
Math. Soc. 53 (1986) 539–561 MR

[12] P G Goerss, On the André–Quillen cohomology of commutative F2–algebras, Asté-
risque 186, Société Mathématique de France, Paris (1990) MR

[13] P G Goerss, T J Lada, Relations among homotopy operations for simplicial commuta-
tive algebras, Proc. Amer. Math. Soc. 123 (1995) 2637–2641 MR

[14] A Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9
(1957) 119–221 MR

[15] P Hackney, Operations in the homology spectral sequence of a cosimplicial infinite
loop space, J. Pure Appl. Algebra 217 (2013) 1350–1377 MR

Algebraic & Geometric Topology, Volume 16 (2016)

http://dx.doi.org/10.1016/0040-9383(79)90018-1
http://msp.org/idx/mr/551009
http://dx.doi.org/10.2307/2374579
http://msp.org/idx/mr/882428
http://dx.doi.org/10.1007/978-3-540-38117-4
http://msp.org/idx/mr/0365573
http://www.numdam.org/item?id=SHC_1954-1955__7_1_A7_0
http://dx.doi.org/10.1007/BFb0080464
http://msp.org/idx/mr/0436146
http://dx.doi.org/10.2307/1970043
http://msp.org/idx/mr/0097057
http://dx.doi.org/10.5802/aif.114
http://msp.org/idx/mr/0150183
http://dx.doi.org/10.2307/1998013
http://msp.org/idx/mr/574790
http://dx.doi.org/10.2307/1998012
http://msp.org/idx/mr/574789
http://dx.doi.org/10.1112/plms/s3-53.3.539
http://msp.org/idx/mr/868458
http://msp.org/idx/mr/1089001
http://dx.doi.org/10.2307/2160555
http://dx.doi.org/10.2307/2160555
http://msp.org/idx/mr/1260166
http://msp.org/idx/mr/0102537
http://dx.doi.org/10.1016/j.jpaa.2012.10.002
http://dx.doi.org/10.1016/j.jpaa.2012.10.002
http://msp.org/idx/mr/3019742


2946 Rune Haugseng and Haynes Miller

[16] S B Isaacson, Symmetric cubical sets, preprint (2009) arXiv (the published version at
J. Pure Appl. Algebra 215 (2011) 1146–1173 does not include the relevant result)

[17] D M Kan, Functors involving c.s.s. complexes, Trans. Amer. Math. Soc. 87 (1958)
330–346 MR

[18] N Kuhn, J McCarty, The mod 2 homology of infinite loopspaces, Algebr. Geom. Topol.
13 (2013) 687–745 MR

[19] J Lannes, S Zarati, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194 (1987)
25–59 MR

[20] S Mac Lane, Categories for the working mathematician, 2nd edition, Graduate Texts
in Mathematics 5, Springer (1998) MR

[21] H Miller, A spectral sequence for the homology of an infinite delooping, Pacific J. Math.
79 (1978) 139–155 MR

[22] H Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120
(1984) 39–87 MR

[23] H Miller, Correction to [22], Ann. of Math. 121 (1985) 605–609 MR

[24] G M L Powell, On the derived functors of destabilization at odd primes, Acta Math.
Vietnam. 39 (2014) 205–236 MR

[25] D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)
MR

[26] C Rezk, Every homotopy theory of simplicial algebras admits a proper model, Topology
Appl. 119 (2002) 65–94 MR

[27] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc.
London Math. Soc. 80 (2000) 491–511 MR

[28] S Schwede, B Shipley, Equivalences of monoidal model categories, Algebr. Geom.
Topol. 3 (2003) 287–334 MR

[29] J-P Serre, Cohomologie modulo 2 des complexes d’Eilenberg–MacLane, Comment.
Math. Helv. 27 (1953) 198–232 MR

[30] W M Singer, Iterated loop functors and the homology of the Steenrod algebra, II: A
chain complex for �ksM , J. Pure Appl. Algebra 16 (1980) 85–97 MR

[31] W M Singer, A new chain complex for the homology of the Steenrod algebra, Math.
Proc. Cambridge Philos. Soc. 90 (1981) 279–292 MR

[32] J M Turner, On simplicial commutative algebras with vanishing André–Quillen ho-
mology, Invent. Math. 142 (2000) 547–558 MR

Algebraic & Geometric Topology, Volume 16 (2016)

http://msp.org/idx/arx/0910.4948
http://dx.doi.org/10.1016/j.jpaa.2010.08.001
http://dx.doi.org/10.1090/S0002-9947-1958-0131873-8
http://msp.org/idx/mr/0131873
http://dx.doi.org/10.2140/agt.2013.13.687
http://msp.org/idx/mr/3044591
http://dx.doi.org/10.1007/BF01168004
http://msp.org/idx/mr/871217
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://msp.org/idx/mr/1712872
http://dx.doi.org/10.2140/pjm.1978.79.139
http://msp.org/idx/mr/526673
http://dx.doi.org/10.2307/2007071
http://msp.org/idx/mr/750716
http://dx.doi.org/10.2307/1971212
http://msp.org/idx/mr/794376
http://dx.doi.org/10.1007/s40306-014-0062-3
http://msp.org/idx/mr/3212661
http://dx.doi.org/10.1007/BFb0097438
http://msp.org/idx/mr/0223432
http://dx.doi.org/10.1016/S0166-8641(01)00057-8
http://msp.org/idx/mr/1881711
http://dx.doi.org/10.1112/S002461150001220X
http://msp.org/idx/mr/1734325
http://dx.doi.org/10.2140/agt.2003.3.287
http://msp.org/idx/mr/1997322
http://dx.doi.org/10.1007/BF02564562
http://msp.org/idx/mr/0060234
http://dx.doi.org/10.1016/0022-4049(80)90044-4
http://dx.doi.org/10.1016/0022-4049(80)90044-4
http://msp.org/idx/mr/549706
http://dx.doi.org/10.1017/S0305004100058746
http://msp.org/idx/mr/620738
http://dx.doi.org/10.1007/s002220000096
http://dx.doi.org/10.1007/s002220000096
http://msp.org/idx/mr/1804160


On a spectral sequence for the cohomology of infinite loop spaces 2947

Department of Mathematical Sciences, University of Copenhagen
Universitetsparken 5, DK-2100 Copenhagen, Denmark

Department of Mathematics, Massachusetts Institute of Technology
Building 2, Room 106, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, United States

haugseng@math.ku.dk, hrm@math.mit.edu

http://sites.google.com/site/runehaugseng, http://math.mit.edu/~hrm

Received: 13 August 2015 Revised: 23 February 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

mailto:haugseng@math.ku.dk
mailto:hrm@math.mit.edu
http://sites.google.com/site/runehaugseng
http://math.mit.edu/~hrm
http://msp.org
http://msp.org




msp
Algebraic & Geometric Topology 16 (2016) 2949–2980

Homotopy groups of diagonal complements

SADOK KALLEL

INES SAIHI

For X a connected finite simplicial complex we consider �d .X; n/ , the space of
configurations of n ordered points of X such that no d C 1 of them are equal, and
Bd .X; n/ , the analogous space of configurations of unordered points. These reduce
to the standard configuration spaces of distinct points when d D 1 . We describe
the homotopy groups of �d .X; n/ (resp. Bd .X; n/) in terms of the homotopy (resp.
homology) groups of X through a range which is generally sharp. It is noteworthy
that the fundamental group of the configuration space Bd .X; n/ abelianizes as soon
as we allow points to collide, ie d � 2 .

55Q52; 55P10

In memory of Abbas Bahri so greatly missed

1 Introduction

Let X be a topological space and �dC1.X; n/�X n the union of the .dC1/st diagonal
arrangement in X n , that is,

�dC1.X; n/D
˚
.x1; : : : ;xn/ 2X n

j xi0
D xi1

D � � � D xid

for some sequence 1� i0 < � � �< id � n
	
:

Its complement in X n is the configuration space of no dC1 equal points in X , which
is written

�d .X; n/DX n
��dC1.X; n/:

This is the space of ordered tuples of n points in X with the multiplicity of each entry
in the tuple at most d (hence the notation �d as opposed to �d for at least d ). It
is useful to think of these tuples as configurations of n ordered points in X with the
property that d of the points can collide but not d C 1. The symmetric group Sn acts
on �d .X; n/, and the quotient is denoted by Bd .X; n/.
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We have increasing filtrations

(1)
F.X; n/ WD�1.X; n/��2.X; n/� � � � ��n.X; n/DX n;

B.X; n/ WD B1.X; n/� B2.X; n/� � � � � Bn.X; n/D SPn X;

with SPn X WDX n=Sn being the nth symmetric product. Here we have written F.X; n/

and B.X; n/ for the standard configuration spaces of ordered (resp. unordered) pairwise
distinct points of cardinality n. Various other notations for F.X; n/ in the literature
include Cn.X /, Confn.X /, etc, while B.X; n/ is sometimes written Braid.X; n/ in
the geometric topology literature; reminiscent of the fact that its fundamental group is
the so-called nth braid group of X .

In some exceptional cases, the spaces �d .X; n/ and Bd .X; n/ can be empty (if, for
example, X is a point and d < n), but otherwise they have a rich and interesting
geometry; see Kallel and Taamallah [18]. An early appearance of �d .X; n/ is in
paper of Cohen and Lusk [8] in connection with Borsuk–Ulam type results while more
recent applications to the colored Tverberg theorem for manifolds appear in Blagojević,
Matschke and Ziegler [4]. In the case V is a vector space, the spaces �d .V; n/

are subspace complements dubbed non-.dC1/–equal arrangements in Björner and
Welker [3], and their homology is made explicit in Dobrinskaya and Turchin [9] as
an algebra over the little disks operad, with interesting applications to the spaces of
non-d –equal immersions. In the case X D C , the spaces Bd .C; n/ are intimately
related to spaces of based holomorphic maps from the Riemann sphere into complex
projective space Pd ; see Guest, Kozlowski and Yamaguchi [12] and Kallel [16]. In
all cases, these spaces seem to have been studied so far exclusively for when X is
a manifold. One of our objectives in this paper is to give some sharp results on the
homology and homotopy groups of the non-d –equal configurations of X when X is a
more general polyhedral space.

Throughout this paper, a space X is a finite simplicial complex, that is, the realization
of a finite abstract simplicial complex. Unless specified, all spaces are connected.

Theorem 1.1 Let X be a connected finite simplicial complex that is not a point, and
d; n� 2. Then

�i.B
d .X; n//Š �i.SPn.X // for 0� i � 2d � 2:

In particular �1.B
d .X; n//ŠH1.X IZ/ when d � 2, n� 2. Moreover, if X is simply

connected, 2� d � n, then

�i.B
d .X; n//Š zHi.X IZ/ for 0� i � 2d � 2;

where zH .� IZ/ is reduced integral homology.
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The bound 2d � 2 in the theorem is sharp as is illustrated by the case where X a
Euclidean space; see Section 4. Note that the special case of the fundamental group
says that allowing a single collision is enough to abelianize the fundamental group.
This can be expected since collisions kill the braiding; see Section 8.

The homotopy groups of �d .X; n/ turn out to depend on local connectivity properties
of the space. We say X has local homotopical dimension r if for any x 2X and any
neighborhood U of x , there is an open neighborhood V � U of x such that V �fxg

is r –connected; see Definition 7.1.

Theorem 1.2 Let X be a locally finite simplicial complex with local homotopical
dimension r � 0; d � 1. Then

�i.�
d .X; n//Š �i.X /

n for i � rd C 2d � 2:

Remark 1.3 If d is at least n, both spaces are equal �d .X; n/DX n and all homotopy
groups agree. When d < n this bound is in general optimal as can be seen in the case of
manifolds. For example, R2 has local homotopical dimension 0 and �d .R2; dC1/'

S2d�1 is precisely 2d�2–connected.

Remark 1.4 For a polyhedral pair .X;Y /, the homotopical depth of Y in X is set
to be n if the pair .X;X nY / is n–connected; see Eyral [10]. Theorem 1.2 is saying
that the homotopical depth of the diagonal arrangement �dC1.X; n/ in X n is at least
rd C 2d � 2. This appears to be the first complete such calculation for this kind of
arrangements of subspaces.

To prove both of these theorems, we use a localization principle for homotopy groups,
Theorem 4.2, relating the local connectivities of pairs .V;V n Y / to the global con-
nectivity of .X;X nY / for closed Y �X and V local neighborhoods in a cover. In
both cases the proof reduces to studying the case of V being the union of various
simplices joining along a simplex. For Theorem 1.2, the argument amounts to giving a
homotopical decomposition of �d .V; n/ when V is such a union. We recall that by a
homotopical decomposition of a space X we mean a diagram DW I!Top; ie a functor
from a small category I to the category of topological spaces and continuous maps, so
that the map hocolimI D! colimI DŠX is a weak equivalence; see Section 7. Our
decomposition extends similar results of Sun [25]. Since we are able to control the
connectivity of each space making up the diagram, we are able to derive our bound.

Theorem 1.1 on the other hand relies on a different argument. First we treat the case
of a manifold based on the idea of scanning maps. The general case appeals to a
theorem of Smale [24] relating the connectivity of a map to that of its preimages.

Algebraic & Geometric Topology, Volume 16 (2016)



2952 Sadok Kallel and Ines Saihi

Since Smale’s theorem works for proper maps, a technical issue we have to deal
with is the construction in Section 5 of a Sn –equivariant simplicial complex which
is a deformation retract of �d .X; n/ for X again a finite complex. As pointed out
by the referee, similar techniques are in Björner et al [2, chapter 4] and have been
applied to hyperplane arrangements by Blagojević and Ziegler [5], for example (see
references therein). Section 5 is of independent interest and has relevance to more
recent constructions of CW-retracts for configuration spaces; see Tamaki [26].

The first section of the paper discusses motivational examples and general connectivity
results. The second section discusses the special case of graphs. Proposition 3.1 gives
a simplified and then expanded version of a useful theorem of Morton, which is used
to give an amusing description of the homotopy type of the configuration space of two
points on a wedge of circles in Proposition 3.4.
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has made resources available during the completion of this work. We are grateful to
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2 Preliminaries

We start with some classical examples of diagonal arrangements and their complements.
The extreme cases d D 1 and d D n� 1 are most encountered in the literature. The
case �1.X; n/D F.X; n/ corresponds to the configuration space of pairwise distinct
points

F.X; n/D f.x1; : : : ;xn/ 2X n
j xi ¤ xj for i ¤ j g:

The action of Sn on F.X; n/ is free and we have a regular covering F.X; n/ !

B.X; n/. If X is a manifold of dimension greater than 2, then �1.F.X; n//Š�1.X
n/

by a codimension argument (see Proposition 2.5), while �1.B.X; n// is a wreath
product �1.X / oSn ; this is standard, but a leisurely exposition can be found in [15].

Example 2.1 When d D n� 1, Bn�1.X; n/ is the complement in SPn.X / of the
diagonal embedding �W X ,! SPn X , x 7! Œx; : : : ;x�. When X DC , the elementary
symmetric functions give a diffeomorphism SPn.C/ Š Cn and the image of �.C/
corresponds under this diffeomorphism to the rational normal curve V diffeomorphic
to the Veronese embedding x 7! .x;x2; : : : ;xn/. One can check that

Bn�1.C; n/Š SPn.C/�V ' S2n�3:
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A short proof of this equivalence is given in [12, Lemma 2.7], while another quick
argument would be to use simple connectivity of Bn�1.C; n/ and Alexander duality.

In general, for Rk , k � 2, �n�1.Rk ; n/ D .Rk/n � � is the complement of the
thin diagonal, and this deforms onto the orthogonal complement of the diagonal
�D f.x; : : : ;x/g minus the origin, so that �n�1.Rk ; n/ is, up to homotopy, the unit
sphere Snk�k�1 in f.x1; : : : ;xn/2 .Rk/n j

P
xiD0gD�? . This deformation can be

made equivariant with respect to the permutation action of Sn so that the Sn –quotient
is Bn�1.Rk ; n/. We show below that this space is simply connected as soon as n is at
least 3 (in fact it is 2n�4–connected; Lemma 4.12).

Lemma 2.2 If S is the unit sphere in H D f.v1; : : : ; vn/ 2 .Rk/n j
P
vi D 0g, and

if Sn acts on H , and hence on S , by permutation of coordinates, then the quotient
Qn;k WD S=Sn is simply connected whenever nk � k � 1� 2.

Proof We use the following useful main result of Armstrong [1]: let G be a discon-
tinuous group of homeomorphisms of a path connected, simply connected, locally
compact metric space X , and let H be the normal subgroup of G generated by those
elements that have fixed points; then the fundamental group of the orbit space X=G is
isomorphic to the factor group G=H . We apply this result to G D Sn and X D S ,
which is simply connected. The point is that when n � 3, the fixed points of the
permutation action are of the form .v1; : : : ; vn/ with vi D vj for some i < j , which
means that all transpositions are in H and hence G DH .

The argument of Armstong used in the proof of Lemma 2.2 implies that if �d .X; n/ is
simply connected, then �1.B

d .X; n// is the quotient of Sn by the normal subgroup
generated by elements having fixed points, and this subgroup is the entire group if
d � 2. This establishes a useful conclusion.

Corollary 2.3 If �d .X; n/ is simply connected, then so is Bd .X; n/ if d � 2.

The following result, valid for smooth manifolds, is a special case of Theorem 1.1.

Proposition 2.4 When X DM is a closed smooth, ie C1 , manifold, dim M � 2,
and n� 3, then �1.B

n�1.M; n// is isomorphic to H1.M IZ/.

Proof A tubular neighborhood of the diagonal copy of M in SPnM can be identified
with the total space of the following subbundle. Let TM˚n be the n–fold Whitney sum
of the tangent bundle TM of M , dim M Dm, and let � be the subbundle with fiber
H D f.v1; : : : ; vn/ j

P
vi D 0g. The total space of this subbundle is homeomorphic

to a neighborhood of diagonal M in M�n . Now Sn acts on this bundle fiberwise
(linearly on each fiber) and the fiberwise quotient � has fiber H=Sn which can be
identified with the cone c.S .n�1/m�1=Sn/, where dim M Dm and S .n�1/m�1 is the
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unit sphere in H . According to [18, Proposition 4.1], for a smooth closed manifold M ,
a neighborhood deformation retract V of the diagonal M in SPnM is homeomorphic
to the total space of � . The fiberwise apexes of the fiberwise cone give the zero section
of this bundle. The complement of this section is S.M / which is, up to fiberwise
equivalence, a bundle over M with fiber S .n�1/m�1=Sn . By construction we have
the homotopy pushout

S.M /
�

//

��

M

�
��

Bn�1.M; n/
�
// SPnM

If nD 2, m � 2, S.M / is the projectivized tangent bundle with fiber Sm�1=Z2 D

RPm�1 . When n � 3 and m � 2, S.M / has simply connected fiber (Lemma 2.2)
so that � induces an isomorphism on fundamental groups, and by the van Kampen
theorem, � induces an isomorphism on �1 as well; ie �1.B

n�1.M; n//Š�1.SPnM /Š

H1.M IZ/ for n� 3.

To complete this section, we state a well-known result which will be seen in Section 4
as a special manifestation of the localization principle.

Proposition 2.5 If S D
S

Sj is a finite union of submanifolds of a smooth mani-
fold M , closed with real codimension d � 2, then the inclusion M �S ,!M induces
an isomorphism on homotopy groups �i for 0 � i � d � 2, and an epimorphism
on �d�1 .

A proof of the above proposition, using standard transversality arguments, can be
found, for example, in [14, Lemma 5.3]. This proposition is not true if the ambient
space is not a manifold. For example, B.Rm; 2/ is the complement of the diagonal
in SP2.Rm/ and we have the homotopy equivalence B.Rm; 2/ ' RPm�1 so that
�1.B.R

m; 2//Š Z2 no matter the codimension of the diagonal m� 3.

As a consequence we have the following precursor of Theorem 1.1.

Corollary 2.6 If X is a topological surface and d�2, then �1.B
d.X; n//ŠH1.X;Z/.

Proof The real plane R2 has the special property that SPn.R2/ is diffeomorphic
to R2n . This implies right away that when S is a topological surface, SPn.S/ is
a manifold of dimension 2n, and that BdC1.X; n/ is the union of submanifolds of
dimension at most 2.n � d/ D 2n � 2d . This means that Bd .S; n/ D SPn.S/ �

BdC1.S; n/ is the complement of a finite union of submanifolds of codimension
at least 2d > 2. By Proposition 2.5, �1.B

d .S; n// Š �1.SPnS/ and this is again
H1.S;Z/ for n> 1.
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3 The case of the circle

Write S1 D fz 2C j jzj D 1g, ie the unit circle in the complex plane. There is a map
Bd .S1; n/! S1 which multiplies the points of a configuration in S1 . This map is
well defined since S1 is abelian. This map turns out to have contractible fibers so that
in particular Bd .S1; n/' S1 ; see Proposition 3.2.

Let �n�1Df.s1; : : : ; sn/ j 0� si � 1;
P

si D 1g be the n�1–dimensional simplex and
write �n�1.d/ the partial compactification of the open simplex V�n�1 , where we allow
at most d consecutive si to be zero (using cyclic ordering, ie sn and s1 are consecutive
to each other). In particular �n.1/D V�n�1 . We will write Zn for the cyclic group of
order n. Using a similar action as in [6, page 407], we have the following.

Proposition 3.1 Let Zn with multiplicative generator � act on S1 ��n�1.d/ via

�.ei� ; s1; : : : ; sn/D .e
i�Ci2�s1 ; s2; : : : ; sn; s1/:

Then the quotient by the action, written S1 ËZn
�n�1.d/, is homeomorphic to

Bd .S1; n/. When d D 1, there is a Sn –equivariant homeomorphism

F.S1; n/Š .S1
� V�n�1/�Zn

Sn:

Proof The cyclic group appears for a simple reason: any configuration .x1; : : : ;xn/

can be brought into a unique counterclockwise configuration up to cyclic permutation.
More precisely let .x1; : : : ;xn/ 2 �

d .S1; n/. Then there is a permutation � 2 Sn

bringing this configuration to a counterclockwise ordering .x�.1/; : : : ;x�.n//. Let si be
the arc distance (divided by 2� ) measured counterclockwise between x�.i/ and x�.iC1/ .
When xi ¤ xj for i ¤ j , the choice of � is unique up to cyclic permutation and there
is a well-defined map

F.S1; n/! .S1
� V�n�1/�Zn

Sn;

.x1; : : : ;xn/ 7! Œ.x�.1/; .s1; : : : ; sn//I ��;

which is a homeomorphism. Here .s1; : : : ; sn/ is in the open simplex V�n�1 if and only
if none of the si are zero. When there is collision, ie d > 1, then the choice of � , up to
cyclic permutation, is not unique anymore, but there is a map at the level of unordered
configuration spaces

Bd .S1; n/! S1 ËZn
�n�1.d/;

Œx1; : : : ;xn� 7! Œx�.1/I .s1; : : : ; sn/�;

where � again is any permutation bringing .x1; : : : ;xn/ into cyclic ordering.
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This map is independent of the choice of � and it is a homeomorphism with inverse

Œx�.1/I.s1; : : : ;sn/� 7! Œx�.1/;x�.1/e
i2�s1 ;x�.1/e

i2�.s1Cs2/; : : : ;x�.1/e
i2�.s1C���Csn�1/�:

Note that when xi D xiC1 in the cyclic ordering, si D 0, so the faces of �n�1 where
the si vanish (consecutively) correspond to when points come together.

Proposition 3.2 Identify S1 D Œ0; 1�=0�1. Then addition

mW Bd .S1; n/! S1; m.Œx1; : : : ;xn�/D x1Cx2C � � �Cxn

is a bundle map with fiber �n�1.d/. In particular m is a homotopy equivalence.

Proof The composite

�W S1
�Zn

�n�1.d/! Bd .S1; n/
m
�! S1

sends .x; .s1; : : : ; sn// to nx C .n � 1/s1 C .n � 2/s2 C � � � C sn�1 . This map is
well defined on orbits since �.x C s1; .s2; : : : ; sn; s1// D �.x; .s1; : : : ; sn//. The
preimage of a point y 2 S1 under m are all unordered tuples Œx1; : : : ;xn� such that
x1Cx2C� � �CxnD y mod Z. All preimages are homeomorphic and we can choose
y D 0. The preimage ��1.0/ consists of all classes Œx; .s1; : : : ; sn/� such that

.n� 1/s1C .n� 2/s2C � � �C sn�1C nx mod Z:

We wish to show this is a copy of �n�1.d/. Consider the map �W �n�1.0/! ��1.0/

defined as follows. Given .s1; : : : ; sn/,
P

si D 1, let

ms D
�1

n
..n� 1/s1C .n� 2/s2C � � �C sn�1/

brought modulo Z to the interval Œ0; 1� and define

�W .s1; : : : ; sn/ 7! Œms; .s1; : : : ; sn/� 2 S1
�Zn

�n�1.d/:

This map is well defined and continuous. It is surjective by construction. It is also
injective for the following reason. If s D .s1; : : : ; sn/ and s0 D .s0

1
; : : : ; s0n/ map to the

same point under � , they must be the same up to cyclic permutation. Let’s assume
s0 D .skC1; : : : ; sn; s1; s2; : : : ; sk/, 0< k < n (s0 D sn ). A quick computation shows
that

ms0 DmsC s1C � � �C sk � k=n:

But in S1 �Zn
�n�1.d/, Œms0 ; .s

0
1
; : : : ; s0n/�D Œms � k=n; .s1; : : : ; sn/� so that �.s0/

can never be �.s/ unless k D 0 or si D s0i D 1=n. In both cases s D s0 . This proves
the injectivity and hence that � is a homeomorphism. It remains to check that � is a
bundle map and this is left as an exercise.
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Remark 3.3 (Morton) When d D 1, mW SPn.S1/! S1 is an n�1–disk bundle
that is trivial if and only if n is odd. The open disk bundle is B.S1; n/ and its sphere
bundle is B2.S

1; n/.

3A Wedges of circles

As discussed, Bd .S1; n/' S1 . The situation gets more complicated quickly for other
graphs. The following is a neat little application of our constructions for the case
d D 1.

Proposition 3.4 B.
Wk

S1; 2/ is homotopy equivalent to
W 3

2
k.k�1/C1

S1 .

Proof Let’s first understand the k D 2 case.

We will write B.S1 _S1; 2/ as the union of three subspaces:

X1 D fŒ.x;�/; .y;�/� j x ¤ yg; X2 D fŒ.�;x/; .�;y/� j x ¤ yg;

X3 D fŒ.x;�/; .�;y/� j .x;y/¤ .�;�/g:

We have that

X1 Š B.S1; 2/; X2 Š B.S1; 2/; X3 Š .S
1
�S1/�;

where .S1 �S1/� means the punctured torus S1 �S1�f.�;�/g. Notice that X1\

X2 D ∅ while X1 \ X3 D f.x;�/; .�;�/;x ¤ �g Š .S1/� are punctured circles
hence contractible intervals. The punctured torus X3 deformation retracts onto a
wedge S1 _ S1 . During this deformation both punctured circles corresponding to
the intersection with X1 and X2 retract onto the wedgepoint. After the retraction we
obtain a wedge S1 _S1 _Y1 _Y2 where each Yi DXi=� is the open Möbius band
Xi D S1� �0; 1Œ with an interval �� �0; 1Œ retracted to a point. Therefore Yi ' S1 and
the claim follows in this case.

For the general case of a bouquet of k –circles, k > 2, we write an element from the
i th leaf as xi . Then B.

Wk
S1; 2/ becomes the union of subspaces

Xi;j WD fŒ.x
i ;�/; .yj ;�/� j xi

¤ yj if i D j g;

X
j
i WD fŒ.x

i ;�/; .�;yj /� j .xi ;yj /¤ .�;�/ if i D j g;

X i;j
WD fŒ.�;xi/; .�;yj /� j xi

¤ yj if i D j g;

over all k � i � j � 1. As before Xi;i D B.S1; 2/ is the open Möbius band. For
i > j , Xi;i and Xj ;j are disjoint. Also and as is clear, X

j
i \X s

r D∅ if fi; j g ¤ fr; sg.
Each union Bi;j WDXi;j [Xi;i [X

j
i is the subconfiguration space of 2 points on the

i th and j th leaves and hence is, up to homotopy, a wedge of 4 circles. The homotopy
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Figure 1: An intermediate homotopy type of B.
Wk

S1; 2/ for k D 2 , 3

and 4 , respectively. These are strings of circles making up a necklace in the
shape of a k�1–dimensional simplex.

deforming each Xi;i to S1 is the same if performed in Bi;j or Bi;k . This is to say
that the homotopies deforming the Bi;j to a wedge of 4 circles are compatible and
we obtain a deformation retract of B.

Wk
S1; 2/ which looks like a necklace of circles

tied in the shape of the k�1–dimensional simplex. This is depicted in Figure 1 for
k D 2; 3 and 4.

The homotopy type of this space is not hard to work out: it is a wedge of all those
circles appearing in the necklace with another wedge of circles describing the homotopy
type of the 1–skeleton of �k�1 . In the necklace there is one circle for each vertex of
the k�1–simplex and two circles for each edge, this gives a total of k2 circles. On
the other hand the one-skeleton of the k�1–simplex, denoted by �.1/

k�1
, is homotopy

equivalent to
WN

S1 where N D 1
2
k.k�3/C1 circles. Indeed the Euler characteristic

�.�
.1/

k�1
/D #edges� #verticesD 1

2
k.k � 1/� k D 1

2
k.k � 3/;

and this must be �.
WN

S1/DN � 1. Putting this together yields

B

� k_
S1; 2

�
'

k2_
S1
_

1
2

k.k�3/C1_
S1
'

3
2

k.k�1/C1_
S1;

and the proof is complete.

Remark 3.5 The first homology group of B.�; n/ for graphs has been worked out
in [21]. Their method uses discrete Morse theory. In particular one can deduce
from [21, Theorem 3.16] that H1.B.

Wk
S1; 2// D Z1C3k.k�1/=2 in full agreement

with our Proposition 3.4 (in their theorem one uses that the braid index is 2, N1 D

2k.k � 1/� 1
2
k.k � 1/� .k � 1/ and the first Betti number of the graph is of course k ).

In the case of trees T , the homology groups of the unordered configuration space
B.T; n/ are torsion free and their ranks computed by Farley; references and details are
in [21].
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4 The localization principle and the case of manifolds

Our main approach is to find conditions on X so that the inclusion Bd .X; n/ ,!SPn.X /

induces an isomorphism on some homotopy groups through a range. We start with
a preliminary lemma. We say a space X is locally punctured connected if for every
x 2X and neighborhood U of x , there is an open V , x 2 V � U such that V �fxg

is connected.

Lemma 4.1 Let X be path-connected, locally contractible, and not a point. If d � 2,
then both �d .X; n/ and Bd .X; n/ are connected. If, furthermore, X is locally punc-
tured connected, then both �d .X; n/ and Bd .X; n/ are connected for all d � 1.

Proof For both claims, it suffices to show that �d .X; n/ is connected. We need to
join .x1; : : : ;xn/ to .y1; : : : ;yn/ by a path, for any two choices of tuples in �d .X; n/.
By deforming locally, we can arrange that the xi and the yj are all pairwise distinct.
Now X is path-connected so there is a path i from xi to yi . Via 1 we construct
a path in �d .X; n/ from .x1;x2; : : : ;xn/ to .y1;x2; : : : ;xn/ by putting 1.t/ in the
first coordinate. At any given time t 2 Œ0; 1�, 1.t/ can only coincide with one xi

at a time, and hence this path is well defined in �d .X; n/ if d � 2. Construct next
the path from .y1;x2; : : : ;xn/ to .y1;y2;x3; : : : ;xn/ by putting 2.t/ in the second
coordinate. This is again a well-defined path in �d .X; n/. We can continue this
process. The composition n ı � � � ı 1 is a path in �d .X; n/ from .x1; : : : ;xn/ to
.y1; : : : ;yn/.

To establish the second claim, we proceed by induction on n � d . For n D d ,
�d .X; d/DX d and there is nothing to prove. For n> d , consider the projection

�d .X; n/!�d .X; n� 1/

that omits the last coordinate. The preimage of a tuple .x1; : : : ;xn�1/ is X �

fxi1
; : : : ;xij g if xir

repeats d –times in the tuple. Since X is locally punctured
connected, this preimage is connected. Since the base space of this projection is also
connected by inductive hypothesis, it follows that the total space is connected, as
desired.

For the higher homotopy groups, the starting point is the following principle, which
relates the local connectivity properties of a space to its global properties. All spaces
appearing below are connected. The following result is in [20, Theorem 1.4].

Theorem 4.2 (localization) Let X be a Hausdorff topological space and Y be a
closed subset of X . If for every point y 2 Y , and every neighborhood U � X of y ,
there is an open V � U containing y such that the pair .V;V n Y / is k –connected,
k � 0, then the pair .X;X nY / is k –connected.
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We recall what it means for the pair .X;A/ to be k –connected or that �i.X;A/D 0 for
all i �k [13, Chapter 4]. If k � 1, this means that every map .I r ; @I r /! .X;A/ from
the closed cube I r , 1� r � k , is homotopic (relative its boundary) to a map I r !A.
For any x 2X , .X; fxg/ is 1–connected if and only if X is simply connected. Being
0–connected, or equivalently writing �0.X;A/D 0, means in our terms that X and A

are connected and that any point in X is connected by a path to a point in A. Note
that in the theorem, if either V nY or XnY is not connected, then the theorem fails.

Example 4.3 X DR3 and L a line in R3 . The pair .X;X nL/ is 1–connected but
not 2–connected. Indeed take a square which is intersected transversally through its
interior by L. That square cannot be deformed away from L with the boundary being
kept fixed.

The following is a consequence of Theorem 4.2. We say that a closed subset Y in X

is tame if there is a neighborhood N of Y such that N deformation retracts onto Y

and X n Y deformation retracts onto X n N . Submanifolds are tame and so are
subcomplexes of simplicial complexes; see Proposition 5.1.

Corollary 4.4 Let Y be a tame subspace of X and suppose for every y 2 Y and
neighborhood U of y in X , there is a contractible neighborhood V � U , such that
Y \V is tame in V and V nY is k –connected, k � 0. Then �i.X /Š �i.X nY / for
i � k .

Proof The point is that when Y is tame in X , Theorem 4.2 implies that the induced
map �k.XnY /! �k.X / is surjective, and �i.XnY /! �i.X / is an isomorphism
for i � k � 1. Let’s show that for .V;y/ as in the statement of the theorem, the pair
.V;V nY / is kC1–connected. Since V \Y is tame in V , choose a neighborhood N

of Y in V that deformation retracts onto Y and such that V nN deformation retracts
onto V n Y . We can replace, up to homotopy, the pair .V;V n Y / by .V;V nN /,
where now V nN is closed in V . We can apply the long exact sequence in homotopy
of the pair .V;V nN /

! �kC1V ! �kC1.V;V nN /
@
�! �k.V nN /! � � �

! �1.V;V nN /
@
�!�0.V nN /! �0.V /:

Since for i�k , �i.V nN /D0D�iC1.V /, we see that �i.V;V nY /Š�i.V;V nN /D0

for i � kC 1. From Theorem 4.2 it follows that .X;X nY / is kC1–connected. The
same argument as above with the long exact sequence of the pair .X;Y / with Y tame
in X shows that �i.X /Š �i.X nY / for i � k .
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Remark 4.5 In the case of a submanifold S in M of codimension d , a neighborhood
of a point deformation retracts onto a sphere Sd�1 , which is d�2–connected. By the
previous corollary this gives that M is weakly equivalent to M �S up to dimension
d � 2 (Proposition 2.5). A similar argument applies when S D

S
Sj is the union of

submanifolds intersecting transversally.

The following key lemma shows how we can apply the above results to diagonal
arrangements.

Lemma 4.6 Let X be a finite simplicial complex such that for every x 2 X and
neighborhood U of x , there is a subneighborhood V containing x such that �d .V; k/

(resp. Bd .V; k/) is r –connected for any k � 1. Then �i.�
d .X; n//Š �i.X

n/ (resp.
�i.SPn X /Š �i.B

d .X; n//) for i � r .

Proof We have to estimate the connectivity of the pair .X n; �d .X; n//D .X n;X n�

�dC1.X; n// (resp. that of .SPnM;SPn.M /�BdC1.M; n//. Note that �dC1.M; n/

(resp. BdC1.M; n/) is tame in M n (resp. SPnM ) according to Section 5. One can
check they verify the hypothesis of Corollary 4.4. In the ordered case, choose a point
in �dC1.X; n/ which, after permutation, can be brought to the form

(2) .x1; : : : ;x1„ ƒ‚ …
i1

;x2; : : : ;x2„ ƒ‚ …
i2

; : : : ;xr ; : : : ;xr„ ƒ‚ …
ir

/;

with xi ¤ xj if i ¤ j ,
P

i˛ D n and i1 > d . A neighborhood W of this point in X n

is homeomorphic to V i1
1 � � � � �V ir

r , where Vi is a contractible neighborhood of xi

in X , and the Vi are pairwise disjoint. Clearly

W ��dC1.X; n/Š�
d .V1; i1/� � � � ��

d .Vr ; ir /:

By hypothesis we can assume all the �d .Vi ; ij / to be r –connected so that W �

�dC1.X; n/ is also r –connected and hence, by Corollary 4.4, �i.�
d .X; n// D

�i.X
n��dC1.X; n//Š �i.X

n/ for i � r .

A similar proof holds in the unordered case. Given a point in BdC1.M; n/� SPn.M /

as in (2), a small contractible neighborhood of it in SPnM is

U Š SPi1.V1/�SPi2.V2/� � � � �SPir .Vr /;

the Vi are pairwise distinct, and

(3) Bd .U; n/D U �BdC1.X; n/Š Bd .V1; i1/�Bd .V2; i2/� � � � �Bd .Vr ; ir /:

If we choose each Vj so that Bd .Vj ; ij / is r –connected (hypothesis), the complement
Bd .U; n/ will also be r –connected and the claim follows again from Corollary 4.4.
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In the case of a manifold, we can already make the following easy conclusions.

Corollary 4.7 Let M be a manifold of dimension m� 1.
(i) If md � 3, then �i.�

d .M; n//Š �i.M /n for i �md � 2.

(ii) If m� 2 and d � 2, then �1.B
d .M; n//ŠH1.M;Z/.

Proof Every point of M has a neighborhood homeomorphic to Rm . The fat diagonal
�dC1.R

m; n/ in .Rm/n has codimension mn�m.n�d/Dmd �3, so its complement
�d .Rm; n/ is md�2–connected (Proposition 2.5). Now apply Lemma 4.6 to get (i).
On the other hand �d .Rm; k/ is simply connected if d � 2 and m � 2, so by
Armstrong’s result (Corollary 2.3), �1.B

d .Rm; k// is also trivial and (ii) follows.

Remark 4.8 As we pointed out, Corollary 4.7(i) is not true for md D 2 as illustrated
by F.R2; 2/'S1 . This corollary is a special case of Theorem 1.1. Also let’s point out
that �d .Rm; n/ has torsion free homology starting with spherical classes in dm�1 as
already indicated, and all homology classes are represented by products of spheres [9].

We now derive Theorem 1.1 when X is a manifold. Again X is r –connected if
�i.X /D 0 for 0� i � r .

Lemma 4.9 Let �m
� .�/ denote a connected component of the loop space �m.�/,

m� 1 and d � 1. Then �m
� SPdSm is 2d�2–connected.

Proof Let’s review the simplest cases. The case d D 1 is obvious since �mSm

breaks down into components indexed by the integers, and each component is 0–
connected but not 1–connected since �1.�

m
� Sm/Š�mC1.S

m/ is Z if mD 2 and Z2

if m� 3. When mD 1, SPdS1'S1 so that ��S1 is contractible and hence certainly
2d�2–connected for any d . When mD 2, SPdS2 Š Pd is complex projective space
and

�2 SPdS2
D�2Pd

Š Z��2S2dC1:

Each component is a copy of �2S2dC1 , which is 2d�2–connected, and the bound is
sharp.

In general we invoke [18, Theorem 5.9] which states that for r –connected X , r � 1,

(4) �i.SPn X /Š zHi.X IZ/; 0� i � r C 2n� 1:

This gives that for i � 1 and m� 2,

�i.�
m
� SPdSm/Š �iCm.SPdSm/ŠHiCm.S

m/D 0;

i Cm� .m� 1/C 2d � 1DmC 2d � 2:

This gives i � 2d � 2 and a lower bound for the connectivity is 2d � 2.
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Proposition 4.10 Assume m� 2; n� d � 1. Then Bd .Rm; n/ is 2d�2–connected.
Moreover if X is a 1–connected manifold and n� 2, then �i.B

d .X; n//Š zHi.X IZ/
for 0� i � 2d � 2.

Proof This relies on results from [16; 18]. The case d D 1 being trivial, we assume
d � 2. Consider the sequence of embeddings

(5) �nW B
d .Rm; n/ ,! Bd .Rm; nC 1/;

Œx1; : : : ;xn� 7! Œx1; : : : ;xn; jx1jC � � �C jxnjC 1�:

The direct limit is Bd .Rm;1/, and it is shown in [16] that there is a scanning map

� W Bd .Rm;1/!�m
� SPdSm

that induces a homology isomorphism. Since both spaces are simply connected when
d � 2 (Corollary 2.3 and Lemma 4.9) and have the homotopy type of CW complexes,
the map � is a homotopy equivalence. Moreover, the maps �n in (5) induce homology
embeddings according to [27, Chapitre 3]. Iterating, we get homology embeddings

H�.B
d .Rm; d C 1// ,!H�.B

d .Rm; n/ ,!H�.B
d .Rm;1//ŠH�.�

m
� SPdSm/:

By Lemma 4.9 the groups on the extreme right are trivial for � � 2d � 2. This
gives that H�.B

d .Rm; n// D 0 for n � d and � � 2d � 2. Since the space is
simply connected, it is 2d�2–connected as well. It then follows by Lemma 4.6 that
�i.B

d .X; n// Š �i.SPn.X // for i � 2d � 2. This proves the main statement. In
the case X is r –connected with r � 1, it follows by the inequality in (4), since
2d � 2 � r C 2n� 1, that �i.B

d .X; n//Š �i.SPn.X //Š zHi.X IZ/ in the range of
dimensions 0� i � 2d � 2.

Example 4.11 Consider the case Bn�1.S2; n/, n � 3. Since SPn.S2/ Š Pn is a
2n–dimensional manifold, by Proposition 2.5, �i.B

n�1.S2; n//Š�i.Pn/ for 1� i �

2.n�1/�2D 2n�4. On the other hand, from the Hopf fibration, �i.Pn/Š�i.S
2nC1/

for i > 2 and �2.P
n/D Z. This shows precisely that �i.B

n�1.S2; n//ŠHi.S
2;Z/

for 1� i � 2n� 4, as expected.

The claim that Bd .Rk ; n/ is 2d�2–connected has an nice alternative proof in the case
d D n� 1.

Lemma 4.12 Bn�1.Rk ; n/ is 2n�4–connected, n� 2; k � 1.

Proof The case k D 1 is trivial. We let k � 2 and invoke some main results from [17;
18]. Let S be the unit sphere as in Lemma 2.2 and let Qn;k be its quotient under the
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Sn –action. We have already indicated that Qn;k ' Bn�1.Rk ; n/. On the other hand,
according to [17, Theorems 1.1, 1.3 and 1.5],

(6) †kC1Qn;k ' SPn.Sk/;

where † means suspension and SPn.Y / means the symmetric smash Y ^.n/=Sn , which
is also the cofiber of the embedding of SPn�1 Y into SPn Y induced by adjoining a
basepoint to an unordered tuple Œx1; : : : ;xn�1�. It is shown [17, Theorems 1.2 and 1.3]
that if X is r –connected, then SPn.†X / is 2nCr�1–connected. This gives that
SPn.Sk/D SPn.†Sk�1/ is 2nCk�3–connected, and hence so is †kC1Qn;k by (6).
Since in this range Qn;k is already simply connected, it must therefore be 2n�4–
connected.

Remark 4.13 That the connectivity bound in the above theorem doesn’t depend
on k is not surprising. Indeed when n D 2, B.Rk ; 2/ ' RPk�1 and this is never
1–connected no matter what k is.

5 An equivariant deformation retract
of diagonal complements

Let X� be an abstract simplicial complex and jX�j its geometric realization. Let A�
be a subcomplex of X� . We say a subcomplex A� of X� is full if every simplex of X�
whose vertices are in A� is itself in A� . The following fundamental result (called the
retraction lemma in [5]) can be found in Munkres’ book [22, Lemma 70.1].

Proposition 5.1 Let A� be a full subcomplex of the finite simplicial complex X� .
Let C� consist of all simplices of X� that are disjoint from A� . Then jA�j is a
deformation retract of jX�j � jC�j, and jC�j is a deformation retract of jX�j � jA�j.

The argument of proof is short but instrumental to extract useful properties of this
compactification. We review this argument. The fact that A� is full says that C� is
also full, and that simplices of X� consist of simplices in C� , simplices in A� and
simplices of the form

� � �; � 2A�; � 2 C�;

where � � � is the join of both simplices. Figure 2 illustrates the situation when X� is
the full simplex �3 on 4 vertices v0; v1; v2; v3 , A� D Œv0v1� and C� D Œv2v3�.

The deformation of jX�j � jA�j onto jC�j is as in the figure. It starts at a point
txC

P
i2I sivi , with vi vertices in C� , i 2 I , t C

P
si D 1, t ¤ 1, and ends at the

point
P
.tj=

P
si/vj ; j 2 I .
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x

v0

v1

v2

v3

x

v2

v3

Figure 2: Munkres’ deformation along the join (right) after deleting the apex x

Two important consequences are in order:
� If A� is full, jX�j � jA�j deformation retracts onto the largest subcomplex

that does not meet jA�j. Note that if A� is not full, then its first barycentric
subdivision Sd A� is always full in Sd X� . The barycentric subdivision comes
with a natural ordering on vertices.

� The deformation retraction illustrated in Figure 2 has the property that if it starts
in a simplex of X� it will stay in that simplex (and deforms onto a face of it).

For ease we will write X for either X� or its realization. The context will be clear.

Munkres’ observation nicely applies to the diagonal arrangements. Given X an ordered
simplicial complex, X n can be given naturally a structure of a simplicial complex
such that the various diagonals are subcomplexes; see [23, Section 1], and also the
proof of Lemma 5.2 below. We can then apply Proposition 5.1 to the configuration
space X n ��dC1.X; n/. Among all diagonal arrangements, only the thin diagonal
�n.X; n/ is full. We therefore have to pass to a barycentric subdivision. Let Sd.X n/

be the barycentric subdivision of X n
� . This restricts to Sd.�dC1.X; n//.

Lemma 5.2 There is an Sn –equivariant deformation retraction of �d .X; n/ onto the
largest subcomplex W d .X; n/ not intersecting jSd.X n/j � jSd.�dC1.X; n//j.

Proof That the complement deformation retracts onto W d .X; n/ is a direct con-
sequence of Proposition 5.1 as applied to the pair .Sd.X n/;Sd.�dC1.X; n/// with
Sd.�dC1.X; n// being full. We need check this deformation is equivariant under the
symmetric group action. Recall that the simplicial decomposition of X n is made out
as follows, where X of course is an ordered simplicial complex [23]. A vertex of X n

is of the form .v1; : : : ; vn/ where vi is a vertex of X . Different .qC1/–vertices

w0 D .v01; : : : ; v0n/; w1 D .v11; : : : ; v1n/; : : : ; wq D .vq1; : : : ; vqn/;

form a q–dimensional simplex if and only if for each k D 1; 2; : : : ; n, .qC1/–vertices
v0k , v1k , : : :, vqk are contained in a simplex of X and v0k � v1k � � � � � vqk ; see
Figure 3 for the decomposition of X 3 in the case X D Œ0; 1� with vertices Œ0�� Œ1�.
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Œ0; 0; 0�

Œ0; 0; 1�

Œ0; 1; 1�

Œ1; 1; 1�

Œ1; 1; 0�

Œ1; 0; 0�

Œ0; 0; 0�

Œ1; 1; 1�

Œ1; 1; 0�

Œ1; 0; 0�

Figure 3: Left: simplicial decomposition for Œ0; 1�3 with 8 vertices, 19 edges,
18 triangular faces and 6 tetrahedral faces. Note that �2.Œ0; 1�; 3/ is not full
and we need to pass to a barycentric subdivision. Right: the configuration
space jSd.X 3/j � jSd.�2.X; 3/j deformation retracts onto the subcomplex
W 2.Œ0; 1�; 3/ made out of 6 contractible connected components. The figure
shows one such component in one tetrahedral face.

Note that, as asserted, �2.Œ0; 1�; 3/ is not full, as the 2–simplex (bottom) .Œ0; 0; 0�,
Œ1;0;0�, Œ1;1;0�/ has all three vertices in �2.X;3/ but is not itself a simplex of �2.X;3/.

Generally a vertex is in �dC1.X; n/ if and only if it is of the form .v1; : : : ; vn/ for
some vertices v1; : : : ; vn of X with vi0

D � � � D vid
for some choice of sequence

i0 < i1 < � � � < id . Obviously every permutation acting on X n permutes vertices
of X n

� and the order between them so it must take simplices to simplices. The action is
simplicial and the quotient space SPn.X / inherits a cellular decomposition. Moreover,
the action remains simplicial after passing to a barycentric subdivision. Indeed since
any new introduced vertex is of the form 1

k

P
vi , it is sent by � 2Sn to 1

k

P
�.vi/,

which is the barycenter of .�.v1/; : : : ; �.vk//.

After one subdivision, a simplicial neighborhood of Sd.�dC1.X; n// consists of all
simplices of Sd.X n/ having at least one vertex of the form .v1; : : : ; vn/ with vi0

D

� � � D vid
for some sequence i0 < i1 < � � � < id . This simplicial neighborhood is

therefore Sn –invariant and its complement W d .X; n/ is invariant, as well. Clearly
the permutation action on X n commutes with Munkres’ deformation since it takes
combinations

P
tivi to

P
ti�.vi/ (see Figure 2). It therefore descends to a deformation

retraction of Bd .X; n/ onto W d .X; n/=Sn DWWd .X; n/.

Corollary 5.3 For a finite simplicial complex X , the Sn –quotient Wd .X; n/ of
W d .X; n/ is a compact deformation retract of Bd .X; n/.

We need one more observation.

Lemma 5.4 Let A be a subcomplex of X . The deformation retraction of jSd.X n/j �

jSd.�dC1.X; n//j onto its compactified space W d .X; n/ restricts to a deformation
retraction of jSd.An/j � jSd.�dC1.A; n//j onto W d .A; n/.
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.

..

Figure 4: Contractible neighborhoods of the dotted point in simplicial X

Proof Since A is a subcomplex of X , �dC1.A; n/ is a subcomplex of �dC1.X; n/

and Sd.An/ is a subcomplex of Sd.X n/. Both Sd.�dC1.X; n// and Sd.�dC1.A; n//

are full subcomplexes. The assertion now follows from the fact that if the deformation
retraction starts in a simplex of Sd.X n/; in particular in Sd.An/, it will stay in that
simplex.

6 Proof Theorem 1.1

We appeal to the following useful theorem of Steve Smale which is a generalization of
classical results of Begle and Vietoris. A similar statement for maps between simplicial
complexes can be deduced from work of Farjoun [11, Corollary 9.B.3, page 163].

Theorem 6.1 [24] Let X and Y be connected, locally compact, separable metric
spaces, and let X be locally contractible. Let f be a mapping of X into Y for which
f �1 carries compact sets into compact sets. If, for each y 2 Y , f �1.y/ is locally
contractible and r –connected, r�0, then the induced homomorphism �k.X /!�k.Y /

is an isomorphism for 0� k � r , and is onto for k D r C 1.

Theorem 6.1 uses maps that are proper and preimages that are at least connected. Maps
between configuration spaces obtained by projections are seldom proper. Combining
the above theorem with Section 5 yields, however, the following main result.

Theorem 6.2 Let X be a connected finite simplicial complex with at least two vertices,
d � 2; n� 2. Then

�i.B
d .X; n//Š �i.SPn.X //; 0� i � 2d � 2:

Proof The starting point is Lemma 4.6 where it suffices to show that �i.B
d .V; n//D0

for i � 2d � 2 for V a small contractible neighborhood of a point in X . A neighbor-
hood V of x 2 X is one of three types; either (i) Euclidean space, (ii) halfspace or
(iii) it is a union of such halfspaces along a shared boundary. See Figure 4.

We claim that in all cases, Bd .V; n/ is 2d�2–connected.
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In the case that x is an interior point of a simplex that is not a face of a larger simplex,
it has a neighborhood V ŠRm with m� 1. When mD 1, Bd .R1; n/ is contractible.
When m� 2, Bd .Rm; n/ is 2d�2–connected according to Proposition 4.10.

If x belongs to a boundary face, then V is homeomorphic to halfspace H (with
boundary). This halfspace can be isotoped into its interior VH so we have a map
Bd .H; n/! Bd . VH ; n/ obtained from a deformation retraction (setting t D 1). Since
Bd . VH ; n/ is 2d�2–connected, as seen earlier, it follows immediately that Bd .H; n/

has the same connectivity (at least).

In the third and final case, x lies in the intersection of two or more simplices of X as
in Figure 4. Let V be a contractible neighborhood made out of simplices which meet
along a simplex A. Let � be a simplex in V of dimension m. Of course A is in the
boundary of � . Let

Bd .�;A; n/D
a

0�k�n

Bd
A.�; k/=�;

where B0
A
.�; k/ D � is a given point in A and Bd

A
.�; k/ D Bd .�; k/ [ SPk.A/,

ie the only points that can repeat more than d times in � are those that are in A.
The equivalence relation � is such that x � � if x 2 A and Œx1; : : : ;xi ; : : : ;xk � �

Œx1; : : : ; Oxi ; : : : ;xk � if xi 2A. Here, as customary, Oxi means the i th entry is suppressed.
We have a projection

(7) �W Bd .V; n/! Bd .�;A; n/;

which sends a tuple Œx1; : : : ;xn� to the new tuple obtained by replacing all xi 62 �

by �. One can view � as a projection of Œx1; : : : ;xn� to the subtuple made up of
those entries xi 2 � . This map is continuous by the very nature of the construction
Bd .�;A; n/, ie any entry xi that exits or enters into � must pass through A. The base
space Bd .�;A; n/ is contractible since there is a deformation retraction of � onto A

which extends to Bd .�;A; n/.

Next write an element in Bd .�;A; n/ as an equivalence class ŒŒx1; : : : ;xk �� with
xi 2 � �A and some k � n. The preimage ��1ŒŒx1; : : : ;xk �� consists of all possible
unordered n–tuples containing x1;x2; : : : ;xk with remaining entries y1; : : : ;yn�k

such that Œy1; : : : ;yn�k � 2 Bd ..V � �/ [ A; n � k/. This preimage is a copy of
Bd ..V � �/ [A; n � k/. By induction on the number of simplices of V , we can
assume that Bd ..V ��/[A; n�k/ is 2d�2–connected (the case of a single simplex
has been discussed at the beginning of the proof). The map �W Bd .V; n/!Bd .�;A; n/

has then a contractible base and preimages that are 2d�2–connected. We wish to
show that the total space is 2d�2–connected. We cannot use the Smale–Vietoris
theorem (Theorem 6.1) directly since � is not proper. To get around this, we pass
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to the compactified versions and show that � can be deformed to a proper map. Let
Wd .V; n/ be the compact deformation retract of Bd .X; n/ discussed in Corollary 5.3.
The restriction Q� of � to Wd .V; n/ maps onto Wd .�;A; n/ � Bd .�;A; n/ and we
have the diagram

Wd .V; n/

Q�
��

// Bd .V; n/

�

��

Wd .�;A; n/ // Bd .�;A; n/

where the horizontal maps are inclusions and deformation retractions. This last state-
ment follows from the fact that the deformation retraction of Bd .V; n/ onto Wd .V; n/

descends to a deformation retraction of Bd .�;A; n/ onto Wd .�;A; n/ as a conse-
quence of Lemma 5.4. Thus given a configuration � D ŒŒx1; : : : ;xk �� 2Wd .�;A; n/,
k � n, xi 62 A, we can consider its preimage Q��1.�/ in Wd .V; n/ and its preim-
age ��1.�/ in Bd .V; n/. Then ��1.�/ deformation retracts onto Q��1.�/. Here
Q��1.�/ � ��1.�/ D Bd ..V � �/ [ A; n � k/. Since ��1.�/ is 2d�2–connected,
this shows that Q��1.�/ is also 2d�2–connected. The map Q� is now proper, being a
map between compact spaces. Moreover, both total and base spaces are connected by
Lemma 4.1. We can invoke Theorem 6.1 to conclude that the total space Wd .V; n/

and hence Bd .V; n/ are 2d�2–connected as desired.

7 Proof of Theorem 1.2

Our objective is to find conditions on X so that the inclusion �d .X; n/ ,!X n induces
an isomorphism on some homotopy groups through a range (the homotopical depth).
The proof given in the unordered case Bd .X; n/ in Section 6 fails here because the
analogue of (7) is now a map �d .V; n/!�d .�;A; n/ which has disconnected fibers,
so Smale’s theorem doesn’t automatically apply. In fact we need an entirely new
approach.

First some definitions.

Definition 7.1 � If x 2 X and U is a neighborhood of x , then we call V a
subneighborhood (of x in U ) if V is open and x 2 V � U .

� A space X is locally contractible if for any x 2 X and any neighborhood U

of x , there is a subneighborhood V which deformation retracts onto x .
� A space X has local homotopical dimension k if, for x;U as above, there is

a subneighborhood V such that V �fxg is k –connected. For instance, being
locally punctured connected means having 0 local homotopical dimension. A
manifold of dimension m has local homotopical dimension m�2 but not m�1.
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If X is a simplicial complex, we call a chamber of X any simplex that is not contained
in another simplex as a face. Obviously if X has local homotopical dimension r , then
chambers must have dimensions at least r C 2. We call a simplex a shared face if it is
shared by two chambers or more. This shared face doesn’t need to be of codimension 1.
In Figure 4, the complex on the far right is made out of three chambers (of dimension 2)
joining along a shared edge. A shared face A D �1 \ � � � \�k is called essential if
X D �1[ � � � [�k is not a cell, ie homeomorphic to a ball or to a halfball. This rules
out cases like X being a regular polygon triangulated so that the origin AD o is the
common vertex of all triangles. A neighborhood V n fog is, up to homotopy, a circle
in this case, so that o behaves like an interior point of a chamber (and is inessential).

Lemma 7.2 A finite simplicial complex X has local homotopical dimension r if and
only if all chambers are of dimension at least r C 2 and all essential shared faces are of
dimension at least r C 1.

Proof It suffices to consider points x 2X that are either in the interior of a chamber
or in the interior of a shared face. In the case that x is in the interior of a chamber,
V ŠRm so m (the dimension of the chamber) must be at least rC2 (Proposition 4.10).
On the other hand, if x lies in the interior of a shared face A, a small neighborhood V

of x is the union of chambers �1 [ � � � [ �q joining along A, with q � 2. If A is
inessential, then a neighborhood V of x 2A is either a ball or a halfball of dimension
at least r C2. Suppose x to be essential and let s D dim A. Then V �fxg '

W
S s is

a bouquet (this holds even if s D 0 and A is vertex). Since this neighborhood must be
r –connected, s must be at least r C 1.

The following is our main statement. Here we assume d <n; otherwise �d.X; n/DX n

and there is nothing to prove.

Theorem 7.3 Let X be a locally finite polyhedral space with local homotopical
dimension r , r � 0, and let 1� d < n. Then

�i.�
d .X; n//Š �i.X /

n for i � rd C 2d � 2:

Proof The starting point is Lemma 4.6. As in the proof of Lemma 7.2, a contractible
neighborhood V of x 2 X is one of three types: (i) V Š Rm with m � r C 2,
(ii) halfspace H of dimension m� r C 2 or (iii) it is a union of such halfspaces along
a shared face of dimension at least rC1. We must show that �d .V; n/ is drC2d �2

connected.

In the case V ŠRm , we know by Corollary 4.7 that �d .Rm; n/ is dm�2–connected,
and that dm� 2D d.r C 2/� 2D dr C 2d � 2 as claimed. If V is homeomorphic to
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halfspace H (with boundary L), V is the inverse limit of a nested sequence of spaces
Hi�H such that HiŠRm for all i , it follows that �d .H; n/ is the inverse limit of the
spaces �d .Hi ; n/, which are drC2d�2–connected, and it has this same connectivity.
We are left with the case that V is the union of simplices (chambers) �1 [ � � � [�q

joining along an essential face A. We can assume without loss of generality that any
two faces join along A, ie �i \�j DA. Luckily the structure of this neighborhood V

is sufficiently nice to allow us to give a decomposition of �d .V; n/ as the colimit of
an explicit diagram.

We start by observing that each configuration of n points of V gives rise to a tuple of
integers .k1; : : : ; kq/, k1C � � � C kq � n, where ki denotes the number of points of
the configuration inside the face �i . Obviously these ki –configurations can overlap
when points of the configuration fall in A. Keeping track of the various overlaps can
be expressed in terms of a poset of intersections. More precisely, set the index set

I D f1; 2; : : : ; qgn D f.i1; : : : ; in/ j ij 2 f1; 2; : : : ; qgg:

We can cover �d .V; n/ by the closed sets U.i1;:::;iq/ , .i1; : : : ; iq/ 2 I , where

U.i1;:::;iq/ D f.x1; : : : ;xn/ 2�
d .V; n/ j xj 2 �ij ; ij 2 f1; 2; : : : ; qgg:

Let D be the intersection poset PU associated to the cover UI of �d .V; n/, also
referred to as subspace diagram. It is clear by construction that colimD is precisely
�d .V; n/. Here’s how this poset diagram looks for k D 2 and d D 1, ie for the
configuration space F.X [A Y; 2/; see [25, Theorem 2.0.17]:

(8)

X �Y ��A F.Y; 2/ Y �X ��A F.X; 2/

X �A��A

??

A�Y ��A

CC__

Y �A��A

??[[

A�X ��A

CC__

X �A��A

[[

F.A; 2/

3377OOddjj

(the spaces on the extreme right and left are being identified).

Going back to the general diagram D , since all inclusions are closed cofibrations (this
is standard to check [25]), we have

�d .V; n/D colim.D/' hocolim.D/:

In fact the canonical map from the homotopy colimit of a sequence of inclusions of T1
topological spaces to the actual colimit is a weak equivalence; see [7]. The connectivity
of this (sequential) homotopy colimit �d .V; n/ is at least the least connectivity of
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the spaces making up the diagram. If we set �0 D A, these spaces are of the form
�i1
� � � ���in

\�d .V; n/ (we refer to these subspaces as the constituent subspaces of
the diagram). Each of these constituent subspaces is quite manageable and we can apply
the localization principle to it. Indeed �i1

� � � � ��in
\�d .V; n/ is the complement

in �i1
� � � � � �in

of subspaces of certain codimensions. The smallest codimension
is attained by �dC1.A; n/ in An , that is, for �d .A; n/. If s D dim A, then this
codimension is ds . It follows that the smallest connectivity among the constituent
subspaces is ds � 2 � d.r C 1/� 2 D dr C d � 2. As pointed out, the connectivity
of �d .V; n/ (as a homotopy colimit) must be at least the connectivity of �d .A; n/,
which is dr C d � 2. This is not quite the connectivity we seek and we must improve
it by d .

To do so observe that there is associated to the poset PU of the cover a natural filtration
whose j th space is Fj D colim Pj , where Pj is the poset consisting of

�i1
� � � � ��in

\�d .V; n/; ik1
D � � � D iks

D 0 for s � n� j ;

and some subset fk1; : : : ; ksg � f1; : : : ; ng

with is 2 f0; 1; : : : ; qg and �0DA, as pointed out. In other words, Fj is the subspace
where at most j of the entries can be outside of A. We have the series of inclusions

F0 D�
d .A; n/� F1 � � � � � Fn D�

d .V; n/:

If we organize our poset vertically as in (8), then Fj is the pushout of the first j C 1

rows from the bottom.

For example, F.�1[A�2; 2/ (the case depicted in diagram (8) with X D�1;Y D�2 ),
there are three filtration terms starting with F0 D F.A; 2/, the colimit F1 of the first
two rows and F2 being the whole colimit. The special case of F.R2; 2/D�1.R2; 2/

is enlightening (d D 1, nD 2), where here we write R2D�1[A�2 with the �i being
two halfplanes joining along AŠR. The first filtration term is F0 D F.R; 2/' S0 .
The next filtration term is

F1 D .�1 �A[A��1[�2 �A[A��2/\�
1.R2; 2/:

Each term .�i �A[A��j /\�
1.R2; 2/D �i �A[A��i � diag.A/ deformation

retracts onto a circle so F1 is the union of two circles along an S0 , ie F1'S1_S1_S1 .
Finally F2 ' F.R2; 2/' S1 . The connectivity changes going from F0 to F1 , and
remains stable afterwards.

Let’s organize into a row Rk the constituent subspaces �i1
� � � � � �in

\�d .V; n/

where precisely k of the �ij are not equal to AD �0 . One point we will capitalize
on is that in the range 0 � k � d , �i1

� � � � � �in
\�d .V; n/ is the complement in
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�i1
� � � � � �in

of tuples with dC1–diagonal elements lying only in A. At the first
stage, all components of R1 intersect along F0 D�

d .A; n/.

If nDdC1, the situation is very clear. Here �d .A; dC1/DAdC1�diag.A/'Sds�1 ,
and all constituent subspaces for 1� k � d are of the form

�i1
� � � � ��idC1

\�d .V; d C 1/D �i1
� � � � ��idC1

� diag.A/;

thus they are contractible since they are the complement of a closed subspace in the
boundary of a cube. This means that going up the filtration, we are suspending in various
ways the spherical class, as in the example discussed earlier, and the connectivity in
homology is going up by one at every step.

For more general n, the constituent subspaces are not, in general, contractible but we
have the following useful lemma.

Lemma 7.4 The inclusion Fk�1 ,! Fk is null-homotopic for k � d C 1.

Proof We need some notation. We introduce Fk.n/ for the filtration terms of �d .V; n/

(we added the index n to the previous notation). We also introduce Fk;j .n/ for the
subspace of all configurations .x1; : : : ;xn/ 2 Fk.n/ where xj can be in all of H . We
have that Fk.n/D

S
1�j�n Fk;j .n/. There is an inclusion

Fk�1.n/ ,! Fk;n.n/� Fk.n/:

On the other hand there are various embeddings of Fj .n/ into Fj .nC1/ one of which
is given by

(9) .x1; : : : ;xn/ 7! .�1.x1/; : : : ; �1.xn/;pn/;

where �t is any isotopy of the halfspace H extending an isotopy of A onto its halfspace
.a1; : : : ; as/, a1 < 0, and pn D .n; 0; : : : ; 0/ 2 AŠ Rs . The first observation is that
the inclusion Fk�1.n/ ,! Fk;n.n/ is homotopic to the composite

Fk�1.n/! Fk�1.n� 1/ ,! Fk�1.n/ ,! Fk;n.n/;

where the first map is projection discarding the last configuration, and the middle map
is the inclusion (9). The idea here is that the last coordinate xn 2H can be moved in H

away from A, all configurations are then mapped by �t , and after that the last coordinate
is brought down to pn . Note that the last configuration can move in H without
constraint since k � d . Next we factor the composite above Fk�1.n� 1/ ,! Fk.n/

through Fk�1.n�1/ ,!Fk;n�1.n/ and reiterate this construction to factor the map up to
homotopy, this time through Fk�1.n�2/, etc. At the end, the map Fk�1.n/ ,!Fk.n/

factors through Fk�1.k � 1/ which is contractible.
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Going back to our colimit diagram, the constituent subspaces for the k th row Rk are
VI WD �i1

� � � � ��in
\�d .V; n/, where I D .i1; i2; : : : ; in/ is an ordered tuple with

n � k entry 0. In the range k < n � d , the smallest connectivity of a constituent
subspace is ds� 2; this is because the smallest codimension strata we are removing
from �i1

� � � � ��in
to obtain VI have the codimension of the thin diagonal in AdC1

and this is ds . In the range n� d � k < n, this minimal codimension starts jumping
by one unit going from row to row. More precisely the connectivity of the constituent
subspaces of Rk in the indicated range is at least ds � 2C k � .n� d � 1/. This
minimal connectivity remains the same from Rn�1 to Rn (no jump there). There
are therefore precisely d jumps. At the level of filtrations now, Fk D Rk [ Fk�1

and we have a pushout diagram where we are gluing ds�2Ck�.n�d�1/–connected
spaces intersecting along ds�2Ck�.n�d�1/�1–connected spaces. Using the Mayer–
Vietoris sequence, and inducting on the sequences I , we see immediately that the
homological connectivity (in short H�–connectivity) of the pushout Fk must be at
least ds � 2C k � .n� d � 1/, for n� d � k < n. The H�–connectivity of Fn is,
as we pointed out, that of Fn�1 , which is thus at least ds � 2C d . Since s � r C 1

(Lemma 7.2), this H�–connectivity is at least drC2d�2–connected.

Finally to get the connectivity, we need argue that Fn is simply connected. In fact Fk

becomes 1–connected as soon as k � 1. To see this, we go back to the colimit diagram
(8) where the smallest connectivity of the constituent subspaces VI is d.r C 1/� 2.
When this is larger than 1, each VI is simply connected, and so is the colimit, and the
theorem holds. Now some VI fail to be simply connected when d.r C 1/ � 2, that
is, when (i) r D 0; d D 1, or (ii) r D 1D d , or (iii) r D 0; d D 2. In the first case, the
theorem is equivalent to saying that F.X; n/ is connected if X is locally punctured
connected. This is precisely Lemma 4.1 so this case is settled. In case (ii), we are
looking at �d .A; n/ D �1.R2; n/ D F.R2; n/ as the bottom space of our colimit
diagram. This is of course not simply connected, but the map �1.F0/! �1.F1/ is
the trivial map since it is induced from a null homotopic map (Lemma 7.4), so that F1 ,
and inductively Fk , are simply connected by the van Kampen theorem. The remaining
case (iii) occurs when �d .A; n/D�2.R; n/. The fundamental group of this space is
discussed in Example 8.1. Here too the fundamental group trivializes from F1 onwards
so that Fn D�

d .V; n/ is simply connected.

7A The homology of the filtration terms

This subsection is of independent interest and gives a description of the homology of
the filtration terms. This is sketchy but details can be filled in. First of all, there is a nice
way to see that the inclusion F0! F1 induces the trivial map in homology without
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resorting to Lemma 7.4. Here F0 D�
d .A; n/ has torsion free homology admitting a

basis realized by products of spheres [9]. We need to understand how these homology
classes occur. There is a spherical class in

�d .A; d C 1/DAdC1
� diag.A/' Sds�1;

where sD dim A. Now �d .A; dC1/ embeds in �d .A; n/ in many ways as in (9) (re-
call that d <n). This embedding has a retract so induces a monomorphism in homology.
The image of the spherical class in this case is denoted fx1; : : : ;xdC1g. The various
other embeddings, obtained by choosing another subset of indices fi1; : : : ; idC1g �

f1; 2; : : : ; ng, give rise to spherical homology classes fxi1
; : : : ;xidC1

g. These classes
generate the homology of �d .A; n/ in a very precise sense. There is an action of the
operad fDs.k/gk�0 of little s–dimensional disks on

S
n�1�

d .A; n/, where sDdim A

and Ds.k/ is the space of k pairwise disjoint open disks in the unit disk of dimension
s (to keep with the terminology the word “disk” is used instead of “ball”). The action
of Ds.2/' S s�1 is given as follows:

Ds.2/��d .A; n1/��
d .A; n2/!�d .A; n1C n2/;

and yields a bracket operation in homology:

Œ�;��W Hp.�
d .A; n1//˝Hq.�

d .A; n2//!HpCqCs�1.�
d .A; n1C n2//:

The product map in homology is given by the action of H0.D
s.2// and is the induced

map in homology of the concatenation of two configurations after placing the first one
in a disk of radius 1

2
centered at

�
�

1
2
; 0; : : : ; 0

�
and the other in another disk of the

same radius centered at
�

1
2
; 0; : : : ; 0

�
. One main theorem of [9] reads as follows. The

bracket of two cycles is important to understand and can be described as follows. Given
a cycle (or chain) c in �d .A; n/, we say we localize it in a disk Ds if we choose a
homeomorphism (which can be made canonical) between AŠRs and D , and take
the image of c in �d .D; n/ via this homeomorphism. We obtain the bracket Œ˛1; ˛2�

by localizing the cycles respectively in two disjoints disks D1 and D2 and taking the
new cycle obtained by rotating D1 around D2 (or D2 around D1 , up to sign) in Rs .

Theorem 7.5 [9, Proposition 3.9] The homology of �d .A; n/ is torsion free, gen-
erated additively by products of iterated brackets where each factor is either xi or an
iterated bracket of the form

Œ � � � ŒŒB1;B2�;B3�; : : : ;B`�; `� 1;

where each Bs is of the form

Bs D Œ � � � ŒŒfxj1;s
;xj2;s

; : : : ;xjdC1;s
g;xi1;s

�;xi2;s
�; : : : ;xi`s ;s

�

(further conditions are stated on indices to get a basis).
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Let’s argue, for example, that fx1; : : : ;xdC1g maps to zero in the homology of the
next filtration term. Consider the following diagram of inclusions:

�d .A; d C 1/ //

�
��

�d .A; n/D F0

��

.�1 �Ad /\�d .V; n/ // F1

The bottom space .�1 �Ad /\�d .V; n/D �1 �Ad � diag.A/ is contractible since
we are removing a subspace from the boundary of �1 �Ad . The map � is trivial and
the commutativity of the diagram shows that fx1; : : : ;xdC1g maps trivially in F1 . A
class of the form Œfx1; : : : ;xdC1g;xdC2� dies in F1 , for example, since this class can
be represented by the composite

(10) Sds�1
�Sd�1

!AdC2
� sing ,!AdC1

�H � sing ,! F1:

The first map is obtained from the operadic action. Here the factor Sd�1 is the
locus of xdC2 rotating in some sphere in Rd , so when xdC2 is allowed to be in H ,
this sphere is coned off and the composite of the first two maps in (10) is trivial
on the top homology class which by definition is Œfx1; : : : ;xdC1g;xdC2�. A similar
argument applies to show that the image of Bs as in the notation of Theorem 7.5 is
trivial in F1 . For the image of the bracket ŒBs;Bt �, one can argue similarly. One
constructs this class by localizing Bs and Bt in distinct disks D1 and D2 , and
rotating one disk around the other. But the class Bs is the boundary of a chain in
H 0 �Dn�1

1
[D1 �H 0 �Dn�2[ � � � [Dn�1 �H 0 � F1 , where H 0 is the part of H

with boundary D1 . This means that ŒBs;Bt � must map to zero in H�.F1/. It remains
to be shown that the image of a product is trivial, but this is immediate.

Note that there are many ways a given class Œ � � � ŒŒB1;B2�;B3�; : : : ;B`� can die in F1 ,
and so in F1 we obtain suspension classes one degree higher. This describes the
homology of F1 and clearly it is one degree more connected than F0 .

8 Fundamental groups

In this final section we take a more pedestrian look at the isomorphism �1.B
d .X; n//Š

H1.X;Z/ for d � 2. This is expressed in terms of braids. As before X is a simplicial
complex. Note that loops in SPn X , based at a basepoint of the form Œ�; : : : ;��, say,
lift to X n under the quotient projection; see [18, Section 5] for example:

X n

��

S1 //

;;

SPn X
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Figure 5: The left braid cannot be trivialized in �2.I; 3/

This says that a homotopy class of a loop  W S1! SPn X based at Œ�; : : : ;�� can be
represented by a tuple Œ1; : : : ; n�, where i W S

1!X is a loop in X . Moreover and
by the simplicial approximation theorem, any loop in X n deforms into an n–tuple of
simplicial loops in X so that  can be represented by an unordered tuple of simplicial
loops in SPn.X / for some simplicial decomposition.

We can try to describe loops in �d .X; n/ and Bd .X; n/ in the same way but both
spaces are not simplicial complexes in general, only of the homotopy type of one.
However, after passing to a barycentric subdivision, Bd .X; n/D SPn X �BdC1.X; n/

deformation retracts onto a cellular complex Wd .X; n/ (Lemma 5.2). A loop S1!

Bd .X; n/ deforms into a loop into Wd .X; n/ which is cellular. Therefore and without
loss of generality, we can represent a loop  W S1! Bd .X; n/ within its homotopy
class by a tuple of paths t 7! Œ1.t/; : : : ; n.t/�, with i a simplicial path in X (not
necessarily a closed loop) and t 2 Œ0; 1�. This is a braid with n–strands. These paths or
strands at any time t do not intersect in more than d points, and Œ1.0/; : : : ; n.0/�D

Œ1.1/; : : : ; n.1/�. This is similar for loops into �d .X; n/.

As a first example, consider X D I : the unit interval. By codimension argument,
�d .I; n/ is simply connected if d�3, so the only interesting case is when dD2 and we
are removing from In codimension 2 subspaces corresponding to when xi D xj D xk .
According to Example 2.1, �2.I; 3/' S1 and �1.�

2.I; 3//Š Z. An element in the
fundamental group can be represented by a braid with 3–strands embedded in I � I ,
not all of which can pass by the same point at the same time. A nontrivial element is
depicted in the left-hand side of Figure 5. This braid cannot be trivialized in �2.I; 3/,
but it is amusing to try. By moving the strands around while keeping their endpoints
fixed, there is no way we can separate them without going through a triple point.

Example 8.1 For n � 3, the fundamental group of �2.I; n/ has been analyzed by
Khovanov [19]. There he shows that �2.I; n/ is a K.�; 1/ and then gives a presentation
for � . This presentation is given as follows. Define the right-angled Coxeter group
T Wn to be the group generated by the simple transpositions si D .i; iC1/; i 2 Œn�1�,
subject to the relations

s2
i D 1; sisj D sj si if ji � j j> 1:

Define �W T Wn!Sn by �.si/D si for all i 2 Œn�1�. Then �1.�
2.I; n//Š ker� .
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Figure 6: Resolving the intersection points

In the unordered case it is possible to kill the braiding by interchanging strands.
Represent an element of �1.B

d .X; n// by a braid with n–strands embedded in X �I .
Suppose we have two intersecting strands. There is a way to resolve the intersection
points, illustrated in Figure 6. The figure depicts a loop f .t/D Œf1.t/; f2.t/� with two
strands crossing for some s 2 Œ0; 1�. Define Qf D Œ Qf1; Qf2� to be such that Qfi.t/Dfi.t/ if
t � s , and Qf1.t/D f2.t/, Qf2.t/D f1.t/ if t � s . These give two representations of the
same loop in �Bd .X; n/ for d � 2. The difference, however, is that after changing f
by Qf , by a small homotopy we can now separate the strands of Qf so that no intersection
occurs. This also explains why the fundamental group must be abelian [18].

For example, using this resolution of intersections, we can immediately trivialize the
braid in �B2.R; 3/ depicted in Figure 5 (left). This is no surprise since B2.R; 3/'
B2.I; 3/ is contractible and is identified with the 3–simplex with one edge removed.

The resolution of intersections when applied to loops in �V , with V a tree, implies
that we have a surjection �1.B.V; n//! �1.B

d .V; n//. Since Bd .V; n/ is connected
for d � 2 (Lemma 4.1), pick the basepoint in this fundamental group to be Œx1; : : : ;xn�

with xi ¤ xj ; i ¤ j , and write a braid  .t/D Œ1.t/; : : : ; n.t/�. As discussed, we can
assume the i to be nonintersecting strands. Since V is one dimensional, necessarily
i.0/D i.1/D xi , so all strands must start and finish at the same point. Each i can
be homotoped to the constant strand at xi , without further intersections, and the loop
we started out with is trivial up to homotopy. The above discussion allows us to give a
streamlined proof of the following proposition which we have already obtained as a
corollary to Theorem 1.1.

Proposition 8.2 If X is a connected simplicial complex which is not reduced to a
point, n� 2; d � 2, then there is an isomorphism �1.B

d .X; n//ŠH1.X IZ/.

Proof We need show that the inclusion Bd .X; n/ ,! SPn X induces an isomorphism
on fundamental group if d > 1. If we invoke Lemma 4.6 as before, this boils down to
showing that for V a contractible neighborhood in X , Bd .V; n/ is simply connected
whenever d � 2 and for any n� 1. If V is a contractible neighborhood in simplicial X

(as in the proof of Theorem 6.2), any element in �1.B
d .V; n// can be represented by

a braid and by resolving the intersection points. This braid can be homotoped to the
trivial braid.
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En–cohomology with coefficients as functor cohomology

STEPHANIE ZIEGENHAGEN

Building on work of Livernet and Richter, we prove that En –homology and En –
cohomology of a commutative algebra with coefficients in a symmetric bimodule can
be interpreted as functor homology and cohomology. Furthermore, we show that the
associated Yoneda algebra is trivial.

13D03, 18G15, 55P48

1 Introduction

The little n–cubes operad was introduced to study n–fold loop spaces (see Boardman
and Vogt [2] and May [13]). An En–operad is a †�–cofibrant operad weakly equivalent
to the operad formed by the singular chains on the little n–cubes operad, and algebras
over such an operad are called En–algebras. Those are A1–algebras which are in
addition commutative up to higher homotopies of a certain level depending on n. For
a †�–cofibrant operad one can define a suitable notion of homology and cohomology
of algebras over this operad as a derived functor. For E1–algebras this operadic notion
of homology coincides with Hochschild homology. For E1–algebras one retrieves
�–homology as defined by Robinson; see Robinson and Whitehouse [17]. In general,
for a commutative algebra viewed as an En–algebra, En–homology can be seen to
coincide with higher order Hochschild homology as defined in Pirashvili [14]; see
Ginot, Tradler and Zeinalian [8] and Ziegenhagen [19].

Many notions of homology can be expressed as functor homology. The case of
Hochschild homology and cyclic homology has been studied by Richter and Pirashvili
in [16]. The same authors give a functor homology interpretation of �–homology
in [15]. In [10], Hoffbeck and Vespa show that Leibniz homology of Lie algebras is
functor homology. A more general approach to functor homology for algebras over an
operad and their operadic homology is discussed in [6] by Fresse.

For the case of En–homology, functor homology interpretations of En–homology
have been given by Livernet and Richter in [11] and Fresse in [4]. Both articles are
exclusively concerned with the case of trivial coefficients. As proved in [5], En–
homology with trivial coefficients coincides up to a suspension with the homology of a
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generalized iterated bar construction. Muriel Livernet and Birgit Richter use this in
[11] to prove that En–homology of a commutative algebra with trivial coefficients can
be interpreted as functor homology over a category of trees denoted by Epin . Fresse
shows in [4] that this result can be extended to arbitrary En–algebras.

Recent work by Fresse and the author shows that En–homology and En–cohomology of
a commutative algebra with coefficients in a symmetric bimodule can also be calculated
via the iterated bar construction; see Fresse and Ziegenhagen [7]. We show in this article
that the functor homology interpretation of Livernet and Richter can be extended to the
case with coefficients and also holds for cohomology. More precisely, we introduce a
category EpiCn of trees extending the category Epin and a functor bW EpiCn

op
!k–mod,

where k is any commutative unital ring. Then to a commutative nonunital k–algebra A

and a symmetric A–bimodule M we associate Loday functors L.AIM /W EpiCn !
k–mod and Lc.AIM /W EpiCn

op
! k–mod and prove the following theorem:

Theorem 1.1 We have an isomorphism

H
En
� .AIM /Š TorEpiCn

� .b;L.AIM //;

and, if k is self-injective, an isomorphism

H�En
.AIM /Š Ext�

EpiCn
op.b;Lc.AIM //:

This implies that there is an action on En–cohomology by the corresponding Yoneda
algebra. We show that this algebra is trivial.

Outline We give an overview of the constructions of [11] in Section 2. In Section 3
we recall how to calculate En–homology and –cohomology of commutative algebras
with coefficients in a symmetric bimodule via the iterated bar construction. To do this
one introduces a twisting differential. In Section 4 we enlarge the category defined by
Livernet and Richter to incorporate this twisting differential. We define En–homology
and –cohomology for functors from this category to k–modules. Finally we show that
there are Loday functors linking these notions to the usual notion of En–homology
and –cohomology. We prove our main theorem in Section 5. In Section 6 we recall the
definition of the Yoneda pairing and show that the Yoneda algebra is trivial.

Acknowledgements The contents of this article were part of the author’s Ph D thesis.
I am indebted to my advisor Birgit Richter for numerous ideas and discussions. I would
also like to thank Eric Hoffbeck and Marc Lange for many helpful suggestions on
how to improve the exposition of this article. Furthermore I would like to gratefully
acknowledge support by the DFG.
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Conventions In the following we assume that 1 6 n<1. Let k be a commutative
unital ring. We denote by A a commutative nonunital k–algebra and by M a symmetric
A–bimodule. We often view A and M as differential graded k–modules concentrated
in degree zero. Let ACDA˚k be the unital augmented algebra obtained by adjoining
a unit to A. We denote by sc 2†C the element defined by c 2 C in the suspension
of a graded k–module C . The k–module kŒX � is the free k–module generated by a
set X . For l > 0 we denote by Œl � the set Œl �D f0; : : : ; lg.

2 The category Epin encoding the n–fold bar complex

In [5] Fresse proves that En–homology of En–algebras with trivial coefficients can be
computed via the iterated bar complex. Livernet and Richter use this in [11] to give
an interpretation of En–homology of commutative algebras with trivial coefficients
as functor homology. They encode the information necessary to define an iterated bar
complex in a category Epin of trees. We recall the construction of this category.

Definition 2.1 Let C be a differential graded nonunital algebra. The bar complex
B.C / is the differential graded k–module given by

B.C /D .T c.†C /; @B/;

where T c.†C / denotes the reduced tensor coalgebra on †C equipped with the
differential induced by the differential of C . The twisting cochain @B is defined by

@B.Œc1j � � � jcl �/D

l�1X
iD1

.�1/i�1Œc1j � � � jciciC1j � � � jcl �:

Here we use the classical bar notation and denote sc1 ˝ � � � ˝ scl 2 .†C /˝l by
Œc1j � � � jcl �. If C is commutative, the shuffle product

shW B.C /˝B.C /! B.C /

is defined by

sh.Œc1j � � � jcj �˝ ŒcjC1j � � � jcjCl �/D
X

�2sh.j ;l/

˙Œc��1.1/j � � � jc��1.jCl/�;

with sh.j ; l/�†jCl the set of .j ; l/–shuffles. For homogeneous elements c1; : : : ; cjCl

the summand Œc��1.1/j � � � jc��1.jCl/� is decorated by the graded signature .�1/� , with

� D
Y
i<l

�.i/>�.l/

.jci jC 1/.jcl jC 1/:

Algebraic & Geometric Topology, Volume 16 (2016)
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The shuffle product makes B.C / a commutative differential graded k–algebra.

We can iterate this construction and form the n–fold bar complex Bn.A/. The results
in [5] for En–algebras imply that for any k–projective commutative nonunital k–
algebra A we have

H
En
� .AI k/DH�.†

�nBn.A//:

Elements in the n–fold bar construction Bn.A/ correspond to sums of planar fully
grown trees with leaves labelled by elements in A; see [3]. We fix some terminology
concerning trees.

Definition 2.2 A planar fully grown n–level tree t is a sequence

t D Œrn�
fn
�!� � �

f2
�! Œr1�

of order-preserving surjections. The element i 2 Œrj � is called the i th vertex of the j th

level. The elements in Œrn� are also called leaves. The degree of a tree t is given by the
number of its edges, ie by

d.t/D

nX
jD1

.rj C 1/:

For example, the 2–level tree

@@ ��

@@ ��

is given by the sequence Œ2�
f2
�! Œ1� with f2.0/D f2.1/D 0, f2.2/D 1.

Definition 2.3 For a given vertex i 2 Œrj � the subtree tj ;i is the .n�j /–level subtree
of t given by

tj ;iD Œjf
�1

n � � � f �1
jC1.i/j�1�

gn
�! Œjf �1

n�1 � � � f
�1

jC1.i/j�1�
gn�1
���!� � �

gjC2

���! Œjf �1
jC1.i/j�1�;

with gl the map making the diagram

Œjf �1
l
� � � f �1

jC1
.i/j � 1�

Š

��

gl
// Œjf �1

l�1
� � � f �1

jC1
.i/j � 1�

Š

��

f �1
l
� � � f �1

jC1
.i/

fl
// f �1

l�1
� � � f �1

jC1
.i/

commute. Here the vertical maps are the unique order-preserving bijections.

Algebraic & Geometric Topology, Volume 16 (2016)
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Definition 2.4 [11, Definition 3.1] The category Epin has as objects planar fully
grown trees with n levels. A morphism from

Œrn�
f r

n
�!� � �

f r
2
�! Œr1� to Œsn�

f s
n
�!� � �

f s
2
�! Œs1�

consists of surjections hi W Œri �! Œsi �; 1 6 i 6 n, such that the diagram

Œrn�
f r

n
//

hn

��

Œrn�1�
f r

n�1
//

hn�1

��

� � �
f r

2
// Œr1�

h1

��

Œsn�
f s

n
// Œsn�1�

f s
n�1
// � � �

f s
2
// Œs1�

commutes and such that hi is order-preserving on the fibres .f r
i /
�1.l/ of f r

i for all
l 2 Œri�1�. For i D 1 we require that the map h1 is order-preserving on Œr1�. The
composite of two morphisms .gn; : : : ;g1/W t

q! tr and .hn; : : : ; h1/W t
r! t s is given

by .hngn; : : : ; h1g1/.

Observe that since A is concentrated in degree zero, the degree of a labelled tree viewed
as an element in Bn.A/ is given by the number of edges of the tree. Lemma 3.5 in
[11] says that the maps in Epin decreasing the number of edges by one are exactly the
summands of the differential of Bn.A/. This motivates the following definition.

Definition 2.5 [11, Definition 3.7] Let F W Epin ! k–mod be a covariant functor.
Let zC En.F / be the .N [f0g/n–graded k–module with

zC
En

.rn;:::;r1/
.F /D

M
F.t/;

where the sum is indexed over all trees

t D Œrn�
fn
�!� � �

f2
�! Œr1�:

Let di W Œrn�! Œrn� 1� denote the order-preserving surjection which maps i and i C 1

to i . For 1 6 j 6 n let z@j W zC En! zC En be the following map lowering the j th degree
by one:

� For j D n define z@j restricted to F.t/ asX
06i<rn

fn.i/Dfn.iC1/

.�1/sn;i F.di ; idŒrn�1�; : : : ; idŒr1�/:

� Let 1 6 j < n, 0 6 i < rj and � 2 sh.f �1
jC1

.i/; f �1
jC1

.i C 1//. Let h D hi;�

be the unique morphism of trees, exhibited in [11, Lemma 3.5], such that

Algebraic & Geometric Topology, Volume 16 (2016)



2986 Stephanie Ziegenhagen

hj Ddi W Œrj �! Œrj�1�, hl D id for l < j , and hjC1 restricted to f �1
jC1

.fi; iC1g/

acts like � . Then z@j is the map whose restriction to F.t/ equalsX
06i<rj

fj .i/Dfj .iC1/

X
�2sh.f �1

jC1
.i/;f �1

jC1
.iC1//

�.� I tj ;i ; tj ;iC1/.�1/sj ;i F.hi;� /:

The signs arise from switching the degree �1 map di with suspensions, as well as
from the graded signature of the permutation � in the cases j < n. More precisely, we
number the edges in the tree t from bottom to top and from left to right. For example,
the 2–level tree

Œ2�
f2
�! Œ1� with f2.0/D f2.1/D 0 and f2.2/D 1

is decorated as indicated in the following picture:

@
@@

�
��

@
@@

�
��

1

2 3

4

5

Then for j < n we acquire a sign .�1/sj ;i , where sj ;i is the number of the rightmost
top edge of the .n�j /–level subtree tj ;i of t . For j D n set sn;i to be the label of the
edge whose leaf is the i th leaf for 0 6 i 6 n.

For j < n the map F.hi;� / is not only decorated by .�1/sj ;i but also by a sign
associated to � 2 sh.f �1

jC1
.i/; f �1

jC1
.i C 1//: Let t1; : : : ; ta be the .n�j�1/–level

subtrees of t above the j –level vertex i , ie the .n�j�1/–level subtrees forming tj ;i .
Similarly let taC1; : : : ; taCb denote the .n�j�1/–level subtrees above i C 1. Then
� determines a shuffle of ft1; : : : ; tag and ftaC1; : : : ; taCbg. The sign �.� I tj ;i ; tj ;iC1/

picks up a factor .�1/.d.tx/C1/.d.ty/C1/ whenever x < y and �.x/ > �.y/.

Lemma 2.6 For any functor F W Epin ! k–mod the .N [ f0g/n–graded module
zC En.F / together with z@1; : : : ; z@n forms a multicomplex, which we again denote by
zC En.F /.

Definition 2.7 [11, Definition 3.7] The homology

H
En
� .F /DH�.Tot. zC En.F ///

of the total complex associated to zC En.F / is called the En–homology of F W Epin!
k–mod.
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Livernet and Richter show that there is a Loday functor

L.AI k/W Epin! k–mod

associated to every nonunital commutative algebra A such that

H
En
� .L.AI k//DH

En
� .AI k/

whenever A is k–projective. They then prove that En–homology of functors is indeed
functor homology:

Theorem 2.8 [11, Theorem 4.1] Let zbW Epiop
n ! k–mod be the functor given by

zb.t/D

�
k if t D Œ0�! � � � ! Œ0�;

0 otherwise:

Then for F W Epin! k–mod we have

H
En
� .F /D TorEpin

� .zb;F /:

3 En–homology with coefficients via the iterated
bar complex

Recent work by Fresse and the author (see [7]) shows that, at least for a commutative
nonunital k–algebra A and a symmetric A–bimodule M , the iterated bar complex
can also be used to calculate En–homology and –cohomology with coefficients. In
order to incorporate the action of A on M one has to add a twisting cochain

ıW AC˝Bn.A/!AC˝Bn.A/

to the complex AC˝Bn.A/.

Definition 3.1 Given an n–level tree t D Œrn�
fn
�! � � �

f2
�! Œr1� and a0; : : : ; arn

2 A,
let t.a0; : : : ; arn

/ denote the element in Bn.A/ defined by t with leaves labelled by
a0; : : : ; arn

. The twisting morphism ıW AC˝Bn.A/!AC˝Bn.A/ is given by

ı.a˝ t.a0; : : : ; arn
//D

X
06l6rn�1

jf �1
n .l/j>1

xDminf �1
n .l/

.�1/sn;x�1aax˝ .t nx/.a0; : : : ; yax; : : : ; arn
/

C

X
06l6rn�1

jf �1
n .l/j>1

yDmaxf �1
n .l/

.�1/sn;y aya˝ .t ny/.a0; : : : ; yay ; : : : arn
/
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for a 2AC . Here for s 2 Œrn� such that s is not the only element in the corresponding
1–fibre of t containing s , ie in the 1–fibre f �1

n .u/ with fn.s/D u, we let t n s be the
tree obtained by deleting the leaf s . To be more precise,

t n s D Œrn� 1�
f 0n
�! Œrn�1�

fn�1
���! � � �

f2
�! Œr1�

with

f 0n.x/D

�
fn.x/; x < s;

fn.xC 1/; x > s:

The sign .�1/sn;i is as in Definition 2.5.

Remark 3.2 (a) Intuitively the map ı deletes leaves and acts with the corresponding
label on the coefficient module AC . The leaves which are deleted are either on
the left or on the right of a 1–fibre of the tree. For n D 1 compare this to the
complex calculating Hochschild homology HH.AIAC/: the standard differential maps
a˝ a0˝ � � �˝ al 2AC˝A˝lC1 to

aa0˝ a1˝ � � �˝ al C .�1/lC1ala˝ a0˝ � � �˝ al�1

C

l�1X
iD0

.�1/iC1a˝ a0˝ � � �˝ aiaiC1˝ � � �˝ al :

The first two summands correspond to the twist ı , while the other summands correspond
to @B .

(b) In the definition of the map ı we only consider 1–fibres of cardinality at least
two. If we wanted to take 1–fibres of cardinality one into account, we would add two
summands for each such fibre: Both summands would replace t by a tree obtained
by deleting the 1–fibre and then deleting further edges to obtain a fully grown tree
again. One summand would multiply a 2 AC from the right by the label ax of the
leaf x corresponding to the deleted fibre, the other summand would multiply by ax

from the left. Note that these summands are not of the appropriate degree, since we
delete more than one edge. However, the two terms just described cancel each other
out anyway, because for commutative A multiplying a 2AC with ax 2A from the
left equals multiplying a with ax from the right.

In Section 4 we will define En–homology and En–cohomology of functors defined
on a category which extends the category Epin . The following theorem will allow us
to argue in Remark 4.8 and Remark 4.10 that En–homology and En–cohomology of
functors encompass En–homology and En–cohomology of commutative algebras with
coefficients in a symmetric bimodule.
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Theorem 3.3 [7] For a commutative k–projective nonunital k–algebra A and a
symmetric A–bimodule M we have

H
En
� .AIM /DH�.M ˝AC .AC˝†

�nBn.A/; ı//

and
H�En

.AIM /DH�.HomAC..AC˝†
�nBn.A/; ı/;M //:

4 The category EpiCn encoding the n–fold bar complex with
coefficients

We would like to establish a functor homology interpretation for En–homology of a
commutative algebra A with coefficients in a symmetric A–bimodule M as well as
for En–cohomology. To model En–homology with coefficients as functor homology
we have to enlarge the category Epin to incorporate the summands of the twisting
cochain ı .

Definition 4.1 The objects of the category EpiCn are given by planar fully grown trees
with n levels (see Definition 2.2). A morphism from

tr
D Œrn�

f r
n
�!� � �

f r
2
�! Œr1� to t s

D Œsn�
f s

n
�!� � �

f s
2
�! Œs1�

is represented by a sequence of maps .hn; : : : ; h1/, where:

� For i D 2; : : : ; n � 1, the map hi W Œri � ! Œsi � is a surjection which is order-
preserving on the fibres .f r

i /
�1.l/ for all l 2 Œri�1�. For i D 1 we require

h1W Œr1�! Œs1� to be order-preserving.
� The map

hnW Œrn�! Œsn�C WD Œsn�t fCg

has Œsn� in its image. We also require that the restriction of hn to h�1
n .Œsn�/ is

order-preserving on the fibres of f r
n . Furthermore, the intersection of h�1

n .Œsn�/

with a fibre .f r
n /
�1.l/ must be a (potentially empty) interval for all l 2 Œrn�1�,

ie of the form fa; aC 1; : : : ; aC bg with b > �1.
� The diagram

h�1
n .Œsn�/

f r
n
//

hn

��

Œrn�1�

hn�1

��

// � � � // Œr2�

h2

��

f r
1
// Œr1�

h1

��

Œsn�
f s

n
// Œsn�1� // � � � // Œs2�

f s
1
// Œs1�

commutes.
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Finally, we identify certain morphisms by imposing the following equivalence relation
on the set of morphisms from tr to t s : we identify morphisms h and h0 if

� hn
�1.C/D h0n

�1
.C/, and

� for all 1 6 i 6 n, the restrictions of hi and h0i to f r
iC1

: : : f r
n .Œrn� n h�1

n .C//

coincide.

The composition of two morphisms .gn; : : : ;g1/W t
q! tr and .hn; : : : ; h1/W t

r ! t s

is defined by composing componentwise and sending C to C, ie

.hn; : : : ; h1/ ı .gn; : : : ;g1/ WD ..hg/n; hn�1gn�1; : : : ; h1g1/

with

.hg/n.x/D

�
C if gn.x/DC;

hngn.x/ otherwise.

A straightforward calculation shows that composition in EpiCn is well defined and
associative.

Remark 4.2 (a) It is clear that Epin is a subcategory of EpiCn and that both categories
share the same objects. Let ıi W Œrn�! Œrn� 1�C be the map

ıi.x/D

8<:
x if x < i;

C if x D i;

x� 1 if x > i:

Given a tree t D Œrn�
fn
�!� � �

f2
�! Œr1� such that i is the minimal or maximal element of

a fibre f �1
n .l/ containing at least two elements, let yfn be given by

yfn.x/D

�
fn.x/ if x < i;

fn.xC 1/ if x > i:

Let t 0 D Œrn� 1�
yfn
�! Œrn�1�

fn�1
���! � � �

f2
�! Œr1� . Then, intuitively, the category EpiCn

is built from Epin by adding morphisms of the form .ıi ; id; : : : id/W t ! t 0 . The
requirement that the elements of a fibre of fn that are not mapped to C form an
interval reflects the fact that we have only added morphisms of the aforementioned
kind.

(b) We only added morphisms .ıi ; id; : : : ; id/W t ! t 0 such that i is not the only
element in the corresponding 1–fibre of t . Nevertheless, it is possible to map 1–fibres
of cardinality one to C by first applying maps which merge edges in lower levels. For
example, the map

.h2; h1/W . Œ1�
id
�! Œ1� /! . Œ0�

id
�! Œ0� /
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with h2.0/DC, h2.1/D 0 and h1.0/D h1.1/D 0 arises as the composite .h00
2
; h00

1
/ı

.h0
2
; h0

1
/ of the maps

.h02; h
0
1/W . Œ1�

id
�! Œ1� /! . Œ1�

0;17!0
����! Œ0� /; h02 D id; h01.0/D h01.1/D 0

and

.h002; h
00
1/W . Œ1�

0;1 7!0
����! Œ0� /! . Œ0�

id
�! Œ0� /; h002 D ı0; h01 D id:

(c) The motivation for defining EpiCn is to model the complex calculating En–
homology of A with coefficients in M . Hence imposing the above equivalence
relation on the set of morphisms is necessary: it should not matter what precisely
happens to a subtree of a tree t if all its leaves get mapped to C, ie in which order and
on what side of an element we act on with a family of elements of A.

After defining the category EpiCn which also models the summands of the twisting
cochain ı , we can proceed to define En–homology of a functor.

Definition 4.3 Let F W EpiCn ! k–mod be a functor. As in Definition 2.5 set

C En
rn;:::;r1

.F / WD
M

F.t/;

where the sum is indexed over all trees

t D Œrn�! � � � ! Œr1�:

Define maps @j W C
En
rn;:::;rj ;:::;r1

.F /! C
En

rn;:::;rj�1;:::;r1
.F / lowering the j th degree by

one by
@j D z@j for i < n and @n D

z@nC ıminC ımax;

with
ımin D

X
06l6rn�1

jf �1
n .l/j>1

.�1/
s

n;min f�1
n .l/

�1
F.ıminf �1

n .l/; id; : : : ; id/;

ımax D
X

06l6rn�1

jf �1
n .l/j>1

.�1/
s

n;max f�1
n .l/F.ımaxf �1

n .l/; id; : : : ; id/:

The integers sn;i are as in Definition 2.5.

Example 4.4 Let t be the 2–level tree

@
@@

�
��

S
SS
�
��

0 1 2 3

A
AA
�
��

4 5
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Then
ımin D .�1/1F.ı0; id/C .�1/7F.ı4; id/;

ımax D .�1/4F.ı2; id/C .�1/9F.ı5; id/:

We already know from [11, Lemma 3.8] that .C En ; z@1; : : : ; z@n/ is a multicomplex.
Hence it suffices to prove the following lemma, which can be done via a tedious but
straightforward calculation; see [19, Lemma 4.14].

Lemma 4.5 Let F W EpiCn ! k–mod. The maps defined above satisfy the identities

.ıminC ımax/@j C @j .ıminC ımax/D 0 for all j < n;

.ıminC ımax/
2
Cz@n.ıminC ımax/Cz@n.ıminC ımax/D 0:

Hence C En.F / is a multicomplex.

Definition 4.6 Let F W EpiCn ! k–mod be a functor. The En–homology of F is

H
En
� .F /DH�.Tot.C En.F ///:

Remark 4.7 Given a functor zF W Epin ! k–mod, we can extend zF to a functor
F W EpiCn ! k–mod by setting F.h/ D 0 for every morphism hW tr ! t s in EpiCn
such that h.Œrn�/ \ fCg ¤ ∅. With these definitions H En.F / coincides with the
En–homology of zF as defined in Definition 2.7. In this sense the definition of En–
homology we just gave extends the definition given in [11, Definition 3.7].

We are specifically interested in calculating En–homology of commutative algebras,
which is the En–homology of the following functors.

Remark 4.8 The Loday functor L.AIM /W EpiCn ! k–mod is the following functor:
For a given tree t D Œrn�! � � � ! Œr1� set

L.AIM /.t/DM ˝A˝rnC1:

If .hn; : : : ; h1/W t
r ! t s is a morphism, define

L.AIM /.hn; : : : ; h1/W M ˝A˝rnC1
!M ˝A˝snC1

by

m˝ a0˝ � � �˝ arn
7!

 
m �

Y
i2Œrn�

hn.i/DC

ai

!
˝

 Y
i2Œrn�

hn.i/D0

ai

!
˝ � � �˝

 Y
i2Œrn�

hn.i/Dsn

ai

!
:
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Then
Tot.C En.L.AIM ///D†�n.M ˝AC .AC˝Bn.A/; ı//:

In particular, by Theorem 3.3 we have

H
En
� .L.AIM //DH

En
� .AIM /

if A is k–projective. Note that L.AI k/ agrees with the extension of the Loday functor
defined by Livernet and Richter in [11, Definition 3.1] to EpiCn .

We now consider En–cohomology. The definition of En–cohomology is dual to the
definition of En–homology.

Definition 4.9 Let GW EpiCn
op
! k–mod be a functor. The En–cohomology of G is

defined as
H�En

.G/DH�.Tot.CEn
.G///;

with the multicomplex CEn
.G/ defined as follows. We set

C
rn;:::;r1

En
.G/D

M
G.t/;

where the sum is indexed over trees

t D Œrn�
fn
�!� � �

f2
�! Œr1�:

The differentials

@j W C
rn;:::;rj ;:::;r1

En
.G/! C

rn;:::rjC1;:::;r1

En
.G/

raise the j th degree by one. For j D n define @n restricted to G.t/ asX
06i<rn

fn.i/Dfn.iC1/

.�1/sn;i G.di ; id; : : : ; id/

C

X
06l6rn�1

jf �1
n .l/j>1

.�1/
s

n;min f�1
n .l/

�1
G.ıminf �1

n .l/; id; : : : ; id/

C

X
06l6rn�1

jf �1
n .l/j>1

.�1/
s

n;max f�1
n .l/G.ımaxf �1

n .l/; id; : : : ; id/:

For 1 6 j < n the map @j restricted to G.t/ is given byX
06i<rj

fj .i/Dfj .iC1/

X
�2sh.f �1

jC1
.i/;f �1

jC1
.iC1//

�.� I tj ;i ; tj ;iC1/.�1/sj ;i G.hi;� /:
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Here hDhi;� again denotes the unique morphism of trees, exhibited in [11, Lemma 3.5],
such that hj D di W Œrj � ! Œrj � 1�, hl D id for l < j , and hjC1 restricted to
f �1

jC1
.fi; i C 1g/ acts like � .

As was the case for En–homology, this definition generalizes En–cohomology of
commutative algebras with coefficients in a symmetric bimodule:

Remark 4.10 Define Lc.AIM /W EpiCn
op
! k–mod on t D Œrn�! � � � ! Œr1� by

Lc.AIM /.t/D Homk.A
˝rnC1;M /:

If .hn; : : : ; h1/ is a morphism from tr to t s , define

Lc.AIM /.hn; : : : ; h1/W Homk.A
˝snC1;M /! Homk.A

˝rnC1;M /

by

.Lc.AIM /.hn; : : : ; h1/.f //.a0˝ � � �˝ arn
/

D

 Y
i2Œrn�

hn.i/DC

ai

!
�f

  Y
i2Œrn�

hn.i/D0

ai

!
˝ � � �˝

 Y
i2Œrn�

hn.i/Dsn

ai

!!
:

Then Tot.CEn
.Lc.AIM /// coincides with the complex computing En–cohomology

of A with coefficients in M . Theorem 3.3 hence yields that

H�En
.Lc.AIM //DH�En

.AIM /

if A is k–projective.

5 En–cohomology as functor cohomology

In [11, Theorem 4.1] Livernet and Richter show that En–homology with trivial co-
efficients can be interpreted as functor homology. We now extend this result to En–
homology and En–cohomology with arbitrary coefficients. As in [11], we prove that
En–homology coincides with functor homology by using the axiomatic characteri-
zations of Tor and Ext. For a background on functor homology we refer the reader
to [16]. We first show that certain projective functors are acyclic. Recall that for a
small category C a functor F W C! k–mod is called projective if it has the usual lifting
property with respect to objectwise surjective natural transformations. For t 2 EpiCn
define projective functors Pt and P t by

Pt D kŒEpiCn .t;�/�W EpiCn ! k–mod and P t
D kŒEpiCn .�; t/�W EpiCn

op
! k–mod:
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In the proof of the following lemma, we will consider trees obtained by restricting a
given tree to certain leaves.

Definition 5.1 Let t D Œrn�
fn
�! � � �

f2
�! Œr1� be a tree. For fixed I � Œrn� set rI

i D

jfiC1 � � � fn.I/j � 1. Define a tree tI as the upper row in

ŒrI
n �

��

f I
n
// ŒrI

n�1
�

��

f I
n�1
// � � �

f I
2

// ŒrI
1
�

��

I
fn
// fn.I/

fn�1
// � � �

f2
// f2 � � � fn.I/

Here the vertical morphisms are determined by requiring that they are bijective and
order-preserving, while the maps f I

n are defined by requiring that all squares commute.
Intuitively tI is the subtree of t given by restricting t to edges connecting leaves
labelled by I with the root (the bottom vertex of the tree t ).

Lemma 5.2 Let t D Œrn�
fn
�! � � �

f2
�! Œr1� be a tree. Let I � Œrn� be a set such that

I \ f �1
n .i/ is a (possibly empty) interval for all i 2 Œrn�1�. Then we can define a

morphism
hI
D .hI

n ; : : : ; h
I
1/W t ! tI

in EpiCn as follows: The map hI
n maps all x 2 Œrn� n I to C and is an order-preserving

bijection restricted to I . For i < n we require that hI
i restricted to fiC1 � � � fn.I/ is

the order-preserving bijection to ŒrI
i � and that hI

i be order-preserving on the whole
set Œri �.

Proof Recall that a morphism in EpiCn is an equivalence class with respect to the
equivalence relation introduced in Definition 4.1. Since I D Œrn�n.h

I
n/
�1.C/ the above

requirements uniquely determine hI up to equivalence. The maps hI
i assemble to a

morphism in EpiCn since they are chosen to be order-preserving and the squares

fiC1 � � � fn.I/
fi
//

hI
i
��

fi � � � fn.I/

hI
i�1
��

ŒrI
i �

f I
i

// ŒrI
i�1
�

commute by definition of f I
i . Furthermore .hI

n/
�1.C/\ f �1

n .i/D I \ f �1
n .i/ is an

interval.
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Now we are in the position to compute the En–homology of the representable projec-
tives.

Lemma 5.3 Fix a tree t D Œrn�
fn
�!� � �

f2
�! Œr1�. Then

H
En
� .Pt /D

�
0 if �> 0;L

i2Œrn�
k if � D 0:

Proof Set C WD Tot.C En.Pt //. We define an ascending filtration by subcomplexes
of C by

FpCsn;:::;s1
WD

M
k
�
f.hn; : : : ; h1/ 2 Pt .t

s/ W jh�1
n .Œsn�/j6 pC 1g

�
;

where the sum is indexed over trees

t s
D Œsn�

f s
n
�!� � �

f s
2
�! Œs1�:

Hence FpC is generated by morphisms that map at least rn �p leaves to C. This
yields a first quadrant spectral sequence

E1
p;q DHpCq.F

pC=Fp�1C / D) HpCq.C /:

The quotient FpC=Fp�1C can be identified with the free k–module generated by
morphisms .hn; : : : ; h1/ 2 kŒEpiCn .t; t

s/� with jh�1
n .Œsn�/j D pC 1. The differentials

ımin and ımax vanish on this quotient. The remaining summands of @n and the differ-
entials @n�1; : : : ; @1 do not change the number of leaves that get mapped to C. We
conclude that FpC=Fp�1C is isomorphic to D as a complex, where

Dsn;:::;s1
D

M
k
�
f.hn; : : : ; h1/ 2 Pt .t

s/ W jh�1
n .Œsn�/j D pC 1g

�
with differentials @1; : : : ; @n�1 and y@nD @n�ımin�ımax , and where the sum is indexed
over trees t s as above. The complex D can be decomposed further: The remaining
differentials do not only respect the number of deleted leaves but also the set of deleted
leaves itself. Hence D is the direct sum of subcomplexes DI with

DI
sn;:::;s1

D

M
k
�
f.hn; : : : ; h1/ 2 Pt .t

s/ W h�1
n .Œsn�/D Ig

�
such that I is a subset of Œrn� of cardinality pC 1, and the sum is over trees t s as
above. Notice that the differentials of D and DI look like the differentials used in
Definition 2.5 to define En–homology of functors from Epin to k–mod. We will
show that DI in fact can be identified with the complex associated to such a functor.
More precisely, DI is the complex computing En–homology of the representable
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functor kŒEpin.t
I ;�/�W Epin! k–mod: Denote by hI W t ! tI the morphism defined

in Lemma 5.2. We define

‰W zC En.Epin.t
I ;�//!DI

by mapping j 2 Epin.t
I ; t s/ to ‰.j /D j ı hI . Since j does not delete any leaves

this yields an element of DI . We define an inverse ˆ to ‰ by mapping h 2DI to
the composite of the columns in

ŒrI
n �

f I
n
//

��

ŒrI
n�1

�
f I

n�1
//

��

� � �
f I

2
// ŒrI

1
�

��

I

hn

��

fn
// fn.I/

hn�1

��

fn�1
// � � �

f2
// f2 � � � fn.I/

h1

��

Œsn�
gn
// Œsn�1�

gn�1
// � � �

g2
// Œs1�

Here the upper vertical maps are order-preserving bijections. We see that ˆ.h/i only
depends on hi jfiC1���fn.I / , ie ˆ is well defined on equivalence classes. It is obvious
that each ˆ.h/i is surjective and that the usual requirements on commutativity are
satisfied. Consider a fibre .f I

i /
�1.l/: The map ˆ.h/i first sends it order-preservingly

and surjectively to fiC1 � � � fn.I/\ f
�1

i .l 0/ � Œri �, where l 0 denotes the image of l

under the map ŒrI
i�1
�! fi � � � fn.I/. Since hi preserves the order on fibres of fi we

see that ˆ.h/i is order-preserving on the fibres of f I
i . Hence ˆ is indeed a map from

DI to zC En.Epin.t
I ;�//.

Finally, we note that obviously ˆ ı‰ is the identity. To show that ‰ is a left inverse
for ˆ one writes down .‰ıˆ/.h/ for a given h and uses that ..‰ıˆ/.h//i only needs
to coincide with hi on fiC1 � � � fn.I/. The maps ˆ and ‰ commute with composition,
hence also with applying the differentials. Since the signs in the differentials applied to
a morphism h are determined by the target tree t s of h, there is no trouble with signs
either. Hence we have constructed an isomorphism

DI
Š zC En.Epin.t

I ;�//

of complexes.

We know from [11, Section 4] that H�.Tot. zC En.Epin.t
I ;�//// D 0 for � > 0 and

that

H0.Tot. zC En.Epin.t
I ;�////D

�
k if tI D Œ0�! Œ0�! � � � ! Œ0�;

0 otherwise.
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Since tI D Œ0�! Œ0�! � � � ! Œ0� implies pC 1D jI j D 1, we see that the E1–term
of our spectral sequence is

E1
p;q DHpCq.F

pC=Fp�1C /D

�L
i2Œrn�

k if p D q D 0;

0 otherwise.

The spectral sequence collapses and the claim follows.

Having proved that H
En
� .Pt / is acyclic we can use the axiomatic description of Tor

(see eg [9, Chapter 2]).

Theorem 5.4 Denote by bW EpiCn
op
! k–mod the functor given by the cokernel of

.ı0; id; : : : ; id/��.d0; id; : : : ; id/�C.ı1; id; : : : ; id/�W P Œ1�!Œ0�!���!Œ0�
!P Œ0�!���!Œ0�:

Then for any F W EpiCn ! k–mod we have

H
En
� .F /Š TorEpiCn

� .b;F /;

and this isomorphism is natural in F .

Proof A short exact sequence 0!F !G!H ! 0 of functors yields a short exact
sequence of chain complexes

0! Tot.C En.F //! Tot.C En.G//! Tot.C En.H //! 0:

This in turn gives rise to a long exact sequence on homology. We already showed
that H

En
� .Pt / is zero in positive degrees. Every projective functor from EpiCn to

k–mod receives a surjection from a sum of functors of the form of Pt . It hence is a
direct summand of this sum. Therefore H

En
� .P / vanishes in positive degrees for all

projective functors P . Finally, the zeroth En–homology of a functor F is given by
the cokernel of

.�1/n�1F.ı0; id; : : : ; id/C .�1/nF.d0; id; : : : ; id/C .�1/nC1F.ı1; id; : : : ; id/:

Using the natural isomorphism P t ˝EpiCn F Š F.t/ of k–modules and that tensor
products are right exact, one sees that this coincides with b˝EpiCn F .

Every functor F W EpiCn ! k–mod gives rise to a functor F�W EpiCn
op
! k–mod, its

dual, by setting F�.t/D Homk.F.t/; k/. Since we just proved that En–homology of
projective functors vanishes, we can relate En–homology with En–cohomology via
the following spectral sequence.
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Proposition 5.5 (see eg [18, Theorem 10.49]) If F.t/ is k–free for every t 2 EpiCn ,
there is a first quadrant spectral sequence

E2
p;q D Extq

k
.H En

p .F /; k/ D) H
pCq
En

.F�/:

In particular, whenever k is injective as a k–module, En–homology of F and En–
cohomology of its dual are dual to each other.

Examples of commutative self-injective rings include fields, group algebras of finite
commutative groups over a self-injective ring, quotients R=I of a principal ideal
domain R with I ¤ 0, and commutative Frobenius rings [1, Chapter 5, Section 18].
The product of self-injective rings is again self-injective.

Theorem 5.6 Suppose that k is injective as a k–module and let GW EpiCn
op
! k–mod

be a functor. Then there is an isomorphism

H�En
.G/Š Ext�

EpiCn
op.b;G/:

This isomorphism is natural in G .

Proof That H�
En

maps short exact sequences to long exact sequences follows as in the
homological case. Since the projective functor Pt is finitely generated and k–free, the
functor P�t is injective. The universal coefficient spectral sequence (Proposition 5.5)
yields that these modules are acyclic. But then all other injective modules are acyclic too,
since they are direct summands of products of these. Finally, let GW EpiCn

op
! k–mod

be an arbitrary functor. Then the zeroth En–cohomology of G is by definition the
kernel of

.�1/n�1G.ı0; id; : : : ; id/C .�1/nG.d0; id; : : : ; id/C .�1/nC1G.ı1; id; : : : ; id/:

The Yoneda lemma and the left exactness of NatEpiCn
op.�;G/ yield that this kernel

results from applying NatEpiCn
op.�;G/ to b .

6 Functor cohomology and cohomology operations

We recall the definition of the Yoneda pairing on Ext. The Yoneda pairing is usually
defined in the context of modules over a ring (see eg [12, Chapter III, Sections 5–6]).
But it is well known to be easily generalized to suitable abelian categories with enough
projectives and injectives. We assume that k is self-injective in this section.
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Definition 6.1 Let F;G and H be functors from EpiCn
op

to k–mod. Let PF denote
a projective resolution of F and IH an injective resolution of H . There is a pairing

�W Ext�
EpiCn

op.G;H /˝Ext�
EpiCn

op.F;G/! Ext�
EpiCn

op.F;H /;

defined as the composite

Extm
EpiCn

op.G;H /˝Extn
EpiCn

op.F;G/

Hm.NatEpiCn
op.G; IH //˝Hn.NatEpiCn

op.PF ;G//

��

HnCm

�
NatEpiCn

op.G; IH /˝NatEpiCn
op.PF ;G/

�
��

HnCm.NatEpiCn
op.PF ; IH //D ExtnCm

EpiCn
op.F;H /:

Here the second map is induced by composing natural transformations. This associative
pairing is called the Yoneda pairing.

In particular, there is a natural action of

Ext�
EpiCn

op.b; b/DH�En
.b/

on En–cohomology. One could hope to find cohomology operations via this action. For
example, if the characteristic of k is a prime p , Hochschild cohomology HH�.AIAC/
is a p–restricted Gerstenhaber algebra, ie the Lie algebra structure on †�1 HH�.AIAC/
comes with a restriction. We will determine H�

En
.b/ to see whether we can find new

or old cohomology operations using the Yoneda pairing. For the remainder of this
section we will denote bW EpiCn

op
! k–mod by bn since we will have to consider trees

of varying levels. Since we are going to work homologically we make b�n , the dual
of bn , explicit. Intuitively, b�n is the functor assigning to a tree its set of leaves.

Proposition 6.2 The functor b�n assigns khŒrn�i D kŒf0; : : : ; rng� to a given tree t D

Œrn�! � � � ! Œr1�. Denoting the generators of khŒrn�i by ˛0; : : : ; ˛rn
, it induces the

maps

b�n .�n; : : : ; �jC1; di ; id; : : : ; id/W khŒrn�i ! khŒrn�i; ˛m 7! ˛��1
n .m/
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for suitable �jC1 2†ŒrjC1�; : : : ; �n 2†Œrn� as in [11, Lemma 3.5],

b�n .di ; id; : : : ; id/W khŒrnC 1�i ! khŒrn�i; ˛m 7!

�
˛m if m 6 i;

˛m�1 if m> i;

b�n .ıi ; id; : : : ; id/W khŒrnC 1�i ! khŒrn�i; ˛m 7!

8<:
˛m if m< i;

0 if mD i;

˛m�1 if m> i:

We will show that b�n is indeed acyclic with respect to En–homology. The case nD 1

can be easily calculated:

Proposition 6.3 For nD 1 we have

H r
E1
.b1/ŠH E1

r .b�1 /D 0

for r > 0 and
H 0

E1
.b1/ŠH

E1

0
.b�1 /D k:

For n > 1 we derive the acyclicity of b�n from the case nD 1. For this we need the
following lemma. Recall that the differential @n is induced by morphisms which act
on the top level of a given tree. Intuitively, the following lemma states that @n can be
split into parts that correspond to morphisms acting on the different fibres.

Lemma 6.4 Let F W EpiCn ! k–mod be a functor and r1; : : : ; rn�1 > 0. Consider the
rn�1C1–fold multicomplex

Mx0;:::;xrn�1
.F /D

M
tDŒx0C���Cxrn�1

�
fn
�!���

f2
�!Œr1�

jf �1
n .0/jDx0C1; jf �1

n .i/jDxi for all 1 6 i 6 rn�1

F.t/

where the i th differential d i of the multicomplex is the part of @n induced by morphisms
operating on the fibre f �1

n .i/. Then

Tot.M /Š†�r1�����rn�1.C
En

.�;rn�1;:::;r1/
.F /; @n/:

Furthermore, we can split M into submulticomplexes corresponding to the underlying
.n�1/–level tree T : Let tx0C1;x1;:::;xrn�1 be the tree extending T with top-level fibres
of cardinality x0C 1;x1; : : : ;xrn�1

. Let

M T
x1;:::;xrn�1

D F.tx0C1;x1;:::;xrn�1 /:

Then
M�;:::;�.F /D

M
TDŒrn�1�!���!Œr1�

.M T
�;:::;�; d

0; : : : ; drn�1/:
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Proof The differential @n is the sum of the maps d i for 0 6 i 6 rn�1 , each of them
leaving all 1–fibres except for f �1

n .i/ unchanged. Two such differentials d i and dj

commute except for their signs: Since d i deletes or merges edges left of f �1
n .j / for

i < j , we find that d idj D�dj d i . Hence it is clear that up to a shift we can interpret
C

En

.�;rn�1;:::;r1/
.F / as a total complex as above. All the differentials d i leave the lower

levels of a tree t as they were. Hence the splitting above holds, allowing us to consider
one .n�1/–tree shape at a time.

Theorem 6.5 For all n > 0 we have

H En
s .b�n /D

�
k if s D 0;

0 if s > 0:

Proof We will prove that

H�.C
En

.�;rn�1;:::;r1/
.b�n /; @n/D 0

except when rn�1 D 0. Note that if rn�1 D 0 this forces rn�2; : : : ; r1 D 0, and

.C
En

.�;0;:::;0/
.b�n /; @n/Š C

E1
� .b�1 /:

By Proposition 6.3 and Lemma 6.4 this gives rise to a copy of k in H
En

0
.b�n /.

Now fix rn�1 > 1, rn�2; : : : ; r1 > 0. Let T D Œrn�1�
fn�1
���! � � �

f2
�! Œr1� be an .n�1/–

level tree. Consider the corresponding summand M T of the multicomplex M.b�n /

discussed in Lemma 6.4. According to the lemma it suffices to show that the homology
of the total complex associated to M T is trivial for all trees T as above. Let us
start by calculating the homology of M T in the zeroth direction, ie for each given
x1; : : : ;xrn�1

> 1 we consider the complex

.M T
�;x1;:::;xrn�1

; d0/D

 M
tDŒ�Cx1C���Cxrn�1

�
fn
�!���

f2
�!Œr1�

jf �1
n .0/jD�C1; jf �1

n .i/jDxi

b�n .t/; d
0

!
:

Since we fixed T , for each p there is exactly one tree t D Œrn�
fn
�! � � �

f2
�! Œr1� with

jf �1
n .0/jDpC1 and jf �1

n .i/jDxi for 1 6 i 6 rn�1 . Let qD rn�p . The differential
d0 maps j̨ 2 b�n .t/D kh˛0; : : : ; p̨Cqi to

.�1/n�1b�n .ı0; id; : : : ; id/. j̨ /C

p�1X
iD0

.�1/nCib�n .di ; id; : : : ; id/. j̨ /

C .�1/nCpb�n .ıp; id; : : : ; id/. j̨ /:
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Thus for j 6 p the element d0. j̨ / coincides up to a sign .�1/n�1 with the image
of j̨ 2 b�

1
.Œp�/ under the differential dE1

of C
E1
� .b�

1
/. If j > p all the induced

morphisms are the identity. Hence .M T
�;x1;:::;xrn�1

; d0/ is isomorphic to

� � �
dE1
˚0
// b�

1
.Œ3�/˚kq

dE1
˚id
// b�

1
.Œ2�/˚kq

dE1
˚0
// b�

1
.Œ1�/˚kq

dE1
˚id
// b�

1
.Œ0�/˚kq

and Hp.M
T
�;x1;:::;xrn�1

; d0/ is concentrated in degree pD 0, where it is k . We showed
in Proposition 6.3 that H

E1

0
.b�

1
/D b�

1
.Œ0�/. Hence a cycle in H0.M

T
�;x1;:::;xrn�1

; d0/

is given by ˛0 2 b�n .t
1;x1;:::;xrn�1 /, where t1;x1;:::;xrn�1 is the tree which extends T

with top-level fibres of cardinality 1;x1; : : : ;xrn�1
.

We now determine how d1 acts on these cycles. The differential d1 is induced by
morphisms acting on leaves in the second-to-left top-level fibre. All of these morphisms
leave the leftmost leaf invariant and therefore each of the induced maps sends ˛0 to ˛0 .
Hence for fixed x2; : : : ;xrn�1

> 1 the chain complex .H0.M
T
�;�;x2:::;xrn�1

; d0/; d1/

is one-dimensional on the generator ˛0 in each degree r with differential

d1.˛0/D .�1/2n�1
rC1X
iD0

.�1/i˛0:

We see that the homology of .H0.M
T
�;�;x2:::;xrn�1

; d0/; d1/ vanishes completely and
the homology of the total complex of M T is zero. Hence .C En

.�;rn�1;:::;r1/
.b�n /; @n/ has

trivial homology as well, whenever rn�1 > 1.

Corollary 6.6 No nontrivial cohomology operations arise on En–cohomology via the
Yoneda pairing defined in Definition 6.1.
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The �–inverted R–motivic sphere

BERTRAND J GUILLOU

DANIEL C ISAKSEN

We use an Adams spectral sequence to calculate the R–motivic stable homotopy
groups after inverting � . The first step is to apply a Bockstein spectral sequence
in order to obtain h1–inverted R–motivic Ext groups, which serve as the input to
the �–inverted R–motivic Adams spectral sequence. The second step is to analyze
Adams differentials. The final answer is that the Milnor–Witt .4k�1/–stem has
order 2uC1 , where u is the 2–adic valuation of 4k . This answer is reminiscent of
the classical image of J . We also explore some of the Toda bracket structure of the
�–inverted R–motivic stable homotopy groups.

14F42; 55T15, 55Q45

1 Introduction

The first exotic property of motivic stable homotopy groups is that the Hopf map � is
not nilpotent. This means that inverting � can be useful for understanding the global
structure of motivic stable homotopy groups.

In Andrews and Miller [3] and Guillou and Isaksen [5], the �–inverted C–motivic
2–completed stable homotopy groups y�C

�;�Œ�
�1� were explicitly computed to be

F2Œ�
˙1�Œ�; "�="2:

This result naturally suggests that one should study the structure of �–inverted motivic
stable homotopy groups over other fields.

In the present article, we consider the �–inverted R–motivic 2–completed stable
homotopy groups y�R

�;�Œ�
�1�. Our main tool is the motivic Adams spectral sequence,

which takes the form

ExtAR.MR
2 ;M

R
2 /Œh

�1
1 � H) y�R

�;�Œ�
�1�:

Here AR is the R–motivic Steenrod algebra, and MR
2

is the motivic F2–cohomology
of R. We will exhaustively compute this spectral sequence.
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We begin with computing the Adams E2–page ExtAR.MR
2
;MR

2
/Œh�1

1
� using the

�–Bockstein spectral sequence; see Hill [6] and Dugger and Isaksen [4]. This spectral
sequence takes the form

ExtAC .MC
2 ;M

C
2 /Œ��Œh

�1
1 � H) ExtAR.MR

2 ;M
R
2 /Œh

�1
1 �;

where AC is the C–motivic Steenrod algebra and MC
2

is the motivic F2–cohomology
of C .

The input to the �–Bockstein spectral sequence is completely known from Guillou
and Isaksen [5]. In order to deduce differentials, one first observes, as in Dugger and
Isaksen [4], that the groups

ExtAR.MR
2 ;M

R
2 /Œ�

�1; h�1
1 �

with � and h1 both inverted are easy to describe. Then there is only one pattern of
�–Bockstein differentials that is consistent with this �–inverted calculation.

Having obtained the Adams E2–page ExtAR.MR
2
;MR

2
/Œh�1

1
�, the next step is to com-

pute Adams differentials. The extension of scalars functor from R–motivic homotopy
theory to C–motivic homotopy theory induces a map

ExtAR.MR
2
;MR

2
/Œh�1

1
� +3

��

y�R
�;�Œ�

�1�

��

ExtAC .MC
2
;MC

2
/Œh�1

1
� +3 y�C

�;�Œ�
�1�

of Adams spectral sequences. The bottom Adams spectral sequence is completely
understood; see Andrews and Miller [3] and Guillou and Isaksen [5]. The Adams d2

differentials in the top spectral sequence can then be deduced by the comparison map.

This leads to a complete description of the h1–inverted R–motivic Adams E3–page.
Over C , it turns out that the h1–inverted Adams spectral sequence collapses at this point.
However, over R, there are higher differentials that we deduce from manipulations
with Massey products and Toda brackets.

In the end, we obtain an explicit description of the h1–inverted R–motivic Adams
E1–page, from which we can read off the �–inverted stable motivic homotopy groups
over R.

In order to state the result, we need a bit of terminology. Because � belongs to y�R
1;1

, it
makes sense to use a grading that is invariant under multiplication by �. The Milnor–
Witt n–stem is the direct sum …n D

L
p y�

R
pCn;p . Then multiplication by � is an

endomorphism of the Milnor–Witt n–stem.
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Theorem 1.1 (1) The �–inverted Milnor–Witt 0–stem …0Œ�
�1� is Z2Œ�

˙1�, where
Z2 is the ring of 2–adic integers.

(2) If k > 1, then the �–inverted Milnor–Witt .4k�1/–stem …4k�1Œ�
�1� is iso-

morphic to Z=2uC1Œ�˙1� as a module over Z2Œ�
˙1�, where u is the 2–adic

valuation of 4k .
(3) The �–inverted Milnor–Witt n–stem …nŒ�

�1� is zero otherwise.

For degree reasons, the product structure on y�R
�;�Œ�

�1� is very simple. However, there
are many interesting Toda brackets. We explore much of the 3–fold Toda bracket
structure in this article. In particular, we will show that all of y�R

�;�Œ�
�1� can be

constructed inductively via Toda brackets, starting from just 2 and the generator of the
Milnor–Witt 3–stem.

Theorem 1.1 gives a familiar answer. These groups have the same order as the classical
image of J . For example, …3 consists of elements of order 8, which is the same as
the order of the image of J in the classical 3–stem. Similarly, …7 consists of elements
of order 16, which is the same as the order of the image of J in the classical 7–stem.
One might expect a geometric proof that directly compares the classical image of J

spectrum with the �–inverted R–motivic sphere. However, higher structure in the form
of Toda brackets suggests that such a direct proof is not possible.

We also observe that our calculations are reminiscent of the classical Adams spectral
sequence for v1–periodic homotopy at odd primes, as carried out in Andrews [2]. We
are not aware of a structural reason why the calculations are so similar.

The calculation of the �–inverted R–motivic homotopy groups leads to questions about
�–inverted motivic homotopy groups over other fields. We leave it to the reader to
speculate on the behavior of these �–inverted groups over other fields.

Acknowledgements Guillou was supported by Simons Collaboration Grant 282316.
Isaksen was supported by NSF grant DMS-1202213.

2 Preliminaries

2.1 Notation

We continue with notation from [4] as follows:
(1) MC

2
D F2Œ� � is the motivic cohomology of C with F2 coefficients, where � has

bidegree .0; 1/.
(2) MR

2
D F2Œ�; �� is the motivic cohomology of R with F2 coefficients, where �

and � have bidegrees .0; 1/ and .1; 1/, respectively.
(3) Acl is the classical mod 2 Steenrod algebra.
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(4) AC is the mod 2 motivic Steenrod algebra over C .

(5) AR is the mod 2 motivic Steenrod algebra over R.

(6) Extcl is the trigraded ring ExtAcl.F2;F2/.

(7) ExtC is the trigraded ring ExtAC .MC
2
;MC

2
/.

(8) ExtR is the trigraded ring ExtAR.MR
2
;MR

2
/.

(9) y�C
�;� is the motivic stable homotopy ring of the 2–completed motivic sphere

spectrum over C .

(10) y�R
�;� is the motivic stable homotopy ring of the 2–completed motivic sphere

spectrum over R.

(11) …n is the Milnor–Witt n–stem
L

p y�
R
pCn;p .

(12) RD F2Œ�; h
˙1
1
�.

(13) The symbols v4
1

and P are used interchangeably for the Adams periodicity
operator.

2.2 Grading conventions

We follow [7] in grading Ext according to .s; f; w/, where:

(1) f is the Adams filtration, ie the homological degree.

(2) sCf is the internal degree, ie that corresponding to the first coordinate in the
bidegree of the Steenrod algebra.

(3) s is the stem, ie the internal degree minus the Adams filtration.

(4) w is the weight.

Following this grading convention, the elements � and � , as elements of ExtR , have
degrees .0; 0;�1/ and .�1; 0;�1/ respectively.

We will consider the groups ExtRŒh�1
1
� in which h1 has been inverted. The degree

of h1 is .1; 1; 1/. As in [5], for this purpose it is convenient to introduce the following
gradings whose values are zero for h1 :

(5) mw D s�w is the Milnor–Witt degree.

(6) c D sCf � 2w is the Chow degree.
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In order to avoid notational clutter, we will often drop h1 from the notation. Since h1

is a unit, no information is lost by doing this. The correct powers of h1 can always be
recovered by checking degrees.

For example, in Lemma 3.1 below, we claim that there is a differential d
�
3
.v4

1
/D �3v2

in the �–Bockstein spectral sequence. Strictly speaking, this formula is nonsensical
because d

�
3
.v4

1
/ has Adams filtration 5 while v2 has Adams filtration 1. The correct

full formula is d
�
3
.v4

1
/D �3h4

1
v2 .

If we are to ignore multiples of h1 , we must rely on gradings that take value 0 on h1 .
This explains our preference for Milnor–Witt degree mw and Chow degree c .

3 The �–Bockstein spectral sequence

Recall [6; 4] that the �–Bockstein spectral sequence takes the form

ExtC Œ�� H) ExtR :

After inverting h1 , by [5, Theorem 1.1] this takes the form

RŒv4
1 ; v2; v3; : : : � H) ExtRŒh�1

1 �;

where RD F2Œ�; h
˙1
1
�. Table 1 lists the generators of the Bockstein E1–page.

.mw; c/ generator

.0; 1/ �

.4; 4/ v4
1

.3; 1/ v2

.7; 1/ v3

.15; 1/ v4

.2n� 1; 1/ vn

Table 1: Bockstein E1–page generators

Lemma 3.1 In the �–Bockstein spectral sequence, there are differentials

d
�
2n�1

.v2n

1 /D �2n�1vn for n� 2:

All other nonzero differentials follow from the Leibniz rule.

The first few examples of these differentials are d3.v
4
1
/D �3v2 , d7.v

8
1
/D �7v3 and

d15.v
16
1
/D �15v4 .
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Proof Inverting � induces a map

ExtC Œh�1
1
�Œ��

�–Bss +3

�–inv
��

ExtRŒh�1
1
�

�–inv
��

ExtC Œh�1
1
�Œ�˙1�

�–Bss +3 ExtRŒh�1
1
; ��1�

of �–Bockstein spectral sequences. We will establish differentials in the �–inverted
spectral sequence. The map of spectral sequences then implies that the same differentials
occur when � is not inverted.

Recall [4, Theorem 4.1] there is an isomorphism ExtclŒ�
˙1�Š ExtRŒ��1� sending the

classical element h0 to the motivic element h1 . Using also that ExtclŒh
�1
0
�D F2Œh

˙1
0
�,

it follows ExtRŒh�1
1
; ��1� is isomorphic to RŒ��1�. Then the �–inverted �–Bockstein

spectral sequence takes the form

RŒ��1�Œv4
1
; v2; v3; : : : �

�–Bss
+3 RŒ��1�:

Because the target of the �–inverted spectral sequence is very small, essentially every-
thing must either support a differential or be hit by a differential.

The �–Bockstein differentials have degree .�1; 0/ with respect to the grading .mw; c/
used in Table 1. The elements �kv2 cannot support differentials because there are no
elements in the Milnor–Witt 2–stem. The only possibility is that after inverting � ,
there is a �–Bockstein differential d3.v

4
1
/D �3v2 .

Then the �–inverted E4–page is RŒv8
1
; v3; v4; : : : �. The elements �kv3 cannot support

differentials because the �–inverted E4–page has no elements in the Milnor–Witt
6–stem. The only possibility is that after inverting � , there is a �–Bockstein differential
d7.v

8
1
/D �7v3 .

In general, the �–inverted E2n�1 –page is RŒv2n

1
; vn; vnC1; : : : �. The elements �kvn

cannot support differentials because the �–inverted E2n�1 –page has no elements in
the Milnor–Witt .2n�2/–stem. The only possibility is that after inverting � , there is a
�–Bockstein differential d2n�1.v

2n

1
/D �2n�1vn .

The �–Bockstein E1–page can be directly computed from the Leibniz rule and the
differentials in Lemma 3.1. For example, d3.v

4
1
/D �3v2 , so d3.v

4C8k
1

/D �3v8k
1
v2 .

This establishes the relation �3v8k
1
v2 D 0.

To ease the notation in Proposition 3.2, we write P rather than v4
1

.
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Proposition 3.2 The �–Bockstein E1–page is the R–algebra on the generators
P2n�1kvn for n� 2 and k � 0 (see Table 2), subject to the relations

�2n�1P2n�1kvn D 0

for n� 2 and k � 0, and

P2n�1kvn �P
2m�1jvmCP2n�1.kC2m�nj/vn � vm D 0

for m� n� 2, k � 0 and j � 0.

.mw; c/ generator �–torsion

.0; 1/ � 1

.0; 0/ h1 1

.3; 1/C k.8; 8/ P2kv2 3

.7; 1/C k.16; 16/ P4kv3 7

.15; 1/C k.32; 32/ P8kv4 15

.2n� 1; 1/C k.2nC1; 2nC1/ P2n�1kvn 2n� 1

Table 2: Bockstein E1–page generators

Remark 3.3 In practice, the relations mean that every P can be shifted onto the vn

with minimal n in any monomial. Thus an R–module basis is given by monomials of
the form P2n�1kvn � vm1

� � � vma
, where n�m1 � � � � �ma . For example,

P2v2 �P
4v2DP6v2 �v2; P4v2 �P

8v3DP12v2 �v3; P4v3 �P
48v5DP52v3 �v5:

4 The Adams E2–page

Having obtained the �–Bockstein E1–page in Section 3, our next task is to consider
hidden extensions in ExtRŒh�1

1
�. We will show that there are no hidden relations. This

will require some careful analysis of degrees, as well as some manipulations with
Massey products.

The �–Bockstein E1–page is an associated graded object of ExtRŒh�1
1
�. Elements of

the E1–page only determine elements of ExtRŒh�1
1
� up to higher filtration. Therefore,

we must be careful about choosing specific generators of ExtRŒh�1
1
�.

We will show in Lemma 4.1 that P2n�1kvn detects a unique element of ExtRŒh�1
1
�.

Therefore, we may unambiguously use the same notation P2n�1kvn for an element
of ExtRŒh�1

1
�.
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In general, the �–Bockstein spectral sequence does not allow for hidden extensions by � .
More precisely, if x is an element of the �–Bockstein E1–page such that �kx D 0,
then x detects an element of ExtRŒh�1

1
� that is also annihilated by �k . Beware that x

might detect more than one element of ExtRŒh�1
1
�, and some such elements might

not be annihilated by �k . Nevertheless, there is always at least one element that is
annihilated by �k .

For example, the relation �2n�1

P2n�1kvn D 0 in the �–Bockstein E1–page lifts to
give the same relation in ExtRŒh�1

1
�.

Lemma 4.1 For each n � 2 and k � 0, the element P2n�1kvn of the Bockstein
E1–page detects a unique element of ExtRŒh�1

1
�.

Proof We need to show that in the �–Bockstein E1–page, P2n�1kvn does not share
bidegree with an element of higher filtration.

First suppose that P2n�1kvn has the same bidegree as �bP2m�1jvm . Then

.2n
� 1; 1/C k.2nC1; 2nC1/D .2m

� 1; 1/C j .2mC1; 2mC1/C b.0; 1/:

Considering only the Milnor–Witt degree, we have

2n.2kC 1/D 2m.2j C 1/:

Therefore, nDm and k D j , so b D 0.

Suppose that P2n�1kvn shares bidegree with some element x . By Remark 3.3, we may
assume that x is of the form �bP2m1�1jvm1

�vm2
� � � vma

, where m1�m2� � � � �ma .
Since �2m1�1P2m�1jvm1

D 0, we may also assume that b � 2m1 � 2. Because of the
previous paragraph, we may assume that a� 2. We wish to show that b D 0.

We first show that n � ma . Let u.x/ be the difference mw � c . We have that
u.P2m1�1jvm1

/ D 2m1 � 2 and u.�/ D �1. Since b � 2m1 � 2, it follows that
u.�bP2m1�1jvm1

/� 0. Thus

2n
� 2D u.P2n�1kvn/D u.�bP2m1�1jvm1

/Cu.vm2
� � � vma

/� u.vma
/D 2ma � 2;

so that n�ma .

Now consider the Milnor–Witt and Chow degrees modulo 4. We have

.�1; 1/� .�a; aC b/ .mod 4/;

so a� 1 .mod 4/ and b � 0 .mod 4/. Thus either b D 0, which was what we wanted
to show, or b � 4.
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We may now assume that b � 4. Since �4P2jv2 D 0, we must have m1 � 3, so that
all mi , and also n, are at least 3.

Next, consider degrees modulo 8. Comparing degrees gives

.�1; 1/� .�a; aC b/ .mod 8/:

Thus b � 0 .mod 8/, so that b � 8. Since �8P4jv3 D 0, we must have j1 � 4, and
therefore n and all other ji are also at least 4. This argument can be continued to
establish that b and n must be arbitrarily large under the assumption that b > 0.

Lemma 4.2 For each n� 2 and k � 0, the element P2n�1kvn � vn of the Bockstein
E1–page detects a unique element of ExtRŒh�1

1
�.

Proof The Milnor–Witt degree of P2n�1kvn �vn is even, while the Milnor–Witt degree
of �bP2m�1jvm is odd. Therefore, these elements cannot share bidegree.

Now suppose that the element P2n�1kvn � vn has the same bidegree as the element
�bP2m1�1jvm1

� vm2
� � � vma

, with m1 � m2 � � � � � ma , b � 2m1 � 2 and a � 2.
The rest of the proof is essentially the same as the proof of Lemma 4.1. Consider
uDmw � c to get that n �ma . Then consider congruences .�2; 2/� .�a; aC b/

modulo higher and higher powers of 2 to obtain that b D 0.

Remark 4.3 The obvious generalization of Lemma 4.2 to elements of the form
P2n�1kvn � vm is false. For example, P2v2 � v5 has the same degree as �4v6

3
.

Remark 4.4 Lemmas 4.1 and 4.2 are equivalent to the claim that there are no �

multiples in the �–Bockstein E1–page in the same bidegrees as either P2n�1kvn

or P2n�1kvn � vn . This implies that there are also no � multiples in ExtRŒh�1
1
� that

share bidegree with these elements; we will need this fact later.

Lemma 4.5 ExtRŒh�1
1
� is zero when the Milnor–Witt stem mw and the Chow degree c

are both equal to 2i with i � 1.

Proof Under the condition mwD cD2i , inspection of Table 1 shows the �–Bockstein
E1–page consists of products of elements of the form v4

1
or �2nC2m�4vnvm . In the

E1–page, �2nC2m�4vnvm D 0 since �2n�1vn D 0. Also, v4k
1

supports a differential
for all k � 0.

Lemma 4.6 For each n� 2, k � 0 and m> n, we have a Massey product

P2n�1kC2m�2

vn D h�
2m�2n

vm; �
2n�1; P2n�1kvni

in ExtRŒh�1
1
� with no indeterminacy.
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Proof The Bockstein differential d
�
2m�1

.P2m�2

/D�2m�1vm and May’s convergence
theorem [8, Theorem 4.1] imply that the Massey product is detected by P2n�1kC2m�2

vn

in the �–Bockstein E1–page. There are no crossing Bockstein differentials as
all classes are in nonnegative �–filtration. Lemma 4.1 says that this �–Bockstein
E1–page element detects a unique element of ExtRŒh�1

1
�.

The indeterminacy of the bracket is generated by products of the form �2m�2n

vm �x

and y �P2n�1kvn , where x and y have appropriate bidegrees. We showed in Lemma 4.5
that 0 is the only possibility for x or y .

Remark 4.7 Lemma 4.6 gives many different Massey products for the same element.
For example,

P8v2 D h�
4v3; �

3; P6v2i D h�
12v4; �

3; P4v2i D h�
28v5; �

3; v2i:

Lemma 4.8 For m> n� 2, there is a Massey product

P2n�1kC2m�2

vn D hP
2n�1kvn; �

2m�2vm; �i

in ExtRŒh�1
1
� with no indeterminacy.

Proof The Massey product formula follows from the Bockstein differential

d
�
2m�1

.P2m�2

/D �2m�1vm

and May’s convergence theorem [8, Theorem 4.1]. There are no crossing Bockstein
differentials as all classes are in nonnegative �–filtration. As in the proof of Lemma 4.6,
we need Lemma 4.1 to tell us that the element P2n�1kC2m�2

vn of the �–Bockstein
E1–page detects a unique element of ExtRŒh�1

1
�.

The indeterminacy of the bracket is generated by products of the form P2n�1kvn �x

and y � � . We showed in Lemma 4.5 that 0 is the only possibility for x . We observed
in Remark 4.4 that y � � must be zero because there are no multiples of � in the
appropriate bidegree.

The relations in the Bockstein E1–page given in Proposition 3.2 may lift to ExtRŒh�1
1
�

with additional terms that are multiples of � . In other words, there may be hidden
relations in the Bockstein spectral sequence. For example, for degree reasons it is
possible that P2v2 �P

16v5CP18v2 � v5 equals �4P16v3 � v
5
3

. Proposition 4.9 shows
that there are no such hidden terms in the relations in ExtRŒh�1

1
�.

Proposition 4.9 There are no hidden relations in the Bockstein spectral sequence.
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Proof The relation �2n�1

P2n�1kvn D 0 in the �–Bockstein E1–page lifts to give
the same relation in ExtRŒh�1

1
�, as we observed in the discussion preceding Lemma 4.1.

Therefore, we need only compute the products P2n�1kvn �P
2m�1jvm in ExtRŒh�1

1
�

for m� n.

Lemma 4.6 implies that P2n�1kvn �P
2m�1jvm equals

P2n�1kvnh�
2m

vmC1; �
2m�1; P2m�1.j�1/vmi:

Shuffle to obtain

hP2n�1kvn; �
2m

vmC1; �
2m�1

iP2m�1.j�1/vm:

This expression is contained in

hP2n�1kvn; �
2mC1�2vmC1; �iP

2m�1.j�1/vm;

which equals P2n�1kC2m�1

vn �P
2m�1.j�1/vm by Lemma 4.8.

By induction, P2n�1kvn �P
2m�1jvm equals P2n�1.kC2m�nj/vn � vm .

Theorem 4.10 ExtRŒh�1
1
� is the R–algebra on the generators P2n�1kvn for n � 2

and k � 0 (see Table 2), subject to the relations

�2n�1P2n�1kvn D 0

for n� 2 and k � 0, and

P2n�1kvn �P
2m�1jvmCP2n�1.kC2m�nj/vn � vm D 0

for m� n� 2, k � 0 and j � 0.

Proof This follows immediately from Propositions 3.2 and 4.9.

Remark 4.11 Analogously to Remark 3.3, an R–module basis for ExtRŒh�1
1
� is given

by monomials of the form P2n�1kvn � vm1
� � � vma

, where n�m1 � � � � �ma .

5 Adams differentials

Before computing with the h1–inverted R–motivic Adams spectral sequence, we will
consider convergence. A priori, there could be an infinite family of homotopy classes
linked together by infinitely many hidden � multiplications. These classes would not
be detected in ExtRŒh�1

1
�. Lemma 5.1 implies that this cannot occur for degree reasons.
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Lemma 5.1 Let m> 0 be a fixed Milnor–Witt stem. There exists a constant A such
that Ext.s;f;w/R vanishes when s�w Dm, s is nonzero, f >A and f > sC 1.

Lemma 5.1 can be restated in the following more casual form: within a fixed Milnor–
Witt stem, there exists a horizontal line and a line of slope 1 such that ExtR vanishes
in the region above both lines, except in the 0–stem. Figure 1 depicts the shape of the
vanishing region.

f

s

vanishing region

Figure 1: The vanishing region in a Milnor–Witt stem

Proof This argument occurs in ExtR , where h1 has not been inverted.

As explained in [4, Theorem 4.1], the elements in the m–stem of the classical Ext
groups Extcl correspond to elements of ExtR in the Milnor–Witt m–stem that remain
nonzero after � is inverted, ie that support infinitely many multiplications by � . Each
stem of Extcl is finite except for the 0–stem. For m> 0, choose A to be larger than
the Adams filtrations of all of the elements in the m–stem of Extcl . Then A is larger
than the Adams filtrations of every element of ExtR in the Milnor–Witt m–stem that
remain nonzero after � is inverted.

Let x be a nonzero element of Ext.s;f;w/R such that s�wDm, f >A and f > sC1.
We will show that s must equal zero.

The choice of A guarantees that x is annihilated by some positive power of � . Suppose
that �kxD 0 but �k�1x is nonzero, for some k > 0. Then there must be a differential
in the �–Bockstein spectral sequence of the form dk.y/D �

kx , where y is an element
of ExtC in degree .s� kC 1; f � 1; w� k/.

The argument from [1] establishes a vanishing line of slope 1 in the nonzero stems
of ExtC . The conditions f >sC1 and k>0 imply that the element y lies strictly above
this vanishing line, so it must be of the form �ahb

0
with b � 1. The only �–Bockstein

differentials on such classes are d1.�
2cC1hb

0
/D ��2chbC1

0
, which implies that x must

be of the form �2chb
0

. This shows that s D 0.
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The h1–inverted motivic Adams spectral sequence over C was studied in [5; 3]. It
takes the form

F2Œh
˙1
1 ;P; v2; v3; : : : � H) y�C

�;�Œ�
�1�;

where y�C
�;�Œ�

�1� is the �–inverted motivic stable homotopy ring of the 2–completed
motivic sphere spectrum over C . This spectral sequence has differentials

d2.P
kvn/D Pkv2

n�1

for all k � 0 and all n� 3. As usual, we omit any powers of h1 .

Lemma 5.2 In the h1–inverted R–motivic Adams spectral sequence, there are differ-
entials

d2.P
2n�1kvn/D P2n�1kv2

n�1

for all k � 0 and all n� 3.

Proof There is an extension of scalars functor from R–motivic homotopy theory
to C–motivic homotopy theory. This functor induces a map

ExtAR.MR
2
;MR

2
/Œh�1

1
� +3

��

y�R
�;�Œ�

�1�

��

ExtAC .MC
2
;MC

2
/Œh�1

1
� +3 y�C

�;�Œ�
�1�

from the R–motivic Adams spectral sequence to the C–motivic Adams spectral se-
quence. This map takes � to zero.

The above map of spectral sequences implies that the R–motivic Adams differential
d2.P

2n�1kvn/ equals P2n�1kv2
n�1

plus terms that are divisible by � . Lemma 4.2
implies that there are no possible additional terms in the relevant bidegree.

Our next task is to completely describe the Adams E3–page. First, we explore some
elements that survive to the E3–page. We will consider these elements more carefully
in Proposition 5.4.

Despite the differential d2.P
4kv3/DP4kv2

2
, the element �3P4kv3 survives to the E3–

page because �3P4kv2
2

is zero. Similarly, �2n�1�1P2n�1kvn survives to the E3–page.

The element P2v2
2

looks like it should be hit by an Adams d2 differential on P2v3 .
However, P2v3 did not survive the �–Bockstein spectral sequence. Therefore, there
is nothing to hit P2v2

2
and it survives to the Adams E3–page. The same observation

applies to the elements P2n�1.2jC1/v2
n .

We record the following simple computation, as we will employ it several times.
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Lemma 5.3 Let S be an F2–algebra. Let B D S Œw1; w2; : : : � be a polynomial ring
in infinitely many variables, and define a differential on B by @.wn/Dw

2
n�1

for n� 2.
Then H�.B; @/Š S Œw1�=w

2
1

.

In fact, we will use a slight generalization of Lemma 5.3 in which @.wn/ is equal
to unw

2
n�1

, where un is a unit in S . This generalization implies, for example, that
the h1–inverted C–motivic Adams E3–page is F2Œh

˙1
1
;P; v2�=v

2
2

.

Proposition 5.4 The h1–inverted R–motivic Adams E3–page is free as an R–module
on the generators listed in Table 3 for n� 2, k � 0 and j � 0. Almost all products of
these generators are zero, except that

P4kv2 �P
4jC2v2 D P4kC4jC2v2

2

and for n� 3,

�2n�1�1P2n�1�2kvn � �
2n�1�1P2n�1.2jC1/vn D �

2n�2P2n�1.2kC2jC1/v2
n:

.mw; c/ generator �–torsion

.0; 0/ 1 1

.3; 1/C k.8; 8/ P2kv2 3

.7; 4/C k.16; 16/ �3P4kv3 4

.15; 8/C k.32; 32/ �7P8kv4 8

.2n� 1; 2n�1/C k.2nC1; 2nC1/ �2n�1�1P2n�1kvn 2n�1

.6; 2/C .2j C 1/.8; 8/ P2.2jC1/v2
2

3

.14; 2/C .2j C 1/.16; 16/ P4.2jC1/v2
3

7

.30; 2/C .2j C 1/.32; 32/ P8.2jC1/v2
4

15

.2nC1� 2; 2/C .2j C 1/.2nC1; 2nC1/ P2n�1.2jC1/v2
n 2n� 1

Table 3: R–module generators for the Adams E3–page

Remark 5.5 The relations in Proposition 5.4 are just the ones that are obvious from
the notation. For example,

v2 �P
2v2 D P2v2

2 ; �3P4v3 � �
3P8v3 D �

6P12v2
3 :

Proof of Proposition 5.4 Let Exthk; bi be the F2Œh
˙1
1
�–submodule of the h1–inverted

R–motivic Adams E2–page on generators of the form �bPkvm1
vm2
� � � vma

such that
m1�m2� � � � �ma . Note that b� 2m1�2 in this situation, since �2m1�1Pkvm1

D 0.
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Also, k must be a multiple of 2m1�1 . By Lemma 5.2 and the fact that � is a permanent
cycle, each Exthk; bi is a differential graded submodule. Thus it suffices to compute
the cohomology of each Exthk; bi.

We start with Exth0; bi, which is equal to �b �F2Œh
˙1
1
; vm; vmC1; : : : � as a differential

graded F2Œh
˙1
1
�–module, where m is the smallest integer such that b � 2m � 2.

Now Lemma 5.3 implies that H�.Exth0; bi; d2/ is a free F2Œh
˙1
1
�–module on two

generators �b and �bvm .

So far, we have demonstrated that the powers of � and the elements

v2; �v2; �2v2; �3v3; : : : ; �
6v3; �7v4; : : :

are present in the h1–inverted R–motivic Adams E3–page.

The module Exthk; bi is zero when k is odd.

Now assume that k is equal to 2 modulo 4. If b � 2, then Exthk; bi is equal
to �bPkv2 �F2Œh

˙1
1
; v2; v3; : : : � as a differential graded F2Œh

˙1
1
�–module. Lemma 5.3

implies that H�.Exthk; bi; d2/ is a free F2Œh
˙1
1
�–module on two generators �bPkv2

and �bPkv2
2

. If b � 3, then Exthk; bi is zero because �3Pkv2 D 0.

We have now shown that the elements

Pkv2; �Pkv2; �2Pkv2; Pkv2
2 ; �Pkv2

2 ; �2Pkv2
2

are present in the h1–inverted R–motivic Adams E3–page for all k congruent to 2

modulo 4.

Next assume that k is equal to 4 modulo 8. If b � 2, then Exthk; bi is the free
F2Œh

˙1
1
�–module on generators �bPkvm1

� � � vma
such that m1 equals 2 or 3, and

m1 � � � � �ma . There is a short exact sequence

0! Exthk; bi ! �bPk
�F2Œh

˙1
1 ; v2; v3; : : : �! �bPk

�F2Œh
˙1
1 ; v4; v5; : : : �! 0;

where the differential is defined on the second and third terms in the obvious way.
By Lemma 5.3, the homology of the middle term has two generators �bPk and
�bPkv2 , while the homology of the right term has two generators �bPk and �bPkv4 .
Analysis of the long exact sequence in homology shows that H�.Exthk; bi; d2/ has
two generators �bPkv2 and �bPkv2

3
.

Now assume that 3 � b � 6. Since �bPkv2 D 0, we get that Exthk; bi is equal
to �bPkv3 � F2Œh

˙1
1
; v3; v4; : : : �. Lemma 5.3 implies that H�.Exthk; bi; d2/ is a

free F2Œh
˙1
1
�–module on two generators �bPkv3 and �bPkv2

3
.
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Finally, if b � 7, then Exthk; bi is zero because �7Pkv2 D 0 and �7Pkv3 D 0.
This finishes the argument when k is equal to 4 modulo 8, and we have shown that
ExtRŒh˙1

1
� contains the elements

Pkv2; �P
kv2; �

2Pkv2;

�3Pkv3; : : : ; �
6Pkv3;

Pkv2
3 ; �P

kv2
3 ; : : : ; �

6Pkv2
3 :

Analysis of the other cases is the same as the argument for k� 4 modulo 8. The details
depend on the value of k modulo 2i and inequalities of the form 2j�1� b� 2jC1�2.
In each case there is a short exact sequence of differential graded modules whose
first term is Exthk; bi and whose other two terms have homology that is computed
by Lemma 5.3.

We have now calculated the h1–inverted R–motivic E3–page. This E3–page is dis-
played in Figure 2. Beware that the grading on this chart is not the same as in a standard
Adams chart. The Milnor–Witt stem mw D s �w is plotted on the horizontal axis,
while the Chow degree c D sC f � 2w is plotted on the vertical axis. As a result,
an Adams dr differential has slope �r C 1, rather than slope �r . Vertical lines in
Figure 2 represent multiplications by � .

Our next goal is to establish the Adams d3 differentials. Inspection of Figure 2 reveals
that the only possible nonzero d3 differentials might be supported on elements of the
form �bP2n�1kvn for n � 4. In fact, these differentials all occur, as indicated in
Figure 2 by lines that go left one unit and up two units. We will establish these
d3 differentials by first proving a homotopy relation in Lemma 5.6.

Lemma 5.6 For each n � 2 and j � 0, the element P2n�1.2jC1/v2
n is a permanent

cycle that detects a �–divisible element of the �–inverted R–motivic homotopy groups.

Proof Inspection of Figure 2 shows that P2n�1.2jC1/v2
n cannot support a differential.

Lemma 4.8 implies that

P2n�1.2jC1/v2
n 2 h�; �

2nC1�2vnC1; P2njv2
ni in ExtRŒh�1

1 �:

In fact, the Massey product has no indeterminacy because of Remark 4.4 and Lemma 4.5.

We will now apply Moss’s convergence theorem [10, Theorem 1.2] to this Massey
product. There is an Adams differential d2.P

2njvnC1/DP2njv2
n , so P2njv2

n detects
the homotopy element 0. By inspection of Figure 2, �2nC1�2vnC1 is a permanent
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Figure 2: The �–inverted R–motivic Adams E3–page
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cycle; let ˛ be a homotopy element detected by it. Moreover, �˛ is zero in homotopy
because there are no classes in higher filtration that could detect it.

Moss’s convergence theorem says that the Toda bracket h�; ˛; 0i contains an element
that is detected by P2n�1.2jC1/v2

n . This Toda bracket consists entirely of multiples
of � .

Lemma 5.7 d3.�
2n�1�1P2n�1kvn/D P2n�3C2n�1kv2

n�2
for n� 4.

Proof Lemma 5.6 shows that P2n�3C2n�1kv2
n�2

detects a class that is divisible
by � . By inspection of Figure 2, there are no classes in lower filtration. Therefore,
P2n�3C2n�1kv2

n�2
must detect zero, ie must be hit by a differential. It is apparent from

Figure 2 that there is only one possible differential.

Lemma 5.8 describes the higher Adams differentials.

Lemma 5.8 For n� r C 1 and r � 3,

dr .�
2n�2n�rC2�rC2P2n�1kvn/D P2n�1kC2n�2�2n�r

v2
n�rC1:

Proof The proof is essentially the same as the proof of Lemma 5.7. In the Milnor–Witt
stem congruent to 2 modulo 4, Lemma 5.6 implies that every homotopy element is
divisible by � . This implies that they must all be hit by differentials. Figure 2 indicates
that there is just one possible pattern of differentials.

From Lemma 5.8, it is straightforward to derive the h1–inverted Adams E1–page, as
shown in Figure 3.

Proposition 5.9 The h1–inverted Adams E1–page is the R–module on generators
given in Table 4 for n� 2.

.mw; c/ generator �–torsion

.0; 0/ 1 1

.3; 1/C k.8; 8/ P2kv2 3

.7; 4/C k.16; 16/ �3P4kv3 4

.15; 11/C k.32; 32/ �10P8kv4 5

.2n� 1; 2n� n� 1/C k.2nC1; 2nC1/ �2n�n�2P2n�1kvn nC 1

Table 4: R–module generators for the Adams E1–page
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Figure 3: The �–inverted R–motivic Adams E1–page
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6 �–inverted homotopy groups

From the h1–inverted Adams E1–page, it is a short step to the �–inverted stable
homotopy ring. First we must choose generators. Recall that …n is the Milnor–Witt
n–stem

L
p y�

R
pCn;p .

Definition 6.1 For k nonnegative and n at least 2, let P2n�1k�n be an element
of …2nC1kC2n�1Œ�

�1� that is detected by �2n�n�2P2n�1kvn .

There are choices in these definitions, which are measured by Adams E1–page
elements in higher filtration. For example, there are four possible choices for �2

because of the presence of �v2 and �2v2 in higher filtration.

Theorem 6.2 The �–inverted R–motivic stable homotopy ring, as a Z2Œ�
˙1�–module,

is generated by 1 and P2n�1k�n for n� 2 and k � 0. The generator P2n�1k�n lies
in …2nC1kC2n�1Œ�

�1� and is annihilated by 2nC1. All products are zero, except for
those involving 2 or �.

Proof In the �–inverted stable homotopy ring, � and 2 differ by a unit because
��2 D �2�; see [9]. Therefore, the �–torsion information given in Proposition 5.9
translates to 2–torsion information in homotopy.

Except for 1, all Z2Œ�
˙1�–module generators lie in Milnor–Witt stems that are congru-

ent to 3 modulo 4. Therefore, such generators must multiply to zero.

Table 5 lists all generators through the Milnor–Witt 63–stem. The table also iden-
tifies Toda brackets that contain each generator. These Toda brackets are computed
in Section 7.

Table 5 also reveals a pattern that matches the classical image of J .

Corollary 6.3 If k > 1, then …4k�1Œ�
�1� is isomorphic to Z=2uC1Œ�˙1� as a module

over Z2Œ�
˙1�, where u is the 2–adic valuation of 4k .

7 Toda brackets

Even though its primary multiplicative structure is uninteresting, the �–inverted
R–motivic stable homotopy ring has rich higher structure in the form of Toda brackets.
We will explore some of the 3–fold Toda bracket structure. In particular, we will show
that all of the generators can be inductively constructed via Toda brackets, starting
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mw E1 y�R
�;�Œ�

�1� 2k–torsion bracket indeterminacy

0 1 1 1

3 v2 �2 3

7 �3v3 �3 4 h23; �2; �2i 23�3

11 P2v2 P2�2 3 h24; �3; �2i

15 �10v4 �4 5 h23; �2;P
2�2i 23�4

19 P4v2 P4�2 3 h25; �4; �2i

23 �3P4v3 P4�3 4 h25; �4; �3i

27 P6v2 P6�2 3 h25; �4;P
2�2i

31 �25v5 �5 6 h23; �2;P
6�2i 23�5

35 P8v2 P8�2 3 h26; �5; �2i

39 �3P8v3 P8�3 4 h26; �5; �3i

43 P10v2 P10�2 3 h26; �5;P
2�2i

47 �10P8v4 P8�4 5 h26; �5; �4i

51 P12v2 P12�2 3 h26; �5;P
4�2i

55 �3P12v3 P12�3 4 h26; �5;P
4�3i

59 P14v2 P14�2 3 h26; �5;P
6�2i

63 �56v6 �6 7 h23; �2;P
14�2i 23�6

Table 5: Z2Œ�
˙1�–module generators for y�R

�;�Œ�
�1�

from just 2 and �2 . Table 5 lists one possible Toda bracket decomposition for each
generator of …n for all n less than or equal to 63.

We observed in the proof of Theorem 6.2 that the element � of the Adams E1–page
detects the element 2 of the �–inverted stable homotopy ring. We will use this fact
frequently in the following results.

Lemma 7.1 The Toda bracket h23; �2; �2i contains an element detected by �3v3

in …7 , and its indeterminacy is detected by �6v3 .

Proof Moss’s convergence theorem [10, Theorem 1.2] and the differential d2.v3/Dv
2
2

show that h23; �2; �2i is detected by �3v3 .

The indeterminacy follows from the facts that there are no multiples of �2 and that
there is a unique multiple of 23 in …7 .
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Remark 7.2 The proof of Lemma 7.1 applies just as well to show that h24; �3; �3i is
detected by �10v4 in …15 . In higher stems, the analogous brackets do not produce
generators. For example, the Massey product h�5; �10v4; �

10v4i is already defined
in Ext, which implies that the corresponding Toda bracket must be detected in filtration
least 27. However, �25v5 detects the generator of …31 , and it lies in filtration 26.

Lemma 7.3 For n at least 2, the Toda bracket h23; �2;P
2n�1�2�2i is detected by the

class �2nC1�n�3vnC1 . The indeterminacy in this Toda bracket is generated by 23�nC1 .

Proof This follows from Moss’s convergence theorem [10, Theorem 1.2], together
with the Adams differential dn.�

2nC1�n�6vnC1/D P2n�1�2v2
2

.

Lemma 7.4 For n at least 2, the Toda bracket h2nC2; �nC1;P
2n�1�2�2i is detected

by P2n�2v2 . The Toda bracket has no indeterminacy.

Proof Lemma 4.8 implies that there is a Massey product

P2n�2v2 D h�
nC2; �2nC1�n�3vnC1; P2n�1�2v2i;

with no indeterminacy. Moss’s convergence theorem [10, Theorem 1.2] establishes the
desired result.

Lemma 7.5 If m> n� 2, then the Toda bracket h2mC1; �m;P
2n�1k�ni is detected

by �2n�n�2P2m�2C2n�1kvn . The Toda bracket has no indeterminacy.

Proof Lemma 4.8 implies that there is a Massey product

�2n�n�2P2m�2C2n�1kvn D h�
mC1; �2m�m�2vm; �

2n�n�2P2n�1kvni:

Moss’s convergence theorem [10, Theorem 1.2] establishes the desired result.

Proposition 7.6 Every generator P2n�1k�n of the �–inverted R–motivic stable homo-
topy ring can be constructed via iterated 3–fold Toda brackets starting from 2 and �2 .

Proof Lemmas 7.3 and 7.4 alternately show that the generators �n and the genera-
tors P2n�2�2 can be constructed via iterated 3–fold Toda brackets starting from 2

and �2 . Then Lemma 7.5 shows that any P2n�1k�n can be constructed.

Example 7.7 Suppose we wish to find a Toda bracket decomposition for P40�3 .
Since 40D 27�2C 23�1 � 4, we can apply Lemma 7.5 with mD 7, nD 3 and k D 4

to conclude that P40�3 is detected by the Toda bracket h28; �7;P
8�3i.
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Characteristic classes of fiber bundles

TAKAHIRO MATSUYUKI

YUJI TERASHIMA

In this paper, we construct new characteristic classes of fiber bundles via flat con-
nections with values in infinite-dimensional Lie algebras of derivations. In fact,
choosing a fiberwise metric, we construct a chain map to the de Rham complex on
the base space, and show that the induced map on cohomology groups is independent
of the choice of metric. Moreover, we show that, applied to a surface bundle, our
construction gives Morita–Miller–Mumford classes.

57R20; 55R40

1 Introduction

The purpose of this paper is to construct characteristic classes of fiber bundles which
are not necessarily principal bundles whose structure group is a finite-dimensional
Lie group. The difficulty is that a diffeomorphism group, which is considered as the
structure group for a general fiber bundle, is huge compared to a finite-dimensional Lie
group.

An idea to overcome the difficulty is a “linearization” which means to replace the
diffeomorphism group Diff.X/ for the fiber X with the automorphism group of the
tensor algebra of the first homology group H DH1.X/. A main tool is the Maurer–
Cartan form of the space of expansions which was originally considered by Kawazumi
[4; 5] in the case of free groups.

Diagrammatically, the construction is as follows:

fiber bundle flat Aut.yLH=I –connection)

characteristic class

linearization

Chern–Simons construction
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In this paper, for any fiber bundle E ! B whose structure group satisfies a cer-
tain condition, choosing a fiberwise metric, we construct a chain map from the
Chevalley–Eilenberg complex to the de Rham complex on the base space B via
a flat Aut.yLH=I/–connection, and show that the induced map on cohomology groups
is independent of the choice. We show that our construction gives Morita–Miller–
Mumford classes if applied to a closed surface bundle. The similar construction of
Morita–Miller–Mumford classes of 1–punctured surface bundles was previously given
in [5].

Our construction is algebraic, and is closely related to the formal geometry of Kontsevich
[7; 8] (see also Penkava and Schwarz [13]). For example, we have a description of
our characteristic classes in terms of a graph complex with general valency when the
Lie algebra is free. We intend to get such a graph complex in general cases, which is
hopefully closely related to a combinatorial model of unstable homology of mapping
class groups as in Godin [3].

It is interesting to compare our construction to a different approach on diffeomorphism
groups with noncommutative geometry in Lott [9].

The paper is organized as follows: in Section 2, we introduce tools for construction of
characteristic classes. The notions defined in Sections 2A and 2B are used in Section 3,
and Johnson maps defined in Section 2C are used in Section 4. In Sections 3A and 3B,
we construct characteristic classes under two different conditions of fiber bundles.
In Section 3C, we clarify the relation between characteristic classes constructed in
Sections 3A and 3B. In Section 3D, we describe these characteristic classes by Lie
algebra cohomologies of the Lie algebra of derivations. In Section 4, we prove that our
characteristic classes of a closed surface bundle give Morita–Miller–Mumford classes.

Acknowledgements The authors would like to thank T Gocho, H Kajiura, H Kasuya,
A Kato, T Sakasai, and T Satoh for helpful conversation. The authors also wish
to express their thanks to the anonymous referee for useful comments in improving
the manuscript. Yuji Terashima is partly supported by Grants-in-Aid for Scientific
Research.

2 Preliminaries

For a finitely generated group � , we set H D �ab˝R. We consider the completed
tensor Hopf algebra yTH and the completed free Lie algebra yLH generated by H .
The Lie algebra yLH can be regarded as the primitive part of the completed Hopf
algebra yTH . (For completed Hopf algebras, see Quillen [14].) Let J be the augmented
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ideal of yTH , which consists of all elements whose constant term is zero. The algebra
yTH is described by the projective limit of finite-dimensional vector spaces

yTH D

1Y
nD0

H˝n D lim
 ��
n

yTH=J n;

so it is endowed with the limit topology. We define L�k WD yLH \J k and Lk WD
yLH \H˝k .

A closed two-sided Lie ideal I contained in L�2 is called a decomposable ideal of yLH .
We identify I with the closed two-sided ideal generated by I in yTH . Then yTH=I is
a completed Hopf algebra.

We denote the completion of the group Hopf algebra R� of � by yR� .

2A Automorphisms and derivations

In this section, we will define infinite-dimensional Lie groups satisfying the diagram

1 // Inn.yLH=I/ // IAut.yLH=I/ // IOut.yLH=I/ // 1

1 // Inn.yLH/

surj.

OO

// IAutI .yLH/

surj.

OO

// IOutI .yLH/ //

surj.

OO

1

and corresponding Lie algebras

0 // IDer.yLH=I/ // DerC.yLH=I/ // ODerC.yLH=I/ // 0

0 // IDer.yLH/

surj.

OO

// DerCI .yLH/

surj.

OO

// ODerCI .yLH/ //

surj.

OO

0

for a decomposable ideal I . Here the rows are exact.

We define the group of positive automorphisms of yLH=I by

IAut.yLH=I/ WD ff 2 Aut.yLH=I/ W f .x/D xCL�2=I g;

where Aut.yLH=I/ is the group of completed Lie algebra automorphisms of yLH=I .
It is a projective limit of finite-dimensional Lie groups, and has the Lie algebra

DerC.yLH=I/ WD fX 2 Der.yLH=I/ WX.H/� L�2=I g;

where Der.yLH=I/ is the Lie algebra consisting of continuous Lie algebra derivations
on yLH=I . We call an element of DerC.yLH=I/ a positive derivation on yLH=I .
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Hopf algebra automorphisms and Hopf derivations of yTH=I are determined by their
restrictions to the primitive part yLH=I , so IAut.yLH=I/ and DerC.yLH=I/ can be
regarded as a subgroup of completed Hopf algebra automorphisms of yTH=I and a
Lie subalgebra of continuous Hopf derivations on yTH=I , respectively. Here Hopf
derivation means derivation and coderivation.

An inner automorphism of yLH=I is a Hopf algebra automorphism �aW yLH=I! yLH=I

defined for all x in yLH=I by

�a.x/ WD axa
�1;

where a is a given fixed group-like element of yTH=I . Then �a is a positive automor-
phism of yLH=I . We denote the normal subgroup of IAut.yLH=I/ consisting of inner
automorphisms by Inn.yLH=I/. It has the Lie algebra

IDer.yLH=I/ WD fad.a/ 2 DerC.yLH=I/ W a 2 yLH=I g;

which is the Lie algebra of inner derivations on yLH=I . We also define the quotient
group

IOut.yLH=I/ WD IAut.yLH=I/= Inn.yLH=I/;

and its Lie algebra,

ODerC.yLH=I/ WD DerC.yLH=I/= IDer.yLH=I/:

We also use the groups of positive automorphisms and outer automorphisms of yLH
which preserve a decomposable ideal I :

IAutI .yLH/ WD ff 2 IAut.yLH/ W f .I /D I g; IOutI .yLH/ WD IAutI .yLH/= Inn.yLH/:

These Lie algebras are the Lie algebras of positive derivations and outer derivations on
yLH which preserve I :

DerCI .yLH/ WDfX 2DerC.yLH/ WX.I /�I g; ODerCI .yLH/ WDDerCI .yLH/=IDer.yLH/;

respectively.

If I is a homogeneous ideal, the Lie algebra of derivations on yLH=I has the natural
grading.

Definition Let H be a vector space and I a homogeneous decomposable ideal of yLH .
The degree k component of Der.yLH=I/ is defined by

Derk.LH=I/ WD fX 2 DerC.yLH=I/ WX.H/� LkC1=.LkC1\ I /g:

Algebraic & Geometric Topology, Volume 16 (2016)



Characteristic classes of fiber bundles 3033

Then we have the decomposition

DerC.yLH=I/D
1Y
kD1

Derk.LH=I/:

In the same way, IDerk.LH=I/ and ODerk.LH=I/ are defined.

2B Space of expansions

In this section, we define the spaces containing Chen expansions of a fundamental
group. These spaces play an important role in our construction of characteristic classes
in Section 3. It is a generalization of the spaces of Magnus expansions of free groups
in [5].

Definition For a decomposable ideal I of yLH , an I –expansion of � is a completed
Hopf algebra isomorphism � W yR�! yTH=I satisfying

�.g/D 1C Œg�CJ 2=I

for any g 2 � . (For such a type of isomorphism, see [10].) The space of I –expansions
is denoted by ‚.�; I /.

The group IAut.yLH=I/ acts on ‚.�; I / as follows:

f � � WD f ı �

for f 2 IAut.yLH=I/ and � 2 ‚.�; I /. This action is free and transitive because
� ı ��10 2 IAut.yLH=I/ and

.� ı ��10 / � �0 D �

for all � , �0 2‚.�; I /. We describe the space of conjugacy classes of I –expansions
by ‚.�; I / WD Inn.yLH=I/n‚.�; I /. The group IOut.yLH=I/ acts on ‚.�; I / freely
and transitively. (We denote the conjugacy class of � 2‚.�; I / by Œ� �.)

We consider the space ‚.�/ of conjugacy classes of all possible expansions of � . It
is parametrized by

IOut.yLH/�IOutI0 .
yLH/

‚.�; I0/

fixing a decomposable ideal I0 which satisfies ‚.�; I0/¤∅. We consider IOutI .yLH/
acting on ‚.�; I / through the natural homomorphism IOutI .yLH/! IOut.yLH=I/.
The outer automorphism group Out.�/ of � acts on ‚.�/ by

' � Œ� �D Œ j'j ı � ı'�1�

for ' 2 Out.�/, � 2‚.�/. Here j'j means the Hopf algebra isomorphism between
quotient Hopf algebras of the tensor Hopf algebra yTH induced by ' 2 Out.�/.
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The space I.�/ of all ideals I satisfying ‚.�; I /¤∅ is parametrized by

IOut.yLH/= IOutI0.yLH/D IAut.yLH/= IAutI0.yLH/

fixing a decomposable ideal I0 which satisfies ‚.�; I0/¤∅. The group

GL.�/ WD Im.Aut.�/! GL.H//D Im.Out.�/! GL.H//

acts on I.�/ by
' � I D '.I /

for ' 2GL.�/, I 2 I.�/. Through the natural homomorphism Out.�/!GL.�/, the
natural map ‚.�/! I.�/ is regarded as an Out.�/–equivariant ‚.�; I0/–bundle.

2C Generalization of a Johnson map

We define a generalization of a Johnson map for free groups by Kawazumi [4]. The
results in this section shall be used only in Section 4.

Proposition 2.1 Let � be a finitely generated group. If � has a homogeneous de-
composable ideal, ie there exists a homogeneous decomposable ideal I such that
‚.�; I /¤∅, then such an ideal is unique. We denote it by I� .

Proof Suppose a homogeneous decomposable ideal I 0 also satisfies ‚.�; I 0/¤∅.
Take � 2‚.�; I / and � 0 2‚.�; I 0/ and set f WD � 0 ı ��1 . Then

f .x/D xCJ 2=I 0

for x 2H . From the equation

0D f .y/D yCJ kC1=.J kC1\ I 0/

for y 2H˝k \ I , we get y 2 I 0 by assumption that I 0 is homogeneous. Since I is
also homogeneous, we obtain I � I 0 . In the same way, we can prove I � I 0 . Therefore
we have I D I 0 .

Definition Let � be a finitely generated group which has a homogeneous decom-
posable ideal I� . For � 2 ‚.�; I�/, we define the Johnson map �� W Aut.�/ !
IAut.yLH=I�/ associated to � by

�� .'/D � ı' ı ��1 ı j'j�1:

Note that uniqueness of I� gives j'j.I�/D I� . By the decomposition

IAut.yLH=I�/�
1Y
pD1

Hom.H;LpC1=.LpC1\ I�//;
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we denote the Hom.H;LpC1=.LpC1\ I�// component of �� by ��p .

For a group-like element a 2 yTH=I� , the equation

� �a� .'/D �a�'�
�1��1a j'j

�1
D �a�

� .'/��1
j'j.a/

holds. Then we can define � Œ��W Out.�/! IOut.yLH=I�/ for Œ� � 2‚.�; I�/. We can
also obtain � Œ��1 for Œ� � 2‚.�; I�/.

Definition Given a filtered algebra A with decreasing filtration fFk.A/g1kD0 ,

gr.A/ WD
1M
kD0

Fk.A/=FkC1.A/

is a graded algebra by the multiplication induced by the multiplication of A. When A
is the completion of a graded algebra V , then �. yV /D V holds.

When G is a group with decreasing central filtration fFk.G/g1kD0 , a similar thing
happens. Then

gr.G/ WD
1M
kD0

Fk.G/=FkC1.G/

is a graded Lie algebra by the Lie bracket induced by the commutator of G .

Propositions 2.2, 2.3, 2.4 and 2.5 are straightforward generalizations of those in [4].

Proposition 2.2 For an I� –expansion � 2 ‚.�; I�/, the map gr.�/W gr.�/˝R!
gr. yTH=I�/D TH=I� induced by � is the natural identification gr.�/˝R!LH=I� .
Specifically, gr.�/ does not depend on the choice of I� –expansion � . (Here the
group � and the algebra yTH are filtered by the lower central series f�k�g1kD1 and the
power series fJ kg1

kD1
of the augmented ideal J , respectively.)

Proof Decompose � into the sum

� D

1X
kD0

�k;

with respect to grading. For a positive integer k , x 2 �k�1� and y 2 � ,

�.Œx; y�/D 1C �k�1.x/Œy�� Œy��k�1.x/CJ
kC1=.J kC1\ I�/:

Therefore �k.Œx; y�/D Œ�k�1.x/; Œy�� holds. Thus the result follows by induction.
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Let � be a finitely generated group. The Andreadakis filtration of the automorphism
group Aut.�/ of � is defined by

A�.k/ WD Ker.Aut.�/! Aut.�=�kC1�//:

Note A�.1/D IAut.�/. The kth Johnson homomorphism

�k W A�.k/=A�.kC 1/! Hom.�ab; grkC1.�//

is defined as follows: For ' 2A�.k/ and x 2 � , we set s'.x/ WD x�1'.x/ 2 �kC1� .
If x 2 �2� , then s'.x/ 2 �kC2� holds. Thus, we can define

�k.'/.Œx�/D Œs'.x/� 2 �kC1�=�kC2�:

In addition, the fact �k.'/D 0 for ' 2A�.kC 1/ induces the homomorphism

�k W A�.k/=A�.kC 1/! Hom.�ab; grkC1.�//:

The direct sum of these maps with respect to k defines the Lie algebra homomorphism

� W grC.Aut.�//! DerC.gr.�//

(see Satoh [15] for details). Here we denote the positive degree part of gr.G/ by
grC.G/ for a group G with central filtration. By definition, an inner automorphism is
mapped to an inner derivation by this map. Then the Lie algebra homomorphism

� W grC.Out.�//! ODerC.gr.�//

is induced by � . Here Out.�/ is filtered by

O�.k/ WD Ker.Out.�/! Out.�=�kC1�//:

Proposition 2.3 For � 2‚.�; I�/ and m� 1, the map induced by �� ,

grm.�� /W grm.Aut.�//! grm.Aut.yLH=I�//D Derm.LH=I�/;

is equal to the mth Johnson homomorphism �m through the natural identification
gr.�/ ˝ R ! LH=I� . Specifically, grC.�� / does not depend on the choice of
I� –expansion � . Here the group Aut.�/ is filtered by fA�.k/g1kD0 and the group
Aut.yLH=I�/ is filtered by fAut�k.yLH=I�/g1kD0 , where

Aut�k.yLH=I�/D
˚
f 2Aut.yLH=I�/ Wf .x/DxCL�kC1=.L�kC1\I�/ for x 2H

	
:

Proof Suppose ��
k
.'/D �k.'/ for ' 2A�.k/ and 1� k <m. Then ��

k
.'/D 0 holds

for ' 2A�.m/ and 1� k < m. From

�� .'/.Œx�/D �'��1.Œx�/D �.'.x//C ��m.'/.Œx�/
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for x 2 � , we obtain

�m.'/.Œx�/D �mC1.s'.x//� �.s'.x//� 1D �.x/
�1�.'.x//� 1� ��m.'/.Œx�/

modulo L�mC2=.L�mC2 \ I�/. Then we have ��m.'/ D �m.'/ for all m � 1 and
' 2A�.m/ inductively.

Proposition 2.4 The first Johnson map ��1 is a cocycle of Aut.�/ with coefficient
Der1.LH=I�/, and the cohomology class Œ��1 �2H

1.Aut.�/IDer1.LH=I�// does not
depend on the choice of I� –expansion � .

Proof The cocycle condition of ��1 is written by

��1 .' /D �
�
1 .'/Cj'j�

�
1 . /

for every '; 2 Aut.�/. This follows from the formula

�� .' /D �� .'/j'j�� . /j'j�1:

Independence of its cohomology class is proved as follows. Because � 02.x/D �2.x/
for x 2 �2� by Proposition 2.2, we can define F 2 Der1.LH=I�/ by

F.Œx�/ WD � 02.x/� �2.x/

for Œx� 2H . By the formula

��1 .'/.Œx�/D �2.x/� j'j�2.'
�1.x//

for Œx� 2H and ' 2 Aut.�/, we have

��1 � �
� 0

1 D dF:

Thus Œ��
0

1 �D Œ�
�
1 � 2H

1.Aut.�/IDer1.LH=I�//.

Similar results for the outer automorphism group also hold:

Proposition 2.5 For m� 1, the map induced by �� ,

grm.�� /W grm.Out.�//! grm.Out.yLH=I�//D ODerm.LH=I�/

for � 2 ‚.�; I�/, is identified with the mth Johnson homomorphism �m of Out.�/.
Here the group Out.�/ is filtered by fO�.k/g1kD0 , and the group Out.yLH=I�/ is
filtered by fOut�k.yLH=I�/g1kD0 , where

Out�k.yLH=I�/D Im
�
Aut�k.yLH=I�/! Out.yLH=I�/

�
:
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Also, the first Johnson map ��1 is a cocycle of Out.�/ with coefficient ODer1.LH=I�/,
and the cohomology class

Œ��1 � 2H
1.Out.�/IODer1.LH=I�//

does not depend on the choice of � 2‚.�; I�/.

3 Characteristic classes

For an oriented closed manifold X , we set the fundamental group � D �1.X/ and the
first homology group H DH1.X IR/. For the purpose, we recall a result of K-T Chen.

Definition [1; 2] Let X be a manifold. We denote the suspension of HC.X IR/ WDL
p>0Hp.X IR/ by HC WDHC.X IR/Œ1�. The completed tensor algebra T WD yTHC

of the suspension HC is a (completion of a) graded algebra. A pair .!; ı/ satisfying
the following conditions is a formal homology connection:

(i) A T –coefficient differential form ! 2 A�.X/˝T is described by

! D

1X
kD1

X
i1;:::;ik

!i1���ikXi1 � � �Xik ;

where X1; : : : ; Xn is a homogeneous basis of HC and the differential form
!i1���ik 2 A

�.X/ is a .degXi1C � � �C degXikC1/–form and they satisfyZ
Xp

!p D 1:

(ii) A linear map ıW T ! T is a differential with degree �1 of the graded algebra
T such that

ı.HC/�

1Y
qD2

H
˝q
C
:

(iii) The flatness condition ı!C d! D �.!/^! holds, where �W A�.X/! A�.X/

is defined by �.˛/ D .�1/p˛ for ˛ 2 Ap.X/, and ı and � are extended
onto A�.X/˝T .

Let .!; ı/ be a formal homology connection of X . Then we can obtain the chain map
C�.�X IR/! T from the cubical chain complex of the loop space �X of X to the
algebra T defined by the iterated integral

� 7!

1X
nD0

Z
�

! � � �!„ƒ‚…
n

:
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Furthermore, by the result of Chen, the homomorphism H0.�X IR/ ! H0.T; ı/

induces a Hopf algebra isomorphism �! W yR� ' yTH=I! where I! WD ı.H2.X IR/Œ1�/.
This is called a Chen expansion. In our notation, I! is a decomposable ideal and �!
is an I! –expansion.

Theorem 3.1 [1; 2] Let .X; g/ be an oriented closed Riemannian manifold and

A�.X/DHg ˚ dA�.X/˚ d�gA
�.X/

be the Hodge decomposition of .X; g/. Here Hg is the space of harmonic forms and
d�g W A

�.X/! A�.X/ is the adjoint operator of d with respect to g . Then there exists
a unique formal homology connection .!g ; ıg/ such that

!g D

mX
iD1

!iXi C
X
p�2

X
i1;:::;ip

!i1���ipXi1 � � �Xip ;

where X1; : : : ; Xm is a basis of HC , !i 2Hg and !i1���ip 2 d
�
gA
�.X/.

We denote the group of diffeomorphisms of X preserving the orientation by DiffC.X/.
For a Riemannian metric g on X and ' 2 DiffC.X/, we define the metric '�g on X
by

.'�g/.u; v/ WD g.'
�u; '�v/

for cotangent vectors u,v 2 T �x X and x 2X . Then, since

H'�g D .'
�/�1.Hg/; d�'�gA

�.X/D .'�/�1.d�gA
�.X//

for ' 2 DiffC.X/, we have

.!'�g ; ı'�g/D
�
..'�/�1˝j'j/.!g/; j'j ı ıg ı j'j

�1
�
:

Here j'j means the algebra isomorphism yTH ! yTH induced by ' 2DiffC.X/. Thus
the corresponding Chen expansions and ideals satisfy

(3-1) �!'�g D j'j ı�!g ı'
�1
� W
yR�1.X; '.�//! yTH=j'j.I!g/; I!'�g D j'j.I!g/

for a diffeomorphism ' of X preserving the base point �. Here we denote the
homomorphism yTH=I!g ! yTH=j'j.I!g/ induced by j'jW yTH ! yTH by the same
symbol j'j.

Based on these considerations, we describe characteristic classes of fiber bundles
using expansion spaces as follows: let E ! B be an oriented fiber bundle whose
fiber X is an oriented closed manifold and set � D �1.X/. We choose a fiberwise
metric gE=B on E! B . Take an open covering fUigi of B and local trivializations
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'i W �
�1.Ui / ' Ui � X of E . Then gE=B defines fiberwise metrics gi of trivial

bundles Ui �X!Ui . The map �i W Ui !‚.�/ can be defined by x 7! Œ�!gi .x/
�. For

any differential form ˛ 2 A�.‚.�//Out.�/ ,

��i ˛ D �
�
j ˛

holds on Ui \ Uj because the correspondence from metrics to Chen expansions is
DiffC.X/–equivariant from the equations (3-1). (It also means ��i ˛ is independent of
the choice of local trivializations.) Thus the family f��i ˛gi of differential forms on the
open covering defines the differential form ��˛ on B by gluing. The correspondence
˛ 7!��˛ is a chain map A�.‚.�//Out.�/!A�.B/. Given two distinct open coverings,
we can prove that the maps A�.‚.�//Out.�/! A�.B/ for two coverings are equal by
taking a refinement of these open coverings.

Since any two fiberwise metrics g0 , g1 of a fiber bundle can be connected by a
segment .1 � t /g0 C tg1 , the chain maps A�.‚.�//Out.�/ ! A�.B/ for distinct
metrics are chain homotopy equivalent. Therefore the induced homomorphism

ˆE W H
�
DR.‚.�//

Out.�/
!H�DR.B/

does not depend on the choice of fiberwise metric. So the following theorem holds:

Theorem 3.2 For an oriented fiber bundle E ! B whose fiber is X , the map
A�.‚.�//Out.�/!A�.B/ constructed above is a chain map, and the induced map ˆE
on cohomology groups is independent of the choice of fiberwise metric.

Remark 3.3 Let G be the structure group of E! B and set zS WD Im.G! Out.�//.
We obtain the map

H�DR.‚.�//
zS
!H�DR.‚.�//

Out.�/ ˆE��!H�DR.B/:

We also denote this map by ˆE .

3A Homologically trivial bundles

In this section we assume that a fiber bundle E! B with fiber X has the structure
group

T .X/ WD Ker.DiffC.X/! GL.H//:

Fix a decomposable ideal I0 which satisfies ‚.�; I0/ ¤ ∅. We choose a fiberwise
metric g of E!B . Since the structure group of E!B is T .X/, the correspondence
of ideals by g gives a map qW B! I.�/. Because the topological group IOutI0.yLH/
is contractible, the pullback q� IOut.yLH/! B of the principal IOutI0.yLH/–bundle
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IOut.yLH/! I.�/ is trivial. Taking a trivialization of the principal bundle, we get the
IOut.�/–equivariant map

sW q�‚.�/D q� IOut.yLH/�IOutI0 .
yLH/

‚.�; I0/' B �‚.�; I0/!‚.�; I0/:

Thus we can obtain the characteristic map

H�DR.‚.�; I0//
IOut.�/ s�

�!H�DR.q
�‚.�//IOut.�/ ˆE��!H�DR.B/;

where IOut.�/ WD Ker.Out.�/! GL.H//. This map does not depend on the choice
of fiberwise metric and trivialization. (Independence from the choice of trivialization
of q� IOut.yLH/! B comes from contractibility of IOutI0.yLH/.)

Remark 3.4 We remark that the map ˆE of Theorem 3.2 and Remark 3.3 factors the
natural maps

H�DR.‚.�//
IOut.�/

!H�DR.q
�‚.�//IOut.�/

!H�DR.B/

by construction. The map H�DR.q
�‚.�//IOut.�/!H�DR.B/ is also regarded as ˆE .

3B The fiber which has a homogeneous ideal and a splitting

If the fundamental group �D�1.X/ of fiber X satisfies some conditions, we can obtain
stronger results. In this section we assume that the fundamental group � D �1.X/ of
fiber X has the homogeneous ideal I� and there exists a splitting

DerC.yLH/D V ˚DerCI� .
yLH/

as graded S –vector spaces. Here a group S is the image of a structure group of E!B

in GL.�/.

Example 1 If � is a free group, we have I� D 0. So � clearly satisfies the condition
above for any S � GL.�/. For example, the fundamental group of a manifold whose
second Betti number is zero is a free group.

Example 2 We consider the case of X D †g , an oriented surface of genus g � 1.
Then �D�1.X/ has the homogeneous ideal I�D .!/. Here we denote the intersection
form of †g by

! D

gX
iD1

ŒXi ; XiCg � 2 L2;

where X1; : : : ; X2g is a symplectic basis of H . We set

S D Im
�
DiffC.†g/! GL.�/

�
D Sp

�
H1.†g IZ/; !

�
� Sp.H; !/:
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Since all finite-dimensional representations of Sp.H; !/ are completely reducible, �
satisfies the splitting condition.

Lemma 3.5 The GL.�/–equivariant principal IAutI� .yLH/–bundle IAut.yLH/ !
I.�/ is S –equivariant trivial.

Proof Let t be a real number. Then for any X 2 Derk.LH/, we define the map
wt W DerC.yLH/ ! DerC.yLH/ by wt .X/ D tkX . If X 2 Derk.LH/ and Y 2

Derl.LH/, we have

Œwt .X/; wt .Y /�D Œt
kX; t lY �D tkCl ŒX; Y �D wt .ŒX; Y �/:

So wt is a Lie algebra homomorphism. We define Ft W IAut.yLH/! IAut.yLH/ by

Ft .expX/D expwt .X/:

Since wt is a Lie algebra homomorphism, Ft is a group homomorphism, and Ft is
commutative with the action of GL.H/ on IAut.yLH/ since wt preserves the degree
of derivations. Furthermore, since I� is a homogeneous ideal, Ft can be restricted to
the GL.�/–equivariant map IAutI� .yLH/! IAutI� .yLH/ and induces I.�/! I.�/.

We set IAut�k.yLH/ WD IAut.yLH=L�kC1/. We also write the corresponding Lie
algebras in the same way. Since

IAut.yLH/D lim
 ��
k

IAut�k.yLH/;

we have that
I.�/D lim

 ��
k

IAut�k.yLH/= IAut�kI� .
yLH/:

We set I.�/k WD IAut�k.yLH/= IAut�kI� .
yLH/.

By assumption of a splitting

DerC.yLH/D V ˚DerCI� .
yLH/;

a splitting
Der�k.yLH/D V �k˚Der�kI� .

yLH/

is induced. Here the superscript � k of graded vector spaces means the part with
degree � k .

The map Der�k.yLH/! IAut�k.yLH/ defined by

X CY 7! expX � expY

Algebraic & Geometric Topology, Volume 16 (2016)



Characteristic classes of fiber bundles 3043

is a local diffeomorphism at 0. Therefore so is the map cW V �k! I.�/k induced by
the map above. It gives a diffeomorphism cW U !O of a neighborhood U of 0 and a
neighborhood O of Œid�. Then, for all t > 0, the following diagram commutes:

U

wt
��

c
// O

Ft
��

wt .U /
c
// Ft .O/

Therefore, the restriction cW wt .U /! Ft .U / is also a diffeomorphism. Thus,

cW V �k D
[
t

wt .U /!
[
t

Ft .O/D I.�/k

is a global diffeomorphism. The inverse limit

V ! I.�/

of the maps is also a diffeomorphism. We obtain a section

I.�/' V exp
��! IAut.yLH/

of the S –equivariant principal IAutI� .yLH/–bundle IAut.yLH/! I.�/.

Let zS be the image of a structure group of E ! B in Out.�/. From Lemma 3.5,
the GL.�/–equivariant principal IOutI� .yLH/–bundle IOut.yLH/! I.�/ is S –equi-
variantly trivial. Then there exists an zS –equivariant diffeomorphism

‚.�/D IOut.yLH/�IOutI� .yLH/
‚.�; I�/

' .I.�/� IOutI� .yLH//�IOutI� .yLH/
‚.�; I�/D I.�/�‚.�; I�/:

Since the map Ft W I.�/ ! I.�/ defined in the proof of the theorem above is a
GL.�/–equivariant homotopy, I.�/ is GL.�/–contractible. Thus we have:

Theorem 3.6 The space ‚.�/ is zS –equivariant homotopic to ‚.�; I�/.

Thus the characteristic map ˆE of E! B is described by

H�DR.‚.�; I�//
zS
DH�DR.‚.�//

zS
!H�DR.B/:
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3C Relation between two constructions

Let � be a finitely generated group which has a homogeneous ideal I� . We consider the
case of SD1, zSD IOut.�/, I0D I� in Sections 3A and 3B. We choose a trivialization
of q� IOut.yLH/! B which was induced by a trivialization of IOut.yLH/! I.�/ in
Section 2B. Then the diagram

q�‚.�/

��

�
// B �‚.�; I�/

��

// ‚.�; I�/

‚.�/
�
// I.�/�‚.�; I�/

h.e.

77

commutes. So taking IOut.�/–invariant de Rham cohomologies, we obtain the diagram

H�DR.‚.�; I�//
IOut.�/ //

))

H�DR.q
�‚.�//IOut.�/ // H�DR.B/

H�DR.‚.�//
IOut.�/

OO 66

Thus the characteristic maps obtained in two ways are equal in the common case.

Remark 3.7 Using the construction in this section, we can obtain characteristic maps
of a fiber bundle whose structure group is a subgroup of DiffC.X;�/ by replacing Out
with Aut, ‚ with ‚, ODerC with DerC , and so on.

3D Lie algebra cohomology of derivations

We construct invariant differential forms on ‚.�; I / from a flat connection on ‚.�; I /
and Chevalley–Eilenberg cochains.

Since IOut.yLH=I/ acts freely and transitively on ‚.�; I /, we get the ODerC.yLH=I/–
coefficient differential form � 2 A1.‚.�; I /IODerC.yLH=I// by pulling back the
right-invariant Maurer–Cartan form of IOut.yLH=I/. The form � satisfies the equation

d�C 1
2
Œ�; ��D 0:

Lemma 3.8 Let ' 2 Out.�/ be an automorphism of � which satisfies j'j.I / D I .
The Maurer–Cartan form � on ‚.�; I / satisfies

'��D Ad.j'j/�:
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Proof For �02‚.�; I /, we will denote q�0 W ‚.�; I /! IOut.yLH=I/ by � 7!�ı��10
and the Maurer–Cartan form on IOut.yLH=I/ by

z� 2 A�.IOut.yLH=I/IODerC.yLH=I//:

Then �Dq�
�0
z� and it is independent of the choice of �0 . Since q�0ı'DAd.j'j/ıq'��0 ,

'��D .q�0 ı'/
�
z�D q�'��0 Ad.j'j/�z�D Ad.j'j/q�'��0z�D Ad.j'j/�:

Thus we complete the proof.

From Lemma 3.8, the map C �.ODerC.yLH=I//!A�.‚.�; I //IOut.�/ can be defined
by

c 7! c.�m/

for any c 2 Cm.ODerC.yLH=I//GL.�/ . Here the power �m of � is defined by the
product

.A�.X/˝ODerC.yLH=I//˝m

D A�.X/˝m˝ODerC.yLH=I/
˝m
! A�.X/˝ODerC.yLH=I/

˝m

which is the wedge product with respect to A�.X/–components. We set

�D
X

��D�;

using a (topological) basis fD�g�2ƒ of ODerC.yLH=I/ and a well-ordered set ƒ.
Then we can write

�m D
X

�1<���<�m

��1 ^ � � � ^ ��mD�1 ^ � � � ^D�m 2 A
�.X/˝

mV
ODerC.yLH=I/:

Thus we can define the above linear map C �.ODerC.yLH=I//! A�.‚.�; I //IOut.�/ .
This map is a chain map. In fact, we have

d.c.�m//D

mX
sD1

.�1/s�1c.� � � �
s

d� � � � �„ ƒ‚ …
m

/

D

mX
sD1

.�1/s

2
c.� � � �

s

Œ�; �� � � � �„ ƒ‚ …
m

/

D .dc/.�mC1/:

Combining it with the result in Section 3A, we obtain the following:
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Theorem 3.9 Let E ! B be a fiber bundle whose fiber is X and structure group
is T .X/. Fix a decomposable ideal satisfying ‚.�; I0/¤∅. Then the map

H�.ODerC.yLH=I0//!H�DR.‚.�; I0//
IOut.�/

!H�DR.B/

is an invariant of an oriented fiber bundle E! B .

If I0 D I� is the homogeneous ideal, the group GL.�/ acts on ODerC.yLH=I�/ by
the adjoint action. So we define by C �.ODerC.yLH=I�//GL.�/ the chain complex of
GL.�/–invariant Chevalley–Eilenberg cochains of ODerC.yLH=I�/ with respect to
the action. In the same way as the construction above, we obtain the chain map

C �.ODerC.yLH=I�//GL.�/
! A�.‚.�; I�//

Aut.�/:

We have the following theorem using the construction in Section 3B:

Theorem 3.10 Let E!B be a fiber bundle whose fiber is X and structure group is a
subgroup G of the diffeomorphism group DiffC.X/. We set � D�1.X/, zS D Im.G!
Out.�//, and S D Im.G! GL.�//. We suppose the group � has the homogeneous
ideal I� and there exists a splitting

DerC.yLH/D V ˚DerCI� .
yLH/

as graded S –vector spaces. Then the map

H�.ODerC.yLH=I�//S !H�DR.‚.�; I�//
zS
!H�DR.B/

is an invariant of an oriented fiber bundle E! B .

4 Closed surface bundles

Let Mg be the mapping class group of an oriented closed surface †g of genus g � 2
and let Tg be the Teichmüller space of genus g , which is the space Metg of metrics
which have constant curvature �1 on †g modulo Diff0.†g/. The quotient orbifold
Mg WD Tg=Mg is called the moduli space of genus g . Since Tg is contractible, we
have the canonical isomorphism

H�.Mg IR/'H
�.Mg IR/:

We denote the first real homology group H1.†g IR/ of †g by H and the intersection
form on †g by ! . The alternating form ! can be regarded as an element of L2 by
the identity

! D

gX
iD1

ŒXi ; XiCg �;
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where X1; : : : ; X2g is any symplectic basis of H .

Lemma 4.1 [12] There exist identifications

0 // IDer1.LH=.!// // Der1.LH=.!// // ODer1.LH=.!// // 0

0 // H
�^!

// ƒ3H // ƒ3H=H // 0

According to [6], all Morita–Miller–Mumford classes of Mg are constructed from the
twisted cohomology class Œzk� 2H 1.Mg Iƒ

3H=H/, which is the cohomology class
of a crossed homomorphism zkWMg ! ƒ3H=H defined in [11], through the map
˛KMW Hom.ƒ�.ƒ3H=H/;R/Sp.H/!H�.Mg IR/ defined by

c 7! c.Œzk�m/

for c 2 Hom.ƒm.ƒ3H=H/;R/Sp.H/ . Here the power is related to the cup product.
We shall describe a relation between the map ˛KM and our construction.

Since every hyperbolic metric on †g admits a Kähler structure, the corresponding
ideal of a hyperbolic metric is .!/. So we can define the map �C W Tg!‚.�; .!// by
giving Chen expansions corresponding to hyperbolic metrics. It can be constructed by
the argument which is an analogue for the case of 1–punctured surfaces in [5]. Pulling
back the flat connection � 2 A1

�
‚.�; .!//IODerC.yLH=.!//

�
defined by the action

of IOut.yLH=.!// on ‚.�; .!//, we obtain the flat connection

��C� 2 A
1
�
Mg I Tg �Mg

ODerC.yLH=.!//
�
:

Since
��C W A

�
�
‚.�; .!//

�Mg
! A�.Tg/Mg D A�.Mg/;

we obtain

��C .c.�
m
1 //D c.Œ�

�
C�1�

m/D .�1/mc.Œzk�m/D .�1/m˛KM.c/DW ˛KM.c/

for c 2 Hom.ƒ�.ƒ3H=H/;R/Sp.H/ �Z�.ODerC.yLH=.!///Sp.H/ . Here we use

�Œ��C�1�D Œ
zk� 2H 1.Mg Iƒ

3H=H/'H 1.Mg I Tg �Mg
ƒ3H=H/;

where �1 is the ODer1.yLH=.!//–component of �. It is proved as follows: The
crossed homomorphism ��1 for any � 2‚.�; .!// is an extension of the first Johnson
homomorphism �1W Ig !ƒ3H=H from Proposition 2.5. The equation

Œzk�D Œ��1 � 2H
1.Mg Iƒ

3H=H/
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follows from the result of [11] (see [4]). The relation between the holonomy �� and
the iterated integral of the flat connection � gives

�� .'/�1 D

1X
nD0

Z '��

�

� � � � �„ƒ‚…
n

for ' 2Mg and � 2 ‚.�; .!//. Therefore the correspondence follows from the
equation

�
�C .x/
1 .'/D�

Z '��C .x/

�C .x/

�1 D�

Z '�x

x

��C�1

for ' 2Mg and a fixed point x 2 Tg . So we obtain Œzk�D Œ��C .x/1 �D�Œ��C�1�.

Thus we get the theorem:

Theorem 4.2 The following diagram commutes:

Hom.ƒ�.ƒ3H=H/;R/Sp.H/

˛KM

,,

// H�.ODerC.yLH=.!///Sp.H/
��C

// H�DR.Mg/

H�.Mg IR/

The map ��C can be interpreted from the viewpoint of our characteristic map as follows.
We consider the oriented †g –bundle

Metg �DiffC.†g/†g !Mg :

We note that Metg �DiffC.†g/†g !Mg is not a fiber bundle exactly since the fiber
on Œx�2Mg , x2Metg , is isomorphic to the global quotient orbifold †g= Isom.†g ; x/,
where Isom.†g ; x/ is the isometry group of Riemann surface .†g ; x/. However our
construction of the characteristic map works as well as fiber bundles. We give the
tautological metric � to this bundle, ie the metric �c on the fiber of c represents the
class c for all c 2Mg .

The chain map constructed from the Chen expansion of � in the manner of Section 3B
is equal to ��C W A

�
�
‚.�; .!//

�Mg
! A�.Mg/.

Theorem 4.3 The homomorphism ��C W H
�
�
ODerC.yLH=.!//

�Sp.H/
! H�DR.Mg/

is the characteristic map of the fiber bundle Metg �DiffC.†g/†g !Mg constructed in
Section 3B.

The theorem above means our characteristic maps are nontrivial.
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The simple loop conjecture for 3–manifolds modeled on Sol

DREW ZEMKE

The simple loop conjecture for 3–manifolds states that every 2–sided immersion
of a closed surface into a 3–manifold is either injective on fundamental groups or
admits a compression. This can be viewed as a generalization of the loop theorem to
immersed surfaces. We prove the conjecture in the case that the target 3–manifold
admits a geometric structure modeled on Sol.

57M35; 57M50

1 Introduction

The simple loop conjecture for 3–manifolds is as follows.

Conjecture [7, Problem 3.96] Let † be a closed surface and let M be a closed
3–manifold. If F W † ! M is a 2–sided immersion for which the induced map
F�W �1†! �1M is not injective, then there is an essential simple loop in † that
represents an element of the kernel of F� .

When the map F is an embedding, this follows from the loop theorem of Papakyri-
akopoulos (see, for instance, Hempel [6]).

The simple loop conjecture is known to hold when the target 3–manifold is a Seifert
fibered 3–manifold or a graph 3–manifold, by the work of Hass [4] and Rubinstein
and Wang [11],1 respectively. An analogous result for maps between surfaces is due to
Gabai [3].

The goal of this paper is the following result.

Theorem 1 The simple loop conjecture holds when the target 3–manifold admits a
geometric structure modeled on Sol.

1It is unclear whether the techniques of [11] apply to Sol manifolds, though they seem to be implicitly
ruling them out (see, for instance, [11, Lemma 1.0.2]). At any rate, the techniques in this paper offer a
substantially different approach to the problem.
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If M is a 3–manifold that is finitely covered by a torus bundle over S1 , then M

admits a geometric structure modeled on one of Euclidean 3–space, Nil, or Sol. Since
all compact Euclidean and Nil manifolds are Seifert fibered (see [12]), we obtain the
following corollary.

Corollary 2 The simple loop conjecture holds when the target 3–manifold is finitely
covered by a torus bundle over S1 .

This document is organized as follows. In Section 2 we give some definitions and
notation for the objects that will be studied. Section 3 contains a brief survey of
which compact 3–manifolds admit geometric structures modeled on Sol. This entails
a refinement of a classification given by Scott in [12], and reduces the problem at hand
to studying maps from closed surfaces into certain kinds of torus bundles over S1 and
orientable torus semi-bundles. In Sections 4 and 5 we give proofs of the simple loop
conjecture for these two types of 3–manifold, respectively. We conclude in Section 6
with some remarks regarding how the results presented here relate to a group-theoretic
formulation of the simple loop conjecture, and we show that it fails to hold when the
target group is metabelian.

Acknowledgments The author is extremely grateful to Jason Manning for his thought-
ful advice, friendly critique, and patience. Additional thanks are due to Alan Reid for
pointing out the connection between Example 18 and Casson’s construction in [8].

2 Definitions

If M is a connected manifold, the orientation character of M is a homomorphism
�M W �1M ! Z=2 whose value on b 2 �1M is nontrivial if and only if some (and
hence any) loop in M representing b is orientation reversing. (Equivalently, �M .b/ is
nontrivial if and only if b acts on the universal cover of M by an orientation reversing
homeomorphism.) A manifold is orientable if and only if its orientation character is
trivial.

If M and N are connected manifolds with orientation characters �M and �N , a map
F W M ! N is called 2–sided if �N ıF� D �M . Otherwise F is 1–sided. Hence
F is 2–sided if and only if it takes orientation preserving loops in M to orientation
preserving loops in N , and likewise for orientation reversing loops. There are other
(equivalent) definitions of 2–sidedness for immersions of manifolds, but since most
of the arguments in this paper involve the fundamental groups of the manifolds in
question, the given definition will be more useful.
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We will call a loop in a manifold M essential if it is neither nullhomotopic nor homo-
topic into the boundary of M . Loops that are not essential will be called inessential.

For a space X , we write jX j to denote the number of connected components of X .
For a compact surface † with L�† an embedded closed 1–manifold, we will write
† nn L to denote the metric completion of † n L (with respect to some choice of
complete metric on †). Thus †nnL is the space obtained by gluing copies of S1 onto
the open ends of † nL.

We refer the reader to [12] for an explanation of what it means for a manifold to admit
a geometric structure, as well as some basic facts about the Euclidean, Nil, and Sol
geometries. In particular, we will need the following two results.

Theorem 3 [12, Theorem 5.2] If M is a closed 3–manifold which admits a geomet-
ric structure modeled on one of the eight geometries, then the geometry involved is
unique.

Corollary 4 (see [12, Theorem 5.3(ii)]) If M is a closed 3–manifold that admits a
Seifert fibering, then M does not admit a geometric structure modeled on Sol.

2.1 Torus bundles and semi-bundles

By torus bundle we mean a fiber bundle over S1 whose fibers are tori. This can also be
viewed as a quotient T � I=..p; 0/� .�.p/; 1//, where T is a torus and �W T ! T

is a homeomorphism.

For each i 2 f1; 2g, let Ni be either a twisted I –bundle over a torus or a Klein bottle,
so that @Ni Š T . A torus semi-bundle M D N1 [� N2 is obtained by gluing N1

and N2 by a homeomorphism �W @N1! @N2 . Such a 3–manifold is orientable if and
only if both N1 and N2 are twisted I –bundles over a Klein bottle.

If M is a torus semi-bundle, at times we will refer to the middle torus of M , which is the
image of @N1 and @N2 after gluing. We will also make use of maps �i W �1Ni!Z=2,
which are the quotients of �1Ni by the index two subgroup corresponding to the double
covers of Ni by the product T � I . (This is sometimes called the monodromy of the
I –bundle Ni .) Notice that for b 2 �1Ni , �i.b/ is trivial if and only if b is represented
by a loop that is homotopic into @Ni . Furthermore, when Ni is a twisted I –bundle
over a torus (and is therefore nonorientable), �i coincides with the orientation character
of Ni .

If M is a torus semi-bundle, then there is a double cover of M that is the union
of the two T � I double covers of N1 and N2 along their boundaries (via some
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homeomorphism of the torus). This is a torus bundle over a circle, and is in turn
covered by T �R with deck group Z. Hence M is covered by T �R with deck group
the infinite dihedral group D D hg1;g2 j g

2
1
D g2

2
D 1i. The induced action on R is

the usual discrete action of D on R, where g1 and g2 act by reflections about 0 and 1,
respectively. The projection T �R!R therefore induces a projection M ! I.2; 2/,
where I.2; 2/ is a 1–dimensional orbifold called the mirrored interval. (See [1] for
definitions and notation.) It follows that M can be viewed as an orbifold fiber bundle
over I.2; 2/. The generic fibers of this bundle are 2–sided tori in M , and the fibers
over the mirrored points are the 1–sided tori or Klein bottles of M .

3 Classification of compact 3–manifolds modeled on Sol

In [12], Scott gives the following classification of closed 3–manifolds modeled on Sol.
(Note that a homeomorphism �W T ! T of a torus is called hyperbolic if �� acts on
H1.T IZ/ with tr.T /2 > 4.)

Theorem 5 [12, Theorem 5.3(i)] Let M be a closed 3–manifold. Then M possesses
a geometric structure modeled on Sol if and only if M is finitely covered by a torus
bundle over S1 with hyperbolic monodromy. In particular, M itself is either a bundle
over S1 with fiber the torus or Klein bottle or is the union of two twisted I –bundles
over the torus or Klein bottle.

We refine this classification as follows.

Theorem 6 Let M be a closed 3–manifold. Then M possesses a geometric structure
modeled on Sol if and only if one of the following holds:

(1) M is a torus bundle over S1 with hyperbolic monodromy.

(2) M is an orientable torus semi-bundle with gluing map (in canonical coordinates)
given by

�
r
t

s
u

�
, where rstu¤ 0.

The notion of canonical coordinates on the middle torus of a torus semi-bundle is
explained in the definition that precedes Proposition 1.5 of [14].

Proof It is shown in [14] that an orientable torus semi-bundle admits a Sol structure
if and only if its gluing map is of the form stated above. Hence to complete the proof
we must show that the other types of 3–manifolds mentioned in Scott’s classification
do not admit geometric structures modeled on Sol.

Algebraic & Geometric Topology, Volume 16 (2016)



The simple loop conjecture for 3–manifolds modeled on Sol 3055

Case 1 (M is a Klein bottle bundle over S1 ) Let

B D ha; b j aba�1b D 1i

be the fundamental group of a Klein bottle, and let AD ha2; bi �Z˚Z be the normal
subgroup of B corresponding to the double cover of the Klein bottle by a torus. The
fundamental group of M has the form

�1M D hB; t j txt�1
D �.x/; 8x 2 Bi

for some automorphism � of B coming from a homeomorphism of the Klein bottle.

We now show that every such automorphism of B preserves the subgroup A. We first
observe that every element of B can be written uniquely as aibj for i; j 2Z. Since �
must preserve the commutator subgroup ŒB;B�D hb2i, we have �.b2/D b˙2 , and a
short computation shows that in fact �.b/D b˙1 . It follows that �.a/D aibj , where
i; j 2Z and i is odd, since otherwise � has image in the proper subgroup A. We have

�.a2/D .aibj /.aibj /D .aiai/.b�j bj /D a2i ;

and similarly ��1.a2/D a2i0

for some i 0 2 Z. From a2 D ��1.�.a2//D a2i�i0

we
find that i � i 0 D 1, and so i D˙1. In summary, �.b/D b˙1 and �.a2/D a˙2 , so �
preserves the subgroup A.

We therefore conclude that �1M contains an index 2 subgroup of the form

H D hA; t j txt�1
D �jA.x/; 8x 2Ai:

Let yM be the double cover of M corresponding to H , which is a torus bundle over S1

with monodromy �jA . By the argument in the previous paragraph, there is a choice of
basis for A so that

�jA D

�
˙1 0

0 ˙1

�
:

Therefore �jA corresponds to a periodic homeomorphism of the torus, and so yM
admits a Euclidean structure by [12, Theorem 5.5]. It follows that M does not admit a
Sol structure, for if it did the structure could be lifted to a Sol structure on yM , which
would violate Theorem 3.

Case 2 (M is a Klein bottle semi-bundle) Then M is double covered by a Klein
bottle bundle over S1 and therefore has a degree 4 cover that is a torus bundle over S1

that admits a Euclidean structure. As in the previous case, M does not admit a Sol
structure.

Case 3 (M is a nonorientable torus semi-bundle) Then M is the union of two
twisted I –bundles N1 and N2 over a torus or Klein bottle, at least one of which
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(say N1 ) is an I –bundle over a torus. We will show that M admits a Seifert fibering,
and therefore does not admit a Sol structure by Corollary 4.

Choose an arbitrary Seifert fibration for N2 ; up to isomorphism there are precisely
two of these when N2 is an I –bundle over a Klein bottle (see [5], for instance) and
infinitely many when N2 is an I –bundle over a torus, as we will show.

If T is a torus, then for any p=q 2Q[f1g, T can be foliated by p=q–curves. This
foliation extends to the product Seifert fibration of T � I by p=q–curves in each torus
T �ftg. Finally, since the covering involution corresponding to the cover T �I !N1

preserves the fibration on T �I , it descends to a Seifert fibration of N1 so that @N1 is
foliated by p=q curves. Note that this is the one of the “generalized” Seifert fibrations
as defined in [12], as the critical fibers are not isolated. In fact, the one-sided torus
in N1 forms a subsurface of critical fibers.

It follows that a Seifert fibration on M can be constructed by choosing a Seifert
fibration on N1 so that the foliation of the boundary agrees with the image of the
foliation of @N2 under the gluing map.

4 Torus bundles

The first of the two main theorems that will imply Theorem 1 is the following.

Theorem 7 If M is a torus bundle, then the simple loop conjecture holds for M .

In fact, a slightly stronger result holds for most surfaces.

Theorem 8 Let † be a closed surface and let M be a torus bundle. If �.†/ is even
and negative and F W †!M is a 2–sided map, then there is an essential simple loop
in † that represents an element of ker F� . If �.†/ is odd then there is no 2–sided map
†!M .

After we prove Theorem 8, to complete the proof of Theorem 7 it will remain to handle
the two cases where �.†/ D 0. The simple loop conjecture is known to hold for
maps †!M where † is a torus and M is any 3–manifold [4, Section 4.4], and
Proposition 11 will deal with the case in which † is a Klein bottle.

Let L be a (not necessarily connected) 1–submanifold of a surface † and let ˛ be an
arc in † with endpoints on L and interior disjoint from L. Then surgery of L along ˛
entails fattening ˛ to a strip I � I with L\ .I � I/D @I � I , deleting the interior
of @I � I from L, and gluing in I � @I to L. Notice that if ˛ is an arc between two
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˛

L L L0

Figure 1: Surgery along ˛ reduces the number of components of L by one

distinct components of L, then the result of surgery along ˛ is to connect the two
components of L by a bridge, as shown in Figure 1.

The following can be established by a standard homotopy argument.

Lemma 9 Let † be a (not necessarily closed) surface, let J denote the open interval
.0; 1/, and let H W †! J be a map that is transverse to a point r 2 J . If ˛ is an arc
that connects two components of LDH�1.r/ whose interior is disjoint from L, then
H can be homotoped in a neighborhood of ˛ so that the preimage of r changes by
surgery along ˛ .

Lemma 10 Let † be a closed surface, let GW †! S1 be a �1 –surjective map, and
choose q 2 S1 . Then G can be homotoped so that the preimage LD G�1.q/ is an
essential 2–sided simple loop in †.

Proof Choose G within its homotopy class so that q is a regular value of G and
LDG�1.q/ is a collection of disjoint simple loops in † with a minimal number of
components. Observe that L is 2–sided but may not be connected. We shall show that
the minimality assumption on L along with the assumption that G is �1 –surjective
forces L to be connected.

Choose a co-orientation of q 2 S1 and pull it back to a co-orientation of L in †.
We summarize this data by drawing a single arrow orthogonal to each component
of L that indicates to which side of each component the co-orientation is pointing,
as demonstrated in Figures 1 and 2. When we cut † along L to obtain † nnL, we
label the boundary components of the resulting surface with the co-orientations of the
components of the L that the boundary components correspond to.

We can homotope G to reduce the number of components of L whenever a component
†0 of † nnL has two boundary loops that are either both co-oriented into or both
co-oriented out of †0 . This happens, for instance, whenever †0 has three or more
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boundary components. Start by choosing a simple arc ˛ � †0 connecting the two
boundary components of †0 with coherent co-orientations, so that G.˛/ is a null-
homotopic loop in S1 based at q . If U is a small neighborhood of ˛ in †, then we
can homotope G with support in U so that GjU is not surjective. Hence GjU has
image in a subset of S1 homeomorphic to J D .0; 1/, and so we may apply Lemma 9
to GjU to obtain a further homotopy of G supported in U . This has the effect of
surgering L along ˛ , which reduces of the number of components of L by one as
shown in Figure 1.

Another reduction of L is possible if some component †0 of † nnL has only one
boundary component. In this case, we homotope G by sending all of †0 past q ; this
homotopy can be taken to be the identity outside of any neighborhood of †0 . If L0 is
the preimage of q after the homotopy, then L0 consists of the same loops as L except
for the loop that formed the boundary of †0 , which has been eliminated.

It follows that if G is chosen to minimize the number of components of L, then every
component †0 of † nn L has exactly two boundary components: one co-oriented
into †0 and the other co-oriented out of †0 , as shown in Figure 2.

Figure 2: If L has more than one component, then no loop in † can have a
signed intersection of ˙1 with L

We now observe that the homomorphism G�W �1†! �1S1 � Z is given by signed
intersection with L, where the sign measures whether a loop in † agrees with the
co-orientation of L. From the construction of the co-orientation we see that G� must
have image jLjZ�Z. Since G� is surjective, we have jLj D 1, and so L is connected.
This completes the proof.

Proof of Theorem 8 Let P W M ! S1 denote the bundle projection of M , and let
G D P ıF W †! S1 .

Case 1 (the map G is �1 –surjective) Applying Lemma 10 to G , we may homo-
tope G so that the preimage of a point q2S1 is a 2–sided simple loop L�† for which
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any loop in † nnL has inessential image under G . Since we have that G.† nnL/�

fS1 n qg, we may use the homotopy lifting property of the fiber bundle M ! S1 to
homotope F so that F.†nnL/�M nMq , where Mq is the fiber of M lying above q .

Since M nMq is homeomorphic to T � I and is therefore orientable, it follows from
the 2–sidedness of F that †nnL must be orientable. Therefore †nnL is an orientable
compact surface with two boundary components, and so �.† nnL/D �.†/ must be
even. This proves the claim that there is no 2–sided map †!M when �.†/ is odd.

We may now suppose that �.†/D 2�2g , where g� 2 is an integer. Then �.†nnL/D
2� 2g , so † nnL is the connect sum of a twice-punctured sphere with g� 1 tori. It
follows that there is an embedded punctured torus †0 in † nnL. The boundary loop
ˇ of †0 is a separating simple loop in † whose corresponding element in �1† is the
commutator of the elements represented by loops  and ı , as shown in Figure 3.

ı



ˇ

L

Figure 3: The simple loop ˇ in ker F� is the boundary of the punctured torus
†0 �†

The loops ˇ ,  and ı all have image in M nMq , and since M nMq has abelian
fundamental group it follows that F�Œˇ� is trivial in �1M . Thus ˇ is the desired
essential simple loop in the kernel of F� . (A similar argument shows that any essential
separating loop in † nnL must represent an element of ker F� .)

Case 2 (the map G is not �1 –surjective) In this case, either G� is the zero map or
it has image nZ� Z� �1S1 for some n¤ 0;˙1.

If G� is the zero map, then G is homotopic to a constant map, and the homotopy
can be lifted to a homotopy of F so that the resulting image of † is contained in
a torus fiber Mp of M . Since Mp is an orientable 2–sided submanifold of M , by
the 2–sidedness of F we have that † is orientable, and so �.†/ cannot be odd. If
�.†/��2 then there is an essential separating loop in †, and we argue as above that
such a loop represents an element of ker F� .

If instead G� has image a finite-index subgroup nZ� Z, then p�1
� .nZ/ is a proper

finite-index subgroup of �1M and F lifts to the corresponding cover zM !M . Since
zM must also be a torus bundle over a circle and the projection zM!M is �1 –injective,

we may replace M by zM and F by its lift and appeal to Case 1.
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The following result will complete the proof of Theorem 7.

Proposition 11 Let K be a Klein bottle and let G be an infinite torsion-free group.
If f W �1K!G is a homomorphism with nontrivial kernel, then there is an essential
simple loop in K that represents an element of kerf .

Proof We proceed by reducing to the case in which f has image an infinite cyclic
subgroup of G . Write the fundamental group of K as

�1K D ha; b j aba�1b D 1i;

and let H D ha2; bi � �1K be the index 2 subgroup of �1K corresponding to the
double cover of K by a torus. The kernel of f jH must be nontrivial: for if x 2 kerf�
is not the identity then x2 2H \ kerf� is also not the identity. Hence f jH is a non-
injective map from a rank 2 free-abelian group to a torsion-free group, and so the image
of f jH is either trivial or infinite cyclic. If f .H /D 1, then since f .a/2D f .a2/D 1

and M is torsion-free, f .a/ must be trivial. In this case f is the trivial map and we’re
done. If f .H / is infinite cyclic, then f .�1K/ is a virtually infinite cyclic torsion-free
group, and so must be infinite cyclic; see, for instance, [13, Theorem 5.12].

Therefore we may replace f by a surjective map f 0W �1K ! Z. Since S1 is a
K.Z; 1/, there is a map F W K! S1 with F� D f

0 , and so Lemma 10 can be applied
to obtain an essential 2–sided simple loop L�K such that every loop in K nL has
inessential image in S1 . Hence we see that K nL is an annulus, the core of which
is an essential simple loop in K that represents an element of kerf 0 , and hence of
kerf .

5 Torus semi-bundles

The following theorem, together with Theorem 7, will establish Theorem 1.

Theorem 12 If M is an orientable torus semi-bundle that admits a geometric structure
modeled on Sol, then the simple loop conjecture holds for M .

As in the torus bundle case, we have a slightly stronger statement for maps from
surfaces of sufficiently large genus into orientable torus semi-bundles.

Theorem 13 Let † be a closed surface and let M be an orientable torus semi-bundle.
If �.†/ <�2 and F W †!M is a 2–sided map, then there is an essential simple loop
in † that represents an element of ker F� .
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To prove the theorem, we will employ the following two lemmas, which allow us to
homotope maps from surfaces to torus semi-bundles into a simplified position.

Lemma 14 Let M be an orientable torus semi-bundle with middle torus S �M , let
† be a (not necessarily closed) surface, and let F W †!M be a map that is transverse
to S . Suppose that ˛ � † is a simple arc that connects two distinct components
of L D F�1.S/ whose interior is disjoint from L, and that F.˛/ is homotopic
(rel endpoints) into S . Then F can be homotoped in a neighborhood of ˛ so that the
preimage of S changes by surgery along ˛ .

Proof Let U be a tubular neighborhood of ˛ in † that does not intersect any compo-
nents of L except the two that are connected by ˛ . Since F.˛/ is homotopic into S ,
after possibly shrinking U we can homotope F with support in U so that F jU has
image that does not intersect either of the 1–sided surfaces that are the zero sections of
the twisted I –bundles that were used to construct M .

It follows that F jU has image in a subset of M that is homeomorphic to T � J ,
where T is a torus and J D .0; 1/. Let P W T �J ! J denote the projection onto the
second factor, and let r 2 J be the image of S . Then P ıF jU W U ! J satisfies the
assumptions of Lemma 9, so we may apply it to obtain a homotopy of P ıF jU after
which L has been surgered along ˛ . Since T �J ! J is a fiber bundle, we can lift
the homotopy of P ıF jU to a homotopy of F jU , and from that we obtain a homotopy
of F supported in U , as desired.

Lemma 15 Let M be an orientable torus semi-bundle with middle torus S �M , let
† be a closed surface with �.†/ < 0, and let F W †!M be a .2–sided/ map that
injects on simple loops .that is, there are no elements represented by simple loops in
the kernel of F�/. Then F can be homotoped so that LD F�1.S/ is either empty or
is a collection of parallel 2–sided separating essential simple loops in †.

Figure 4 shows a typical picture of L�† when L¤∅.

Proof In the notation of Section 2.1, let M DN1[� N2 with monodromies

�i W �1Ni! Z=2:

Choose F within its homotopy class so that F is transverse to S and so that L D

F�1.S/ is a minimal collection of 2–sided simple loops in †.

Step 1 First, suppose that some component †0 of †nnL has three or more boundary
components. Let C1 , C2 , C3 be three of the boundary components of †0 . (Since S
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L
†1 †2

Figure 4: The multicurve L is a collection of parallel loops separating †
into a collection of annuli along with two punctured surfaces, †1 and †2

separates M , no two of the Ci correspond to the same component of L.) Choose a
basepoint q 2S ; after a homotopy of F supported in a tubular neighborhood of the Ci ,
we may assume that each Ci contains a point pi for which F.pi/D q . In †0 choose
simple arcs ˛ from p1 to p2 , ˛0 from p2 to p3 , and ˛00 from p1 to p3 such that ˛00

is path-homotopic to the concatenation of ˛ and ˛0 , as shown in Figure 5.

C1 C2 C3p1 p2 p3

˛ ˛0

˛00

†0

Figure 5: The arcs ˛ , ˛0 , and ˛00 joining the boundary components of †0

By construction, each of F.˛/, F.˛0/ and F.˛00/ are loops in M based at q , and
without loss of generality all three lie in N1 . It follows that �1ŒF.˛/�, �1ŒF.˛

0/� and
�1ŒF.˛

00/� are elements in Z=2 with �1ŒF.˛/�C �1ŒF.˛
0/�D �1ŒF.˛

00/�, and so one
of the three elements must be trivial in Z=2. Hence one of the arcs (say ˛ ) in †0

has image under F that is homotopic into @N1 D S , and so by Lemma 14 we can
homotope F so that the result on L is surgery along ˛ , which reduces the number of
components of L.

Step 2 Next, suppose that some component †0 of † nnL has two boundary com-
ponents and is not an annulus. As in the previous step, we can homotope F in a
neighborhood of @†0 so that each boundary component has a point pi (i D 1; 2) that
maps to the basepoint q 2 S . Without loss of generality we assume that F.†0/�N1 .
There are two cases to consider.

Algebraic & Geometric Topology, Volume 16 (2016)



The simple loop conjecture for 3–manifolds modeled on Sol 3063

Case 2A (there is a simple loop ˛�†0 based at p1 with �1ŒF.˛/� nontrivial in Z=2)
Homotope ˛ in †0 so that ˛ becomes the concatenation of two simple arcs ˛0 and ˛00

from p1 to p2 , as shown in Figure 6.

p1 p2

˛

†0

p1
p2

˛0

˛00

†0

Figure 6: Pulling ˛ towards p2 and viewing it as two arcs

It follows that F.˛0/ and F.˛00/ are loops in N1 based at q , and since �1ŒF.˛
0/�C

�1ŒF.˛
00/�D �1ŒF.˛/� is nontrivial in Z=2, one of �1ŒF.˛

0/� and �1ŒF.˛
00/� must be

trivial. As before, an arc with trivial image can be used (Lemma 14) to homotope F

and surger L, which reduces the number of components of L by one.

Case 2B (for every simple loop ˛ � †0 based at p1 , �1ŒF.˛/� is trivial) Since
we assumed †0 is not an annulus, it is a twice-punctured orientable surface of genus
greater than 0. It follows that we can find two simple loops  and ı in †0 whose
commutator in �1†0 is represented by a simple loop ˇ ; see Figure 7.

p1


ı

ˇ

†0

Figure 7: The simple loop ˇ represents the commutator of Œ � and Œı�

Since Œˇ�; Œ �; Œı� 2 �1†0 , all have trivial image under �1 ıF� , �1ŒF.ˇ/�, �1ŒF. /�,
and �1ŒF.ı/� must lie in the subgroup of �1N1 corresponding to the boundary S . But
since �1S is abelian, the commutator F�Œˇ� is trivial. This contradicts the assumption
that F injects on simple loops, and so it is impossible that �1 ıF� is trivial on every
simple loop in †0 .

We conclude that the number of components of L can be reduced whenever some
component of † nnL has exactly two boundary components and is not an annulus.
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Step 3 It follows from the previous two steps that if F is chosen in its homotopy
class so that L has a minimal number of components, then L is either empty or
every component of †nnL is either an annulus or a surface with exactly one boundary
component. The assumption that �.†/<0 rules out the possibility that every component
of †nnL is an annulus, and so † consists of two punctured orientable surfaces connected
by some number of annuli.

Proof of Theorem 13 Let † be a closed surface with �.†/<�2, let M DN1[�N2

be a torus semi-bundle, and let F W †!M be a 2–sided map. By Lemma 15, we
may assume that F has been homotoped so that LD F�1.S/ is either empty or is
a collection of parallel curves as in Figure 4. (According to the lemma, if this is not
possible then we can already find a simple loop in ker F� .)

If L D ∅ then without loss of generality F has image in N1 , which is homotopy
equivalent to a Klein bottle. Since �1N1 does not contain the fundamental group of any
surface of negative Euler characteristic, the induced map �1†! �1N1 has nontrivial
kernel. Using Gabai’s result [3], we conclude that there is a simple loop in the kernel
of F� .

We now consider the case in which L¤ ∅. If †1 and †2 are the two non-annular
subsurfaces of † as shown in Figure 4, then

�.†1/C�.†2/D �.†/:

It follows that either �.†1/ < �1 or �.†2/ < �1.

Without loss of generality, we will henceforth assume that �.†1/ < �1 and that
F.†1/�N1 .

If f D �1 ı .F j†1
/�W �1.†1/ ! Z=2, then since F sends @†1 (which is a com-

ponent of L) into S , we have f Œ@†1� D 0. It follows that f represents a class in
H 1.†1; @†1IZ=2/. If f represents the trivial class, then all of F.†1/ is homotopic
into S , and we can homotope F to send all of †1 past S and reduce the number of
components of L, contradicting the assumption that F has already been homotoped to
minimize the number of components. Therefore f is nontrivial in H 1.†1; @†1IZ=2/,
and so by Lefschetz duality, there is a nontrivial homology class f� 2H1.†1IZ=2/ for
which the value of f on any loop ˛ based on @†1 is given by the signed intersection
(mod 2) of ˛ with any 1–chain representing f� .

Let ` be a simple loop in †1 that represents f� . (A simple loop representative exists
by [10].) Since f� is nontrivial, ` is essential and every loop in †1n` is in the kernel of
f and therefore has image in N1 that is homotopic into S . The fact that �.†1/ < �1

implies that †1 nn ` is homeomorphic to a closed surface of genus at least one with
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three open discs removed. As in the proof of Theorem 8, we can find an embedded
punctured torus P in †1 nn ` whose boundary ˇ represents the commutator of simple
loops  and ı contained in P . Since Œˇ�, Œ � and Œı� all have image under F� in
the abelian subgroup �1S � �1M , we conclude that ˇ is the desired simple loop
representing an element of ker F� .

With Proposition 11 and the proof of the simple loop conjecture when the domain is a
torus given in [4], we will complete the proof of Theorem 12 with the following special
case.

Lemma 16 Let † denote the closed orientable surface with �.†/D�2. If M is an
orientable torus semi-bundle and F W †!M is a .2–sided/ map, then either there is
an essential simple loop in ker F� or M does not admit a geometric structure modeled
on Sol.

Proof By Lemma 15, we can homotope F so that the preimage LD F�1.S/ of the
middle torus of M is a minimal collection of parallel curves in † as in Figure 4. As
in the proof of Theorem 13 we may also assume that L¤∅, so L separates † into
punctured tori †1 and †2 along with a collection of nD jLj � 1 annuli.

Case n D 0 In this case, L is connected and separates † into punctured tori †1

and †2 . We can write the fundamental group of † as

�1†D ha1; b1; a2; b2 j Œa1; b1�D Œa2; b2�i;

where ai and bi are the generators of the fundamental group of †i . The fundamental
group of M has presentation

�1M D hx1;y1;x2;y2 j xiyix
�1
i yi D 1;x2

1 D x2r
2 yt

2;y1 D x2s
2 yu

2 i;

where xi and yi are the generators of the fundamental group of the twisted I –bundle
over a Klein bottle Ni , and M has been constructed by gluing N1 to N2 via a
homeomorphism @N1! @N2 whose matrix is�

r s
t u

�
2 GL2.Z/

with respect to the bases hx2
i ;yii of the fundamental groups of the boundaries of the Ni .

By the definition of L we see that F restricts to a proper map of †i into Ni , and so
F�.ai/ and F�.bi/ must lie in hxi ;yii for i D 1; 2. The subgroup hxi ;yii of �1M

is isomorphic to the fundamental group of a Klein bottle, and its commutator subgroup
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is infinite cyclic with generator y2
i . Hence the commutators Œai ; bi � are mapped to

even powers of yi , and from the relation in �1† we obtain an equation

y
2k1

1
D y

2k2

2

for some integers k1 and k2 . Applying the rightmost relation of the presentation
of �1M given above, we have

x
4sk1

2
y

2uk1

2
D y

2k2

2
:

Since this is an equation in hx2
2
;y2i � Z˚Z, we can conclude that 4sk1 D 0, and

so either k1 D 0 or s D 0. If k1 D 0, it follows that the curve L (which represents
the elements Œa1; b1� and Œa2; b2� in �1†) has image y

2k1

1
D 1, so L is an essential

simple loop in the kernel of F� . If s D 0, then by Theorem 6 it follows that M does
not admit a geometric structure modeled on Sol.

Case n > 0 In this case, L has multiple components; we will show that F can be
lifted to a torus semi-bundle cover of M in which the preimage of the middle torus
is connected, thereby reducing to the case in which nD 0. Choose points p0; : : : ;pn

on the nC 1 components of L, and let ˛ �† be a simple arc with end points at p0

and pn whose intersection with L is the points pi . For i D 0; : : : ; n�1 let ˛i denote
the segment of ˛ between pi and piC1 , as shown in Figure 8.

p0 p1 p2 p3

˛0 ˛1 ˛2

†1 †2

Figure 8: The arc ˛ connecting the points pi in the case nD 3

By adjusting F by a homotopy that preserves L, we may assume that F.pi/D q for
some basepoint q 2 S �M , and so F.˛i/ is a loop in M based at q representing an
element wi 2 �1M .

In the notation of the previous case, we assume that F�.a1/ and F�.b1/ lie in the
subgroup hx1;y1i � �1M , and by the definition of L we have that wi 2 hxji

;yji
i,

where jiD1 if i is odd and jiD2 if i is even. We may also assume that wi 62 hx
2
ji
;yji
i,

for if wi 2 hx
2
ji
;yji
i then ˛i is a proper simple arc in a component † nn L with
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image homotopic into S , and we can reduce the number of components of L, which
contradicts the minimality assumption. If w D w0 � � �wn�1 , then we have

F�.�1†/� hx1;y1; wxkw
�1; wykw

�1
i;

where k D 1 if n is odd and k D 2 if n is even.

If D D hg1;g2 j g
2
1
D g2

2
D 1i denotes the infinite dihedral group, then there is a

homomorphism f W �1M !D given by xi 7! gi and yi 7! 1 for i D 1; 2. The cover
of M corresponding to kerf is T �R with deck group D , as described in Section 2.1.
For each i D 0; : : : ; n� 1, since wi 62 hx

2
ji
;yji
i we have f .wi/D gji

, and it follows
that f .w/ is a reduced word in D of length n starting with g2 . The image of �1†

under the composition f ıF� is the subgroup

H D hg1; f .w/gkf .w/
�1
i �D;

which itself is isomorphic to the infinite dihedral group. Let yM be the quotient of
S �R by H , which is another torus semi-bundle that is the cover of M corresponding
to the subgroup f �1.H /. Then yM contains nC 1 tori S0; : : : ;Sn that are lifts of S ,
and the result of splitting yM along these tori is n products T � I (each of which
double-covers N1 or N2 ) along with two twisted I –bundles over a Klein bottle (each
of which projects to N1 or N2 by a homeomorphism). The Si are parallel and one
can show that yF�1.Si/ is connected for i D 0; : : : ; n, where yF W †! yM is the lift of
F to yM . Hence we can take any of the Si to be the “middle torus” of yM .

Therefore we may apply the argument of the first case of this proof to yF to find either
an essential simple loop in ker yF� or that yM is Seifert fibered. In the former case, an
essential simple loop in ker yF� is also an essential simple loop in ker F� . In the latter,
if yM is Seifert fibered then it carries a Euclidean or Nil structure, and therefore so
does M . It follows that M is Seifert fibered as well.

6 The simple loop conjecture for metabelian groups

An orientation character on a group G is a homomorphism �G W G! Z=2, and an
oriented group is a pair .G; �G/ where �G is an orientation on G . When G is the
fundamental group of a manifold M , we take �G to be the orientation character �M

defined in Section 2. Similarly, one can say what it means for a homomorphism
between two oriented groups to be 2–sided. It then seems natural to ask if the following
generalization of the simple loop conjecture holds for a fixed oriented group G .

Statement Let † be a closed surface and let .G; �G/ be an oriented group. If
f W �1† ! G is a 2–sided homomorphism that is not injective, then there is an
essential simple loop in † that represents an element of the kernel of f .
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When G is the fundamental group of an aspherical 3–manifold this is equivalent to
the simple loop conjecture for 3–manifolds. This statement is known to be false when
G D PSL.2;C/ by work of Cooper and Manning [2] and when G D PSL.2;R/ by
work of Mann [9]. (In both cases, G carries the trivial orientation character as it is
identified with the groups of orientation-preserving isometries of hyperbolic 3– and
2–space, respectively.)

A group is called metabelian if it fits into a short exact sequence of the form

1!A!G! B! 1;

where A and B are abelian groups. For example, the fundamental groups of the torus
bundles treated in Section 4 are metabelian with AD Z˚Z and B D Z. One might
be led to ask if the group-theoretic version of the simple loop conjecture holds for
metabelian groups, and if a technique similar to that of Section 4 can be used to prove
it. We provide the following result in this direction.

Theorem 17 Let .G; �G/ be an oriented group that fits into an exact sequence of the
form

1!A!G! Z! 1;

where A is abelian, and suppose that A� ker �G . If † is a closed surface of genus at
least two, then the group-theoretic version of the simple loop conjecture holds for †
and G .

Proof This is a group-theoretic analogue to the proof of Theorem 8. Let pW G! Z
denote the projection map in the short exact sequence. For a surface † and a 2–
sided homomorphism f W �1† ! G , we may assume that f is surjective. For if
not, then either f .�1†/ lies in A and any separating simple loop in † represents an
element of kerf , or p ı f has nontrivial image and we replace G by f .�1†/, �G

by .�G/jf .�1†/ , A by A\f .�1†/, and Z by .p ıf /.�1†/� Z.

There is a map †! S1 whose induced homomorphism on fundamental groups is
p ı f , and by applying Lemma 10 to this map we find a simple nonseparating loop
L�† such that every element of �1.† nnL/� �1† is contained in ker.p ıf /. By
exactness, f .�1.† nnL// is contained in A, and the assumptions that f is 2–sided
and that A� ker �G imply that † nnL must be orientable.

As shown in the proof of Theorem 8 there are essential simple loops ˇ ,  , and ı in
† representing elements of ker.p ı f / and with Œˇ� equal to the commutator of Œ �
and Œı�. By exactness, f Œˇ�, f Œ � and f Œı� are contained in A, and since A is abelian
we have that f Œ � is trivial.
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We conclude by showing that, despite the previous result, the group-theoretic simple
loop conjecture does not hold for all torsion-free metabelian groups. This is a torsion-
free version of a finite example due to Casson [8, Section 2].

Example 18 Let † be a surface of genus g � 2. We will give a topological construc-
tion of the quotient of �1† by its second derived subgroup, which is sometimes called
the metabelianization of �1†. From the construction we will see that the kernel of
�1†!G does not contain any elements represented by simple loops in †.

First, let B D H1.†/ (with Z coefficients understood), let f1W �1† ! B be the
abelianization map, and let K1 D kerf1 . Let P W y†! † be the cover of † corre-
sponding to K1 . Next, let f2W �1

y†!H1.y†/ be the analogous natural map for y†,
and let K2 D kerf2 . We have K2 � �1

y†�K1 � �1†, and so we identify K2 with
its image under P� and consider it a subgroup of �1†.

Observe that K1 does not contain any element of �1† represented by a nonseparating
simple loop in †, but does contain every element represented by a separating simple
loop in †. Hence every separating simple loop in † lifts to y†; we now show that
every such loop lifts to a nonseparating simple loop in y†.

We first observe that B �Z2g is a one-ended group. Since B acts properly on y† with
compact quotient †, it follows that y† is a one-ended space. Any inessential separating
simple loop in y† must therefore separate y† into a compact piece and a noncompact
piece. Hence if ˇ is a simple separating loop in † for which some (and hence any)
lift y̌ of ˇ separates y†, then y̌ cuts off a compact subsurface y† y̌� y†. If y̌0 is another
lift of ˇ , then y̌ and y̌0 are disjoint, and the regularity of the cover y†!† implies
that there is a deck transformation of y† that takes y̌0 to y̌. This deck transformation
must take y† y̌0 homeomorphically onto y† y̌ . If one of these subsurfaces is contained
in the other (say we have y† y̌0 � y† y̌), then y̌ and y̌0 must be parallel. However, this
is impossible: for by choosing hyperbolic metrics on † and y† so that the covering
action is by isometries, and choosing ˇ , y̌ and y̌0 to be the unique geodesics in their
homotopy classes, we see that if y̌ and y̌0 are parallel then they are not distinct lifts
of ˇ .

It follows that the subsurfaces y† y̌ (as y̌ ranges over the lifts of ˇ ) must be disjoint.
In particular, each such subsurface does not contain any lifts of ˇ in its interior. Thus
the covering map y†! † restricts to a cover of a component of † n ˇ by y† y̌ , and
since y̌ projects to ˇ via a homeomorphism, the restricted cover is a homeomorphism.
However, this is impossible, as y† y̌ is not a disk and so must contain a nonseparating
simple loop, and this nonseparating loop is a lift of its image under the covering
projection. We have already observed that such loops do not lift from † to y†, and so
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from this contradiction we conclude that y̌ (and hence every lift of ˇ to y†) must be
nonseparating.

It follows that K2 does not contain any elements represented by simple loops of †,
since the nonseparating simple loops in † are homologically nontrivial, and the
separating simple loops of † lift to homologically nontrivial loops in y†. Hence
if we let G D �1†=K2 and let f W �1† ! G be the quotient map, then f is a
noninjective map with no elements represented by essential simple loops in its kernel.
If AD �1

y†=K2 �H1.y†/, then A is abelian and we have

G=AD .�1†=K2/=.�1
y†=K2/� �1†=�1

y†� �1†=K1 �H1.†/;

which is also abelian. Thus we see that G is metabelian, for it fits into the short exact
sequence

1!H1.y†/!G!H1.†/! 1;

and so we have constructed the desired group G and map f W �1†!G .
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