Volume 16, issue 5 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On the homotopy of $Q(3)$ and $Q(5)$ at the prime $2$

Mark Behrens and Kyle M Ormsby

Algebraic & Geometric Topology 16 (2016) 2459–2534
Bibliography
1 A Adem, R J Milgram, Cohomology of finite groups, 309, Springer (2004) MR2035696
2 T Bauer, Computation of the homotopy of the spectrum tmf, from: "Groups, homotopy and configuration spaces" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geom. Topol. Monogr. 13 (2008) 11 MR2508200
3 M Behrens, A modular description of the K(2)–local sphere at the prime 3, Topology 45 (2006) 343 MR2193339
4 M Behrens, Buildings, elliptic curves, and the K(2)–local sphere, Amer. J. Math. 129 (2007) 1513 MR2369888
5 M Behrens, Congruences between modular forms given by the divided β family in homotopy theory, Geom. Topol. 13 (2009) 319 MR2469520
6 M Behrens, T Lawson, Isogenies of elliptic curves and the Morava stabilizer group, J. Pure Appl. Algebra 207 (2006) 37 MR2244259
7 I Bobkova, P G Goerss, Topological resolutions in K(2)–local homotopy theory at the prime 2, (2016) arXiv:1610.00158
8 C L Douglas, J Francis, A G Henriques, M A Hill, editors, Topological modular forms, 201, Amer. Math. Soc. (2014) MR3223024
9 P Goerss, H W Henn, M Mahowald, C Rezk, A resolution of the K(2)–local sphere at the prime 3, Ann. of Math. 162 (2005) 777 MR2183282
10 H W Henn, On finite resolutions of K(n)–local spheres, from: "Elliptic cohomology" (editors H R Miller, D C Ravenel), London Math. Soc. Lecture Note Ser. 342, Cambridge Univ. Press (2007) 122 MR2330511
11 H Hida, Geometric modular forms and elliptic curves, World Scientific (2000) MR1794402
12 M A Hill, M J Hopkins, D C Ravenel, The slice spectral sequence for the C4 analog of real K–theory, preprint (2015) arXiv:1502.07611
13 M Hill, T Lawson, Topological modular forms with level structure, Invent. Math. 203 (2016) 359 MR3455154
14 M J Hopkins, M Mahowald, From elliptic curves to homotopy theory, from: "Topological modular forms" (editors C L Douglas, J Francis, A G Henriques, M A Hill), Math. Surveys Monogr. 201, Amer. Math. Soc. (2014) 261
15 D Husemöller, Elliptic curves, 111, Springer (2004) MR2024529
16 N M Katz, B Mazur, Arithmetic moduli of elliptic curves, 108, Princeton Univ. Press (1985) MR772569
17 D R Kohel, Endomorphism rings of elliptic curves over finite fields, PhD thesis, University of California, Berkeley (1996)
18 J Konter, The homotopy groups of the spectrum Tmf, preprint (2012) arXiv:1212.3656
19 D S Kubert, Universal bounds on the torsion of elliptic curves, Compositio Math. 38 (1979) 121 MR523268
20 M Mahowald, C Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009) 853 MR2508904
21 H R Miller, D C Ravenel, W S Wilson, Periodic phenomena in the Adams–Novikov spectral sequence, Ann. of Math. 106 (1977) 469 MR0458423
22 K Shimomura, Novikov’s Ext2 at the prime 2, Hiroshima Math. J. 11 (1981) 499 MR635034
23 J H Silverman, The arithmetic of elliptic curves, 106, Springer (2009) MR2514094
24 J Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A-B 273 (1971) MR0294345