Volume 16, issue 5 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The $\eta$–inverted $\mathbb{R}$–motivic sphere

Bertrand J Guillou and Daniel C Isaksen

Algebraic & Geometric Topology 16 (2016) 3005–3027
Bibliography
1 J F Adams, A finiteness theorem in homological algebra, Proc. Cambridge Philos. Soc. 57 (1961) 31 MR0122852
2 M J Andrews, The v1–periodic part of the Adams spectral sequence at an odd prime, PhD thesis, Massachusetts Institute of Technology (2015) MR3427191
3 M Andrews, H Miller, Inverting the Hopf map, preprint (2014)
4 D Dugger, D C Isaksen, Low dimensional Milnor–Witt stems over , preprint (2015) arXiv:1502.01007
5 B J Guillou, D C Isaksen, The η–local motivic sphere, J. Pure Appl. Algebra 219 (2015) 4728 MR3346515
6 M A Hill, Ext and the motivic Steenrod algebra over , J. Pure Appl. Algebra 215 (2011) 715 MR2747214
7 D C Isaksen, Stable stems, preprint (2014) arXiv:1407.8418
8 J P May, Matric Massey products, J. Algebra 12 (1969) 533 MR0238929
9 F Morel, On the motivic π0 of the sphere spectrum, from: "Axiomatic, enriched and motivic homotopy theory" (editor J P C Greenlees), NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer (2004) 219 MR2061856
10 R M F Moss, Secondary compositions and the Adams spectral sequence, Math. Z. 115 (1970) 283 MR0266216