Volume 16, issue 5 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
The $\eta$–inverted $\mathbb{R}$–motivic sphere

Bertrand J Guillou and Daniel C Isaksen

Algebraic & Geometric Topology 16 (2016) 3005–3027
Bibliography
1 J F Adams, A finiteness theorem in homological algebra, Proc. Cambridge Philos. Soc. 57 (1961) 31 MR0122852
2 M J Andrews, The v1–periodic part of the Adams spectral sequence at an odd prime, PhD thesis, Massachusetts Institute of Technology (2015) MR3427191
3 M Andrews, H Miller, Inverting the Hopf map, preprint (2014)
4 D Dugger, D C Isaksen, Low dimensional Milnor–Witt stems over , preprint (2015) arXiv:1502.01007
5 B J Guillou, D C Isaksen, The η–local motivic sphere, J. Pure Appl. Algebra 219 (2015) 4728 MR3346515
6 M A Hill, Ext and the motivic Steenrod algebra over , J. Pure Appl. Algebra 215 (2011) 715 MR2747214
7 D C Isaksen, Stable stems, preprint (2014) arXiv:1407.8418
8 J P May, Matric Massey products, J. Algebra 12 (1969) 533 MR0238929
9 F Morel, On the motivic π0 of the sphere spectrum, from: "Axiomatic, enriched and motivic homotopy theory" (editor J P C Greenlees), NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer (2004) 219 MR2061856
10 R M F Moss, Secondary compositions and the Adams spectral sequence, Math. Z. 115 (1970) 283 MR0266216