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Cosmetic surgery and the link volume
of hyperbolic 3–manifolds

YO’AV RIECK

YASUSHI YAMASHITA

We prove that for any V > 0 there exists a hyperbolic manifold MV such that
Vol.MV / < 2:03 and LinkVol.MV / > V . This was conjectured by the authors in
[Algebr. Geom. Topol. 13 (2013) 927–958, Conjecture 1.3].

The proof requires study of cosmetic surgery on links (equivalently, fillings of mani-
folds with boundary tori). There is no bound on the number of components of the link
(or boundary components). For statements, see the second part of the introduction.
Here are two examples of the results we obtain:

(1) Let K be a component of a link L in S3 . Then “most” slopes on K cannot
be completed to a cosmetic surgery on L , unless K becomes a component of a
Hopf link.

(2) Let X be a manifold and � > 0 . Then all but finitely many hyperbolic manifolds
obtained by filling X admit a geodesic shorter than � . (Note that it is not true
that there are only finitely many fillings fulfilling this condition.)

57M12, 57M50

1 Introduction

In [19] we defined an invariant of closed orientable 3–manifolds that measures how
efficiently a given manifold M can be represented as a cover of S3 where the branch
set is a hyperbolic link (such a cover can be constructed using Hilden [8, Theorem 1]
or Montesinos [15, Theorem 1]). We use the notation M

p
�! .S3;L/ to denote a

p–fold cover M ! S3 branched over L. To the cover M
p
�! .S3;L/ we associate

the complexity p Vol.S3 nL/. The link volume of M is defined to be the infimum of
the complexities of all possible covers, that is,

LinkVol.M /D inf
˚
p Vol.S3

nL/ jM
p
�! .S3;L/

	
:

We observed that LinkVol.M / > Vol.M / for any hyperbolic manifold M , and con-
jectured that the link volume cannot be bounded in terms of the hyperbolic volume. In
this paper we prove this conjecture. Our main result is the following (see the next two
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sections for definitions; by M.˛i/ we mean the manifold obtained by filling M along
slope ˛i , and dFarey denotes the distance in the Farey graph):

Theorem 1.1 Let M be a hyperbolic manifold with one cusp. Let f˛igi2I be a set of
slopes of @M . Then the following conditions are equivalent:

(1) There exists L> 0 such that LinkVol.M.˛i// <L for all i 2 I .

(2) There exists d > 0 such that dFarey.˛i ; ˛i0/� d for all i; i 0 2 I .

Remarks 1.2 (1) Corollary 1.8 of [19] shows that (2) implies (1); in fact, [19]
allows for more than one boundary component and gives an explicit bound.

(2) Theorem 1.1 gives a partial answer to Conjecture 1.3 of [19].

Let M denote the figure eight knot exterior; then Vol.M /D 2:02988 : : : . By Cao and
Meyerhoff [3, Theorem 1.1], M has the smallest volume among all cusped hyperbolic
3–manifolds. Applying Theorem 1.1 to manifolds obtained by filling M , we get the
following corollary:

Corollary 1.3 For every V > 0, there exists a hyperbolic manifold MV such that

Vol.MV / < 2:02988 : : : and LinkVol.MV / > V:

This was conjectured by the author in their first study of the link volume (Conjecture 1.3
of [19]); this conjecture was the main motivation for the current paper, although as the
reader will soon see, our investigation quickly led us to the study of cosmetic surgery
on links.

This corollary can be interpreted (negatively) as saying that representing manifolds as
branched covers of S3 is inefficient. On the positive side, it shows that the link volume
is a truly new invariant.

We refer the reader to [19] for basic facts and open questions about the link volume.
We note that the link volume, which was defined using the hyperbolic volume, shares
many of its basic properties.

Not much is known about the link volume of specific manifolds; Rieck and Remigio-
Juárez [18] calculated the link volume of certain prism manifolds (prism manifolds
are small Seifert fibered spaces), but the link volume is not known for any hyperbolic
manifold. A surprising feature of [18] is that the link volume is not finite-to-one.
A few years ago Hitoshi Murakami asked if the link volume is multiplicative under
unbranched covers. The motivation for the question is twofold: first, the hyperbolic
volume has this property. Second, and more to the point, is the following construction:
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Let zM !M be an unbranched cover between closed manifolds. Since zM and M

are closed, the degree of the cover is finite, and we will denote it by p . Then any
(branched) cover M ! S3 gives rise to a (branched) cover zM ! S3 via composition.
The two covers have the same branch set and the degree is multiplicative; therefore
the complexity of the covers multiplies. It follows that LinkVol. zM /� p LinkVol.M /.
The other direction is obviously tricky: given a (branched) cover zM ! S3 , one only
gets an induced cover M ! S3 if the cover zM ! S3 is “equivariant” (we are using
the term equivariant very loosely here, as the cover zM ! S3 need not be regular and
so a group action may not exist). It is possible that Murakami’s question has a positive
answer for certain classes of manifolds but not in general: recently, Remigio-Juárez [17]
constructed manifolds M and zM together with covers zM !M of arbitrarily high
degree where LinkVol. zM /D LinkVol.M /.

In particular, the upper bound obtained in [19] is explicit, and linear in terms of distance
in the Farey tessellation. It would be nice if a similar lower bound could be proved.
The following question is obtained by simply reversing the inequality in the upper
bound of [19, Corollary 1.8] (by M.˛1; : : : ; ˛n/ we mean the manifold obtained by
filling M along slopes ˛1; : : : ; ˛n ):

Question 1.4 Let M be a compact orientable connected 3–manifold with toral bound-
ary. We will denote the components of @M by T1; : : : ;Tn . For each i , fix a slope ˇi

of Ti .

Then do there exist A;B > 0 such that, for any choice of slope ˛i of Ti ,

LinkVol.M.˛1; : : : ; ˛n// > �ACB
� nP

iD1

dFarey.˛i ; ˇi/
�
?

The work in this paper is an application of the structure theorem of [19]. The structure
theorem states that for any V > 0, there is a finite set f�i W Xi!Eig

n
iD1

of “parent sys-
tems”, where Xi and Ei are hyperbolic manifolds and �i W Xi!Ei is an unbranched
cover, such that for any manifold M with LinkVol.M / < V there is some i for which
the following diagram commutes:

Ei

Xi

?
- .S3;L/

?

�i �

M-

Here the horizontal arrows denote inclusions induced by fillings (that is, attaching solid
tori) and �W M ! S3 is a cover that realizes the link volume, that is, a cover for which
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deg.�/Vol.S3 n L/ D LinkVol.M /. The reader may observe the similarity to the
celebrated result of Jørgensen and Thurston [24] that states that for every V > 0 there
are finitely many “parent manifolds” fEig

n
iD1

such that every hyperbolic manifold of
volume less than V can be obtained by filling Ei for some i . (For a detailed exposition
see, for example, Kobayashi and Rieck [14].) This is no coincidence; the structure
theorem is a consequence of Jørgensen–Thurston and the manifolds Ei appearing in it
are the parent manifolds of Jørgensen and Thurston.

In order to obtain Theorem 1.1 from the structure theorem above, we are forced to
study several questions about fillings. Specifically, we study several questions about
cosmetic surgery, that is, surgery on a link in a manifold M that results in a manifold
diffeomorphic to M . Before describing our methods and the results obtained, we
introduce the basic setup; detailed description is given in Section 2A.

After two preliminary sections (2 and 3), in Sections 4 and 5 we construct our main
tool, a rooted tree denoted T .X / which we associate with a manifold X . The vertices
of T .X / are labeled by manifolds; X itself corresponds to the root of T .X /. If X is
hyperbolic, its immediate descendants are certain nonhyperbolic manifolds obtained
by filling X ; if X is not prime, its immediate descendants are the factors of its prime
decomposition; if X is JSJ (that is, if X is prime and the collection of tori in the JSJ
decomposition of X is not empty), its immediate descendants are the components
of its torus decomposition. If X is Seifert fibered or sol it has no descendants. We
prove (Proposition 5.1) that T .X / is finite. All the results described below are proved
by induction on jT .X /j, the number of vertices in T .X /. The various applications
of T .X / are somewhat independent, and we made an effort to make the subsequent
sections (especially Sections 6–10 and 12) independently readable. Throughout this
paper a set of slopes of a torus is called bounded if it is bounded in the Farey graph.

In Section 6 we study cosmetic surgery on a link L� T 2� Œ0; 1�. Let B be a bounded
set of slopes of T 2�f1g. By a multislope ˛ of L we mean a vector whose components
are slopes on the components of L or 1 (see Section 2A for a precise definition). We
will denote the manifold obtained by surgery on L with multislope ˛ by L.˛/. Let A
be the multislopes of L that yield cosmetic surgery, that is, ADf˛ jL.˛/ŠT 2�Œ0; 1�g.
Given ˛ 2A, we may use the product structure of L.˛/ to project the set B and obtain
a set of slopes of T 2 � f0g. Since this set depends on ˛ we will denote it by B˛ . We
prove the T 2 � Œ0; 1� cosmetic surgery theorem (Theorem 6.1), which says that[

˛2A

B˛

is a bounded set of slopes of T 2 � Œ0; 1�.

Algebraic & Geometric Topology, Volume 16 (2016)
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In Section 7 we study cosmetic surgery on a link L�D2 �S1 . We prove the solid
torus cosmetic surgery theorem (Theorem 7.1), which says that the set of slopes of
@D2 � S1 that bound a disk after cosmetic surgery on L is bounded (unless some
component of L is a core of the solid torus after surgery, in which case the claim is
obviously false). For use in later sections we also prove Proposition 7.2, which gives
certain constraints on multislopes of L that yield a cosmetic surgery.

Sections 8 and 9 are devoted to cosmetic surgery on hyperbolic manifolds. Let M be
a hyperbolic manifold, L �M a link, T a component of @M , B a bounded set of
slopes of T , and X D f.˛; f˛/g such that, for every .˛; f˛/, ˛ is a multislope of L

and f˛ is a diffeomorphism f˛W L.˛/!M that maps T to itself. Then for every
.˛; f˛/ 2 X the image of B under f˛ is a set of slopes of T that we will denote
by B˛;f˛ . In Section 8 we prove Theorem 8.1, which says that[

.˛;f˛/2X

B˛;f˛

is a bounded set of slopes of T .

In Section 9 we consider multislopes ˛ of a manifold X that yield a hyperbolic
manifold X.˛/ such that every geodesic in X.˛/ is longer than � (for some fixed
� > 0; here ˛ is a multislope on @X and X.˛/ represents filling rather than surgery).
We prove two things: First, there are only finitely many such manifolds X.˛/ (although
there certainly may be infinitely many such multislopes ˛ ). Second, we prove that all
but finitely many of these multislopes factor through a nonhyperbolic filling. In other
words, there is a subset of the boundary components such that the manifold obtained
by filling only these components is not hyperbolic (we call this a nonhyperbolic partial
filling; this and other useful terminology is introduced in Section 2A). Moreover, one
of the nonhyperbolic partial fillings corresponds to an edge out of the root of T .X /;
this is the key that allows us to use induction.

In Section 10 we prove the S3 cosmetic surgery theorem (Theorem 10.1): let L� S3

be a link and K a component of L. Let A D f˛ j L.˛/ D S3g and A0 � A be the
multislopes for which the core of the solid torus attached to @N.K/ does not form a
Hopf link with the core of any other attached solid torus. Given a multislope ˛ , we
denote its value on K by ˛jK . We prove that

f˛jK j ˛ 2A0g

is bounded. In Example 10.3 we show that the bound cannot be given explicitly in
terms of the number of components of L: for any d > 0 we construct a 2-component
link L with diameter at least d . Since Theorem 10.1 is used in subsequent sections,
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none of the sets shown to be bounded there can be given an explicit bound; moreover,
similar constructions can be made for previous sections.

Finally, in Sections 11–14 we apply these results to prove Theorem 1.1. In particular, in
Section 12 we prove Theorem 12.1, which is of independent interest. In it we consider
manifolds X and M , where M is a one-cusped hyperbolic manifold. We consider
the set of multislopes A of @X such that any ˛ 2A fulfills the following condition:
the manifold obtained by filling all but one boundary component of X is not M . We
describe this by saying that ˛ does not admit a partial filling ˛0 for which X.˛0/ŠM .
In Theorem 12.1 we show that the set of slopes

fˇ jM.ˇ/ŠX.˛/ for some ˛ 2Ag

is bounded.
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2 Background

Throughout this paper, by manifold we mean a compact orientable connected 3–
dimensional smooth manifold. We only consider manifolds with toral boundary, that is,
manifolds whose boundary consists of a (possibly empty) collection of tori. A manifold
is called hyperbolic if its interior admits a complete finite-volume Riemannian metric
locally isometric to hyperbolic space H3 ; we sometimes refer to the boundary compo-
nents of a hyperbolic manifold as cusps. We denote the closed normal neighborhood,
closure, and interior by N. � /, cl, and int, respectively. The geometric intersection
number between curves on a torus is denoted �. � ; � /. Given a knot or a link L�M ,
we call M n int N.L/ the exterior of L and denote it by E.L/. We always assume
transversality.
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2A Notation

The following notation will be used extensively throughout the paper. Let X be a
manifold, fix n components of @X , denoted by T1; : : : ;Tn , and denote their union by
T D

Sn
iD1 Ti (note that T � @X , but possibly T ¤ @X ).

(1) By a multislope of T , say ˛ , we mean a vector ˛ D .˛1; : : : ; ˛n/ such that, for
each i , either ˛i is a slope on Ti (that is, the homology class of a connected
simple closed curve on Ti ) or ˛i D1. By a multislope of a link L we mean a
multislope of @N.L/� @E.L/.

(2) By filling X along ˛ we mean the manifold X.˛/ that is obtained by the
following operation:
(a) To components Ti � T for which ˛i ¤1 we attach a solid torus Vi so

that the meridian of Vi is identified with a connected simple closed curve
representing ˛i .

(b) Nothing is done to components Ti � T for which ˛i D1 and components
of @X n T .

(3) If ˛ D .˛1; : : : ; ˛n/ and ˛0 D .˛0
1
; : : : ; ˛0n/ are multislopes, we say that ˛0 is a

partial filling of ˛ , and write ˛0�pf ˛ , if ˛0i 2f˛i ;1g for each i . If ˛0�pf ˛ and
˛0¤ ˛ we say that ˛0 is a strict partial filling of ˛ . We will also use the notation
.˛1; : : : ; y̨i ; : : : ; ˛n/ for the multislope obtained from .˛1; : : : ; ˛i ; : : : ; ˛n/ by
replacing ˛i with 1 (intuitively, tossing ˛i out).

(4) Assume that X is hyperbolic. A multislope ˛ is called hyperbolic if X.˛/ is
hyperbolic; ˛ is called totally hyperbolic if every partial filling of ˛ is hyperbolic.

(5) Assume that X is hyperbolic. A multislope ˛ is called nonhyperbolic if X.˛/

is not hyperbolic. If ˛ is nonhyperbolic, and every strict partial filling of ˛ is
hyperbolic, then ˛ is called minimally nonhyperbolic. Minimally nonhyperbolic
fillings play a key role in our work and are studied extensively in Section 4.

(6) Let T ; T 0 be unions of components of @X and ˛ a multislope of T . Then ˛
defines a multislope on T 0 by ignoring the components of ˛ that correspond to
components of T nT 0 and assigning the value 1 to every component of T 0 nT .
This multislope is called the restriction of ˛ to T 0 and we will denote it by ˛jT 0 .
In particular, we will denote the value of ˛ on Ti by ˛jTi

; ˛jT 0 is also called
the multislope induced by ˛ on T 0 .

(7) Induced multislopes also appear in a more general setting. Let F be a collection
of tori in int.X /. Suppose that X cut open along F consists of N1 and N2 ,
that is, X DN1[F N2 . Here we are not assuming that N1 or N2 is connected.
Let ˛ be a multislope of components of @X (denoted T ) such that, for each
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component Y of N2 , we have Y .˛j@Y /ŠD2�S1 . In other words, after filling,
N2.˛j@N2

/ consists of solid tori. We will denote .T \ @N1/[F by T1 � @N1 .
Then the multislope of T1 induced by ˛ is the multislope defined by ˛jT \@N1

(on the components of T \ @N1 ) and the homology classes of the meridians of
N2.˛j@N2

/ (on the components of F ).

(8) Recall that if L�X is a link then a multislope of L is a multislope of @N.L/�
@E.L/. By surgery on L along the multislope ˛ , which we will denote by L.˛/,
we mean E.L/.˛/.

2B JSJ-manifolds

In this subsection we summarize the information we need about manifolds with non-
trivial JSJ decomposition. JSJ decompositions were studied by Jaco and Shalen [10]
and, independently, by Johannson [11]. We assume familiarity with this subject; further
details can be found in [9]. We summarize what we need in the definition below; note
that since we restrict our attention to manifolds with boundary tori we may assume
that the JSJ decomposition is along tori (and no annuli).

Definition 2.1 (JSJ-manifold) Let X be a compact 3–manifold such that @X consists
of a (possibly empty) collection of tori. We say that X is a JSJ-manifold if X is
irreducible and the JSJ-decomposition of X consists of a nonempty collection of tori;
in that case we also say that X has a nontrivial JSJ decomposition. Let T denote
the tori in the torus decomposition of a JSJ manifold X . The manifolds obtained by
cutting X along T are called the components of the torus decomposition of X . The
graph dual to the JSJ decomposition of X , or the graph dual to T , is the simplicial
graph with one vertex for every component of the torus decomposition of X and an edge
for every torus in T ; the edge corresponding to T 2 T connects the (not necessarily
distinct) vertices that correspond to the components of the torus decomposition of X

that have T in their boundary.

2C Topological preliminaries

We will need the following simple lemma, which says that knot exteriors can’t be
“linked” with each other; here, by a nontrivial knot exterior we mean a manifold
diffeomorphic to the exterior of a nontrivial knot in S3 .

Lemma 2.2 Let Y be a manifold and for i D 1; : : : ;p let Ei be a nontrivial knot
exterior embedded in a ball Di � Y . Suppose that Ei \Ei0 D∅ for i ¤ i 0 .

Then we may choose the balls Di so that Di \Di0 D∅ for i ¤ i 0 .
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Proof We assume that Ei \Ei0 D∅ during all the isotopies considered in this proof
(for i ¤ i 0 ). Assume, for a contradiction, that the lemma is false and let Y and Ei form
a counterexample that minimizes p ; note that p � 2. Then there exist disjoint balls
D1; : : : ;Dp�1 such that Ei �Di . Assume first that there is no isotopy of Ep such
that Ep\

�Sp�1
iD1

Di

�
D∅. Let mi �Di be a meridian disk for Ei , i D 1; : : : ;p�1;

note that Di is isotopic to Ei [N.mi/. Define

M D

p�1[
iD1

mi :

Minimize jM \Epj; since Ep cannot be isotoped to be disjoint from
Sp�1

iD1
Di , we

have jM \Epj> 0. Let ı�M be an innermost disk of M \@Ep . If @ı is inessential
in @Ep , we use an innermost disk from @Ep to surger M and reduce jM \Epj. This
gives new (and not necessarily isotopic) meridian disks for E1; : : : ;Ep�1 ; we still
denote these disks by m1; : : : ;mp�1 and

Sp�1
iD1

mi by M . We replace the balls Di

with Ei [N.mi/, which we will continue to denote by Di . We repeat this process
until one of the following holds:

(1) jM \Epj > 0 and @ı is essential in @Ep : in that case, ı is a meridian disk
for Ep . Let yDpDEp[N.ı/. Then yDp\

�Sp�1
iD1

Ei

�
D∅. By surgery, we may

assume that M \ yDp D∅; thus we see that fDi ; : : : ;Dp�1; yDpg is a collection
of disjointly embedded balls contradicting our assumption.

(2) jM \Epj D 0: in this case Ep \
�Sp�1

iD1
Di

�
D ∅. Let mp be a meridian

disk for Ep ; by surgery we may assume that mp \
�Sp�1

iD1
Di

�
D ∅. Then

fDi ; : : : ;Dp�1;Ep [N.mp/g is a collection of disjointly embedded balls con-
tradicting our assumption.

Definition 2.3 Let Y be a connected manifold. Let U � Y be a link. We say that U

is an unlink if the components of U bound disjointly embedded disks.

In the following lemma we consider two links in a manifold Y , which we will denote as
L and U . Since U is an unlink, we can perform 1=n surgery about any component K

of U without changing the ambient manifold; here the framing is chosen so that the
boundary of the disk bounded by K corresponds to 0=1. After this surgery say that
the components of L are twisted about K n times. This process may be repeated
on the other component of U . We assume that Y n int N.L[ U/ is irreducible; in
Condition (2) below we describe it as L being irreducible in the complement of U
(that is, .Y n int N.U// n int N.L/ being irreducible). We are interested in the effect
on L when n is large:
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Lemma 2.4 Let Y be a manifold and L, U disjoint links in Y . Assume that the
following conditions hold:

(1) U is an unlink.

(2) L is irreducible in the complement of U .

Then the link L0 obtained from L by twisting its components about each component
of U sufficiently many times has an irreducible exterior.

Proof We induct on jU j, the number of components in U . If jU j D 0 there is nothing
to prove. Otherwise, let K be a component of U . We will denote Y n int N.L[ U/
by X . Let ˛ be any slope of @N.K/ such that the manifold obtained by filling @N.K/
with slope ˛ is reducible. Denote a reducing sphere that minimizes the geometric
intersection number with the core of the attached solid torus by S . Then it is easy
to see that SE D S \ Y n int N.L[ U/ is an essential surface with @SE � @N.K/

a nonempty collection of essential curves, all defining the slope ˛ . By Hatcher [7,
Corollary] only finitely many slopes of @N.K/ bound such a surface. Twisting n times
about K is equivalent to filling @N.K/ with slope ˛ D 1=n (for any choice of basis
for H1.@N.K/IZ/ for which the boundary of the disk bounded by K corresponds to
0=1). Thus for all but finitely many values of n the manifold obtained is irreducible.
We pick one such n, and after twisting L about K n times, we remove K from U .
Induction completes the proof.

The following lemma was proved in [2] by Bleiler, Hodgson and Weeks. It says that
the action induced by the mapping class group of M on the slopes on @M (which is
assumed to be a single torus) is trivial. We bring a new argument here. Our argument
holds for many nonhyperbolic manifolds as well: all we require is that M does not
admit infinitely many fillings that result in diffeomorphic manifolds; this is well known
to hold for hyperbolic manifolds as well as all Seifert fibered spaces except D2 �S1 .
In Lemma 2.5(2) below we use a basis for H1.@M / to identify the slopes of @M with
xQDQ[f1=0g.

Lemma 2.5 Let M be a hyperbolic manifold with @M a single torus. Let �W M!M

be an orientation-preserving diffeomorphism. Then for any simple closed curve 
�@M ,

 and � ı 
 represent the same slope.

Moreover, if M admits orientation-reversing diffeomorphisms, then one of the follow-
ing holds:

(1) For any orientation-reversing diffeomorphism � , the curves 
 and �ı
 represent
the same slope.
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(2) There is a basis for H1.@M / such that, for any orientation-reversing diffeomor-
phism � , if a curve 
 represents the slope p=q then � ı 
 represents the slope
�p=q .

Proof We use the notation introduced in the statement of the lemma. By a well-known
homological argument we have ker i� Š Z, where i�W H1.@M IZ/! H1.M IZ/ is
the homomorphism induced by the inclusion; moreover, any generator of ker i� is
primitive in H1.@M IZ/. Let l be a simple curve such that Œl � is a generator of ker i�
(we denote homology classes by Œ � �). Then Œ� ı l �D˙Œl �.

Let m be a simple curve such that Œl � and Œm� generate H1.@M IZ/. Since � induces
an isomorphism on H1.@M IZ/, Œ� ı m� and Œ� ı l � generate H1.@M IZ/. Thus
Œ� ım�D˙Œm�C nŒl � for some n 2 Z. If n¤ 0, the orbit of Œm� is infinite. But then
the slope represented by m has an infinite orbit, and hence M admits infinitely many
fillings (namely, fillings along the slopes represented by �k ım for k 2Z) that produce
diffeomorphic manifolds. As M is hyperbolic, this is impossible. Thus Œ� ım�D˙m.
We will use Œm� and Œl � as a basis for H1.@M /. We conclude that �� is one of the
following maps:

(1) ��..p; q//D .p; q/.

(2) ��..p; q//D .�p;�q/.

(3) ��..p; q//D .�p; q/.

(4) ��..p; q//D .p;�q/.

Note that cases (3) and (4) imply that � is orientation-reversing; hence if � is orientation-
preserving then ��W H1.@M IZ/!H1.@M IZ/ is either the identity or the antipodal
map; since a slope is defined as the homology class of an unoriented curve, both maps
fix all slopes.

If � is orientation-reversing and ��..p; q//D .�p; q/ or ��..p; q//D .p;�q/, then
(using Œl � and Œm� as a basis for H1.@M IZ/) we see that � maps the slope p=q to
the slope �p=q , as required.

All that remains is to show that if �1 and �2 are orientation-reversing diffeomorphisms
of M , then �1� and �2� are both as in cases (1) or (2), or both as in cases (3) or (4).
If one is as in cases (1) or (2) and the other as in cases (3) or (4), then ��1

2
ı�1 is an

orientation-preserving diffeomorphism and .��1
2
ı�1/� is as in case (3) or (4), which

is impossible.
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2D Cores of solid tori

In this subsection we prove the following necessary condition for a curve in T 2� Œ0; 1�

to become a core of the solid torus obtained by filling:

Lemma 2.6 Let K � T 2 � Œ0; 1� and c � T 2 � f0g be curves, and assume that c is
simple and essential. Let V be the solid torus obtained by filling T 2 � f0g along c .
Suppose that Œc� and ŒK� do not generate H1.T

2 � Œ0; 1�IZ/.

Then K is not isotopic to a core of V .

Proof We identify T 2 � f1g with T 2 . We will denote the projections of c and K

to T 2 by c0 and K0 , respectively. We obtain two classes in H1.T
2IZ/, defined up to

sign, which we will denote by ˙Œc0� and ˙ŒK0�.

Suppose that K is isotopic to a core of V . Then the signed intersection of K and
the meridian disk of V is ˙1. Up to isotopy, c0 is the boundary of the meridian disk
of V . Therefore, the signed intersection of K0 with c0 as curves in T 2 is ˙1 (the
sign may not agree with that of the intersection of K and the meridian disk of V ).
Any class of H1.T

2IZ/ is represented by n parallel copies of a simple closed curve
(possibly nD 0). Let 
 be a simple closed curve such that ˙Œn
 �D˙Œc0�. Since c0

intersects K0 algebraically once, nD˙1 and we may assume that 
 and K0 intersect
once. Thus Œ
 � and ŒK0� generate H1.T

2IZ/. Since Œ
 �D Œc0�D Œc� and ŒK0�D ŒK�,
Œc� and ŒK� generate H1.T

2 � Œ0; 1�IZ/.

2E Hyperbolic Dehn surgery

Let M be a one-cusped hyperbolic manifold. It is well known that, for all but finitely
many slopes on @M , M.ˇ/ is hyperbolic and the core of the attached solid torus,
which we will denote by 
 , is a geodesic. As we vary ˇ , the length of the geodesics 

obtained satisfies

lim
l.ˇ/!1

l.
 /D 0;

where l.ˇ/ is measured in the Euclidean metric induced on @M after some truncation
of the cusp. Moreover, after an appropriate choice of basepoints, as l.ˇ/!1, the
manifolds M.ˇ/ converge in Gromov–Hausdorff distance to M . With this we obtain
the following lemma, which is well known to many experts, but since we could not
find a reference we sketch its proof here.

Lemma 2.7 With notation as above, there exists � > 0 and a finite set Bf of slopes
of @M such that, for any slope ˇ of @M for which ˇ 62 Bf , the following three
conditions hold:
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(1) M.ˇ/ is hyperbolic.

(2) l.
 / < � .

(3) If ı �M.ˇ/ is a geodesic and l.ı/ < � , then ı D 
 n for some n.

Sketch of proof The proofs relies on the thin-thick decomposition which we now
review. Fix � > 0. For a hyperbolic manifold X , the thick part of X , which we will
denote by X�� , consists of all the points of X that have radius of injectivity at least �.
The thin part of X , which we will denote X�� , is defined to be the closure of the
complement of the thick part, that is, X�� D cl.X nX��/. It is a fundamental fact
in hyperbolic geometry that if � is small enough (and this is independent of X ) then
the thin part consists of normal neighborhoods of the short geodesics and the cusps
of X . By replacing � by a smaller number if necessary we assume that � is smaller
than half the length of the shortest geodesic of M ; then M�� is obtained from M by
truncating its cusp.

By the discussion above, (1) and (2) are established in the literature. Assume, for a
contradiction, that there does not exist a finite set Bf for which (3) holds. Then there
is a sequence ˇi of slopes of @M with l.ˇi/!1, and geodesics ıi �M.ˇi/ so that
l.ıi/ < 1= i and ıi is not a power of 
i , the core of the attached solid torus. Let Vi

be the component of M.ˇi/�� that contains 
i . We will denote N1=2i.M.ˇi/ nVi/

by Ni , where N1=2i denotes the 1=2i–neighborhood. By construction, ıi �Ni .

For an appropriate choice of basepoints xi 2M.ˇi/ and x2M , .M.ˇi/;xi/ converges
to .M;x/ in the Gromov–Hausdorff sense. Then fi ı ıi are closed curves in M��
with l.fi ı ıi/! 0. Thus, for sufficiently large i , l.fi ı ıi/ < �, and hence fi ı ıi
is null homotopic or is homotopic into the cusp. In the former case, let D �M��
be an immersed disk whose boundary is fi ı ıi . By isotopy we may move D out of
the cusp. The image of D under f �1

i shows that ıi bounds an immersed disk, which
is a contradiction. In the latter case, we may use an immersed annulus given by the
trace of the homotopy of fi ı ıi to the cusp to conclude that ıi is homotopic into a
neighborhood of the core of the attached solid torus; this implies that the geodesic ıi
is itself a power of that core.

3 Bounded sets in the Farey graph

The Farey graph is a connected graph whose vertices encodes the slopes of the torus;
we begin this section with a brief description of this well-known construction; see
Figure 1. Viewing each edge as a length-one interval, the Farey graph induces a metric
on the slopes which is instrumental for our study: throughout this paper we make
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Figure 1: The Farey tessellation

extensive use of sets of slopes that are bounded in this metric. In [19] we noted that
any cover between tori induces a bijection on their slopes and argued that branched
covers between manifolds can be completed after filling if and only if the slopes filled
correspond under this bijection; in Section 3A we recall these facts and prove that this
bijection is a bilipschitz map, and hence the image of a bounded set is bounded, and the
same holds for preimages. In Section 3B we prove that bounded sets are closed under
certain operations, notably Dehn twists and adding slopes of bounded intersection (see
Proposition 3.6 for a precise statement). Moreover, we show that bounded sets form
the smallest nonempty collection of sets that is closed under these operations; hence,
from our point of view, they are the smallest collection of sets we may use.

We now describe the Farey graph; it is best seen as embedded in H2 [ S1
1 as the

1–skeleton of the Farey tessellation of the hyperbolic plane, although the metric we will
use (as described above) is not induced by the hyperbolic metric. For this construction
see Figure 1. Pick an ideal triangle in H2 and label its vertices as 0=1, 1=0, and 1=1.
The Farey tessellation is constructed recursively: after reflecting a triangle by an edge
whose endpoints are labeled p=q and r=s , we obtain a new triangle and label the
new vertex by .pC r/=.qC s/ or .p� r/=.q� s/; the sign depends on the direction
of the reflection. This addition rule is induced by the addition in Z�Z. At the end
of the day we obtain a tessellation of H2 by ideal triangles and it is a well-known
consequence of Euclid’s algorithm that every element of xQDQ[f1=0g appears as
the label for exactly one vertex. The Farey graph is the graph given by the 1–skeleton
of the Farey tessellation. After choosing a basis for H1.T

2IZ/ we identify the slopes
of T 2 with xQ. Thus we have a bijection between the slopes of T 2 and the vertices
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of the Farey tessellation. It is easy to see that the claims below do not depend on the
choice of basis, as a change of basis induces an isomorphism of the Farey graphs.

Let x and y be vertices that correspond to slopes ˛1 and ˛2 ; it is well-known that x

and y are connected by an edge in the Farey tessellation if and only if ˛1 and ˛2 can be
represented by curves that intersect exactly once. The distance in the Farey tessellation
is the minimal number of edges traversed to get from one vertex to another. We define
the distance between slopes ˛1 and ˛2 to be the distance between the corresponding
vertices of the Farey tessellation and denote it by

dFarey.˛1; ˛2/:

Definition 3.1 A set of slopes is called bounded if it is has bounded diameter using
the metric induced by dFarey .

It is well known that the Farey graph has infinite diameter, hence:

Lemma 3.2 If B is a bounded set of slopes then there are infinitely many slopes not
in B .

3A Coverings and slopes

For this subsection fix tori T , T 0 and a cover �W T ! T 0 . In [19] we showed that �
induces a bijection between the slopes of T and those of T 0 ; we refer the reader to
that paper for a detailed discussion. The correspondence is defined as follows: let ˛ be
a slope of T and 
 an essential connected simple closed curve on T representing ˛ .
Then � ı 
 is an essential connected (not necessarily simple) closed curve on T 0 , and
hence there exist a positive integer m and ˇ0 , a connected simple closed curve on T 0

such that .ˇ0/m is homologous to � ı 
 . We define the slope represented by ˇ0 to
be the slope that corresponds to ˛ . Conversely, let ˛0 be a slope of T 0 represented
by an essential simple closed curve 
 0 . Then ��1.
 0/ is an essential (not necessarily
connected) simple closed curve. We define the slope represented by a component
of ��1.
 0/ to be the slope that corresponds to ˛0 . It is not hard to see that these
correspondences are inverses of each other.

We refer to slopes that correspond under this bijection as corresponding slopes. The
branched covers between manifolds that we consider in this paper induce covers on
boundary components. In [19] we showed that a branched cover X !E (where X

and E are manifolds with toral boundary and the branch set is closed, that is, disjoint
from @E ) extends to a branched cover after filling if and only if the slopes filled are
corresponding slopes. This simple fact will often be used without reference throughout
this paper.
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Figure 2: The two quadrilaterals in the Farey tessellation

Remark 3.3 In the example below it will be convenient to take an alternate view of
the correspondence between the slopes of T and those of T 0 , where �W T ! T 0 is a
cover. By lifting �W T ! T 0 appropriately to the universal covers we obtain a matrix
in SL.2;Q/. Any such matrix gives a correspondence between lines of rational slope
in the universal covers, which are naturally identified with slopes on the tori; the reader
can verify that this correspondence is equivalent to the correspondence described above.

Let T and T 0 be tori and �W T !T 0 a cover as above. We will often consider bounded
sets of T or T 0 ; our goal in this subsection is to understand their behavior under the
correspondence induced by � . We begin with a simple example: consider T and T 0 as
R2=�, where � is given by .x;y/� .xCn;yCm/ for n;m2Z. Let �W T !T 0 be
the double cover induced by the map z�W R2!R2 given by z�..x;y//D .x; 2y/. The
four segments in R2 connecting .0; 0/ to .1; 0/, .2; 1/, .1; 1/, and .0; 1/ map to four
curves on T , defining slopes that can be naturally denoted as 0=1, 1=2, 1=1, and 1=0;
see Figure 2. The images of these segments under z� are the segments connecting .0; 0/
to .1; 0/, .2; 2/, .1; 2/, and .0; 2/, and the corresponding slopes are 0=1, 1=1, 2=1,
and 1=0. Thus the correspondence maps a quadrilateral in the Farey graph of T to a
quadrilateral in the Farey graph of T 0 ; each quadrilateral has exactly one diagonal edge.
In the first, the diagonal edge connects 0=1 to 1=1, and in the second it connects 1=0

to 1=1. These edges do not correspond, showing that the correspondence between the
slopes of T and those of T 0 (viewed as a bijection between the vertices of the Farey
graphs) does not induce an isomorphism of the Farey graphs. Equivalently, the bijection
between the slopes of T and T 0 (considered as metric spaces with the metric dFarey )
is not an isometry. It is easy to see that in this example some distances decrease while
others increase. Since we always consider Farey graphs as metric spaces with the
metric dFarey , we need the following lemma:

Lemma 3.4 Let T , T 0 be tori and �W T ! T 0 be a cover. Then the correspondence
between slopes of T and T 0 is bilipschitz and hence it sends bounded sets of T to
bounded sets of T 0 and vice versa.
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Proof For convenience we endow T 0 with a Euclidean metric and T with the pullback
metric. Since we are only interested in the homology classes represented by curves,
throughout the proof of this lemma we assume as we may that the essential curves of
T and T 0 considered are geodesic.

We first show that the map from the slopes of T to those of T 0 is Lipschitz. Fix a
positive integer d and two slopes of T of distance exactly d , which we will denote
by ˛0 and ˛d . By definition of dFarey , there exist slopes ˛1; : : : ; ˛d�1 such that
dFarey.˛i�1; ˛i/ D 1 (for i D 1; : : : ; d ). Let 
0; : : : ; 
d be geodesics on T repre-
senting ˛0; : : : ; ˛d , respectively. Since geodesics on a torus minimize intersection,
dFarey.˛i�1; ˛i/D1 is equivalent to j
i�1\
i jD1. Let 
 0i be a connected simple closed
geodesic on T 0 and mi a positive integer such that �.
i/ is obtained by traversing 
 0i
exactly mi times. By definition, 
 0i is a geodesic representing ˛0i , where ˛0i is the
slope of T 0 that corresponds to ˛i . We will denote j
 0

i�1
\ 
 0i j by ci . Let �i denote

��1.
 0i / and denote the number of components of �i by ni . Each component of �i is
a geodesic parallel to 
i and is an mi–fold cover of 
 0i ; it follows that nimi D deg.�/,
and in particular

ni � deg.�/:

Since�i�1\�iD�
�1.
 0

i�1
\
 0i /we have j�i�1\�i jDci deg.�/. Since j
i�1\
i jD1,

every component of �i�1 intersects every component of �i exactly once; it follows that
j�i�1\�i j D ni�1ni , the number of pairs of curves from �i�1 and �i . Combining
these facts, we see that

ci deg.�/D j�i�1\�i j D ni�1ni � deg.�/2;

showing that ci � deg.�/.

Thus �.
 0
i�1
; 
 0i /� j


0
i�1
\
 0i j � deg.�/. It then follows from Euclid’s algorithm that

dFarey.˛
0
i�1
; ˛0i/ � 2 log2 .deg.�//. (For the relation between Euclid’s algorithm and

the Farey tessellation, see, for example, [6].) We get

dFarey.˛
0
0; ˛
0
d /�

dX
iD1

dFarey.˛
0
i�1; ˛

0
i/

� 2 log2.deg.�//d

D 2 log2.deg.�//dFarey.˛0; ˛d /:

As d , ˛0 , and ˛d were arbitrary we conclude that

dFarey.˛
0
0; ˛
0
d /� 2 log2 .deg.�//dFarey.˛0; ˛d /;
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showing that the map from the slopes of T to the slopes of T 0 is Lipschitz with
constant 2 log2.deg.�//.

The converse is essentially identical and we only sketch it here. Similarly to the
argument above, fix d and let ˛0

0
; ˛0

d
be slopes of T 0 such that dFarey.˛

0
0
; ˛0

d
/D d . Let

˛0
0
; : : : ; ˛0

d
be a sequence of slopes that realizes the distance, that is, dFarey.˛

0
i�1
; ˛0i/D1.

Let 
 0i be a geodesic on T 0 that represents ˛0i ; then j
 0
i�1
\ 
 0i j D 1. Let 
i be a

component of ��1.
i/. By definition, 
i represents ˛i , the slope of T that corresponds
to ˛0i . Since 
i�1\ 
i � �

�1.
 0
i�1
\ 
 0i / we have

j
i�1\ 
i j � j�
�1.
 0i�1\ 


0
i /j D deg.�/j
 0i�1\ 


0
i j D deg.�/:

As above, this implies that dFarey.˛i�1; ˛i/� 2 log2 .deg.�//, and hence

dFarey.˛0; ˛d /� 2 log2 .deg.�//dFarey.˛
0
0; ˛
0
d /;

showing that the map from the slopes of T 0 to the slopes of T is Lipschitz with
constant 2 log2.deg.�//.

3B On bounded sets

In this subsection we study properties of bounded sets, that is, sets of slopes that
are bounded in the metric dFarey (as defined in Definition 3.1). Our main goal is to
show (Proposition 3.6) that bounded sets are closed under certain operations, the most
important of which is Dehn twists, which we explain below. We then note (Lemma 3.7)
that any nonempty collection of sets of slopes that is closed under the operations
discussed in Proposition 3.6 contains all bounded sets; therefore boundedness is the
weakest condition that suffices for our work.

Let ˛ be a slope on T represented by a connected simple closed curve 
 . By definition
˛ determines 
 up to isotopy. Hence the Dehn twist about 
 is completely determined
by ˛ . The Dehn twist about 
 induces a map on the slopes of T , which we will denote
as D˛ . Although the proper way to refer to D˛ is “the map induced on the slopes
of T by Dehn twisting about a simple connected curve representing ˛” we will, for
simplicity’s sake, refer to it as the Dehn twist about ˛ .

Since any Dehn twist is a homeomorphism of T , it sends any pair of curves that intersect
once to a pair of curves that intersect once; hence, for any slope ˛ , D˛ induces a
graph isomorphism of the Farey graph, and in particular D˛ induces an isometry on
the slopes of T with the metric given by dFarey . Before stating our next proposition
we introduce the following notation, which will be used throughout this paper:
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Notation 3.5 Let T be a torus. For slopes ˛; ˇ of T we will use the notation �.˛; ˇ/
to denote the geometric intersection number between ˛ and ˇ . Given a set of slopes B

and a positive integer c , we will denote by �.B; c/the set of slopes that intersect some
member of B at most c times; that is,

�.B; c/D f˛ j�.˛; ˇ/� c for some ˇ 2 Bg:

We are now ready to state:

Proposition 3.6 Let T 2 be a torus. The following conditions hold for sets of slopes
on T 2 :

(1) A subset of a bounded set is bounded.

(2) Finite unions of bounded sets are bounded.

(3) For any slope ˛ and any bounded set of slopes B , the set[
n2Z

fDn
˛.ˇ/ j ˇ 2 Bg

is bounded (where D˛ is the Dehn twist about ˛ as defined above).

(4) For any integer c � 0 and any bounded set B , the set of slopes �.B; c/ is
bounded.

Proof (1) Obvious from the definition of a metric space.

(2) Obvious from the definition of a metric space.

(3) Since D˛ is induced by a homeomorphism of T 2 , it is clearly an isometry of
the Farey graph; moreover, ˛ is fixed under D˛ . Let d > 0 be the diameter of B ; fix
ˇ 2 B . By the triangle inequality, for any n1; n2 2 Z and any ˇ1; ˇ2 2 B we have

dFarey.D
n1
˛ .ˇ1/;D

n2
˛ .ˇ2//� dFarey.D

n1
˛ .ˇ1/;D

n1
˛ .ˇ//C dFarey.D

n1
˛ .ˇ/; ˛/

C dFarey.˛;D
n2
˛ .ˇ//C dFarey.D

n2
˛ .ˇ/;D

n2
˛ .ˇ2//:

Since ˛ is fixed under the isometry D
n1
˛ , for the second term we have

dFarey.D
n1
˛ .ˇ/; ˛/D dFarey.D

n1
˛ .ˇ/;D

n1
˛ .˛//D dFarey.ˇ; ˛/:

Similarly, the third term is bounded above by dFarey.ˇ; ˛/. For the first term we have

dFarey.D
n1
˛ .ˇ1/;D

n1
˛ .ˇ//� dFarey.ˇ1; ˇ/� d:

Similarly, the fourth term is bounded by d . Combining these bounds, we see that the
set

S
n2ZfD

n
˛.ˇ/ j ˇ 2 Bg is bounded with diameter at most

2d C 2dFarey.˛; ˇ/:
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(4) We first prove the claim when B has only one element, which we will denote by ˇ .
By an appropriate choice of basis for H1.T

2IZ/ we may identify the slopes of T

with Q[f1=0g so that ˇ corresponds to 1=0. It is well known that for any slope p=q ,
dFarey.1=0;p=q/ is exactly the length of the shortest continued fraction expansion of
p=q (see, for example, [21]). On the other hand, �.1=0;p=q/ D

ˇ̌
det
�

1
0

p
q

�ˇ̌
D jqj.

Thus the slopes under consideration correspond to p=q with jqj � c . By a well-known
application of Euclid’s algorithm, such a number has a continued fraction expansion
of length at most 2 log2.jqj/. Thus every slope in B has distance at most 2 log2.jqj/

from ˇ , showing that B is bounded with diameter at most 4 log2.c/.

For the general case, let B be a bounded set of slopes and c � 0 an integer. We will
denote the diameter of B by d . For ˛1; ˛2 2�.B; c/, let ˇ1; ˇ2 2 B be slopes such
that �.˛1; ˇ1/� c and �.˛2; ˇ2/� c . Then the following two inequalities hold:

� dFarey.˛1; ˇ1/; dFarey.˛2; ˇ2/� 4 log2.c/,

� dFarey.ˇ1; ˇ2/� d .

(The first point follows from the argument above and the second from the fact that the
diameter of B is d .) By the triangle inequality, �.B; c/ is bounded with diameter at
most 4 log2.c/C d .

The reader may wonder if “bounded sets” is the right concept to use. First we give an
example that will explain why using unbounded sets may be tricky. Using the upper half
plane model of H2 , we construct the Farey tessellation starting with the triangle 0, 1 and
1=0 (the point at infinity). Then the slopes are naturally identified with Q[ 1=0; this
identification is used throughout this example. Let q0i be an enumeration of Q\ Œ0; 1/,
i D 1; 2; : : : . Let D1=0 denote the map on the slopes induced by Dehn twist about
1=0; it is not hard to see that for any slope ˛ ¤ 1=0 we have D1=0.˛/D ˛C 1. Let
qi DDi.q0i/. Finally, let S D fqig. Now S is a fairly “thin” set of slopes; it has only
one member in every interval Œn; nC 1/, nD 1; 2; : : : , and so its only accumulation
point is 1=0. However, if we allow twisting about 1=0, we see the following: for any
slope ˛ ¤ 1=0, there is a unique j 2 Z such that ˛C j 2 Œ0; 1/. Hence, there is a
unique i such that ˛C j D q0i . Thus

˛ DD
�j

1=0
.q0i/DD

�.iCj/

1=0
.qi/:

In other words, fDn
1=0
.qi/ j qi 2 S; n 2Zg is the set of all slopes but 1=0. As we shall

see below repeatedly, when considering cosmetic surgery one must allow for Dehn
twists; thus, the analogue of Proposition 3.6 for the set S is very much false, and such
a set cannot be used in our work.

Algebraic & Geometric Topology, Volume 16 (2016)



Cosmetic surgery and the link volume of hyperbolic 3–manifolds 3465

On the other hand we have the following lemma, that tells us that all bounded sets
must be permitted; in that sense, our results cannot be improved; here P.S/ stands
for the power set (that is, set of all subsets) of S . Note that the assumptions of the
lemma below are, essentially, weak versions of the assumption of Proposition 3.6. For
assumption (c), recall Notation 3.5.

Lemma 3.7 Let S denote the set of all slopes and suppose Z � P.S/ satisfies the
following conditions:

(a) Z contains a nonempty set.

(b) Z is closed under subsets.

(c) For any set B 2Z , we have that �.B; 1/ 2Z .

Then Z contains all the bounded sets.

Proof Let B 2 Z denote a nonempty set; B exists by assumption (a). Let ˛ be a
slope in B . For a nonnegative integer d , let B.˛; d/� S be the set of all slopes of
distance at most d from ˛ , that is,

B.˛; d/D f˛0 2 S j dFarey.˛; ˛
0/� dg:

We claim that for any nonnegative integer d we have that B.˛; d/ 2Z . The proof is
an induction on d . For the base case d D 0 we have that B.˛; 0/D f˛g. Since ˛ 2B

and Z is closed under subsets (assumption (b)), we have that f˛g 2Z .

For the inductive step fix d > 0. By the induction assumption, B.˛; d � 1/ 2 Z .
Let ˛0 2 B.˛; d/ n B.˛; d � 1/. Then there is some ˛00 2 B.˛; d � 1/ such that
dFarey.˛

0; ˛00/D 1. By definition of the metric on the Farey graph, this is equivalent to
�.˛0; ˛00/D1. Hence ˛02�.B.˛; d�1/; 1/. We see that B.˛; d/��.B.˛; d�1/; 1/.
By assumption (c) we have that �.B.˛; d �1/; 1/ 2Z and by assumption (b) we have
that B.˛; d/ 2Z , as required.

Next let B be an arbitrary nonempty bounded set. We will denote the diameter of B

by dB . We fix a slope of B , which we will denote by ˛B . Then for any slope ˛0
B
2B ,

by the triangle inequality we have that

dFarey.˛; ˛
0
B/� dFarey.˛; ˛B/C dFarey.˛B; ˛

0
B/� dFarey.˛; ˛B/C dB:

Hence B � B.˛; dFarey.˛; ˛B/C dB/, and by assumption (b) we have that B 2Z .

We conclude this section by revisiting Lemma 2.5:
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Lemma 3.8 Let M be a hyperbolic manifold, @M a single torus. There exists a
(possibly trivial) involution i on the set of slopes of @M that induces an isometry on
the Farey graph, so that if �W M !M is a diffeomorphism and ˛ a slope of @M , the
image of ˛ under � is either ˛ or i.˛/.

Proof This follows immediately from Lemma 2.5 and the fact that .p; q/ 7! .�p; q/

induces an isometric involution on the Farey graph (namely, the isometry given by the
reflection by the edge connecting 1=0 to 0=1, and the endpoints of this edge are its
fixed slopes).

4 Minimally nonhyperbolic fillings

From this section on, the notation introduced in Section 2A will be used regularly; we as-
sume the reader is comfortable with it. In this section we study minimally nonhyperbolic
fillings, a concept which is designed for studying exceptional surgeries on links with
multiple components, or equivalently, exceptional fillings on manifolds with multiple
boundary components. There are two reasons for studying minimally nonhyperbolic
fillings: first, every nonhyperbolic filling admits a minimally nonhyperbolic partial
filling; second, in Proposition 4.2 we show that any manifold admits only finitely many
minimally nonhyperbolic fillings. This is essential for finiteness of T .X /, the tree that
we will construct in the next section.

Let us begin with a simple example. Let X be the exterior of the Whitehead link
endowed with the natural meridian and longitude on each boundary component. For j D

1; 2; : : : , let .˛j
1
; ˛

j
2
/D .1=0;pj=qj / for some pj ; qj . Then for each j , X.˛

j
1
; ˛

j
2
/

is a lens space and hence .˛j
1
; ˛

j
2
/ is a nonhyperbolic multislope. There is no mystery

here: all the multislopes .˛j
1
; ˛j

2
/ have a common partial filling, namely .1=0;1/,

and X.1=0;1/ŠD2 �S1 is nonhyperbolic. In this situation, it is better to consider
the single multislope .1=0;1/ and not the infinite set of multislopes f.˛j

1
; ˛

j
2
/g1

jD1
.

This leads us to the following definition, which is central to our work:

Definition 4.1 (minimally nonhyperbolic filling) Let X be a hyperbolic manifold,
T D T1 [ � � � [ Tn components of @X , and ˛ a multislope of T . We say that ˛ is
minimally nonhyperbolic if X.˛/ is nonhyperbolic and any strict partial filling ˛0�pf ˛

is hyperbolic.

So, for instance, in the example of the Whitehead link exterior discussed above, the
slopes .1=0;pj=qj / are not minimally nonhyperbolic and .1=0;1/ is.

We prove:
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Proposition 4.2 Let X be a hyperbolic manifold and T D T1 [ � � � [Tn a union of
components of @X . Then there are only finitely many minimally nonhyperbolic fillings
on T .

Proof Since a minimally nonhyperbolic filling is, in particular, a multislope that
yields a nonhyperbolic manifold, we assume as we may that there are infinitely many
multislopes on T yielding nonhyperbolic manifolds. Let ˛j D .˛

j
1
; : : : ; ˛

j
n / be an

infinite set of distinct nonhyperbolic fillings (j D 1; 2; : : : ). We will show that one
of these slopes is not minimally nonhyperbolic. Note that the proposition will follow
by contradiction: if X admitted infinitely many minimally nonhyperbolic fillings, we
could take ˛j D .˛

j
1
; : : : ; ˛

j
n / to be that set.

After subsequencing n times we may assume that for each 1� i �n, ˛j
i (the restrictions

of ˛j to Ti ) consists of slopes that are either all distinct or all the same, that is, for
each i exactly one of the following holds:

(1) ˛
j
i ¤ ˛

j 0

i for j ¤ j 0 ; we assume in addition that ˛j
i ¤1 for any j .

(2) ˛
j
i D ˛

j 0

i for any j ; j 0 (possibly ˛j
i D1).

To avoid overly complicated notation we do not rename ˛j D .˛
j
1
; : : : ; ˛

j
n /. After

reordering the boundary components if necessary, we may assume that ˛j
i are distinct

for 1� i � k , and ˛j
i is constant for kC 1� i � n (for some 0� k � n). Note that

k D 0 is impossible since f˛j g is infinite. We drop the superscript from ˛i for i > k .

Let yX DX.1; : : : ;1; ˛kC1; : : : ; ˛n/. Then the manifolds

yX .˛
j
1
; : : : ; ˛

j

k
/DX.˛

j
1
; : : : ; ˛j

n /

are all nonhyperbolic by assumption. We claim that yX is not hyperbolic. Assume, for
a contradiction, that yX is hyperbolic. Since ˛j

i !1 for all i , by Thurston’s Dehn
surgery theorem, for large enough j , yX .˛j

1
; : : : ; ˛

j

k
/ would be hyperbolic as well.

This contradicts our assumptions and shows that yX is not hyperbolic. Recall that k � 1,
and that ˛i ¤1 for 1 � i � k ; hence the multislope .1; : : : ;1; ˛kC1; : : : ; ˛n/ is
a nonhyperbolic strict partial filling of .˛j

1
; : : : ; ˛

j

k
; ˛kC1; : : : ; ˛n/, showing that the

latter are not minimally nonhyperbolic (for any j ). The proposition follows.

5 T.X/

In this section we construct the tree T .X /, which is the main tool for our work
on cosmetic surgery. The construction relies heavily on the concept of minimally
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nonhyperbolic fillings from the previous section. After constructing T .X / we prove
(Proposition 5.1) that it is finite. We then explain (Proposition 5.2) why T .X / can be
used to study fillings. Since T .X / was designed for studying exceptional surgeries on
hyperbolic manifolds, it is perhaps a little surprising that it can also be used to study
hyperbolic fillings; this is explained and proved in Proposition 5.4.

Let X be a compact orientable manifold whose boundary consists of tori and T D
T1[ � � � [Tn a union of components of @X . We wish to associate to .X; T / a finite
rooted tree, denoted T .X; T / (or T .X / when no confusion can arise), that encodes
exceptional fillings on X along the components T .

Before constructing T .X / we comment on its structure. The vertices of T .X / cor-
respond to manifolds with X as the root. We direct every edge away from the root.
Branches, which are always assumed to follow this direction, encode the filling process,
and therefore we may have distinct vertices that correspond to diffeomorphic manifolds.
It follows from the construction below that the vertices are arranged along levels. The
levels are grouped into blocks of the form 3m, 3mC 1, and 3mC 2 and obey the
following rules:

(1) Geometric manifolds (that is, hyperbolic manifolds, Seifert manifolds, and sol
manifolds) are arranged on levels 3m (for m 2 Z�0 ).

(2) Reducible manifolds are arranged on levels 3mC 1 (for m 2 Z�0 ).

(3) JSJ manifolds (recall Definition 2.1) are arranged on levels 3mC2 (for m2Z�0 ).

(4) Every edge in T .X / is directed from the initial vertex to the terminal vertex
(say from u to v ) so that if u is at level 3m, 3mC 1, or 3mC 2, then v is at
level 3mC 1, 3mC 2, or 3mC 3; moreover, the level of v is strictly greater
than that of u. We call u the predecessor of v and v the direct descendant of u.

We are now ready to construct T .X /. The root of T .X / is a vertex labeled X . Assume
first that X is geometric. Then X is placed in level 0. If X is Seifert fibered or a
sol manifold, then the corresponding vertex is an isolated vertex: there are no edges
out of X . If X is hyperbolic, we place one edge e out of X for each minimally
nonhyperbolic filling on X (say ˛ ), and the terminal vertex of e is labeled X.˛/.
Since ˛ is a nonhyperbolic filling, X.˛/ is one of the following:

(1) Reducible: then X.˛/ is placed at level 1.

(2) JSJ: then X.˛/ is placed at level 2.

(3) Seifert fibered or sol manifold: then X.˛/ is placed at level 3.
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Next suppose that X is reducible. We emphasize that when X is irreducible but not
prime — that is, when X Š S2 �S1 — we consider it a Seifert fibered manifold and
place it at level 3 with no descendants. Then the corresponding vertex is placed at
level 1. Let X1; : : : ;Xk be the factors of the prime decomposition of X . We place
k edges out of X with terminal vertices labeled X1; : : : ;Xk . Each Xi is either JSJ,
hyperbolic, Seifert fibered, or sol. Accordingly, the corresponding vertex is placed
at level 2 (if it is JSJ) or 3 (in all other cases). Note that if i ¤ i 0 then Xi and Xi0

correspond to distinct vertices even if Xi ŠXi0 .

Finally, let X be a JSJ manifold. The corresponding vertex is placed at level 2. Let
X1; : : : ;Xk be the components of the torus decomposition of X . We place k edges
out of X , with terminal vertices labeled X1; : : : ;Xk . Each Xi is hyperbolic or Seifert
fibered. Appropriately, they are all placed at level 3. As above, if i ¤ i 0 then Xi

and Xi0 correspond to distinct vertices even if Xi ŠXi0 .

The construction is recursive, and if X1 is a direct descendant of X , then we place
T .X1/ with the root at the vertex labeled X1 ; since X1 is a direct descendant of X

its level is 1, 2 or 3. If the level is 3 we shift all the levels in T .X1/ by C3.

Let us discuss an example. Let X3 be a hyperbolic manifold with mC 1 boundary
components. Let X2 be double of X3 along m boundary components. Hence X2 is a
toroidal manifold with two boundary components. Let X0 be the manifold obtained
from X2 by drilling a hyperbolic knot (which is known to exist, essentially by Myers [16,
Corollary 6.3]). Hence X0 is a hyperbolic manifold with three boundary components.
Now in T .X0/ there is an edge connecting X0 to X2 , corresponding to a minimally
nonhyperbolic filling (since we fill only one boundary component, the filling must
be minimal). Next we see two edges from X2 to two copies of X3 . Thus as we
move down T .X0/ we start with a single hyperbolic manifold with three boundary
components, and later encounter two hyperbolic manifolds, each with mC 1 boundary
components for an arbitrary m (and, perhaps, other manifolds as well — this may not
be all the edges between the levels 0 and 3). As the tree of T .X0/ contains two copies
of T .X3/ it can be quite big. We leave it as an exercise to the reader to construct
other complicated examples; for instance, given an integer m, construct a hyperbolic
manifold X with one boundary component such that T .X / admits a directed path of
length m.

Our goal is to use jT .X /j, the number of vertices in T .X /, as a basis for induction.
For that we need:

Proposition 5.1 T .X / is finite.
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Proof Let the degree of a vertex v be the number of direct descendants of v (that is,
the number of edges out of v ). It is easy to see that the degree of every vertex v is
finite:

(1) If v corresponds to a hyperbolic manifold X , the degree is finite because X

admits only finitely many minimally nonhyperbolic fillings (Proposition 4.2).

(2) If v corresponds to a Seifert manifold or a sol manifold the degree is zero by
construction.

(3) If v corresponds to a reducible manifold the degree is the number of factors in
its prime decomposition and is therefore finite.

(4) If v corresponds to a JSJ manifold the degree is finite by the finiteness of the
torus decomposition [10] and [11].

The problem is avoiding an infinite branch. Assume there is such a branch. Now
by construction every edge starting on level 3m, 3mC 1, or 3mC 2 ends at a level
3mC 1, 3mC 2, or 3mC 3. The vertices at level 3mC 3 that do not correspond to
hyperbolic manifolds are leaves; hence the branch must admit a vertex corresponding
to a hyperbolic manifold on every level 3m. Let X3m denote this hyperbolic manifold.

We will use the Gromov norm; for the definition see [5]. The Gromov norm has the
following properties, proved in [5] and [22, Theorem 1] (here X is a compact orientable
manifold such that @X consists of tori):

(1) If the Gromov norm is nonzero, then it strictly decreases under any filling.

(2) The Gromov norm of X equals the sum of the Gromov norms of the components
of the prime decomposition of X .

(3) The Gromov norm is additive under decomposition along essential tori.

(4) The Gromov norm is additive under disjoint union.

(5) The Gromov norm is nonnegative.

Since X3mC3 is obtained from X3m by filling, then (possibly) reducing along essential
spheres and discarding components, and (possibly) decomposing along essential tori
and discarding components, we see that the Gromov norm of X3mC3 is strictly smaller
than that of X3m . It is well known that the hyperbolic volume is a constant multiple of
the Gromov norm, and so we see that X0;X3;X6; : : : forms a sequence of hyperbolic
manifolds with Vol.X0/ >Vol.X3/ >Vol.X6/ > � � � . But this cannot be, as hyperbolic
volumes are well ordered.
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In the following sections, we will use T .X / inductively. The problem is that we are only
dealing with filling, while reducible and JSJ manifolds are treated differently on T .X /

(decomposition along spheres and essential tori, respectively). Let ˛ D .˛1; : : : ; ˛n/

be a multislope. If there exists a minimally nonhyperbolic filling ˛0 such that ˛0 �pf ˛

(possibly ˛0 D ˛ ) we say that ˛ admits a minimally nonhyperbolic partial filling. Note
that if ˛ is a nonhyperbolic multislope, which by definition means that X is hyperbolic
and X.˛/ is not, then ˛ admits a minimally nonhyperbolic partial filling.

We will need the following proposition; it is useful, for example, when ˛ is itself a
hyperbolic multislope, but admits a minimally nonhyperbolic partial filling (note that
such multislopes do exist; constructing examples is quite easy).

Proposition 5.2 Let X be a hyperbolic manifold and ˛ a multislope of @X . Suppose
that ˛ admits a minimally nonhyperbolic partial filling ˛0 so that X.˛0/ is either
reducible or JSJ. Suppose further that X.˛/ is irreducible and atoroidal.

Then X.˛/ is obtained by filling some direct descendant of X.˛0/ on T .X /.

Remark 5.3 The theorem allows for the possibility that X.˛/ is itself a direct descen-
dant of X.˛0/. In that case, the theorem simply says that X.˛/ is obtained by filling
X.˛/ along the trivial multislope .1; : : : ;1/.

Proof Since ˛0 �pf ˛ , it is clear that X.˛/ is obtained from X.˛0/ by filling.

Assume first that X.˛0/ is reducible. Then the descendants of X.˛0/ are, by construc-
tion of T .X /, the factors of the prime decomposition of X.˛0/. Since X.˛/ is a prime
manifold that is obtained from X.˛0/ by filling, it is easy to see that in that filling all
the components in the prime decomposition of X.˛0/ become S3 except at most one.
The proposition follows in this case.

Next assume that X.˛0/ is JSJ. By assumption, X.˛/ is prime and atoroidal. Therefore
every torus T in X.˛/ fulfills at least one of the following three conditions:

(1) T is boundary parallel.

(2) T bounds a solid torus.

(3) T bounds a knot exterior contained in a ball.

Since X.˛/ is obtained from X.˛0/ by Dehn filling, X.˛0/�X.˛/. Let T �X.˛0/ be
a torus. Considering T as a torus in X.˛/ allows us to endow it with a co-orientation
as follows:
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(1) If T is boundary parallel, we co-orient it towards the boundary.

(2) If T bounds a solid torus, we co-orient it towards the solid torus.

(3) If T bounds a knot exterior contained in a ball, we co-orient it towards the knot
exterior.

Note that some tori may get both co-orientations (for example, a boundary parallel torus
in a solid torus or an unknotted torus in a ball). In that event we pick an orientation
arbitrarily.

Let T be the tori of the JSJ decomposition of X.˛0/. Let � be the graph dual to T
(recall that in Definition 2.1 we defined the graph dual to T to be the graph that has one
vertex for each component of the torus decomposition of X.˛0/ and one edge for each
torus T 2 T , where the edge corresponding to T connects the vertices that correspond
to the components adjacent to T ). Since X is connected so is X.˛0/; hence � is
connected. Since X.˛/ is atoroidal and irreducible it contains no nonseparating tori,
and is follows that neither does X.˛0/; hence � contains no cycles. We conclude
that � is a tree. We endow each edge of � with an orientation consistent with the
co-orientation of the corresponding torus of T . Using induction, it is easy to see that
� admits a source (a vertex connected only to edges that point away from it): since
T ¤ ∅, � contains an edge. Thus � admits a leaf (a vertex connected to only one
other vertex), say v . If the edge connected to v points away from v , then v is a source.
Otherwise, removing v and the edge attached to it, we obtain a tree with fewer vertices
than � . If the tree obtained contains only one vertex (and hence no edges), that vertex
is a sink of � . Otherwise, by induction the tree obtained admits a sink; it is clear that
the same vertex is a sink for � as well.

Let X 0 be a component of the JSJ decomposition of X.˛0/ that corresponds to a source.
By construction of T .X /, X 0 is a direct descendant of X.˛0/. We claim that X.˛/

is obtained from X 0 by filling (this allows for the possibility that X 0 ŠX.˛/ and no
boundary component is filled). To see this, let T be a component of @X 0 . We will
denote by Y the component of X.˛0/ cut open along T that is disjoint from X 0 . As
above, considering T �X.˛/, we see three cases:

(1) T is parallel to a component of @X.˛/; equivalently, Y .˛j@Y / Š T 2 � Œ0; 1�.
We remove Y and the solid tori attached to it. The manifold obtained is not
changed.

(2) T bounds a solid torus outside X 0 ; equivalently, Y .˛j@Y /ŠD2 �S1 . Again
we remove Y and the solid tori attached to it, and consider X.˛/ as the manifold
obtained by filling X 0 along the induced slope (recall the definition of induced
slope from item (7) in Section 2A).
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Figure 3: Unknotting in a ball

(3) Y is a knot exterior contained in a ball D : if @Y is compressible then Y Š

D2 �S1 ; this was treated in case (2), and we assume as we may that this does
not happen. Thus T is essential in Y .˛j@Y /, and since X.˛/ is atoroidal T

must compress in X.˛/ away from Y . Let D be a compressing disk. It is now
easy to see that replacing Y with a solid torus such that the meridian of the solid
torus intersects @D exactly once does not change the ambient manifold. This
can be seen as “unknotting” T in D ; see Figure 3.

Repeating this process on all the components of @X 0 , we see that X.˛/ is obtained
from X 0 by attaching solid tori.

This completes the proof of Proposition 5.2.

So here is where we stand: if we fill to obtain a prime atoroidal manifold, Proposition 5.2
allows us to travel down T .X / from a vertex at level 3mC 1 or 3mC 2. Assume, in
addition, that X.˛/ is not hyperbolic. A manifold corresponding to a vertex labeled 3m

is Seifert fibered, sol or hyperbolic. The first two cases require direct analysis; in the
final case we are guaranteed to have a minimally nonhyperbolic filling that allows us
to keep going down T .X /.

The problem occurs when we want to study hyperbolic fillings. Obviously, one cannot
expect every filling to admit a minimally nonhyperbolic partial filling; this is simply
false. Somewhat surprisingly, we have the following proposition, which allows us to
go down T .X / in certain circumstances; recall that a multislope that does not admit a
minimally nonhyperbolic partial filling is called totally hyperbolic:

Proposition 5.4 Let X be a hyperbolic manifold and � > 0. Let A be the set of
multislopes ˛ of @X such that X.˛/ is hyperbolic and every geodesic in X.˛/ is
longer than � .

Then there are only finitely many totally hyperbolic multislopes in A.
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Remark 5.5 Since @X may have arbitrarily many components, it is easy to construct
examples of hyperbolic manifolds with infinitely many multislopes ˛ such that X.˛/

is hyperbolic but does not admit a geodesic shorter than � , for a fixed � > 0. This
proposition allows us to study those: there is a finite set of totally hyperbolic multislopes,
and every other multislope in A admits a minimally nonhyperbolic partial filling; these
correspond to moving down T .X /.

Proof Denote the components of @X by T1; : : : ;Tn . We assume as we may that
A is infinite. Let ˛j D .˛

j
1
; : : : ; ˛

j
n / be an infinite set of multislopes in A; we will

prove the theorem by showing that some ˛j admits a nonhyperbolic partial filling.
The remainder of the proof is very similar to the proof of Proposition 4.2 and we only
paraphrase it here.

After subsequencing, we may assume that for each i one of the following holds:

(1) ˛
j
i ¤ ˛

j 0

i for j ¤ j 0 ; we assume in addition that ˛j
i ¤1 for any j .

(2) ˛
j
i D ˛

j 0

i for any j ; j 0 (possibly ˛j
i D1).

After renumbering we may assume that the constant slopes are ˛j
i for i > k (for some

0� k � n). Since A is infinite, k � 1. For i > k , we drop the superscript from ˛i .

Let yX D X.1; : : : ;1; ˛kC1; : : : ; ˛n/. Then X.˛j / D yX .˛
j
1
; : : : ; ˛

j

k
/. If yX were

hyperbolic, then by Thurston’s Dehn surgery theorem for large enough j , we would
obtain a hyperbolic manifold with k geodesics of length less than � ; as k � 1 this
violates our assumption. Thus yX is nonhyperbolic, and .1; : : : ;1; ˛kC1; : : : ; ˛n/�pf

.˛
j
1
; : : : ; ˛

j

k
; ˛kC1; : : : ; ˛n/ is a nonhyperbolic partial filling (for any j ). The proposi-

tion follows.

We end this section with the following lemma:

Lemma 5.6 Let X be a JSJ manifold and X0 a connected manifold that is obtained
as the union of a strict subset of the components of the torus decomposition of X .

Then jT .X0/j< jT .X /j.

Proof If X0 is a component of the torus decomposition of X then it corresponds
to a direct descendant of the root of T .X /, and clearly T .X0/¤ T .X /. The lemma
follows in this case.

If X0 is the union of more than one component of the torus decomposition of X ,
we embed T .X0/ into T .X / by placing the root of T .X0/ at the root of T .X / and
using the edges the correspond to the components of the torus decomposition of X
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that appear in X0 . By assumption this is a strict subset of the components of the torus
decomposition of X , and hence not all the edges are used. After this embedding we
can view T .X0/ as a subtree of T .X /, and we see that T .X0/¤ T .X /. The lemma
follows.

6 Cosmetic surgery on T 2� I

There are two types of theorems proved using T .X /. The first addresses the question
“how much can a manifold get twisted when performing cosmetic surgery?” The
second addresses the question “how many fillings can result in a manifold fulfilling
such-and-such condition?” In the next three sections we prove theorems of the first
type. Recall that a cosmetic surgery on L�M is a surgery with multislope ˛ such
that L.˛/ŠM . Below we consider cosmetic surgery on links in T 2 � Œ0; 1�. Note
that T 2 � Œ0; 1� gives a natural projection from T 2 � f1g to T 2 � f0g; however, after
cosmetic surgery, this identification may change. Hence the image of a specific slope in
T 2�f1g may give an infinite set after cosmetic surgeries (and this does in fact happen).
The theorem below controls this set, and more generally, the image of a bounded set:

Theorem 6.1 Let B be a bounded set of slopes of T 2 � f1g, L a link in T 2 � Œ0; 1�,
and AD f˛ jL.˛/Š T 2 � Œ0; 1�g. For ˛ 2A, let B˛ be the set of slopes of T 2 � f0g

that are obtained by projecting B via the natural projection.

Then
S
˛2A B˛ is bounded.

Proof We will denote T 2� Œ0; 1�nN.L/ by X and @N.L/ by T . Note that we may
regard A as a set of multislopes on T � @X .

The proof is an induction on jT .X /j.

Assume that X is reducible Let X1 be the factor of the prime decomposition of X

that contains T 2 � f0g and T 2 � f1g (note that both are contained in the same factor).
Then any ˛ 2A induces ˛j@X1

, and X1.˛j@X1
/Š T 2 � Œ0; 1�. Moreover, all the other

factors of the prime decomposition of X become S3 after filling and therefore do not
affect the identification of T 2 � f1g with T 2 � f0g. Denote by B˛j@X1

the image of
B under the natural projection using the product structure of X1.˛j@X1

/Š T 2 � Œ0; 1�.
Thus B˛ D B˛j@X1

for every ˛ 2 A; therefore
S
˛2A B˛ D

S
˛2A B˛j@X1

. Since
jT .X1/j < jT .X /j, we see by induction that B˛j@X1

is bounded. The proposition
follows in this case.

We assume from now on that X is irreducible.
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Assume that X is Seifert fibered Fix a Seifert fibration of X and a multislope ˛2A.
If ˛jTi

is a fiber for some Ti � T , then X.˛/ contains a sphere that separates T 2�f0g

from T 2�f1g, which is impossible since X.˛/ŠT 2� Œ0; 1�. Hence the fibration of X

extends to a fibration of T 2 � Œ0; 1�. We conclude that X is obtained from T 2 � Œ0; 1�

by removing fibers.

We claim that up to diffeomorphism the only Seifert fibration of T 2 � Œ0; 1� is the
product of an annulus with S1 . To see this, simply note that if the base orbifold of
a Seifert fibered manifold has at least one orbifold point and at least two boundary
components, or if it has positive genus, then the manifold admits a filling that is not
diffeomorphic to a lens space, S1�S2 or S3 . Hence the base orbifold in any fibration
of T 2 � Œ0; 1� is an annulus with no orbifold points; this proves the claim.

Back to the case at hand, we see that X is obtained from the product of an annulus
with S1 by removing a set of n curves that has the form fp1; : : : ;png �S1 , showing
that X is the product of an n–times punctured annulus with S1 . We will denote the
components of @X n @X.˛/ by T1; : : : ;Tn . Since X.˛/ results in a Seifert fibered
manifold with no exceptional fiber, the core of the solid torus attached to Ti is not an
exceptional fiber, and hence has the form pi=1 in the Seifert notation (i D 1; : : : ; n).
Suppose n> 1. Following Seifert’s original work [20], by performing k twists about
an annulus connecting fibers with Seifert invariants p1=q1 and pi=qi , the invariants
change as follows (for an arbitrary k 2 Z):

p1

q1

7!
p1C kq1

q1

and
pi

qi
7!

pi � kqi

qi
:

As in our case qi D 1, by choosing k D pi , we may assume that the filling of Ti is of
the form 0=1, and ignore it (for i > 1). Thus we have reduced the problem to the case
nD 1. Let A�X be an embedded vertical annulus (that is, an annulus that is given
as a union of Seifert fibers) connecting T1 with a Seifert fiber on T 2 � f0g. We will
denote the Seifert fiber on T 2 � f0g by 
 . Surgery about a fiber with coefficient 1=q

is equivalent to q twists about A; we see that the effect of the cosmetic surgery is the
same as Dn


 , an nth power of a Dehn twist about 
 , for some n 2Z. Hence the image
of B after all possible cosmetic surgeries on L is

fDn

 .ˇ/ j ˇ 2 B; n 2 Zg:

By Proposition 3.6(3), this set is bounded.

We assume from now on that X is irreducible and not Seifert fibered.

Assume that X is a JSJ manifold We will denote the set of tori of the JSJ de-
composition by F . Let � be the graph dual to the torus decomposition as defined
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in Definition 2.1. Since T 2� Œ0; 1� is connected and admits no nonseparating tori, � is
a tree. Note that � has two (not necessarily distinct) vertices, denoted v0 and v1 , that
correspond to the components of the torus decomposition of X that contain T 2 � f0g

and T 2 � f1g. There are two cases to consider:

Case 1 (v0 ¤ v1 ) Let e be an edge on the shortest path connecting v0 and v1 and
F 2F the torus corresponding to e . In any filling, F separates T 2�f0g from T 2�f1g.
Thus for every ˛ 2A, we have that F �X.˛/Š T 2 � Œ0; 1� is isotopic to T 2 �

˚
1
2

	
.

Let X0 and X1 be the components of X cut open along F so that T 2 � fig � Xi

(i D 0; 1). We see that the fillings induced by ˛ 2A fulfill

Xi.˛j@Xi
/Š T 2

� Œ0; 1�:

For i D 0; 1, let
Ai D f˛jF\@Xi

j ˛ 2Ag:

Then for any ˛ 2 A we have X.˛/ D X0.˛0/[X1.˛1/, where ˛i D ˛jF\@Xi
. By

Lemma 5.6, we have jT .X0/j; jT .X1/j < jT .X /j. Applying induction to X1 , we
conclude that [

˛12A1

B˛1

is a bounded set of slopes of F ; we will denote it by BF . Next we apply induction
to X0 and conclude that [

˛02A0

BF
˛0

is bounded. It is clear from the discussion above that
S
˛2A B˛ �

S
˛02A0

BF
˛0

; the
theorem follows in Case 1.

Case 2 (v0 D v1 ) The assumption means that both T 2 � f0g and T 2 � f1g are
contained in the same component of the torus decomposition of X , say X0 . We will
denote the components of cl.X nX0/ by X1; : : : ;Xk . Since T 2� Œ0; 1� does not admit
a nonseparating torus, if Xi \X0 consists of more than one component (for some i )
then A D ∅ and there is nothing to prove. We assume as we may that for every i ,
Xi \X0 is a single torus which we will denote by T 0i . Note that T 0i is a component of
the JSJ decomposition of X and under the assumptions of Case 2 it cannot be boundary
parallel in X.˛/ Š T 2 � Œ0; 1�. Hence every ˛ 2 A induces a filling on every Xi

fulfilling exactly one of the following conditions:

(1) Xi.˛j@Xi
/ŠD2 �S1 .

(2) Xi.˛j@Xi
/ŠE.Ki/, where Ki � S3 is a nontrivial knot and Xi.˛j@Xi

/�Di

for some ball Di �X.˛/.
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By Lemma 2.2 we may assume that the balls Di � X.˛/ are disjointly embedded.
Given ˛ 2A we construct a multislope ˛0 of T0 as follows:

(1) If Xi.˛j@Xi
/ŠD2�S1 then ˛0jTi

is the meridian of the solid torus Xi.˛j@Xi
/.

(2) If Xi.˛j@Xi
/Š E.Ki/ we pick a slope that intersects the meridian of E.Ki/

exactly once (recall Figure 3).

Then X0.˛0/ŠX.˛/ and by construction the product structures of X0.˛0/ and X.˛/

induce the same projection from the slopes of T 2 � f1g to those of T 2 � f0g.

Let A0 be the set of all multislopes ˛0 of X0 such that X0.˛0/ŠT 2� Œ0; 1�. For each
˛0 2A0 we will denote the image of B under the projection induced by the product
structure by B˛0

. If ˛0 was constructed as above for some ˛ 2 A, then B˛ D B˛0
.

Thus we see that [
˛2A

B˛ �
[
˛02A0

B˛0
:

By Lemma 5.6, we have that jT .X0/j< jT .X /j; hence by induction
S
˛02A0

B˛0
is

bounded. The theorem follows in Case 2.

We assume from now on the X is irreducible, not Seifert fibered, and not a JSJ manifold.

Assume that X is sol Since T 2 � f0g � @X , we see that @X ¤∅; hence X cannot
be sol.

We assume from now on that X is irreducible, not Seifert fibered, not a JSJ manifold,
and not sol. This leaves the following final case:

Assume that X is hyperbolic As T 2�Œ0; 1� is nonhyperbolic, any multislope ˛ with
X.˛/ŠT 2� Œ0; 1� admits a minimally nonhyperbolic partial filling. By Proposition 4.2
X admits only finitely many minimally nonhyperbolic multislopes, say denoted by
˛1; : : : ; ˛k . For 1� i � k , we will denote X.˛i/ by Xi . Let

Ai D f˛j@Xi
j ˛ 2A; ˛i �pf ˛g;

that is, Ai consists of the multislopes induced on Xi by multislopes A that admit ˛i as
a partial filling. For ˛i 2Ai , we will denote by B˛i

the image of B under the projection
induced by the product structure of Xi.˛i/. Since Xi is a direct descendant of the root
of T .X /, we have jT .Xi/j < jT .X /j. By induction

S
˛i2Ai

B˛i
is bounded. Since

every ˛ 2A admits a minimally nonhyperbolic partial filling, for every such ˛ there
exists i such that

X.˛/DXi.˛i/;
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where ˛i D ˛j@Xi
2Ai . Hence[

˛2A

B˛ D

k[
iD1

[
˛i2Ai

B˛i
:

Since bounded sets are closed under finite union,
S
˛2A B˛ is bounded.

This concludes the proof of Theorem 6.1.

7 Cosmetic surgery on solid tori

Let V be a solid torus and L � V a link. In this section we address the following
question: how many slopes on @V become the boundary of a meridian disk after
cosmetic surgery on L? Before stating the main theorem of this section, we consider
some examples. If some component of L is the core of V , then (trivially) the answer
is every slope. Next, let L0 DK0

1
[K0

2
be a two-component link, where K0

1
is a knot

that is not a torus knot and admits a nontrivial cosmetic surgery (see Gabai [4] and
Berge [1]) and K0

2
is a core. Assume further that K0

2
was isotoped to be in a very

“complicated” configuration with respect to K0
1

(we allow K0
2

to pass through K0
1

during this isotopy, changing L0 but not K0
1

or K0
2

). Let LDK1[K2 be the image
of K0

1
and K0

2
in the solid torus obtained by cosmetic surgery on K0

1
. Then, due to

the isotopy discussed above, we expect that K2 is not a core of the solid torus and
certainly K1 is not. However, L admits cosmetic surgeries that realize every slope on
the boundary of the solid torus as the boundary of the meridian disk. The trouble is that
although K2 is not a core of the solid torus it becomes a core after cosmetic surgery.

With this in mind we state the main result of this section; note that condition (2) of the
theorem is equivalent to requiring that none of the cores of the attached solid tori is a
core of L.˛/:

Theorem 7.1 Let V be a solid torus and L � V a link. Consider the set A of
multislopes of L such that for any ˛ 2A the following two conditions hold:

(1) L.˛/ŠD2 �S1 .

(2) L.˛0/ 6Š T 2 � Œ0; 1� for any ˛0 �pf ˛ .

Then the set of slopes on @V that bound a disk in L.˛/ (for some ˛ 2A) is bounded.

Proof Let X D V n N.L/ and denote the components of @X by T;T1; : : : ;Tn ,
with T D @X . We will denote L.˛/ by X.˛/; this is consistent with the notation of
Section 2A and should cause no confusion. We induct on jT .X /j.
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Assume X is reducible Let S �X be an essential separating sphere that realizes the
decomposition X DX 0 # X 00 , so that X 0 is prime and T �X 0 (we are not assuming
that X 00 is prime). For any ˛ 2A, X.˛/ is diffeomorphic to D2�S1 , which is prime.
Therefore after filling one side of S becomes a ball D and the other becomes a solid
torus whose boundary is T . We conclude that ˛ induces ˛j@X 0 and the following
conditions hold:

(1) X 0.˛j@X 0/ is diffeomorphic to D2�S1 and its meridian is the same slope of T

as the meridian of X.˛/.

(2) There does not exist ˛0�pf˛j@X 0 such that X 0.˛0/ŠT 2�Œ0; 1�. Otherwise, there
would be ˛00�pf ˛ such that X.˛00/ŠT 2� Œ0; 1�, contradicting our assumptions.

(3) jT .X 0/j< jT .X /j: this is immediate from the construction of T .X /, since X 0

is a direct descendant of the root X .

Applying the inductive hypothesis, we conclude that the set of meridians of X 0.˛j@X 0/

for ˛ 2A is bounded; the theorem follows in this case.

We assume from now on that X is irreducible.

Assume X is Seifert fibered We fix a Seifert fibration on X for the remainder of
this case. Given a multislope ˛ 2A we will consider two cases, depending on whether
or not there is a torus Ti on which the slope defined by the Seifert fibration and the
slope defined by ˛ are the same.

Case 1 (˛jTi
is isotopic to a Seifert fiber for some i ) We claim that the meridian of

X.˛/ is the slope defined the Seifert fibration on T . To see this, consider the meridian
disk of the solid torus attached to Ti , which we will denote by Di , and a vertical
annulus in X connecting Ti and T , which we will denote by Ai . After isotopy if
necessary we may assume that Di \Ti DAi \Ti . Then Di [Ai is a disk properly
embedded in X.˛/ whose boundary is isotopic to a Seifert fiber and hence essential in
T ; thus Di [Ai is a meridian disk of X.˛/. This proves the claim and shows that
there is only one possible slope in Case 1.

Case 2 (˛jTi
is not isotopic to a fiber for any i ) Under this assumption the fibration

of X extends to a fibration of X.˛/. Since X.˛/ Š D2 � S1 , its base orbifold is
D2 with at most one orbifold point. Since X is obtained from X.˛/ by removing
fibers, we conclude that X admits a Seifert fibration whose base orbifold is a punctured
disk with at most one orbifold point. If there is no orbifold point, then there is an
index i such that, for any i 0 ¤ i , ˛jTi0

intersects the fiber exactly once (possibly ˛jTi

intersects the fiber once as well). Define ˛0 �pf ˛ to be the partial filling obtained by
filling all the components but Ti , that is, by setting ˛0jTi

D1 and ˛0jTi0
D ˛jTi0

for

Algebraic & Geometric Topology, Volume 16 (2016)



Cosmetic surgery and the link volume of hyperbolic 3–manifolds 3481

all i 0 ¤ i . Then X.˛0/ is a Seifert fiber space over an annulus with no exceptional
fibers and hence X.˛0/Š T 2 � Œ0; 1�, contradicting condition (2) of the theorem. We
assume as we may that the base orbifold of X has exactly one orbifold point. Denote
the multiplicity of the critical fiber by p � 2. Then the meridian of X.˛/ intersects a
fiber on @X exactly p times; this gives a bounded set by Proposition 3.6(4).

We assume from now on that X is irreducible and not Seifert fibered.

Assume X is a JSJ manifold Let X0 be the component of the JSJ decomposition
of X that contains T and denote the components of @X0 nT by Fj , j D 1; : : : ;m.
We will denote the closures of the components of X n X0 by Xj . To avoid the
situation where Xj D ∅, if Fj � @X we push it slightly into the interior of X0 so
that Xj Š T 2 � Œ0; 1� in that case. Since D2 �S1 admits no nonseparating tori, we
assume as we may that Xj \Xj 0 D ∅ for j ¤ j 0 . By reordering the indices of Xj

if necessary we may assume that Fj �Xj . Finally, given ˛ 2A and 1� j �m, we
will denote the components of X.˛/ cut open along Fj by X.˛/Cj and X.˛/�j , with
@X.˛/Cj D T [Fj and @X.˛/�j D Fj . Consider the following subsets Aj � A (for
j D 0; : : : ;m):

(1) A0 consists of all the multislopes ˛2A such that X.˛/Cj 6ŠT 2�Œ0; 1� for any j .

(2) For 1 � j �m, Aj consists of all the multislopes ˛ 2 A such that X.˛/Cj Š

T 2 � Œ0; 1�.

It is immediate from the definitions that

AD
m[

jD0

Aj :

We first consider multislopes ˛2A0 . By definition of A0 , no Fj is boundary parallel in
X.˛/ŠD2�S1 ; thus every torus Fj bounds a solid torus or a nontrivial knot exterior
E.Kj /. For each Fj that bounds a solid torus, let y̨jFj be the slope of Fj defined by
the meridian of that solid torus. For each torus Fj that bounds a nontrivial knot exterior
E.Kj / we do the following: by Lemma 2.2 we may assume that E.Kj / � Dj for
disjointly embedded balls Dj . We replace every E.Kj / with a solid torus (which we
will denote by Vj ) so that the meridian of Vj intersects that meridian of E.Kj / exactly
once. This does not change the ambient manifold and, since the changes are contained
in balls, the slope of T that is the meridian of the solid torus X.˛/ is not changed. Let
y̨jFj be the slope of Fj defined by the meridian of Vj . Thus we have defined a slope
y̨jFj for every 1 � j �m; together they induce a multislope of fFj g

m
jD1

which we
will denote by y̨ . We claim that y̨ fulfills the following two conditions:
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(1) X0.y̨/ŠD2 �S1 : this is immediate from the construction.

(2) There is no partial filling y̨0 �pf y̨ such that X0.y̨
0/ 6Š T 2 � Œ0; 1�: assume, for

a contradiction, that such a partial filling y̨0 exists. Since T 2 � Œ0; 1� has two
boundary components, y̨0 is obtained from y̨ by setting the value of y̨jFi

to 1
on exactly one torus Fj . By the defining condition for A0 this is impossible
for values of j for which X.˛/�j ŠD2 �S1 , and for other values of j this is
impossible because Fj is contained in the ball Dj �X.˛/.

Thus y̨ satisfies the assumptions of Theorem 7.1. By construction X0 corresponds to a
direct descendant of the root of T .X /, and therefore jT .X0/j< jT .X /j. By induction,
the set of meridians of the solid tori X0.y̨/ (as y̨ varies over all possible multislopes
that correspond to the multislope ˛ 2A0 ) form a bounded set of slopes of T , which we
will denote by B0 . By construction, the set of meridians of X.˛/ for ˛ 2A0 is B0 .

Next fix 1 � j � m and consider ˛ 2 Aj . By the defining condition for Aj ,
X.˛/Cj Š T 2 � Œ0; 1�. Hence X.˛/�j Š X.˛/ Š D2 � S1 . Note that X.˛/�j is
obtained by filling a component of X cut open along Fj denoted above by Xj ; the
induced filling is given by ˛j@Xj . We claim that the following conditions hold:

(1) Xj .˛j@Xj /ŠD2 �S1 : this is immediate from the construction.

(2) There is no partial filling ˛j0
@Xj
�pf ˛j@Xj with Xj .˛j

0
@Xj
/Š T 2 � Œ0; 1�: other-

wise, there would be a corresponding partial filling ˛0 �pf ˛ such that

X.˛0/ŠX.˛/Cj [Fj Xj .˛j
0
@Xj
/Š T 2

� Œ0; 1�;

contradicting the assumptions of the theorem.

(3) jT .Xj /j< jT .X /j: this follows from Lemma 5.6.

By induction, the set of slopes of meridians of Xj .˛j@Xj / is bounded; we will denote
it by B0j . By Theorem 6.1 the set of slopes of T obtained by projecting B0j after
all possible cosmetic surgeries on L\X.˛/Cj is bounded; we will denote it by Bj .
Clearly, the set of meridians on X.˛/ (for ˛ 2Aj ) is contained in Bj .

We have obtained mC 1 bounded sets, namely B0; : : : ;Bm , such that the meridians
of X.˛/ (for ˛ 2A) are contained in

Sm
jD0 Bj . The theorem follows in this case.

We assume from now on that X is irreducible, not Seifert fibered, and not a JSJ manifold.

Assume that X is sol Since T � @X , we see that @X ¤∅; hence X cannot be sol.

We assume from now on that X is irreducible, not Seifert fibered, not a JSJ manifold,
and not sol. This leaves the following final case:
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Assume X is hyperbolic By Proposition 4.2 X admits only finitely many minimally
nonhyperbolic fillings, which we will denote by ˛1; : : : ; ˛k . Fix 1� j � k . If there is
no ˛ 2A for which j̨ �pf ˛ , we set Bj D∅; otherwise, any ˛ 2A for which j̨ �pf ˛

induces the multislope ˛j@X . j̨ / on @X. j̨ /. We claim that X. j̨ / and ˛j@X . j̨ / fulfill
the following four conditions:

(1) X. j̨ /.˛j@X . j̨ // Š D2 � S1 : this is immediate, as X. j̨ /.˛j@X . j̨ // D X.˛/

(we emphasize that this is equality, not up to diffeomorphism).

(2) @X. j̨ /.˛j@X . j̨ //D T : this is immediate, as above.

(3) ˛j@X . j̨ / does not admit a partial filling ˛0 �pf ˛j@X . j̨ / such that X. j̨ /.˛
0/Š

T 2�Œ0; 1�: otherwise the corresponding partial filling of ˛ would yield T 2�Œ0; 1�,
violating the second assumption of the theorem.

(4) The meridians of the solid tori X. j̨ /.˛j@X . j̨ // and X.˛/ define the same slope
of T : this is immediate, as emphasized in (1) above.

We will denote by Aj �A the set

Aj D f˛jX . j̨ / j ˛ 2A; j̨ �pf ˛g:

By points (1)–(3) above, X. j̨ / and Aj fulfill the assumptions of the theorem. By con-
struction T .X. j̨ // corresponds to a direct descendant of the root of T .X /; therefore
jT .X. j̨ //j< jT .X /j. By induction, the meridians of

fX. j̨ /.˛j@X . j̨ // j ˛ 2Aj g

form a bounded set of slopes of T , which we will denote by Bj . Since D2 �S1 is
not hyperbolic, for every ˛ 2 A there is 1 � j � k such that j̨ �pf ˛ ; by point (4)
above the meridian of X.˛/ is in Bj . We see that the meridians of fX.˛/ j ˛ 2Ag are

k[
jD1

Bj :

The theorem follows, as the finite union of bounded sets is bounded.

Next we prove a proposition about fillings that yield D2 �S1 ; it will be used in the
proof of the ultimate claim in the paper, Proposition 14.6.

Proposition 7.2 Let X be a compact orientable connected manifold such that @X
consists of tori. Denote the components of @X by T;T1; : : : ;Tn . Fix T a nonempty
subset of fT1; : : : ;Tng. For a multislope ˛ on T1; : : : ;Tn , we will denote the link
formed by the cores of the solid tori attached to T by L. Let A be a set of multislopes
of @X such that every ˛ 2A satisfies the following conditions:
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(1) X.˛/ŠD2 �S1 .

(2) X.˛/ n int N.L/ is irreducible.

(3) No component of L is a core of X.˛/.

(4) ˛jT D1.

Then for each Ti 2 T , there exists a bounded set BTi
of the slopes of Ti such that for

any ˛ 2A there exists Ti 2 T with

˛jTi
2 BTi

:

Remark 7.3 For clarification we add a couple of comments. First note that condi-
tions (1) and (4) imply that the boundary components filled are exactly T1; : : : ;Tn .
The link L has exactly jT j components, and it is certainly possible that jT j < n.
Whenever jT j< n, the manifold X.˛/ n int M.L/ is not homeomorphic to X — they
have different numbers of boundary components.

Proof We will induct on jT .X /j. Parts of the proof are similar to the proof of
Theorem 7.1 and we will only sketch them here.

Assume that X is hyperbolic Since X.˛/ŠD2 �S1 is not hyperbolic, any ˛ 2A
factors through a minimally nonhyperbolic filling. Let ˛0 �pf ˛ be a minimally
nonhyperbolic filling. If ˛0jTi

¤1 for some Ti 2 T , we add ˛0jTi
to BTi

. We assume
as we may that ˛0jTi

D1 for all Ti 2 T . Then T � @X.˛0/. We see that the filling
˛j@X .˛0/ induced by ˛ on X.˛0/ fulfills conditions (1)–(4) of the proposition; since
jT .X.˛0//j< jT .X /j, the proposition follows from the induction hypothesis.

We assume from now on that X is not hyperbolic.

Assume that X is reducible Let S be a sphere embedded in X that realizes the
decomposition X 0 # X 00 , where X 0 is prime and T � X 0 (we are not assuming that
X 00 is prime). By condition (2) of the proposition, T � @X 0 . Let A0 be the restrictions
defined by

A0 D f˛j@X 0 j ˛ 2Ag:

It is easy to see that conditions (1)–(4) of the proposition hold, and since jT .X 0/j<
jT .X /j, the proposition follows from the induction hypothesis.

We assume from now on that X is irreducible and not hyperbolic.

Assume that X is JSJ We first fix the notation that will be used in this case. Let X0

be the component of the torus decomposition of X that contains T . We will denote
the components of @X0 by T , F1; : : : ;Fk and the components of cl.X n X0/ by
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X1; : : : ;Xk , numbered so that Fj � @Xj . To avoid the situation Xj D∅, if Fj � @X

we push it slightly into the interior so that Xj ŠT 2� Œ0; 1� in this case. Since D2�S1

contains no nonseparating tori, we assume as we may that Xj \Xj 0 D∅ for j ¤ j 0 .
We will denote by F � fF1; : : : ;Fkg the components Fj that bound Xj for which
T \@Xj ¤∅. Given ˛ 2A, we will denote ˛j@Xj by j̨ . (Note that by definition of F ,
Fj 2F if and only if L\Xj . j̨ /¤∅.) Clearly, @Xj . j̨ /DFj and Xj . j̨ / is either a
solid torus or the exterior of a nontrivial knot, which we will denote by E.Kj /. Up to
finite ambiguity, we fix Fst and Fk so that F D Fst tFk and consider the multislopes
˛2A for which Xj . j̨ /ŠD2�S1 whenever Fj 2Fst and Xj . j̨ /ŠE.Kj / whenever
Fj 2 Fk . To avoid overly complicated notation we do not rename A. There are two
cases to consider:

Case 1 (some Xj . j̨ / has no core) Let A1�A be defined by requiring that for some
Fj 2Fst , no component of L\Xj . j̨ / is a core of the solid torus Xj . j̨ /. The second
assumption of the proposition implies that L\Xj . j̨ / is irreducible. By Lemma 5.6,
jT .Xj /j < jT .X /j. Applying the inductive hypothesis to Xj we see that for each
T 2 T \ @Xj , there is a bounded set BT such that ˛jT 2 BT for some such T . The
proposition follows for A1 .

Case 2 (every Xj . j̨ / has core) Let A2DAnA1 . Then for every Fj 2Fst and every
˛ 2A2 , the core of the solid torus attached to one of the components of T \ @Xj is a
core of Xj . j̨ /; we will denote it by Lj (there may be more than one such component;
we pick one). By Lemma 2.2, for every j for which Fj 2Fk , there exists an embedded
ball Dj � X0.˛0/ such that Xj . j̨ / �Dj and Dj \Dj 0 D ∅ for j ¤ j 0 . Thus the
second assumption of the proposition implies that Fst ¤ ∅. Any ˛ 2 A2 induces a
multislope on @X0 D T;F1; : : : ;Fk , which we will denote by ˛0 , that consists of the
following slopes:

(1) the meridian of Xj . j̨ / (on components Fj that bound Xj . j̨ /ŠD2 �S1 ),

(2) a slope that intersects the meridian of Xj . j̨ / exactly once (on components Fj

that bound Xj . j̨ /ŠE.Kj /, a nontrivial knot exterior),

(3) 1 (on T ).

For Fj 2Fk , the core of the solid tori attached to Fj is an unknot in Dj ; thus the cores
of the solid tori attached to

S
Fj2Fk

Fj form a (possibly empty) unlink, which we will
denote by U . The cores of the solid tori attached to

S
Fj2Fst

Fj form a (nonempty)
link which we will denote by L0 .

We claim that L0 is irreducible in the complement of U . Assume, for a contradiction,
that X.˛/ n int N.L0 [ U/ is reducible and let S be a reducing sphere. Since S is
disjoint from the cores of the solid tori attached to Fj (for every Fj 2 F ) we may
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isotope S out of these solid tori. It is now easy to see that S �X.˛/ and S is disjoint
from L. Since S is a reducing sphere for L0 [ U , there are components of L0 [ U
in the ball bounded by S in X0.˛0/. Clearly, there are components of L in the ball
bounded by S in X.˛/. Thus S is a reducing sphere for L, contradicting the second
assumption of the proposition.

We assume as we may by Lemma 2.4 that the slopes on U were chosen so that L0

is irreducible. We claim that no component of L0 is the core of X0.˛0/. Assume
for a contradiction that this is not the case and fix Fj 2 Fst for which the core of the
solid torus attached to Fj is a core of X0.˛0/. Recall that Lj is a core of a solid
torus attached to a component of T \ @Xj , and is the core of Xj . j̨ /. Thus Lj is a
component of L, and is the core of X.˛/; this is impossible as it violates the third
assumption of the proposition.

Thus X0 , L0 , and the multislopes induced by A2 satisfy the assumptions of the
proposition. By Lemma 5.6, we have jT .X0/j < T .X /j. Hence by induction, for
every Fj 2 Fst , there is a bounded set of slopes of Fj , which we will denote by BFj ,
so that for every multislope ˛0 (induced by some ˛ 2 A2 ), there is Fj 2 Fst for
which ˛0jFj 2 BFj . The slope ˛j@N.Lj / is the projection of ˛0jFj by the product
structure on Xj . j̨ / n N.Lj / Š T 2 � Œ0; 1�. By the T 2 � Œ0; 1� cosmetic surgery
theorem (Theorem 6.1) the projections of BFj under all possible fillings of Xj that
yield T 2 � Œ0; 1� is a bounded set of slopes of @N.Lj /, which we will denote by Bj .
Thus, for every ˛ 2A2 , there exists Fj 2 Fst , for which ˛j@N.Lj / 2 Bj , proving the
proposition in Case 2.

We assume from now on that X is irreducible, not hyperbolic, and not JSJ.

Assume that X is a Seifert fibered space Fix a Seifert fibration on X . We consider
three cases, depending on the intersection of ˛jTi

with slopes defined by the Seifert
fiber on Ti :

(1) If (for some Ti 2 T ) ˛jTi
is the fiber in the Seifert fibration then the intersection

number of ˛jTi
with the fiber is zero.

(2) If (for some Ti0 62 T ) ˛jTi0
is the fiber in the Seifert fibration, then for every

Ti 2 T the disk obtained by gluing a vertical annulus connecting Ti0 to Ti with a
meridian disk of the solid torus attached to Ti0 is a compressing disk for Ti and
its boundary is a regular fiber. Since X.˛/ŠD2�S1 contains no nonseparating
spheres or lens space summands, ˛jTi

intersects the regular fiber exactly once.

(3) If ˛Ti
is not the fiber for any 1 � i � n, then the fibration on X extends to a

fibration of X.˛/, which is a fibration over D2 with at most one exceptional
fiber. The exceptional fiber, if exists, is the core of X.˛/. Thus by assumption (3)
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of the proposition every component of L is a regular fiber, implying that for
every Ti 2 T , ˛jTi

intersects the fiber in the Seifert fibration of X exactly once.

We conclude that for every ˛ 2 A there exists Ti 2 T such that ˛jTi
intersects the

fiber at most once. The proposition follows from Proposition 3.6(4).

We assume from now on that X is irreducible, not hyperbolic, not JSJ, and not Seifert
fibered. This leaves the following case:

Assume that X is sol Since T � @X , we see that @X ¤∅; hence X cannot be sol.

This completes the proof of Proposition 7.2.

8 Hyperbolic cosmetic surgery: slopes

In this section we ask “how much can a hyperbolic manifold get twisted by performing
cosmetic surgery?” (Recall that in this paper by hyperbolic manifold we mean a
connected compact manifold whose interior admits a complete finite-volume hyperbolic
metric.) Consider the following problem: let M be a hyperbolic manifold such that
@M is a single torus, B a bounded set of slopes of @M , and L�M a link. If ˛ is a
multislope of cosmetic surgery (that is, L.˛/ŠM ), then an identification of L.˛/

with M induces a bijection on the slopes of @M . Our goal is to show that the union
of the images of B under all such bijections is bounded. The theorem below is stated
in terms of fillings (with X corresponding to M nN.L/) and is slightly more general
as it allows for more boundary components.

Theorem 8.1 Let M be an orientable hyperbolic manifold, TM a component of @M ,
X a compact orientable connected manifold such that @X consists of tori that we will
denote by T;T1; : : : ;Tn , and B a bounded set of slopes of T . Let X D f.˛; f˛/g be a
set of pairs such that every .˛; f˛/ 2 X satisfies the following conditions:

(1) ˛ is a multislope of X .

(2) f˛W X.˛/!M is a diffeomorphism.

(3) f˛ maps T to TM .

For every x D .˛; f˛/ 2 X , we will denote the image of B under the bijection induced
by f˛ from the slopes of T to those of TM by Bx .

Then
S

x2X Bx is a bounded set of slopes of TM .
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Proof We induct on jT .X /j.

Assume that X is Seifert fibered or sol Then X admits no hyperbolic filling.

We assume from now on that X is not Seifert fibered or sol.

Assume that X is reducible Let S �X be a decomposing sphere that realizes the
decomposition X DX 0[S X 00 , where here X 0 is a prime manifold containing T (we
do not assume that X 00 is prime). Then for every .˛; f˛/ 2 X we have

X.˛/DX 0.˛j@X 0/[S X 00.˛j@X 00/:

Since X.˛/ŠM is hyperbolic, S �X.˛/ bounds a ball. Condition (3) of the theorem
implies that ˛jT D1; hence X 00.˛j@X 00/ is a ball. Thus f˛ induces a diffeomorphism
that we will denote by

f˛j@X 0
W X 0.˛j@X 0/!M:

We will denote the set of pairs f.˛j@X 0 ; f˛j@X 0
/g induced by pairs .˛; f˛/ 2 X by X 0 .

For .˛j@X 0 ; f˛j@X 0
/Dx02X 0 , we will denote by Bx0 the image of B under the bijection

induced by f˛j@X 0
from the slopes of T to those of TM . Since X 0 corresponds to a

direct descendant of the root of T .X /, we have jT .X 0/j< jT .X /j. By induction[
x02X 0

Bx0

is a bounded set of slopes of TM . By construction, every x 2 X is induces x0 2 X 0

for which f˛j@X 0
jT D f˛jT . Thus Bx0 D Bx and therefore[

x2X

Bx D

[
x02X 0

Bx0

is a bounded set of slopes of TM . The theorem follows in this case.

We assume from now on that X is irreducible, not Seifert fibered, and not sol.

Assume that X is JSJ Let A be the set of multislopes in X , that is, the following
set of multislopes ˛ :

AD f˛ j .˛; f˛/ 2 X for some f˛g:

By Proposition 5.2, each ˛ 2A induces a filling on one of the components of the torus
decomposition of X that yields M . Up to finite ambiguity we fix one component of the
torus decomposition of X , that we will denote as X0 , and consider only multislopes ˛
that induce a filling on X0 . To avoid overcomplicated notation we do not rename A.
We will use the following notation:
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(1) The multislope induced by ˛ on @X0 will be denoted by ˛0 .

(2) The closure of the component of X nX0 that contains T will be denoted by X1

(to avoid the situation X1 D∅, if T � @X0 we push it slightly into the interior
so that X1 Š T 2 � Œ0; 1� in this case).

(3) The torus X0\X1 will be denoted by F .

It follows from the construction in Proposition 5.2 that f˛.F / is a boundary parallel
torus in M , which we will denote by FM . We will denote the components of M cut
open along FM by M0 and M1 , where M1 is the component containing TM . Each
˛ 2A induces a filling X1.˛j@X1

/ whose result is M1 ; since FM is a boundary parallel
torus, M1 Š T 2 � Œ0; 1�. For each ˛ 2A, the identification X1.˛j@X1

/Š T 2 � Œ0; 1�

allows us to project B to a set of slopes of F , which we will denote by BF;˛ . This is
precisely the setup of Theorem 6.1, which tells us that the slopes[

˛

BF;˛

form a bounded set of slopes of F , that we will denote by BF .

By the construction in Proposition 5.2, f˛ induces a diffeomorphism f˛0
W X0.˛0/!M0

that maps F to FM . Since X0 is a direct descendant of X , we have that jT .X0/j<

jT .X /j. Therefore by induction the union of the images of BF under the bijections
induced by f˛0

forms a bounded set of slopes of FM , that we will denote by BFM
.

Since M1 Š T 2 � Œ0; 1�, the set
S

x2X Bx is naturally identified with BFM
; henceS

x2X Bx is bounded, completing the proof in this case.

We assume from now on that X is irreducible and not Seifert fibered, sol, or JSJ.

Assume X is hyperbolic Let X 1 � X be all pairs .˛; f˛/ for which ˛ is totally
hyperbolic. Fix ˛ a totally hyperbolic filling and let .˛; fj / be all the elements of X 1

that have ˛ as their multislope, and different diffeomorphisms fj W X.˛/!M (for
j 2 J for some index set J ). We will denote by Bj the image of B under the bijection
induced by fj between the slopes of T and those of TM . After fixing an index in J ,
say 1 2 J , we note that fj ı f

�1
1
W M !M is a diffeomorphism that sends TM to

itself and fj D .fj ıf
�1

1
/ ıf1 . Thus Bj D �j .B1/, where �j is a bijection induced

on the slopes of T by fj ı f
�1

1
. By Lemma 2.5, there exists a (possibly trivial)

isometric involution i on the set of slopes of TM , so that for each �j we have that
either �j .B1/ D B1 or �j .B1/ D i.B1/; since i is an isometry, i.B1/ is bounded.
Hence [

j2J

Bj � B1[ i.B1/

is bounded.
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Let � be the length of the shortest geodesic in M . By Proposition 5.4, X admits only
finitely many totally hyperbolic fillings not admitting a geodesic shorter than � , and
hence [

x2X1

Bx

is a bounded set of slopes.

Next we consider X 2DX nX 1 . Since X 1 consists of all totally hyperbolic multislopes
in X , every multislope in X 2 admits a nonhyperbolic partial filling, and hence a
minimally nonhyperbolic partial filling. By Proposition 4.2, X admits only finitely
many minimally nonhyperbolic fillings. We will denote by ˛1; : : : ; ˛k the minimally
nonhyperbolic fillings of X for which j̨ jT D1. For 1� j � k , let Xj be the set of
all pairs .˛; f˛/ satisfying the following conditions:

(1) ˛ is a multislope of X. j̨ /.

(2) f˛W X. j̨ /.˛/!M is a diffeomorphism.

(3) f˛ maps T to TM .

For xj D .˛; f˛/ 2 Xj , we will denote by Bxj the image of B under the bijection
induced by f˛ between the slopes of T and those of TM . Since X. j̨ / corresponds
to a direct descendant of the root of T .X /, we have jT .X. j̨ //j< jT .X /j. Thus by
induction [

xj2Xj

Bxj

is a bounded set of slopes of TM .

By definition of X 2 , for every xD .˛; f˛/ 2X 2 , ˛ is not totally hyperbolic. Hence ˛
factors through some minimally nonhyperbolic filling j̨ (for some 1� j � k ), that is,

X.˛/DX. j̨ /.˛j@X . j̨ //:

We can view f˛W X.˛/!M as a diffeomorphism f˛W X. j̨ /.˛j@X . j̨ /!M ; thus
we obtain .˛j@X . j̨ /; f˛/ 2 Xj for which B.˛j@X. j̨ /

;f˛/ D Bx . This shows that

[
x2X2

Bx �

k[
jD1

� [
xj2Xj

Bxj

�
:

Thus
S

x2X2 Bx is contained in a finite union of bounded sets, and hence is itself
bounded.

The theorem follows in this final case.

This completes the proof of Theorem 8.1.
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9 Hyperbolic cosmetic surgery: radius of injectivity

Let X be a hyperbolic manifold. A generic filling on T � @X , with all the slopes
very long, yields a hyperbolic manifold with at least jT j short geodesics. However,
if jT j> 1, this requires excluding infinitely many multislopes. It is easy to construct
examples where X can be filled to give infinitely many manifolds that violate this
rule; for example, every lens space is obtained by filling the Whitehead link exterior.
As another example, given any hyperbolic manifold M , let K �M # T 2 � Œ0; 1� be a
simple knot. Then the exterior of K is a hyperbolic manifold that admits infinitely many
distinct multislopes ˛j such that X.˛j /ŠM for every j without the expected three
short geodesics. In this section we show that although the set of multislopes yielding
manifolds without a short geodesic may be infinite, only finitely many manifolds can
be obtained.

Theorem 9.1 Let X be a compact connected oriented manifold such that @X consists
of tori. Fix � > 0. Then all but finitely many hyperbolic manifolds that are obtained by
filling X admit a geodesic of length less than � .

If in addition X is hyperbolic, then there are only finitely many totally hyperbolic
fillings ˛ on X such that X.˛/ does not admit a geodesic of length less than � .

Proof We induct on jT .X /j.

Assume that X is Seifert fibered or sol Then no filling of X yields a hyperbolic
manifold.

We assume from now on that X is not Seifert fibered or sol.

Assume that X is reducible Let X1; : : : ;Xn be the factors of the prime decom-
position of X . Then in any filling of X that gives a hyperbolic manifold (say M ),
exactly one Xi fills to give M , and every other Xi0 fills to S3 . Thus every hyperbolic
manifold obtained by filling X is obtained by filling Xi for some i . Up to finite
ambiguity we fix a factor Xi . Since Xi corresponds to a direct descendant of X ,
we have jT .Xi/j < jT .X /j. By induction there are only finitely many hyperbolic
manifolds obtained by filling Xi that do not admit a geodesic of length less than � .
The proposition follows in this case.

We assume from now on that X is prime and not Seifert fibered or a sol manifold.

Assume that X is JSJ In order to apply Proposition 5.2 we start with a simple
construction: let Y be a hyperbolic manifold obtained by removing a simple knot from
X (such a knot exists by Myers [16, Corollary 6.3]) and let ˛0 be the multislope on @Y
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given by the meridian on @Y n @X and 1 on all other boundary components. Since
Y is hyperbolic, Y .˛0/Š X is JSJ, and ˛0 corresponds to filling a single boundary
component, it is clear that ˛0 is a minimally nonhyperbolic multislope. Applying
Proposition 5.2 with Y and Y .˛0/ corresponding to X and X.˛0/ of that proposition,
we conclude that any hyperbolic manifold obtained by filling X Š Y .˛0/ is obtained
by filling some descendent of X in T .X /. Let X 0 be a direct descendant of X . By
construction, jT .X 0/j < jT .X /j. By induction, there only finitely many hyperbolic
manifolds obtained by filling X 0 that do not admit a geodesic of length less than � .
The proposition follows in this case, as X has only finitely many direct descents.

We assume from now on that X is irreducible and not JSJ, Seifert fibered, or sol. This
leaves the following final case:

Assume that X is hyperbolic Let A be an infinite set of multislopes of @X such
that X.˛/ is hyperbolic and does not contain a geodesic shorter than � for every ˛ 2A.
(Note that if no such set exists there is nothing to prove.) We will first establish the
second conclusion of the theorem by showing that some multislope ˛ 2A is not totally
hyperbolic. We will denote the components of @X by T1; : : : ;Tn . After subsequencing
and reordering if necessary we assume as we may that for some 0 � k � nC 1 we
have:

(1) For every 1� i � k and every j ¤ j 0 we have ˛j
i ¤ ˛

j 0

i and ˛j
i ¤1.

(2) For every kC 1� i � n and every j ; j 0 we have ˛j
i D ˛

j 0

i .

To avoid overly complicated notation we do not rename A. Let ˛0 be the restriction
˛jTkC1;:::;Tn

for some ˛ 2A (by construction ˛0 is independent of choice), let yX D
X.˛0/ (so @ yX D T1 [ � � � [ Tk ), and let yA D f˛j

@ yX
j ˛ 2 Ag. We claim that yX is

not hyperbolic; assume for a contradiction that it is. By truncating the cusps of yX
we obtain a Euclidean metric on every Ti (1 � i � k ). Since yA is infinite and the
values fy̨jTi

j y̨ 2 yAg are distinct, for any l there is a multislope y̨ 2 yA such that y̨jTi

is longer than l for all i . By Thurston’s Dehn surgery theorem, for large enough l ,
yX .y̨/ is hyperbolic and the cores of the attached solid tori are geodesics of length less

than � , contradicting our assumptions. Thus yX is not hyperbolic. Since A is infinite,
k � 1. By condition (1) above, for every ˛ 2 A, ˛0 is a strict partial filling of ˛ .
This shows that ˛ is not totally hyperbolic, establishing the second conclusion of the
theorem.

We will denote the set of totally hyperbolic fillings in A by A� and A nA� by AC .
Every ˛ 2 AC admits a minimally nonhyperbolic partial filling, and the minimally
nonhyperbolic fillings of X correspond to the direct descendants of the root of T .X /;
up to finite ambiguity we fix a direct descendant of the root of X that we will denote
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by Xi . Then jT .Xi/j< jT .X /j. By induction there are only finitely many hyperbolic
manifolds obtained by filling Xi that do not admit a geodesic of length less than � .
The theorem follows from this and finiteness of A� that was established above.

This completes the proof of Theorem 9.1.

10 Cosmetic surgery on S 3

We now turn to one of the more interesting applications of T .X /, concerning cosmetic
surgery on S3 . Recall that a cosmetic surgery is S3 is a surgery on a link L � S3

with multislope ˛ such that L.˛/Š S3 . Note the following examples:

(1) Let LDK1[K2 be the Whitehead link. Then infinitely many slopes on K1 can
be completed to a cosmetic surgery: namely, 1=m can be completed to the cosmetic
surgery given by .1=m; 1=0/, where here and in the examples below we are using the
standard meridian-longitude. That is not a real problem: f1=mg is a bounded set.

(2) Worse is the Hopf link HDK1[K2 . It is easy to see that H.p=q; r=s/ŠS3 if and
only if ps�rqD˙1. Thus every slope on K1 can be completed to a cosmetic surgery.

(3) Kawauchi [13] constructed a two-component link LDK1[K2 � S3 that admits
a nontrivial cosmetic surgery. By Teragaito [23, Theorem 1.1] we may assume that
L, K1 and K2 are all hyperbolic (this was also announced by Kawauchi [12]). For
a detailed discussion see the introduction to [23]. Let L0 � S3 be the core of the
attached solid tori after this surgery, and let H 0 � S3 be the Hopf link. By isotopy of
H 0 (where we allow H 0 to intersect L0 ) we place H 0 in a “very complicated” position
relative to L0 . There is a surgery on L0 which “undoes” the surgery, resulting in S3 .
Denote the image of H 0 under this surgery by H DK3[K4 . For any slope ˛3 there
exist infinitely many slopes ˛4 such that L[H.˛1; ˛2; ˛3; ˛4/Š S3 . However, we
expect that H is no longer the Hopf link; in fact, it is quite likely that the components
of H are no longer unknotted, as the disks bounded by the components of H 0 are
likely to be destroyed by the surgery on L0 , and new disks are unlikely to appear. We
do not prove these claims, but in light of this discussion we expect the following to be
true: there exists a four-component link in S3 (such as L[H DK1[K2[K3[K4

above) that contains no Hopf sublink (perhaps even no unknotted components), yet
every slope on K3 can be completed to a cosmetic surgery. The moral is this: it is our
aim to prove that not any slope can be completed to a cosmetic surgery, but one must
beware of Hopf links, including those that are invisible in the original link but manifest
themselves after surgery.

We are now ready to state:
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Theorem 10.1 Let L � S3 be a link and denote its components by K1; : : : ;Kn .
Let T1 be the component of @E.L/ that corresponds to K1 . Let A be a set of
multislopes of L such that every ˛ 2A fulfills the following two conditions:

(1) L.˛/Š S3 .

(2) L.˛0/ 6Š T 2 � Œ0; 1� for any ˛0 �pf ˛ with ˛0jT1
D1.

Then the restrictions A1 D f˛jT1
j ˛ 2Ag form a bounded set.

Remarks 10.2 (1) There exists ˛0 �pf ˛ with ˛0jT1
D1 and L.˛0/Š T 2� Œ0; 1�

if and only if the cores of the solid tori attached to @N.K1/ and @N.Ki/ form
a Hopf link (for some 2� i � n). The cores of the solid tori attached along a
multislope in A may, in fact, contain a Hopf sublink H ; our assumption only
requires that the core of the solid torus attached to @N.K1/ is not a component
of H .

(2) The second assumption in Theorem 10.1 cannot be avoided. If there exists
˛0 �pf ˛ with ˛0jT1

D 1 and L.˛0/ Š T 2 � Œ0; 1� then obviously any slope
of T1 can be completed to a cosmetic surgery.

Example 10.3 The following example shows that there is no explicit bound possible on
the diameter of A1 in Theorem 10.1. Let LDK1[K2�S3 be a two-component link
such that K1 is the unknot and K2 is a torus knot on a torus parallel to T1D @N.K1/.
Note that the exterior of K1 is a solid torus, which we will denote by V , and K2 � V

is parallel to @V D T1 . Let A be the annulus that K2 cobounds with T1 . We will
denote the slope of T1 defined by A\T1 by ˛ and the slope of T1 that corresponds
to a curve that bounds a disk in V by �. Note that by choosing K2 appropriately we
can realize any slope of T1 as ˛ , and in particular, dFarey.�; ˛/ can be made arbitrarily
large. We identify the slopes of K2 with Q[ f1=0g so that 1=0 corresponds to the
meridian in S3 and 0=1 is the slope defined by A\ @N.K2/. Then the slopes that
intersect A\@N.K2/ once are exactly those identified with 1=n. Surgery on K2 � V

with slope 1=n yields a solid torus in which the slope Dn
˛.�/ bounds a disk (recall that

Dn
˛.�/ is the slope obtained by Dehn twisting � n times about ˛ ). It is easy to see

that the set of slopes of T1 that corresponds to A1 (with the notation of Theorem 10.1)
is

fˇ j dFarey.ˇ;D
n
˛.�//D 1 for some n 2 Zg:

On the other hand, for large enough n, we have dFarey.�;D
n
˛.�//D 2dFarey.�; ˛/. As

dFarey.�; ˛/ can be arbitrarily large, we see that Theorem 10.1 cannot be improved
by giving an explicit bound on the diameter of the set A1 . If K3 is a simple knot in
E.L/, then L0 DL[K3 provides a hyperbolic example with the same property as L.
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Proof of Theorem 10.1 We will denote cl.S3 nN.L// by X and @N.Ki/ by Ti .
Although the theorem was phrased in terms of surgery, we will prove the equivalent
statement for fillings of X . We induct on jT .X /j.

Assume that X is reducible Let X DX 0 # X 00 , where X 0 is the factor of the prime
decomposition of X that contains T1 . By renumbering the components of @X if
necessary we assume as we may that @X 0 D T1; : : : ;Tk , for some 1� k � n. For any
multislope ˛ 2A we have

X.˛/ŠX 0.˛j@X 0/ # X 00.˛j@X 00/:

Thus X 0.˛j@X 0/Š S3 ŠX 00.˛j@X 00/. If

X 0.1; ˛2; : : : ; ˛i�1;1; ˛iC1; : : : ; ˛k/Š T 2
� Œ0; 1�

for some 2� i � k , then

L.1; ˛2; : : : ; ˛i�1;1; ˛iC1; : : : ; ˛n/

ŠX 0.1; ˛2; : : : ; ˛i�1;1; ˛iC1; : : : ; ˛k/ # X 00.˛j@X 00/

Š T 2
� Œ0; 1� # S3

Š T 2
� Œ0; 1�:

This contradicts the second assumption of the theorem. Thus X 0 and A0Df˛j@X 0 j˛2Ag
fulfill the assumptions of the theorem. Since X 0 corresponds to a direct descendant of
the root of T .X /, we have jT .X 0/j< jT .X /j. By induction, A0

1
D f˛0jT1

j ˛0 2A0g
is bounded. It is easy to see that A1 DA0

1
; the theorem follows in this case.

We assume from now on that X is irreducible.

Assume that X is Seifert fibered or a sol manifold Since sol manifolds are closed
we may ignore them. If nD 1 then L is a knot and the result is well known; for the
rest of this case we assume as we may that n � 2. We fix a Seifert fibration on X .
Then the fibers on T1 define a slope which we denote by ˛f

1
. For convenience we will

denote ˛jTi
by ˛i . Define Af ;A0;A1 �A as follows:

(1) ˛ 2Af if ˛1 D ˛
f
1

.

(2) ˛ 2A0 if for some 2� i � n, ˛i is the fiber on Ti .

(3) ˛ 2A1 if ˛ 62Af [A0 .

Clearly, ADAf [A0[A1 .

If ˛ 2Af then ˛1 2Bf , where Bf is the singleton defined by Bf D f˛
f
1
g. Obviously,

Bf is the bounded set of slopes of T1 .
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For ˛ 2A0 , let D be the disk obtained by attaching a vertical annulus connecting Ti

and T1 to the meridian disk of the solid torus attached to Ti (where i is as in the
definition of A0 ). Thus we see that D is a compressing disk for T1 and the slope
defined by @D is ˛f

1
. Since X.˛1; : : : ; ˛n/Š S3 , we have that �.˛1; ˛

f
1
/D 1; thus

˛1 2�.f˛
f
1
g; 1/ (note that � is used in two different ways here; recall Notation 3.5).

We will denote �.f˛f
1
g; 1/ by B0 . By Proposition 3.6(4) we have that B0 is a bounded

set.

If ˛ 2 A1 then the fibration of X extends to a fibration of X.1; ˛2; : : : ; ˛n/, and
the fibration of X.1; ˛2; : : : ; ˛n/ extends to a fibration of X.˛/ Š S3 . Therefore
X.1; ˛2; : : : ; ˛n/ is a Seifert fibered space over D2 with at most two exceptional
fibers and the cores of the solid tori attached to T1; : : : ;Tn are fibers.

Assume first that X.1; ˛2; : : : ; ˛n/ is a Seifert fibered space over D2 with exactly
two exceptional fibers. Since S3 does not admit a Seifert fibration with more than two
exceptional fibers, we have that ˛1 2 B0 in this case.

Next assume that X.1; ˛2; : : : ; ˛n/ is a Seifert fibered space over D2 with at most
one exceptional fiber, and the exceptional fiber (if it exists) is the core of the solid torus
attached to Ti ; by renumbering T2; : : : ;Tn if necessary we may assume that i D 2.
Then X.1;1; ˛3; : : : ; ˛n/Š T 2 � Œ0; 1�, contradicting our assumption.

Thus we have reduced the proof to the case where X.1; ˛2; : : : ; ˛n/ is a Seifert fibered
space over D2 with exactly one exceptional fiber, and the exceptional fiber is not the
core of a solid torus attached to Ti (2� i � n). Then the exceptional fiber is contained
in X and its multiplicity, which we will denote by d , does not depend on ˛2A1 . Since
X.1; ˛2; : : : ; ˛n/ is a Seifert fibered space over D2 with exactly one exceptional fiber,
X.1; ˛2; : : : ; ˛n/ŠD2 �S1 ; we will denote the slope defined by the boundary of
its meridian disk by ˛0 . Then �.˛f

1
; ˛0/D d . Since X.˛/Š S3 , we also have that

�.˛0; ˛1/D 1. Thus ˛1 2 B1 , where B1 is the set of slopes of T1 defined by

B1 D f˛ j�.˛
f
1
; ˛0/D d and �.˛0; ˛/D 1 for some ˛0g:

By applying Proposition 3.6(4) twice we see that B1 is bounded.

Since ADAf [A0[A1 , for any ˛ 2A we have ˛1 2Bf [B0[B1 . This completes
the proof for Seifert fibered and sol manifolds.

We assume from now on that X is irreducible, and not a Seifert fibered or sol manifold.

Assume that X is JSJ Let X0 be the component of the torus decomposition of X that
contains T1 and denote the remaining components of @X0 by fFj g

k
jD1

; see Figure 4.
Given ˛ 2A, we will denote the components of X.˛jT2;:::;Tn

/ cut open along Fj as
follows (see the right side of Figure 4):
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T1

F1

Fj

Fk

N1

Nj

Nk

X0 T1 X.˛/Cj

Fj

X.˛/�j

Figure 4: Notation used when X is JSJ

(1) The component whose boundary is T1[Fj will be denoted by X.˛/Cj .

(2) The component whose boundary is Fj will be denoted by X.˛/�j .

Since S3 admits no nonseparating torus, we assume as we may that X.˛/�j \X.˛/�j 0D∅
for j ¤ j 0 .

There are two cases to consider:

Case 1 Let A1 be the multislopes ˛ 2 A for which X.˛/Cj 6Š T 2 � Œ0; 1� for all j .
Then ˛ 2 A1 induces a multislope on @X0 , which we will denote by ˛0 , defined as
follows:

(1) ˛0jT1
D ˛jT1

.

(2) If X.˛/�j ŠD2 �S1 then ˛0jFj is the slope of the meridian of the solid torus
X.˛/�j .

(3) If X.˛/�j ¤D2�S1 then X.˛/�j ŠE.Kj / for some nontrivial knot Kj � S3 .
We take ˛0jFj to be any slope that intersects the meridian of E.Kj / exactly
once.

By Lemma 2.2, we may assume that the components X.˛/�j in Case (3) are contained
in disjointly embedded balls; hence removing X.˛/�j and attaching a solid torus along
˛0jFj does not change X.˛/ or X.˛/Cj 0 (for 1� j 0� k ); recall Figure 3. Thus X0 and
the induced slopes f˛0 j ˛ 2A1g satisfy the conditions of the theorem (condition (1)
follows from the corresponding assumption for X , and condition (2) follows from
the defining assumption of case one). By Lemma 5.6, we have jT .X0/j < jT .X /j.
By induction, f˛0jT1

j ˛ 2 A1g is a bounded set which we will denote by B1 . By
construction ˛0jT1

D ˛jT1
.

Hence f˛jT1
j ˛ 2A1g D B1 is bounded.
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Case 2 Fix 1� j � k . Let A2;j �A be the multislopes ˛ 2A for which X.˛/Cj Š

T 2 � Œ0; 1�. The definitions immediately imply that the following two conditions hold:

(1) X.˛/Cj .˛jT1
/ŠD2 �S1 for any ˛ 2A2;j .

(2) ADA1[
�Sk

jD1 A2;j

�
.

We will denote the component of X cut open along Fj that does not contain X1 by Nj

and @X \Nj by Tj ; to avoid the situation Nj D ∅, if Fj � @X we push it slightly
into the interior so that Nj Š T 2 � Œ0; 1� in this case. Note that @Nj D Fj [ Tj .

Every ˛ 2A2;j induces the multislope on @Nj , which we will denote by j̨ , defined
by the slope of the meridian of the solid torus X.˛/Cj .˛jT1

/ on Fj and the restriction
˛jT on Tj . We show that the following two conditions hold:

(1) Nj . j̨ /ŠS3 : by construction Nj . j̨ /ŠX.˛/, and by assumption X.˛/ŠS3 .

(2) Let ˛0j �pf j̨ be a partial filling for which ˛0j jFj D1. Then Nj .˛
0
j / 6ŠD2�S1 :

assume for a contradiction that Nj .˛
0
j /ŠD2 �S1 . Let Ti be the component

of @Nj \X for which ˛0j jTi
D1. Let ˛0 �pf ˛ be the partial filling giving by

setting ˛0jT1
and ˛0jTi

to 1. Then

X.˛0/ŠX.˛/Cj [Fj Nj .˛
0
j /

Š T 2
� Œ0; 1�[Fj T 2

� Œ0; 1�

Š T 2
� Œ0; 1�;

violating assumption (2) of the theorem.

Thus the assumptions of the theorem are satisfied by Nj and f j̨ j ˛ 2 A2;j g. By
Lemma 5.6 we have jT .Nj /j < jT .X /j. By induction, f j̨ jFj g is bounded. For
each ˛ 2 A2;j , ˛jT1

is the image of j̨ jFj under the projection induced by the
product structure X.˛/Cj Š T 2 � Œ0; 1�. By the T 2 � Œ0; 1� cosmetic surgery theorem
(Theorem 6.1), the union of the images of f j̨ jFj g under the projections given by all
possible fillings of @X.˛/Cj n .T1[Fj / for which X.˛/Cj Š T 2 � Œ0; 1� is a bounded
set of slopes of T1 that we will denote by B2;j . We conclude that ˛jT1

2 B2;j . This
completes Case 2.

Since ADA1[
�S

j A2;j

�
we have

f˛jT1
j ˛ 2Ag � B1[

�[
j

B2;j

�
:

The theorem follows for JSJ manifolds, and we assume from now on that X is irre-
ducible, and not Seifert fibered, sol, or JSJ. Thus X is hyperbolic.
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Assume that X is hyperbolic Since S3 is not hyperbolic any ˛ 2 A admits a
minimally nonhyperbolic partial filling. Up to finite ambiguity we fix a minimally
nonhyperbolic filling which we will denote by ˛0 . If ˛0jT1

¤1 then for any ˛ with
˛0 �pf ˛ , ˛jT1

D ˛0jT1
is in the finite (and hence bounded) set f˛0jT1

g. Otherwise,
any ˛ with ˛0 �pf ˛ factors through X.˛0/ as

X
˛0

�!X.˛0/
˛j@X.˛0/

�����!X.˛0/.˛j@X .˛0//:

It is straightforward to see that we can apply induction to X.˛0/ and f˛j@X .˛0/ j ˛ 2Ag,
showing that f˛j@X .˛0/jT1

j ˛ 2Ag is bounded. Thus for any ˛ with ˛0 �pf ˛ , we have
that ˛jT1

D ˛j@X .˛0/jT1
is in this bounded set.

This completes the proof in this final case.

11 Proof of Theorem 1.1

In this section we prove Theorem 1.1 assuming the results of the next three sections.
We decided to present the proof before Sections 12–14 in order to help the reader
understand the motivation behind the exact statements proved in those sections.

As in the statement of the theorem, let M be a hyperbolic manifold such that @M is
a single torus that we will denote by T , and let V > 0 be a fixed number. Consider
a slope ˇ on T such that LinkVol.M.ˇ// < V . By the structure theorem of [19],
there exist finitely many covers �W X !E , with X and E hyperbolic, such that the
following diagram commutes:

E

X

?
- .S3;L/

?

M.ˇ/-

Here, the horizontal arrows represent inclusions induced by fillings and the vertical
arrows represent covering projections; �W X!E is an unbranched covering projection
between hyperbolic manifolds and y�W M.ˇ/ ! S3 is a branched cover realizing
LinkVol.M.ˇ//. Up to finite ambiguity we fix one cover �W X !E . We will denote
the components of @X by T1; : : : ;Tn .

Case 1 We first consider fillings X ! M.ˇ/ that do not factor though M , that
is, slopes ˇ for which there exist a multislope ˛ of @X fulfilling the following two
conditions:

(1) X.˛/ŠM.ˇ/.
(2) There is no ˛0 �pf ˛ such that X.˛0/ŠM .
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In Section 12 we prove Theorem 12.1, showing that the set of slopes ˇ that arise in this
way, which we will denote by B1 , is bounded. We remark that this is a general fact
about fillings X !M.ˇ/ and does not use the covers �W X !E and y�W M.ˇ/!S3 .

Case 2 We next consider fillings X.˛/ Š M.ˇ/ that do factor though M , that
is, fillings that admit a partial filling M . Up to finite ambiguity, we may assume
that the component of @X that corresponds to @M is T1 . Thus we are considering
multislopes ˛ such that the diffeomorphism X.˛/!M.ˇ/ induces, by restriction, a
diffeomorphism

X.˛jT2;:::;Tn
/!M:

Denote the components of @E by T 0
1
; : : : ;T 0m . By renumbering T 0

1
; : : : ;T 0m if nec-

essary we may assume that T 0
1
D �.T1/. The diagram above implies that ˛ induces

a multislope of @E , which we will denote as ˛E D .˛E
1
; : : : ; ˛E

m /. In Case 2 we
only consider fillings on E that do not factor through T 2 � Œ0; 1�; more precisely,
multislopes ˛E fulfilling the following condition:

E.˛0/ 6Š T 2
� Œ0; 1� for any ˛0 �pf ˛

E with ˛0jT 0
1
D1:

In that case, the strategy is as follows: applying the S3 cosmetic surgery theorem
(Theorem 10.1) we see that the possibilities for ˛E

1
are bounded; the covering projection

�W X !E induces a bilipschitz bijection between the slopes of T 0
1

and those of T1

(Lemma 3.4); hence the possibilities for slopes on T1 are bounded. The argument is
worked out in detail in Section 13.

Case 3 The last and most exciting case is when the filling of X factors through M

and the filling of E factors through T 2 � Œ0; 1�. The proof in this case is given in
Section 14. Again, we conclude that f˛jT1

g is bounded.

Assuming the results of the following sections, we deduce Theorem 1.1 as follows:

Proof of Theorem 1.1 Let A be the set of all multislopes of @X such that for each
˛ 2A there is a slope ˇ of @M with X.˛/ŠM.ˇ/.

Since M is hyperbolic there is a finite set of slopes of @M , which we will denote
by B0

F
, such that M.ˇ/ is hyperbolic for any ˇ 62 B0

F
and the core of the attached

solid torus is its unique shortest geodesic (Lemma 2.7). Let BF be the set of slopes
of T given by

BF D fˇ jM.ˇ/ŠM.ˇ0/ for some ˇ0 2 B0F g:

Since M is hyperbolic and j@M j D 1, no manifold is obtained by filling infinitely
many distinct slopes of @M ; hence BF is finite. We will only consider multislopes
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˛ 2 A for which X.˛/ŠM.ˇ/ for ˇ 62 BF . To avoid overly complicated notation
we will not rename A.

We now consider Cases 2 and 3. We will denote by A2;3 the multislopes of A in these
cases, so that every ˛ 2A2;3 admits a partial filling ˛0 �pf ˛ with X.˛0/ŠM . Up to
finite ambiguity and renumbering we may assume that ˛0D ˛jT2;:::;Tn

. We will denote
the set of restrictions f˛jT1

j ˛ 2 A2;3g as B0
M

. By Propositions 13.1 and 14.6 and
Lemma 14.1 (see also Remark 14.7), B0

M
is bounded.

Let ˇ be a slope of @M such that M.ˇ/ŠX.˛/ for some ˛ 2A2;3 . We will consider
X.˛/ as X.˛jT2;:::;Tn

/.˛jT1
/, the manifold obtained by filling X.˛jT2;:::;Tn

/ along
slope ˛jT1

. Then we see that X.˛jT2;:::;Tn
/ŠM and

X.˛jT2;:::;Tn
/.˛jT1

/ŠM.ˇ/:

Let f W X.˛jT2;:::;Tn
/!M be a diffeomorphism. Denote the image of ˛jT1

under f
by ˛M and the image of B0

M
under f˛jT2;:::;Tn

by BM;f ; note that ˛M 2 BM;f .
Let i be the isometric involution on the slopes of T given by Lemma 3.8; we will
denote BM;f [ i.BM;f / by BM . Clearly BM is bounded and ˛M 2 BM .

Since M.˛M /ŠX.˛jT2;:::;Tn
/.˛jT1

/ and M.ˇ/ are diffeomorphic, by Mostow rigid-
ity there is an isometry f W M.˛M /!M.ˇ/. Since ˇ 62BF , the cores of the attached
solid tori are the shortest geodesics of M.˛M / and M.ˇ/. Thus f carries the core
of the solid torus attached to M.˛M / to the core of the solid torus attached to M.ˇ/

and hence by restriction f induces an isometry M !M that maps ˛M to ˇ . By
Lemma 3.8, ˛M D ˇ or ˛M D i.ˇ/. Since ˛M 2 BM and BM D i.BM /, we
conclude that ˇ 2 BM .

Recall that we denoted the set of slopes of @M that is realized in Case 1 by B1 ; in
Theorem 12.1 we show that B1 is bounded. Combining all the possibilities we see that

ˇ 2 BM [B1[BF :

Theorem 1.1 follows.

12 Case 1: fillings of X that do not factor through M

In this section we consider two manifolds, denoted by X and M , where M is a
one-cusped hyperbolic manifold. If ˛0 is a multislope of X such that X.˛0/ ŠM ,
then (trivially) for any slope ˇ of @M there is a multislope ˛ such that ˛0 �pf ˛ and
X.˛/ŠM.ˇ/. In Theorem 12.1 we show that if one considers only multislopes ˛
that do not admit ˛0 �pf ˛ with X.˛0/ŠM , then the set of slopes of @M that give
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rise to manifolds that are also obtained by filling X is bounded. This is purely a result
about filling and is independent of the covers considered in this paper. The precise
statement is:

Theorem 12.1 Let X be a compact orientable connected manifold so that @X consists
of tori and M a hyperbolic manifold with @M a single torus. Let A be a set of
multislopes of @X and B a set of slopes of @M fulfilling the following two conditions:

(1) For every ˇ 2 B there is a multislope ˛ 2A so that X.˛/ŠM.ˇ/.

(2) For every ˛ 2A and every ˛0 �pf ˛ , X.˛/ 6ŠM .

Then B is bounded.

Proof We denote @M by T . By Thurston’s Dehn surgery theorem (see Lemma 2.7)
we may fix an � > 0 and a finite set of slopes of T , which we will denote by B0

f
, such

that for every ˇ 62 B0
f

the following three conditions hold:

(1) M.ˇ/ is hyperbolic.

(2) The core of the attached solid torus, which we will denote by 
 , is a geodesic
and l.
 / < � .

(3) Any geodesic ı �M.ˇ/ with l.ı/ < � is a power of 
 .

Since no manifold is obtained by filling along infinitely many distinct slopes of M ,
the set Bf D fˇ jM.ˇ/ŠM.ˇ0/ for some ˇ0 2 B0

f
g is finite. For the remainder of

the proof we only consider ˇ 62 Bf . Accordingly, we remove the multislopes ˛ 2A
for which X.˛/ŠM.ˇ/ for ˇ 2Bf . To avoid overly complicated notation we do not
rename A and B .

We induct on jT .X /j.

Assume that X is Seifert fibered or sol Then X cannot be filled to give a hyperbolic
manifold.

We assume from now on that X is not Seifert fibered or sol.

Assume that X is reducible Let X1; : : : ;Xn be the factors of the prime decomposi-
tion of X . For every ˛ 2A we will denote the restriction ˛j@Xi

by ˛i . By considering
the image of decomposing spheres for X in X.˛/ we see that for every ˛ 2A we have

(1) X.˛/DX1.˛1/ # � � � # Xn.˛n/:
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For 1� i � n we will denote by Ai �A the multislopes ˛ for which Xi.˛i/ŠM.ˇ/

(for some ˇ 2 B ) and for i 0 ¤ i , Xi0.˛i0/Š S3 . Since ˇ 62 Bf , X.˛/ is hyperbolic
and hence prime. Thus, by (1),

AD
n[

iD1

Ai :

Fix 1� i �n. Suppose, for a contradiction, that for some ˛ 2Ai there is ˛0i �pf ˛i such
that Xi.˛

0
i/ŠM . Then there is a unique component T of @Xi for which ˛0i jT D1.

Let ˛0 �pf ˛ be the partial filling defined by setting ˛0jT D1 and ˛0jT 0 D ˛jT 0 for
any other component T 0 of @X . Then, by (1),

X.˛0/ŠXi.˛
0
j@Xi

/ #
�
#i0¤i Xi0.˛

0
j@Xi0

/
�

ŠXi.˛
0
i/ #

�
#i0¤i Xi0.˛i0/

�
ŠM #

�
#i0¤i S3

�
ŠM:

(Here we used that Xi0.˛i0// Š S3 , which holds by the definition of Ai .) This
contradicts the assumptions of the theorem. Hence Xi and f˛i j ˛ 2 Aig fulfill the
assumptions of the theorem. Since Xi corresponds to a direct descendant of the root
of T .X /, we have jT .Xi/j < jT .X /j. We will denote by Bi the set of slopes of T

such that for every ˇ 2Bi there is ˛i 2Ai with M.ˇ/ŠXi.˛i/. By induction, Bi is
bounded. As i was arbitrary, we obtain bounded sets B1; : : : ;Bn . Since AD

Sn
iD1 Ai ,

B � Bf [

� n[
iD1

Bi

�
:

The theorem follows for reducible manifolds.

We assume from now on that X is irreducible and not Seifert fibered or sol.

Assume that X is hyperbolic Since there is no lower bound on the length of
geodesics in fM.ˇ/ j ˇ 2 Bg, Theorem 9.1 does not apply directly; however, the
proof here is similar to the proof of that theorem, where more details can be found. We
start with:

Claim There are only finitely many totally hyperbolic fillings in A.

When proving the claim we may obviously assume that A is infinite. Let f˛j gj2N �A
be an infinite set. We will prove the claim by showing that some multislope of f˛j gj2N

is not totally hyperbolic. We denote the components of @X by T1; : : : ;Tn and ˛j jTi

by ˛j
i . After subsequencing and reordering if necessary we assume as we may that for

some 0� k � n the following hold:
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(1) ˛
j
i ¤ ˛

j 0

i and ˛j
i ¤1 for every 1� i � k and every j ¤ j 0 .

(2) ˛
j
i D ˛

j 0

i for every kC 1� i � n and every j ; j 0 .

Since f˛j gj2N is infinite, k�1. Let ˛0D .1; : : : ;1; ˛j

kC1
; : : : ; ˛

j
n /; by construction

˛0 does not depend on j . We claim that X.˛0/ is not hyperbolic. Assume, for a
contradiction, that it is. Then for any l > 0 we may choose j such that the slopes
˛

j
1
; : : : ; ˛

j

k
are all longer than l (where the lengths are measured in the Euclidean

metrics induced on the boundary components after some truncation of the cusps). By
Thurston’s Dehn surgery theorem, if l is sufficiently large then X.˛0/.˛

j
1
; : : : ; ˛

j

k
/ is

hyperbolic and admits at least k geodesics that are all shorter than � ; since M.ˇ/

admits only one such geodesic, k D 1. Thus X.˛0/ and M are one-cusped hyperbolic
manifolds that admit infinitely many diffeomorphic fillings. A standard application of
Mostow rigidity shows that X.˛0/ŠM . Since ˛0 �pf ˛

j this contradicts the second
assumption of the theorem, showing that X.˛0/ is not hyperbolic. Hence ˛0 �pf ˛

j is
a nonhyperbolic partial filling, showing that ˛j is not totally hyperbolic. Hence there
are only finitely many totally hyperbolic fillings, as claimed.

By the claim there are only finitely many ˛ 2 A that are totally hyperbolic. We
remove these multislopes from A and remove from B the finite set of slopes ˇ for
which M.ˇ/ŠX.˛/ only for totally hyperbolic fillings; to avoid overly complicated
notation we do not rename A and B . Hence every multislope of A admits a minimally
nonhyperbolic partial filling. Up to finite ambiguity we fix one minimally nonhyperbolic
partial filling of X and denote it by ˛0 . By definition of partial filling, if ˛0 �pf ˛ then
X.˛/ is obtained by filling X.˛0/ along slopes ˛j@X .˛0/ . By assumption, ˛ does not
admit a partial filling that yields M ; hence the same holds for ˛j@X .˛0/ . Since X.˛0/

corresponds to a direct descendant of the root of T .X /, we have jT .X.˛0//j< jT .X /j.
By induction the set of slopes of T

fˇ jM.ˇ/ŠX.˛0/.˛j@X .˛0//; ˛ 2Ag

is bounded. The theorem follows.

We assume from now on that X is irreducible, and not Seifert fibered, sol, or hyperbolic.

Assume that X is JSJ By Proposition 5.2 for every ˇ 2 B , M.ˇ/ is obtained by
filling some component of the torus decomposition of X . Up to finite ambiguity we
fix such component which we will denote by X1 and consider only slopes ˇ (and
corresponding multislopes ˛ ) such that M.ˇ/ is obtained by filling X1 ; to avoid
overly complicated notation we do not rename A and B . Recall that in Proposition 5.2
for every ˛ 2A we constructed a multislope for X1 , which we will call the induced
multislope and denote by ˛1 , such that M.ˇ/Š X1.˛1/. We will denote the set of
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induced multislopes thus obtained by A1 ; thus for every ˇ 2 B there is ˛1 2A1 such
that M.ˇ/ŠX1.˛1/.

Let AC
1

be the multislopes ˛1 2 A1 for which there is no ˛0
1
�pf ˛1 such that

X1.˛
0
1
/ŠM . Then X1 and AC

1
fulfill the assumptions of the theorem. By Lemma 5.6,

jT .X1/j< jT .X /j. By induction, the set

BC
1
D fˇ jM.ˇ/ŠX1.˛1/ for some ˛1 2AC1 g

is bounded. We will return to BC
1

at the end of the proof.

We will denote A1 nAC1 by A�
1

. Then every ˛1 2 A�
1

admits ˛0
1
�pf ˛1 such that

X1.˛
0
1
/ŠM . Up to finite ambiguity we fix one boundary component of @X1 , which

we will denote by F , and consider only the multislopes ˛1 2A�1 for which ˛0
1
jF D1

(in other words, F � @X1 corresponds to T after filling along ˛0
1

). Note that F 6� @X ,
for otherwise ˛1 would correspond to a multislope ˛ 2 A that admits ˛0 �pf ˛ for
which X.˛0/ŠM , contradicting the assumptions of the theorem. We will denote the
components of X cut open along F by XC and X� , with X0 �XC .

In the remainder of the proof we work directly with the set of multislopes of A that
induce multislopes of A�

1
fulfilling the assumptions above, which we will denote by

A� � A. Given ˛ 2 A� , we will denote the multislope ˛j@XC induced on @XC

by ˛C and the multislope ˛j@X� induced on @X� by ˛� . By the defining assumption
of A�

1
we have XC.˛C/ŠM , and by Proposition 5.2 either X�.˛�/ŠD2�S1 or

X�.˛�/ŠE.K/ for a nontrivial knot K � S3 . But if the latter occurred, F would
be an incompressible torus in M.ˇ/, which is absurd as M.ˇ/ is hyperbolic. Thus
X�.˛�/ŠD2 �S1 . We will denote the slope defined by the meridian of X�.˛�/

on F by �F and consider X.˛/ as XC.˛C/.�F /, the manifold obtained by filling
XC.˛C/ along slope �F .

Let f W XC.˛C/.�F /!M.ˇ/ be a diffeomorphism. Then, since we assumed that
ˇ 62Bf (recall the definition of Bf in the beginning of the proof), the cores of the solid
tori attached to XC.˛C/ and M are the unique shortest geodesics in XC.˛C/.�F /

and M.ˇ/. By Mostow rigidity we may assume that f is an isometry, and thus f
carries the core of the solid torus attached to XC.˛C/ to the core of the solid torus
attached to M . The restriction of f induces a diffeomorphism which we will denote
by f CW XC.˛C/!M . Note that f C maps �F to ˇ .

Turning our attention to the solid torus X� , we claim that for every ˛ 2 A� , the
induced multislope ˛� satisfies the following conditions:
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(1) X�.˛�/ŠD2 �S1 : this was established above.

(2) For any partial filling y̨ �pf ˛
� , X�.y̨/ 6Š T 2 � Œ0; 1�: otherwise, let ˛0 �pf ˛

be the partial filling defined by setting ˛0j@X� D y̨ and ˛0j@XC D ˛j@XC . Then
we have

X.˛0/ŠX�.y̨/[F XC.˛Cj@XC/Š .T
2
� Œ0; 1�/[F M ŠM;

contradicting the assumption of the theorem.

Thus X� and the multislopes A�
1

fulfill the requirements of the solid torus cosmetic
surgery theorem (Theorem 7.1), showing that the set of meridians of the solid tori
fX�.˛�/ j ˛� 2A�

1
g, which we will denote by B� , is bounded.

By the discussion above, if X.˛/ŠM.ˇ/ then ˇ is the image of �F 2B� under the
diffeomorphism denoted above by f CW XC.˛C/!M . We will denote the image
of B� under f C by B�fC . By Lemma 3.8 there is an isometric involution i on the
slopes of F such that if gCW XC.˛C/!M is a diffeomorphism, the image of B�

under gC is either B�
fC

or i.B�
fC
/. We will denote B�

fC
[ i.B�

fC
/ by BM . Clearly,

BM is bounded. The theorem follows for JSJ manifolds, as B � Bf [BC
1
[BM .

This completes the proof of Theorem 12.1.

13 Case 2: fillings of E that do not factor through
T 2� Œ0; 1�

In this section we prove the following proposition, which is used in Case 2 of the proof
of Theorem 1.1:

Proposition 13.1 Let X and E be compact orientable connected manifolds with toral
boundary and �W X !E a branched cover such that �j@X W @X ! @E is a cover. Let
yA be a set of multislopes of X such that every y̨ 2 yA induces a multislope on @E which
we will denote by ˛E . Fix a component of @X (which we will denote by T1 ) and
denote �.T1/ by T 0

1
. Suppose that every ˛E fulfills the following conditions:

(1) E.˛E/Š S3 .

(2) There does not exist ˛0 �pf ˛
E fulfilling the following two conditions:

(a) ˛0jT 0
1
D1.

(b) E.˛0/Š T 2 � Œ0; 1�.

Then the set of restrictions fy̨jT1
j y̨ 2 yAg is bounded.
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Proof Let AE be the set multislopes f˛Eg above. By the S3 cosmetic surgery
theorem (Theorem 10.1), the set of restrictions f˛EjT 0

1
j ˛E 2AEg is bounded. The

set of restrictions fy̨jT1
j y̨ 2 yAg is contained in the image of f˛EjT 0

1
j ˛E 2 AEg

under the bilipschitz bijection induced by � (Lemma 3.4). The proposition follows.

14 Case 3: fillings of X that factor through M and fillings
of E that factor through T 2� Œ0; 1�

In this section we tackle Case 3, the final case of Theorem 1.1. Below we denote by A3

the multislopes in A that correspond to this case. After general analysis of the situation,
we show that certain conditions must hold (up to finite ambiguity). These conditions
are summarized in Lemma 14.5. Theorem 1.1 then follows from Proposition 14.6 and
Lemma 14.1.

We begin by fixing our notation. Let X , M.ˇ/, E , L, � , and y� be as in the diagram in
Section 11 (see page 3499). We will denote the multislope of X that corresponds to the
filling X !M.ˇ/ by ˛ and the multislope of E that corresponds to E! S3 by ˛E .
By construction, ˛ and ˛E are corresponding multislopes (in the correspondence
defined by the restriction of �W X ! E to the boundary; recall Section 3A). Up to
finite ambiguity we fix two components of @E which we will denote by T 0

1
and T 0

2

(note that j@Ej � 2 since E ! S3 is assumed to factor through T 2 � Œ0; 1�) and a
component of ��1.T 0

1
/ which we will denote by T1 . We will denote the remaining

components of @X by T2; : : : ;Tn and the remaining components of @E by T 0
3
; : : : ;T 0

k
.

In the two preceding sections we have reduced the proof of Theorem 1.1 to multislopes
˛ 2A fulfilling the following conditions:

(1) X.˛/ŠM.ˇ/ (for some slope ˇ of @M ).

(2) X.˛jT2;:::;Tn
/ŠM .

(3) E.˛EjT 0
3
;:::;T 0

k
/Š T 2 � Œ0; 1�.

Thus we obtain the following commutative diagram, where horizontal arrows represent
inclusions induced by fillings, vertical arrows represent covering projections, T 2� Œ0; 1�

represents E.˛EjT 0
3
;:::;T 0

k
/, ��1.T 2 � Œ0; 1�/ is denoted by X 0 , and �jX 0 is denoted

by �0 :

E

X

?

.S3;L/

?

=� =�0 =y�

M.ˇ/MX 0- - -

?
- -T 2 � Œ0; 1�
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We will denote the set of all multislopes fulfilling these conditions by A3 � A. For
˛ 2 A3 , we will denote the restriction ˛jT2;:::;Tn

by y̨ , and the set or restriction
fy̨ j ˛ 2A3g by yA.

Our goal is to show that the set of slopes induced on T1 by restricting the multislopes A3

is bounded. However, in the course of the proof we sometimes end up with a bounded
set of slopes of a different component of @X , say T2 . It will always be the case
that �.T2/D T 0

1
or �.T2/D T 0

2
. If �.T2/D T 0

1
, then the covering map � induces

a bijection between the slopes of T2 and those of T 0
1

, and a bijection between the
slopes of T 0

1
and those of T1 ; both bijections are bilipschitz maps of the Farey graph

(Lemma 3.4). Composing the two bijections, we readily see a bounded set of slopes
on T1 . If instead �.T2/D T 0

2
, let B2 be the bounded set of slopes of T2 and let B0

2

be its image (in the slopes of T 0
2

) under the bijection induced by � ; by Lemma 3.4,
B0

2
is bounded. Since E.˛EjT 0

3
;:::;T 0

k
/ Š T 2 � Œ0; 1�, we can then project B0

2
from

T 0
2

to a set of slopes on T 0
1

using the product structure. As this set depends on ˛E ,
we denote it by B0

1;˛E . By the T 2 � Œ0; 1� cosmetic surgery theorem (Theorem 6.1),S
˛E B0

1;˛E is a bounded set of slopes on T 0
1

. Using Lemma 3.4 once more, we obtain
a bounded set of slopes on T1 .

We summarize this:

Lemma 14.1 With the notation as above, suppose that, for each component Ti of
��1.T 0

1
[T 0

2
/, there is a bounded set of slopes of Ti , that we will denote by Bi , such

that for each ˛ 2A3 , there is some component Ti of ��1.T 0
1
[T 0

2
/ with ˛jTi

2 Bi .

Then f˛jT1
j ˛ 2A3g is bounded.

Remark 14.2 It is unfortunate that this set up does not lend itself well to induction.
There are many problems, and here is perhaps the best example: when considering a JSJ
manifold X we apply Proposition 5.2 and conclude that M.ˇ/ is obtained by filling
some component of the torus decomposition of X ; however, the cover �0W X 0!E0 is
nowhere to be found. We must therefore first identify the essential information that is
preserved in the inductive step. This is done in the following two lemmas:

Lemma 14.3 Any prime factor of X 0 has at least two boundary components.

Proof If X 0 is prime then the lemma follows from the fact that T � f0g and T � f1g

(as components of @E.˛EjT 0
3
;:::;T 0

k
/ Š T 2 � Œ0; 1�) have at least one preimage each.

Otherwise, let S � X 0 be a decomposing sphere that realizes the decomposition
X 0 D X 00 # X 000 , where X 00 is a prime factor of X 0 . We will prove the lemma by
showing that j@X 00j � 2.
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(1) Suppose that j@X 00j D 0. Equivalently, X 00 is closed. Then X 00 is a prime factor
of M . But M is a hyperbolic manifold and @M ¤∅, and so it has no closed factors.
Thus j@X 00j ¤ 0.

(2) Suppose that j@X 00jD1. Without loss of generality we may assume that �0.@X 00/D
T 2 � f0g. We will denote the component of X 0 cut open along S that corresponds
to X 00 by X � ; note that @X � has two components: a torus (which we can naturally
identify with @X 00 ) and a sphere (which we can naturally identify with S ). Since
�2.T

2 � Œ0; 1�/ is trivial, �0jS W S ! T 2 � Œ0; 1� can be extended to a map from the
closed ball D , which we will denote by �00 . After a homotopy of �0 if necessary,
we assume as we may that for a sufficiently small fixed � > 0 the following three
conditions hold:

(a) �00.D/\ .T 2 � Œ0; �//D∅.

(b) �00.D/\ .T 2 � .1� �; 1�/D∅.

(c) �0.X �/\ .T 2 � .1� �; 1�/D∅.

We paste �00W D! T 2 � Œ0; 1� and �0W X �! T 2 � Œ0; 1� to obtain a map which we
will denote as  W X 00 DX �[S D! T 2 � Œ0; 1�. By conditions (a) and (b) above the
following holds:

 j �1.T 2�Œ0;�// D �
0
j �1.T 2�Œ0;�//:

Therefore  j �1.T 2�Œ0;�//W  
�1.T 2� Œ0; �//! T 2� Œ0; �/ is a cover and has nonzero

degree. On the other hand,  �1.T 2 � .1� �; 1�/D∅ so the map

 j �1.T 2�.1��;1�/W  
�1.T 2

� .1� �; 1�/! T 2
� .1� �; 1�

has degree zero. This contradiction shows that j@X 00j ¤ 1.

In light of this lemma, we define:

Notation 14.4 We will denote the prime factor of X 0 that contains T1 by X 00 and the
components of @X 00 nT1 by T . Given ˛ 2A3 , the link in M consisting of the cores
of the solid tori attached to T will be denoted by L˛ , or simply L when no confusion
may arise.

Next we prove:

Lemma 14.5 L has the following properties:

(1) L¤∅.

(2) E.L/ is irreducible.
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Proof By Lemma 14.3, X 00 has at least two boundary components. Hence T ¤∅,
and (1) follows.

If X 0 is prime that by construction T D @X 0 nT1 ; hence E.L/ŠX 0 and (2) follows.
Otherwise, recall the definition of S and X � �X 0 from the construction of  above.
Let X �� D cl.X 0 n X �/. Since M is hyperbolic the boundary @M is the image
of T1 � X � ; after filling X �� we obtain a ball. This shows that E.L/ Š X � ; by
construction X � is a factor of the prime decomposition of X 0 and hence is itself
prime.

Thus, for every ˛ 2A3 , there is I �f1; : : : ; ng such that the following three conditions
are satisfied:

(1) 1 62 I ¤∅.

(2) fTigi2I (which we will denote by T ) is a union of components of ��1.T 0
1
[T 0

2
/.

(3) The cores of the solid tori attached to T form a link (which we will denote by
L�M ) with an irreducible exterior.

Up to finite ambiguity we fix I as above and consider only ˛ 2A3 that fulfill these
conditions for the fixed index set I . To avoid overly complicated notation we do not
rename A3 or yA.

We are now ready to state and prove the main proposition of this section:

Proposition 14.6 Let M be a hyperbolic manifold with boundary @M a single torus
that we will denote by T , X a compact connected orientable manifold with bound-
ary @X consisting of tori that we will denote by fTig

n
iD1

, and A3 a set of multislopes
on @X . Fix a nonempty index set I � f2; : : : ; ng; we will denote fTigi2I by T .
Denote the link formed by the core of the solid tori attached to T when filling along
˛ 2 A3 by L˛ �M (or simply L when no confusion may arise). Assume that any
˛ 2A3 fulfills the following conditions:

(1) ˛jT1
D1.

(2) X.˛/ŠM .

(3) E.L˛/ is irreducible.

Then for each i 2 I , there is a bounded set Bi of slopes of Ti such that for each ˛ 2A3

there is an i 2 I with ˛jTi
2 Bi .
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Remark 14.7 By the discussion above (in particular Lemma 14.5), X , T1 , T , and
the multislopes of A considered in Case 3 of Theorem 1.1 satisfy the conditions of
Proposition 14.6 for some I . By Lemma 14.1, proving this proposition will complete
the proof of Theorem 1.1.

Proof of Proposition 14.6 We induct on jT .X /j.

Assume that X is Seifert fibered or sol Then no filling of X gives M . We assume
from now on that X is not Seifert fibered or sol.

Assume that X is hyperbolic Fix � > 0 smaller than the length of the shortest
geodesic in M . By Theorem 9.1 there are only finitely many totally hyperbolic fillings
on X yielding M . Given i 2 I , we will denote the set of slopes obtained by restricting
totally hyperbolic multislopes of A to Ti by B1

i , whenever the restriction does not
equal 1. Then B1

i is finite (and hence bounded). We will denote by A0 �A3 the set

A0 D f˛ 2A3 j ˛jTi
62 B1

i for any i 2 Ig:

From this point on we assume as we may that ˛ 2A0 . Then ˛ is not totally hyperbolic
and hence admits a minimally nonhyperbolic partial filling. For each i 2 I , let B2

i be
the set of restrictions f˛minjTi

g, where ˛min ranges over all minimally nonhyperbolic
fillings for which ˛minjTi

¤1. By Proposition 4.2 we have that X admits only finitely
many minimally nonhyperbolic fillings and so B2

i is finite (and hence bounded). We
will denote by A00 �A0 the set

A00 D f˛ 2A3 j ˛jTi
62 .B1

i [B2
i / for any i 2 Ig:

From this point on we assume as we may that ˛ 2 A00 . By definition, any ˛ 2 A00

admits a minimally nonhyperbolic partial filling ˛min such that ˛minjTi
D1 for every

i 2 I .

Fix a minimally nonhyperbolic filling ˛min for which ˛minjTi
D1 for every i 2 I .

We will denote X.˛min/ by X1 and the restrictions to X1 of multislopes in A00 that
admit a partial filling ˛min by A˛min , that is

A˛min D f˛j@X1
j ˛ 2A00 and ˛min �pf ˛g:

We claim that the following conditions are satisfied:

(1) jT .X1/j< jT .X /j: this holds since X1 corresponds to a direct descendant of
the root of T .X /.

(2) T � @X1 : this follows from the definition of A00 , where we required that
˛jTi
D1 (for all i 2 I ).
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(3) ˛1jT1
D1 for any ˛1 2A˛min : it follows from the definitions that ˛1jT1

D˛jT1
;

hence by the first assumption of the proposition, ˛jT1
D1.

(4) X1.˛1/ŠM for any ˛1 2A˛min : by definition, X1.˛1/DX.˛min/.˛1/DX.˛/.
By the second assumption of the proposition, X.˛/ŠM .

(5) E.L˛i
/ is irreducible for any ˛1 2A˛min , where L˛1

denotes the link formed
by the cores of the solid tori attached to T � @X1 : it is straightforward to see
that E.L˛1

/ D E.L/. By the third assumption of the proposition, E.L/ is
irreducible.

By (2)–(5), X1 , T1 , T , and A˛min fulfill the assumptions of the proposition. By (1)
we may apply induction, showing that for every i 2 I , there is a bounded set of slopes
of Ti , that we will denote by B3

i;˛min
, such that for each ˛1 2A˛min there is an i 2 I

with ˛1jTi
2 B3

i;˛min
.

With the notation of the preceding paragraph, every ˛ 2 A00 admits a minimally
nonhyperbolic filling ˛min and ˛jTi

D ˛1jTi
for every i 2 I . Hence for some i 2 I ,

˛jTi
2 B3

i;˛min
. By Proposition 4.2, X admits only finitely many minimally nonhyper-

bolic fillings. Hence the set
B3

i D

[
˛min

B3
i;˛min

is bounded. The proposition follows by setting

Bi D B1
i [B2

i [B3
i :

We assume from now on that X is not Seifert fibered, sol, or hyperbolic.

Assume that X is reducible Let X1 be the factor of the prime decomposition of X

that contains T1 ; say X D X1 # X 0
1

(we are not assuming that X 0
1

is prime). Then
any ˛ 2 A induces the multislopes ˛1 D ˛j@X1

and ˛0
1
D ˛j@X 0

1
on @X1 and @X 0

1
,

respectively. Since X1.˛1/#X 0
1
.˛0

1
/DX.˛/ŠM and M is hyperbolic, the following

conditions hold:

(1) X1.˛1/ŠM since T1 � @X1 (with ˛1jT1
D1).

(2) X 0
1
.˛0

1
/Š S3 .

By construction, the reducing sphere that gives the decomposition X D X1 # X 0
1

is
disjoint from L. Since E.L/ is irreducible, no component of it is contained in X 0

1
.˛0

1
/;

equivalently, T � @X1 . It is easy to see that X1 , T1 , T , and f˛1 j ˛ 2Ag fulfill the
assumptions of the proposition. Since X1 corresponds to a direct descendant of the root
of T .X /, we have jT .X1/j< jT .X /j. By induction, for each i 2 I there is a bounded
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Xk

Fj

Fi Xm

X1

Xj

J

J

Figure 5: The notation when X is JSJ (the shaded region is X c
j )

set of slopes Bi of Ti such that for each ˛ 2 A there is an i 2 I with ˛1jT1
2 Bi .

Since ˛jTi
D ˛1jTi

for all i 2 I , the proposition follows in this case.

We assume from now on that X is irreducible and not Seifert fibered, sol, or hyperbolic.

Assume that X is JSJ Let X0 be the component of the torus decomposition of X that
contains T1 . Denote the components of @X0 nT1 by fFj g

k
jD1

. Denote the component
of cl.X nX0/ containing Fj by Xj ; see Figure 5. To avoid the situation where Xj D∅,
if Fj � @X we push it slightly into the interior of X so that Xj Š T 2 � Œ0; 1� in that
case. Since M is hyperbolic it admits no nonseparating tori; thus we assume as we may
that Xj ¤Xj 0 for j ¤ j 0 , for otherwise no filling of X yields M . By renumbering if
necessary, we assume as we may that @Xj contains a component of T exactly when
j �m, for an appropriately chosen m.

For ˛ 2A we will denote the restriction ˛j@Xj as j̨ (by definition j̨ jFj D1). Since
X.˛/ ŠM is hyperbolic, every torus in X.˛/ is either boundary parallel (Case A
below), or bounds a solid torus (Cases B and C below), or bounds a nontrivial knot
exterior in a ball (Case D below). Thus for every 1� j �k exactly one of the following
holds:

Case A Xj . j̨ /ŠM and cl.X.˛/ nXj . j̨ //Š T 2 � Œ0; 1�.

Case B Xj . j̨ /ŠD2 �S1 and no component of L\Xj . j̨ / is a core of Xj . j̨ /.

Case C Xj . j̨ /ŠD2�S1 and some component of L\Xj . j̨ /, which we will denote
by Kj , is a core of Xj . j̨ /.

Case D Xj . j̨ /ŠE.Kj / for a nontrivial knot Kj � S3 and Xj . j̨ /�Dj for some
ball Dj �X.˛/.
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We first consider the following:

Case A happens for some j �m Fix j (1� j �m) and let A0j �A be

A0j D f˛ 2A jXj . j̨ /ŠM g:

Note that for any ˛ 2 A, if Fj is as in Case A above then ˛ 2 A0j . We will denote
the set of restrictions f j̨ j ˛ 2A0j g by Aj . Let Tj D T \Xj and Lj D L\Xj . j̨ /;
equivalently, Lj is the link formed by the cores of the solid tori attached to Tj . Since
j �m, we have Tj ¤∅. If Lj were reducible for some j̨ 2Aj then any reducing
sphere for Xj . j̨ / n int N.Lj / would be a reducing sphere for L; this contradicts the
assumptions of the proposition.

Hence Xj , Fj , Tj and Aj fulfill the assumptions of the proposition. Since Xj is a
direct descendant of the root of T .X /, we have that jT .Xj /j< jT .X /j. By induction
on each component T of Tj , there is a bounded set of slopes, that we will denote
by BT , such that for each j̨ 2Aj there is a component T of Tj with j̨ jT 2 BT . It
follows that for every ˛ 2A0j we have ˛jT 2BT for some T ; the proposition follows
in this case.

We may consider from now on only multislopes from An
�S

j�m A0j
�

(and in particular,
we assume as we may that Case A above does not happen for j �m). To avoid overly
complicated notation we do not rename A.

Next we consider the following:

Case A happens for some j � mC 1 Fix j (mC 1 � j � k ). We will denote
cl.X nXj / by X c

j and the restriction ˛j@X c
j

by ˛c
j ; note that ˛c

j jFj and ˛c
j jT1

are 1.
Since j �mC 1, T � @X c

j . Let A0j �A be the set

A0j D f˛ 2A jX
c

j .˛
c
j /Š T 2

� Œ0; 1�g:

Note that for any ˛ 2 A, Fj is as in Case A above if and only if ˛ 2 A0j . We will
denote the set of restrictions f˛c

j j ˛ 2A
0
j g by Ac

j .

Thus we have a manifold X c
j such that T � @X c

j and multislopes Ac
j such that

X c
j .˛

c
j / Š T 2 � Œ0; 1� and @X c

j .˛
c
j / D T1 [ Fj for every ˛c

j 2 Ac
j . Up to finite

ambiguity we fix J � f1; : : : ; kg, and denote by Ac
J
�Ac

j the multislopes for which
Xj 0. j̨ 0/ŠE.Kj 0/�Dj 0 for a nontrivial knot Kj 0 �S3 and a ball Dj 0 �X.˛/ if and
only if j 0 2 J . By Lemma 2.2 we may assume that the balls fDj 0gj 02J are disjointly
embedded.

Let Y 0 be the closure of X c
j n

�S
j 02J E.Kj 0/

�
(see Figure 6; in that figure fFj 0gj 02J

are the two tori on the top right). By restriction, any ˛c
j 2 Ac

J
induces a slope on
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T1

Y 0

Y 00

Y 000 U 0

S

Fj

Fi Xm

LY

X1

Figure 6: Y 0.˛Y 0/

each component of @Y 0 n
�
T1[Fj [

�S
j 02J Fj 0

��
. For every j 0 2 J , we pick a slope

on Fj 0 that intersects the meridian of E.Kj 0/ exactly once. (There are infinitely many
ways to do this; we will exploit this flexibility soon when appealing to Lemma 2.4.)
Denote the multislope obtained by ˛Y 0 , and note that Y 0.˛Y 0/ Š T 2 � Œ0; 1� and
@Y 0.˛Y 0/D T1 [Fj . We will denote T \ @Y 0 by TY , the link formed by the cores
of the solid tori attached to TY by LY , and the link formed by the cores of the solid
tori attached to

S
j 02J Fj 0 by U 0 (in Figure 6, U 0 is red). Since the components of U 0

are unknots contained in the disjointly embedded balls Dj 0 , U 0 is an unlink. Finally
assume, for a contradiction, that TY D∅. Then L�

S
j 02J Dj 0 ; this contradicts the

assumption that E.L/ is irreducible, showing that TY ¤∅.

If Y 0.˛Y 0/ n int N.LY [ U 0/ is irreducible we denote Y 0 by Y , U 0 by U , and ˛Y 0

by ˛Y . Otherwise, let S be a reducing sphere that realizes the decomposition of
Y 0.˛Y 0/ n int N.LY [ U 0/ as Y 00 # Y 000 , where Y 00 is irreducible and T1 � Y 00 (in
Figure 6, S is green). Note that Y 0.˛Y 0/ n int N.LY [ U 0/ is obtained from Y 0 by
filling @Y 0 n

�
T1[Fj [ TY [

�S
j 02J Fj 0

��
(in Figure 6 the components that are not

filled are T1 , Fj , U 0 and LY ). Since T � TY [
�S

j 02J @Xj 0
�
, we have L\S D∅.

We consider S as a sphere in

Y 0.˛Y 0/[Fj Xj . j̨ /Š T 2
� Œ0; 1�[Fj M ŠM:

Since M is hyperbolic, S bounds a ball in Y 0.˛Y 0/[Fj Xj . j̨ / which we will denote
by D . Since T1 � Y 00 , we have D D Y 000.˛Y 0 jY 000/. Clearly, TY \ D D ∅, for
otherwise S would be a reducing sphere for E.L/. We will denote by Y the manifold
obtained from Y 0 by filling

�S
j 02J Fj 0

�
\D along the multislope induced by ˛Y 0 .

We will denote the multislope ˛Y 0 j@Y by ˛Y and U 0 n .U 0\D/ by U . By construction
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TY � @Y , and therefore we may consider LY as the link in Y .˛Y / formed by the
cores of the solid tori attached to TY . Then the following two conditions hold:

(1) U is an unlink.

(2) Y .˛jY / n int N.LY [U/Š Y 00 and hence is irreducible.

We choose the slopes of U , as we know we may by Lemma 2.4, so that E.LY / is
irreducible.

Lemma 14.8 For every ˛Y 2 AY , there is a slope ˛0 of Fj such that Y .˛Y /.˛
0/

satisfies the following conditions:

(1) Y .˛Y /.˛
0/ŠD2 �S1 .

(2) LY � Y .˛Y /.˛
0/ is irreducible.

(3) No component of LY is a core of Y .˛Y /.˛
0/.

Proof of Lemma 14.8 Fix ˛Y 2AY .

By construction, Y .˛Y /Š T 2 � Œ0; 1�; hence for any slope ˛0 we have Y .˛Y /.˛
0/Š

D2 �S1 . Thus (1) is satisfied by any slope ˛0 of Fj .

Since the exterior of LY as a link in Y .˛Y / is irreducible, by Hatcher [7, Corollary],
there is a finite set of slopes of Fj , which we will denote by Bf , such that for any
slope ˛0 62 Bf the exterior of LY as a link in Y .˛Y /.˛

0/ is irreducible.

For (3) we fix a component K of LY . Let ŒK� denote the homology class represented
by K in H1.Y .˛Y /IZ/ ( ŒK� is only defined up to sign). We consider two possibilities:

� ŒK � is not primitive Then by Lemma 2.6, K is not a core of Y .˛Y /.˛
0/ for

any slope ˛0 ; we set BK D∅.

� ŒK � is primitive By Lemma 2.6, if K is a core of Y .˛Y /.˛
0/ then ŒK� and

Œ˛0� generate H1.Y .˛Y //. We will denote by BK the set of slopes of Fj that
correspond to homology classes fulfilling this condition. It is easy to see that
BK has diameter 2 in the Farey graph of the slopes of Fj .

Since Bf [
�S

K BK

�
is a finite union of bounded sets it is itself bounded; hence its

complement is not empty. Lemma 14.8 follows by picking ˛0 62 Bf [
�S

K BK

�
.

For each ˛Y 2AY we pick a slope ˛0 of Fj satisfying the conditions of Lemma 14.8.
By Proposition 7.2, on every component T of TY , there exists a bounded set BT such
for that every ˛Y 2AY there is a component T of TY with ˛Y jT 2 BT . Given any
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˛ 2A, we construct ˛c
j 2A

c
J

and ˛Y as above. The proposition follows in this case
since ˛jT D ˛c

j jT D ˛Y jT 2 BT .

We may consider from now on only multislopes from A n
�S

j�mC1 A
0
j

�
. Thus from

now on we will only consider multislopes for which Case A does not happen for any j .
To avoid overly complicated notation we do not rename A.

Next we consider the following:

Case B happens for some j �m Fix 1 � j �m. We will denote by A0j � A the
multislopes ˛ 2A for which Xj . j̨ /ŠD2 �S1 and no component of L\Xj . j̨ / is
a core. Note that Case B occurs if and only if ˛ 2A0j .

We will denote the set of restrictions f j̨ j ˛ 2A0j g by Aj and T \Xj by Tj . Since
j �m, we have Tj ¤∅. Given j̨ 2Aj , we will denote the link formed by the cores
of the solid tori attached to Tj by Lj . It is easy to see that if Xj . j̨ / n int N.Lj ) were
reducible then E.L/ would be reducible, contradicting the third assumption of the
proposition. By the assumption of Case B, no component of Lj is a core of the solid
torus Xj . j̨ /. Therefore by Proposition 7.2, for each component T of Tj , there is a
bounded set of slopes of T , which we will denote by BT , such that for each j̨ 2Aj

there is a component T of Tj with j̨ jT 2 BT . The proposition follows in this case
since ˛jT D j̨ jT for any ˛ 2A0j .

We may consider from now on only multislopes from An
�S

j�m A0j
�
. To avoid overly

complicated notation we do not rename A.

We have reduced the proof to the following:

Case A never happens and Case B never happens for j �m Consider J1;J2 �

f1; : : : ; kg fulfilling the following conditions:

(1) ∅¤ J1 � f1; : : : ;mg.

(2) J1\J2 D∅.

(3) f1; : : : ;mg � J1[J2 .

Let AJ1;J2
�A be the multislopes ˛ fulfilling the following conditions:

(1) Xj . j̨ /ŠD2 �S1 for every j 2 J1 .

(2) Xj . j̨ /ŠE.Kj / for any 1� j � k (for a nontrivial knot Kj �S3 ) if and only
if j 2 J2 .

Using the fact that Case A does not happen (that is, every Fj bounds a solid torus or
a knot exterior contained in a ball) and irreducibility of L and Lemma 2.2 (which
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together imply that J1 ¤∅), it is easy to see that for any ˛ 2A there is a choice of
J1;J2 as above for which ˛ 2AJ1;J2

; thus

AD
[

J1;J2

AJ1;J2
:

Up to finite ambiguity we fix J1;J2 � f1; : : : ; kg fulfilling the conditions above and
consider only multislopes from AJ1;J2

.

Fix a multislope ˛ 2AJ1;J2
.

By Lemma 2.2 we may fix disjointly embedded balls fDj gj2J2
such that E.Kj /�Dj .

Since Case B does not happen for j �m, for every j 2J1 , at least one component of L
is a core of Xj . j̨ /; we choose one and denote it by Kj . We will denote

S
j2J1

Kj

by L1 and
S

j2J1
Tj by T1 .

The multislope ˛ induces a multislope on @X0 as follows: forj 62J2 , the slope induced
on Fj is the meridian of solid torus Xj . j̨ /. For j 2 J2 , the slope induced on Fj is
any slope that intersects the meridian of E.Kj / once (we will exploit this flexibility
soon, when appealing to Lemma 2.4). We will denote the multislope induced by ˛ on
@X0 by ˛0 . By construction X0.˛0/ŠM . For j 2 J1 , we will denote the core of
the solid torus attached to Fj by Kj and the link formed by the cores of the solid tori
attached to T1 by L1 ; no confusion should arise from this notation, as Kj and L1 are
isotopic to the knots and link denoted that way previously. We will denote the link
formed by the solid tori attached to

S
j2J2

Fj by U . By construction, the components
of U are unknots embedded in the disjoint balls Dj , and hence U is an unlink.

In order to apply Lemma 2.4 we need to know that L1 is irreducible in the complement
of U ; this is not quite the case, but we can obtain this by considering only some of the
components of U . To that end we prove:

Lemma 14.9 Suppose S is a reducing sphere for L1 in the complement of U . Then
S bounds a ball D � X0.˛0/ such that D \ L1 D ∅ and D contains at least one
component of U .

Proof of Lemma 14.9 Let S be a reducing sphere for L1 in X0.˛0/nN.U/; equiva-
lently, S is a reducing sphere for X0.˛0/nN.U[L1/. Fix 1� j �m; note that either
j 2 J1 or j 2 J2 . If j 2 J2 , then by construction S is disjoint from Fj . If j 2 J1 ,
then S\Kj D∅ (since Kj �L1 ). Since Kj is a core of the solid torus attached to Fj ,
we may isotope S out of this solid torus without intersecting Kj . After performing this
isotopy (if necessary) for each 1� j �m, the reducing sphere S is disjoint from Fj

for every 1� j �m. Since X0.˛0/ŠX.˛/, we may consider S as a sphere in X.˛/,
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where we see that L\S D∅. Hyperbolicity of X.˛/ and irreducibility of E.L/ imply
that S bounds a ball D�X.˛/ such that L\DD∅. It follows that Xj . j̨ /\DD∅
for 1 � j � m; therefore T1 \D D ∅. Hence S bounds a ball in X0.˛0/ that is
disjoint from T1 and hence from L1 . On the other hand, S does not bound a ball in
X0.˛0/ nN.U/; hence D must contain at least one component of U .

This completes the proof of Lemma 14.9.

Let D be as in Lemma 14.9. We remove the components of U \D from U ; to avoid
overly complicated notation we do not rename U . We repeat this process as long as
we can; it terminates since the number of components of U is reduced. When it does,
L1 is irreducible in the complement of the unlink U . By Lemma 2.4 we may change
the slopes ˛0jU so that the exterior of L1 is irreducible. To avoid overly complicated
notation we do not rename ˛0

We will denote by A0 the multislopes induced on @X0 by multislopes of AJ1;J2
via

the procedure described above. We see that X0 , T1 , T1 , and A0 fulfill the assumptions
of the proposition. By Lemma 5.6, we have jT .X0/j < jT .X /j. By induction, for
each component Fj of T1 , there is a bounded set of slopes of Fj which we will
denote by BFj , such that for each ˛0 2A0 there is some component Fj of T1 with
˛0jFj 2 BFj .

Given j 2 J1 , let S ¤Fj be a component of @Xj . Let ˇ be a multislope of @Xj such
that ˇjFj and ˇjS are both 1 and Xj .ˇ/Š T 2 � Œ0; 1�. We will denote by Bˇ the
projection of BFj to the slopes of S induced by the product structure on Xj .ˇ/. By
the T 2 � Œ0; 1� cosmetic surgery theorem (Theorem 6.1), the set

S
ˇ Bˇ is bounded

(where the union is taken over all possible multislopes ˇ as above; if there is no such
multislope then

S
ˇ Bˇ D∅). We will denote

S
ˇ Bˇ by BS .

Given ˛ 2 AJ1;J2
, let ˛0 be the induced multislope on X0 as above. Let Fj be the

component for which ˛0jFj 2 BFj . Recall that Kj is a core of a solid torus attached
to Xj which is also a core of Xj . j̨ /. Let S be the component of @Xj that corresponds
to Kj . By definition of ˛0jFj , it is the projection of ˛jS under the natural projection
given by the product structure on Xj . j̨ / nN.Kj /. Thus ˛jS 2 BS . This shows that
for every ˛ 2 AJ1;J2

, there is a boundary component S such that ˛jS 2 BS . Since
BS is bounded, this completes the proof of Proposition 14.6.
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