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Loop near-rings and unique decompositions of H-spaces

DAMIR FRANETIČ

PETAR PAVEŠIĆ

For every H-space X , the set of homotopy classes ŒX;X � possesses a natural al-
gebraic structure of a loop near-ring. Albeit one cannot say much about general
loop near-rings, it turns out that those that arise from H-spaces are sufficiently close
to rings to have a viable Krull–Schmidt type decomposition theory, which is then
reflected into decomposition results of H-spaces. In the paper, we develop the
algebraic theory of local loop near-rings and derive an algebraic characterization
of indecomposable and strongly indecomposable H-spaces. As a consequence, we
obtain unique decomposition theorems for products of H-spaces. In particular, we are
able to treat certain infinite products of H-spaces, thanks to a recent breakthrough in
the Krull–Schmidt theory for infinite products. Finally, we show that indecomposable
finite p–local H-spaces are automatically strongly indecomposable, which leads to
an easy alternative proof of classical unique decomposition theorems of Wilkerson
and Gray.

55P45; 16Y30

Introduction

In this paper, we discuss relations between unique decomposition theorems in alge-
bra and homotopy theory. Unique decomposition theorems usually state that sum
or product decompositions (depending on the category) whose factors are strongly
indecomposable are essentially unique. The standard algebraic example is the Krull–
Schmidt–Remak–Azumaya theorem. In its modern form, the theorem states that any
decomposition of an R–module into a direct sum of indecomposable modules is unique,
provided that the endomorphism rings of the summands are local rings; see Facchini
[8, Theorem 2.12]. Modules with local endomorphism rings are said to be strongly
indecomposable, and they play a pivotal role in the study of cancellation and unique
decomposition of modules. For example, every indecomposable module of finite length
is strongly indecomposable, which implies the classical Krull–Schmidt theorem; see
[8, Lemma 2.21 and Corollary 2.23].

Similar results on unique decompositions have been obtained by P Freyd [12] and H
Margolis [18] in the stable homotopy category, and by C Wilkerson [24] and B Gray [14]
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in the unstable homotopy category. However, even when their arguments closely parallel
the standard algebraic approach, the above authors choose to rely on specific properties
of topological spaces and avoid reference to purely algebraic results. In [21], the second
author considered factorizations in the stable homotopy category from the algebraic
viewpoint. He first pointed out that the endomorphism rings of stable p–complete
spectra are finite yZp –algebras, and that those are known to be semiperfect; see Lam
[17, Example 23.3]. The unique decomposition for finite p–complete spectra then
follows immediately because the Krull–Schmidt–Remak–Azumaya theorem holds for
modules whose endomorphism ring is semiperfect.

The p–local case is more difficult, but Pavešić was able to show (see [21, Theorem 2.1])
that the endomorphism rings of finite p–local spectra are also semiperfect rings, which
implies that finite p–local spectra decompose uniquely. The efficiency of the algebraic
approach motivated our attempt to derive unique decomposition theorems in the unstable
homotopy category. The leading idea is that the set ŒX;X � of homotopy classes of self-
maps of X should play a role in the decomposition theory of H-spaces; this is analogous
to the role of endomorphism rings in the decomposition of modules. However, the
situation is more complicated because of the fact that for a general H-space X , the set
ŒX;X � is not a ring but possesses only the much weaker structure of a loop near-ring.
Thus we were forced to first develop a notion of localness for loop near-rings, and then
to characterize H-spaces that are strongly indecomposable and appear as prime factors
in unique decompositions. One of the important advantages of our approach is that
there are stronger versions of the Krull–Schmidt–Remak–Azumaya theorem that can be
used to derive new decomposition theorems. In particular, a recently proven result about
unique decompositions of infinite products of modules led to new unique decomposition
theorems for infinite products of H-spaces; see Theorems 2.11 and 2.13 below.

The paper is organized as follows. In Section 1, we study the set of homotopy classes
End.X / WD ŒX;X � for a connected H-space X and show that it has the algebraic
structure of a loop near-ring. Since this structure is not well known, we then recall
some basic facts about loop near-rings, generalize the concept of localness to loop
near-rings and prove the most relevant results. More algebraic details are developed
by the first author in [10]. In Section 2, we define strongly indecomposable H-spaces
and show that a decomposition of an H-space as a product of strongly indecomposable
factors is essentially unique. Finally, in Section 3, we prove that for finite p–local
H-spaces, indecomposable implies strongly indecomposable, which in turn yields a
unique decomposition theorem for p–local H-spaces.

Our approach can be almost directly dualized to simply connected coH-spaces and
connective CW-spectra. See Remarks 2.2 and 3.4. All spaces under consideration are
assumed to be pointed and to have the homotopy type of a connected CW-complex.
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Maps and homotopies are base-point preserving, but we omit the base points from the
notation and do not distinguish between a map and its homotopy class.

1 Loops and loop near-rings

If X is an H-space, then the set ŒX;X � of homotopy classes of self-maps admits two
natural binary operations. The first, multiplication, is induced by the composition fg

of maps f;gW X !X : it is associative with the identity map 1X W X !X acting as
the neutral element, so the resulting algebraic structure .ŒX;X �; � / is a monoid. The
second operation, addition, is induced by the H-structure: it is neither commutative nor
associative in general, and the constant map 0X W X!X represents the neutral element.
If the H-space X is connected, then .ŒX;X �;C/ is a so called (algebraic) loop; see
Zabrodsky [26, Theorem 1.3.1]. Moreover, addition and composition on ŒX;X � are
related by right distributivity, ie .f Cg/hD f hCgh holds for all f;g; hW X !X .
The resulting algebraic structure End.X / WD .ŒX;X �;C; � / is called a (right) loop
near-ring, a structure that was first introduced by Ramakotaiah and Santhakumari [23].
We are not aware of any papers on loop near-rings that arise in topology. However, if X

is an H-group, then End.X / is a near-ring, and this stronger structure has already been
studied by Curjel [7] and, more recently, by Baues, Hartl and Pirashvili [3], and others.

1.1 Basic properties

The definition of a loop near-ring is similar to that of a ring, but it lacks some important
ingredients: addition is not required to be commutative nor associative, and only one
of the distributivity laws is present. The resulting structure is often very different from
a ring, but nevertheless, a surprising number of concepts and facts from ring theory can
be suitably extended to this more general setting. We recall the definitions and state
relevant results.

Definition 1.1 An (algebraic) loop consists of a set G equipped with a binary opera-
tion C satisfying the following properties:

� for every a; b 2G , the equations aCxD b and yCaD b have unique solutions
x 2G and y 2G , respectively;

� there exists a two-sided zero, ie an element 0 2G such that 0C aD aC 0D a

for all a 2G .

A loop is essentially a “nonassociative group”. Existence of unique solutions to
equations implies that left and right cancellation laws hold in a loop. We can define the
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operations of left and right difference X and Xwhere xD aXb is the unique solution of
the equation aCxD b and y D b Xa is the unique solution of the equation yCaD b .

A loop homomorphism is a function �W G!H between loops G and H such that
�.aCb/D �.a/C�.b/ for all a; b 2G . Since �.0/D �.0/C�.0/, the cancellation
in H gives �.0/ D 0. Similarly, we get �.aX b/ D �.a/X�.b/ and �.a Xb/ D

�.a/ X�.b/.

As in the theory of groups, we can define two kinds of subobjects: subloops and normal
subloops. A subset of a loop G is a subloop of G if it is closed with respect to the
addition and both difference operations. A direct definition of a normal subloop is
more complicated, as we must take into account the nonassociativity of the addition: a
subloop K �G is a normal subloop if, for all a; b 2G , we have

aCK DKC a; .aC b/CK D aC .bCK/ and .KC a/C b DKC .aC b/:

We often use a slicker characterization: a subset of G is a subloop if it is the image
of some loop homomorphism; it is a normal subloop if it is a kernel of some loop
homomorphism. See Bruck [4, Chapter IV] for a detailed treatment of these concepts.

Definition 1.2 A (right) loop near-ring .N;C; � / consists of a set N with two binary
operations C and � such that:

� .N;C/ is a loop,
� .N; � / is a monoid, ie multiplication is associative with identity 1,
� multiplication is right distributive over addition, and n0D0 holds for every n2N.

If .N;C/ is a group, .N;C; � / is a near-ring.

Our definition of a loop near-ring is made a bit more restrictive than the one given in
Ramakotaiah and Santhakumari [23] by requiring that there exists a neutral element
for the multiplication, and that N 0D 0. Both modifications are motivated by the fact
that, for an H-space X , we have that End.X / is always unital, and the constant map
0W X ! X satisfies the property 0n D n0 D 0. In general, right distributivity and
cancellation imply 0nD 0. The symmetric relation n0D 0, however, is not automatic
and characterizes the so-called zero-symmetric loop near-rings in [23]. Let us also
remark that if X is a simply connected coH-space, then End.X / turns out to be a left
loop near-ring.

A generic example of a right near-ring is the near-ring M.G/ of all functions f W G!G

from a group G to itself. Moreover, if G is only a loop, then M.G/ is a loop near-
ring [23, Example 1.2]. The following topological examples are more relevant to our
discussion.
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Example 1.3 To present an example of a near-ring whose additive group is not
commutative, we first need the following general observation. Given an H-space X

with the multiplication map � and an arbitrary space Z , the sum of maps f;gW Z!X

is given by the composition f Cg WD �.f �g/� as in the diagram

f CgW Z
�
��!Z �Z

f�g
���!X �X

�
��!X:

This operation is commutative for all spaces Z if and only if p1 C p2 D p2 C p1

holds for the two projections p1;p2W X �X ! X in ŒX �X;X �. Indeed, one can
directly check that f C g D .p1C p2/.f;g/, and gC f D .p2C p1/.f;g/, so if
p1Cp2 D p2Cp1 , then f Cg D gCf for every Z and every f;gW Z!X .

A well-known example of an H-structure that is not homotopy commutative is given
by the quaternion multiplication on the 3–sphere S3 ; see James [15]. By the above
remark, it follows that ŒS3 �S3;S3� is a nonabelian group; hence End.S3 �S3/ is a
(right) near-ring but not a ring.

Example 1.4 Similarly as in the previous example, one can show that given an H-
space X , the addition on ŒZ;X � is associative for all spaces Z if and only if the relation
p1C .p2Cp3/D .p1Cp2/Cp3 holds for the three projections in ŒX �X �X;X �.
The octonion multiplication on the sphere S7 is a familiar example of an H-structure
that is not homotopy associative (see James [16]), so the addition in ŒS7�S7�S7;S7�

is not associative. We conclude that End.S7 �S7 �S7/ is not a near-ring but only a
(right) loop near-ring.

Example 1.5 Our final example is a left loop near-ring induced by a coH-space
structure. Every element 
 W S6 ! S3 of order 3 in the group �6.S

3/ Š Z=12 is
a coH-map, therefore its mapping cone C WD S3 [
 e7 is a coH-space. Ganea [13,
Proposition 4.1] has proven that C does not admit any associative coH-structures,
so in particular, the addition induced by the coH-structure in ŒC;C _C _C � is not
associative. It follows that End.C _C _C / is a (left) loop near-ring but not a near-ring.

1.2 Local loop near-rings

The crucial ingredient in the proof of the Krull–Schmidt–Remak–Azumaya theorem is
the assumption that there is a factorization of the given module as a direct sum of factors
whose endomorphism rings are local. In order to extend this approach to factorizations
of H-spaces, we need a suitable definition of local loop near-rings. Local near-rings
were introduced by Maxson in [19]. We use the characterization [19, Theorem 2.8] to
extend this concept to loop near-rings. A subloop I �N is said to be an N –subloop
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if NI � I . The role of N –subloops in the theory of loop near-rings is analogous to
that of ideals in rings.

Definition 1.6 A loop near-ring N is local if it has a unique maximal N –subloop
J Œ N .

Let U.N / denote the group of units of the loop near-ring N , that is to say, the group of
invertible elements of the monoid .N; � /. A function �W N !N 0 is a homomorphism
of loop near-rings if �.1/D 1, �.mC n/D �.m/C�.n/, and �.mn/D �.m/�.n/

hold for all m; n 2 N . Clearly �.0/ D 0, and if u 2 U.N /, then �.u/ 2 U.N 0/.
A homomorphism is said to be unit-reflecting if the converse holds, ie if �.n/ 2U.N 0/

implies n 2 U.N /. One of the most remarkable properties of loop near-rings that arise
in homotopy theory is that they come equipped with a unit-reflecting homomorphism
into a ring (namely, with the representation into an endomorphism of homotopy or
homology groups, which is unit-reflecting as a consequence of the Whitehead theorem).
It is important to observe that the image of such a homomorphism is always a subring
of the codomain. The main properties of local loop near-rings are collected in the
following theorem. (We denote by B �A the set-theoretic difference of B and A, ie
the relative complement of A in B .)

Theorem 1.7 (i) In a local loop near-ring N , the only idempotents are 0 and 1.

(ii) A loop near-ring N is local if and only if N �U.N / is an N –subloop in N.
Moreover, in this case, N �U.N / is the unique maximal N –subloop.

(iii) Let �W N !R be a nontrivial and unit-reflecting homomorphism from a loop
near-ring N to a ring R. If N is local, then im� is a local subring of R.
Conversely, if R is local, then N is a local loop near-ring.

Proof (i) Let eDe22N be an idempotent and write an element n2N as nDyCne .
Multiplying this equation by e from the right we get neD .yCne/eD yeCne ; hence
ye D 0. Denote by Ann.e/ the annihilator of e , ie the subset of all y 2N such that
ye D 0. We have just seen that N D Ann.e/CNe . Both subsets, Ann.e/ and Ne ,
are N –subloops in N (this is immediate for Ne ; for Ann.e/, use the fact that N is
zero-symmetric). Similarly as for unital rings, Zorn’s lemma implies that every proper
N –subloop in N is contained in a maximal N –subloop, see [19, Lemma 2.7]. Clearly,
Ann.e/ and Ne cannot both be contained in the unique maximal N –subloop J Œ N .
Therefore, either Ann.e/DN or Ne DN , which means that either e D 0 or e D 1.

(ii) Let N be local and let J Œ N be the unique maximal N –subloop. We claim that
every u2N �J has a left inverse which is also in N �J ; then it follows automatically
that N �J �U.N /. In fact, if N u¤N , then the N –subloop N u is contained in J ;
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hence u 2 J . Therefore, for u 2N �J , we have N uDN ; in particular, kuD 1 for
some k 2N . Observe that k 2N �J as well. In fact, we have the following chain of
implications:

.1 Xuk/uD u XukuD u XuD 0 D) 1 Xuk is not left invertible

D) uk 2N �J

D) k 2N �J:

We conclude N �J �U.N /. The reverse inclusion U.N /�N �J is obvious; hence
J DN �U.N /, which is an N –subloop.

For the reverse implication, assume that N �U.N / is an N –subloop. Since every
proper N –subloop I Œ N is contained in N �U.N /, it is clearly the unique maximal
N –subloop.

(iii) Call a subset K�N an ideal if K is the kernel of some loop near-ring homomor-
phism  W N !N 0 . Every ideal K is also an N –subloop. If N is local with unique
maximal N –subloop J , then K � J , and the quotient N=K Š im has J=K as the
unique maximal .N=K/–subloop. (Note that the  –preimage of an .N=K/–subloop
in N=K is an N –subloop in N .) So, in particular, im� is a local ring.

For the reverse implication, since � is unit-reflecting, we have ��1.R�U.R// D

N �U.N /. As R is a local ring, R�U.R/ is a left ideal of R by [17, Theorem 19.1];
therefore, its preimage N �U.N / is an N –subloop of N . Thus by (ii), N is local.

2 Uniqueness of decompositions of H-spaces

The classical Krull–Schmidt–Remak–Azumaya theorem says that a factorization of
a module as a direct sum of strongly indecomposable modules is essentially unique.
In this section, we use the theory of loop near-rings to prove an analogous result for
product decompositions of H-spaces.

Given a space X , every self map f W X ! X induces endomorphisms �k.f / 2

End.�k.X // of the homotopy groups of X , which can be combined to obtain the
following function:

ˇX W End.X /!
1Y

kD1

End.�k.X //; f 7! f] D .�1.f /; �2.f /; �3.f /; : : :/:

A loop near-ring homomorphism �W N !M is idempotent-lifting if for every idem-
potent of the form �.n/ 2M , there is an idempotent e 2N such that �.e/D �.n/.
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Proposition 2.1 If X is an H-space, then ˇX is a unit-reflecting and idempotent-lifting
homomorphism from a loop near-ring to a ring.

Proof We already know that End.X / is a loop near-ring. All homotopy groups of
an H-space are abelian, so the End.�k.X // are rings; hence the codomain of ˇX

is a direct product of rings. Moreover, ˇX is a homomorphism of loop near-rings
because .f C g/] D f] C g] holds for every H-space X , while .fg/] D f]g] by
functoriality. To see that ˇX is unit-reflecting, let f W X !X be such that the induced
homomorphism ˇX .f / is an isomorphism. Then by the Whitehead theorem, f
is a homotopy equivalence, ie a unit element of End.X /. Finally, if ˇX .f / is an
idempotent, then by [11, Proposition 3.2], there is a decomposition of X into a product
of telescopes Tel.f /�Tel.f X1X /. The first factor in this decomposition determines
an idempotent eW X ! Tel.f /!X in End.X / such that ˇX .e/D ˇX .f /, proving
that ˇX is idempotent-lifting.

Remark 2.2 All results of this section are easily dualized to simply connected coH-
spaces X . As in [11], one replaces ��.X / with singular homology groups H�.X /,
and the homomorphism ˇX with the homomorphism

˛X W End.X /!
1Y

kD1

End.Hk.X //; f 7! f� D .H1.f /;H2.f /;H3.f /; : : : /:

Product and weak product decompositions of H-spaces are replaced by wedge decom-
positions of coH-spaces; hence Theorems 2.11 and 2.13 below are replaced by one dual
theorem. Moreover, if one replaces the coH-space X by a connective CW-spectrum X ,
the dualized argument remains the same. Observe that even though End.X / is a
genuine ring in the case of CW-spectra, its image under ˛X can be easier to understand.

Every decomposition of an H-space as a product of two noncontractible spaces, X '

Y �Z , determines a nontrivial idempotent e D jpW X ! Y ,! X in End.X /, and
conversely, every nontrivial idempotent f 2 End.X / gives rise to a nontrivial product
decomposition X ' Tel.f /�Tel.f X1X /.

Definition 2.3 An H-space X is indecomposable if 0X and 1X are the only idempo-
tents in End.X /. Moreover, X is strongly indecomposable if End.X / is a local loop
near-ring.

By Theorem 1.7, every strongly indecomposable H-space is indecomposable. The
converse is not true: eg End.S1/D End.S3/D End.S7/ŠZ, so S1 , S3 and S7 are
indecomposable H-spaces, but they are not strongly indecomposable since the ring
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of integers is not local. The main result of this paper is that the distinction between
indecomposable and strongly indecomposable disappears when one considers finite
p–local spaces.

Example 2.4 In the sense of Baker and May (see [2, Definition 1.1]), a p–local
CW-complex or spectrum X is called atomic if its first nontrivial homotopy group,
say �k0

.X /, is a cyclic Z.p/–module, and a self map f W X ! X is a homotopy
equivalence whenever f]W �k0

.X / ! �k0
.X / is an isomorphism. This notion of

atomicity also appeared earlier in the works of Cohen, Moore and Neisendorfer [6,
Section 4]. Note that in this case, End.�k0

.X // is a local ring, and the loop near-ring
homomorphism �k0

W End.X /! End.�k0
.X // is unit-reflecting. Hence every atomic

complex X in this sense is also strongly indecomposable by Theorem 1.7.

In particular, the spectra BP and BP hni are atomic at all primes [2, Examples 5.1
and 5.4], and the suspensions †CP1 and †HP1 are atomic at the prime 2 by [2,
Propositions 4.5 and 5.9]. Moreover, at the prime p , there is a decomposition (see
McGibbon [20, Proposition 2.2])

(1) †CP1.p/ 'W1 _ � � � _Wp�1,

where the nonzero integral homology groups of Wr are zH2kC1.Wr /DZ.p/ for k � r

mod .p� 1/. By [2, Proposition 5.9], the suspension spectra †1Wr are atomic, and
hence, strongly indecomposable by dual reasoning in view of Remark 2.2. The loop
near-ring homomorphism †1W End.Wr / ! End.†1Wr / is unit-reflecting, so the
coH-spaces Wr are also strongly indecomposable. Therefore, the _–decomposition
(1) is unique by the dual of Theorem 2.9 below.

Lemma 2.5 Let X be an H-space, and let f 2 End.X / be an idempotent. Then
f D 0X if and only if ˇX .f /D 0.

Proof It is the “if” part that requires a proof. Assume ˇX .f /D 0, and let g solve the
equation gCf D 1X in End.X /. Then ˇX .g/D 1, so g is a homotopy equivalence
by Proposition 2.1. Using right distributivity in End.X /, we obtain f D .gCf /f D
gf C f . Canceling f , we get gf D 0X ; hence f D 0X since g is a homotopy
equivalence.

Lemma 2.5 combined with Theorem 1.7 yields the following detection principle.

Proposition 2.6 Let X be an H-space.

(i) X is indecomposable if and only if the ring imˇX contains no proper nontrivial
idempotents.

(ii) X is strongly indecomposable if and only if the ring imˇX is local.
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Let Xi be H-spaces, set X WD
Q

i2I Xi , and equip X with the H-space structure
induced by the Xi . Then End.X / D ŒX;X � D

Q
i2I ŒX;Xi � as loops. Denote by

ei 2 End.X / the idempotent jipi W X !Xi ,!X corresponding to the factor Xi . As
a loop, ŒX;Xi � is naturally isomorphic to ei End.X /, the isomorphism being given by
f 7! jif . Therefore, End.X / Š

Q
i2I ei End.X /. Setting A WD imˇX , it is easily

seen that AD
Q

i2I ei]A, not only as abelian groups, but also as right A–modules. We
shall exploit this fact on multiple occasions, as it translates a decomposition problem of
an H-space into a (seemingly) more manageable decomposition problem of a module.

Remark 2.7 More can be said. The loop ŒX;Xi � has a natural right action of the loop
near-ring End.X / given by composition

ŒX;Xi ��End.X /! ŒX;Xi �; .f; h/ 7! f h:

Naturality of the addition on ŒX;Xi � implies that .f C g/h D f hC gh holds; ie
this action is right distributive over C and makes ŒX;Xi � into an End.X /–comodule
(see Clay [5, Definition 13.2]). The isomorphism ŒX;Xi � Š ei End.X / is then an
isomorphism of right End.X /–comodules. Of course, once the functor �� is applied
to End.X /D

Q
i2I ŒX;Xi �, we obtain the aforementioned identification of right A–

modules AD
Q

i2I ei]A.

The next technical lemma draws a tight relation between certain retracts of X and
corresponding summands of the right A–module A.

Lemma 2.8 Assume that Z and Z0 are retracts of an H-space X , with Z strongly
indecomposable. Set A WD imˇX , and let e]D .jp/] and e0]D .j

0p0/] be the idempo-
tents corresponding to retracts Z and Z0 , respectively. Then Z and Z0 are homotopy
equivalent spaces if and only if e]A and e0]A are isomorphic right A–modules.

Proof Suppose Z 'Z0 . Pick a homotopy equivalence vW Z!Z0 with homotopy
inverse v�1W Z0!Z . Consider the elements .j 0vp/] and .j v�1p0/] in the ring A.
Note that .j v�1p0/].j

0vp/] D e] and .j 0vp/].j v�1p0/] D e0] . For any idempotent
f] 2A, left multiplication by f] is the identity of the right A–module f]A. It follows
that left multiplication by .j 0vp/] is an endomorphism of the right A–module A,
which maps e]A isomorphically onto the submodule e0]A. Hence e]AŠ e0]A.

For the reverse implication, observe that e]Ae] and imˇZ are isomorphic as rings, the
latter ring being local by Proposition 2.6. Since e]AŠ e0]A as right A–modules, the
idempotents e] and e0] are conjugate in A, ie e0] D u�1

] e]u] for some unit u] 2U.A/;
see [17, Exercise 21.16]. Now form the composed maps

g D puj 0W Z0 ,!X !X !Z and hD p0u�1j W Z ,!X !X !Z0;
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and verify that gh and hg induce the identity endomorphisms of the respective homo-
topy groups. Therefore, Z 'Z0 .

Finite product decompositions of H-spaces behave nicely, as one is tempted to suspect
from the module case.

Theorem 2.9 Assume that an H-space X admits a (finite) product decomposition
X 'X1 � � � � �Xn into strongly indecomposable factors Xi .

(i) Any indecomposable retract Z of X is strongly indecomposable. Moreover,
there is an index i such that Z 'Xi .

(ii) If X ' X 0
1
� � � � �X 0m is any other decomposition of X into indecomposable

factors X 0
k

, then m D n, and there is a permutation ' such that Xi ' X 0
'.i/

holds for all i .

Proof Set A WD imˇX . A retraction pW X ! Z and its right inverse j W Z ,!X

determine an idempotent f] D .jp/] in the ring A. We also have idempotents
ei] D .jipi/] 2 A and e0k] D .j

0
k
p0

k
/] 2 A corresponding to the factors Xi and X 0

k
,

respectively. Viewing A as a right A–module, we see that (i) f]A is a direct summand
of A, and (ii) A admits two direct-sum decompositions

AD e1]A˚ � � �˚ en]AD e01]A˚ � � �˚ e0m]A:

The theorem will now follow almost directly from its algebraic analogues:

(i) By [8, Lemma 2.11], f]A has a local endomorphism ring. Moreover, f]A is
isomorphic to some ei]A. Since EndA.f]A/Š f]Af]Š imˇZ as rings, Z is strongly
indecomposable by Proposition 2.6. Hence, by Lemma 2.8, Z 'Xi .

(ii) By Proposition 2.6, the A–modules ei]A are indecomposable with local endomor-
phism rings, and the A–modules e0k]A are indecomposable. By the Krull–Schmidt–
Remak–Azumaya theorem [8, Theorem 2.12] there is a bijection 'W f1; : : : ; ng !

f1; : : : ;mg such that ei]A and e0'.i/]A are isomorphic right A–modules. Now use
Lemma 2.8 to conclude Xi 'X 0

'.i/
for all i D 1; : : : ; n.

We will use the proof above as a prototypical example of the use of Lemma 2.8 to deduce
the uniqueness of H-space decompositions from the uniqueness of module decomposi-
tions. The Krull–Schmidt–Remak–Azumaya theorem for modules, however, is a state-
ment about direct-sum decompositions of modules, and is false for general, ie infinite,
direct-product decompositions; see Franetič [9, Example 2.1]. The following propo-
sition is a very special case of [9, Theorem 2.4] that will be used later in this section.
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Proposition 2.10 Let R be a proper subring of the rationals, A an R–algebra, and
fMi W i 2 Ig and fNk W k 2Kg two countable families of indecomposable A–modules,
which are finitely generated as R–modules. Assume that EndA.Mi/ are local rings. If
there is an isomorphism

Q
i2I Mi Š

Q
k2K Nk , then there exists a bijection 'W I!K

such that Mi ŠN'.i/ as A–modules.

Fix a proper subring R Œ Q. A connected H-space X is called R–local if ��.X / is
an R–module. A connected R–local H-space X is called homotopy-finite if ��.X / is
finitely generated over R, and it is called of finite type if �k.X / is finitely generated
over R for each k .

In [14], B Gray proves a unique decomposition theorem for finite-type H-spaces in
the p–complete setting; see [14, Corollary 1.4]. For R–local finite-type H-spaces, we
have the following results (Theorems 2.11 and 2.13).

Theorem 2.11 Let fXi W i 2 Ig and fX 0
k
W k 2 Kg be two families of R–local,

homotopy-finite H-spaces, with all of the Xi strongly indecomposable, and all of
the X 0

k
indecomposable. Assume that the product

Q
i2I Xi is of finite type. If the

products
Q

i2I Xi and
Q

k2K X 0
k

are homotopy equivalent, then there exists a bijection
'W I !K such that Xi 'X 0

'.i/
for all i .

Remark 2.12 More often than not, the products in the above statement will not have
the homotopy type of a CW-complex, even though we are assuming that the spaces Xi

and X 0
k

are CW-complexes (or have the homotopy type of a CW-complex).

Proof We set X WD
Q

i2I Xi and A WD imˇX , and we use eiDjipi and e0
k
Dj 0

k
p0

k
to

denote the idempotents in End.X / corresponding to the factors of each decomposition.
Then A is an R–algebra, and the right A–module A admits two direct product
decompositions

AD
Y
i2I

ei]AD
Y

k2K

e0k]A:

By Proposition 2.6, the A–modules ei]A are strongly indecomposable, while the
A–modules e0k]A are indecomposable.

View ei]A as an R–submodule of HomR.��.X /; ��.Xi// via the monomorphism
ei]f] 7! pi]f] . Since ��.Xi/ is finitely generated over R and X is of finite type,
HomR.��.X /; ��.Xi//, the R–module of graded homomorphisms ��.X /!��.Xi/,
is finitely generated. As R is noetherian, each ei]A must also be finitely generated as an
R–module. Similarly, each e0k]A is also finitely generated as an R–module. Now, X

being of finite type forces both index sets, I and K , to be at most countable. Hence all
of the assumptions of Proposition 2.10 are satisfied, so there is a bijection 'W I !K
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such that ei]A and e0'.i/]A are isomorphic right A–modules. By Lemma 2.8, we must
have Xi 'X 0

'.i/
for all i 2 I .

There is another decomposition of spaces often studied in homotopy category, the
weak product. Let X 0 be the set of all points x D .xi/i2I 2

Q
i2I Xi with all but

finitely many of the xi equal to the base point �i 2 Xi . Equip the product
Q

i2I Xi

with the compactly generated topology, and let X 0 inherit the relative topology. We
will (deliberately) use the notation

L
i2I Xi for the space X 0 and call it the weak

product of the Xi . Of course, X 0 can also be viewed as a union (direct limit) of all
compactly generated finite products of the Xi . Hence if all of the Xi are T1 –spaces,
there is a natural isomorphism ��

�L
i2I Xi

�
Š
L

i2I ��.Xi/. Also, if all of the Xi

are CW-complexes, then the topology on
L

i2I Xi is precisely the CW-topology.

Let fXi W i 2 Ig be a family of H-spaces with additions �i W Xi �Xi !Xi . Define a
map �0W X 0 �X 0!X 0 to be the composite

X 0 �X 0 D

�M
i2I

Xi

�
�

�M
i2I

Xi

�
�
��!

M
i2I

.Xi �Xi/
˚i2I�i
�����!

M
i2I

Xi DX 0,

where � is the coordinate-shuffle map, ie �..xi/i2I ; .yi/i2I /D .xi ;yi/i2I . Clearly, �
is well defined. Continuity of � is assured by equipping all the products above with
the compactly generated topology. A routine exercise shows that �0j 0

1
' 1X 0 ' �0j 0

2

holds for the two inclusions j 0
1
; j 0

2
W X 0 ,! X 0 �X 0 . (Let ji1W Xi ,! Xi �Xi be the

inclusions of the first factor, and suppose Hi W Xi �I!Xi are homotopies rel �i from
�iji1 to 1Xi

. Consider the composite

H 0W X 0 � I ,!

�Y
i2I

Xi

�
� II �

��!

Y
i2I

.Xi � I/
…i2I Hi
�����!

Y
i2I

Xi ;

where I ,! II is the diagonal inclusion. Note that, in fact, H 0.X 0 � I/ � X 0 since
the homotopies Hi are rel �i . Therefore, H 0 is a homotopy rel .�i/i2I from �0j 0

1

to 1X 0 . Repeat for j 0
2

.) Hence,
L

i2I Xi is also an H-space.

Let Xi .i 2 I/ be H-spaces, and let X 0 D
L

i2I Xi be the weak product of the Xi .
Again, we denote by ei D jipi the idempotent in End.X 0/ corresponding to the
factor Xi . The functor �� maps End.X 0/D ŒX 0;X 0� into

EndR.��.X
0//D HomR

�M
i2I

��.Xi/; ��.X
0/

�
D

Y
i2I

HomR.��.Xi/; ��.X
0//;

and there is a natural identification HomR.��.Xi/; ��.X
0//Š EndR.��.X

0//ei] . Set
A0 WD imˇX 0 . Restricting the decomposition above to the subring A0 of EndR.��.X

0//,
we get A0 D

Q
i2I A0ei] as a left A0–module.
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We can now state the weak product version of Theorem 2.11. The proof is deliberately
omitted, as it uses the same argument as the proof of Theorem 2.11 with the left
A0–module A0 in place of the right A–module A.

Theorem 2.13 Let fXi W i 2 Ig and fX 0
k
W k 2 Kg be two families of R–local,

homotopy-finite H-spaces, with all of the Xi strongly indecomposable and all of
the X 0

k
indecomposable. Assume that the weak product

L
i2I Xi is of finite type. If

the weak products
L

i2I Xi and
L

k2K X 0
k

are homotopy equivalent, then there exists
a bijection 'W I !K such that Xi 'X 0

'.i/
for all i .

Of course, the above uniqueness theorems say nothing about the existence of factor-
izations of H-spaces as products of strongly indecomposable spaces. For example,
if X is an H-space having the homotopy type of a finite CW-complex, then one can
decompose X as a product of indecomposable factors, but these factors will rarely be
strongly indecomposable (unless End.X / is finite). This is reflected in the well-known
phenomenon that finite H-spaces often admit inequivalent product decompositions. The
situation becomes more favorable if we consider p–localizations of H-spaces. In the
following section, we are going to show that a p–local finite H-space is indecomposable
if and only if it is strongly indecomposable. A factorization of an H-space as a product
of such spaces is therefore unique. Finally, if we consider p–complete H-spaces,
then even the finite-dimensionality assumption may be dropped. In fact, Adams and
Kuhn [1] have proven that every indecomposable p–complete H-space of finite type is
atomic, which implies in particular that each such H-space is strongly indecomposable.
Theorem 2.9 implies that decompositions into finite products of p–complete atomic
spaces are unique. For an alternative approach that works for spaces of finite type, see
Gray [14, Corollaries 1.4 and 1.5] or Xu [25, Theorem 4.2.14].

3 Homotopy endomorphisms of p–local spaces

In this section, we consider p–local H-spaces and show that under suitable finiteness
assumptions, the indecomposability of a space implies strong indecomposability. The
proof is an interesting blend of topology and algebra since it uses nontrivial results
from homotopy theory, the theory of local rings and the theory of loop near-rings.
Let us say that, for some subring R � Q, an R–local H-space X is finite if it is
finite-dimensional and if its homotopy groups are finitely generated R–modules. For
every finite H-space X , we can define the homomorphism

x̌
X W End.X /!

dim XY
kD1

End.�k.X //; f 7! .�1.f /; �2.f /; : : : ; �dim X .f //:
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We will show that, when applied to a finite H-space X , the homomorphism x̌X retains
the same main features of the homomorphism ˇX as described in Proposition 2.1, but
it has a great advantage over the latter because it maps into the ring of endomorphisms
of a finitely generated module.

Proposition 3.1 If X is a finite H-space, then the homomorphism x̌X is unit-reflecting
and idempotent-lifting.

Proof Reflection of units follows from the Whitehead theorem, so it only remains to
prove that x̌X is idempotent lifting.

First observe that finite H-spaces are rationally elliptic; ie X is rationally equivalent to
a finite product of Eilenberg–MacLane spaces: XQ 'K.Q; n1/� � � � �K.Q; nt /; see
[26, Section 4.4]. It follows that for all k > dim X , the groups �k.X / are torsion and,
hence, finite.

Let a map f W X ! X be such that �k.f / D �k.f /
2W �k.X / ! �k.X / for all

k � dim X ; ie x̌X .f / is an idempotent in im x̌X . As the groups �k.X / are finite for
k>dim X , there is an integer n such that the n–fold composite f nW X!X induces an
idempotent endomorphism �k.f /

nW �k.X /!�k.X / for all k � 2.dim XC1/. If we
set f WD f nX1X in the loop near-ring End.X /, then �k.f /D 1�k.X /��k.f /

n is an
idempotent endomorphism of �k.X / for all k � 2.dim XC1/. It follows that the map

X
�
�!X �X ,! Tel.f n/�Tel.f /

induces an isomorphism

�k.X /! im�k.f /
n
˚ im�k.f /

for all k � 2.dim XC1/D dim.Tel.f n/�Tel.f //. Hence, X 'Tel.f n/�Tel.f / by
the Whitehead theorem. This product decomposition determines the idempotent eW X!

Tel.f n/! X that satisfies �k.e/ D �k.f /
n D �k.f / for all k � dim X . In other

words, x̌X .e/D x̌X .f /; therefore, e is an idempotent in End.X / that lifts x̌X .f /.

We have now prepared all the ingredients needed for the proof of the main result of
this section.

Theorem 3.2 Indecomposable finite p–local H-spaces are strongly indecomposable.

Proof To simplify the notation, let us denote by E the ring
Qdim X

kD1 End.�k.X //,
by A its subring im x̌X , and by J D J.A/ the Jacobson radical of A.

Theorem 1.7 says that in order to prove that End.X / is a local loop near-ring, it is suffi-
cient to show that A is a local ring. The ring A is finitely generated as a Z.p/–module,
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so by [17, Proposition 20.6], the quotient A=J is semisimple (ie a product of full-matrix
rings over division rings). Therefore, we must prove that A=J has only trivial idempo-
tents, as this would imply that A=J is a division ring, and hence that A is local. In fact,
it is sufficient to prove that J is an idempotent-lifting ideal, because then every nontrivial
idempotent in A=J would lift to a nontrivial idempotent in A, and then along x̌X to
a nontrivial idempotent in End.X /, contradicting the indecomposability of X .

That J is idempotent-lifting is proved by the following argument. The ring E is
semiperfect by [17, Examples 23.2 and 23.4] because it is a product of endomorphism
rings of finitely generated Z.p/–modules. By [11, Lemma 3.2], A is a subring of finite
additive index in E , and so by [22, Example 3.3], the radical J is idempotent-lifting,
which concludes the proof.

Let us remark that if X is a p–local H-space whose graded homotopy group is a
finitely generated Z.p/–module (ie X is a homotopy-finite p–local H-space), then the
above proof works with ˇX in place of x̌X , and we obtain the following result as well.

Theorem 3.3 Let X be a p–local H-space such that its graded homotopy group is a
finitely generated Z.p/–module. Then X is indecomposable if and only if it is strongly
indecomposable.

Remark 3.4 If X is a simply connected p–local coH-space (or a p–local connective
CW-spectrum), there is no distinction between finite and homology finite (at least up
to homotopy equivalence). Theorems 3.2 and 3.3 are therefore replaced by one dual
theorem. In the proof of Theorem 3.2 we simply replace the homomorphism x̌

X

with ˛X without any additional complications. No dual of Proposition 3.1 is needed.

Observe that the two versions of the theorem of Wilkerson [24] on the unique factoriza-
tion of p–local H-spaces now follow as easy corollaries. In fact, every p–local H-space
of finite type that is either finite-dimensional or homotopy finite-dimensional admits a
decomposition as a product of indecomposable factors. By Theorems 3.2 and 3.3, the
factors are indeed strongly indecomposable, so by Theorem 2.9, the decomposition
is unique.

Example 3.5 One might wonder whether the Theorems 3.2 and 3.3 remain true if we
replace finite by finite type (ie �k.X / are finitely generated for all k ). We know that at
least in the case of CW-spectra, they are false. Consider the example given by Adams
and Kuhn in [1, Section 4]. They construct an indecomposable p–local spectrum X

such that the ring homomorphism H0W End.X /! End.H0.X // is unit-reflecting, and
its image is a ring isomorphic to

Z.p/Œ��

.�2��Cp/
:
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The spectrum X has H0.X /D Z.p/˚Z.p/ , so we can identify End.H0.X // with
M2.Z.p//, the ring of 2� 2 matrices with entries in Z.p/ . The image of End.X / in
this matrix ring is precisely the one-to-one image of Z.p/Œ��=.�

2��Cp/ under the
ring homomorphism which maps a polynomial q to the matrix q.A/, where

AD

�
0 1

�p 1

�
:

(Note that �2��Cp is the minimal polynomial of A.) Now A is not invertible, and
neither is I �A, so the ring Z.p/Œ��=.�

2 � �Cp/ cannot be local. Hence X is an
indecomposable p–local spectrum of finite type, which is not strongly indecomposable.

Adams’ and Kuhn’s construction of the spectrum X relies on the existence of certain
elements in the stable homotopy groups of spheres (in the image of the J –homomor-
phism) and cannot be directly applied to spaces. It remains an open question whether a
similar example exists in the realm of finite type H- or coH-spaces.
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[10] D Franetič, Local loop near-rings, to appear in Rend. Semin. Mat. Univ. Padova (2015)
arXiv

Algebraic & Geometric Topology, Volume 16 (2016)

http://dx.doi.org/10.1017/S0013091500004715
http://msp.org/idx/mr/1015489
http://dx.doi.org/10.1016/j.top.2003.09.004
http://msp.org/idx/mr/2041635
http://dx.doi.org/10.1016/S0022-4049(97)00130-8
http://msp.org/idx/mr/1479346
http://dx.doi.org/10.1007/978-3-662-43119-1
http://msp.org/idx/mr/0093552
http://msp.org/idx/mr/1206901
http://msp.org/idx/mr/921471
http://projecteuclid.org/euclid.ijm/1255637487
http://msp.org/idx/mr/0145518
http://dx.doi.org/10.1007/978-3-0348-8774-8
http://msp.org/idx/mr/1634015
http://dx.doi.org/10.1016/j.jalgebra.2014.03.013
http://msp.org/idx/mr/3197162
http://msp.org/idx/arx/1503.06047


3580 Damir Franetič and Petar Pavešić
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