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Legendrian submanifolds with
Hamiltonian isotopic symplectizations

SYLVAIN COURTE

In any closed contact manifold of dimension at least 11 , we construct examples of
closed Legendrian submanifolds which are not diffeomorphic but whose Lagrangian
cylinders in the symplectization are Hamiltonian isotopic.

53D10

1 Introduction

Let .M; �/ be a contact manifold (� is cooriented) and denote by SM its symplectiza-
tion, ie the set of covectors in T �M whose kernel is equal (as a cooriented hyperplane)
to � ; it comes with a natural projection � W SM !M , which is a principal R–bundle
(the R–action is given by multiplying covectors by et for t 2R). To any Legendrian
submanifold ƒ�M , there corresponds its symplectization SƒD ��1.ƒ/ which is a
Lagrangian submanifold diffeomorphic to R�ƒ. Any R–equivariant Hamiltonian
isotopy of SM that takes Sƒ to Sƒ0 induces a contact isotopy of M that takes ƒ
to ƒ0 . However, if we forget about R–equivariance, we are lead to consider the
following question:

Question If Sƒ and Sƒ0 are Hamiltonian isotopic, does it follow that ƒ and ƒ0 are
Legendrian isotopic?

This is a relative version of the question of whether contact manifolds with exact sym-
plectomorphic symplectizations are necessarily contactomorphic. The latter question
was answered negatively by the author in [3], and we explain in this paper that the
same phenomenon arises in this case.

Theorem 1.1 In any closed contact manifold .M; �/ of dimension 2n � 1 > 11,
there exist closed Legendrian submanifolds which are not diffeomorphic but whose
symplectizations are Hamiltonian isotopic.
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This theorem will follow from a general construction using Lagrangian h-cobordisms
and a Mazur-trick argument. An essential ingredient in the proof is the notion of flexible
Lagrangian cobordisms recently introduced by Eliashberg, Ganatra and Lazarev in [7].
We need the assumption 2n� 1 > 11 because it allows us to apply the s-cobordism
theorem to Lagrangian h-cobordisms.

Remark 1.2 Even if we further assume that the Legendrian submanifolds are diffeo-
morphic, the answer to the question above is still negative. Indeed, we will construct in
Section 4 two closed Legendrian submanifolds in R15 which are smoothly isotopic and
have Hamiltonian isotopic symplectizations but which are not Legendrian isotopic. Cor-
responding examples were described by the author in [4, Section 3] for the absolute case.

2 Exact Lagrangian cobordisms and the Mazur trick

Let .M; �/ be a connected contact manifold; recall that its symplectization SM

is equipped with a canonical Liouville vector field Xcan and a canonical Liouville
form �can (the restrictions of those of T �M ), and that a contact form for .M; �/ is
a section of the bundle SM !M . We denote by SM >˛ the subset of SM above
the section ˛ and use obvious notations for similar subsets of SM or subsets of a
Lagrangian cylinder Sƒ.

Definition 2.1 An exact Lagrangian cobordism in SM is a connected Lagrangian
submanifold L � SM such that there exist two sections ˛� and ˛C of SM , with
˛� < ˛C at each point of M , with the following properties:

(1) There exist two closed Legendrian submanifolds ƒ� and ƒC such that

L\SM >˛C D Sƒ
>˛C
C and L\SM 6˛� D Sƒ6˛�

� :

(2) The region L\SM Œ˛�;˛C� is a compact cobordism from ƒ� to ƒC (without
any other boundary).

(3) Denoting i W L! SM the inclusion, there exists a function gW L! R with
i��can D dg which is constant on L\SM >˛C and on L\SM 6˛� .

If ƒ� is empty, we say that L is an exact Lagrangian filling.

Definition 2.2 Let L be an exact Lagrangian submanifold in SM . A Liouville vector
field X in SM is said to be adapted to L if it is tangent to L and can be written
X DXcanCXg

1 with g constant on SM >˛C and on SM 6˛� for some sections ˛�
and ˛C of SM .

1The Hamiltonian vector field Xg is defined by Xgy! D�dg .
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Adapted Liouville vector fields can always be constructed: extend the function g given
in Definition 2.1 to SM so that it is constant on SM >˛C and on SM 6˛� and set
X DXcanCXg .

Definition 2.3 A symplectomorphism �W SM ! SM is said to be contact at in-
finity if there exist two sections ˛� and ˛C of SM such that in SM 6˛� (resp. in
SM >˛C ), � coincides with the lift of a contactomorphism �� (resp. �C ). Such
symplectomorphisms form a group that we denote by G . The subgroup defined by
f�C D id; �� D idg (resp. f�� D idg) will be denoted by G@ (resp. G@� ). An element
of G@� is also called a symplectic pseudoisotopy of M ; see [1, Section 14.5]. We also
denote by H the connected component of the identity in G@ .

Note that an element � of G is automatically exact; that is, ���can D �canC dk for
some function kW SM !R which is constant in SM >˛C and in SM 6˛� for some
sections ˛� and ˛C of SM . In particular, if L is an exact Lagrangian cobordism
in SM , then so is �.L/.

Definition 2.4 Two exact Lagrangian cobordisms L and L0 in SM are said to
be equivalent (which we denote L � L0 ) if there exists an element � of H (see
Definition 2.3) such that L0 D �.L/.

Exact Lagrangian cobordisms can be composed: given such .LIƒ;ƒ0/ and .L0Iƒ0; ƒ00/,
we have sections ˛ and ˛0 such that L\SM >˛DSƒ0>˛ and L0\SM 6˛0DSƒ06˛

0

.
If we can find such sections with ˛ <˛0 , then L and L0 can naturally be glued because
they both coincide with Sƒ0 in SM Œ˛;˛0� ; now observe that we can always achieve
this condition by pushing up L0 along the flow of Xcan . We denote by L ˇ L0

the resulting exact Lagrangian cobordism. This composition operation satisfies the
following properties:

(1) The equivalence class of LˇL0 is independent of choices and depends only on
the equivalence classes of L and L0 .

(2) LˇSƒ0 �L and SƒˇL�L.

(3) The composition is associative on equivalence classes; that is, Lˇ .L0ˇL00/�

.LˇL0/ˇL00 .

(4) Given a sequence .Li Iƒi ; ƒiC1/ for i 2 Z of exact Lagrangian cobordisms,
we can construct the infinite composition

J
i2Z Li : this is a properly embedded

Lagrangian submanifold (not necessarily an exact Lagrangian cobordism) whose
Hamiltonian isotopy class (not with compact support) is independent of choices
and only depends on the equivalence class of each Li . Moreover, one can
introduce parentheses in such an infinite composition as we please.
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Definition 2.5 An exact Lagrangian cobordism .LIƒ;ƒ0/ is said to be invertible if
there exists another exact Lagrangian cobordism .L0Iƒ0; ƒ/ such that LˇL0 � Sƒ

and L0ˇL� Sƒ0 .

To show invertibility of some exact Lagrangian cobordism, we will always construct
right inverses only and apply the following proposition.

Proposition 2.6 Let L;L0 and L00 be exact Lagrangian cobordisms with LˇL0�Sƒ

and L0ˇL00 � Sƒ0 . Then L is invertible.

Proof By associativity of composition, we have

L�Lˇ .L0ˇL00/� .LˇL0/ˇL00 �L00:

Proposition 2.7 Let ƒ and ƒ0 be closed Legendrian submanifolds of a closed contact
manifold .M; �/. The following assertions are equivalent:

(1) Sƒ and Sƒ0 are Hamiltonian isotopic (by an isotopy which is not necessarily
compactly supported ).

(2) There exists an invertible exact Lagrangian cobordism .LIƒ;ƒ0/.

Proof .1/ D) .2/ Let Ht W SM ! R be a Hamiltonian generating an isotopy �t

(t 2 Œ0; 1�) of SM such that �0 D id and �1.Sƒ/ D Sƒ0 . We pick four sections
˛1<˛2<˛3<˛4 and two functions �; �0W SM ! Œ0; 1� with the following properties:

� �D 1 in SM >˛2 and �D 0 in SM 6˛1 ,

� �0 D 1 in SM 6˛3 and �0 D 0 in SM >˛4 .

We respectively denote by  t ,  0t and �t the Hamiltonian isotopies generated by
�Ht , �0Ht and ��0Ht (these are all well defined for t 2 Œ0; 1�). Then LD  1.Sƒ/

and L0 D 0
1
.Sƒ/ are exact Lagrangian cobordisms from ƒ to ƒ0 and from ƒ0 to ƒ,

respectively. Moreover, if we chose ˛3=˛2 sufficiently big, then LˇL0 sits naturally
in SM as �1.Sƒ/ and is equivalent to Sƒ (via the isotopy �t ). We can likewise
construct a right inverse for L0 , and we conclude using Proposition 2.6.

.2/ D) .1/ Let .L0Iƒ0; ƒ/ be an inverse for .LIƒ;ƒ0/ and consider the infinite
composition

L1 D � � �ˇLˇL0ˇLˇL0ˇ � � � :

By introducing parentheses in two different ways, .LˇL0/ versus .L0ˇL/, in the
above expression, we get that L1 is Hamiltonian isotopic to Sƒ as well as to Sƒ0 .
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Remark 2.8 It follows from Proposition 2.7 that no invariant of closed Legendrian
submanifolds which is functorial with respect to exact Lagrangian cobordisms can
distinguish between ƒ and ƒ0 . This applies in particular to Legendrian contact
homology introduced in [8, Section 2.8]; see also [5] and [6].

Here is a first class of examples of invertible Lagrangian cobordisms that will appear
in the next section.

Proposition 2.9 Let .M; �/ be a closed contact manifold, ƒ a closed Legendrian sub-
manifold of M , and �W SM ! SM a symplectic pseudoisotopy (see Definition 2.3).
Then �.Sƒ/ is an invertible exact Lagrangian cobordism in SM .

Proof There exists some section ˛ of SM such that � coincides with the lift of
some contactomorphism �C in SM >˛C . We have that L D �.Sƒ/ is an exact
Lagrangian cobordism in SM from ƒ to ƒ0 D �C.ƒ/. Besides, L0 D ��1.Sƒ0/ is
an exact Lagrangian cobordism from ƒ0 to ƒ. Let  t be the flow of Xcan , and let
�t D  �t ı� ı t . We have that ��1 ı�t is a smooth path in G starting from id and
that, for t > 0 large enough, ��1 ı�t .Sƒ/ is a realization of the composition LˇL0 .
So we get LˇL0�Sƒ. Likewise, we can produce a right inverse for L0 and conclude
by Proposition 2.6.

We end this section with the following result, whose proof is almost the same as that
of Proposition 2.7 except that we use the Mazur trick only in the positive end.

Proposition 2.10 Let .M; �/ be a closed contact manifold, and let F and F 0 be two
exact Lagrangian fillings in SM (see Definition 2.1). The following assertions are
equivalent:

(1) F and F 0 are Hamiltonian isotopic (by an isotopy which is not necessarily
compactly supported ).

(2) There exists an invertible exact Lagrangian cobordism L such that F ˇL� F 0 .

Our goal now is to construct invertible exact Lagrangian cobordisms which are not
diffeomorphic to cylinders.

3 Flexible Lagrangian h-cobordisms

Let .M; �/ be a contact manifold of dimension 2n� 1 > 5.

Algebraic & Geometric Topology, Volume 16 (2016)
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Definition 3.1 [7] An exact Lagrangian cobordism L � SM is called regular if
there exist an adapted Liouville vector field X (see Definition 2.2) and a proper Morse
function f W SM !R for which X is a pseudogradient. Moreover, if there exists such
an adapted pair .f;X / for which f is excellent (all critical values are distinct) and the
attaching spheres of critical points of index n are loose (see [15]) in the complement
of L, then L (as well as the pair .f;X /) is said to be flexible.

Note that the critical points of f jL are necessarily critical points of f , and in the flexi-
ble case, there cannot be any critical point of index n on L. The definition can obviously
be extended to Lagrangian cobordisms into arbitrary flexible Weinstein cobordisms.

Recall that an h-cobordism is a cobordism which deformation retracts on its bottom
boundary as well as on its top boundary. According to the s-cobordism theorem
(see [12]), h-cobordisms from a given closed manifold M of dimension > 5 are
classified up to diffeomorphism relative to M by so-called Whitehead torsion, an
invariant which takes values in the Whitehead group Wh.M / of M (it actually depends
only on �1M ). Essentially, since each element in a group has an inverse, h-cobordisms
of dimension > 6 are invertible for the composition of cobordisms; see [16].

Theorem 3.2 Let .M; �/ be a closed contact manifold of dimension > 11.

(1) Let ƒ be a closed Legendrian submanifold in M, and .LIƒ;ƒ0/ an h-cobordism.
Then L can be embedded in SM as a flexible Lagrangian cobordism starting
from ƒ.

(2) Any flexible Lagrangian h-cobordism in SM is invertible (as an exact La-
grangian cobordism).

We need a couple of intermediate results. The following lemma is proved in [7,
Proposition 2.5].

Lemma 3.3 For any regular Lagrangian cobordism L together with an adapted pair
.f;X /, we can find a homotopy .ft ;Xt / of adapted pairs such that .f0;X0/D .f;X /,
and for all critical point of f1 on L, the index is the same for f1 and f1jL. Moreover,
if dim L > 3 and if .f0;X0/ is flexible, we can require .ft ;Xt / to be flexible for all t .

The following theorem is a relative analogue of [1, Corollary 14.2] and may be of
independent interest.

Theorem 3.4 Let .M; �/ be a contact manifold of dimension 2n�1>5. If .LIƒ;ƒ0/
is a flexible Lagrangian cobordism in SM which is diffeomorphic to ƒ� Œ0; 1� (with
cylindrical ends attached ), then it admits an adapted pair without critical points.
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Proof We start with a flexible adapted pair .f;X /.

By Lemma 3.3, we can assume that the critical points on L have the same index for
f jL and f .

Since there are no X –trajectories going from critical points outside of L to critical
points on L, we can reorder the critical values so that the critical points on L lie
below all the others (by repeated applications of [13, Lemma 2.1], starting with the
lower critical point on L). After this modification, there is a level set ff D cg which
separates critical points outside of L from critical points on L.

Since L is a cylinder, L\ff 6 cg admits a function h without critical points together
with a pseudogradient Y , and we can take them to coincide with the restrictions of
.f;X / near f �1.c/ and below some section ˛� of SM . We extend h to an adapted
pair .yh; yY / on a neighborhood of L in a standard way (see [1, Lemma 12.8]), and
using [1, Lemma 12.10], we modify .f;X / near L by interpolation so that it coincides
with .yh; yY / near L. Now .f;X / has only critical points outside of L, and it is still
flexible because nothing has changed above the level set ff D cg.

It remains to cancel the critical points outside of L, and we will do it by a path of
adapted pairs which is constant near L. We first need to prove that it is smoothly
possible (that is, without the condition that the pseudogradient is Liouville). For that,
we can follow the proof of the s-cobordism theorem (as in [12]):

(1) Cancel critical points of index 0 with some critical points of index 1.

(2) Trade critical points of index i for critical points of index iC2, until there only
remain critical points of indices n� 1 and n.

(3) Cancel together critical points of indices n� 1 and n.

Recall that every X –trajectory between critical points is disjoint from L, so L appears
in each level set of f as a smooth submanifold of codimension n (which is at least 3)
and is disjoint from the stable and unstable manifolds of all critical points. The main
point to notice is that the isotopies of the attaching spheres needed to arrange cancellation
positions can be done in the complement of L because they can be localized near
Whitney 2–disks which are generically disjoint from L. Therefore, we can proceed
through all the steps above keeping .f;X / fixed near L.

Finally, as in the proof of Theorem 14.9 in [1], we upgrade the deformation of .f;X /
to a deformation through adapted pairs (that is, with Liouville pseudogradient). Since
.f;X / is flexible, the attaching spheres of critical points are either subcritical or loose
in the complement of L, so the same proof works verbatim and provides the required
path of adapted pairs, fixed near L, which cancels all critical points of .f;X /.
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Proof of Theorem 3.2 (1) Recall that any h-cobordism of dimension at least 6 can
be presented with a Morse function having only critical points of indices 2 and 3;
see [12]. We first construct a flexible2 Weinstein cobordism .W IM;M 0/ containing a
flexible Lagrangian cobordism .LIƒ;ƒ0/ by attaching Weinstein handles of indices 2

and 3 on ƒ. Denoting by � 2 Wh.L/ the Whitehead torsion of L, we note that
the ambient cobordism W is also an h-cobordism and that its torsion is i.�/, where
i W Wh.ƒ/! Wh.M / is the map induced by inclusion. We now attach handles of
indices 2 and 3 on top of M 0 away from ƒ0 to produce a flexible Weinstein h-
cobordism W 0 with torsion �i.�/ 2Wh.M 0/ (we identify Wh.M /'Wh.M 0/ via
the homotopy equivalence induced by W ). The Lagrangian L can be continued inside
of W 0 by composing with the Lagrangian cylinder Sƒ0 . The composition W ˇW 0 is a
flexible Weinstein cobordism, and it is diffeomorphic to M � Œ0; 1� since its Whitehead
torsion vanishes. We can therefore cancel all the handles and show that W ˇW 0 is
equivalent to SM relative to the negative boundary; see [1, Corollary 14.2]. Thus L

now sits as a flexible Lagrangian cobordism in SM .

(2) Let .L0
1
Iƒ0; ƒ/ be an inverse cobordism for .LIƒ;ƒ0/. Using the first point,

we can embed L0
1

as a flexible Lagrangian cobordism in SM . Denote by ƒ1 the
positive Legendrian boundary of L0

1
; note that it is a priori different from ƒ. Now

Theorem 3.4 allows us to find an adapted pair .f;X / without critical points for the
composition LˇL0

1
. By sending the trajectories of Xcan to that of X , we find a

symplectic pseudoisotopy  of SM (that is,  2 G@� ; see Definition 2.3) that takes
Sƒ to Lˇ L0

1
. By Proposition 2.9, there is an exact Lagrangian cobordism L0

2

such that LˇL0
1
ˇL0

2
� Sƒ. Note further that L0

2
(as constructed in the proof of

Proposition 2.9) admits an adapted pair without critical points, so it is flexible. Hence
L0DL0

1
ˇL0

2
is a right inverse for L, and we can repeat the same argument to produce

a right inverse for L0 . The result now follows from Proposition 2.6.

4 Examples

An example where ƒ and ƒ0 are not diffeomorphic For n > 7, consider the man-
ifold ƒ D L.4; 1/ � Tn�4 . It was proved in [10] that there exists an h-cobordism
.LIƒ;ƒ0/ such that ƒ0 is not diffeomorphic to ƒ. For the case n D 6, we can
take the manifold ƒ D L.7; 1/ � S2 which is h-cobordant but not diffeomorphic
to ƒ0 D L.7; 2/ � S2 ; see [14]. We claim that ƒ admits a Legendrian embedding
into R2n�1 endowed with its standard contact structure. Indeed, ƒ is parallelizable so
we can find a Legendrian bundle monomorphism Tƒ! T R2n�1 and then turn it into

2It is actually even subcritical: there are no handles of index n .
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a Legendrian embedding via Gromov’s h-principle; see [9, Theorem 16.1.3], and note
that a generic Legendrian immersion is an embedding. This Legendrian embedding
of ƒ can be implanted in any contact manifold via a Darboux chart. Theorem 1.1 now
follows from Theorem 3.2 and Proposition 2.7.

An example where ƒ and ƒ0 are smoothly isotopic but not Legendrian isotopic
The following construction is similar to that in [4, Section 3], but is slightly more
involved.

Consider the closed 7–dimensional manifold ƒ D L.5; 1/ � S4 . Note that ƒ is
parallelizable and that �3ƒD �3 L.5; 1/D Z (a generator is given by the universal
covering map S3! L.5; 1/).

Lemma 4.1 (1) There exists an h-cobordism .LIƒ;ƒ/ such that the induced map
f W ƒ!ƒ acts by multiplication by �1 on �3ƒ.

(2) No diffeomorphism of ƒ may act by multiplication by �1 on �3ƒ.

Proof (1) There are exactly two homotopy classes of maps L.5; 1/! L.5; 1/ of
degree �1 (these are automatically homotopy equivalences) and they respectively
induce multiplication by 2 and �2 on �1 L.5; 1/DZ=5Z; see [2, 29.5]. We pick such
a map and perturb it to an embedding j W L.5; 1/! L.5; 1/� int D5 using Whitney’s
embedding theorem. The normal bundle of j is trivial because it is stably trivial and
has rank greater than the dimension of the base. We can therefore extend j to an
embedding L.5; 1/ � D5 ! L.5; 1/ � int D5 that we still denote by j . The region
LD L.5; 1/�D5 n j .L.5; 1/� int D5/ is an h-cobordism from ƒ to itself; see [14,
Lemma 2, page 579]. The map f W ƒ ! ƒ induced by the cobordism L can be
defined as f D r ı i , where i W ƒ ! L is the inclusion of the negative boundary
and r W L! ƒ is a deformation retraction on the positive boundary (the homotopy
class of f is independent of choices). Since we started with a map of degree �1 on
L.5; 1/, we see that j induces multiplication by �1 on H3.L.5; 1/�D5IZ/' Z as
well as on �3.L.5; 1/�D5/' Z because the Hurewicz homomorphism �3 L.5; 1/!
H3.L.5; 1/IZ/ is nonzero. It follows from the commutativity up to homotopy of
the diagram

L.5; 1/�D5
j

����! L.5; 1/�D5x?? x??
ƒ

f
����! ƒ

that the map f also induces multiplication by �1 on �3ƒ (the vertical arrows are
obvious inclusions).
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(2) If  W ƒ ! ƒ was such a diffeomorphism, then the map L.5; 1/ ! L.5; 1/,
obtained by composing the inclusion of a factor with  and then projection, would
have degree �1. But then  necessarily acts by multiplication by ˙2 on �1 , in which
case the Whitehead torsion of  must be nonzero (see [4, Lemma 3.2]), contradicting
the fact that  is a diffeomorphism.

Let .LIƒ;ƒ/ be an h-cobordism given by the lemma above. We fix a framing of ƒ
and extend it to a framing of L by using an isomorphism TL!R�Tƒ lifting the
retraction map r W L!ƒ on the positive boundary. Note that the induced framing of
Tƒ�R on the negative boundary, a priori, differs from the given one: it is the image
of the given framing by a map AW ƒ! O.8/ � U.8/. Recall that any Legendrian
immersion ƒ!R15 gives rise to a map ƒ!U.7/ well-defined up to homotopy, and
Gromov’s h-principle (see [9, Theorem 16.1.3]) implies that this classifies Legendrian
regular homotopy classes. Given an embedding of L as a Lagrangian cobordism in
SR15 , we get maps gW ƒ! U.7/, g0W ƒ! U.7/ and GW L! U.8/ respectively
associated to @�L, @CL and L. These maps are related by the formulas

A:s ıg �G ı i and s ıg0 ı r �G;

where � here means homotopic, sW U.7/! U.8/ is the stabilization map (note that
this is an isomorphism on �3 ), r and i are defined as in the proof of Lemma 4.1 and
the dot denotes multiplication in U.8/. In particular, we get s ıg0 out of s ıg :

s ıg0 �A:s ıg ıf �1:

Recall from Bott periodicity that �3U.8/' Z. Identifying �3ƒ and �3U.8/ with Z,
the maps induced on �3 by s ı g , s ı g0 and A are multiplication by integers b , b0

and a, respectively, and the equation above reads

b0 D a� b:

(Recall that multiplication on U.8/ induces addition on �3U.8/ and that f acts by
�1 on �3ƒ.)

We now observe that, whatever a is, we can choose g such that b0 ¤ b , and therefore,
g0 is not homotopic to g . Indeed,

� if a¤ 0, we take g to be constant so that b D 0 and b0 ¤ 0;

� if a D 0, we take g D ˛ ı h ı p1 , where p1W ƒ! L.5; 1/ is the projection
on the first factor, hW L.5; 1/! S3 is a map of degree 1 and ˛W S3 ! U.7/

corresponds to 1 2 ZD �3U.7/D �3U.8/, so that b D 5 and b0 D�5.
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The rest of the construction is the same as in the first example above. We take a
Legendrian embedding �W ƒ!R15 that induces the map g and then use Theorem 3.2
to obtain an embedding of L as a flexible Lagrangian cobordism in SR15 with negative
boundary � . The new Legendrian embedding �0W ƒ!R15 that we get on the positive
boundary of L has a corresponding map to U.7/ which is homotopic to g0 , so the
Legendrian embeddings � and �0 are not homotopic through Legendrian immersions.
Moreover, using the second point of Lemma 4.1, we see that this cannot be arranged by
composing �0 by a diffeomorphism of ƒ. Hence the (unparametrized) Legendrian sub-
manifolds �.ƒ/ and �0.ƒ/ are not Legendrian isotopic, though they have Hamiltonian
isotopic symplectizations (by Theorem 3.2 and Proposition 2.7), and they are smoothly
isotopic by Haefliger’s embedding theorem (see [11, théorème d’existence b]).

Remark 4.2 The same construction also works for L.5; 1/�S2k for all k > 1, and it
is certainly possible to find also examples of this kind in the remaining dimensions.
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