Volume 16, issue 6 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Fibration categories are fibrant relative categories

Lennart Meier

Algebraic & Geometric Topology 16 (2016) 3271–3300
Bibliography
1 C Barwick, On left and right model categories and left and right Bousfield localizations, Homology, Homotopy Appl. 12 (2010) 245 MR2771591
2 C Barwick, D M Kan, A characterization of simplicial localization functors and a discussion of DK equivalences, Indag. Math. 23 (2012) 69 MR2877402
3 C Barwick, D M Kan, Relative categories: another model for the homotopy theory of homotopy theories, Indag. Math. 23 (2012) 42 MR2877401
4 C Barwick, D Kan, From partial model categories to –categories, preprint (2013)
5 J E Bergner, Complete Segal spaces arising from simplicial categories, Trans. Amer. Math. Soc. 361 (2009) 525 MR2439415
6 W Chachólski, J Scherer, Homotopy theory of diagrams, 736, Amer. Math. Soc. (2002) MR1879153
7 D C Cisinski, Catégories dérivables, Bull. Soc. Math. France 138 (2010) 317 MR2729017
8 D C Cisinski, Invariance de la K–théorie par équivalences dérivées, J. K-Theory 6 (2010) 505 MR2746284
9 D Dugger, D I Spivak, Mapping spaces in quasi-categories, Algebr. Geom. Topol. 11 (2011) 263 MR2764043
10 P G Goerss, J F Jardine, Simplicial homotopy theory, 174, Birkhäuser (1999) MR1711612
11 A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 MR2342834
12 Z L Low, Cocycles in categories of fibrant objects, preprint (2015) arXiv:1502.03925
13 Z L Low, A Mazel-Gee, From fractions to complete Segal spaces, Homology Homotopy Appl. 17 (2015) 321 MR3350085
14 J Lurie, Higher topos theory, 170, Princeton University Press (2009) MR2522659
15 L Meier, V Ozornova, Fibrancy of partial model categories, Homology Homotopy Appl. 17 (2015) 53 MR3421463
16 D G Quillen, Homotopical algebra, 43, Springer (1967) MR0223432
17 A Radulescu-Banu, Cofibrations in homotopy theory, (2006) arXiv:math/0610009
18 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
19 C Schommer-Pries, Does the classification diagram localize a category with weak equivalences?, MathOverflow (2012)
20 M A Shulman, Set theory for category theory, preprint (2008) arXiv:0810.1279
21 K Szumiło, Two models for the homotopy theory of cocomplete homotopy theories, preprint (2014) arXiv:1411.0303
22 R W Thomason, Cat as a closed model category, Cahiers Topologie Géom. Différentielle 21 (1980) 305 MR591388
23 B Toën, M Vaquié, Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. 40 (2007) 387 MR2493386