|
|
Recent Issues |
Volume 18, 3 issues
Volume 18
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633
Volume 17, 6 issues
Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643
Volume 16, 6 issues
Volume 16
Issue 6, 3073–3719
Issue 5, 2459–3071
Issue 4, 1827–2458
Issue 3, 1253–1825
Issue 2, 621–1251
Issue 1, 1–620
Volume 15, 6 issues
Volume 15
Issue 6, 3107–3729
Issue 5, 2479–3106
Issue 4, 1863–2477
Issue 3, 1239–1862
Issue 2, 623–1238
Issue 1, 1–622
Volume 14, 6 issues
Volume 14
Issue 6, 3141–3763
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625
Volume 13, 6 issues
Volume 13
Issue 6, 3099–3731
Issue 5, 2471–3097
Issue 4, 1857–2469
Issue 3, 1243–1856
Issue 2, 625–1241
Issue 1, 1–624
Volume 12, 4 issues
Volume 12
Issue 4, 1901–2517
Issue 3, 1265–1899
Issue 2, 643–1263
Issue 1, 1–641
Volume 11, 5 issues
Volume 11
Issue 5, 2477–3084
Issue 4, 1861–2475
Issue 3, 1243–1860
Issue 2, 625–1242
Issue 1, 1–624
Volume 10, 4 issues
Volume 10
Issue 4, 1865–2468
Issue 3, 1245–1863
Issue 2, 627–1244
Issue 1, 1–625
Volume 9, 4 issues
Volume 9
Issue 4, 1885–2502
Issue 3, 1255–1883
Issue 2, 625–1254
Issue 1, 1–624
Volume 8, 4 issues
Volume 8
Issue 4, 1855–2414
Issue 3, 1223–1853
Issue 2, 615–1222
Issue 1, 1–613
Volume 7, 4 issues
Volume 7
Issue 4, 1633–2270
Issue 3, 1135–1632
Issue 2, 529–1134
Issue 1, 1–528
Volume 6, 5 issues
Volume 6
Issue 5, 2031–2518
Issue 4, 1519–2029
Issue 3, 1025–1517
Issue 2, 513–1024
Issue 1, 1–512
Volume 5, 4 issues
Volume 5
Issue 4, 1291–1732
Issue 3, 865–1290
Issue 2, 443–864
Issue 1, 1–442
Volume 4, 2 issues
Volume 4
Issue 2, 647–1272
Issue 1, 1–645
Volume 3, 2 issues
Volume 3
Issue 2, 623–1292
Issue 1, 1–622
Volume 2, 2 issues
Volume 2
Issue 2, 591–1204
Issue 1, 1–590
Volume 1, 2 issues
Volume 1
Issue 2, 627–790
Issue 1, 1–625
|
|
|
|
|
1 |
J Adámek, J
Rosický, Locally presentable
and accessible categories, 189, Cambridge University
Press (1994) MR1294136 |
2 |
C Barwick, On left and right
model categories and left and right Bousfield
localizations, Homology, Homotopy Appl. 12 (2010) 245
MR2771591 |
3 |
C Barwick, C
Schommer-Pries, On the unicity of the homotopy theory of
higher categories, preprint (2011) arXiv:1112.0040 |
4 |
C Berger, Iterated wreath
product of the simplex category and iterated loop
spaces, Adv. Math. 213 (2007) 230 MR2331244 |
5 |
C Berger, P A
Melliès, M Weber, Monads with
arities and their associated theories, J. Pure Appl.
Algebra 216 (2012) 2029 MR2925893 |
6 |
J E Bergner,
Three
models for the homotopy theory of homotopy theories,
Topology 46 (2007) 397 MR2321038 |
7 |
J E Bergner, C
Rezk, Comparison of models
for (∞,n)–categories, I, Geom. Topol. 17 (2013)
2163 MR3109865 |
8 |
M Bökstedt, I
Madsen, The cobordism category and Waldhausen’s
K-theory, preprint (2011) arXiv:1102.4155 |
9 |
D Calaque, C
Scheimbauer, A note on the (∞,n)–category of
cobordisms, preprint (2015) arXiv:1509.08906 |
10 |
D C Cisinski,
I Moerdijk, Dendroidal Segal spaces
and ∞–operads, J. Topol. 6
(2013) 675 MR3100887 |
11 |
D Dugger, Combinatorial model
categories have presentations, Adv. Math. 164 (2001)
177 MR1870516 |
12 |
B Guillou, J P
May, Enriched model categories and presheaf
categories, preprint (2011) arXiv:1110.3567 |
13 |
P S Hirschhorn,
Model categories and their localizations, 99, Amer.
Math. Soc. (2003) MR1944041 |
14 |
G Horel, A model
structure on internal categories in simplicial sets,
Theory Appl. Categ. 30 (2015) 704 MR3356341 |
15 |
J F Jardine,
Local
homotopy theory, Springer (2015) MR3309296 |
16 |
P T Johnstone,
Topos theory, 10, Academic Press (1977) MR0470019 |
17 |
G M Kelly,
Basic concepts of enriched category theory, 64,
Cambridge University Press (1982) 245 MR651714 |
18 |
J Kock, Polynomial functors and
trees, Int. Math. Res. Not. 2011 (2011) 609 MR2764874 |
19 |
J Kock, Graphs,
hypergraphs, and properads, Collect. Math. 67 (2016)
155 MR3484016 |
20 |
T Leinster,
Higher
operads, higher categories, 298, Cambridge University
Press (2004) MR2094071 |
21 |
I Moerdijk, I
Weiss, Dendroidal
sets, Algebr. Geom. Topol. 7 (2007) 1441 MR2366165 |
22 |
C Rezk, A Cartesian
presentation of weak n–categories, Geom. Topol. 14 (2010)
521 MR2578310 |
23 |
C Simpson, Homotopy
theory of higher categories, 19, Cambridge University Press
(2012) MR2883823 |
24 |
M Weber, Familial 2–functors and parametric right
adjoints, Theory Appl. Categ. 18 (2007) 665 MR2369114 |
|