Volume 16, issue 6 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
An invariant of rational homology $3$–spheres via vector fields

Tatsuro Shimizu

Algebraic & Geometric Topology 16 (2016) 3073–3101
Abstract

We give an alternative construction of the Kontsevich–Kuperberg–Thurston invariant for rational homology 3–spheres. This construction is a generalization of the original construction of the Kontsevich–Kuperberg–Thurston invariant. As an application, we give a Morse homotopy theoretic description of the Kontsevich–Kuperberg–Thurston invariant (close to a description by Watanabe).

Keywords
homology 3–sphere, finite type invariant, Chern–Simons perturbation theory, Morse homotopy
Mathematical Subject Classification 2010
Primary: 57M27
References
Publication
Received: 5 November 2013
Revised: 19 March 2016
Accepted: 2 April 2016
Published: 15 December 2016
Authors
Tatsuro Shimizu
Research Institute for Mathematical Sciences
Kyoto University
The Mathematical Society of Japan
Kitashirakawa-Oiwake cho
Sakyo-ku
Kyoto city 606-8502
Japan