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Notes on the knot concordance invariant Upsilon

CHARLES LIVINGSTON

Ozsváth, Stipsicz and Szabó have defined a knot concordance invariant ‡K taking
values in the group of piecewise linear functions on the closed interval Œ0; 2� . This
paper presents a description of one approach to defining ‡K and proving its basic
properties.

57M25

1 Introduction

Ozsváth, Stipsicz and Szabó [5] used the Heegaard Floer knot complex CFK�.K/ of
a knot K � S3 to define a piecewise linear function ‡K .t/ with domain Œ0; 2�. The
function K!‡K induces a homomorphism from the smooth knot concordance group
to the group of functions on the interval Œ0; 2�. Among its properties, ‡K .t/ provides
bounds on the four-genus, g4.K/, the three-genus, g3.K/, and, consequently, the
concordance genus, gc.K/. This note describes a simple approach to defining ‡K .t/

using CFK1.K/ and proving its basic properties.

Acknowledgments Thanks go to Jen Hom, Slaven Jabuka, Swatee Naik, Peter Ozsváth,
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the structure theorem for filtered knot complexes presented in the appendix and its
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improvements in the exposition. The author was supported by a Simons Foundation
grant and by NSF-DMS-1505586.

2 Knot complexes

We begin by describing the algebraic structure of the Heegaard Floer complex of a
knot K , denoted CFK1.K/, first defined in Ozsváth and Szabó [9]. This is a vector
space over the field F with two elements. To simplify notation, we write CF.K/ for
CFK1.K/. Here we summarize its basic properties:
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� The chain complex CF.K/ has an integer valued grading and the boundary map @ is
of degree �1. The grading is called the Maslov grading. The grading of a homogeneous
element is denoted gr.x/.
� The complex CF.K/ has an Alexander filtration consisting of an increasing se-
quence of subcomplexes. The filtration level of an element x 2 CF.K/ is denoted
Alex.x/.
� There is a similar filtration, called the algebraic filtration, and filtration levels of
elements are denoted Alg.x/.
� There is an action of the Laurent polynomial ring F ŒU;U�1� on CF.K/. The action
of U commutes with @, lowers gradings by 2, and lowers Alexander and algebraic
filtration levels by 1.
� Let ƒ denote F ŒU;U�1�. As a ƒ–module, CF.K/ is free on a finite set of
generators, fxig1�i�r . To simplify notation, we suppress the indexing set. The set
of elements fU kxigk2Z forms a bifiltered graded basis for CF.K/: for any triple
of integers, .g;m; n/, the subspace of CF.K/ spanned by elements of grading g ,
Alexander filtration level less than or equal to m, and algebraic filtration level less than
or equal to n, has as basis a subset of fU kxig.
� The singly filtered complex .CF.K/;Alg/ with ƒ–structure is chain homotopy
equivalent to complex T Šƒ where 1 2ƒ has grading 0 and filtration level 0, and
the boundary map is trivial. (The same statement holds for the Alexander grading, but
we do not use this fact.)

The construction of CF.K/ depends on a series of choices. However, there is a natural
definition of chain homotopy equivalence for graded, bifiltered chain complexes with
ƒ–action. A key result of [9] is that in this sense, the chain homotopy equivalence
class of CF.K/ is a well-defined knot invariant.

As an example, Figure 1 presents a schematic diagram of the complex for the torus
knot T .3; 7/. As a ƒ–module it has nine filtered generators, with algebraic and
Alexander filtration levels indicated by the first and second coordinate, respectively.
Five of the generators, indicated with black dots, have grading 0; the four white dots
represent generators of grading one. The boundary map is indicated by the arrows. The
rest of CF.K/ is the direct sum of the U k translates for k 2 Z of this finite complex;
for instance, applying U shifts the diagram one down and to the left.

3 Filtrations

We now discuss more general filtrations on vector spaces. In our applications, the
vector space will be CF.K/.
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Figure 1. The staircase complex for the torus knot T (3, 7).

Notation When the filtration F is understood, we write Cs = F−1((−∞, s]).

An alternative view of filtration consists of describing C as an nondecreasing
nested union of subspaces, C = ∪s∈RCs, where Cs2/Cs1 is finite dimensional when
s1 ≤ s2. We can define a filtration F(x) = min{s ∈ S | x ∈ Cs}.

Definition 3.1. A set of vectors {xi} in the real filtered vector space C, is called
a filtered basis if it is linearly independent and every Cs has some subset of {xi}
as a basis.

4. The definition of ΥK(t).

Let F be a filtration on C = CFK∞(K).

Definition 4.1. Let ν(C, F) = 2 min{s | Image ( H∗(Cs) → H∗(C)) contains a
nontrivial element of grading 0}.

A simple argument shows that for any t ∈ [0, 2], the convex combination of
Alexander and algebraic filtrations, Ft = t

2
Alex+(1− t

2
)Alg, defines a real-valued

discrete filtration on C(K).

Definition 4.2. ΥK(t) = ν(C, Ft).

4.1. Example. Consider the knot K = T (3, 7) with CFK∞(K) as illustrated in
Figure ??. The portion of the complex shown has homology F, at Maslov grading
0.

We use the notation Ct to denote the complex CFK∞(K) with filtration Ft.
The set Ct

s is thus generated by the bifiltered generators with Alexander and
algebraic filtration levels satisfying

Alex ≤ 2

t
s + (1 − 2

t
)Alg.

Figure 1: CFK1.T .3; 7//

Definition 3.1 A real-valued (discrete) filtration on a vector space C is a collection
of subspaces F D fCsg indexed by the real numbers. This collection must satisfy the
following properties:

(1) Cs1
� Cs2

if s1 � s2 .

(2) CD
S

s2R Cs .

(3)
T

s2R Cs D f0g.

(4) discreteness Cs2
=Cs1

is finite-dimensional when s1 � s2 .

Given a discrete filtration F D fCsg on C, we can define an associated function on
C, which we temporarily also denote by F , given by F.x/ D minfs 2 R j x 2 Csg.
Notice that F�1..�1; s�/D Cs .

Given an arbitrary real-valued function f on C, one can define an associated filtration
with Cs D Span.f �1..�1; s�//. The resulting filtration need not be discrete.

Notation In cases in which more than one filtration might be under consideration, we
will write .C;F/s rather than Cs .

Definition 3.2 A set of vectors fzig in the real filtered vector space C is called a
filtered basis if it is linearly independent and every Cs has some subset of fzig as a
basis. If C is also graded, CD

L1
iD�1Gi , then we say the basis is a filtered graded

basis if each Cs \Gk has a subset of fzig as a basis.
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4 The definition of the filtration Ft on CF.K /

For any t 2 Œ0; 2�, the convex combination of Alexander and algebraic filtrations,
t
2

AlexC
�
1� t

2

�
Alg, defines a real-valued function on CF.K/, to which we associate

a filtration denoted Ft . That is, for all s 2R, .CF.K/;Ft /s is spanned by all vectors
x 2 CF.K/ such that t

2
Alex.x/C

�
1� t

2

�
Alg.x/� s .

Theorem 4.1 If 0� t � 2, the filtration Ft on CF.K/ is a filtration by subcomplexes
and is discrete. The action of U lowers filtration levels by 1.

Proof To see that these are subcomplexes, suppose that x 2 .CF.K/;Ft /s . Write
x D

P
xi , where t

2
Alex.xi/C

�
1� t

2

�
Alg.xi/� s for all i . Since @x D

P
@xi , we

only need to check that @xi 2 .CF.K/;Ft /s for each i . Let xi have Alex.xi/D a and
Alg.xi/ D b . Then Alex.@xi/ D a0 � a and Alg.@xi/ D b0 � b . Since both t

2
and

1� t
2

are nonnegative, t
2
a0C

�
1� t

2

�
b0 � t

2
aC

�
1� t

2

�
b � s , as desired.

The discreteness of the filtration depends on two properties of CF.K/. First, letting g

denote the three-genus, g3.K/, according to [8] one has �g � Alex.x/�Alg.x/� g

for all x . From this it follows that for given s1 < s2 , there are k1 and k2 in R such
that

.CF.K/;Alex/k1
� .CF.K/;Ft /s1

� .CF.K/;Ft /s2
� .CF.K/;Alex/k2

:

(The values of k1 and k2 can be chosen to be s1 �
�
1 � t

2

�
g and s2 C

�
1 � t

2

�
g ,

respectively, but we do not need this level of detail.) Second, the Alexander filtration is
discrete, so the quotient (CF.K/;Alex/k2

=.CF.K/;Alex/k1
is finite-dimensional.

Finally, that U lowers filtration levels by one is immediate.

5 The definition of ‡K .t/

For each t 2 Œ0; 2� and for all s 2R, the set .CF.K/;Ft /s � CF.K/ is a subcomplex.
Thus, we can make the following definition:

Definition 5.1 Let

�.CF.K/;Ft /Dmin
˚
s jH0..CF.K/;Ft /s/!H0.CF.K// is surjective

	
:

Definition 5.2 ‡K .t/D�2�.CF.K/;Ft /.
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5.1 Example

Consider the knot K D T .3; 7/ with CF.K/ as illustrated in Figure 1. The portion of
the complex shown has homology F at grading 0.

The subcomplex .CF.K/;Ft /s is generated by the bifiltered generators with Alexander
and algebraic filtration levels satisfying

(5-1) Alex� 2

t
sC

�
1�

2

t

�
Alg :

Observation The lattice points which contain a filtered generator at filtration level t

all lie on a line of slope

mD 1�
2

t
;

with lattice points parametrized by the pair .Alg;Alex/. Alternatively, if a line of
slope m contains distinct lattice points representing bifiltration levels of generators at
the same Ft filtration level, then

t D
2

1�m
:

In the diagram for T .3; 7/ shown in Figure 1, the illustrated line in the plane corresponds
to t D 4

5
and sD 2. Since the lower half-plane bounded by this line contains a generator

of H0.CF.K//, while no half-plane bounded by a parallel line with smaller value of s

contains such a generator, we have ‡K

�
4
5

�
D�2.2/D�4.

Continuing with K D T .3; 7/, it is now clear that for m< �2 — that is, for t < 2
3

—
the least s for which .CF.K/;Ft /s contains a generator of H0.CF.K// corresponds
to the line through .0; 6/, which has filtration level t

2
6C

�
1� t

2

�
0D 3t .

For �2 < m < �1 — that is, for 2
3
< t < 1 — the least s for which .CF.K/;Ft /s

contains a generator of H0.CF.K// corresponds to the line through .2; 2/, which has
filtration level t

2
2C

�
1� t

2

�
2D 2. Multiplying by �2 and checking the value t D 2

3

yields

‡T .3;7/.t/D

�
�6t if 0� t � 2

3
;

�4 if 2
3
� t � 1:

6 An alternative definition of � and ‡

In the appendix we prove Theorem A.1, which has as an immediate consequence the
following result:
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Theorem 6.1 The filtered graded chain complex .CF.K/;Ft / is isomorphic to a
filtered graded complex of the form

T ˚A;

where T ˚A has the structure of a ƒ–module and the isomorphism is a ƒ–module
isomorphism. The summand T has the properties that

(1) it is isomorphic to ƒ as a ƒ–module;

(2) the element 1 2ƒŠ T has grading 0.

Furthermore, A is acyclic as an unfiltered complex.

Notice that since all gradings in T are even, the boundary operator restricted to T is
trivial.

When placed in this simple form, the computation of �..CF.K/;Ft // is simple: it is
the Ft filtration level of 1 2ƒŠ T . Hence, we have the following result:

Corollary 6.2 ‡K .t/ equals �2 times the Ft –filtration level of 1 2ƒŠ T for the
decomposition .CF.K/;Ft /Š T ˚A.

7 Products and additivity

According to [9], there is a (graded) chain homotopy equivalence of complexes

CF.K1/˝ƒ CF.K2/' CF.K1 # K2/

that preserves the ƒ–structure.

Each of CF.K1/, CF.K2/ and CF.K1 #K2/ has an algebraic filtration. To distinguish
these, we write Alg1 , Alg2 and Alg1;2 . Similarly, the Alexander and Ft filtrations
will be distinguished with superscripts.

Momentarily we write CF1 D CF.K1/ and CF2 D CF.K2/. For each t 2 Œ0; 2� the
filtrations F1

t and F2
t on CF1 and CF2 induce a filtration F1

t ˝F2
t on CF1˝ƒ CF2 ,

defined via

.CF1˝ƒ CF2;F1
t ˝F2

t /s

D Image
� M

s1Cs2Ds

.CF1;F1
t /s1
˝F .CF2;F2

t /s2
! .CF1;F1

t /˝ƒ .CF2;F2
t /

�
:
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Notice that the direct sum is infinite and each summand is infinitely generated. Again,
according to [9], for the connected sum of knots, the equivalence

CF.K1/˝ƒ CF.K2/' CF.K1 # K2/

is a filtered equivalence for both the Alexander and algebraic filtrations. To state this
explicitly,

.CF.K1/;Alex1/˝ƒ .CF.K2/;Alex2/' .CF.K1 # K2/;Alex1;2/

and
.CF.K1/;Alg1/˝ƒ .CF.K2/;Alg2/' .CF.K1 # K2/;Alg1;2/:

Theorem 7.1 For all t 2 Œ0; 1�,

.CF.K1/;F1
t /˝ƒ .CF.K2/;F2

t /' .CF.K1 # K2/;F1;2
t /:

Proof Fix bases fxig and fyig for the free ƒ–modules CF.K1/ and CF.K2/ such that
the sets of all translates fU kxig and fU kyig for k 2Z form graded bifiltered bases for
CF.K1/ and CF.K2/ (as F–vector spaces). The F–vector space CF.K1/˝ƒCF.K2/

is generated by the set of all tensor products, fU kxi ˝U j xlg, but note that these do
not form a basis; for instance, Ux˝y D x˝Uy .

When selecting elements from fU kxig, we will sometimes refer to them as x , and
similarly for y . Note that in particular, for such basis elements, Alg1;2.x ˝ y/ D

Alg1.x/CAlg2.y/ and Alex1;2.x˝y/D Alex1.x/CAlex2.y/.

The proof of the theorem consists of showing that the filtrations F1
t ˝F2

t and F1;2
t on

CF.K1/˝ƒ CF.K2/ are the same.

If an element z 2CF.K1/˝ƒCF.K2/ has F1;2
t filtration level s , then it can be written

as the sum of elements x˝y with

t

2
Alex.x˝y/C

�
1�

t

2

�
Alg.x˝y/� s:

This is the same as
t

2
Alex.x/C

�
1�

t

2

�
Alg.x/C t

2
Alex.y/C

�
1�

t

2

�
Alg.y/� s:

This implies that F1
t .x/CF2

t .y/� s . This in turn implies that .F1
t ˝F2

t /.x˝y/� s .
Thus, .F1

t ˝F2
t /.z/� F1;2

t .z/ for all z 2 CF.K1/˝ƒ CF.K2/.

Similarly, suppose that z 2 CF.K1/˝ƒ CF.K2/ has F1
t ˝F2

t filtration level s . Then
it is the sum of elements x˝y , each of which satisfies F t

1
.x/CF t

2
.y/� s . This can

be expanded and rewritten as

t

2
.Alex.x/CAlex.y//C

�
1�

t

2

�
.Alg.x/CAlg.y//� s:
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In other words, z is the sum of elements x ˝ y with F1;2
t .x ˝ y/ � s . Hence,

F1;2
t .x˝y/� s .

Theorem 7.1, along with Theorem 6.1, offers a fast proof of the additivity of ‡ :

Theorem 7.2 ‡K1#K2
.t/D ‡K1

.t/C‡K2
.t/ for each t 2 Œ0; 2�.

Proof One only needs to check this for complexes of the form T ˚A, as given in
Theorem 6.1. Acyclic summands do not affect the value of ‡K .t/. Thus, we only need
consider the case of complexes T .K1/˝ƒ T .K2/, for which the statement is clear.

Similarly, Theorem 6.1 offers a fast proof of the following:

Theorem 7.3 ‡�K .t/D�‡K .t/ for an arbitrary knot K .

Proof According to [9], the complexes CF.K/ and CF.�K/ are duals: CF.�K/Š

CF.K/� . More precisely, CF.�K/ is isomorphic to the complex HomF .CF.K/;F/,
having underlying vector space the space of F–homomorphisms with finite-dimensional
(that is, finite) support.

If we fix a basis fxig of CF.K/ as a ƒ–module such that the set fU kxig forms a
graded bifiltered basis of CF.K/, then we can denote the elements of the dual basis by
.U kxi/

� . The dual complex is readily understood in terms of these bases:

(1) An easy exercise shows that the action of U on the dual basis is of the form
U.U kxi/

� D .U k�1xi/
� . In particular, the set fx�i g forms a basis for the

ƒ–module CF.K/� .

(2) For any filtration F on CF.K/, we can define a filtration F� on the dual space
as follows:

.CF.K/�;F�/s D
˚
� 2 CF.K/� j �

�
.CF.K/;F/�s0

�
D 0 for all s0 > s

	
:

The choice of signs ensures that the dual filtration is increasing. Thus, F�.x�i /D
�F.xi/.

(3) The boundary operator for the dual space acts in the expected way with respect
to basis elements: if x is a component of @y , then y� is a component of @x� .

These three observations are easily summarized in terms of diagrams such as in Figure 1:
the diagram for CF.�K/ is obtained from that for CF.K/ by rotating the figure by
180 degrees around the origin and reversing all the arrows.
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There are two filtrations on CF.�K/ of interest. The first is t
2

Alex�C
�
1� t

2

�
Alg� ;

the second is F�t D
�

t
2

AlexC
�
1� t

2

�
Alg

�� . By using the chosen basis and its dual
basis, it is possible to see that these two filtrations are the same, as follows. We use
coordinates .i; j / for the plane. For a basis vector x , its dual vector x� is in F�t if and
only if it lies on or above the line t

2
j C

�
1� t

2

�
i D�t . If this is the case, then when

rotated 180 degrees about the origin it lies on or below the line t
2
j C

�
1� t

2

�
i D t .

These are precisely the dual vectors for which t
2

Alex�C
�
1� t

2

�
Alg� � t .

The proof of the theorem is now reduced to an elementary calculation for the simple
complex T .K/ and its dual T .K/� .

8 Basic properties of ‡K .t/ and ‡ 0

K
.t/

We now present some basic results concerning ‡K .t/ and its derivative. An initial
observation is that ‡K .0/ D 0 and, since CF.K/ is finitely generated, ‡K .t/ is
continuous at 0. Thus, we focus on t > 0.

Theorem 8.1

(1) ‡.K/ is a continuous piecewise linear function for every knot K .

(2) At a nonsingular point of ‡ 0
K
.t/, the value of j‡ 0

K
.t/j is ji � j j, where .i; j /

is the bifiltration level of some filtered generator of CF.K/ with homological
grading 0.

(3) Singularities in ‡ 0
K
.t/ can occur only at values of t such that some line of

slope 1� 2
t

contains at least two lattice points, .i; j / and .i 0; j 0/, each of which
represents the algebraic and Alexander gradings of filtered generators of CF.K/
of homological grading 0.

(4) If ‡ 0
K
.t/ has a singularity at t , then the jump in ‡ 0

K
.t/ at t , denoted �‡ 0

K
.t/,

satisfies j�‡ 0
K
.t/j D 2

t
ji � i 0j for some pair .i; i 0/ for which there are lattice

points .i; j / and .i 0; j 0/ as in the previous item.

Proof The proof is discussed in terms of the diagram of the complex, as illustrated
for the knot T .3; 7/ in the previous section.

Suppose ‡K .t/D�2s and there is exactly one lattice point .i; j / with t
2
jC

�
1� t

2

�
iDs

which represents the bifiltration level of a filtered generator of CF.K/. (This will be
the case for all but a finite number of values of t .) For a nearby t , say t 0 , the
value of ‡K .t

0/D�2s0 will be such that the same vertex (at .i; j /) lies on the line
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t 0

2
j C

�
1 � t 0

2

�
i D s0 . That is, for all nearby values of t , the value of s is given

by t
2
j C

�
1� t

2

�
i . Written differently,

‡K .t/D�2i C .i � j /t:

In particular, we see that ‡K .t/ is piecewise linear off a finite set.

Now consider a singular value of t , at which ‡K .t/D�2s and there are two or more
pairs .i; j / for which t

2
j C

�
1� t

2

�
i D s . Notice that this line in the .i; j /–plane has

slope mD 1� 2
t

. For t 0 close to t and t 0 < t , we have

‡K .t
0/D�2i C .i � j /t 0

for one of those pairs .i; j /. If t 0 is near t and t 0 > t , then

‡K .t
0/D�2i 0C .i 0� j 0/t 0

for another of these pairs, .i 0; j 0/, which may be the same. Notice that these are equal
at t , giving the continuity of ‡K .t/.

We now see that a singularity of ‡K .t/ occurs if j�i¤j 0�i 0 . With these observations,
the proofs of (1), (2) and (3) are complete.

For (4), our computations have shown that the change in ‡ 0
K
.t/, denoted �‡ 0

K
.t/, is

given by �‡ 0
K
.t/D .j � j 0/� .i � i 0/ for some appropriate .i; j / and .i 0; j 0/. Since

both are assumed to lie on a line of slope 1� 2
t

, we have j � j 0 D
�
1� 2

t

�
.i � i 0/, so

�‡ 0K .t/D
�
1�

2

t

�
.i � i 0/� .i � i 0/D�

2

t
.i � i 0/:

This completes the proof of the theorem.

Corollary 8.2 For any knot K and for t D p
q

with gcd.p; q/D 1,

t

2
�‡ 0K .t/D kp;

where k is some integer if p is odd, or half-integer if p even.

Proof By Theorem 8.1(4),
ˇ̌

t
2
�‡ 0

K
.t/
ˇ̌
D ji � i 0j for some pair of integers i and i 0 ,

where there are two lattice points on a line of slope m D 1� 2
t

. Thus, we want to
constrain the possible differences between the first coordinates of such lattice points.

For t D p
q

, we have mD�.2q�p/=p . Since gcd.p; q/D 1, in reduced terms this is
either mD�.2q�p/=p or mD�

�
q� p

2

�
=p

2
if p is odd or even, respectively. Two

lattice points on such a line have first coordinates differing by a multiple of p or of p
2

if p is odd or even, respectively. The completes the proof.
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9 The three-genus, g3.K /

Theorem 9.1 j‡ 0
K
.t/j � g3.K/ for nonsingular points of ‡ 0

K
.t/.

Proof According to [8], if K is of genus g , then all elements of CF.K/ have filtration
level .i; j /, where

�g � i � j � g:

It follows immediately from Theorem 8.1(2) that j‡ 0
K
.t/j � g3.K/.

We also observe that the genus of K constrains the possible points of singularity
of ‡ 0

K
.t/.

Theorem 9.2 Suppose that ‡ 0
K
.t/ has a singularity at t D p

q
, with gcd.p; q/ D 1.

Then:

� If p is odd, q � g3.K/.

� If p is even, q � 2g3.K/.

Proof Suppose that a line of slope mD�a
b

, where 0< b < a, contains two distinct
points of the form .i; j / with ji �j j � g3.K/. It follows quickly that the genus bound
implies

a� 2g3.K/� b:

To express this in terms of t , suppose t D p
q

with gcd.p; q/D 1. Then

mD 1�
2

t
D�

2q�p

p
:

If p is odd, then gcd.2q�p;p/D 1. If p is even, say pD 2k , then gcd.2q�p;p/D

gcd.2q;p/D 2 and mD�.q� k/=k , with q and k relatively prime.

In the first case, with p odd, we have 2q�p � 2g3.K/�p , so q � g3.K/.

In the second case, with p even, we have q� k � 2g3.K/� k , so q � 2g3.K/.

10 ‡K .t/ as a knot concordance invariant

If knots K1 and K2 are concordant, then there is an equality among d –invariants:
d.S3

N
.K1/; sm/D d.S3

N
.K2/; sm/ for all N 2Z and m2Z with �N�1

2
�m� N�1

2
.

Here S3
N
.K/ denotes N surgery on K , d is the Heegaard Floer correction term, and

sm is a Spinc structure, with m given by a specific enumeration of Spinc structures;
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all are described in [6]. (In the case that N is odd, this range of m includes all possible
Spinc structures.)

If N is large, then d.S3
N
.K1/; s0/ D D.K/C S.N /, where D.K/ is the largest

grading of a class z in the homology of CF.K/fi�0;j�0g for which U kz is nontrivial
for all k > 0, and S.N / is some rational function defined on the integers, independent
of K .

In the case that K is slice, we see that the maximal grading D.K/DD.u/, where u

is the unknot. This implies that D.K/D 0 for a slice knot K . We have a nesting of
complexes

CF.K/fi�0; j�0g � .CF.K/;Ft /0:

Since .0; 0/ is at Ft filtration level 0, it follows that �.CF.K/;Ft /�0; thus ‡K .t/�0.

However, �K is also slice, so �‡K .t/� 0. It follows that ‡K .t/D 0. An additive
invariant of knots that vanishes on slice knots is a concordance invariant.

11 The concordance-genus

The concordance-genus gc.K/ of a knot K , defined in [4], is the minimal genus among
all knots concordant to K . Since ‡K .t/ is a concordance invariant, the genus bounds
in Section 9 apply to the concordance genus.

Theorem 11.1 For all nonsingular points of ‡K .t/, j‡ 0K .t/j � gc.K/. The jumps in
‡ 0

K
.t/ occur at rational numbers p

q
. For p odd, q � gc.K/. If p is even, q

2
� gc.K/.

12 Bounds on the four-genus, g4.K /

Let CF.K/0;m denote the bifiltered subcomplex CF.K/fi�0; j�mg . We let ��.K/
denote the minimum value of m such that the homology of CF.K/0;m contains a
nontrivial grading 0 element of the homology of CF.K/, which we recall is isomorphic
to ƒ with 1 at grading 0. There is the following result of Hom and Wu [1], built from
work of Rasmussen [10]. (In [1] the invariant �C is described; the equivalence with
�� is presented in [5].)

Proposition 12.1 [1, Proposition 2.4] �� � g4.K/.

Based on this, we show that ‡K .t/ provides a bound on g4.K/.
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Theorem 12.2 j‡K .t/j � tg4.K/ for all t 2 Œ0; 2�.

Proof Since .0;m/ is at Ft filtration level tm
2

, we have the containment

CF.K/0;m � .CF.K/;Ft /tm=2:

Since CF.K/0;�� contains an element of grading 0 in the homology of CF.K/, so does
the subcomplex .CF.K/;Ft /t��=2 . Thus, �.CF.K/;Ft / �

1
2
t�� . By the previous

proposition, �.CF.K/;Ft /�
1
2
tg4.K/.

Considering �K , we have �.CF.�K/;Ft /�
1
2
tg4.�K/; it follows that

��.CF.K/;Ft /�
1
2
tg4.K/:

Combining these yields

j�.CF.K/;Ft /j �
1
2
tg4.K/:

Multiplying by �2 yields the desired conclusion.

13 Crossing change bounds

Here we sketch a proof of [5, Proposition 1.10]. The argument is essentially the same
as used in [3] to prove the corresponding fact about �.K/.

Theorem 13.1 Let K� and KC be knots with identical diagrams, except at one
crossing which is either negative or positive, respectively. Then, for t 2 Œ0; 1�,

‡KC.t/� ‡K�.t/� ‡KC.t/C t:

Proof First note that K� #�KC can be changed into the slice knot KC #�KC by
changing a negative crossing to positive. Thus, g4.K� #�KC/� 1. It follows that

(13-1) �t � ‡K�.t/�‡KC.t/� t:

Next, note that K� #�KC # T .2; 3/ can be changed into the slice knot KC #�KC
by changing one negative crossing to positive and one positive crossing to negative.
Thus, it too has four-genus at most 1: it bounds a singular disk with two singularities
of opposite sign, and these can be tubed together. A simple computation for T .2; 3/

yields ‡T .2;3/.t/D�t for 0� t � 1. Thus,

�t � ‡K�.t/�‡KC.t/� t � t;

which we rewrite as

(13-2) 0� ‡K�.t/�‡KC.t/� 2t:
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Combining (13-1) and (13-2),

0� ‡K�.t/�‡KC.t/� t:

Adding ‡KC.t/ to all terms yields the desired conclusion,

‡KC.t/� ‡K�.t/� ‡KC.t/C t:

Note This argument can be easily modified to show that if there is a singular con-
cordance from K to J with a single positive double point, then ‡K .t/ � ‡J .t/ �

‡K .t/C t .

14 The Ozsváth–Szabó �–invariant and ‡K .t/ for small t

For small t , ‡K .t/ is determined by the � invariant defined in [7]. We review the
definition below. Here is the statement of the result:

Theorem 14.1 For t small, ‡K .t/D��.K/t .

The subquotient complex CF.K/fi�0g=CF.K/fi<0g will be denoted cCF.K/. (Usually,cCF is written bCFK .) It is filtered by the Alexander filtration and has homology F ,
supported in grading 0. The invariant �.K/ is defined to be the least integer � such
that the map on homology H0.cCF.K/fj��g/!H0.cCF.K//Š F is surjective.

We wish to relate �.K/D � to an invariant of CF.K/. The needed technical result is
the following:

Lemma 14.2 If �.K/ D � , then there is a cycle w 2 CF.K/fi�0; j��g[fi<0g repre-
senting a nontrivial element in H0.CF.K//.

Proof From the definition of � we see that there is a chain x 2CF.K/fi�0; j��g[fi<0g

that in the quotient cCF.K/ is a cycle that represents a generator of the homology group
H0.cCF.K//.

Since the chain x represents a cycle in cCF.K/, it has the property that @xD y , where
y 2 CF.K/i<0 . Note that y is a cycle and gr.y/D�1. Since H�1.CF.K/i<0/D 0,
there is a chain z 2 CF.K/i<0 with @z D y . Thus, xC z is a cycle in the complex
CF.K/fi�0; j��g[fi<0g . The map H0.CF.K/i�0/!H0.cCF.K// is an isomorphism;
both groups are isomorphic to F . Thus, xCz represents a generator of H0.CF.K/i�0 ).
The map H0.CF.K/i�0/!H0.CF.K// is an isomorphism, completing the proof.
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Proof of Theorem 14.1 For t small, we consider the filtration Ft and the filtration
level s D t

2
� . Then one has CF.K/s D CF.K/fi�0; j��g[fi<0g . By Lemma 14.2, this

subcomplex contains a cycle that represents an element of grading 0 in H.CF.K//.
Thus, for this Ft filtration, � � t

2
� .

On the other hand, suppose that � < t
2
� . Then there would exist a cycle

z 2 CF.K/fi�0; j���1g[fi<0g

representing a generator of H.CF.K// of grading 0. However, the image of z incCF.K/ would be an element in cCF.K/��1 that represents a generator of H0.cCF.K//.
But � is by definition the lowest level at which this can occur. Thus, we see that
� D t

2
� .

To conclude, recall that ‡K .t/D�2� , so ‡K .t/D��.K/t , as desired.

Note With care, one can check that in this argument, the condition that t be small
can be made precise by requiring that t < 1=g3.K/. Of course, once the result is
established for some set of small t , then Theorem 9.2 provides the bound t < 1=g3.K/.

15 Equivalence of definitions of ‡K .t/

In this section we explain why ‡K .t/ as defined here agrees with that of [5].

Beginning with CF.K/, a new complex tCF.K/ can be constructed as follows. As an
F–vector space,

tCF.K/D CF.K/˝ƒ F Œv1=n; v�1=n�;

where U acts on F Œv1=n� via multiplication by v2 . This has the structure of an
F Œv1=n; v�1=n�–module. To simplify notation, we write ƒ0 D F Œv1=n; v�1=n�.

There are (rational) filtrations Alg and Alex on tCF.K/ which are consistent with
those on the ƒ–submodule CF.K/. The action of v1=n lowers filtration levels by 1=2n.
Thus, U D v2 lowers filtration levels by 1, as it should. Similarly, the Maslov grading
M.x/ naturally extends to tCF.K/ so that the action of v1=n lowers this grading by
1=n, and thus U D v2 continues to lower the Maslov grading by 2.

There is a rational grading on tCF.K/ defined via the Maslov grading, M , along with
the algebraic and Alexander filtrations. If x is an element at filtration level .i; j /, then:

(15-1) grt .x/DM.x/� t.j � i/:

(In [5], only generators at algebraic filtration level 0 are used to define gr t , so i D 0

and the formula grt .x/DM.x/� t Alex.x/ is presented.) One checks that U lowers
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Figure 2: tCFtD1=3.T .3; 7// and tCFtD2.T .3; 7//

grt –gradings by 2, so, on the extension to tCF.K/, v lowers gradings by 1 and v1=n

lowers gradings by 1=n.

If x is a filtered generator of CF.K/ with @xD
P

yl , then the boundary @t is defined
so that @tx D

P
v˛l yl 2 tCF.K/, with the values of ˛l given explicitly in [5]. This

extends naturally to a boundary operator on all of tCF.K/.

Given that the operator @t is well-defined, it is a simple matter to determine its value.
Suppose that x is a filtered generator of CF.K/ at filtration level .i; j /, Maslov
grading g , and suppose also that @x D

P
yl . Let y denote one of the terms in this

sum, at filtration level .i 0; j 0/, necessarily of grading g � 1. Then x , viewed as an
element of tCF, is of grading g� t.j �i/, and y has grading g�1� t.j 0�i 0/. In @tx ,
the term v˛y appears, and ˛ is such that grt .v

˛y/D grt .x/� 1. Rewriting this, we
have .g� 1/� t.j 0� i 0/�˛ D g� t.j � i/� 1. That is,

(15-2) ˛ D t..j � j 0/� .i � i 0//:

As two examples, Figure 2 illustrates the complexes tCF.K/ for K D T .3; 7/, with
t D 1

3
and t D 2. The construction is straightforward using (15-1) and the fact that

v shifts along the diagonal a distance of 1
2

down and to the left. The portion of the
complex illustrated was chosen because its homology is F in grading 0 and represents
the generator of the homology of tCF in grading 0. In the case that t D 1

3
, the full
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complex consists of the illustrated complex along with all its translates a distance k
6

for k 2 Z along the diagonal. In the case of t D 2, the translates are those a distance
k
2

along the diagonal.

It is apparent from these examples that the Alexander filtration is not a filtration of the
chain complex, since some arrows increase the Alexander filtration level. However, as
is easily verified, the algebraic filtration is a filtration on the chain complex.

Definition 15.1 For t D m
n

, denote by tCFK�.K/ the complex tCF.K/i�0 .

Note In [5], this complex is denoted tCFK.K/. In fact, it is the complex that is
explicitly constructed. Here we first introduced the infinity complex to be consistent
with our earlier constructions.

Definition 15.2 For t D m
n

, let ‡K .t/ be the maximal grading of a class in the
homology of tCFK�.K/ that maps to a nontrivial element in the homology of tCF.K/.
Equivalently, it is the maximal grading of a class in the homology of tCFK�.K/ which
is not in the kernel of vk for all k > 0.

Lemma 15.3 The value of ‡K .t/ as just defined is equal to �2s , where s is the least
number for which the homology of tCF.K/i�s contains an element of grading 0 that
represents a nontrivial element of the homology of tCF.K/.

Proof This follows from a simple change of coordinates.

15.1 The two definitions of ‡K .t/ agree

Suppose that, using this definition of ‡K .t/, we have ‡K .t/D�2s . This implies that
tCF.K/i�s contains a cycle z representing a nontrivial generator of grading 0 in the
homology of tCF.K/. Write z D

P
xl , where the xl are filtered generators. Some

xl has filtration level .s; j /, and none of the xl has algebraic filtration level greater
than s .

From the regrading formula given in (15-1), grt .x/DM.x/� t.j � i/, we see that
generators of CF.K/ at filtration level .i; j / and grading 0 yield generators of grading 0

in tCF.K/ at filtration level
�
i C t

2
.j � i/; j C t

2
.j � i/

�
. (Recall that shifting down

and to the left by t units decreases the grading by 2t .) We are thus led to consider the
transformation

.i; j / 7!
��

1�
t

2

�
i C

t

2
j ;�

t

2
i C

�
1C

t

2

�
j
�
:

Its inverse is given by

.i; j / 7!
��

1C
t

2

�
i �

t

2
j ;

t

2
i C

�
1�

t

2

�
j
�
:
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Under this transformation, for a fixed value of s , the vertical line f.s; z/ j z 2 Rg is
carried to the line (in the CF.K/–plane)

˚��
1C t

2

�
s � t

2
z; t

2
sC

�
1� t

2

�
z
�
j z 2 R

	
.

Relabeling the coordinate system .x;y/, this is the line

y D
�
1�

2

t

�
xC

2

t
s:

Comparing with (5-1), we see that the homology of the filtered complex .CF.K/;Ft /s
contains a generator of grading 0 that is nontrivial in the homology of CF.K/, and
that this is not the case for .CF.K/;Ft /s0 for any s0 < s . Thus, the value of ‡K .t/ as
defined in Section 5 is �2s , and the definitions agree.

Appendix: A structure theorem for CF.K /

In [2, Chapter 11], vertical and horizontal reductions of CF.K/ are discussed. That
presentation applies to the filtered complex .CF.K/;Ft /, but adjustments in the details
would be required because, for instance, the horizontal and vertical filtrations are
integer-valued rather than being real filtrations. Since the argument in the present case
is straightforward, we present it in detail.

Viewed as a ƒ–module, CF.K/ is freely generated by a finite set fwig1�i�m . We again
simplify notation by suppressing the indexing set and write fwig. This set can be chosen
so that the set fU kwigk2Z forms a bifiltered graded basis for the F–complex CF.K/.
We will refer to any such set fwig as a ƒ–basis for CF.K/. A ƒ–module change of
basis among the wi that preserves gradings and filtration levels induces a change of
bifiltered graded basis for the F–complex CF.K/. We will refer to any such change
of basis as a ƒ–change of basis of CF.K/. Analogous notation will be used when
working with the filtered graded complex .CF.K/;Ft /.

Theorem A.1 Let t 2 Œ0; 2�. As a ƒ–module, CF.K/ has a basis f˛; ˇ1; : : : ; ˇkg,
inducing a splitting of CF.K/ (as a ƒ–module) as the direct sum CF.K/ Š T ˚A,
where T is freely generated by ˛ and A is freely generated by fˇ1; : : : ; ˇkg. This
splitting has the following properties:

� .CF.K/;Ft /Š T ˚A as a filtered graded F–complex.

� The complex T has filtered graded basis fU k˛gk2Z , the boundary map is trivial
on T , and gr.˛/D 0.

� The complex A has filtered graded basis fU k˛igk2Z and has trivial homology:
H.A/D 0.

Proof We begin with the ƒ–generating set of CF.K/, fwig.
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By replacing generators with their U k translates and renaming the generators, we can
decompose this into two subsets: fxig, all of grading 0, and fyig, all of grading 1.

To simplify notation, we abbreviate the filtered graded F–complex .CF.K/;Ft / by CFt .

.1/ Let A be a cycle in CFt having the least filtration level among cycles representing
nontrivial classes in H0.CFt /. After reordering the generators, we can write A D

x1C� � �Cxk , with the filtration levels nonincreasing. Replacing x1 with x1C� � �Cxk

as the first generating element (over ƒ) induces a filtered change of basis for CFt .
Thus, the first element of the ƒ–basis, which we now denote A1 , is a cycle of least
filtration level representing a nontrivial element of H0.CFt /.

.2/ Consider the set of all generating elements yi that have the property that A1 is a
component of @yi . After reordering the basis, we can assume these are fy1;y2; : : : ;ykg

for some k , and that the filtrations are in nondecreasing order. Make the ƒ–change of
basis that replaces each yi for 2� i � k with yi Cy1 . This induces a filtered change
of basis of CFt . Now, the only generator having A1 as a component of its boundary
is y1 , which we relabel B1 .

.3/ After perhaps reordering the xi , we have either

@B1 DA1 or @B1 DA1Cx2C � � �Cxk

for some k � 2, with the filtration levels nonincreasing. Since @2 D 0, it follows that
B1 is not a component of any element in the image of @.

If @B1 DA1 , then we see that fA1;B1g generates an acyclic summand of CFt , and
thus A1 would not represent a nontrivial element in homology.

We have @B1 DA1Cx2C � � �xk for some k � 2. Make the ƒ–change of basis that
replaces x2 with x2C� � �xk , now calling this new element A2 . Then @B1DA1CA2 .
Note that since A1 is a cycle and A1 C A2 D @B1 is a cycle, that A2 is a cycle
representing the same homology class as A1 . Hence the filtration level of A2 is greater
than or equal to that of A1 .

.4/ We now repeat the previous argument, making a change of basis so that the only
basis elements with boundary that include A2 as a component are B1 and perhaps a
second generator, which we denote B2 .

.5/ This step-by-step procedure must eventually stop, at which time there is con-
structed a summand of the F–complex CFt ,

D DA1 B1!A2 B2!A3 � � � ! Bk�1!Ak :

Note that the process must end with an Ak ; if it stopped with a Bk , the resulting
complex would be acyclic and thus not contain a nontrivial element in homology. This
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complex is a summand of the complex CFt . Note that ƒD is a summand of a direct
sum decomposition of CFt , as a subcomplex and also as a submodule of the ƒ–module.

.6/ Since A1 has the lowest filtration level among the Ai , we can replace each Ai

with A1CAi to form a new basis. The complex then splits in the following way:

A1˚
�
B1! .A1CA2/ B2! .A1CA3/ � � � ! Bk�1! .A1CAk/

�
:

We let T DƒA1 . It satisfies the required conditions of the theorem. Since, as a ƒ–
module, H.T /ŠH.CFt /, the complementary summand to T must be acyclic. That
complementary summand yields the summand A in the statement of the theorem.

References
[1] J Hom, Z Wu, Four-ball genus bounds and a refinement of the Ozváth–Szabó tau

invariant, J. Symplectic Geom. 14 (2016) 305–323 MR

[2] R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: invariance
and pairing, preprint (2008) arXiv

[3] C Livingston, Computations of the Ozsváth–Szabó knot concordance invariant, Geom.
Topol. 8 (2004) 735–742 MR

[4] C Livingston, The concordance genus of knots, Algebr. Geom. Topol. 4 (2004) 1–22
MR

[5] P Ozsváth, A Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer ho-
mology, preprint (2014) arXiv

[6] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for
four-manifolds with boundary, Adv. Math. 173 (2003) 179–261 MR

[7] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7
(2003) 615–639 MR

[8] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004)
311–334 MR

[9] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR

[10] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard Uni-
versity, Cambridge MA (2003) MR Available at http://search.proquest.com/
docview/305332635 A version is available on arXiv

Department of Mathematics, Indiana University
Rawles Hall, 831 East Third Street, Bloomington, IN 47405-5701, United States

livingst@indiana.edu

Received: 4 April 2015 Revised: 24 May 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.4310/JSG.2016.v14.n1.a12
http://dx.doi.org/10.4310/JSG.2016.v14.n1.a12
http://msp.org/idx/mr/3523259
http://msp.org/idx/arx/0810.0687
http://dx.doi.org/10.2140/gt.2004.8.735
http://msp.org/idx/mr/2057779
http://dx.doi.org/10.2140/agt.2004.4.1
http://msp.org/idx/mr/2031909
http://msp.org/idx/arx/1407.1795
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://msp.org/idx/mr/1957829
http://dx.doi.org/10.2140/gt.2003.7.615
http://msp.org/idx/mr/2026543
http://dx.doi.org/10.2140/gt.2004.8.311
http://msp.org/idx/mr/2023281
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://msp.org/idx/mr/2065507
http://msp.org/idx/mr/2704683
http://search.proquest.com/docview/305332635
http://search.proquest.com/docview/305332635
http://www.arxiv.org/abs/math/0306378
mailto:livingst@indiana.edu
http://msp.org
http://msp.org

	1. Introduction
	2. Knot complexes
	3. Filtrations
	4. The definition of the filtration F_t on CF(K)
	5. The definition of Upsilon_K(t)
	5.1. Example

	6. An alternative definition of nu and Upsilon
	7. Products and additivity
	8. Basic properties of Upsilon_K(t) and Upsilon'_K(t)
	9. The three-genus, g_3(K)
	10. Upsilon_K(t) as a knot concordance invariant
	11. The concordance-genus
	12. Bounds on the four-genus, g_4(K)
	13. Crossing change bounds
	14. The Ozsváth–Szabó tau–invariant and Upsilon_K(t) for small t
	15. Equivalence of definitions of Upsilon_K(t)
	15.1. The two definitions of Upsilon_K(t) agree

	Appendix: A structure theorem for CF(K)
	References

