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Equivariant vector bundles over
classifying spaces for proper actions

DIETER DEGRIJSE

IAN J LEARY

Let G be an infinite discrete group and let EG be a classifying space for proper
actions of G. Every G–equivariant vector bundle over EG gives rise to a compatible
collection of representations of the finite subgroups of G. We give the first examples
of groups G with a cocompact classifying space for proper actions EG admitting
a compatible collection of representations of the finite subgroups of G that does
not come from a G–equivariant (virtual) vector bundle over EG. This implies that
the Atiyah–Hirzebruch spectral sequence computing the G–equivariant topological
K–theory of EG has nonzero differentials. On the other hand, we show that for
right-angled Coxeter groups this spectral sequence always collapses at the second
page and compute the K–theory of the classifying space of a right-angled Coxeter
group.

19L47; 20F65, 55N15, 55N91

1 Introduction

Let G be an infinite discrete group and F be the family of finite subgroups of G.
Recall that the orbit category OFG is a category whose objects are the transitive
G–sets G=H for H 2 F , and whose morphism are all G–equivariant maps between
the objects. A classifying space for proper actions of G, denoted by EG, is a proper
G–CW complex such that the fixed point set EGH is contractible for every H 2 F .
The space EG is said to be cocompact if the orbit space G nEG D BG is compact.
Many interesting classes of groups G have cocompact models for EG, for example
cocompact lattices in Lie groups, mapping class groups of surfaces, Out.Fn/, CAT.0/–
groups and word-hyperbolic groups. We refer the reader to Lück [12] for more examples
and details.

Now assume G is an infinite discrete group admitting a cocompact classifying space
for proper actions EG. If

�W E!EG
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132 Dieter Degrijse and Ian J Leary

is a G–equivariant complex vector bundle over EG (see Definition 2.3) and x is a point
of EG, then the fiber ��1.x/ is a complex representation of the finite isotropy group Gx .
The connectivity of the fixed point sets of EG ensures that these representations are
compatible (see Definition 2.1) with one another as x and hence Gx varies. Therefore,
every G–equivariant complex vector bundle over EG gives rise to a compatible
collection of complex representations of the finite subgroups of G, and hence to an
element of

lim
G=H2OFG

R.H/:

Here, limG=H2OFG R.H/ is the limit over the orbit category OFG of the contravariant
representation ring functor

R.�/W OFG! Ab; G=H 7!R.H/:

Denoting the Grothendieck group of the abelian monoid of isomorphism classes of
complex G–vector bundles over EG by K0G.EG/, one obtains a map

"G W K0G.EG/! lim
G=H2OFG

R.H/

that maps a formal difference of (isomorphism classes of) vector bundles (ie a virtual
vector bundle) to a formal difference of (isomorphism classes of) of compatible collec-
tions of representations of the finite subgroups of G. We say a compatible collection of
representations of the finite subgroups of G can be realized as a (virtual) G–equivariant
vector bundle over EG if there exists a (virtual) G–equivariant vector bundle over
EG that maps to this collection under "G. One can also look at the corresponding
situation for real (orthogonal) vector bundles and real (orthogonal) representations and
obtain the map

"G W KO0G.EG/! lim
G=H2OFG

RO.H/:

The maps "G are equal to the edge homomorphisms of certain Atiyah–Hirzebruch
spectral sequences converging to K�G.EG/ and KO�G.EG/ (see (1) and (2)). Lück
and Oliver proved that (see Proposition 2.5) the map "G (real or complex) is rationally
surjective, meaning that a high-enough multiple of every element in the target of "G is
contained in the image of "G. In the last paragraph of [14, page 596], Lück and Oliver
ask for an example of a group G admitting a cocompact classifying space for proper
actions EG such that "G is not surjective. In Section 3 of this paper we give the first
example of such a group in the complex case. In Section 4 we give the first example of
such a group in the real case. We also construct examples of groups G admitting a
cocompact EG with the following weaker property: G admits a compatible collection
of representations for its finite subgroups that cannot be realized as a G–vector bundle
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Equivariant vector bundles over classifying spaces for proper actions 133

over EG. However, for these examples we cannot exclude the possibility that there
exists a virtual vector bundle that maps to this collection of representations under "G.
On the other hand, these examples are more explicit and lower-dimensional.

In the final section we show that for a right-angled Coxeter group W, every compatible
collection of representations of the finite subgroups of W can be realized as a W–
equivariant vector bundle over EW, so that the map

"W W K0W .EW /! lim
W=H2OFW

R.H/:

is always surjective. Moreover, we show that this map is actually an isomorphism and
that (see Theorem 2.4)

K1W .EW /D 0:

Using a version of the Atiyah–Segal completion theorem for infinite discrete groups
proven by Lück and Oliver, we use these results to compute the complex K–theory
of BW, the classifying space of W (see Corollary 5.6).

Acknowledgement We thank the referee, whose comments on an earlier version of
this article were extremely helpful. Degrijse was supported by the Danish National
Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

2 G –vector bundles and isotropy representations

Let G be a discrete group and let � be a Lie group. Let S be a family of finite subgroups
of G, ie any collection of finite subgroups of G that is closed under conjugation and
passing to subgroups. The orbit category OSG is a category whose objects are the
transitive G–sets G=H for H 2 S , and whose morphism are all G–equivariant maps
between the objects.

Definition 2.1 [14, page 590] Let X be a G–CW complex. A .G; �/–bundle over X
is a �–principal bundle pW E ! X, where E is a left G–space such that p is G–
equivariant and such that the left G–action and the right �–action on E commute. We
denote the set of isomorphism classes of .G; �/–bundles over X by Bdl.G;�/.X/. For
H 2 F , let

Rep�.H/D Hom.H; �/=Inn.�/:

One can consider Rep�.�/ as a contravariant functor from OSG to Sets. An element
of the limit,

AD .Œ˛H �/H2S 2 lim
G=H2OSG

Rep�.H/;
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134 Dieter Degrijse and Ian J Leary

is a called an S–compatible collection of �–representations. Given such an element A,
let SA be the family of subgroups of G �� consisting of conjugates of the subgroups
of the form

f.h; ˛H .h// j h 2H g

for all H 2 S and let ES.G;A/ be the universal G��–CW complex for the family SA .

Lemma 2.2 [14, Lemma 2.4] For every S–compatible collection of �–representa-
tions A D .Œ˛H �/H2S there exists a G–CW complex BS.G;A/ with isotropy in S
satisfying the following properties:

� The quotient map

� W ES.G;A/! � nES.G;A/D BS.G;A/

is a .G; �/–bundle over the G–CW complex BS.G;A/.

� The .G; �/–bundle � W ES.G;A/! BS.G;A/ is universal in the sense that for
every G–CW complex X with isotropy in S there is an isomorphism

ŒX;BS.G;A/�G
Š
�!Bdl.G;�/.X/

given by pulling back the universal bundle � along a G–map X ! BS.G;A/.

� For every S 2 S , the fixed point set BF .G;A/
H is homotopy equivalent to

BC�.˛H /, the classifying space of the centralizer of the image of ˛H in � .

If � D U.n/ (� D O.n/) and S D F , the family of all finite subgroups of G, then
Rep�.H/ is the set of isomorphism classes of n–dimensional complex (real) represen-
tations of H. In this case, an element of the limit

AD .Œ˛H �/H2F 2 lim
G=H2OFG

Rep�.H/

is a called is called a compatible collection of complex (real) n–dimensional represen-
tations of the finite subgroups of G. For H 2 F , let R.H/ (RO.H/) be the complex
(real) representation ring of H, ie the Grothendieck group of the abelian cancellative
monoid of isomorphism classes of finite-dimensional complex (real) representations
of H. Note that RepU.n/.H/ is naturally a subset of R.H/ and RepO.n/.H/ is
naturally a subset of RO.H/. One can consider R.�/ as a functor from OFG to Ab.
An element of the inverse limit

˛ D .Œ˛H �/H2F 2 lim
G=H2OFG

R.H/
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Equivariant vector bundles over classifying spaces for proper actions 135

is called a compatible collection of complex virtual representations of the finite sub-
groups of G. One has a natural embedding

lim
G=H2OFG

RepU.n/.H/� lim
G=H2OFG

R.H/:

The analogous statements for O.n;R/ and RO also hold.

Now let X be a proper cocompact G–CW complex, ie X has finite isotropy and the
orbit space G nX has a finite number of cells, such that, for every H 2 F , the fixed
point set XH is nonempty and connected.

Definition 2.3 [18] A complex (real) G–vector bundle over X is a complex (real)
vector bundle � W E ! X such that � is G–equivariant and each g 2 G acts on E
and X via a bundle isomorphism. An isomorphism of G–vector bundles over X is
just an isomorphism of vector bundles that is G–equivariant. The set of isomorphism
classes of complex (real) G–vector bundles over X will be denoted by BdlG.X/
(OBdlG.X/). For every x 2 X, the fiber ��1.x/ is denoted by Ex . We refer the
reader to [14, Section 1; 6, Section I.9] for elementary properties of G–vector bundles
over proper (cocompact) G–CW complexes.

Theorem 2.4 [14, Theorems 3.2 and 3.15] There exists a 2–periodic (8–periodic)
equivariant cohomology theory K�G.X;A/ (KO�G.X;A/) on the category of proper
G–CW pairs such that when X is cocompact, K0G.X/ (KO0G.X/) is the Grothendieck
group of the abelian monoid of isomorphism classes of complex (real) G–vector bundles
over X. In particular, for every H 2 F , K0G.G=H/ (KO0G.G=H/) is canonically
isomorphic to R.H/ (RO.H/).

As usual (see [13, Section 6; 4, Theorem 4.7]), the skeletal filtration of X induces
Atiyah–Hirzebruch spectral sequences

(1) E
p;q
2 D HpG.X;K

q
G.G=�//) KpCqG .X/

and

(2) E
p;q
2 D HpG.X;KOqG.G=�//) KOpCqG .X/;

where HpG.X;�/ denotes the Bredon cohomology of X (see [2]).

Proposition 2.5 [13, Proposition 5.8] If X is a cocompact G–CW complex then the
spectral sequences (1) and (2) above rationally collapse, meaning that the images of all
differentials in these spectral sequences consist of torsion elements.
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136 Dieter Degrijse and Ian J Leary

By our assumptions on X, the zeroth Bredon cohomology group H0G.X;R.�// (resp.
H0G.X;RO.H//), equals the limit of the functor R.�/ (resp. RO.�/) over the orbit
category OFG. Consider the edge homomorphisms

"G W K0G.X/! H0G.X;R.�//

and
"G W KO0G.X/! H0G.X;RO.�//

of the spectral sequences (1) and (2). If Œ�� is the isomorphism class of an n–
dimensional complex G–vector bundle � W E!X, then "G.Œ��/ equals

.ŒEeH
�/H2F 2 lim

G=H2OFG
RepU.n/.H/� H0G.X;R.�//;

where ŒEeH
� denotes the isomorphism class in R.H/ of the H –representation EeH

.
The corresponding statement for real G–vector bundles also holds. Note that it follows
from Proposition 2.5 that a suitable multiple of every compatible collection of (virtual)
real or complex representations of the finite subgroups of G is contained in the image
of the edge homomorphism "G.

Recall that the classifying space for proper actions EG is a terminal object in the
homotopy category of proper G–CW complexes (eg [12, Theorem 1.9]). Hence, if X
is any proper cocompact G–CW complex such that XH is nonempty and connected for
each H 2 F , then there exists a G–map X !EG that is unique up to G–homotopy
and induces commutative diagrams:

K0G.X/ // limG=H2OFG R.H/

K0G.EG/

OO 66
KO0G.X/ // limG=H2OFG RO.H/

KO0G.EG/

OO 66

Hence, if a compatible collection ˛ of virtual representations can be realized as a
virtual G–vector bundle over EG, it can also be realized as a virtual G–vector bundle
over X.

3 Complex vector bundles

The purpose of this section is to construct a group G with a cocompact classifying space
for proper actions EG admitting a compatible collection of complex representations
of the finite subgroups of G that cannot be realized as G–equivariant virtual complex
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Equivariant vector bundles over classifying spaces for proper actions 137

vector bundle over EG, ie so that the edge homomorphism

"G W K0G.EG/! lim
G=H2OFG

R.H/

is not surjective.

Let F D C4ÌC2 be the dihedral group of order 8, where � is a generator for C4 and
" is a generator of C2 . Let H D h�2i be the center of F, which has order two and
denote the n–skeleton of the universal F=H –space X DE.F=H/ by Xn . We let F
act on X and Xn via the projection onto F=H. Consider the complex 1–dimensional
representation

�W H D h�2i ! U.1/D S1; �2 7! �1:

Lemma 3.1 The isomorphism class Œ�� is contained in R.H/F=H . For k 2 Z, the
multiple kŒ�� is contained in the image of the restriction map resW R.F /!R.H/ if
and only if k is even.

Proof Since H is the center of F it follows that the conjugation action of F=H
on R.H/ is trivial, hence Œ�� 2 R.H/F=H D R.H/. One easily verifies that the
representation

� W F ! U.2/

defined by

�.�/D

�
0 i

i 0

�
and �."/D

�
�1 0

0 1

�
satisfies res.Œ� �/ D 2Œ��. Hence, kŒ�� is contained in the image of res for every
even k 2 Z. Note that, as a free abelian group, R.H/ is generated by Œ�� and the
isomorphism class of the 1–dimensional complex trivial representation Œtr� (eg see
[19]). Now suppose k is odd and there exists an element Œ��� Œ�� 2R.F / such that
res.Œ��� Œ��/D kŒ��. There are integers l , m and n such that res.Œ��/D l Œtr�CmŒ��,
res.Œ��/D l Œtr�CnŒ�� and m�nD k . By changing the representative of Œ��, we may
also assume that

�W F ! U.l Cm/;

where �.�/ is a diagonal matrix. Since �.�2/ has an m–dimensional eigenspace
with eigenvalues �1 and an l –dimensional eigenspace with eigenvalue 1, it follows
that �.�/ has an s–dimensional eigenspace with eigenvalue i and a t –dimensional
eigenspace with eigenvalue �i such that s C t D m. Moreover, �.�3/ has an s–
dimensional eigenspace with eigenvalue �i and a t –dimensional eigenspace with
eigenvalue i . Since � and �3 are conjugate in F , it follows that s D t proving that m
is even. A similar argument shows that n is also even. But this contradicts the fact that

Algebraic & Geometric Topology, Volume 17 (2017)
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k Dm�n is odd. Hence, there does not exist an element Œ��� Œ�� 2R.F / such that
res.Œ��� Œ��/D kŒ�� if k is odd.

The following lemma uses the notation introduced above and will be cited in the next
section.

Lemma 3.2 Every F –equivariant complex line bundle over X3 is isomorphic to the
pullback of an F –equivariant complex line bundle over E.F=H/ along the inclusion
i W X3!E.F=H/.

Proof Let S be the family of subgroups of F containing only H and the trivial
subgroup. Note that isomorphism classes of F –equivariant complex line bundles
correspond to isomorphism classes of .F; S1DU.1//–bundles. Let � W E!X3 be an
F –equivariant complex line bundle over and let Œ˛H W H !U.1/D S1� be the isomor-
phism class in RepS1.H/ of the H –representation induced on the fibers of � . If we set
˛fegW feg!S1 , then AD .Œ˛K �/K2S 2 limK2S RepS1.K/. It follows from Lemma 2.2
for � D S1 that in order to show that � is the pullback of an F –equivariant complex
line bundle over E.F=H/ along the inclusion i W X3!E.F=H/, it suffices to show
that every F –map from X3 to BS.F;A/ can be extended to an F –map from E.F=H/

to BS.F;A/. Here BS.F;A/ is homotopy equivalent to BS1 DCP1 for all K 2 S ,
again by Lemma 2.2. It follows from Bredon’s equivariant obstruction theory (see [2,
Section II.1; 15, Theorem I.5.1]) that the potential obstructions for extending such a map
lie in the relative Bredon cohomology groups HnC1F .E.F=H/;X3I�n.BS.F;A/

�//

for n� 3. Since �n.CP1/ is zero unless nD 2, the lemma is proven.

The idea for the following lemma is contained in [14, page 596].

Lemma 3.3 There exists an n� 1 such that Œ�� is not contained in the image of the
edge homomorphism

K0F .X
n/!R.H/F=H :

Proof By [8, Theorem 5.1] for X D f�g, F D fe;H g and EF DE.F=H/, there are
maps

˛nW R.F /=I
n
! K0F .X

n/

that induce a map of inverse systems from fR.F /=Ingn�0 to fK0F .X
n/gn�0 that

induces an isomorphism of prorings. Here I is the kernel of the restriction map
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R.F / ! R.H/. This implies that for sufficiently large n � 1 there exists a map
ˇ1W K0F .X

n/!R.F /=I making the following diagram commute:

R.F /=In
˛n
//

��

K0F .X
n/

ˇ1

�� ��

"F

&&

R.H/F=H

R.F /=I
˛1
// K0F .X

1/

"F

88

This shows that the image of the restriction map

R.F /!R.H/F=H

coincides with the image of the edge homomorphism

K0F .X
n/!R.H/F=H :

Since Œ�� does not lie in the image of R.F /! R.H/F=H by Lemma 3.1, the lemma
follows.

Let n� 3. By [9, Theorems A and 8.3] there exists a compact n–dimensional locally
CAT.0/–cubical complex TXn equipped with a free cellular F=H –action and an
F=H –equivariant map tXn W TXn !Xn that induces an isomorphism

(3) H�F .X
n/ Š�!H�F .TXn/

for any equivariant cohomology theory H�
‹
. � / (eg see [11, Section 1]). (We remark

that [9, Theorem 8.3] is stated for equivariant homology theories, but the analogous
statement holds for equivariant cohomology theories by essentially the same proof.)
The action of F on TXn in the above is via the projection F ! F=H. Now let Y n be
the universal cover of TXn and let �n be the group of self-homeomorphisms of Y n that
lift the action of F=H on TXn . Since F=H acts freely on TXn , we have that �n acts
freely on Y n . We conclude that Y n is an n–dimensional CAT.0/–cubical complex on
which �n acts freely, cocompactly and cellularly. Since Yn is contractible, this implies
that �n is torsion-free. By construction there is a surjection �n! F=H whose kernel
Nn is the torsion-free group of deck transformation of the covering Y n! TXn . Now
define the group Gn to be the pullback of �nW �n! F=H along F ! F=H. Then
Gn acts on Y n via the quotient map Gn!Gn=H D �n and fits into the short exact
sequence

1!Nn!Gn
pn
�!F ! 1:
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Note that the only nontrivial finite subgroup of Gn is H Š C2 and that, since Nn acts
freely on Y n , the Gn–equivariant quotient map Y n ! Nn n Y

n D TXn induces an
isomorphism [14, Lemma 3.5]

(4) K�F .TXn/ Š�!K�Gn
.Y n/:

Applying (3) and (4) to the composition Y n ! TXn ! Xn and the equivariant co-
homology theories K�

‹
. � / and H�

‹
. � ; R.�// with � D 0, we obtain a commutative

diagram:
K0F .X

n/
Š

//

"F

��

K0Gn
.Y n/

"Gn

��

R.H/F=H
Š
// limGn=S2OFGn

R.S/

The fact that this diagram commutes can be seen as follows. Using equivariant cellular
approximation, we may assume that the map Xn! Y n is cellular. By considering the
inclusion of 0–skeleta in n–skeleta, naturality yields a commutative diagram:

K0F .X
n/

Š
//

��

K0Gn
.Y n/

��

K0F .X
0/ // K0Gn

.Y 0/

The edge homomorphism "F W K0F .X
n/! R.H/F=H � K0F .X

0/ coincides by con-
struction with K0F .X

n/ ! K0F .X
0/ once we restrict the codomain, and similarly

for "Gn
. Therefore, commutativity follows.

Since we proved in Lemma 3.3 that, for n large enough, the isomorphism class of �
does not lie in the image of the edge homomorphism

K0F .X
n/!R.H/F=H ;

it follows from the commutative diagram above that the compatible system of represen-
tations

.� ıpnjS /S2F 2 lim
Gn=S2OFGn

R.S/D H0F .Gn; R.�//

does not lie in the image of the edge homomorphism

"Gn
W K0Gn

.Y n/! lim
Gn=S2OFGn

R.S/:

Recall from [3] that nonempty CAT.0/–cube complexes are contractible and that the
fixed point set for a finite group action on a CAT.0/–cube complex is contractible.
Since Gn acts cellularly properly and cocompactly on the CAT.0/–cube complex Yn ,
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Equivariant vector bundles over classifying spaces for proper actions 141

we deduce that Yn is a cocompact model for EGn . To summarize, we have constructed
a group G DGn with a cocompact classifying space for proper actions EG admitting
a compatible collection of complex representations of the finite subgroups of G that
cannot be realized as G–equivariant virtual complex vector bundle over EG.

We remark that Wolfgang Lück has shown us another quite different way to find a finite
group F and an F –CW complex X that satisfy Lemma 3.3; any such pair could be
used to construct a group with similar properties to the group G DGn .

4 Real vector bundles

One could apply the techniques of the previous section in the real setting to obtain a
group G with cocompact classifying space for proper actions EG so that the edge
homomorphism

"G W KO0G.EG/! lim
G=H2OFG

RO.H/

is not surjective. Here one would need the real version of [8, Theorem 5.1], which also
holds as explained in the paragraph below [8, Theorem 5.1].

Instead we give an explicit description of a group G that admits R2 as a cocompact
model for EG and admits a compatible collection of real representations of its finite
subgroups that cannot be realized as a real G–vector bundle over R2 .

We start by describing a related group � that is a 2–dimensional crystallographic group,
or wallpaper group; this group is known as p2gg , but we will describe it explicitly.
Endow R2 with the CW structure coming from the standard tessellation by unit squares
with vertices at Z2 , and let � be the group of automorphisms of this CW structure that
preserves the pattern shown in Figure 1. The stabilizer of a 2–cell is clearly trivial, and
so the 2–cells form a single free �–orbit. There are two orbits of 1–cells, the vertical
and horizontal edges, and again each orbit is free. There are two orbits of 0–cells, and
the stabilizer of a 0–cell is cyclic of order two, generated by the rotation of order two
fixing the point. Since the stabilizer of each cell acts trivially on that cell, the given
CW structure makes R2 into a �–CW complex.

The translation subgroup T of � has index 4, with elements .x; y/ 7! .xC2m; yC2n/.
The orientation-preserving subgroup N of � has index 2, and consists of T together
with the rotations through � about some point of Z2 , which are of the form .x; y/ 7!

.2m � x; 2n � y/. Finally, the elements of � �N are the glide reflections whose
axes bisect the sides of the 2–cells, namely .x; y/ 7! .2mC 1� x; 2nC 1C y/ and
.x; y/ 7! .2mC 1C x; 2nC 1 � y/. The quotients T nR2 , NnR2 and �nR2 are,
respectively, a torus consisting of four squares, an S2 obtained by identifying the
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Figure 1: A wallpaper pattern for � D p2gg

boundaries of two squares, and a copy of RP 2 obtained by identifying the edges of a
square in pairs. The fact that � �N contains no torsion elements is reflected in the
fact that �=N acts freely on the sphere NnR2 .

Now let F be a copy of C4 and let H ŠC2 be the index 2 subgroup of F . The group
G is defined as the pullback of the two maps �! �=N Š C2 and F ! F=H Š C2 .
By construction the group G admits R2 as a cocompact model for EG, and fits into a
short exact sequence

1!N !G
p
!F ! 1

such that every finite subgroup of G maps onto a subgroup of H under p .

Now let
� WH !O.1;R/D C2

be the 1–dimensional real sign representation of H, ie � is the identity map. The
isomorphism class Œ�� is clearly contained in RO.H/F=H , since F is abelian.

Lemma 4.1 The isomorphism class kŒ�� is contained in the image of the restriction
map

RO.F /! RO.H/F=H

if and only if k is even.

Proof Recall that the irreducible real representations of C4 are, up to isomorphism,
the 1–dimensional trivial representation representation, the 1–dimensional sign rep-
resentation of F=H D C2 and one 2–dimensional faithful representation in which
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the elements of order four act as rotations by ˙�
2

. The restriction of the first two of
the representations to H gives the trivial 1–dimensional representation of H, while
the restriction to H of the third is �˚ �. We therefore conclude that the image of
RO.F /! RO.H/F=H consists of element of the form 2nŒ��CmŒtr�, where tr is the
trivial 1–dimensional representation of H and n, m 2 Z. This shows that kŒ�� is
contained in the image of the restriction map RO.F /! RO.H/F=H if and only if
k is even.

Lemma 4.2 Let F act on the infinite-dimensional sphere S1 by first projecting
onto F=H D C2 and then acting via the antipodal map. View S2 as the 2–skeleton
of S1 . Every F –equivariant orthogonal real line bundle over S2 is isomorphic to the
pullback of an F –equivariant orthogonal real line bundle over S1 along the inclusion
S2! S1 .

Proof Let S be the family of subgroups of F containing H and the trivial subgroup.
Note that isomorphism classes of F –equivariant orthogonal real line bundles correspond
to isomorphism classes of .F; C2/–bundles. Now let � be an .F; C2/–bundle over S2

with fibers A D .�S / 2 limS2S RepC2
.S/. By Lemma 2.2, it suffices to show that

every F –map f W S2!BS.F;A/ can be extended to an F –map Qf W S1!BS.F;A/.
Again by Lemma 2.2, BS.F;A/

S Š BC2 D RP1 for all S 2 S . It follows from
Bredon’s equivariant obstruction theory (see [2, Section II.1; 15, Theorem I.5.1])
that the potential obstructions for extending such a map lie in the relative Bredon
cohomology groups HnC1F .S1; S2I�n.BS.F;A/

�// for n� 2. Since �n.RP1/ is
zero unless nD 1, the lemma is proven.

Lemma 4.3 Let F act on S2 by first projecting onto F=H D C2 and then acting via
the antipodal map. There does not exist a real F –vector bundle �W E! S2 such that
the representation of H on the fibers of � is isomorphic to �.

Proof Consider the infinite-dimensional sphere S1 as a the universal C2–space EC2 ,
where C2 acts via the antipodal map and let F act on S1 via first projecting onto
F=H D C2 and then acting via C2 . Now assume that there exists a real F –vector
bundle �W E! S2 such that the representation of H on the fibers of � is isomorphic
to �. By Lemma 4.2 there exists a real F –vector bundle �W E! S1 such that the
representation of H on the fibers of � is isomorphic to �. By pulling back this bundle
along the inclusion Sn! S1 , there also exists a real F –vector bundle �W E! Sn

such that the representation of H on the fibers of � is isomorphic to � for every n� 2.

By the real version of [8, Theorem 5.1] (see comments below the theorem), there are
maps

˛nW RO.F /=In! KO0F .S
n/
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that induce a map of inverse systems from fRO.F /=Ingn�0 to fKO0F .S
n/gn�0 that

in turn induces an isomorphism of prorings. Here I is the kernel of the restriction map
RO.F /! RO.H/. This implies that for sufficiently large n � 1 there exists a map
ˇ1W KO0F .S

n/!R.F /=I making the following diagram commute:

RO.F /=In
˛n
//

��

KO0F .S
n/

ˇ1

�� ��

"F

&&

RO.H/F=H

RO.F /=I
˛1
// KO0F .S

1/

"F

88

This shows that the image of the restriction map

RO.F /! RO.H/F=H

coincides with the image of the edge homomorphism

KO0F .S
n/! RO.H/F=H ;

implying that the H –representations coming from the fibers of any real F –vector
bundle over Sn can be extended to virtual F –representations. However, since � does
not lie in the image of RO.F /! RO.H/ by Lemma 4.1 we arrive at a contradiction
and conclude that there does not exist a real F –vector bundle �W E! S2 such that
the representation of H on the fibers of � is isomorphic to �.

Consider the projection pW G ! F and the compatible system of real orthogonal
representations

.Œ� ıpjS �/S2F 2 lim
G=S2OFG

RO.S/D H0G.EG;RO.�//;

and assume that there exists a real G–vector bundle �W E!R2 that realizes it. Since
the kernel of pW G! F is N , it follows from the lemma below and our observations
above that N n �W N nE ! N nX is an F –vector bundle over S2 , where F acts
on S2 via projection onto F=H D C2 , followed by the antipodal map. Moreover, the
representation of H on the fibers of N n � is by construction exactly �. This however
contradicts Lemma 4.3, so we conclude that there does not exist a real G–vector bundle
�W E ! R2 that realizes the compatible system of real orthogonal representations
.� ıpjS /S2F .
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Lemma 4.4 Let G be any discrete group with normal subgroup N and let X be a
proper G–CW complex. If �W E!X is a G–vector bundle over X such that N \Gx
acts trivially on ��1.x/ for every x 2X, then

N n �W N nE!N nX

is a G=N –vector bundle over N nX.

Proof Denote the projection G ! G=N DQ by � . Let us first consider the case
where � is trivial (in the sense of [10, Section 6.1]), ie assume � is a pullback

G �H V // G=H

E

r

OO

�
// X

p

OO

of the G–vector bundle G �H V ! G=H along the G–map pW X ! G=H , where
H is some finite subgroup of G and V is a finite-dimensional real H –representation
such that H \N acts trivially on V . Consider the pullback diagram

Q��.H/ V // Q=�.H/

P

w

OO

q
// N nX

Nnp

OO

of the Q–vector bundle Q��.H/ V !Q=�.H/ along the Q–map N np . We define
the map

 W N nE! P; .g; v; x/ 7! .�.g/; v; xx/:

It is easy to check that  yields a well-defined morphism of Q–equivariant bundles
over N nX. Moreover, since  is a fiberwise linear map of Q–vector bundles that is
a fiberwise isomorphism, it follows that  is a homeomorphism.

Now consider the general case. Let xx 2 N nX. Since �W E ! X is locally trivial,
x 2 X has an open G–neighborhood U such that there is a G–map pW U ! G=H,
where H is a finite subgroup of G and �jU is (homeomorphic to) the pullback

G �H V // G=H

�jU

OO

�
// U

p

OO
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of the G–vector bundle G �H V ! G=H along the G–map pW U ! G=H. By the
above, the quotient diagram

Q��.H/ V // Q=�.H/

N n �jU

OO

Nn�
// N nU

Nnp

OO

is a pullback diagram. Since N nU is an open Q–neighborhood of xx , it follows that
N n �W N nE!N nX is a Q–vector bundle.

We finish this section by explaining how a similar approach to the one above can be
used to produce a group G admitting a 3–dimensional cocompact model for EG that
has a compatible system of 1–dimensional complex representations that cannot be
realized as a complex G–vector bundle over EG. As in Section 3, let F D C4 ÌC2
be the dihedral group of order 8, where � is a generator for C4 . Let H D h�2i
be the center of F, which has order two, and denote the 3–skeleton of the universal
F=H –space X D E.F=H/ by X3 . We let F act on X and X3 via the projection
onto F=H. Consider the complex 1–dimensional representation

�W H D h�2i ! U.1/D S1; �2 7! �1:

By [9, Theorems A and 8.3] there exists a compact 3–dimensional locally CAT.0/–
cubical complex TX3 equipped with a free cellular F=H –action, an F=H –equivariant
map tX3 W TX3 ! X3 and an isometric cellular involution � on TX3 that commutes
with the F=H –action on TX3 and the map tX3 such the induced F=H –equivariant
map

h�i nTX3 !X3

is a homotopy equivalence. Note that F=H acts freely on h�i nTX3 since it acts freely
on X3 . Hence TX3 is also the 3–skeleton of a universal F=H –space Z . So we may
continue assuming that Z DX and h�i nTX3 DX3 .

Now let Y be the universal cover of TX3 and let � be the group of self-homeomorphisms
of Y that lift the action of F=H ˚h�i on TX3 . Then Y is a 3–dimensional CAT.0/–
cubical complex on which � acts properly, compactly and cellularly. By construction
there is a surjection ˛W �!F=H ˚h�i whose kernel Ker.˛/ is the torsion-free group
of deck transformations of Y ! TX3 . Let � denote the composition of ˛ with the
projection of F=H ˚h�i onto F=H. Since F=H acts freely on TX3 and every finite
subgroup of � must fix a point of Y since Y is CAT.0/, it follows that every finite
subgroup of � is contained in the kernel of � , which we denote by N . Now define
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the group G to be the pullback of � W �! F=H along F ! F=H. Then G acts on Y
via the quotient map G!G=H D � that fits into the short exact sequence

1!N !G
p
!F ! 1

such that p maps all the finite subgroup of G onto a finite subgroup of H and
N nY DX3 .

Let F be the family of finite subgroups of G, note that Y is a 3–dimensional cocompact
model for EG and suppose that there exists a G–vector �W E! Y whose fibers give
rise to the compatible system of representations

.Œ� ıpjS �/S2F 2 lim
G=S2OFG

R.S/:

By Lemma 4.4, we obtain an F –equivariant complex line bundle N n �W N nE!X

such that the representation of H on the fibers of N n � is isomorphic to �. By
Lemma 3.2, this bundle can be extended to an F –equivariant complex line bundle over
X DE.F=H/. We now continue in a similar fashion as in the proof of Lemma 4.3 to
conclude that Œ�� is contained in the image of the restriction map R.F /!R.H/F=H ,
which contradicts Lemma 3.1. We conclude that the bundle � cannot exist.

5 Right-angled Coxeter groups

Let � be a finite graph. We denote the vertex set of � by S D V.�/ and the set of
edges of � by E.�/ � V.�/� V.�/. The right-angled Coxeter group determined
by � is the Coxeter group W with presentation

W D hS j s2 for all s 2 V.�/ and .st/2 if .s; t/ 2E.�/i:

Note that W fits into the short exact sequence

1!N !W
p
!F D

M
s2S

C2! 1;

where p takes s 2 S to the generator of the C2–factor corresponding to s . A subset
J � S is called spherical if the subgroup WJ D hJ i is finite (and hence isomorphic
to
L
s2J C2 ). The empty subset of S is by definition spherical. We denote the poset

of spherical subsets of S ordered by inclusion by S . If J 2 S , then WJ is called a
spherical subgroup of W, while a coset wWJ is called spherical coset. We denote the
poset of spherical cosets, ordered by inclusion, by WS . Note that W acts on WS
by left multiplication, preserving the ordering. The Davis complex † of W is the
geometric realization of WS . One easily sees that † is a proper cocompact W–CW
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complex. Since † admits a complete CAT.0/–metric such that W acts by isometries,
it follows that † is a cocompact model for EW (see [5, Theorems 12.1.1 and 12.3.4]).
A consequence of this fact is that every finite subgroup of W is subconjugate to some
spherical subgroup of W. This implies that the group N defined above is torsion-free.
Since the quotient space W n† is homeomorphic to the geometric realization of the
poset S , which is contractible since it has a minimal element, another consequence is
that the quotient BW DW nEW is contractible. We refer the reader to [5] for more
details and information about these groups and the spaces on which they act.

Let F be the family of finite subgroups of W. Given an abelian group A, we denote by

AW OFW ! Ab

the trivial functor that takes all objects to A and all morphism to the identity map. One
can verify that

(5) H�W .EW;A/Š H�.BW;A/:

Lemma 5.1 Let AD .ŒpjH �/H2F 2 limW=H2OFW RepF .H/. For every k � 0, the
contravariant functor

OFW ! Ab; W=H 7! �k.BF .W;A/
H /;

equals the trivial functor �k.BF /.

Proof Let EF be a contractible F –CW complex with free F –action and consider
the product space EW �EF . This space becomes a .W �K/–CW complex by letting
.w; f / 2W �F act on .x; y/ 2EW �EF as

.w; f / � .x; y/D .w � x; p.w/f �y/:

One checks that with this action EW �EF is a model for EF .W;A/, ie .EW �EF /K

is contractible when K 2 FA and empty otherwise. By definition, it follows that
EW �BF is a model BF .W;A/, where W acts on trivially on the second coordinate.
Since EW H is contractible for every H 2 F , the lemma follows easily.

Let � be either the orthogonal group O.n;R/ or the unitary group U.n/.

Lemma 5.2 Every element of

lim
W=H2OFW

Rep�.H/

is of the form .Œ� ıpjH �/H2F for some group homomorphism �W F ! � .
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Proof Every finite subgroup H of W is isomorphic to a finite direct sum of C2 ’s.
Since every element of order 2 in � is conjugate in � to a diagonal matrix with ˙1
on the diagonal and commuting matrices can be simultaneously diagonalized (eg see
[7, Theorem 1.3.12]), it follows that the image of every homomorphism H ! � is
conjugate to a finite subgroup of � consisting of diagonal matrices. Hence, every
element of limW=H2OFW Rep�.H/ is of the form .Œ˛H �/H2F , where ˛H W H ! � is
a homomorphism whose image lands in the finite abelian subgroup of � consisting
of diagonal matrices. Since every finite subgroup of W is subconjugate to a spherical
subgroup WJ, the compatibility of the representations tells us that .Œ˛H �/H2F is
completely determined by the homomorphisms ˛hsiW hsi ! � for s 2 S . Since
the images of the ˛hsi are diagonal, they commute. Therefore, one can define the
homomorphism

�W F D
M
s2S

C2! �; .�s/s2S 7!
X
s2S

˛hsi.�s/:

The compatibility of the representations implies that

.Œ� ıpjH �/H2F D .Œ˛H �/H2F ;

proving the lemma.

The following theorem applies to both complex and real representations and vector
bundles:

Theorem 5.3 Let W be a right-angled Coxeter group. Every compatible collection of
representations of the finite subgroups of W can be realized as a W–equivariant vector
bundle over the Davis complex †DEW.

Proof Consider AD .ŒpjH �/H2F 2 limW=H2OFW RepF .H/. It follows from Lemma
2.2 that the existence of a .W;A/–bundle over † follows from the existence a W–map
†! BF .W;A/. Since, by Lemma 5.1, the contravariant functor

�k.BF .W;A/
�/W OF .W /! Ab; W=H 7! �k.BF .W;A/

H /;

equals the trivial functor �k.BF / for all k�0, it follows from (5) and the contractibility
of BW that the Bredon cohomology groups

HkC1W .†; �k.BF .W;A/
�//

are zero for all k � 0. Since there certainly exists a W–map from the 0–skeleton of †
to BF .W;A/, it follows from Bredon’s equivariant obstruction theory that there exists
a W–map †! BF .W;A/.
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Now consider a compatible collection of representations of the finite subgroups of W.
By Lemma 5.2, this collection is of the form

.Œ� ıpjH �/H2F 2 lim
W=H2OFW

Rep�.H/

for some group homomorphism �W F ! � . Letting AD .ŒpjH �/H2F , it follows from
the above that there exists a .W;A/–bundle �W E!†. If � DO.n;R/ then

�W E �F Rn!†

is a real W–vector bundle over † that realizes .Œ� ıpjH �/H2F , and if � D U.n/ then

�W E �F Cn
!†

is a complex W–vector bundle over † that realizes .Œ� ıpjH �/H2F . Here F acts on
Rn or Cn via the map �.

Lemma 5.4 If W is a right-angled Coxeter group, then HnW .†;R.�// D 0 for
all n > 0, and H0W .†;R.�// is free abelian of rank equal to the number of spherical
subgroups of W.

Proof This is proven in much the same way as the corresponding result for homology
in [17]. In more detail, one uses the cubical structure on †, in which there is one orbit of
n–cubes with stabilizer isomorphic to .C2/n for each n–tuple of commuting elements
of S . (For each n� 0, for each spherical subgroup WJ Š .C2/n and for each w 2W,
the subposet consisting of all special cosets contained in wWJ is order-isomorphic to
the poset of faces of an n–cube. Furthermore this isomorphism is equivariant for the
stabilizer subgroup wWJw�1 Š .C2/n , acting on the n–cube as the group generated
by reflections in its coordinate planes. The realizations of these subposets are the cubes
that make up the cubical structure on †. For more details concerning the cubical
structure on † see [5, Sections 1.1–1.2 or Chapter 7].) Since the stabilizer of a cube of
strictly positive dimension acts nontrivially on the cube, this cubical structure is not a
W–CW structure on †. However, its barycentric subdivision is a simplicial complex
naturally isomorphic to the realization of the poset WS as described in the introduction
to this section.

Let †n denote the n–skeleton of † with the cubical structure. Firstly, †0 consists
of a single free W–orbit of vertices, so H�W .†

0IR.�// is isomorphic to the ordinary
cohomology of a point; since W acts freely, the calculation reduces to an equivariant
cohomology calculation for the trivial group action.

Let I D Œ�1; 1� be an interval, with C2 acting by x 7! �x (ie swapping the ends of
the interval). Note that I is equivariantly isomorphic to the Davis complex for the
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Coxeter group C2 . Let @I denote the two end points f�1; 1g. Make I into a C2–CW
complex, for example by taking three 0–cells in two orbits at the points �1, 0 and 1,
and one free orbit of 1–cells consisting of the two intervals Œ�1; 0� and Œ0; 1�. The
cellular C2–Bredon cochain complex for the pair .I; @I / with coefficients in R.�/ is
a cochain complex of free abelian groups in which the degree zero term has rank two,
the degree one term has rank one, and all other terms are trivial. A direct computation
with this cochain complex shows that HmC2

.I; @I IR.�// is isomorphic to Z for mD 0
and is zero for m> 0.

Next consider In with C n2 acting as the direct product of n copies of the above
action of C2 on I. This is the Davis complex for the Coxeter group C n2 . Since the
representation ring of a direct product of finite groups is naturally identified with the
tensor product of the representation rings [19, Section 3.2], the C n2 –Bredon cochain
complex for the pair .In; @In/ with coefficients in R.�/ is naturally isomorphic to
the tensor product of n copies of the C2–Bredon cochain complex for .I; @I / with
coefficients in R.�/. (If one wants to think about this cochain complex geometrically, it
arises from the .C2/n–CW structure on In in which the cells are the direct products of
the cells arising in the C2–CW structure on I.) Since these cochain complexes consist
of finitely generated free abelian groups, there is a Künneth formula as described in,
for example, [16, Theorem 60.3]. Since H�C2

.I; @I IR.�// is free abelian the Künneth
formula implies that

H�Cn
2
.In; @In; R.�//Š

nO
iD1

H�C2
.I; @I IR.�//:

It follows that, for each n, Hm
Cn

2

.In; @InIR.�// is isomorphic to Z for mD 0 and is
zero for m> 0.

From these computations, it follows easily that HmW .†
n; †n�1IR.�// is zero for

m> 0 and is isomorphic to a direct sum of copies of Z indexed by the W–orbits of
n–cubes in †. By induction on n one sees that HmW .†

nIR.�// is zero for m > 0

and isomorphic to a direct sum of copies of Z indexed by the W–orbits of cubes of
dimension at most n for m D 0. The claimed result follows, since the W–orbits of
cubes in † are in bijective correspondence with the spherical subgroups of W.

Before stating our theorem concerning K�W .EW /, we make some remarks concerning
the representation ring of a direct sum of copies of the cyclic group C2 , indexed
by a (finite) set S . For any finite group G, the collection of all isomorphism types
of 1–dimensional complex representations of G is an abelian group, with product
given by taking the tensor product of representations. Furthermore, this group is
naturally isomorphic to the group Hom.G;U.1//. In the case when G is abelian, every
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irreducible representation of G is 1–dimensional, and so Hom.G;U.1// forms a basis
for the additive group of the representation ring. In this way the representation ring
R.G/ is naturally isomorphic to the integral group algebra of the group Hom.G;U.1//.
In the case when GD

L
s2S C2 is a direct sum of copies of C2 indexed by S , we may

view G as a vector space over the field of two elements, in which case Hom.G;U.1//
may be identified with the dual space. For s 2 S , let s� denote the 1–dimensional
representation of G with the properties that s�.s/D�1 and s�.t/D 1 for t 2 S �fsg.
Let S� denote the set of these representations, S� WD fs� j s 2 Sg. In terms of vector
spaces over the field of two elements, S� � Hom.G;U.1// is the dual basis to the set
S �G. The set S� generates the representation ring of G, giving rise to the presentation

R.G/D ZŒS��=.s�2� 1 j s 2 S/;

in which the monomials s�1 s
�
2 � � � s

�
k

for all subsets fs1; : : : ; skg � S correspond to the
irreducible representations.

Suppose now that J is a subset of S . The inclusion J � S identifies H D
L
s2J C2

with a subgroup of GD
L
s2J C2 . The induced map R.G/!R.H/ of representation

rings is described easily in terms of the above ring presentation: for s 2 J, s� 2R.G/
restricts to s� 2R.H/, while for s … J, s� 2R.G/ restricts to 1 2R.H/.

Now suppose that � is a graph with vertex set V.�/DS , and let W be the right-angled
Coxeter group associated to � . The abelianization of W is naturally identified with
G D

L
s2S C2 . There is a unique equivariant map ˛W EW !�, from the W–space

EW to a point �, viewed as a G–space with trivial action. If J is a spherical subset
of S then WJ D

L
s2J C2 maps isomorphically to the corresponding subgroup of

G D
L
s2S C2 . If x 2 EW is a 0–cell fixed by WJ D

L
s2J C2 , then ˛.x/ D �,

and this map is WJ –equivariant. The induced map ˛�W K�G.�/! K�W .EW /, and
the composite map K�G.�/! K�WJ

.fxg/ will be used in the statement and proof of
our theorem. If we identify R.G/ with K0G.�/ and R.WJ / with K0WJ

.fxg/, then the
composite is identified with the restriction map.

Theorem 5.5 Let W be the right-angled Coxeter group determined by a finite graph � ,
with vertex set S , and let G D

L
s2S be the abelianization of W. The map

˛�W K�G.�/! K�W .EW /

is surjective in each degree. In particular, K1W .EW /D0 and there is a ring isomorphism

K0W .EW /Š ZŒS��=.s�2� 1; s�t�� s�� t�C 1 j s 2 S D V.�/; .s; t/ …E.�//:

It follows that K0W .EW /ŠZd as an abelian group, where d is the number of spherical
subgroups of W.
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Proof Consider the Atiyah–Hirzebruch spectral sequence (1)

E
p;q
2 D HpW .EW;K

q
W .W=�//) KpCqW .EW /;

where KqW .W=�/ D R.�/ if q is even and KqW .W=�/ D 0 if q is odd (see [14,
Theorem 3.2]). In the lemma above, we proved that HkW .†;R.�//D 0 for k > 0. It
therefore follows that

KnW .EW /D
�

H0W .EW;R.�//D limW=H2OFW
R.H/ if nD 0;

0 if nD 1.

Let I be the ideal

.s�
2
� 1; s�t�� s�� t�C 1 j s 2 S; .s; t/ …E.�//

in the polynomial ring ZŒS��. Note that as an abelian group ZŒS��=I is free, with
basis elements the commuting products s�1 � � � s

�
k

, for all J D fs1; : : : ; skg 2 S (The
case J D∅ corresponds to the unit of ZŒV .�/�=I ). This shows that

ZŒS��=I Š Zd

as an abelian group, where d is the number of spherical subgroups of W.

We claim there is an isomorphism of rings

lim
W=H2OFW

R.H/Š ZŒS��=I:

Since every finite subgroup of W is subconjugate to a spherical subgroup of W, it
follows that

lim
W=H2OFW

R.H/Š lim
J2S

R.WJ /

as rings. By the remarks in the paragraph preceding the statement of the theorem, there
are ring isomorphisms

R.WJ /D ZŒJ ��=.s�2� 1 j s 2 J /; R.G/D ZŒS��=.s�2� 1 j s 2 S/;

which are natural for inclusions J � J 0 � S . From this it follows that the natural ring
homomorphism

�W R.G/! lim
W=H2OFW

R.H/

is surjective, and that limW=H2OFW
R.H/ is isomorphic to the ring described in the

statement; in particular its additive group is free abelian of the same rank as K0W .EW /.
Since � factors through K0W .EW /, the claimed isomorphism follows.
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Before stating our corollary concerning K�.BW /, we recall some facts from [1]
concerning K�.BG/, where as above G D

L
s2S C2 . For any finite group H, Atiyah

showed that Ki .BH/D 0 for i odd, and that K2i .BH/ is naturally isomorphic to the
completion of the representation ring R.H/ at its augmentation ideal. To discuss the
case of G, it is convenient to take new generators for R.G/: replace the irreducible
representation s� by the degree zero virtual representation Ns D s�� 1. With respect to
these generators one obtains the presentation

R.G/D ZŒS�=.Ns.NsC 2/ j s 2 S/;

where S D fNs j s 2 Sg. If H D
L
s2J C2 , then of course there is a similar description

of R.H/, which is natural for the inclusion J � S . Note that if s … J, then the image
of Ns under the restriction map R.G/!R.H/ is zero.

Completing R.G/, as described above, with respect to its augmentation ideal gives
rise to the presentation for the ring K0.BG/

K0.BG/D ZŒŒS��=.Ns.NsC 2/ j s 2 S/;

which is natural for the inclusion J � S , and so also describes the induced map
K0.BG/! K0.BH/. The additive group of this ring is the direct sum of one copy
of Z, generated by 1, and for each nonempty subset J � S , one copy of the 2–adic
integers, Z2 , consisting of the set of power series in the element

Q
s2J Ns with zero

constant term.

Corollary 5.6 Let W be the right-angled Coxeter group determined by a finite graph
� with vertex set S D V.�/, and let G D

L
s2S C2 be the abelianization of W.

The induced map K�.BG/ ! K�.BW / is surjective in each degree. In particular
K1.BW /D 0 and there is a ring isomorphism

K0.BW /Š ZŒŒS��=.Ns.NsC 2/; Ns Nt j s 2 S; .s; t/ …E.�//:

(Here, ZŒŒS�� is the formal power series ring with Z coefficients in the variables
S D fNs j s 2 Sg.)

Proof The version of the Atiyah–Segal completion theorem that is proven for infinite
discrete groups admitting a cocompact model for the classifying space for proper
actions in [14, Theorem 4.4(b)] implies that

Kn.BW /D KnW .EW / yJ ;

where the ideal J is the kernel of the augmentation map KnW .EW /! Z that maps
vector bundles to their dimension. Changing variables in the above theorem to NsD s��1,
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we see that Ki .BW /D 0 for i odd and that K0.BW / is the completion of the ring

ZŒS�=.Ns.NsC 2/; Ns Nt j s 2 S; .s; t/ …E.�//

with respect to the ideal generated by the set S D fNs j s 2 Sg. This completion is the
ring described in the statement.

There is an alternative proof of Corollary 5.6 that does not use Theorem 5.5 or results
from [14]. Instead one uses a description of W as a free product with amalgamation.
If the graph � is not a complete graph, then there is an expression � D �1 [ �2 ,
�3D �1\�2 , in which each �i is a full subgraph of � and has fewer vertices than � .
This gives an expression for W as a free product with amalgamation W DW1�W3

W2 .
From this one obtains a Mayer–Vietoris sequence that can be used to compute K�.BW /.
To establish Corollary 5.6, one shows by induction on jS j that K�.BW / is as described
and that for each J � S , the map K�.BW /! K�.BWJ / is a split surjection.
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