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Double L–groups and doubly slice knots

PATRICK ORSON

We develop a theory of chain complex double cobordism for chain complexes
equipped with Poincaré duality. The resulting double cobordism groups are a
refinement of the classical torsion algebraic L–groups for localisations of a ring
with involution. The refinement is analogous to the difference between metabolic and
hyperbolic linking forms.

We apply the double L–groups in high-dimensional knot theory to define an invariant
for doubly slice n–knots. We prove that the “stably doubly slice implies doubly
slice” property holds (algebraically) for Blanchfield forms, Seifert forms and for the
Blanchfield complexes of n–knots for n� 1 .

57Q45; 57R67, 57Q60, 57R65

1 Introduction

In this paper we develop new algebraic methods in the study of linking forms and in
the algebraic cobordism theory of chain complexes equipped with Poincaré duality.
Taking A to be a ring with involution and S a multiplicative subset, we will use our new
methods to refine Ranicki’s torsion algebraic L–groups Ln.A; S/. Our refinements are
called the double L–groups DLn.A; S/. Algebraically, our new methods are motivated
by Levine’s work [13] on the difference between metabolic and hyperbolic linking
forms. Our main innovation is a generalisation of this algebraic distinction to the setting
of chain complexes with Poincaré duality by means of a notion of algebraic double
cobordism.

Our topological motivation, just as Levine’s, comes from high-dimensional knot theory.
Fox [4, page 138] posed the question of which knots KW Sn ,!SnC2 are the intersection
of an .nC1/–unknot and the equator SnC2 � SnC3 . Such knots are called doubly
slice. In the case nD 1, this question has enjoyed a recent revival of interest in the
work of Kim [8], Meier [15] and Livingston and Meier [14]. The n–dimensional
double knot-cobordism group DCn is the quotient of the monoid of n–knots by the
submonoid of doubly slice knots. Using a chain complex knot invariant, we will define
a homomorphism from DCn to a certain double L–group:

(1) �DLW DCn!DLnC1.ƒ; P /;
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where ƒ D ZŒz; z�1; .1 � z/�1� and P is the set of Alexander polynomials. In
particular, our homomorphism uses the entire chain complex of the knot exterior to
obstruct the property of being doubly slice.

1.1 The slice and doubly slice problems

Detecting doubly slice knots is intimately related to detecting slice knots, as follows.
Working in the topologically locally flat category, an (oriented) n–knot KW Sn ,!SnC2

is called slice if it admits a slice disc, that is, an oriented embedding of pairs

.D;K/W .DnC1; Sn/ ,! .DnC3; SnC2/:

The monoid Knotsn , of n–knots under connected sum, modulo the submonoid of slice
n–knots is the n–dimensional knot-cobordism group Cn . So a doubly slice knot is
exactly a knot K which admits two complementary slice discs .D˙; K/, that is, discs
that glue together along K to form the .nC1/–unknot.

Most questions that can be asked about slice knots can be asked about doubly slice
knots as well, although the answer in the doubly slice case will almost always be
more difficult to come by. When nD 1, there is a still a great deal left to understand
about slice knots and the knot-cobordism group (in both the smooth and topological
categories). So new results for doubly slice knots here can only go so far without new
slice results. In contrast, for n>1, Kervaire [7] and Levine [10] have completely solved
the (singly) slice problem in both the smooth and topological categories. They showed
that all even-dimensional knots are slice and, using algebraic results of Stoltzfus [26],
we now know that when k > 0 we have

(2) C2kC1 Š
M
1

Z˚
M
1

.Z=2Z/˚
M
1

.Z=4Z/:

So perhaps there is hope that we can obtain a substantial classification result for high-
dimensional doubly slice knots. How far does the high-dimensional (singly) slice
solution transfer over to the doubly slice question? Certainly not completely. The first
stage of the Kervaire–Levine proof requires one to do surgery on a closed knot exterior
XK D cl.SnC2 nK �D2/ to reduce it to a simple knot, that is, a knot K 0 �K 2 Cn ,
n > 2, such that �r.XK0/ D �r.S1/ for 2r < nC 2. Such knots are then entirely
classified in Cn by the Witt class of the Blanchfield form (see Section 3 for definitions),
whence Equation (2). But this is where the doubly slice case differs, as one consequence
of high-dimensional Casson–Gordon invariants defined by Ruberman [24; 25] is that
this surgery process to obtain a simple knot is generally obstructed within DCn . There
is no “double surgery below the middle dimension” and so now Blanchfield forms are
certainly insufficient.
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This suggests the approach we have taken in this paper: we work with a different
knot invariant called the Blanchfield complex (see Section 4.2), which encompasses
the entire chain complex of the knot exterior and from which the Blanchfield form
can be derived. The Blanchfield complex is a symmetric chain complex over ZŒZ�,
whose chain homotopy type is a knot invariant and whose class in the codomain of
Equation (1) defines the homomorphism �DL . We develop an algebraic framework
for the study of doubly slice knots via the Blanchfield complex, which encompasses
previous systems based on Witt groups. As well as being interesting in their own right,
inroads into this high-dimensional doubly slice problem may shed light on the nature
of the low-dimensional problem, revealing which features are typical to both and which
may be unique to low dimensions.

1.2 Chain complex double cobordism and double L–groups

The new algebra we develop in Section 2 to analyse the full chain complex of the exterior
of a doubly slice knot is based on Ranicki’s algebraic theory of surgery [19; 20]. This the-
ory is an algebraic analogue to the cobordism of closed, oriented topological manifolds.
The objects .C; �/ of the theory are chain complexes C equipped with some additional
structure � , capturing algebraic symmetries, such as Poincaré duality. These objects are
then considered under a notion of algebraic cobordism (see Section 2.2 for definitions).

In Section 2.3 we define the concept of an algebraic double nullcobordism. An algebraic
double nullcobordism consists of two algebraic nullcobordisms which glue together in a
complementary way, analogous to complementary slice discs for a doubly slice knot (see
Definition 2.12 for the precise definition). Double cobordism groups are then the set of
all .C; �/ modulo the double nullcobordant .C; �/. For a ring with involution A and
a localisation of this ring A ,! S�1A, we make precise the situations where algebraic
double cobordism groups of various types — which we call the symmetric double L–
groups DLn.A/, torsion symmetric double L–groups DLn.A; S/, and ultraquadratic
double L–groups �DLn.A/ — will be well-defined.

Of course, once you have defined a new group of algebraic invariants, it is important
to be able to work with it and to make calculations. In this direction we introduce a
new technique called algebraic surgery above and below the middle dimension (see
Section 2.4), to prove the following skew 2–fold periodicity result in some double
L–groups:

Theorem (2.21 and 2.22) For any ring with involution A having homological dimen-
sion 0, and for n� 0, there are isomorphisms

xS W DLn.A; "/ Š�!DLnC2.A;�"/;

xS W �DLn.A; "/ Š�! �DLnC2.A;�"/;
Algebraic & Geometric Topology, Volume 17 (2017)
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so that for k � 0 we have

DL2kC1.A; "/D 0; DL2k.A; "/ŠDL0.A; .�1/k"/;�DL2kC1.R; "/D 0; �DL2k.R; "/Š �DL0.R; .�1/k"/:
The question of calculating double L–groups under these hypotheses is thus reduced
to the problem of calculating the groups in dimension 0, to which we turn in Section 3.

In Section 3 we work with the classical tools of linking forms and Seifert forms. As
mentioned, we are able to use these tools to make calculations of double L–groups in
terms of what we called in a previous paper double Witt groups [17]. If a form (or a
linking form or Seifert form) admits a maximally self-annihilating submodule then it is
called metabolic. If it admits two such submodules that are moreover complementary, it
is called hyperbolic. Witt groups are defined by taking forms modulo stably metabolic
forms and double Witt groups are defined by taking forms modulo stably hyperbolic
forms. We prove the following:

Proposition (3.12 and 3.18) For any ring with involution A, the 0–dimensional
ultraquadratic double L–group is isomorphic to the double Witt group of Seifert forms:�DL0.A; "/Š �DW".A/:

If there exists a central s 2 A such that sCxs D 1, the 0–dimensional torsion double
L–group is isomorphic to the double Witt group of linking forms:

DL0.A; S; "/ŠDW ".A; S/:

From this, we are able to compute many double L–groups in terms of signature
invariants of Seifert forms and of linking forms (see Example 3.13), using our results
in [17]. In particular, when A is a Dedekind domain, one may apply [17, Theorem 3.26]
to see that the forgetful functor from the ultraquadratic double L–groups of A to the
ultraquadratic single L–groups of A has (countably) infinitely generated kernel. This
gives a first idea of just how big the double L–groups are.

The stably doubly slice question

In our knot-theoretical application of double L–theory, as well as describing a new
algebraic framework for working with doubly slice knots, we prove some new algebraic
results related to the stably vs unstably doubly slice question.

By definition, two knots K;K 0 are equivalent in DCn whenever there exist doubly
slice knots J; J 0 such that K #J 'K 0 #J 0 . In particular, K vanishes in DCn if and
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only if K #J is doubly slice for some doubly slice J (we say K is stably doubly slice).
Arguably the most important question for doubly slice knots is:

Question 1.1 If an n–knot K is stably doubly slice, is it necessarily doubly slice?

An answer to this question would determine whether the double knot-cobordism classes
not only obstruct but moreover characterise doubly slice knots. The algebraic versions
of this question are thus interesting for any group-valued doubly slice invariant, such
as our �DL .

In this spirit we will prove the following set of results. Recall ƒDZŒz; z�1; .1�z/�1�
and P is the set of Alexander polynomials.

Theorem 4.15 Suppose for n� 1 that an n–knot K is stably doubly slice. Then the
double L–class �DL.K/ 2 DLnC1.ƒ; P / of the Blanchfield complex vanishes. If
nD 2kC 1 then the Witt classes �DW .K/ 2DW .�1/k .ƒ; P / of the Blanchfield form
and the Witt class � �DW .K/ 2 �DW .�1/kC1.Z/ of any choice of Seifert form all vanish.

As a consequence, if there were a stably doubly slice n–knot which is not doubly slice,
then this would be undetectable by any of the invariants �DL.K/, �DW .K/, � �DW .K/.
In this paper we work with coefficients ZŒZ�, so we note that Theorem 4.15 does not
cover, for example, the twisted Blanchfield forms of Cochran, Orr and Teichner [2]. The
possibility of using different fundamental groups is discussed in the closing remarks of
the paper.

The result in the case of the Blanchfield form over ZŒZ� is not new, but is a reproof
of a theorem of Bayer-Flückiger and Stoltzfus [1]. We include it because our proof is
an application of the techniques of double L–theory and as such uses very different
methods. Indeed, the “stably hyperbolic implies hyperbolic” results (Corollaries 3.14
and 3.20) which led to Theorem 4.15 were a surprising by-product of the development
of the double L–groups and the low-dimensional double Witt group isomorphisms
(Propositions 3.12 and 3.18) we obtained.

Organisation In Section 2.1 we lay out the algebraic conventions we are using. In
Section 2.2 we recall some elements of Ranicki’s algebraic theory of surgery which we
require later, and as this is not a common tool, we have tried to give the reader a useful
introduction with many references. We give particular emphasis to the "–ultraquadratic
version of the L–theory machinery as there is very little in the literature about this.

In Section 2.3 we define the ultraquadratic double L–groups over a ring with involu-
tion R , and both the projective and torsion symmetric double L–groups over a ring
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with involution A admitting a central element s such that sCxsD 1. In Section 2.4 we
investigate structure and periodicity results in double L–theory via the skew-suspension
map. We introduce our technique of algebraic surgery above and below the middle
dimension in order to prove periodicity in certain double L–groups.

In Section 3 we relate the double L–groups to the double Witt groups we introduced
in [17]. Firstly, we show how to interpret the 0–dimensional double L–groups as
double Witt groups. This allows calculation of double L–groups for some rings and
also establishes “stably hyperbolic implies hyperbolic” results for Seifert forms and
linking forms. Secondly, we show (for certain rings) how to directly extract double
Witt invariants from a class in an odd-dimensional double L–group, which makes the
connection between the Blanchfield complex and Blanchfield form later.

In Section 4 we relate double L–theory to the original topological motivation: the doubly
slice problem. We recall and elaborate on the construction of Ranicki’s Blanchfield
complex knot invariant. We then prove the claimed doubly slice obstruction of (1) and
lay out the consequences of combining this with the algebraic results of Sections 2
and 3.

Acknowledgements This work follows from the author’s Ph D thesis at the University
of Edinburgh and was supported by the EPSRC. The author would like to thank his
advisor Andrew Ranicki for his patient advice and guidance in the preparation of this
work. The author would also like to thank the anonymous referee, whose detailed
reading and many excellent suggestions have improved this article greatly.

2 Double L–theory

2.1 Algebraic conventions and localisation

In the following, A (or sometimes R) will be a ring with unit and involution. The
involution is denoted

W A! A; a 7! xa:

Using the involution we define a way of switching between left and right modules,
which will permit an efficient way of describing sesquilinear pairings between left
A–modules later. A left A–module P may be regarded as a right A–module P t by
the action

P t �A! P t ; .x; a/ 7! xax:

Similarly, a right A–module P may be regarded as a left A–module P t . Unless
otherwise specified, the term “A–module” will refer to a left A–module. Given two
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A–modules P;Q , the tensor product is an abelian group denoted P t ˝AQ . We will
sometimes write simply P ˝Q to ease notation, but the right A–module structure P t

is implicit, so that for example x˝ ay D xax˝y .

In the following, S � A will always be a multiplicative subset, that is, a set with the
following properties:

(i) st 2 S for all s; t 2 S ,

(ii) saD 0 2 A for some s 2 S and a 2 A only if aD 0 2 A,

(iii) xs 2 S for all s 2 S ,

(iv) 1 2 S , and

(v) for a 2A, s 2 S there exist b; b0 2A, t; t 0 2 S such that at D sb and t 0aD b0s .

The localisation of A away from S is S�1A, the ring with involution formed of
equivalence classes of pairs .a; s/ 2A�S under the relation .a; s/� .b; t/ if and only
if there exist c; d 2A such that caDdb and csDdt . We say the pair .A; S/ defines a
localisation and denote the equivalence class of .a; s/ by a=s 2 S�1A. (The use of (v)
above, the “two-sided Ore condition”, ensures an isomorphism between the left and right
localisations S�1A and AS�1 .) If P is an A–module, define S�1P WD S�1A˝A P
and write the equivalence class of .a=s/ ˝ x as ax=s . Similarly, if f W P ! Q

is a morphism of A–modules then there is induced a morphism of S�1A–modules
S�1f D 1˝ f W S�1P ! S�1Q . Generally i W P ! S�1P is injective if and only
if TorA1 .S

�1A=A;P / vanishes. This happens, for instance, when P is a projective
module. If S�1P D 0 then the A–module P is called S–torsion, and more generally
define the S–torsion of P to be TP WD ker.P ! S�1P /.

Torsion modules and duality

Define a category

A.A/D ffinitely generated projective A–modulesg;

with A–module morphisms. An A–module Q has homological dimension m if it
admits a resolution of length m by finitely generated projective A–modules, that is,
there is an exact sequence

0! Pm! Pm�1! � � � ! P0!Q! 0;

with Pi in A.A/. If this condition is satisfied by all A–modules Q we say that A is
of homological dimension m. If .A; S/ defines a localisation, define a category

H.A; S/D ffinitely generated S–torsion A–modules of homological dimension 1g
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with A–module morphisms. A.A/ has a good notion of duality, coming from the Hom
functor, and H.A; S/ has a corresponding good notion of “torsion duality” as we now
explain.

Given A–modules P , Q , we denote the additive abelian group of A–module ho-
momorphisms f W P ! Q by HomA.P;Q/. The dual of an A–module P is the
A–module

P � WD HomA.P;A/;

where the action of A is .a; f / 7! .x 7! f .x/xa/. If P is in A.A/, then there is a
natural isomorphism

n�W P t ˝Q Š
�!HomA.P �;Q/; x˝y 7! .f 7! f .x/y/:

In particular, using the natural A–module isomorphism P Š P t ˝A, there is a natural
isomorphism

P Š
�!P ��; x 7! .f 7! f .x//:

Using this, for any A–module Q in A.A/ and f 2 HomA.Q;P �/ there is a dual
morphism

f �W P !Q�; x 7! .y 7! f .y/.x//:

To proceed similarly in the category H.A; S/, recall the following well-known results
in homological algebra:

Lemma 2.1 Suppose T is a finitely generated A–module.

(i) If T has homological dimension 1 and T � D 0 then there is a natural isomor-
phism of A–modules T Š Ext1A.Ext1A.T; A/; A/.

(ii) If .A; S/ defines a localisation and T is S–torsion, then T � D 0 and there is a
natural isomorphism

Ext1A.T; A/Š HomA.T; S�1A=A/:

Lemma 2.1 justifies the following definitions. The torsion dual of a module T in
H.A; S/ is the module

T ^ WD HomA.T; S�1A=A/

in H.A; S/ with the action of A given by .a; f / 7! .x 7! f .x/xa/. There is a natural
isomorphism

T Š
�!T ^^; x 7! .f 7! f .x//;

and for R; T in H.A; S/ and f 2 HomA.R; T ^/ there is a torsion dual morphism

f ^W T !R^; x 7! .y 7! f .y/.x//:
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Chain complex conventions

We use the following conventions and notation:

� Given chain complexes .C; dC /; .D; dD/ of A–modules, a chain map of de-
gree n is a collection of morphisms fr W Cr!DrCn with dDfrD .�1/nfr�1dC .

� The category of chain complexes of A–modules with morphisms degree-0 chain
maps is denoted Ch.A/.

� A chain complex C in Ch.A/ is finite if it is concentrated in finitely many
dimensions, and positive if Hr.C / D 0 for r < 0. The category of finite,
positive chain complexes of objects of A.A/ is denoted BC.A/.

� If C is in Ch.A/, let C t denote the chain complex of finitely generated projective,
right A–modules .C t /r WD .Cr/t .

� The dual chain complex of C in Ch.A/ is C�� in Ch.A/ with modules
.C��/r WD .C�r/

� DW C�r and differential .�1/rd�C W C
�r ! C�rC1 .

� The suspension of C in Ch.A/ is the chain complex †C in Ch.A/ with modules
.†C/r D Cr�1 and differential d†C D dC .

� The desuspension †�1C is defined by †.†�1C/D C .

� Morphisms f; f 0W C ! D are chain homotopy equivalent if there exists a
collection of A–module morphisms h D fhr W Cr ! DrC1 j r 2 Zg so that
f � f 0 D dDhC hdC , in which case the collection is called a chain homotopy
and we write hW f ' f 0 .

� A morphism f W C ! D is a chain homotopy equivalence if there exists a
morphism gW D! C such that fg ' 1D and gf ' 1C .

� The homotopy category of BC.A/ is denoted hBC.A/.

For C;D in Ch.A/, there are chain complexes of Z–modules

.C t ˝AD/r WD
M

pCqDr

C tp˝ADq; d.x˝y/D x˝ dD.y/C .�1/
qdC .x/˝y;

.HomA.C;D//r WD
Y

q�pDr

HomA.Cp;Dq/; d.f /D dD.f /� .�1/
rfdC ;

and the slant map is defined as

n�W C t ˝AD! HomA.C��;D/; x˝y 7! .f 7! f .x/y/:

In the sequel we will often write C ˝D in place of C t˝AD in order to ease notation.
If C;D are (chain homotopy equivalent to) objects of BC.A/ then the slant map is a
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chain (homotopy) equivalence. When C;D are chain homotopy equivalent to objects
of BC.A/, there is an isomorphism of groups

fn–cycles in HomA.C;D/g Š fchain maps of degree n from C to Dg:

Combining the above, when C;D are chain homotopy equivalent to objects of BC.A/
and  2 .C ˝D/n , we will write the associated morphisms

 0W C
n�r
!Dr ; r 2 Z:

When  is moreover a cycle,  0 is a chain map.

A morphism f W C !D in Ch.A/ is a cofibration if it is degreewise split injective
and a fibration if it degreewise split surjective. A sequence of morphisms in Ch.A/ is a
(co)fibration sequence if each morphism in the sequence is a (co)fibration. The algebraic
mapping cone of f is the chain complex C.f / in Ch.A/ with C.f /r DDr ˚Cr�1
and

dC.f / D

�
dD .�1/r�1f

0 dC

�
W Dr ˚Cr�1!Dr�1˚Cr�2:

There is an obvious inclusion morphism eW D! C.f / and the composite ef W C !
C.f / is easily seen to be nullhomotopic (see [3, Section 11] for more details of mapping
cones). A homotopy cofibration sequence is a sequence of morphisms in Ch.A/ such
that any two successive morphisms

C
f
�!D

g
�!E

have nullhomotopic composition and such that any choice of nullhomotopy j W gf ' 0
induces a chain equivalence ĵ W C.f / ' E . A sequence of morphisms in Ch.A/
is a homotopy fibration sequence if the dual sequence of morphisms is a homotopy
cofibration sequence. Using the obvious projection morphisms projW C.f /! †C ,
every morphism f W C !D in Ch.A/ has an associated Puppe sequence

� � � !†�1D!†�1C.f /
†�1proj
�����! C

f
�!D

e
�! C.f /

proj
��!†C

†f
��!†D! � � �

which is both a homotopy fibration sequence and a homotopy cofibration sequence.
In particular, this shows that in Ch.A/, homotopy fibration sequences agree with
homotopy cofibration sequences. Given diagrams

D
f
 �C

f 0
�!D0 and D

g
 �E

g 0
�!D0;
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the homotopy pushout and homotopy pullback are given respectively by

D[C D
0
WD C

��
�f

f 0

�
W C !D˚D0

�
;

D �E D
0
WD†�1C..g �g0/W D˚D0!E/:

A homotopy commuting square � in Ch.A/ is a diagram

C
h

  

f 0
//

f

��

D0

g 0

��

D
g
// E

consisting of a square of morphisms f; f 0; g; g0 in Ch.A/ together with a homotopy
hW g0f 0 ' gf . A homotopy commuting square induces the obvious maps of cones

C.g0; f /W C.f 0/! C.g/; C.g; f 0/W C.f /! C.g0/:

Taking cones again, there is not just homotopy equivalence, but an actual equality
C.C.g0; f // D C.C.g; f 0//. We define the iterated cone on � to be that chain
complex:

C.�/D C.C.g0; f //D C.C.g; f 0//:

Strictly speaking, the morphisms C.g0; f / and C.g; f 0/ in Ch.A/, and hence the
complex C.�/, depend on the choice of h, but this is suppressed from the notation. A
homotopy pushout square is a homotopy commuting square � such that the induced
map ˆhW D[C D0!E is a homotopy equivalence. A homotopy pullback square is
defined analogously using the homotopy pullback.

2.2 Structured chain complexes and algebraic cobordism

In this section we will recall for the reader’s convenience some algebraic definitions
and constructions from Ranicki’s algebraic theory of surgery [19; 20; 21], a theory
whose development was originally motivated by the challenge to provide a “chain
complex cobordism” reformulation for the quadratic surgery obstruction groups of Wall
[29]. This is very far from a complete account and the reader will sometimes be given
(detailed) references to the literature for the basics of the theory. We will be primarily
working with a version of the algebraic machinery called symmetric L–theory and
there is enough in the literature about this for us to rely on references fairly frequently.

In order to prove results about Seifert forms later, we will also need to work with a
version called ultraquadratic L–theory (originally defined in Ranicki [21, page 814]).
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There is very little written about this type of L–theory so we will give more careful
proofs and constructions here. Ultraquadratic L–theory is algebraically simpler than
the general symmetric L–theory, but is less robust as an algebraic tool. Notably, in
Proposition 2.20, we will prove the existence of obstructions to algebraic surgery in
this setting (where in the symmetric case algebraic surgery is always unobstructed).
In the ultraquadratic theory the objects are pairs .C;  /, given by a chain complex C
in hBC.A/ equipped with an n–cycle  2 .C ˝C/n , or equivalently a chain map
 0W C

n�� ! C� . The objects .C;  / of ultraquadratic L–theory arise from the
geometric situation of a degree-1 map of closed oriented topological manifolds

f W M !X �S1

that is covered by a stable map of topological normal bundles and such that f is
a ZŒ�1.X/�–homology equivalence (see Ranicki [21, page 818] for precise details
on the construction of .C;  / from this geometric setup). In particular, when X is
a disc DnC1 , the exterior M nC2 of an n–knot Sn ,! SnC2 possesses such a map
(rel boundary), as we explain in Section 4.

Definition 2.2 A half-unit s 2 A is a central element such that sCxs D 1 2 A.

When A contains a half-unit (for instance, when 2 is invertible in A), the structured
chain complexes of general symmetric L–theory always simplify to those of ultra-
quadratic L–theory. This appears to be well-known to experts but not written down,
so we will make the proof of this clear. However, it is not the case that the resultant
L–theories are the same as a symmetric algebraic cobordism does not necessarily
improve to an ultraquadratic one.

Chain complexes with symmetric structure

From now on, take " 2 A to be a central unit such that "x" D 1 (" D ˙1 will be a
common choice). The cyclic group of order 2 is denoted Z=2ZD f1; T g. Let C be in
Ch.A/ and define the standard "–involution

T D T"W C
t
p˝A Cq! C tq ˝A Cp; x˝y 7! ".�1/pqy˝ x;

so that C t ˝AC in Ch.Z/ may be regarded as a chain complex of ZŒZ=2Z� modules.
The standard free ZŒZ=2Z�–module resolution W of Z is the following chain complex,
with Wi D ZŒZ=2Z�, i � 0:

W W � � � !W3
1�T
���!W2

1CT
���!W1

1�T
���!W0! 0:
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The “homotopy fixed points” of the involution T" on C t ˝A C are in the form of the
complex of Z–modules

W %C DW %
" C WD HomZŒZ=2Z�.W;C

t
˝A C/:

Given a morphism f W C !D , the W % construction induces a morphism of abelian
groups

f %
W W %C !W %D

so that W % is a functor Ch.A/! Ch.Z/. It is possible to show (see Ranicki [19,
page 101]) that, given a homotopy hW f1 ' f2W C !D , there exists a (noncanonical)
choice of homotopy h%W f %

0 ' f
%
1 W W

%C !W %D . Unless clarification is needed,
we suppress the “"” from the notation of T and W % .

Definition 2.3 For n� 0, an n–dimensional "–symmetric structure on C in hBC.A/
is an n–dimensional cycle � 2W %Cn . The pair .C; �/ is called an n–dimensional "–
symmetric complex. See [22, Section 20.4] for definitions of morphisms and homotopy
equivalences of symmetric complexes.

For n� 0, an .nC1/–dimensional "–symmetric structure on a morphism f W C!D in
hBC.A/ is an .nC1/–dimensional cycle .ı�; �/ 2C.f %/nC1ŠW

%DnC1˚W
%Cn

(this notation indicates � is a cycle and ı� is a nullhomotopy of f %.�/). The pair
.f W C !D; .ı�; �// is called an .nC1/–dimensional "–symmetric pair.

Remark We have chosen to describe symmetric chain complexes in terms of cycles
as in [22], rather than homology classes and Q–groups as in [19] or [21]. For more
detailed information on the perspective we are using, see [22, Section 20].

In order to define algebraic cobordism groups we will require an algebraic analogue
of the glueing of manifolds along a common boundary component. Given .nC1/–
dimensional "–symmetric pairs

x WD
�
.f f 0/W C ˚C 0!D; .ı�; �˚�0/

�
;

x0 WD
�
. zf 0 f 00/W C 0˚C 00!D0; .ı0�; �0˚�00/

�
;

there is an .nC1/–dimensional "–symmetric pair

x[ x0 WD
�
.g g00/W C ˚C 00!D[C 0 D

0; .ı� [�0 ı
0�; �˚�00/

�
called the algebraic union of x and x0 along .C 0; �0/. We refer the reader to Ranicki
[21, Section 1.7] or Crowley, Lück and Macko [3, Section 11.4.2] for details of algebraic
glueing.
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In order to work relative to the boundary of a knot exterior in Section 4 we will need a
notion of cobordism of pairs in the algebraic setting, which is given by triads:

Definition 2.4 For n� 0, an .nC2/–dimensional "–symmetric structure on a homo-
topy commuting square �

C
h

  

f 0
//

f

��

D0

g 0

��

D
g
// E

in hBC.A/ is a quadruple .ˆ; ı�; ı0�; �/ such that there are .nC1/–dimensional
"–symmetric pairs

.f W C !D; .ı�; �//; .f 0W C !D0; .ı0�; �//

and an .nC2/–dimensional "–symmetric pair

.g00W D[C D
0
!E; .ˆ; ı� [� ı

0�//;

where g00 is the map induced by universality of the pushout D [C D0 . The pair
.�; .ˆ; ı�; ı0�; �// is called a .nC2/–dimensional "–symmetric triad.

The reader is referred to Ranicki [21, Sections 1.3 and 2.1] for a more complete
discussion of the algebraic theory of triads.

Chain complexes with ultraquadratic structure

In order to study the chain complex version of Seifert forms for a knot we will need
to look at the version of the L–theory machinery called ultraquadratic L–theory. To
build this version, just replace W with the truncated complex 0! W0 ! 0 in the
construction of W % . This results similarly in a homotopy functor Ch.R/! Ch.Z/,
now simply sending C to C ˝C and

.f W C !D/ to .f ˝f W C ˝C !D˝D/:

Recall that for C in hBC.R/, the slant map is a chain homotopy equivalence C˝C '
HomR.C��; C / and sends a cycle  2 .C ˝C/n to a chain map  0W C n��!C , so
in this “truncated” version all structure is governed by this single chain map.

Definition 2.5 For n � 0, an n–dimensional "–ultraquadratic structure on C in
hBC.R/ is an n–dimensional cycle  2 .C ˝ C/n . The pair .C;  / is called an
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n–dimensional "–ultraquadratic complex. Two n–dimensional "–ultraquadratic com-
plexes .C;  /, .C 0;  0/ are homotopy equivalent if there exists a chain homotopy
equivalence hW C �!' C 0 such that .h˝ h/. /� 0 is a boundary in C 0˝C 0 .

The definitions of "–ultraquadratic pairs and "–ultraquadratic triads are made analo-
gously to the symmetric case. (In order to define triads, we note that Ranicki’s definition
of algebraic glueing is still valid in the ultraquadratic setting.)

Here is how to pass from an ultraquadratic structure to a symmetric structure:

Definition 2.6 The symmetrisation is a map of ZŒZ=2Z�–module chain complexes

1CT"W C ˝C ! C ˝C;  7! .1CT"/ D  CT" DW �:

The symmetrisation of an n–dimensional "–ultraquadratic complex .C;  / is the n–
dimensional "–symmetric complex .C; �/ (where we have used the inclusion W0 ,!W

to identify � as a symmetric structure). We may similarly symmetrise pairs and triads.

What about the passage from a symmetric structure to an ultraquadratic structure?

Proposition 2.7 When A contains a half-unit s , the sets of homotopy equivalence
classes of the following objects are in natural one-to-one correspondence with one
another:

(i) n–dimensional "–symmetric complexes .C; � 2 .W %C/n/ over hBC.A/;

(ii) pairs .C; �0W C n�� ! C/, where �0 is a chain map in hBC.A/ such that
�0� .T"�/0 2 HomA.C��; C / is a boundary;

(iii) n–dimensional "–ultraquadratic complexes .C;  2 .C ˝C/n/.

Proposition 2.7 seems to be well-known to experts, but there does not appear to be a
proof in the literature.

Proof When there is a half-unit, the symmetrisation map in quadratic L–theory
(defined in Ranicki [19])

1CT"W W%C !W %C

is a chain homotopy equivalence by the proof of [19, Proposition 3.3]. Moreover, if an
element � 2 .W %C/n is in the image of the symmetrisation then (by definition) it is
entirely described by an element � 2 .C ˝C/n . But this element is also in the image
of the natural projection W %C ! C ˝ C . So the projection is a chain homotopy
equivalence and the equivalence of (i) and (ii) is proved.
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Now, given a pair .C; �0/ as in (ii), there is a corresponding pair .C; � 2 .C ˝C/n/
and we may define an n–dimensional "–ultraquadratic complex .C; s�/, which has
symmetrisation .C; �/. Given n–dimensional "–ultraquadratic structures  ; 0 2
.C ˝C/n with .1C T"/. � 0/ ' 0, the following commuting square shows that
moreover  '  0 :

W%C
1CT"

'
// W %C

' project
��

C ˝C

inclusion

OO

1CT"
// C ˝C

Remark Proposition 2.7 does not hold analogously for pairs or triads. As an example
of this, and using the language of Section 3, note that "–symmetric Seifert forms
determine 0–dimensional "–ultraquadratic complexes and "–symmetric forms equipped
with a lagrangian determine 1–dimensional "–symmetric pairs (compare the proof
of Proposition 3.10, below). But consider that, for example, the symmetrisation of
a rational Seifert form for any knot S1 ,! S3 is the standard hyperbolic matrix, but
not every Seifert form for such a knot admits a metaboliser (there are knots which
are not “algebraically slice”). So we see the corresponding symmetric pair has no
corresponding ultraquadratic pair.

Algebraic Thom construction

We now briefly describe Ranicki’s algebraic Thom construction [21, page 46], which
will be required in Section 4 to change perspective between complexes/pairs and
pairs/triads.

Given an .nC1/–dimensional "–symmetric pair .f W C !D; .ı�; �//, recall that a
choice of nullhomotopy

C

j W ef'0

55

f
// D

e
// C.f /

induces a morphism ĵ% W C.f %/!W %C.f /. Define the .nC1/–dimensional cycle

ı�=� WD ĵ%.ı�; �/ 2W %C.f /nC1:

The algebraic Thom construction for .f W C !D; .ı�; �// is the .nC1/–dimensional
"–symmetric complex .C.f /; ı�=�/.

Given an .nC1/–dimensional "–ultraquadratic pair .f W C !D; .ı ; //, there is a
choice of morphism ĵ W C.f ˝f /!C.f /˝C.f /. Define the .nC1/–dimensional
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cycle
ı = WD ĵ .ı ; / 2 C.f /˝C.f /:

The algebraic Thom construction for .f W C !D; .ı ; // is the .nC1/–dimensional
"–ultraquadratic complex .C.f /; ı = /.

There is a relative version of the algebraic Thom complex. Given an .nC2/–dimensional
"–symmetric triad .�; .ˆ; ı�; ı0�; �//, consider the induced maps of cones

� D C.g; f 0/W C.f /! C.g0/;

�0 D C.g0; f /W C.f 0/! C.g/:

By the universal property of the algebraic mapping cone, we obtain morphisms

C.�%/ C.C.g%; .f 0/%//' C.C..g0/%; f %//! C..�0/%/:

Using the two images of the .nC2/–cycle .ˆ; ı�; ı0�; �/ under these respective mor-
phisms, a triad defines two .nC2/–dimensional "–symmetric pairs

x D
�
�W C.f /! C.g0/; .ˆ=ı�; ı�0=�/

�
;

x0 D
�
�0W C.f 0/! C.g/; .ˆ=ı�; ı�0=�/

�
:

The relative algebraic Thom construction for .�; .ˆ; ı0�; ı�; �// is defined to be the
set fx; x0g.

Poincaré complexes and L–groups

There are chain complex analogues of Poincaré duality and Poincaré–Lefschetz duality
for "–symmetric and "–ultraquadratic structures. We now recall these and Ranicki’s
definition of algebraic cobordism and the algebraic L–groups.

The inclusion of chain complexes W0 ,!W induces a natural transformation of functors
between HomZŒZ=2Z�.W;�/ and HomZŒZ=2Z�.W0;�/. For a given complex C in
Ch.R/ this induces evaluation morphisms

evW W %C ! C ˝C; � 7! ev.�/;

and we write the image of the evaluation ev.�/ 2 .C ˝C/n under the slant map

n�W C ˝C ! HomA.C��; C /; �0 WD n.ev.�//W C n��! C:

If f W C !D is a morphism in Ch.A/ then there is a relative evaluation morphism

evW C.f %/' HomZŒZ=2Z�.W;C.f ˝f //! C.f ˝f /; .ı�; �/ 7! ev.ı�; �/;
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and the image of the evaluation ev.ı�; �/2C.f ˝f /nC1D .D˝D/nC1˚.C˝C/n
under the slant map is written�

ı�0 0

0 �0

�
WD n.ev.ı�; �//; ı�0W D

nC1��
!D; �0W C

n��
! C:

From this we derive the maps that will play the part of Poincaré–Lefschetz duality on
the chain level:

.ı�0 f �0/WC.f /
nC1��

!D;�
ı�0
�0f

�

�
WDnC1��! C.f /:

We refer to Crowley, Lück and Macko [3, Section 11.4.1] for the full derivation of this.

Definition 2.8 An n–dimensional "–symmetric complex .C; �/ is Poincaré if

�0W C
n��
�!
' C

is a chain homotopy equivalence. An .nC1/–dimensional "–symmetric pair .f WC!D;

.ı�; �// is Poincaré if

.ı�0 f �0/W C.f /
nC1�r

�!
' Dr ; r 2 Z

is a chain homotopy equivalence. Equivalently, the pair is Poincaré if there is a chain
homotopy equivalence�

ı�0
.�1/nC1�r�0f

�

�
W DnC1�r �!' C.f /r ; r 2 Z:

An .nC2/–dimensional "–symmetric triad .�; .ˆ; ı�; ı0�; �// is Poincaré if each of
the associated pairs

.f W C!D; .ı�; �//; .f 0W C!D0; .ı0�; �//; .g00WD[CD
0
!E; .ˆ; ı�[� ı

0�//

is Poincaré. An "–ultraquadratic complex/pair/triad is Poincaré if the symmetrisation
(Definition 2.6) is a Poincaré "–symmetric complex/pair/triad.

Definition 2.9 Two n–dimensional "–symmetric complexes .C; �/ and .C 0; �0/ are
cobordant if there exists an .nC1/–dimensional "–symmetric Poincaré pair

.f W C ˚C 0!D; .ı�; �˚��0//:

Cobordism is an equivalence relation on the set of "–symmetric Poincaré complexes
such that homotopy equivalent complexes are cobordant (Lemma 2.13). Moreover, the

Algebraic & Geometric Topology, Volume 17 (2017)



Double L–groups and doubly slice knots 291

resultant set of cobordism classes forms a group called the n–dimensional "–symmetric
L–group of A (see Ranicki [19, Section 3.2] for the checks that this is a group):

Ln.A; "/ WD

�
cobordism classes of n–dimensional
"–symmetric Poincaré complexes

�
;

with addition and inverses given by

.C; �/C .C 0; �0/D .C ˚C 0; �˚�0/; �.C; �/D .C;��/ 2 Ln.A; "/:

After replacing the word “‘symmetric” with the word “ultraquadratic”, the previous
definition transfers verbatim to give:

Definition 2.10 The n–dimensional "–ultraquadratic L–group of A is

yLn.A; "/ WD

�
cobordism classes of n–dimensional
"–ultraquadratic Poincaré complexes

�
:

For the knot theory in Section 4, we will be interested in the L–theory and double L–
theory in the category H.A; S/ of finitely generated S–torsion A–modules admitting a
projective resolution of length 1. For this reason we introduce the category CC.A; S/�
BC.A/ of chain complexes C that are S–acyclic. In other words, S�1Hr.C /D 0 for
all r 2 Z.

Working now with the subcategory hCC.A; S/� hBC.A/, we obtain the following
restricted notion of algebraic cobordism in the symmetric setting.

Definition 2.11 Two n–dimensional S–acyclic "–symmetric complexes .C; �/ and
.C 0; �0/ are .A; S/–cobordant if there exists an .nC1/–dimensional "–symmetric
Poincaré pair

.f W C ˚C 0!D; .ı�; �˚��0//

such that f is a morphism in hCC.A; S/.

The set of .A; S/–cobordism classes in hCC.A; S/ forms a group, called the n–
dimensional "–symmetric L–group of .A; S/:

Ln.A; S; "/ WD

�
.A; S/–cobordism classes of .nC1/–dimensional
S–acyclic .�"/–symmetric Poincaré complexes

�
:

Remark The choice of the convention “nC1” and “�"” in the definition ofLn.A;S;"/
follows Ranicki [21, Section 3.2.2], where this unusual-looking choice is explained.
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2.3 Chain complex double cobordism and DL–groups

In this subsection, we develop our theory of chain complex double cobordism, which
results in a refinement of the classical torsion L–groups and ultraquadratic L–groups
described in the previous subsection. We will define three types of double L–group
which refine the respective types described in Section 2.2. First, we will define the
"–ultraquadratic double L–group of R

�DLn.R; "/;
which is well-defined for any coefficient ring with involution.

Notation For the rest of the paper, A will be a ring with involution containing a
half-unit s 2 A.

Working over A, we will define the projective and torsion "–symmetric double L–
groups,

DLn.A; "/ and DLn.A; S; "/;

which are only well-defined when there is a half-unit in the coefficient ring.

Ultraquadratic DL–groups

For the ultraquadratic case we work with the coefficients R .

Definition 2.12 For n� 0, two cobordisms between n–dimensional "–ultraquadratic
Poincaré complexes .C;  / and .C 0;  0/

x˙ WD
�
f˙W C ˚C

0
!D˙; .ı˙ ; ˚� 

0/ 2 C.f˙˝f˙/nC1
�

(labelled by C and �) are complementary if the chain map�
fC
f�

�
W C ˚C 0!DC˚D�

is a homotopy equivalence, in which case we say .C;  / and .C 0;  0/ are double-
cobordant and that the set fxC; x�g is a double cobordism between them.

Lemma 2.13 For n� 0, if .C;  /, .C 0;  0/ are homotopy equivalent n–dimensional,
"–ultraquadratic Poincaré complexes over R , then they are double-cobordant.
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Proof Let hW .C;  /! .C 0;  0/ be a given homotopy equivalence with homotopy
inverse g . Write the chain map � D  C T" , with choice of chain homotopy
inverse ��1 . Define a chain map e D  ��1 , so that e� ' ��1T" . Consider the
chain map

.h.1� e/ � heg/W C ˚C 0! C 0

and calculate

h.1� e/ .1� e/�h�� .heg/ 0.heg/� ' h. � .e C e�//h�

' h. � .e C eT" //h
�

' 0:

Writing ı for this nullhomotopy, we thus have well-defined cobordisms�
.h 1/W C ˚C 0! C 0; .0;  ˚� 0/

�
;�

.h.1� e/ � heg/W C ˚C 0! C 0; .ı ; ˚� 0/
�
;

and they are complementary as there exist the following left and right chain homotopy
inverses:�

eg g

h.1� e/g �1

��
h 1

h.1� e/ �heg

�
'

�
1 0

0 1

�
W C ˚C 0! C ˚C 0;�

h 1

h.1� e/ �heg

��
eg g

h.1� e/g �1

�
'

�
1 0

0 1

�
W C 0˚C 0! C 0˚C 0:

Proposition 2.14 For n� 0, double cobordism is an equivalence relation on the set of
homotopy equivalence classes of n–dimensional, "–ultraquadratic, Poincaré complexes
over R . The equivalence classes form a group �DLn.R; "/, the n–dimensional, "–
ultraquadratic double L–group of R , with addition and inverses given by

.C;  /C .C 0;  0/D .C ˚C 0;  ˚ 0/; �.C;  /D .C;� / 2 �DLn.R; "/:
Proof Lemma 2.13 shows in particular that double cobordism is well-defined and
reflexive. It is clearly symmetric. To show transitivity, consider two double cobordisms

c˙ D
�
.f˙ f

0
˙/W C ˚C

0
!D˙; .ı˙ ; ˚� 

0/
�
;

c0˙ D
�
. zf 0˙ f

00
˙/W C

0
˚C 00!D˙; .ı˙ 

0;  0˚� 00/
�
:

We intend to reglue the four cobordisms according to the schematic in Figure 1.

As cC and c0
C

share a boundary component (likewise for c� and c0� ), we form the
two algebraic unions

c˙[ c
0
˙ D

�
C ˚C 00!D00˙; .ı˙ 

00;  ˚� 00/
�
;
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C

DC

C 0

D�

C 0

D0C

C 00

D0�

C

DC

C 0

D0C

C 00

D0�

C 0

D�

Figure 1: Combining the double nullcobordisms to show transitivity

where D00
˙
DD˙[C 0 D

0
˙

is the mapping cone

C

  
f 0
˙

zf 0
˙

!
W C 0!D˙˚D

0
˙

!
:

To see that these two new cobordisms are complementary, first note that as our initial
two double cobordisms were complementary we have 
fC f 0

C

f� f 0�

!
˚

 
zf 0
C
f 00
C

zf 0� f 00�

!
W .C ˚C 0/˚ .C 0˚C 00/ �!' .DC˚D�/˚ .D

0
C˚D

0
�/:

But as C˚C 00 is homotopy equivalent to the cone on the obvious inclusion i W C 0˚C 0!
C ˚C 0˚C 0˚C 00 , there is a homotopy commutative diagram with the map g defined
to make the left-hand square in the diagram

C 0˚C 0
i
//

D

��

C ˚C 0˚C 0˚C 00

'

��

// C.i/' C ˚C 00

��

C 0˚C 0
g
// DC˚D�˚D

0
C
˚D0�

// C.g/DD00
C
˚D00�

homotopy commute, and hence the induced vertical map on the cones is a homotopy
equivalence.
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Symmetric DL–groups

For the symmetric case we work with the coefficients A, with .A; S/ defining a
localisation.

Definition 2.15 For n � 0, two cobordisms between n–dimensional "–symmetric
Poincaré complexes .C; �/ and .C 0; �0/

x˙ WD
�
f˙W C ˚C

0
!D˙; .ı˙�; �˚��

0/ 2 C.f %/nC1
�

are complementary if the chain map�
fC
f�

�
W C ˚C 0!DC˚D�

is a homotopy equivalence, in which case we say that .C; �/ and .C 0; �0/ are double-
cobordant and that the set fxC; x�g is a double cobordism between them.

The S–acyclic versions of these definitions are made in exactly the same way but by
restricting to the category hCC.A; S/ and using .A; S/–cobordisms.

Lemma 2.16 For n� 0, if .C; �/, .C 0; �0/ are homotopy equivalent n–dimensional,
"–symmetric Poincaré complexes over A, then they are double-cobordant. If they are
S–acyclic they are .A; S/–double-cobordant.

Proof We work similarly to the proof of Lemma 2.13. Let hW .C; �/! .C 0; �0/ be a
given homotopy equivalence. Recall our half-unit s is assumed to be a central unit, so
that in particular its action by multiplication on A–module chain complexes commutes
with any chain map. The dual chain map to multiplication by s is multiplication by the
central unit xs . Calculate

hxs�.hxs/�� s�0s� ' 0:

Writing ı� for this nullhomotopy, we thus have well-defined cobordisms�
.h 1/WC ˚C 0! C 0; .0; �˚��0/

�
;�

.hxs � s/WC ˚C 0! C 0; .ı�; �˚��0/
�
:

These cobordisms are easily calculated to be complementary as in Lemma 2.13.

Proposition 2.17 For n� 0, double cobordism is an equivalence relation on the set
of homotopy equivalence classes of n–dimensional, "–symmetric, Poincaré complexes
over A. With addition and inverses as in Proposition 2.14, there is a well-defined group

DLn.A; "/ WD

�
double cobordism classes of n–dimensional

"–symmetric Poincaré complexes

�
:

Algebraic & Geometric Topology, Volume 17 (2017)



296 Patrick Orson

Restricting to the category hCC.A; S/ and using .A; S/–cobordisms, there is similarly
a well-defined group

DLn.A; S; "/ WD

�
.A; S/–double cobordism classes of .nC1/–dimensional

S–acyclic .�"/–symmetric Poincaré complexes

�
:

Proof Exactly as in Proposition 2.14.

2.4 Surgery above and below the middle dimension

We now turn to the question of calculating double L–groups for various rings and
localisations. The only known programme for calculating chain complex bordism
groups begins by proving that the groups are periodic in the dimension. Such periodicity
is typically “skew 2–fold”, and hence induces 4–fold periodicity — for instance when
n� 0, Ranicki [21] shows that the following are isomorphic:

yLn.R; "/Š yLnC2.R;�"/;

Ln.A; "/Š LnC2.A;�"/;

Ln.A; S; "/Š LnC2.A; S;�"/;

and hence each exhibits 4–fold periodicity. Skew-periodicity reduces the problem of
calculation to the low-dimensional groups (those in dimension 0, 1). These groups can
often be calculated in terms of more familiar tools such as Witt groups of forms or
“formations” on finitely generated projective or torsion modules (see [21]).

We will now investigate the extent to which this programme can be carried out for the
DL–groups. We will prove periodicity in some restricted cases by a new technique
called surgery above and below the middle dimension, and in these cases reduce high-
dimensional double L–theory to the low-dimensional case. In Section 3 we will relate
the 0–dimensional double L–groups to what we called in [17] the double Witt groups
and hence use the results of [17] to calculate them for certain rings and localisations.

To begin the investigation, we will need another piece of technology from the literature,
defined by Ranicki [19]. The skew-suspension will allow comparison of structured
chain complexes in different dimensions. Given a chain complex C in hBC.A/, there
is a homotopy equivalence defined by

xS W †2.C t ˝A C/ �!
' .†C/t ˝A .†C/; x˝y 7! .�1/jxjx˝y

in Ch.ZŒZ=2Z�/, where it is understood that the involution on C t ˝A C uses T" and
the involution on .†C/t ˝A .†C/ uses T�" . Applying the W % functor to this chain
equivalence we obtain the homotopy equivalence

xS W †2W %
" C �!

' W %
�"†C
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in Ch.Z/. There is also a relative version: given a morphism f W C !D in BC.A/
there is a homotopy equivalence in Ch.Z/

xS W †2C.f %
W W %

" C !W %
" D/ �!

' C
�
.†f /%W W %

�".†C/!W %
�".†D/

�
:

Definition 2.18 For n � 0, the skew-suspension of an n–dimensional "–symmetric
(Poincaré) complex .C; �/ is the .nC2/–dimensional, .�"/–symmetric (Poincaré)
complex

xS.C; �/D .†C; xS�/:

The skew-suspension of an .nC1/–dimensional "–symmetric .f W C !D; .ı�; �// is
the .nC3/–dimensional, .�"/–symmetric (Poincaré) pair

xS.f W C !D; .ı�; �// WD .†f W †C !†D; xS.ı�; �//:

The skew-suspension of pairs and complexes in the "-ultraquadratic setting is defined
similarly.

Proposition 2.19 For n� 0, the skew-suspension gives well-defined injective homo-
morphisms

xS W �DLn.R; "/ ,! �DLnC2.R;�"/; Œ.C;  /� 7! Œ xS.C; /�;

xS W DLn.A; "/ ,!DLnC2.A;�"/; Œ.C; �/� 7! Œ xS.C; �/�;

xS W DLn.A; S; "/ ,!DLnC2.A; S;�"/; Œ.C; �/� 7! Œ xS.C; �/�:

Proof We consider only the statement for the groups DLn.A; "/, the S–acyclic
statement and the ultraquadratic statement being entirely similar.

If .C; �/2DLn.A; "/ admits complementary nullcobordisms .f˙W C!D˙; .ı˙�; �//

then the skew-suspensions

xS.f˙W C !D˙; .ı˙�; �// WD .†f˙W †C !†D; xS.ı�; �//

are complementary nullcobordisms for xS.C; �/ 2 DLnC2.A;�"/. Therefore the
homomorphism is well defined.

To show injectivity, consider the general situation of a pair x given by formal skew-
desuspension an .nC3/–dimensional .�"/–symmetric pair

x WD
�
†�1f W †�1C !†�1D; . xS/�1.ı�; �/

�
;

where . xS/�1 is a choice of homotopy inverse for xS . Such a formal skew-desuspension
is an .nC1/–dimensional "–symmetric pair if and only if the morphism †�1f is in
hBC.A/.
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Now, more specifically, suppose that .C; �/ is an n–dimensional "–symmetric complex
and that there are complementary nullcobordisms .f˙W †C !D˙; .ˆ˙; xS�//. Then
the condition of being complementary gives Hr.†C/ŠHr.DC/˚Hr.D�/ so that
the desuspensions †�1D˙ are in hBC.A/ because Hr.†C/D 0 for r � 0. Hence
.†�1f˙W C ! †�1D˙; . xS/

�1.ˆ˙; xS�// are complementary nullcobordisms. The
skew-suspension morphism xS W †2W %

" C �!
' W %

�"†C is natural, and hence we also
have that

. xS/�1.ˆ˙; xS�/' .. xS/
�1ˆ˙; �/ 2 C..†

�1f /%/nC1:

Hence .C; �/� 0 2DLn.A; "/, as required.

We now move on to the cases in which we have been able to invert the skew-suspension
map in double L–theory using a new technique called surgery above and below the
middle dimension. Our technique relies on Ranicki’s concept of algebraic surgery [19,
Section 4]. This is the process, in the setting of chain complexes with structure, which
mimics geometric surgery on compact manifolds.

To describe algebraic surgery, begin with a possibly non-Poincaré .nC2/–dimensional
"–symmetric (resp. "–ultraquadratic) pair

x D .f W C !D; .ı�; �// .resp. x D .f W C !D; .ı ; ///

with homotopy cofibration sequence

C
f
�!D

e
�!C.f /:

Recall we have �
ı�0
˙�0f

�

�
W DnC2��! C.f /

(in the "–ultraquadratic case, we use the symmetrisation of Definition 2.6) and define

C 0 WD†�1C

��
ı�0
˙�0f

�

��
;

so that there is a homotopy cofibration sequence

� � � ! C 0
f 0

�!DnC2��

�
ı�0
˙�0f

�

�
�������! C.f /

e0

�!†C 0! � � �

with f 0 the projection and e0 the inclusion. In the symmetric case Ranicki [19,
Section 4] showed that there is always a naturally defined .nC2/–dimensional "–
symmetric pair

x0 D .f 0W C 0!DnC2��; .ı�0; �0//;

Algebraic & Geometric Topology, Volume 17 (2017)



Double L–groups and doubly slice knots 299

such that there is a homotopy equivalence of Thom constructions

.C.f /; .ı�=�//' .C.f 0/; .ı�0=�0//:

In the ultraquadratic case there are the following obstructions to building such a
complex.

Proposition 2.20 For an .nC2/–dimensional "–ultraquadratic pair x D .f W C !D,
.ı ; //, the morphism f 0W C 0!DnC2�� (defined above) forms part of an .nC2/–
dimensional "–ultraquadratic pair

x0 D .f 0W C 0!DnC2��; .ı 0;  0//

satisfying .C.f /; .ı = //' .C.f 0/; .ı 0= 0// if and only if the morphisms

e0 ı .ı = /0W C.f /
nC2��

! C.f /!†C 0;

e0 ıT".ı = /0W C.f /
nC2��

! C.f /!†C 0;

are nullhomotopic.

Proof First we make a general observation. Let gW E ! F be any chain map and
hW F ! C.g/ the corresponding map into the cone. Then as h ıg ' 0, we have

.h˝ h/ ı .g˝g/' 0W E˝E! C.g/˝C.g/;

.1˝ h/ ı .g˝g/' 0W E˝E! F ˝C.g/;

.h˝ 1/ ı .g˝g/' 0W E˝E! C.g/˝F;

and by the universal property of the mapping cone these nullhomotopies determine
chain maps from C.g˝g/ to C.g/˝C.g/, F ˝C.g/ and C.g/˝F , respectively.
Apply this observation to the map f 0 to obtain the three maps, which we call

� W C.f 0˝f 0/! C.f 0/˝C.f 0/;

evr W C.f 0˝f 0/!DnC2��˝C.f 0/;

evl W C.f
0
˝f 0/! C.f 0/˝DnC2��;

respectively (compare definitions in Crowley, Lück and Macko [3, page 341]). Now, by
definition of f 0 , we also have that C.f /' C.f 0/, and so the homotopy class of the
cycle ı = 2C.f /˝C.f / (which is determined by the algebraic Thom construction
on x ) moreover determines a homotopy class of cycles in C.f 0/˝C.f 0/. Our task
in this proof is to identify the obstruction to taking the homotopy class determined
by ı = in C.f 0/˝C.f 0/ and lifting it to C.f 0˝f 0/ along the map � . A choice
of cycle in the lifted homotopy class would determine the x0 in the statement of the
proposition.
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To analyse the obstruction, we claim there is a homotopy pullback square as follows:

C.f 0˝f 0/
.evr

evl
/
//

�
��

.DnC2��˝C.f 0//˚ .C.f 0/˝DnC2��/�
. ı�0
˙�0f

�/˝id
�
˚

�
id˝. ı�0

˙�0f
�/
�

��

C.f 0/˝C.f 0/
.1T/

// .C.f 0/˝C.f 0//˚ .C.f 0/˝C.f 0//

The derivation of this square, and proof that it is a homotopy pullback, can be found in
Crowley, Lück and Macko [3, Diagram (11.138) in the proof of Proposition 11.137],
where the existence of such a square is proved for a general chain map in hB.R/, which
we take to be f 0 (the reader is also referred to [3, Diagram (11.99)] and the subsequent
discussion, from which many of the details of that proof are drawn). The cofibre of � is
given up to homotopy equivalence by the cone of the right-hand column of the square,
which is homotopy equivalent to .†C 0˝C.f //˚ .C.f /˝†C 0/. Hence, following
ı = along the bottom row of the square, and into the cofibre of the right-hand column,
we obtain the obstructions described in the proposition.

Using Proposition 2.20 we have been able to invert the skew-suspension map on double
L–groups in the following algebraic setting.

Theorem 2.21 (surgery above and below the middle dimension) When R has homo-
logical dimension 0 and n� 0, the skew-suspension defines isomorphisms

xS W �DLn.R; "/ Š�! �DLnC2.R;�"/;
xS W DLn.A; "/ Š�!DLnC2.A;�"/:

Proof We will prove only the ultraquadratic case, as the proof for the symmetric case
is very similar but much simpler as there are no surgery obstructions there.

Because R has homological dimension 0, all finitely generated R–modules are objects
of the finitely generated projective R–module category A.R/. So for any morphism
f W P !Q in A.R/ there is a splitting P Š im.f /˚ker.f /. It follows that any chain
complex .C�; d / over A.R/ is split in the sense of Weibel [30, Section 1.4.1], and
hence there is a chain homotopy equivalence .C�; d /' .H�.C /; 0/. So without loss
of generality, we will assume an .nC2/–dimensional .�"/–ultraquadratic Poincaré
complex .C;  / over R is of the form

0! CnC2
0
�! CnC1

0
�! � � �

0
�! C1

0
�! C0! 0:

Note this means the cochain complex C n�� also has all differentials 0. Consequently,
the chain homotopy equivalence �0W C nC2�� �!

' C defines an isomorphism of
projective R–modules �0W C nC2�r

Š
�!Cr for each r .
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Define complexes D˙ and morphisms f˙W C !D˙ as follows:

D� 0 // 0 // 0 // � � � // 0 // C0 // 0

C

fC
��

f�

OO

0 // CnC2 //

1
��

0

OO

CnC1 //

0

OO

0
��

� � � // C1 ////

0

OO

0
��

C0 ////

1

OO

0
��

0

DC 0 // CnC2 // 0 // � � � // 0 // 0 // 0

The differential in C.f˙˝f˙/� is given by

d˙ D

�
dD˝D .�1/r�1.f˙˝f˙/

0 dC˝C

�
W .D˝D/r ˚ .C ˝C/r�1

! .D˝D/r�1˚ .C ˝C/r�2;

and hence the elements .0;  / 2 C.f˙˝f˙/nC3 are cycles, as

.d˙.0;  //0 D ..�1/
r�1f  0f

�/˚ .d 0/W D
nC2�r

˚C n�1�r !Dr ˚Cr ;

which vanishes for all r by inspection. So define two .nC3/–dimensional .�"/–
ultraquadratic pairs x˙ D .f˙W C !D˙; .0;  //. We must now check by hand that
the obstructions to ultraquadratic algebraic surgery obtained in Proposition 2.20 vanish
for surgery on .C;  / with data xC and x� , respectively. The two surgery obstructions
for xC are given by the chain homotopy class of the composition

C.fC/
nC3�� .ı = /0

������! C.fC/
incl.
��! C

��
ı�0
˙�0f

�
C

�
W DnC3��
C

! C.fC/

�
DW†C 0C;

and by its transposed version (see Proposition 2.20). It may be calculated, as in [21,
page 46], that

.ı = /0 D

�
ı 0 0

.�1/nC3�r 0f
�
C
0

�
W DnC3�r
C

˚C nC2�r ! .DC/r ˚Cr�1;

so in fact the only possible nonzero map occurs where r D 1. But †C 0 is given by the
length-.nC3/ complex

†C 0C D CnC2
.10/
// CnC2˚CnC1

0
// � � �

0
// C1˚C

nC2
. 0�0/

// C0
0
// 0

' 0
0
// CnC1

0
// � � �

0
// C1

0
// 0

0
// 0

(where the homotopy equivalence uses that �0 is an isomorphism). After this homotopy
equivalence, the r D 1 map has codomain 0 and hence the first surgery obstruction
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vanishes homotopically. For the second surgery obstruction, note that the matrix
for T .ı = /0 is given by transposing the matrix for .ı = /0 and applying the "–
involution T" to each entry. Hence the only possible nontrivial morphism occurs now
when r D nC2. But actually, inspection of the same chain homotopy representative of
†C 0
C

shows that this morphism also vanishes. Therefore there is no obstruction to the
xC surgery. A very similar argument shows that the x� surgery is also unobstructed
and we leave this check to the reader.

Both effects of surgery .C 0
˙
;  0
˙
/ are given, up to homotopy, by

.C 0˙/r D

�
Cr if 1� r � nC 1;
0 otherwise,

with all differentials equal to 0 and

. 0C/0 D . 
0
�/0 D

�
 0W C

nC2�r ! Cr if 1� r � nC 1;
0 otherwise.

Hence there exists a homotopy equivalence hW .C 0�;  
0
�/ �!
' .C 0

C
;  0
C
/. Now accord-

ing to Ranicki [19, Proposition 4.1(ii)] we may write cobordisms�
.g˙ g0˙/W C ˚C

0
˙!

zD˙; .0;  ˚� 
0
˙/
�

whose underlying morphisms are given on the level of homology by

.gC g0C/� D

8<:
.1 1/W Hr.C /˚Hr.C /!Hr.C / if 1� r � nC 1;
1W Hr.C /!Hr.C / if r D 0;
0 otherwise;

.g� g0�/� D

8<:
.1 1/W Hr.C /˚Hr.C /!Hr.C / if 1� r � nC 1;
1W Hr.C /!Hr.C / if r D nC 2;
0 otherwise:

We must modify these to be complementary cobordisms. As in the proof of Lemma 2.13,
and as shown below, we may modify one of the cobordisms using e WD  ��10 and
one using the homotopy h. Modifying the morphisms by e may result in the element
.0;  ;˚� 0�/ no longer being a cycle. But as in the proof of Lemma 2.13, the chain
map .1� e/g� g��.1� e/

�� eg0� 
0
�.g
0
�/
�e� is calculated to be nullhomotopic, and

we denote a choice of nullhomotopy by ‰ . Define�
.gC g0Ch/W C ˚C

0
�!

zDC; .0;  ˚� 
0
�/
�
;�

..1� e/g� � eg
0
�/W C ˚C

0
�!

zD�; .‰; ˚� 
0
�/
�
:
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Working exactly as in Lemma 2.13, the morphism�
gC g0

C
h

.1� e/g� �eg
0
�

�
W C ˚C 0�!

zDC˚ zD�

is seen to be an isomorphism on the level of homology, which is sufficient to show
chain equivalence as we are working with bounded complexes. Hence we have shown
that .C;  / is double-cobordant to the skew-suspension of the n–dimensional "–
ultraquadratic Poincaré complex given by .†�1C 0�;

xS�1 0�/. In other words, the
skew suspension map xS W �DLn.R; "/! �DLnC2.R;�"/ is surjective and therefore an
isomorphism, as was required to be shown.

Corollary 2.22 Under the hypotheses of Theorem 2.21 and for k � 0, we have�DL2kC1.R; "/D 0; �DL2k.R; "/Š �DL0.R; .�1/k"/;
DL2kC1.A; "/D 0; DL2k.A; "/ŠDL0.A; .�1/k"/:

Proof In each case, apply the isomorphism of Theorem 2.21 k times to obtain an
isomorphism to either a 1–dimensional or 0–dimensional double L–group. For the
even-dimensional case, we are now done.

For any 1–dimensional .�1/k"–ultraquadratic Poincaré complex .C;  /, the pairs
.f˙W C !D˙; .0;  // defined in the proof of Theorem 2.21 are complementary null-
cobordisms, proving that DL1.R; .�1/k"/D0. The 1–dimensional .�1/k"–symmetric
case is entirely similar.

3 Double Witt groups and double L–groups

In this section we use hyperbolic versions of the classical torsion Witt groups of
algebraic number theory to cast the low-dimensional double L–groups in a form more
amenable to calculation. Based on our results in [17] and our surgery results of Section 2
we are able to completely calculate the double L–groups �DLn.R; "/ for n� 0 when R
has homological dimension 0. Furthermore, we will derive some new algebraic results
relating to Seifert forms and for linking forms using the techniques of double L–theory.
These will be applied in Section 4 to high-dimensional knot theory, in particular to
give algebraic answers to Question 1.1.

3.1 Forms and linking forms

The language we use for forms and linking forms is based on that found in Ranicki
[21, Sections 1.6 and 3.4] although we caution that our terminology, particularly later
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on regarding lagrangian submodules, differs slightly. Also, our use of the word “split”
in reference to forms and linking forms is entirely different to Ranicki’s use.

Definition 3.1 An "–symmetric form over A is a pair .P; �/ consisting of a finitely
generated projective A–module P and an injective A–module morphism � W P ,! P �

such that �.x/.y/D "�.y/.x/ for all x; y 2P (equivalently � D "�� ). A form .P; �/

is nonsingular if � is an isomorphism. A form induces a sesquilinear pairing, also
called � :

� W P �P ! A; .x; y/ 7! �.x; y/ WD �.x/.y/:

A morphism of "–symmetric forms .P; �/ ! .P 0; � 0/ is an A–module morphism
f W P ! P 0 such that �.x/.y/ D � 0.f .x//.f .y// (equivalently � D f �� 0f ); it is
an isomorphism when f is an A–module isomorphism. The set of isomorphism
classes of "–symmetric forms over A, equipped with the addition .P; �/C .P 0; � 0/D
.P ˚P 0; � ˚ � 0/, forms a commutative monoid

N".A/D f"–symmetric forms over Ag:

Definition 3.2 Suppose .A; S/ defines a localisation. An "–symmetric linking form
over .A; S/ is a pair .T; �/ consisting of an object T of H.A; S/ and an injective
A–module morphism �W T ,! T ^ such that �.x/.y/ D "�.y/.x/ for all x; y 2 T
(equivalently �D "�^ ). A linking form .T; �/ is nonsingular if � is an isomorphism.
A linking form induces a sesquilinear pairing, also called �:

�W T �T ! S�1A=A; .x; y/ 7! �.x; y/ WD �.x/.y/:

A morphism of "–symmetric linking forms .T; �/! .T 0; �0/ is an A–module mor-
phism f W T ! T 0 such that �.x/.y/D �0.f .x//.f .y// (equivalently �D f ^�0f );
it is an isomorphism of forms when f is an A–module isomorphism. The set of
isomorphism classes of "–symmetric linking forms over A, equipped with the addition
.T; �/C .T 0; �0/D .T ˚T 0; �˚�0/ forms a commutative monoid

N".A; S/D f"–symmetric linking forms over .A; S/g:

3.2 Double Witt groups

We will now define several ways in which an "–symmetric form or linking form can
be considered trivial, that all involve the idea of a lagrangian submodule.

Definition 3.3 A lagrangian for a nonsingular "–symmetric form .P; �/ over A is a
submodule j W L ,! P in A.A/ such that the sequence

0! L
j
�! P

j��
��! L�! 0
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is exact. As modules in the category A.A/ are projective, all surjective morphisms
split, and a lagrangian is always a direct summand. If .P; �/ admits a lagrangian it
is called metabolic. If .P; �/ admits two lagrangians j˙W L˙ ,! P (labelled by C
and �) that are complementary as submodules�

jC
j�

�
W LC˚L�

Š
�!P;

then the form is called hyperbolic.

If .A; S/ defines a localisation then the definitions of (split) lagrangian, (split) meta-
bolic and hyperbolic transfer immediately to the setting of nonsingular "-symmetric
linking forms, but now using the torsion dual �^ instead of the projective dual �� .

In general, not assuming the presence of a half-unit, for a symmetric linking form there
is a hierarchy

hyperbolic¨ split metabolic¨metabolic:

And for a form there is a hierarchy

hyperbolic¨ split metabolicDmetabolic:

It is a standard result that the presence of a half-unit destroys the distinction between
split metabolic and hyperbolic both for forms and for linking forms. More generally, if
the form or linking form admits a quadratic extension, this distinction is destroyed.

Definition 3.4 (monoid construction) Let .M;C/ be a commutative monoid and let
N be a submonoid of M . Consider the following equivalence relation: for m1; m22M ,
define m1 �m2 if there exist n1; n2 2N such that m1Cn1 Dm2Cn2 . Then the set
of equivalence classes M=� inherits a structure of abelian monoid via Œm�C Œm0� WD
ŒmCm0�. It is denoted by M=N . If for any element m 2 M there is an element
m0 2M such that mCm0 2N , then M=N is an abelian group with �Œm�D Œm0�.

When the monoid construction returns a group, it is in general the group of stable
isomorphism classes in M , where one is allowed to “stabilise an isomorphism”, on
either side, by elements of the submonoid.

Lemma 3.5 If .P; �/ is an "–symmetric form over A then the form .P ˚P; �˚��/

is split metabolic. If moreover there exists a half-unit s 2 A, then .P ˚P; � ˚��/ is
hyperbolic.
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Proof The diagonal
�
1
1

�
W P!P˚P is a lagrangian with splitting .1 0/W P˚P!P .

If s is a half-unit, then
�
xs
�s

�
W P ˚P is a lagrangian, and it is complementary to the

diagonal since �
s 1

xs �1

��
1 1

xs �s

�
D

�
1 1

xs �s

��
s 1

xs �1

�
D I:

The preceding lemma holds completely analogously for linking forms, justifying the
following definitions:

Definition 3.6 Suppose .A; S/ defines a localisation. The monoid constructions

W ".A/DN".A/=fmetabolic formsg;

W ".A; S/DN".A; S/=fmetabolic linking formsg

are abelian groups called the "–symmetric Witt group of A and of .A; S/, respectively.
The monoid construction

DW ".A; S/DN".A; S/=fhyperbolic linking formsg

is an abelian group called the "–symmetric double Witt group of .A; S/.

3.3 The 0–dimensional double L–groups as double Witt groups

A 0–dimensional "–symmetric (Poincaré) complex .C; �/ over A is the same thing as
a (nonsingular) "–symmetric pairing on H 0.C /. A 1–dimensional "–symmetric S–
acyclic (Poincaré) complex .C; �/ has an interpretation as a torsion pairing on H 1.C /.
Cobordant Poincaré complexes correspond to Witt-equivalent nonsingular forms and
linking forms, and the low-dimensional L–groups L0.A; "/ and L0.A; S; "/ are well-
known to be isomorphic to Witt groups of forms and of linking forms respectively (see
Ranicki [21]).

The double Witt groups are to the low-dimensional double L–groups as the Witt
groups are to the low-dimensional L–groups. In this subsection we will prove that the
double Witt groups are indeed isomorphic to the 0–dimensional double L–groups (see
Propositions 3.12 and 3.18). Unexpectedly, the proof of this is different to the proof of
the corresponding fact in classical L–theory.

Ultraquadratic double L–groups and Seifert forms

As discussed in Section 3.2, when there is a half-unit in the coefficient ring, there is
no difference between hyperbolic and metabolic forms on projective modules. How-
ever, without assuming that there is a half-unit, the 0–dimensional double L–groups�DL0.R; "/ have a good interpretation in terms of Seifert forms.
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Definition 3.7 An "–symmetric Seifert form .K; / over R is a finitely generated
projective R–module K and a morphism of R–modules  W K!K� such that  C" �

is an isomorphism (note that this makes .K; C " �/ a nonsingular "–symmetric
form). For a Seifert form .K; / we define an endomorphism e D . C " �/�1 

and we note that this gives 1� e D ". C " �/�1 � . A morphism of Seifert forms
gW .K; /! .K 0;  0/ is a morphism of R–modules gW K!K 0 such that g� 0gD ;
it is an isomorphism if g is an R–module isomorphism.

The following is then easily checked from the definitions:

Proposition 3.8 Sending .C;  / to .H 0.C /;  / defines a contravariant equivalence
of categories8<: 0–dimensional

"–ultraquadratic
Poincaré complexes over R

9=;.htpy  !
�

nonsingular "–symmetric
Seifert forms over R

�.
iso

that preserves the monoid structure.

The action of e on the underlying R–module K of a Seifert form .K; / makes K an
RŒs�–module, where s is a formal variable with action s.x/ WD e.x/ for x 2K . RŒs� is
a ring with involution where we extend the involution from R by xs D 1� s . When we
wish to remember the morphism by which s acts, we will write .K; e/. The Seifert dual
of an RŒs�–module .K; e/ is the RŒs�–module .K; e/�D .K�DHomR.K;R/; 1�e�/.
An RŒs�–submodule of K is an R–submodule j W L ,! K such that ej.L/ � j.L/.
Such an L inherits an RŒs�–module structure in the obvious way.

Definition 3.9 A (split) lagrangian for a "–symmetric Seifert form .K; / over R is
a RŒs�–submodule j W L ,!K such that the sequence in the category of RŒs�–modules
and Seifert duals

0! .L; e/
j
�! .K; e/

j�. C" �/
��������! .L; e/�! 0

is (split) exact, and j � j D 0. If .K; / admits a (split) lagrangian it is called (split)
metabolic. If .K; / admits two lagrangians j˙W L˙ ,!K that are complementary
as RŒs�–submodules �

jC
j�

�
W LC˚L�

Š
�!K;

then the Seifert form is called hyperbolic. We denote the corresponding "–symmetric
Witt and double Witt group of Seifert forms over R respectively bybW ".R/ and �DW".R/:
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Here is a precise characterisation of metabolic Seifert forms considered as chain
complexes.

Proposition 3.10 An "–symmetric Seifert form over R admits a lagrangian if and
only if the associated homotopy equivalence class of 0–dimensional "–ultraquadratic
Poincaré complexes over R contains an element .C;  / such that there is a null-
cobordism .f W C !D; .ı ; // with H 1.D/D 0.

Proof An "–symmetric Seifert form .K; / corresponds to the "–ultraquadratic chain
complex .C;  / where C is concentrated in degree 0 with C0 DK� .

A lagrangian j W L ,!K for .K; / defines a morphism of chain complexes concen-
trated in degree 0,

f D j �W C !D; D0 WD L
�:

The morphism  W K!K� determines a 0–cycle  0 2Hom.C��; C /0 ' .C ˝C/0 ,
which has .f ˝f /. /D 0 2 .D˝D/0 as j � j D 0. Hence, considering the Puppe
sequence of f ˝f , we may lift  to a 1–dimensional "–ultraquadratic structure .0;  /.
So there is a 1–dimensional "–ultraquadratic Poincaré pair .f W C !D; .0;  //, and
clearly H 1.D/D 0.

Conversely, suppose that there is a 1–dimensional "–ultraquadratic Poincaré pair
.f W C ! D; .ı ; // with 0 D H 1.D/ D H0.D;C /. Then there is a short exact
sequence

0!H 0.D/!D0!D1! 0;

and D0;D1 are projective so H 0.D/ is a finitely generated projective R–module
as well. Dualising the short exact sequence, we see that 0 D H1.D/ D H 0.D;C /

and H 0.D/� ŠH0.D/. It is now standard to check that we have a lagrangian of the
nonsingular "–symmetric form .H 0.C /;  C " �/ over R , given by

(3) 0! LDH 0.D/
f �

��!H 0.C /
f . C" �/
��������! L� ŠH0.D/! 0:

We wish to show this is moreover a lagrangian of the Seifert form .H 0.C /;  /. We
must first check that L is an RŒs�–submodule, or in other words that if x 2H 0.D/

then ef �.x/ 2 im.f �/. Using the Poincaré duality isomorphisms, this is equivalent to
checking that  f �.x/ 2 ker.f W H0.C /!H0.D//. But f  f � vanishes on H�.D/
as .f W C !D; .ı ; // is Poincaré. So e.L/�L and j W L ,!K is an RŒs�–module
morphism. Moreover, the reader may check that the action of s on the Seifert dual
of L commutes with the map f . C " �/W H 0.C /!H0.D/ of diagram (3), so that
this is a sequence of RŒs�–modules. We finally note that the kernels and images in the

Algebraic & Geometric Topology, Volume 17 (2017)



Double L–groups and doubly slice knots 309

sequence of R–modules are the same (setwise) when it is a sequence of RŒs�–modules,
so the sequence is still exact.

Hence a precise characterisation of hyperbolic Seifert forms considered as chain com-
plexes:

Proposition 3.11 An "–symmetric Seifert form over R is hyperbolic if and only if the
associated "–symmetric homotopy equivalence class of 0–dimensional "–ultraquadratic
Seifert complexes over R contains a complex .C;  / admitting two complementary
nullcobordisms .f˙W C !D˙; .ı ; // with H 1.D˙/D 0.

We now finally obtain an alternative characterisation of the 0–dimensional double
L–groups of ultraquadratic forms.

Proposition 3.12 There is an isomorphism of groups�DW".R/
Š
�! �DL0.R; "/:

Proof The morphism is defined in Proposition 3.8. It is well-defined and surjec-
tive by Propositions 3.8, 3.10 and 3.11. To show injectivity, suppose that .C;  / is
an "–ultraquadratic 0–dimensional Poincaré complex associated to the "–symmetric
Seifert form .K; /. If there exists a pair of complementary Seifert nullcobordisms
.f˙W C !D˙; .ı˙ ; // then in particular 0DH 1.C /DH 1.DC/˚H

1.D�/ so
that H 1.D˙/D 0. But then .K; / must be hyperbolic by Proposition 3.11.

We are now in a position to give some sample calculations of double L–groups.

Example 3.13 We may apply Corollary 2.22 and the calculations in the author’s paper
[17, Example 4.9] to obtain calculations of the double L–groups when R is a field of
characteristic not 2. These calculations are made in terms of involution-invariant prime
ideals p of the Laurent polynomial ring RŒz; z�1� which do not augment to 0 under
z 7! 1. For example, when RDC , such p are generated by polynomials z� a where
a 2 S1 n f1g �C , and in [17] we calculated

�DLn.C; "/Š �La2S1nf1g

L1
lD1Z for n even,

0 for n odd.

When RDR, such p are generated by polynomials z2� 2 cos � C 1 with 0 < � < � .
We calculated

�DLn.R; "/Š
8̂<̂
:
L
0<�<�

L1
lD1Z for nD 2k and .�1/k"D 1,�L1

lD1Z
�
˚
�L

0<�<�

L1
lD1Z

�
for nD 2k and .�1/k"D�1,

0 for n odd.
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A nonsingular "–symmetric Seifert form .K; / over R is called stably hyperbolic if
there exist hyperbolic "–symmetric Seifert forms H;H 0 such that .K; /˚H ŠH 0 .
Note that a priori the stably hyperbolic Seifert forms are precisely the representatives of
the 0 class in the double Witt group of Seifert forms. However, we obtain the following
(new) characterisation as a corollary of Proposition 3.12.

Corollary 3.14 (“stably hyperbolic D hyperbolic”) A nonsingular "–symmetric
Seifert form .K; / over R is hyperbolic if and only if it is stably hyperbolic.

Proof “Only if” is clear. Conversely, a stably hyperbolic "–symmetric Seifert form
determines the 0 class in �DW".R/Š �DL0.R; "/. Hence there is a double nullcobordism
of the corresponding 0–dimensional "–ultraquadratic complex. But by the proof of
Proposition 3.12, these nullcobordisms correspond to complementary lagrangians.

Double Witt groups of linking forms

We now perform a very similar analysis for linking forms.

Proposition 3.15 (Ranicki [21, Proposition 3.4.1]) There is a contravariant equiva-
lence of categories8<: 1–dimensional .�"/–symmetric

S–acyclic (Poincaré)
complexes over A

9=;.htpy  !

8<: (nonsingular)
"–symmetric linking

forms over .A; S/

9=;.iso

that preserves the monoid structure, which sends .C; �/ to .H 1.C /; ��/, where
��.Œx�; Œy�/D s

�1�0.x/.z/ for x; y 2 C 1 , z 2 C 0 and s 2 S such that d�z D sy .

Here is a precise characterisation of metabolic forms considered as chain complexes:

Proposition 3.16 (Ranicki [21, Proposition 3.4.5(ii)]) A nonsingular, "–symmetric
linking form over .A; S/ admits a lagrangian if and only if the associated .�"/–
symmetric homotopy equivalence class of 1–dimensional .�"/–symmetric Poincaré
complexes over A contains a complex .C; �/ admitting an S–acyclic 2–dimensional
.�"/–symmetric Poincaré pair .f W C !D; .ı�; �// with H 2.D/D 0.

Hence a precise characterisation of hyperbolic forms considered as chain complexes:

Proposition 3.17 A nonsingular, "–symmetric linking form over .A; S/ is hyper-
bolic if and only if the associated .�"/–symmetric homotopy equivalence class of
1–dimensional .�"/–symmetric Poincaré complexes over A contains a complex
.C; �/ admitting two complementary S–acyclic 2–dimensional .�"/–symmetric pairs
.f˙W C !D˙; .ı˙�; �// with H 2.D˙/D 0.
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Proposition 3.18 Let A be a ring with involution which contains a half-unit. Then
there is an isomorphism of groups

DW ".A; S/ Š�!DL0.A; S; "/:

Proof The morphism is defined in Proposition 3.15. It is well-defined and surjective
by Propositions 3.15, 3.16 and 3.17. To show injectivity, suppose that .C; �/ is a .�"/–
symmetric, 1–dimensional Poincaré complex associated to an "–symmetric linking
form .T; �/. If there exists a pair .f˙W C !D˙; .ı˙�; �// of complementary null-
cobordisms then in particular 0DH 2.C /DH 2.DC/˚H

2.D�/ so that H 2.D˙/D0.
But then .T; �/ must be hyperbolic by Proposition 3.17.

Remark When A is a Dedekind domain, we show in [17, Theorem 4.8] how to
calculate the double Witt group DW ".A;An f0g/ in terms of the Witt groups of forms
over the residue class fields A=pA where pA is an involution-invariant prime ideal.
Indeed, this is the calculation underlying Example 3.13.

Definition 3.19 A nonsingular "–symmetric linking form .T; �/ over .A; S/ is called
stably hyperbolic if there exist hyperbolic "–symmetric linking forms H;H 0 such that
.T; �/˚H ŠH 0 .

Corollary 3.20 (“stably hyperbolic D hyperbolic”) Let A be a ring with involution
which contains a half-unit. A nonsingular "–symmetric linking form .T; �/ over .A; S/
is hyperbolic if and only if it is stably hyperbolic.

Proof “Only if” is clear. Conversely, a stably hyperbolic "–symmetric linking form
determines the 0 class in DW ".A; S/ Š DL0.A; S; "/. Therefore there is a double
nullcobordism of the corresponding 1–dimensional .�"/–symmetric complex. But
by the proof of Proposition 3.18, these nullcobordisms correspond to complementary
lagrangians.

Remark For any .A; S/, Ranicki [21, Proposition 3.4.7(ii)] proves an isomorphism
W ".A; S/Š L0.A; S; "/, but it is not sufficient to prove that stably metabolic implies
metabolic for linking forms in general. The reason is that an .A; S/–nullcobordism
.f W C!D; .ı�; �// of a 1–dimensional .�"/–symmetric S–acyclic Poincaré complex
over A might have H 2.D/ ¤ 0, so that the corresponding "–symmetric linking
form need not necessarily admit a lagrangian (compare the torsion version of [19,
Proposition 4.6]); whereas, in the hyperbolic case, we used the fact that H 2.C /D 0

implies H 2.D˙/D 0, exploiting the complementary condition present in our setup.
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3.4 The linking and Blanchfield form of a symmetric Poincaré complex

In topology, linking forms arise as the middle-dimensional torsion pairing on the
homology (or cohomology) of a manifold. In this subsection we make clear, for a
general chain complex with symmetric structure, when one should expect the middle-
dimensional linking pairing to be a linking form. The results in this subsection are
required for our topological application to the Blanchfield forms of high-dimensional
knot theory in Section 4.

Over a general .A; S/, the approach of simply taking the middle-dimensional torsion
pairing of a symmetric Poincaré complex has two problems: the cohomology modules
might not have homological dimension 1 (even when we restrict to the torsion), and
the linking form might not pair modules to their torsion duals due to the universal
coefficient problem. We now make clear some circumstances in which taking the
middle-dimensional torsion pairing of a symmetric Poincaré complex .C; �/ is a valid
operation from this perspective.

Proposition 3.21 Suppose .A; S/ has the property that any S–torsion A–module
has homological dimension 1 (this happens, for instance, if A has homological di-
mension 1). Let .C; �/ be a .2kC3/–dimensional "–symmetric S–acyclic Poincaré
complex over A. Then

�� W H
kC2.C /�HkC2.C /! S�1A=A; .Œx�; Œy�/ 7! s�1 zy.�0.x//;

with x; y 2 C kC2 , zy 2 C kC1 , and s 2 S such that d� zy D sy , is a well-defined,
nonsingular, .�1/k"–symmetric linking form. Moreover:

(i) If .C; �/ is .A; S/–nullcobordant then .HkC2.C /; ��/ is metabolic.

(ii) If .C; �/ is .A; S/–double nullcobordant then .HkC2.C /; ��/ is hyperbolic.

Proof The first part is standard. The linking form is easily checked to be well-defined
and the nonsingularity comes from a standard universal coefficient spectral sequence
argument. The .�1/k"–symmetry can be derived from a chain-level calculation (which
in general requires the use of the higher chain homotopy �1 ); see for instance the
chain-level calculations in Powell [18, page 151].

For (i), suppose .gW C ! D; .ı�; �// is an .A; S/–nullcobordism of .C; �/. Write
the functor e1.�/ D Ext1A.�; A/ for brevity. Then the long exact sequences of the
morphism gW C !D determine a commutative diagram with exact rows:
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HkC2.DIA/
g�

// HkC2.C IA/ // HkC3.D;C IA//

e1.HkC1.DIA// //

Š

OO

e1.HkC1.C IA// //

Š

OO

e1.HkC2.D;C IA//

Š

OO

e1.HkC3.D;C IA//

.ı�0 ˙f�0/ Š

OO

// e1.HkC2.C IA//

�0 Š

OO

e1.g�/
// e1.HkC2.DIA//

. ı�0
�0f
�/ Š

OO

The map adjoint to the linking form is the downwards composition of the central
column. Hence the inclusion of the image j W g�.HkC2.DIA// ,!HkC2.C IA/ is a
lagrangian submodule as the commutative diagram determines an exact sequence

0! g�.HkC2.DIA//
j
�!HkC2.C IA/

j^��
����! g�.HkC2.DIA//^! 0:

For (ii), suppose .f˙W C ! D˙; .ı˙�; �// is an .A; S/–double nullcobordism of
.C; �/. By the above we have that the direct sum decomposition

.f �C f �� /W H
kC2.DC/˚H

kC2.DC/ŠH
kC2.C /

is by lagrangians.

The special algebraic case of Blanchfield forms

The types of linking forms that arise in classical knot theory, called Blanchfield forms,
are nonsingular "–symmetric linking forms over .RŒz; z�1�; P /, where P is the set of
Alexander polynomials

P WD
˚
p.z/ 2RŒz; z�1� j p.1/ 2R is a unit

	
:

The ring RŒz; z�1� does not contain a half-unit necessarily. However, according to
Ranicki [22, Proposition 10.21(iv)], if we formally adjoin the half-unit .1� z/�1 to
the ring, then there is an equivalence of exact categories

(4) H.RŒz; z�1�; P / Š�!H.RŒz; z�1; .1� z/�1�; P /:

Under this equivalence, an object T of H.RŒz; z�1�; P / corresponds to a finitely
generated RŒz; z�1�–module T with homological dimension 1 such that 1�zW T ! T

is an isomorphism.

Proposition 3.22 The equivalence of (4) induces an equivalence of categories of the
corresponding nonsingular "–symmetric linking forms. Under the equivalence of (4),
(split) lagrangians correspond to (split) lagrangians.
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For each n > 1, the equivalence of (4) induces an equivalence of categories of the
corresponding P–acyclic n–dimensional "–symmetric (Poincaré) complexes, and of
P–acyclic .nC1/–dimensional "–symmetric (Poincaré) pairs.

Proof The equivalence of (4) comes from a special case of a general Cartesian
morphism of localisations of rings with involution (see [21, page 201]). The proof
of Proposition 3.22 for general Cartesian morphisms can be found in Ranicki [21,
Propositions 3.1.3, 3.6.2, 3.2.1]. See also [23, Section 4].

Now set � D ZŒz; z�1� and suppose T is an �–module such that Hom�.T; �/D 0.
Set t .T / to be the Z–torsion

t .T /D ker.T !QŒz; z�1�˝� T / and let f .T /D T=t.T /:

It may still be the case that f .T / has torsion with respect to the multiplicative subset
ZŒz; z�1� n f0g. Set P to be the set of Alexander polynomials. Levine [11] shows
that for any module T in H.�; P / the Z–torsion and Z–torsion-free components are
picked out as follows:

Ext2�.T; �// Š t .T /;

Ext1�.T; �//Š f .T /:

Now suppose .C; �/ is an n–dimensional "–symmetric P–acyclic Poincaré complex
over � . Then by the universal coefficient spectral sequence collapse detailed in [11]
we obtain an isomorphism

f .H r.C I�// Š�!H r.C I�/=Ext2�.Hr�2.C I�/; �/
Š
�!Ext1�.Hr�1.C I�; �//
Š
�!Ext1�.H

.nC1/�r.C I�; �//

Š Hom�.f .H .nC1/�r.C I�//; P�1�=�/:

This isomorphism is adjoint to the following pairing:

Definition 3.23 (Levine [11]) Let .C; �/ be an n–dimensional "–symmetric P–
acyclic Poincaré complex over � . Then the Blanchfield pairing is the pairing

BlW f .H r.C I�//�f .H .nC1/�r.C I�//! P�1�=�; .x; y/ 7! p�1 zy.�.x//;

where x 2 C r , y 2 C .nC1/�r , zy 2 C n�r and p 2 P such that d� zy D py .
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Proposition 3.24 Let .C; �/ be a .2kC3/–dimensional "–symmetric P–acyclic
Poincaré complex over � . Then the Blanchfield form

�� W f .H
kC2.C //�f .HkC2.C //! P�1ZŒz; z�1�=ZŒz; z�1�;

.Œx�; Œy�/ 7! p�1 zy.�0.x//;

with x; y 2 C kC2 , zy 2 C kC1 , and p 2 P such that d� zy D sy , is a well-defined,
nonsingular, .�1/k"–symmetric linking form. Moreover:

(i) If .C; �/ is .�; S/–nullcobordant then .f .HkC2.C //; ��/ is metabolic.

(ii) If .C; �/ is .�; S/–double nullcobordant then .f .HkC2.C //; ��/ is hyperbolic.

Proof It is shown in [11] that the Blanchfield form is well-defined and nonsingular.
As the chain-level formula is identical to that of the linking form in Proposition 3.21,
the .�1/k"–symmetry follows from the same calculations as in that proof.

For (i), suppose .gW C !D; .ı�; �// is a .�; S/–nullcobordism of .C; �/. We must
appeal to results of Levine (see also Letsche [9, Section 2.1]). It is shown in [11] that
for any chain complex C over ZŒz; z�1�, the universal coefficient spectral sequence
collapses to determine short exact sequences

0! Ext2�.Hr�2.C I�/; �/!H r.C I�/! Ext1�.Hr�1.C I�/; �/! 0:

Write e1.�/D Ext1�.�; �/ for brevity. As the chain complexes C , D and C.f / are
all P–acyclic, we obtain the following commutative diagram with exact rows:

f .HkC2.DI�// //

Š

��

f .HkC2.C I�// //

Š

��

f .HkC3.D;C I�//

Š

��

e1.f .HkC1.DI�/// // e1.f .HkC1.C I�/// // e1.f .HkC2.D;C I�///

e1.f .HkC1.D;C I�///

.ı�0 ḟ �0/ Š

OO

// e1.f .HkC2.C I�///

�0 Š

OO

// e1.f .HkC2.DI�///

. ı�0
�0f
�/ Š

OO

As in Proposition 3.21, the image of

g�W f .HkC2.DI�//! f .HkC2.C I�//

is a lagrangian submodule.

For (ii), suppose that .f˙W C !D˙; .ı˙�; �// is a .�; S/–double nullcobordism of
.C; �/. By the above we have that .f �

C
f �� /W H

kC2.DC/˚H
kC2.DC/ŠH

kC2.C /

is now a direct sum decomposition by complementary lagrangians.
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Propositions 3.21 and 3.24 have the following corollary, which is well known, but
worth stating in this very general form:

Corollary 3.25 Suppose for a ring with involution R and localisation .R; S/ one of
the following holds:

(i) Every S–torsion R–module has homological dimension 1.

(ii) .R; S/D .ZŒz; z�1�; P /.

Then if .T; �/ is a nonsingular, "–symmetric linking form over .R; S/ that is stably
metabolic, it is metabolic.

Proof Under the correspondence of Proposition 3.15, .T; �/ goes to a 1–dimensional
.�"/–symmetric S–acyclic Poincaré complex .C; �/ over A. If .T; �/ is stably meta-
bolic, there exists an .A; S/–nullcobordism .f W C !D; .ı�; �// by the isomorphism
W ".A; S/ŠL2.A; S;�"/ [21, Proposition 3.4.7(ii)]. But then by Proposition 3.21 (in
the case of (i)) or by Proposition 3.24 (in the case of (ii)), .H 1.C /; ��/D .T; �/ is
metabolic.

And the following corollary is clear from Propositions 3.21 and 3.24.

Corollary 3.26 Suppose for a ring with involution R and localisation .R; S/ one of
the following holds:

(i) Every S–torsion R–module has homological dimension 1 and R contains a
half-unit.

(ii) .R; S/D .ZŒz; z�1; .1� z/�1�; P /.

Then Proposition 3.15 defines a surjective homomorphism

DL2kC2.R; S; .�1/kC1"/�DW ".R; S/;

with right inverse given by the isomorphism DW ".R; S/ŠDL0.R; S; "/ followed by
the .kC1/–fold skew-suspension xSkC1 .

4 Double L–groups obstruct double knot-cobordism

In Section 4 we apply the new algebraic results of this paper to the setting of high-
dimensional knot theory. We will prove several new results relating to doubly slice
knots and reprove some known results using our techniques.
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More specifically, for an n–dimensional knot, we will recall how to define a knot
invariant which uses the entire chain complex of a knot exterior, called the Blanchfield
complex. We are expanding the details of a construction originally made by Ranicki
[21, Section 7.9]. We will prove that the class of the Blanchfield complex of a doubly
slice knot vanishes in DLnC1.ZŒz; z�1; .1�z/�1�; P /. For n odd, this result will then
be related to the Seifert and Blanchfield forms of the knot. Using the algebraic results
in the earlier sections of this paper we show that “algebraically stably doubly slice
implies doubly slice” for Blanchfield forms, Seifert forms and Blanchfield complexes.

While the original definition of the Blanchfield complex provided an elegant formulation
for the slice problem, the use of the full chain complex of the knot exterior was
unnecessary for Kervaire [7] and Levine’s [10] solution to this problem. However, its
use as an approach to the doubly slice problem is motivated by the results of Ruberman
[24; 25], where it is shown that there exist high-dimensional doubly slice invariants
beyond the middle-dimensional pairings used by Kervaire and Levine. This suggests
the use of something like the Blanchfield complex really is necessary to study doubly
slice knots. On the other hand, Ruberman’s work also suggests that the fundamental
group �1.SnC2 nK/ plays a vital role in this problem, even high-dimensionally, so
the Blanchfield complex over ZŒZ� which we will use below cannot be the full story.
These concerns are discussed in our closing remarks.

Notation For the rest of the paper, we use the notation ƒD ZŒz; z�1; .1� z/�1�.

4.1 Basic high-dimensional knot theory

A topological n–knot, also called a knot unless it is important to specify n, is an ambient
isotopy class of oriented, locally flat embeddings KW Sn ,! SnC2 (where all spheres
are considered to have a preferred orientation already). In a standard abuse of notation
we will also use the word knot to mean a particular K in an ambient isotopy class and
the image of K in SnC2 . The unknot is the ambient isotopy class of U W Sn ,! SnC2 ,
the standard unknotted n–sphere in the unit sphere SnC2 �RnC3 given by setting the
last two coordinates to 0. The inverse knot �K of a knot K is given by reversing the
orientation on a mirror image of K in SnC2 . Any embedding KW Sn ,! SnC2 has
trivial normal bundle and hence, by choosing a framing, we may excise a small, trivial
tubular neighbourhood of the knot from SnC2 . Thus, the knot exterior is the manifold
with boundary

.XK ; @XK/ WD
�
cl.SnC2 n .K.Sn/�D2//; Sn �S1

�
which has a preferred orientation coming from the ambient SnC2 . The knot exterior XK
is homotopy equivalent to the knot complement SnC2 nK and hence has the homology
of a circle H�.XK/DH�.S1/ by Alexander duality.
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@N �S2

@N �D2

X@N

SnC2 DnC3

YN

N �D2

N �S1 @X@N

X@N
YN

@CYN

Figure 2: The framed codimension-2 submanifold pair (left), and the exterior
as a triad (right)

If there is a locally flat embedding of the manifold with boundary .F nC1; Sn/ ,!SnC2

then we say the embedded F is a Seifert surface for the boundary knot. Every knot K
admits a Seifert surface F nC1 (see Kervaire [7] or Zeeman [31]). For n ¤ 2, the
unknot is characterised as the only knot which admits DnC1 as a Seifert surface.

It is always possible to “push” a Seifert surface into the standard DnC3 that cobounds
the ambient sphere SnC2 . That is, a locally flat embedding .F nC1; Sn/ ,! SnC2

can be modified to a locally flat embedding of pairs .F nC1; Sn/ ,! .DnC3; SnC2/,
without changing the ambient isotopy class of the bounding knot K , and so that the
embedded F intersects SnC2 in the knot K . If there is a locally flat embedding of
pairs .D;K/W .DnC1; Sn/ ,! .DnC3; SnC2/ then we say the knot K is slice and the
locally flat embedding D is a slice disc for K .

Any codimension-2 submanifold pair .N; @N / � .DnC3; SnC2/ has trivial normal
bundle (see for instance Ranicki [22, Proposition 22.1]), and hence by choosing a
framing we may embed .N; @N / �D2 into .DnC3; SnC2/. Define the exterior of
such a submanifold pair (with respect to a choice of framing) as the compact, oriented
manifold triad

.YN IX@N ; @CYN I @X@N /

WD
�
cl.DnC3 n .N �D2//I cl.SnC2 n .@N �D2//; N �S1I @N �S1

�
:

4.2 The Blanchfield complex, knot-cobordism and L–theory

The Blanchfield complex of a knot will be our central object of study and is the
bridge between the algebraic L–theory of the previous sections and our knot-theoretic
applications. The Blanchfield complex is an invariant of an ambient isotopy class of
embeddings KW Sn ,! SnC2 that is defined for both odd- and even-dimensional knots.
It is the symmetric chain complex generalisation of the classical knot invariant called
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the Blanchfield form, which is defined only for odd-dimensional knots. We will define
the Blanchfield form of an odd-dimensional knot below and show how it derives from
the Blanchfield complex.

First we spell out the details of the construction of the Blanchfield complex of an
n–knot K , originally defined by Ranicki in [21, page 822]. We will need the following
well-known proposition whose proof is standard obstruction theory.

Proposition 4.1 Suppose f W .F nC1; Sn/ ,! .DnC3; SnC2/ is a locally flat embed-
ding of pairs, and write f jSn DK . Then there is a meridian map, that is, a map

mW YF ! S1;

inducing an isomorphism m�W H�.XK/ŠH�.S
1/ and restricting to projection to the

second factor
mj@CY D pr2W F �S

1
! S1:

The meridian map is uniquely defined up to homotopy by the fact that it restricts
to projection on @CY . If F D D is a slice disc then the meridian map induces an
isomorphism m�W H�.YD/ŠH�.S

1/.

Corollary 4.2 There is a meridian map on the knot exterior

mW XK ! S1

uniquely defined up to homotopy by the property that mj@XK W S
n � S1 ! S1 is

projection to the second factor.

The homotopy class of the meridian map m 2 ŒXK ; S1�D ŒXK ;DnC1 �S1� may be
represented by a (degree-1) map of compact, oriented, .nC2/–dimensional manifolds
with boundary,

.f; @f /W .XK ; @XK/! .DnC1 �S1; Sn �S1/;

with @f the identity map.

Using the standard infinite cyclic cover DnC1 � R ! DnC1 � S1 with group of
covering translations ZŠ hzi, we may now apply Ranicki’s symmetric construction
[20, Proposition 6.5] to obtain the associated kernel pair ��.f ; @f /, which is an
.nC2/–dimensional symmetric Poincaré pair over the Laurent polynomial ring ZŒZ�Š
ZŒz; z�1� with the involution xzDz�1 . The underlying morphism of the pair ��.f ; @f /
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is given by the morphism g of mapping cones induced by the diagram

C.f Š/ C�.XK/oo

f�

// C�.D
nC1 �R/

f Š

ss

C.@f Š/

g

OO

C�.@XK/oo

OO

.@f /�

// C�.S
n �R/

OO

@f Š

ss

where the chain level Umkehr maps f Š and @f Š are defined using Poincaré and
Poincaré–Lefschetz duality. We refer the reader to [20, Proposition 6.5] for full details.

Definition 4.3 The Blanchfield complex of an n–knot KW Sn ,! SnC2 is the .nC2/–
dimensional symmetric complex .CK ; �K/ over ZŒz; z�1� defined as the algebraic
Thom construction of the kernel pair ��.f ; @f /.

Identifying .DnC1 �S1; Sn �S1/Š .XU ; @XU /, the Blanchfield complex of K can
be thought of as a measure of the difference between K and the unknot U . In other
words, we can think of the Blanchfield complex as a surgery problem trying to improve
the knot exterior to an unknot exterior via codimension-2 surgery (see Ranicki [21,
Section 7.8]). The Blanchfield complex is an invariant of the ambient isotopy class of K
that is well-defined up to homotopy equivalence of .nC2/–dimensional symmetric
complexes over ZŒz; z�1�.

Proposition 4.4 The Blanchfield complex .CK ; �K/ of an n–knot K is Poincaré and
such that

CK ˚C�.DnC1 �S1/' C�.XK/:

In particular, there is an isomorphism in reduced homology zH�.CK/ Š zH�.XK/.
Furthermore,

1� zW CK ! CK

is an automorphism of CK .

Proof By [21, Proposition 1.3.3], a symmetric complex is Poincaré if and only if it is
the Thom construction of a pair that is homotopy equivalent to a pair of the form

.0W 0!D; .�; 0//:

But indeed, @f D idW @XK ! @XU implies that the chain level Umkehr map @f Š in
hBC.ZŒz; z�1�/ is a chain homotopy equivalence, so that C.@f Š/ is contractible and
the kernel pair ��.f ; @f / is of the required form. The direct sum decomposition of
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[20, Proposition 6.5] reduces to the claimed decomposition under the algebraic Thom
construction.

The augmentation "W ZŒz; z�1�!Z sending z to 1 fits into the free ZŒz; z�1�–module
resolution

0! ZŒz; z�1�
1�z
���! ZŒz; z�1�

"
�! Z! 0:

Applying this coefficient sequence to CK shows that the statement that 1� z acts as
an automorphism of CK is equivalent to saying that Z˝ZŒz;z�1� CK is acyclic. But
it is easy to see that Z˝ZŒz;z�1� CK is acyclic as the original map .f; @f / was a Z–
homology equivalence (by Alexander duality, as already noted). Taking the cone C.f Š/
and forgetting the action of the covering translations results in an acyclic complex.

Recall that P denotes the set of Alexander polynomials.

Lemma 4.5 If C is a chain complex in hBC.ZŒz; z�1�/ then .1� z/W C ! C is an
automorphism if and only if there exists p 2 P such that pH�.C /D 0.

Proof Suppose H�.C / is P–torsion. Then, as localisation is exact,

H�.P
�1ZŒz; z�1�˝ZŒz;z�1� C/D 0:

The augmentation map "W ZŒz; z�1�! Z from above factors as

"W ZŒz; z�1�! P�1ZŒz; z�1�! Z

because p.1/ 2 Z is a unit for all p 2 P . Hence H�.Z˝ZŒz;z�1� C/ D 0, which
has already been observed to be equivalent to saying that .1 � z/W C ! C is an
automorphism.

The converse follows just as in the proof of Levine [11, Corollary 1.3].

Corollary 4.6 The Blanchfield complex .CK ; �K/ of an n–knot K is an .nC2/–
dimensional P –acyclic symmetric Poincaré complex over ZŒz; z�1�. Equivalently, by
Proposition 3.22, .CK ; �K/ is an .nC2/–dimensional P–acyclic symmetric Poincaré
complex over ƒ.

The set of ambient isotopy classes of n–knots, equipped with the operation of connected
sum of knots K1#K2W Sn ,!K1.S

n/#K2.Sn/ is a commutative monoid called Knotsn ,
with unit given by the unknot U . The n–dimensional (topological) knot-cobordism
group is the group given by the monoid construction

Cn WD Knotsn =fslice knotsg:
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The map
�LW Cn! LnC1.ƒ; P;�1/; K 7! .CK ; �K/

sending a knot to its Blanchfield complex is shown by Ranicki [21, Section 7.8] to give
a well-defined group homomorphism. We refer the reader to the author’s thesis [16,
Lemmas 6.3.7 and 6.3.8] for a proof using only the tools developed in this paper.

4.3 Seifert and Blanchfield forms of a .2kC1/–knot

In this subsection we briefly recall some standard definitions, and a theorem from
another paper by the author, which we shall need for the next subsection.

Suppose nD2kC1. An n–dimensional knot has two very tractable and well-understood
homological invariants, called the Blanchfield and Seifert forms of the knot. The
Blanchfield form can be defined directly from the Blanchfield complex but the Seifert
form depends on a choice of Seifert surface j W F ,! SnC2 for the knot K so cannot
be derived from the Blanchfield complex without this extra information. However, the
(double) Witt class of the Blanchfield form does determine the (double) Witt class of
any choice of Seifert form.

Definition 4.7 The Blanchfield form for K is the nonsingular .�1/k–symmetric
linking form over .ZŒz; z�1�; P / defined by Proposition 3.24:

BlW f .HkC2.CK//�f .H
kC2.CK//! P�1ZŒz; z�1�=ZŒz; z�1�:

Remark This definition is Poincaré dual to the common definition of a Blanchfield
form as given for example by Levine [11].

If P is a finitely generated Z–module, denote the torsion-free component by f .P / WD
P=TP .

Definition 4.8 Given a choice of Seifert surface, the Seifert form of .F;K/ is the
(well-defined) .�1/kC1–symmetric Seifert form .f .HkC1.F //;  / over Z given by

 W f .HkC1.F //�f .HkC1.F //! Z; .u; v/ 7! l.x; i�.y//;

where l denotes linking number, x D u\ ŒF �, y D v \ ŒF � and i W F ! SnC2 nF

is defined by translation in the positive normal direction. It has the property that
.f .HkC1.F //;  C .�1/kC1 �/ is the nonsingular, .�1/kC1–symmetric middle-
dimensional cohomology intersection pairing of F .
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Any choice of Seifert form determines the Blanchfield form via the algebraic analogue
of the cut-and-paste construction of the infinite cyclic cover of the knot exterior. For
precise details of this, see Levine [11]. On the level of Witt groups, we show in another
paper [17] that the algebraic cut-and-paste construction gives rise to the following:

Theorem 4.9 (covering isomorphism [17, Theorem 4.8]) For any R , there is an
isomorphism of groups

BW �DW".R/
Š
�!DW �".RŒz; z�1; .1� z/�1�; P /;

where B is the algebraic covering morphism of Ranicki [23].

4.4 Double knot-cobordism and double L–theory

Recall the definition of a doubly slice knot from Section 1. We finally show that the
Blanchfield complex gives the desired invariant of doubly slice knots. As a consequence
of this and the various algebraic work we have done in Sections 2 and 3 we obtain
several new results for high-dimensional doubly slice knots, and some reproofs (from a
very different perspective) of previously known results.

If K;K 0 are doubly slice n–knots then Stoltzfus [27] showed K #K 0 is also doubly
slice. Hence the doubly slice knots form a closed submonoid of Knotsn .

Definition 4.10 The n–dimensional (topological) double knot-cobordism group is the
group given by the monoid construction

DCn WD Knotsn =fdoubly slice knotsg:

Simple doubly slice knots are similarly a closed submonoid of Knotssimp
n . So define

DCsimp
n WD Knotssimp

n =fsimple doubly slice knotsg:

Proposition 4.11 If K is doubly slice then the Blanchfield complex .CK ; �K/ is
algebraically double nullcobordant.

Proof We must check that Blanchfield complex of a doubly slice knot K admits
complementary .ƒ; P /–nullcobordisms. Given a single slice disc .D;K/, represent
the homotopy class of the meridian map m2 ŒYD; S1�D ŒY;DnC3�S1� by a (degree-1)
map of compact oriented manifold triads

F D .f; @f; @0f; @@f /W .YDIXK ; @CYDI @XK/

! .DnC3 �S1IDnC1 �S1;DnC1 �S1ISn �S1/;
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@XK
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@CYD
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DnC1�S1
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DnC1�S1

DnC2�S1

Figure 3: The surgery problem determining the kernel triad

where both @0f and @@f are identity maps. (We can think of F as a map from the
slice disc exterior to the “trivial slice disc” exterior.)

Using the standard Z–cover DnC3 �R!DnC3 �S1 we use Ranicki’s symmetric
construction to obtain the kernel triad ��.F Š/ D .�; .ˆ; ı�; ı0�; �//, some .nC3/–
dimensional symmetric Poincaré triad in hBC.ZŒz; z�1�/. Now the relative alge-
braic Thom construction on this triad results in the set of pairs fx; x0g. But as
C.@@f Š/; C.@0f Š/' 0, we have

x D
�
C.@f Š/! C.f Š/; .ˆ=0; ı�=0/

�
;

x0 D
�
0! C.C.@f Š/! C.f Š//; .ˆ=ı�; 0=0/

�
:

Hence we have the pair xD .CK!C.f Š/; .ˆ; �K// for .CK ; �K/ the Blanchfield com-
plex of K . We need to show x is an algebraic nullcobordism in hCC.ZŒz; z�1�; P /,
in other words, that x is a P–acyclic Poincaré pair. But the kernel triad ��.F Š/ is
Poincaré, so by definition of a Poincaré triad .0[0 CK ! C.f Š/; .ˆ; 0[0 �K//D x

is Poincaré. Furthermore, the meridian map m is a homology equivalence on YD and
on XK , so by the same arguments as in Proposition 4.4 and Lemma 4.5, the Poincaré
pair x is moreover in hCC.ZŒz; z�1�; P /. Now, by Proposition 3.22, x is also a
.ƒ; P /–nullcobordism

Hence taking now a pair of complementary slice discs .D˙; K/ results in a pair of
morphisms of compact oriented manifold triads

F˙ ' .f˙I @f˙; idI id/W .YD˙ I @XK ; @0YD˙ I @X@K/! .YU I @XU ; @0YU I @XU /;

which result in a pair of .ƒ; P /–nullcobordisms of the Blanchfield complex

x˙ ' .CK ! C.f Š˙/; .ˆ˙; �K//:

We wish to check that the algebraic union xC[x� is chain homotopy equivalent to 0.
But the underlying chain complex of an algebraic glueing is given by a certain mapping
cone on the chain level. The same is true for the algebraic Thom construction on a pair,
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and the construction of the kernel triads. We may perform these mapping cones in any
order and receive the same result, hence the underlying chain complex of xC[x� is the
result of performing these operations in the following order: glue the maps of algebraic
triads FCŠ [ F�Š (by glueing the triads along the knot exteriors C.XK/), form the
kernel triad �.FCŠ[F�Š/, then perform the algebraic Thom construction on this triad.
But as the slice discs .D;K/ were complementary, we have that the union DC[KD�
is unknotted in SnC3 and hence FCŠ[F�Š is chain homotopic to the identity. Therefore
the triad �.FCŠ[F�Š/ is contractible and hence xC[ x� ' 0 as required.

Remark The transitivity of the double L–groups mean that we have just given a
partial affirmative answer to an algebraic question of Levine [12, 3(2), page 255]. There
is no cup-product type algebra structure in algebraic L–theory, so we have not yet
completely answered Levine’s question. However we conjecture that the techniques of
double L–theory could be modified to include this sort of product structure and answer
this question affirmatively.

The following corollary was already shown to be true by Kearton [5, Corollary 3], but
Proposition 4.11 combined with Proposition 3.24 gives a different proof.

Corollary 4.12 The Blanchfield form of an odd-dimensional doubly slice knot is
hyperbolic.

We now have the following group homomorphisms obstructing double knot-cobordism:

Corollary 4.13 For n� 1, there is a well-defined homomorphism

�DLW DCn!DLnC1.ƒ; P;�1/; ŒK� 7! .CK ; �K/:

When nD 2kC 1 there is a well-defined homomorphism

�DW W DCn!DW .�1/k .ƒ; P /; ŒK� 7! .f .HkC2.C //; ��K /;

and for any choice of Seifert surface F there is a well-defined homomorphism

�
�DW
W DCn! �DW .�1/kC1.Z/; ŒK� 7! .f .HkC1.F //;  /:

(This final morphism uses Theorem 4.9.)

We also combine some of the algebraic results from Section 3 to prove a new result
about Seifert forms for knots.

Theorem 4.14 Every Seifert form for an odd-dimensional doubly slice knot K is
hyperbolic.
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Proof Combining Theorem 4.9 and Corollary 4.12 shows that every Seifert form
for K is stably hyperbolic. But by Corollary 3.14, stably hyperbolic Seifert forms are
hyperbolic.

We now have several algebraic responses to Question 1.1:

Theorem 4.15 Suppose for n� 1 that an n–knot K is stably doubly slice. Then the
double L–class �DL.K/ 2 DLnC1.ƒ; P / of the Blanchfield complex vanishes. If
nD 2kC 1 then the Witt classes �DW .K/ 2DW .�1/k .ƒ; P / of the Blanchfield form
and the Witt class � �DW .K/ 2 �DW .�1/kC1.Z/ of any choice of Seifert form all vanish.

If we assume we are dealing with a simple knot, the algebraic results of Section 3 yield
the following partial answer to Question 1.1.

Theorem 4.16 For odd nD 2kC 1 > 1, a simple n–knot K has ŒK�D 0 2DCsimp
n if

and only if K is doubly slice.

Proof “If” is clear. Conversely, if �DL.K/D 0, we have that the Blanchfield form
.T; �/ for K has .T; �/ D 0 2 DW .�1/k .ƒ; P /. But by Corollary 3.20, this means
.T; �/ is hyperbolic. Hence any Seifert surface F for K has hyperbolic Seifert form
by Corollary 3.14. Take a basis of HkC1.F IZ/ with respect to which the matrix
of the Seifert form is hyperbolic. The Poincaré dual basis to this can be realised by
framed, embedded .kC1/–spheres which can be used as instructions for surgery on F
to realise two complementary slice discs as in [28, Theorem 3.1] (case k > 1) and [6]
(case k D 1).

This is not the first proof of Theorem 4.16. In [1], Bayer–Flückiger and Stoltzfus obtain
a slightly less general form of Corollary 3.20 by very different methods to our own.
The authors derive Theorem 4.16 from this.

We finish with some remarks highlighting some subtleties of the doubly slice problem,
contrasting the slice problem, and indicating possible directions for future investigations.

Remark (1) According to the work of Ruberman [24, Theorem 4.17], [25, Theo-
rem 3.3], in every odd dimension, there exists an infinite family of knots with hyperbolic
Blanchfield form but which are not doubly slice. When n¤ 1 all knots in the family
have exteriors which are homotopy equivalent (rel boundary, preserving meridians)
to one another and to a doubly slice knot. When nD 1 the exteriors have the same
ZŒZ�–homology type. There is a similar result in all even dimensions [24; 25]. One
consequence is that there can be no general procedure that modifies a knot within its
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double knot-cobordism class to be simple. There is no double surgery below the middle
dimension. That is,

DCn 6Š DCsimp
n :

(2) The mechanism for detecting non-doubly slice knots in Ruberman’s work is a
high-dimensional application of the Casson–Gordon invariants. The definition and
nonvanishing of these invariants requires interesting cyclic representations of the fun-
damental group �1.SnC2 nK/. There are no known Ruberman-type examples for
�1.S

nC2 nK/Š Z. Our groups DLnC1.ƒ; P / may form part of a full classification
of the doubly slice knots with �1.SnC2 nK/ŠZ. Note as well that although through-
out Section 4 we have worked with the coefficient rings ZŒZ� and ƒ, the algebraic
framework we have developed in this paper is robust enough to handle nonabelian
fundamental groups, which we hope will be the topic of future work.

(3) One might suppose that the doubly slice obstructions seen by the Blanchfield
form over ZŒZ� encompass all abelian homological obstructions and that the use of the
Blanchfield complex over ZŒZ� is redundant as it does not use the fundamental group
�1.S

nC2 nK/ (after all, this is the case in the slice problem). But in fact, abelian
homology-level secondary obstructions were identified by Levine [12, page 252].
These homology-level obstructions involve the ring structure in cohomology. Product
structures like this are not well accounted for in L–theory and are not seen by a class
in double L–theory.
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