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THH and base-change for Galois extensions of ring spectra

AKHIL MATHEW

We treat the question of base-change in THH for faithful Galois extensions of ring
spectra in the sense of Rognes. Given a faithful Galois extension A! B of ring
spectra, we consider whether the map THH.A/˝A B! THH.B/ is an equivalence.
We reprove and extend positive results of Weibel and Geller, and McCarthy and
Minasian, and offer new examples of Galois extensions for which base-change holds.
We also provide a counterexample where base-change fails.

55P43; 13D03, 55P42

1 Introduction

Let R be an E1 –ring spectrum. The topological Hochschild homology THH.R/ of R

is a spectrum constructed as the geometric realization of a certain cyclic object built
from R, a homotopy-theoretic version of the Hochschild complex of an associative
ring. Topological Hochschild homology has been studied in particular because of its
connections with algebraic K–theory via the theory of trace maps. More generally, if
R is an E1 –algebra in A–modules for an E1–ring A, then one can define a relative
version THHA.R/.

Weibel and Geller [15] showed that Hochschild homology for commutative rings
satisfies an étale base-change result. Equivalently, if k is a commutative ring and if
A! B is an étale morphism of commutative k –algebras with A flat over k , then
there is a natural equivalence

B˝A THHk.A/' THHk.B/:

Weibel and Geller’s result also applies in the nonflat case, although it cannot be stated
in this manner.

One can hope to generalize the Weibel–Geller result to the setting of ring spectra. This
leads to the following general question:

Question Let A! B be a morphism of E1–ring spectra. When is the map

(1) THH.A/˝A B! THH.B/

an equivalence?
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Following Lurie, we will use the following definition of étaleness:

Definition 1.1 A morphism A! B of E1–ring spectra is étale if �0.A/! �0.B/

is étale and the natural map ��.A/˝�0.A/ �0.B/! ��.B/ is an isomorphism.

McCarthy and Minasian [11] consider this question for an étale morphism1 of connec-
tive E1–rings and prove the analog of the Weibel–Geller theorem, ie that (1) is an
equivalence (see [11, Lemma 5.7]). In fact, they prove the result more generally for
any THH–étale morphism of connective E1–rings.

In the setting of structured ring spectra, however, there are additional morphisms of
nonconnective ring spectra that have formal properties similar to those of étale mor-
phisms, though they are not étale on homotopy groups. The faithful Galois extensions
of Rognes [14] are key examples here.

This note is primarily concerned with the following analog of the Weibel–Geller and
McCarthy–Minasian question:

Question Let A! B be a G–Galois extension of E1–ring spectra, with G finite.
When is the comparison map (1) an equivalence?

We make two main observations here. Our first observation uses the fact that THH, like
algebraic K–theory, is an invariant not only of ring spectra but of stable 1–categories.
We refer, for example, to Blumberg and Mandell [3] and Blumberg, Gepner and
Tabuada [2] for a treatment of THH in this context. Using Galois descent, we observe
that the map (1) is an equivalence if and only if the map THH.A/! THH.B/hG is
an equivalence. These maps are the comparison maps for the Galois descent problem
in THH. Consequently, the results of Clausen, Mathew, Naumann and Noel [4] provide
numerous examples in chromatic homotopy theory where (1) is an equivalence.

Our second observation is to reinterpret the base-change question for THH in terms of
the formulation THH.R/' S1˝R for E1–rings, due to McClure, Schwänzl and
Vogt [12].

As a result, we obtain an example where (1) is not an equivalence.

Theorem 1.2 There is a faithful G–Galois extension A! B of E1–ring spectra
such that (1) is not an equivalence.

1We note that McCarthy and Minasian use the word “étale” differently in their paper.
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Our counterexample is very simple; it is the map C �.S1IFp/! C �.S1IFp/ induced
by the degree-p cover S1! S1 .

We in fact pinpoint exactly what goes wrong from a categorical perspective, and why
this phenomenon cannot happen in the étale setting, thus proving a variant of the
Weibel–Geller–McCarthy–Minasian theorem in the nonconnective setting:

Theorem 1.3 Let R be an E1–ring, and let A!B be an étale morphism of E1–R–
algebras (possibly nonconnective). Then the natural map THHR.A/˝AB!THHR.B/

is an equivalence.

The use of categorical interpretation of THH in proving such base-change theorems is
not new; McCarthy and Minasian [11] use this interpretation in a different manner.

Acknowledgments I would like to thank John Rognes and the referee for several
helpful comments. The author is supported by the NSF Graduate Research Fellowship
under grant DGE-110640.

2 Categorical generalities

Let C be a cocomplete 1–category, and let x 2 C . Given x 2 C , we can [5, Section
4.4.4] construct an object S1˝x .

Choose a basepoint � 2 S1 . Then we have a diagram:

(2)

x

��

// y

��

S1˝x // S1˝y

As a result of this diagram, we have a natural map in C ,

(3) .S1
˝x/tx y! S1

˝y:

In order for (3) to be an equivalence, for any object z 2 C , the square of spaces

(4)

Hom.S1;HomC.y; z//

��

// HomC.y; z/

��

Hom.S1;HomC.x; z// // HomC.x; z/

must be homotopy cartesian. This happens only in very special situations.
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Proposition 2.1 Let f WX ! Y be a map of spaces. Then the diagram

(5)

Hom.S1;X /

��

// X

��

Hom.S1;Y / // Y

is homotopy cartesian if and only if, for every point p 2X , the map from the connected
component of X containing p to that of Y containing f .p/ is a homotopy equivalence.

Proof Without loss of generality, we may assume that X and Y are connected spaces.
In this case, choosing compatible basepoints in X and Y , we get equivalences

�X ' fib.Hom.S1;X /!X /; �Y ' fib.Hom.S1;Y /! Y /;

and the fact that (5) is homotopy cartesian now implies that �X !�Y is a homotopy
equivalence. Since X and Y are connected, this implies that X ! Y is a homotopy
equivalence.

Definition 2.2 We will say that a map of spaces X ! Y is a split covering space
if the equivalent conditions of Proposition 2.1 are met. In particular, X ! Y is a
covering space that is trivial on each connected component of Y .

Observe that the base-change of a split covering space is still a split covering space.

Corollary 2.3 Suppose x! y is a morphism in C as above. Then the natural map
.S1˝x/tx y! S1˝y is an equivalence if and only if, for every object z 2 C , the
induced map of spaces HomC.y; z/! HomC.x; z/ is a split cover.

Proof Our map is an equivalence if and only if (4) is homotopy cartesian for each z2C .
By Proposition 2.1, we get the desired claim.

We now give this class of morphisms a name.

Definition 2.4 A morphism x ! y in an 1–category C is said to be strongly 0–
cotruncated if, for every z 2 C , the map HomC.y; z/!HomC.x; z/ is a split covering
space.

Corollary 2.3 states that x! y has the property that .S1˝x/tx y! S1˝y is an
equivalence if and only if the map is strongly 0–cotruncated.

For passage to a relative setting, we will find the following useful:
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Proposition 2.5 Let C be a cocomplete 1–category, let a 2 C , and let x! y be a
morphism in Ca= . If x! y is strongly 0–cotruncated when regarded as a morphism
in C , then it is strongly 0–cotruncated when regarded as a morphism in Ca= .

Proof Suppose a! z is an object of Ca= . Then we have

HomCa=
.y; z/D fib.HomC.y; z/! HomC.a; z//;

HomCa=
.x; z/D fib.HomC.x; z/! HomC.a; z//:

Since HomC.y; z/! HomC.x; z/ is a split cover, it follows easily that the same holds
after taking homotopy fibers over the basepoint in HomC.a; z/. In fact, we can assume
without loss of generality that HomC.x; z/ is connected, in which case HomC.y; z/ is
a disjoint union

F
S HomC.x;y/. Taking fibers over the map to HomC.a; z/ preserves

the disjoint union as desired, so the map on fibers is a split cover.

3 E1–ring spectra

We let CAlg denote the 1–category of E1–ring spectra. The construction THH in
this case can be interpreted (by [12]) as tensoring with S1 ; that is, we have

THH.A/' S1
˝A; A 2 CAlg:

If one works in a relative setting, under an E1–ring R, then THHR.A/' S1˝A,
where the tensor product is computed in CAlgR= .

Given a morphism in CAlgR= , A! B , we can use the setup of the previous section
and obtain a morphism

THHR.A/˝A B! THHR.B/;

which is a special case of (3). The base-change problem for THH asks when this is an
equivalence.

By Corollary 2.3, this is equivalent to the condition that the morphism A! B in
CAlgR= should be strongly 0–cotruncated. We can now prove Theorem 1.3 from the
introduction, which we restate for convenience.

Theorem Let R be an E1–ring and let A ! B be an étale morphism (as in
Definition 1.1) in CAlgR= . Then the natural morphism THHR.A/˝A B! THHR.B/

is an equivalence.
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This is closely related to [15, Theorem 0.1] and includes it in the case of a flat extension
R!A of discrete E1–rings. For connective E1–rings, this result is [11, Lemma 5.7]
(who treat more generally the case of a THH–étale morphism).

Proof Given an étale morphism A ! B in CAlgR= , we need to argue that it is
strongly 0–cotruncated. By Proposition 2.5, we may reduce to the case where RD S0 .
Given C 2 CAlg, we have a homotopy cartesian square

HomCAlg.B;C /

��

// HomRing.�0B; �0C /

��

HomCAlg.A;C / // HomRing.�0A; �0C /

by eg [8, Section 7.5]. Here Ring is the category of rings. Since the right verti-
cal map is a map of discrete spaces and therefore a split covering, it follows that
HomCAlg.B;C /! HomCAlg.A;C / is a split covering, as desired.

We also note in passing that the étale descent theorem has a partial converse in the setting
of connective E1–rings. We note that this rules out nonalgebraic Galois extensions.

Corollary 3.1 Let A! B be a morphism of connective E1–rings which is almost
of finite presentation [8, Section 7.2.4]. Suppose the map THH.A/˝A B! THH.B/
is an equivalence. Then A! B is étale.

Proof Indeed, B defines a 0–cotruncated object (Definition 5.1) of CAlgA= and it is
well known that this, combined with the fact that B is almost of finite presentation,
implies that B is étale. We reproduce the argument for the convenience of the reader.

In fact, since B is 0–cotruncated, one finds that for any B –module M , the space of
maps2 HomCAlgA==B

.B;B˚M / is homotopy discrete, where the E1–ring B˚M

is given the square-zero multiplication. Replacing M by †M , it follows that

HomCAlgA==B
.B;B˚M /'�HomCAlgA==B

.B;B˚†M /

is actually contractible. Thus the cotangent complex LB=A vanishes, which implies
that B is étale over A by [6, Lemma 8.9]. The connectivity is used in this last step.

The above argument also appears in [14, Section 9.4], where it is shown that a map
A ! B which is 0–cotruncated as in Definition 5.1 below (which Rognes calls

2For an 1–category C and a morphism x! y , we let Cx==y denote .Cx=/=y , where y 2 Cx= via the
given morphism.
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formally symmetrically étale, and which has been called THH–étale in [11]) has to
have vanishing cotangent complex (which is called TAQ–étale); see [14, Lemma 9.4.4].
The key point is that in the connective setting, TAQ–étaleness plus a weak finiteness
condition is enough to imply étaleness. This entirely breaks down when one works
with nonconnective E1–ring spectra.

4 Connection with descent

In this section, we will show that the question of base-change in THH is equivalent to a
descent-theoretic question. We will then use some of the descent results of [4] to obtain
examples where base-change for THH holds. Let A! B be a faithful G–Galois
extension of E1–rings for G a finite group.

To begin with, we will need to recall a fact about Galois descent.

Proposition 4.1 (see [13, Chapter 6], [1, Theorem 2.8] or [10, Theorem 9.4], for
example) If A! B is a faithful G –Galois extension, then we have an equivalence of
symmetric monoidal 1–categories

Mod.A/'Mod.B/hG ;

where the left adjoint is extension of scalars along A!B and the right adjoint is given
by taking homotopy fixed points.

We can restate the above equivalence in the following manner:

Corollary 4.2 Let Fun.BG;Sp/ be the symmetric monoidal 1–category of G–
spectra equipped with a G –action. Then we have a natural equivalence

ModFun.BG;Sp/.B/'ModSp.A/

given by taking homotopy fixed points.

Proof This follows from Proposition 4.1 using the fact that the construction of forming
modules in a symmetric monoidal 1–category is compatible with homotopy limits of
symmetric monoidal 1–categories.

Let C D Fun.BG;CAlg/ be the 1–category of E1–algebras equipped with a G–
action, so that B defines an object of C . We have therefore have natural equivalences
of 1–categories

(6) CB= ' CAlg.Fun.BG;Sp//B= ' CAlg.ModFun.BG;Sp/.B//' CAlg.Mod.A//;

where the last equivalence is given by taking homotopy fixed points. We now obtain:
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Proposition 4.3 For a faithful G–Galois extension A! B , the following two state-
ments are equivalent:

� THH.A/˝A B! THH.B/ is an equivalence.

� THH.A/! THH.B/ is a faithful G –Galois extension.

� The map THH.A/' .THH.A/˝A B/hG! THH.B/hG is an equivalence.

Proof In this case, the maps B ! THH.A/˝A B ! THH.B/ that we obtain are
G–equivariant, as they are natural in the E1 -A–algebra B . Therefore, the map
THH.A/˝A B! THH.B/ is naturally a morphism in CAlg.Fun.BG;Sp//B= . By (6),
the map is an equivalence if and only if it induces an equivalence on homotopy fixed
points.

Finally, if the map THH.A/˝A B! THH.B/ is an equivalence, then the morphism
THH.A/! THH.B/ is a base-change of the faithful G –Galois extension A!B and
is thus a faithful G–Galois extension itself. Conversely, if THH.A/! THH.B/ is
a faithful G–Galois extension, then the descent map THH.A/! THH.B/hG is an
equivalence.

In particular, the map A! B is strongly 0–cotruncated if and only if one has Galois
descent for THH along the map A!B . In [4], we give a general criterion for proving
descent in telescopically localized THH.

Theorem 4.4 [4] Suppose A ! B is a G–Galois extension such that the map
K0.B/˝Q ! K0.A/˝Q induced by restriction of scalars is surjective. Fix an
implicit prime p and a height n. Fix a weakly additive (see [4, Definition 3.11])
invariant E of �–compact small idempotent-complete A–linear 1–categories taking
values in a presentable stable 1–category. Then the natural morphisms

Lfn E.Perf.A//!Lfn E.Perf.B//hG
! .Lfn E.Perf.B///hG

are equivalences, where L
f
n denotes finitary Ln –localization. In particular, one can

take E DK , THH or T C .

As a result, we can prove that the base-change map is an equivalence in a large class of
“chromatic” examples of Galois extensions.

Theorem 4.5 Suppose A!B is a faithful G –Galois extension of E1–rings. Assume
that for every prime p , the localization A.p/ is L

f
n –local for some nD n.p/. Suppose

the map K0.B/˝Q!K0.A/˝Q is surjective (or equivalently has image containing
the unit). Then the base-change map THH.A/˝A B! THH.B/ is an equivalence.
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Proof To check that the map THH.A/˝A B! THH.B/ is an equivalence, it suffices
to localize at p , so we may assume A and B are p–local, and therefore L

f
n –local.

Since L
f
n is a smashing localization, it follows that all THH terms in sight are auto-

matically L
f
n –localized. In this case, the result follows by combining Proposition 4.3

and Theorem 4.4.

Example 4.6 Most classes of examples of faithful Galois extensions in chromatic
homotopy theory satisfy the conditions of Theorem 4.4. We refer to [4, Section 5] for
a detailed treatment. For example:

(1) The C2 –Galois extension KO! KU or the Cp�1 –Galois extension L! �KUp .

(2) The G –Galois extension EhG
n !En if G is a finite subgroup of the extended

Morava stabilizer group (see [4, Appendix B] by Meier, Naumann and Noel).

(3) Any Galois extension of TMFŒ1=n�, Tmf0.n/ or related spectra.

It follows that the comparison map in THH is an equivalence for these Galois extensions.

5 A counterexample

In this section, we will give an example over Fp where the comparison (or equivalently
descent) map for THH is not an equivalence. We begin with a useful weakening of
Definition 2.4.

Definition 5.1 A morphism x!y in an1–category C is said to be 0–cotruncated if,
for every z 2 C , the map HomC.y; z/!HomC.x; z/ is a covering space (ie has discrete
homotopy fibers over any basepoint). An object x 2 C is said to be 0–cotruncated if
HomC.x; z/ is discrete for any z 2 C .

The condition that x! y should be cotruncated is equivalent to the statement that
y2Cx= should define a 0–cotruncated object. Note that an object x2C is 0–cotruncated
if and only if the natural map x! S1˝x is an equivalence.

In the setting of E1–ring spectra, étale morphisms are far from the only examples of
0–cotruncated morphisms. For example, any faithful G –Galois extension in the sense
of Rognes [14] is 0–cotruncated. This is essentially [14, Lemma 9.2.6]. However, we
show that faithful Galois extensions need not be strongly 0–cotruncated. Equivalently,
base-change for THH can fail for them.
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Proof of Theorem 1.2 Consider the degree-p map S1!S1 , which is a Z=p–torsor.
Let k be a separably closed field of characteristic p . For a space X , we let C �.X I k/D

F.XCI k/ denote the E1–rings of k –valued cochains on X . The induced map of
E1–rings �WC �.S1I k/! C �.S1I k/ is a faithful Z=p–Galois extension of E1–
ring spectra. This follows from [14, Proposition 5.6.3(a)] together with the criterion
for the faithfulness via vanishing of the Tate construction [14, Proposition 6.3.3]. See
also [10, Theorem 7.13].

We will show, nonetheless, that � does not satisfy base-change for THH, or equivalently
that it is not strongly 0–cotruncated. It suffices to show this in CAlgk= in view of
Proposition 2.5.

By p–adic homotopy theory [9] (see also [7], which does not assume k D Fp ), the
natural map

S1
! HomCAlgk=

.C �.S1
I k/; k/

exhibits HomCAlgk=
.C �.S1I k/; k/ as the p–adic completion of S1 . In particular,

HomCAlgk=
.C �.S1I k/; k/'K.Zp; 1/ and the map given by precomposition with �

HomCAlgk=
.C �.S1

I k/; k/
��

��! HomCAlgk=
.C �.S1

I k/; k/;

is identified with the multiplication by p map K.Zp; 1/!K.Zp; 1/. In particular,
while this is a covering map, it is not a split covering map, so that � is not strongly
0–cotruncated.

The use of cochain algebras in providing such counterexamples goes back to an idea
of Mandell [11, Example 3.5], who gives an example of a morphism of E1–ring
spectra with trivial cotangent complex (ie is TAQ–étale) which is not THH–étale.
Namely, Mandell shows that if n > 1 then the map C �.K.Z=p; n/IFp/! Fp has
trivial cotangent complex.

We close by observing that it is the fundamental group that it is at the root of these
problems.

Proposition 5.2 Let X be a simply connected, pointed space and let A! B be a
faithful G –Galois extension of E1–rings. In this case, the map of E1–rings

.X ˝A/˝A B!X ˝B

is an equivalence.

In particular, one does have base-change for higher topological Hochschild homology
(ie where X D Sn with n> 1).
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Proof Following the earlier reasoning, it suffices to show that whenever C 2 CAlg,
the square

Hom.X;HomCAlg.B;C //

��

// HomCAlg.B;C /

��

Hom.X;HomCAlg.A;C // // HomCAlg.A;C /

is homotopy cartesian. However, this follows since HomCAlg.B;C /!HomCAlg.A;C /

is a covering space, and X is simply connected.
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