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For right-angled Coxeter groups W� , we obtain a condition on � that is necessary and
sufficient to ensure that W� is thick and thus not relatively hyperbolic. We show that
Coxeter groups which are not thick all admit canonical minimal relatively hyperbolic
structures; further, we show that in such a structure, the peripheral subgroups are
both parabolic (in the Coxeter group-theoretic sense) and strongly algebraically thick.
We exhibit a polynomial-time algorithm that decides whether a right-angled Coxeter
group is thick or relatively hyperbolic. We analyze random graphs in the Erdős–Rényi
model and establish the asymptotic probability that a random right-angled Coxeter
group is thick.

In the joint appendix, we study Coxeter groups in full generality, and we also obtain
a dichotomy whereby any such group is either strongly algebraically thick or admits
a minimal relatively hyperbolic structure. In this study, we also introduce a notion
we call intrinsic horosphericity, which provides a dynamical obstruction to relative
hyperbolicity which generalizes thickness.
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Introduction

The notion of relative hyperbolicity was introduced by Gromov [38], then developed
by Farb [35]. This notion is both sufficiently general to include many important classes
of groups, including all (uniform and nonuniform) lattices in rank-one semisimple Lie
groups, yet is sufficiently restrictive that it allows for powerful geometric, algebraic and
algorithmic results to be proven; see Arzhantseva, Minasyan and Osin [1], Drut,u [27],
Drut,u and Sapir [30] and Farb [35]. Further, relatively hyperbolicity admits numerous
geometric, topological and dynamical formulations which are all equivalent; see eg
Bowditch [12], Dahmani [21], Drut,u and Sapir [29], Osin [44], Sisto [45; 46] and
Yaman [48].
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Let G be a finitely generated group and P a finite collection of proper subgroups
of G . The group G is hyperbolic relative to the subgroups P if collapsing the left
cosets of P to finite-diameter sets, in any (hence every) word metric on G , yields a
ı–hyperbolic space, and if the collection P satisfies the bounded coset property which,
roughly speaking, requires that in the ı–hyperbolic metric space obtained as above, any
pair of quasigeodesics with the same endpoints travels through the collapsed cosets in
approximately the same manner. The subgroups in P are called peripheral subgroups.
We say a group is relatively hyperbolic when there is some collection of subgroups for
which this holds. A collection P of peripheral subgroups of the relatively hyperbolic
group G is minimal if, for any other relatively hyperbolic structure .G;Q/ on G , each
P 2 P is conjugate into some Q 2 Q. Relatively hyperbolic groups do not always
admit minimal structures; see Behrstock, Drut,u and Mosher [5, Theorem 6.3]. We
will follow the convention of requiring the subgroups to be proper, which rules out
the trivial case of G being hyperbolic relative to itself. Note also that a group G is
hyperbolic relative to hyperbolic subgroups if and only if G is hyperbolic.

We will also be interested in the notion of thickness which was introduced by Behrstock,
Drut,u and Mosher [5] as a powerful geometric obstruction to relative hyperbolicity
which holds in many interesting cases, including most mapping class groups, right-
angled Artin groups, lattices in higher-rank semisimple Lie groups, and elsewhere.
Thickness is defined inductively: At the base level, thick of order 0, it is characterized
by linear divergence. Roughly, a group is thick of order n if it is a “network of left cosets
of subgroups” which are thick of lower orders. This essentially means that the union
of these cosets is the entire space, and any two points in the space can be connected by
a sequence of these cosets which successively intersect along infinite-diameter subsets;
the precise definition appears in Section 1.2. Thickness has proven to be an important
invariant for obtaining upper bounds on divergence, and we shall utilize this below; cf
Behrstock and Charney [3], Behrstock and Drut,u [4], Behrstock and Hagen [7], Brock
and Masur [13] and Sultan [47]. In a relatively hyperbolic group, any thick subgroup
must be contained inside a peripheral subgroup; see [5, Corollary 7.9, Theorem 4.1].
This fact yields the useful application that any relatively hyperbolic structure in which
the peripheral subgroups are thick is a minimal relatively hyperbolic structure; see [29,
Theorem 1.8] and [5, Corollary 4.7].

In this paper, we study thickness and relative hyperbolicity in the setting of Coxeter
groups. One reason to do so is that Coxeter groups have many interesting properties,
making them a standard testing ground in geometric group theory. For example, these
groups are known to act properly on CAT.0/ cube complexes (see Niblo and Reeves
[43]), which allows them to be studied using the tools of CAT.0/ geometry. In particular,
this connects them to the study of thickness of cubulated groups initiated in [7].
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We first specialize to the case of right-angled Coxeter groups, the class of which is
diverse; for instance, each right-angled Artin group is a finite-index subgroup of a right-
angled Coxeter group; see Davis and Januszkiewicz [24]. The right-angled Coxeter
group W� is generated by involutions indexed by vertices of the finite simplicial
graph � ; the relations are commutation relations corresponding to edges. We prove
that, for every right-angled Coxeter group, either it is thick or it admits a canonical
relatively hyperbolic structure in which the peripheral subgroups are thick:

Theorem I (right-angled Coxeter groups are thick or relatively hyperbolic) Let T
be the class consisting of the finite simplicial graphs ƒ such that Wƒ is strongly
algebraically thick. Then for any finite simplicial graph � , either � 2 T or there exists
a collection J of induced subgraphs of � such that J � T , W� is hyperbolic relative
to the collection fWJ W J 2 Jg, and this relatively hyperbolic structure is minimal.

One application of this theorem is to the quasi-isometric classification of Coxeter
groups. As thickness is a quasi-isometric invariant, this provides a way to distinguish
the thick Coxeter groups from many other groups. A more refined classification also
follows from this result using the theorem which states that the quasi-isometric image
of a group which is hyperbolic relative to thick peripheral subgroups is also hyperbolic
relative to thick peripheral subgroups, each of which is quasi-isometric to one of the
peripherals in the source; see [5, Corollary 4.8] and [27]. Prior to this application of
Theorem I, major methods of classifying right-angled Coxeter groups included using
classification theorems in right-angled Artin groups (ie Behrstock and Neumann [9],
Behrstock, Januszkiewicz and Neumann [8] and Bestvina, Kleiner and Sageev [10])
in conjunction with results about commensurability between right-angled Artin and
Coxeter groups (for instance, results in Davis and Januszkiewicz [24]) and, for some
hyperbolic right-angled Coxeter groups, applying a result in Crisp and Paoluzzi [20].

Additionally, Theorem I provides an effective classification theorem because T can be
characterized combinatorially as follows:

Theorem II (combinatorial characterization of thick right-angled Coxeter groups)
Let T be the class of finite simplicial graphs whose corresponding right-angled Coxeter
groups are strongly algebraically thick. Then T is the smallest class of graphs satisfying
the following conditions:

(1) K2;2 2 T , where K2;2 is the complete bipartite graph on two sets of two
elements, ie a 4–cycle.

(2) Let � 2 T and let ƒ� � be an induced subgraph which is not a clique. Then
the graph obtained from � by coning off ƒ is in T .

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 1: A graph in T (left) and a graph not in T (right)

(3) Let �1; �2 2 T , and suppose there exists a graph � which is not a clique and
which arises as a subgraph of each of the �i . Then the union ƒ of �1 and �2

along � is in T , and so is any graph obtained from ƒ by adding any collection
of edges joining vertices in �1�� to vertices of �2�� .

Theorems I and II together imply that any thick right-angled Coxeter group is strongly
algebraically thick. A special case of this is that W� is thick of order 0 if and only
if it is the product of two infinite right-angled Coxeter groups; see Proposition 2.11,
which generalizes a result of Dani and Thomas [22, Theorem 4.1].

Figure 1 illustrates examples of graphs in and not in T . See also Remark 2.8. The
right-angled Coxeter groups with polynomial divergence constructed by Dani and
Thomas [22] are strongly algebraically thick; this was shown in [loc. cit.] and can also
be verified either by observing that the corresponding graphs are in T , or by combining
the fact that they have subexponential divergence with Theorem I and the exponential
divergence of any relatively hyperbolic group.

An important consequence of the above characterization of the class T is that it allows
thickness/relative hyperbolicity to be detected algorithmically:

Theorem III (polynomial algorithm for relative hyperbolicity; Theorem 4.1) There
exists a polynomial-time algorithm to decide if a given graph is in T , and hence
whether a given right-angled Coxeter group is (strongly algebraically) thick or relatively
hyperbolic.

Random graphs

We consider right-angled Coxeter groups on random graphs in the Erdős–Rényi model
[31]: G.n;p.n// is the class of graphs on n vertices with the probability measure
corresponding to independently declaring each pair of vertices to be adjacent with
probability p.n/. The results of this section are summarized in Figure 2.
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Figure 2: The results of Section 3 illustrated on the same spectrum of densities
as addressed conjecturally in Figure 4. Each listed property occurs aas at the
given density, unless the specific asymptotic probability is stated.

An important result of Erdős and Rényi states that a random graph is asymptotically
almost surely (aas) connected when p.n/ grows more quickly that .log n/=n, and is aas
disconnected when p.n/D o..log n/=n/. This implies that for slowly growing p.n/,
when � 2 G.n;p.n//, the right-angled Coxeter group W� is aas a nontrivial free
product, and hence relatively hyperbolic. In light of Theorem I, it is natural to wonder if
there are densities at which a random right-angled Coxeter group is relatively hyperbolic
but not a free product. The following gives a positive answer to this question; the
technical terms in this theorem will be defined in Section 3.

Theorem IV (low density, Theorem 3.4) Suppose p.n/n!1 and p.n/6n5! 0.
For � 2G.n;p.n//, the group W� is aas hyperbolic relative to a nonempty collection
of D1�D1 subgroups; the same holds for W� 0 , where � 0�� is the giant component
of � .

Intuitively, the probability of thickness should increase with the growth rate of p.n/,
up to the point where � is aas sufficiently dense that W� is either finite or virtually
cyclic. The following result confirms this intuition.

Theorem V (high density, Theorem 3.9) Suppose that .1�p.n//n2! ˛ 2 Œ0;1/.
Then for � 2G.n;p.n//, the group W� is

(1) finite with probability tending to ˇ D e�˛=2,

(2) virtually Z with probability tending to 
 D 1
2
˛e�˛=2,

(3) virtually Zk for k � 2, and thus thick of order 0, with probability tending to
1� .ˇC 
 /.

The following describes the situation at a natural choice of “intermediate” p.n/:

Theorem VI (intermediate density) For � 2G
�
n; 1

2

�
, the group W� is aas thick.
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We conjecture that for all p 2 .0; 1/, the group W� is aas thick for � 2G.n;p/.1 This
conjecture is strongly supported by computer experiments; for example, for nD 200

and for each of several values of p , we tested 50 random graphs and found all to
correspond to thick right-angled Coxeter groups. For any given p 2 .0; 1/, we expect
the strategy used in the proof of Theorem VI will work. However, there are two serious
complications to implementing this strategy for any particular p : first, combinatorially,
the requisite set-up may be more intricate, and second, establishing the base case of
the induction is likely to be computationally prohibitive for some values of p , since it
involves checking all graphs of a size depending on p for membership in T .

One of our motivations for our study of random Coxeter groups was the results of
Charney and Farber [18] on hyperbolicity of random right-angled Coxeter groups.
More recently, results have been obtained about cohomological properties of such
random groups by Davis and Kahle [25]. Together with our results, this represents the
beginning of a systematic study of random Coxeter groups.

General Coxeter groups

In the appendix, we generalize Theorems I and II to all Coxeter groups. Accordingly,
we recommend reading the first part of the appendix, Section A.1, concurrently with
Section 2 in order to see how the results on thickness versus relative hyperbolicity for
right-angled Coxeter groups generalize to arbitrary Coxeter groups, as well as the limi-
tations of the generalization. In the latter vein, as shown by the example in Remark 2.9,
there is no characterization of strongly algebraically thick Coxeter groups that are not
right-angled purely in terms of the underlying graph of the free Coxeter diagram.

Theorem I generalizes as follows:

Theorem VII (minimal relatively hyperbolic structures for Coxeter groups) Let
.W;S/ be a Coxeter system. Then there is a (possibly empty) collection J of subsets
of S enjoying the following properties:

(i) The parabolic subgroup WJ is strongly algebraically thick for every J 2 J .

(ii) W is relatively hyperbolic with respect to P D fWJ j J 2 J g.

In particular, P is a minimal relatively hyperbolic structure for W .

Theorem II takes the following form for general Coxeter groups. Note that thickness is
now described using a class of labeled graphs instead of a class of graphs.

1While this paper was circulating as a preprint, a resolution of a strong form of this conjecture was
obtained by Behrstock, Falgas-Ravry, Hagen and Susse [6].
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Theorem VIII (classification of thick Coxeter groups) The class T of Coxeter sys-
tems .W;S/ for which W is strongly algebraically thick is the smallest class satisfying:

(1) T contains the class T0 of all irreducible affine Coxeter systems .W;S/ with S

of cardinality at least 3, as well as all Coxeter systems of the form .W;S1[S2/

with WS1
and WS2

irreducible nonspherical and ŒWS1
;WS2

�D 1.

(2) Suppose .W;S [ s/ has the properties that s? is nonspherical and .WS ;S/

belongs to T . Then .W;S [ s/ belongs to T .

(3) Suppose .W;S/ has the property that there exist S1;S2 � S with S1[S2D S ,
.WS1

;S1/; .WS2
;S2/ 2 T and WS1\S2

nonspherical. Then .W;S/ 2 T .

We also introduce the notion, which we feel will be of independent interest, of an
intrinsically horospherical group, ie one for which every proper isometric action of �
on a proper hyperbolic geodesic metric space fixes a unique point at infinity. Any
group G admits a collection of maximal intrinsically horospherical subgroups, and any
relatively hyperbolic structure on G has the property that every maximal intrinsically
horospherical subgroup is conjugate into a peripheral subgroup. We show that any
thick group is intrinsically horospherical. In the case of Coxeter groups, we say more:

Corollary IX Let .W;S/ be a Coxeter system. Then the following conditions are
equivalent:

(I) .W;S/ is in T .

(II) W is strongly algebraically thick.

(III) W is intrinsically horospherical.

(IV) W is not relatively hyperbolic with respect to any family of proper subgroups.

(V) W is not relatively hyperbolic with respect to any family of proper Coxeter-
parabolic subgroups.

Outline

In Section 1, we discuss background on Coxeter groups, thickness and divergence.
Sections 2, 3 and 4 are devoted to right-angled Coxeter groups: In the second section,
we treat Theorems I and II. In the third section, we study right-angled Coxeter groups
presented by random graphs, dealing in particular with Theorems IV, V and VI. In
the fourth section, we produce an algorithm for testing whether a given graph is in T .
We also include source code containing an implementation of a refined version of this
algorithm; this program is needed for a computation in the proof of Theorem VI. (This
source code is available from the authors’ web pages and on the arXiv.) In the appendix,
we study arbitrary Coxeter groups and introduce the notion of intrinsic horosphericity;
in particular, we prove Theorems VII and VIII and Corollary IX.

Algebraic & Geometric Topology, Volume 17 (2017)



712 Jason Behrstock, Mark F Hagen and Alessandro Sisto

Acknowledgments Hagen and Sisto thank the organizers of the conference Geometric
and Analytic Group Theory (Ventotene 2013). We thank Kaia Behrstock for her help
making Figure 4. Finally, we are grateful to Tim Susse, Ha-Young Shin and the referees
for several helpful comments and corrections.

Hagen was supported by the National Science Foundation under Grant Number NSF
1045119. Behrstock was supported as an Alfred P Sloan Fellow and by the National
Science Foundation under Grant Number NSF 1006219.

1 Preliminaries

In this section, we review definitions and facts related to Coxeter groups, divergence
and thick metric spaces. A comprehensive discussion of Coxeter groups can be found
in [23]. The notion of divergence used here is due to Gersten [36]. Our consideration
of divergence in the setting of Coxeter groups was motivated largely by the discussion
in [22] and, to some extent, by questions about divergence in cubulated groups (of
which Coxeter groups are examples) raised in [7]. Thick spaces and groups were
introduced in [5], and we also refer to results of [4].

1.1 Background on Coxeter groups

Throughout this paper, we confine our discussion to finitely generated Coxeter groups.
A Coxeter group is a group of the form

hS j .st/mst W s; t 2 Si;

where each mssD1, and for s¤ t , either mst �2 or there is no relation between s and t

of this form. Also, mst Dmts for each s; t 2 S . The pair .W;S/ is a Coxeter system.

The Coxeter group W is reducible if there are nonempty sets S1;S2 � S such that
S D S1 tS2 , and for all s1 2 S2; s2 2 S2 , we have ms1s2

D 2. If W is not reducible,
then it is irreducible. The Coxeter system .W;S/ is said to be (ir-)reducible if W has
the corresponding property.

To the Coxeter system .W;S/, we associate a bilinear form h�;�i on RŒS � defined
by hs; ti D � cos.�=mst / when there is a relation .st/mst , and hs; ti D �1 otherwise.
It is well known that this bilinear form is positive definite if and only if W is finite, in
which case the Coxeter system .W;S/ is spherical. Otherwise, .W;S/ is nonspherical
(or aspherical). If the bilinear form is positive semidefinite and .W;S/ is irreducible,
then there is a short exact sequence Zn!W !W0 , where nC 1D jS j and W0 is a
finite Coxeter group. In this case, the Coxeter system .W;S/ is (irreducible) affine.
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For any J �S , the subgroup WJ WD hJ i�W is a parabolic subgroup. Evidently, WJ

is again a Coxeter group and .WJ ;J / a Coxeter system. The subset J is spherical,
irreducible, affine, etc. if the Coxeter system .WJ ;J / has the same property.

Right-angled Coxeter groups If each relation in the above presentation has the form
.st/2 , then W is a right-angled Coxeter group. In this case, let � be the graph with
vertex set S and with an edge joining s; t 2 S if and only if .st/2 D 1, ie if and only
if the involutions s and t commute. Then W decomposes as a graph product: the
underlying graph is � , and the vertex groups are the subgroups hsi Š Z2 and s 2 S .

Conversely, given a finite simplicial graph � with vertex set S and edge set E , there
is a right-angled Coxeter group

W� WD hS j s
2; .st/2 W s; t 2 S; .s; t/ 2 Ei:

For example, if � is disconnected, then W� is isomorphic to the free product of the
parabolic subgroups generated by the vertex sets of the various components, while
if � decomposes as a nontrivial join, then W� is isomorphic to the product of the
parabolic subgroups generated by the factors of the join. For J � S , the parabolic
subgroup WJ �W� is isomorphic to the right-angled Coxeter group Wƒ , where ƒ is
the subgraph of � induced by J .

Finally, we remark that if W� is a right-angled Coxeter group, then there exists a
CAT.0/ cube complex zX� on which W� acts properly discontinuously and cocom-
pactly. This CAT.0/ cube complex is the Davis complex X� , which is obtained from
the universal cover of the presentation complex of W� by collapsing bigons to edges,
noting that each remaining 2–cell is a 2–cube, and then iteratively attaching a k –cube
whenever its vertex set is contained in the .k�1/–skeleton, for k � 3; see [23] for
details. We will make use of the existence of such a CAT.0/ cube complex in the proof
of Proposition 2.11.

1.2 Background on divergence and thickness

Given functions f;gW RC ! RC , we write f 4 g if for some K � 1, we have
f .s/�Kg.KsCK/CKsCK for all s 2RC , and f � g if f 4 g and g 4 f .

Definition 1.1 (divergence) Let .M; d/ be a geodesic metric space, let ı 2 .0; 1/
and 
 � 0, and let f W RC ! RC be given by f .r/ D ır � 
 . Given a; b; c 2M

with d.c; fa; bg/D r > 0, let divf .a; bI c/D inffjP jg, where P varies over all paths
in M joining a to b and avoiding the ball of radius f .r/ about c . If no such path
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exists, divf .a; bI c/D1. The divergence function DivM
f W RC!RC of M is then

defined by
DivM

f .s/D supfdivf .a; bI c/ W d.a; b/� sg:

Note that M has finite divergence if and only if M has one end.

Given a function gW RC!RC , we say that M has divergence of order at most g if
for some f as above, DivM

f .s/4 g.s/. Much of the interest in divergence comes from
the fact that the divergence function of M is a quasi-isometry invariant in the following
sense: if M1 and M2 are quasi-isometric geodesic metric spaces and DivM1

f � g , then
DivM2

f 0 � g for some f 0 . In particular, the divergence of a finitely generated group is
well defined up to the relation �. A group has linear divergence if and only if it does
not have cut-points in any asymptotic cone. Such spaces are called wide; see [2; 28].

One family of metric spaces which are particularly amenable to divergence computations
is the family of thick spaces, as introduced in [5]. Thickness is a quasi-isometrically
invariant notion, and this family of spaces is partitioned into quasi-isometrically invariant
subclasses by their order of thickness, which is a nonnegative integer. In the present
paper, we work with a refinement of the notion of thickness which is tuned for the
study of finitely generated groups:

Definition 1.2 (strongly algebraically thick [4]) A finitely generated group G is
said to be strongly algebraically thick of order 0 if it is wide. For n� 1, the finitely
generated group G is strongly algebraically thick of order at most n if there exists a
finite collection H of subgroups such that:

(1) Each H 2H is strongly algebraically thick of order at most n� 1.

(2) h
S

H2H H i has finite index in G .

(3) There exists C � 0 such that for all H;H 0 2 H , there is a sequence H D

H1; : : : ;Hk D H 0 with each Hi 2 H such that for all i � k , the intersection
Hi \HiC1 is infinite and the C–neighborhood of Hi \HiC1 (with respect to
some fixed word metric on G ) is path-connected.

(4) For all H 2H , any two points in H can be connected in the C–neighborhood
of H by a .C;C /–quasigeodesic.

G is strongly algebraically thick of order n if G is strongly algebraically thick of order
at most n but is not strongly algebraically thick of order at most n� 1.

As shown in [4], if G is strongly algebraically thick of order n, then G , with any
word metric, is a (strongly) thick metric space. In the present paper, we are particularly
interested in the following consequences of strong algebraic thickness:
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Proposition 1.3 (upper bound on divergence [4, Corollary 4.17]) Let G be a finitely
generated group that is strongly algebraically thick of order n. Then the divergence
function of G is of order at most snC1 .

Proposition 1.4 (nonrelative hyperbolicity [5, Corollary 7.9]) Let G be strongly alge-
braically thick. Then G is not hyperbolic relative to any collection of proper subgroups.

Note that the above establishes that the divergence function of thick groups is qual-
itatively different from that of relatively hyperbolic groups, as the latter class has
divergence functions which are at least exponential; cf [45, Theorem 1.3].

2 Hyperbolicity relative to thick subgroups:
the right-angled case

In this section, � will denote a finite simplicial graph and W� will denote the associated
right-angled Coxeter group. We will postpone proofs of most of the results of this section
to the appendix, where we will consider them in the context of arbitrary Coxeter groups.
We focus on the right-angled case here, both for the benefit of readers specifically
interested in the right-angled case and because these groups are cocompactly cubulated,
which allow for more refined results, such as those in Proposition 2.11 and in Section 3.

We will adopt the following:

Convention 2.1 When we say graph, we will always mean a finite simplicial graph
(ie no multiedges or monogons). Graphs will often be denoted by Greek letters. When
we say ƒ is a subgraph of � , or when we write ƒ� � , we will mean the full induced
subgraph; ie a pair of vertices of ƒ spans an edge in ƒ if and only if they span one in � .

We begin by defining the class of graphs T that we discussed briefly in the introduction.

Definition 2.2 (new graphs from old) If � is a graph and ƒ�� , then we say that the
graph � 0 is obtained by coning off ƒ if the graph � 0 can be obtained from � by adding
one new vertex along with edges between that vertex and each vertex of ƒ. Given
two graphs �1 and �2 with isomorphic subgraphs � , we say the union of �1 and �2

along � is the graph obtained by taking the disjoint union of the graphs �1 and �2

and identifying the corresponding � subgraphs of �i by the given isomorphism taking
one of the � subgraphs to the other. Given two graphs �1 and �2 with isomorphic
subgraphs � , we say that a graph � 0 is a generalized union of �1 and �2 along � if
� 0 can be obtained from the associated union by adding a collection of edges between
vertices of �1 n� and vertices of �2 n� .
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Definition 2.3 (thick graphs) The set of thick graphs, T , is the smallest set of graphs
satisfying the following conditions:

(1) K2;2 2 T .

(2) If � 2 T and ƒ� � is any induced subgraph of diameter greater than one, then
the graph obtained by coning off ƒ is in T .

(3) Let �1; �2 2 T with both �i containing an isomorphic subgraph, � , which is
not a clique. Then any generalized union of the �i along � is in T .

When W is a right-angled Coxeter group, there are no irreducible affine Coxeter
systems .W;S/ with S of cardinality at least 3. In particular, it is straightforward
to check that a right-angled Coxeter group is defined by a graph in T if and only if
the group is in the class of right-angled Coxeter groups T which is defined at the
beginning of Section A.1. The next result is thus a consequence of Proposition A.2.

Theorem 2.4 For each � 2 T , the right-angled Coxeter group W� is strongly alge-
braically thick.

The main result of this section is the following, which provides an effective classification
theorem with our explicit description of T .

Theorem 2.5 Let � be a graph. The right-angled Coxeter group W� satisfies exactly
one of the following:

� it is strongly algebraically thick and � 2 T , or

� it is hyperbolic relative to a (possibly empty) minimal collection A of parabolic
subgroups for which each Wƒ 2A is strongly algebraically thick and with each
such ƒ 2 T .

If a group is hyperbolic relative to the empty collection of subgroups, then it is hyper-
bolic; hence if A is empty, then W� is hyperbolic.

Theorem 2.5 can now be proven considering the collection of all maximal subgraphs
of � that belong to T and checking that conditions (RH1)–(RH3) of [15, Theorem A0 ]
hold. We postpone the proof of this to the appendix.

Remark 2.6 An alternative way to prove Theorem 2.5 is to define T to be the set
of finite graphs whose corresponding right-angled Coxeter groups are thick. It would
then suffice to establish the following statements about induced subgraphs J1;J2 of �
belonging to T :
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1 4 2 5 3

Figure 3: A length-6 geodesic in � shows that � 2 F .

(1) If J1\J2 is aspherical, then the subgraph induced by J1[J2 belongs to T .

(2) If v 2 � � J1 and the link of v in J1 is nonempty and aspherical, then
J1[fvg 2 T .

(3) Joins of aspherical subgraphs belong to T .

Our explicit definition of T allows us to characterize thick right-angled Coxeter groups,
as we do now.

Corollary 2.7 W� is strongly algebraically thick if and only if � 2 T .

Proof If W� is strongly algebraically thick, then � is not relatively hyperbolic by [5,
Corollary 7.9]. Thus by Theorem 2.5, we must have W� 2 T . In the other direction:
by Theorem 2.4, if � 2 T , then W� is strongly algebraically thick.

Remark 2.8 From Corollary 2.7, we know that all right-angled Coxeter groups which
are wide have corresponding graphs in T . As we shall see in Proposition 2.11, these
graphs all decompose as nontrivial joins, and thus in particular, the number of squares
in these graphs is linear in the number of vertices. In the case of right-angled Coxeter
groups which are thick of order 1, it was proven in [22] that each vertex in the
corresponding graph is contained in a square; hence in that case as well, the number of
squares is at least linear in the number of vertices.

Accordingly, it is natural to expect that a graph in T contains “many” squares relative
to the number of vertices it contains. However, this is not the case in general. Indeed,
for all sufficiently large N 2N , the set of graphs in T containing at most N squares
is infinite. We define a class of graphs F consisting of graphs � such that � 2 T
and � contains vertices v1; : : : ; v5 for which d.vi ; viC1/ � 3 for each i . If � 2 F ,
then the graph obtained by joining vi and viC1 by a path of length 2 is also in F , and
it has the same number of squares as � and strictly more vertices. Any element of T
of diameter at least 6 is in F , since it has an induced subgraph which is in F , namely,
the path of length 6 (as shown in Figure 3).

The claim now follows for some N since T contains graphs of arbitrarily large diameter,
as we shall now show. Begin with a graph �0 2 T of diameter d � 3 with the additional
property that some vertex v0 of �0 lies at distance d from nonadjacent vertices u0

and w0 (for example, the graph in Figure 1 (left)). Form �1 from �0 by adding two
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new vertices u1 and w1 , each joined by an edge to u0 and w0 . By Theorem 2.4,
�1 2 T . By construction, the distance in �1 from each of u1 and w1 to v0 is dC1, so
the diameter has increased. Finally, the triple v0;u1; w1 shows that �1 has the property
needed to repeat this procedure. Hence, the existence of graphs in T of arbitrarily
large diameter follows by induction.

Remark 2.9 (Theorem 2.4 does not hold for general Coxeter groups) Given a (not
necessarily right-angled) Coxeter system .W;S/, there is a naturally associated labeled
graph � , the free Coxeter diagram, with vertex set S and an edge labeled n� 2 joining
vertices s and t that satisfy a relation .st/nD 1. Note that since mss D 1 for all s 2S ,
this graph is simplicial. Furthermore, if .W;S/ is right angled, then all labels are 2,
and � is the graph considered above.

If the Coxeter group W is not right-angled, the thickness of W cannot be characterized
by a purely graph-theoretic property of the free Coxeter diagram. Indeed, there exists a
hyperbolic Coxeter group W whose free Coxeter diagram is a 4–cycle: Consider the
Coxeter system determined by the presentation

W D hs; t;u; v j s2; t2;u2; v2; .st/n; .su/2; .uv/2; .tv/2i;

with n� 3. The labeled graph � is a 4–cycle, with the edge joining s; t labeled n� 3

and all other edges labeled 2. However, the group W is a Fuchsian group, being
generated by reflections in the sides of a 4–gon in H2 with angles �

2
, �

2
, �

2
and �

n
.

Being hyperbolic, W cannot be thick.

Combining the upper bound on divergence of strongly thick spaces given in [4, Corol-
lary 4.17], the fact that relatively hyperbolic groups have exponential divergence (see
eg [45, Theorem 1.3]) and Theorem 2.5, we obtain:

Corollary 2.10 Let � be a connected graph. Then the divergence function of W� is
either exponential or bounded above by a polynomial.

2.1 Characterizing thickness of order 0

As it turns out, the class T0 of graphs � for which W� is wide admits a simple
description as we shall see below. The triangle-free case of this result was previously
established using different techniques in [22, Theorem 4.1]. We note that since there
exist wide Coxeter groups which are not products (for instance the 3–3–3 triangle
group), the following result does not generalize beyond the right-angled case.

Proposition 2.11 T0 is the set of graphs of the form .�1 ?�2/?K , where �1 and �2

are aspherical and K is a (possibly empty) clique.
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Proof If � decomposes as in the statement of the proposition, then W� decomposes
as the product of infinite subgroups .W�1

�W�2
/ � ZjK j

2
, whence W� has linear

divergence and is therefore wide, ie � 2 T0 . Conversely, suppose that W� has linear
divergence, and let zX� be the Davis complex (see [23]). Then zX� is a CAT.0/
cube complex on which W� acts properly and cocompactly by isometries. Each
hyperplane H of zX� is regarded as being labeled by a pair .v;g/ 2 �.0/�W� , where
gvg�1 acts as an inversion in the hyperplane H .

Recall that W� acts essentially, in the sense of [17], on zX� if for each hyperplane H ,
the two components of zX� �H each contain points in some W� –orbit which are
arbitrarily far from H . A hyperplane without this property is called inessential.

Suppose that the action of W� on zX� is essential. Then since W� is wide, it contains
no rank-one isometry of zX� , and hence the rank-rigidity theorem of [17] implies that
there exist unbounded convex subcomplexes zY and zY 0 such that zX� D zY � zY 0 . It
follows that the link of the vertex in zX� decomposes as the join of aspherical subgraphs.
But this link is exactly � , and hence � has the desired form.

Now we may assume W� is not acting essentially on zX� . Thus, by definition, there
exists an inessential hyperplane H.v;1/ , and it is easy to see that every generator
must commute with v . Indeed, if H.w;1/ and H.v;1/ are disjoint hyperplanes, then
hv;wifH.w;1/g contains hyperplanes arbitrarily far from H.v;1/ in each of its half-
spaces. Let K be the clique in � whose vertices label such inessential hyperplanes.
Then � D � 0 ? K , where � 0 is an aspherical set whose vertices label essential
hyperplanes of zX� . This provides the desired decomposition of � 0 as the join of
aspherical subsets.

3 Random right-angled Coxeter groups

We now consider the right-angled Coxeter group W� , where � is a random graph in
the following sense. Let pW N! Œ0; 1� be a function such that p.n/

�
n
2

�
has a limit in

R[f1g as n!1. A random graph on n vertices is formed by declaring each pair
of vertices to span an edge, independently of other pairs, with probability p D p.n/.
In other words, we define G.n;p/ to be the probability space consisting of simplicial
graphs with n vertices where, for each graph � on n vertices, P .�/DpE.1�p/.

n
2/�E ,

where E is the number of edges in � . This model of random graphs was introduced by
Gilbert in [37], and is both contemporaneous with and very similar to the Erdős–Rényi
model of random graphs first studied in [31; 32]. For a survey of more recent results
on random graphs, see [19].
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Figure 4: Prevalence of thickness along the “spectrum” of densities p.n/ ,
if the answer to Question is positive; bold intervals are where, conjecturally,
W� is aas thick of a specified order.

Since the assignment � 7!W� of a finite simplicial graph to the corresponding right-
angled Coxeter group is bijective [42], it is sensible to define “generic” properties of
right-angled Coxeter groups with reference to the above model of random graphs. More
precisely, if P is some property of right-angled Coxeter groups and G is a class of
finite simplicial graphs such that W� has the property P if and only if � 2 G , then we
say that W� satisfies P asymptotically almost surely (aas) if P .� 2 G\G.n;p//! 1

as n!1. We emphasize that the notion of asymptotically almost surely depends
on the choice of probability function p even though it is customary to not explicitly
mention p in the notation.

The following question describes the authors’ best guess regarding the behavior of
thickness and relative hyperbolicity for random right-angled Coxeter groups. In this
section, we will provide both theorems and computations that motivate this picture, but
we lead with it to contextualize the theorems that follow.

Question Let Tm be the set of graphs � for which W� is thick of order m� 0, and
denote by T1 the set of graphs for which W� is hyperbolic relative to proper subgroups.
Do there exist functions f �m ; f

C
m W N ! Œ0; 1�, for m � 0; such that f �m D o.f Cm /,

f Cm DO.f �
m�1

/ and

lim
n!1

P
�
� 2Tm j� 2G.n;p.n//

�
D

�
0 if p.n/=f �m .n/! 0;

1 if p.n/=f �m .n/!1 and p.n/=f Cm .n/! 0;

for all m� 0? Similarly, does there exist f1 such that W� is asymptotically almost
surely relatively hyperbolic when � 2G.n;p.n// and p D o.f1/?

The situation that would occur in the event of a positive answer to Question is illustrated
heuristically in Figure 4. Given p1;p2W N! Œ0; 1�, we place p1 to the left of p2 in the
picture of Œ0; 1� if and only if p1 D o.p2/. Compare also Figure 2, which summarizes
the results of this section.

In the interval where W� is aas relatively hyperbolic, it is interesting to speculate
whether the order of thickness of the peripheral subgroups might be determined by p.n/,
especially in view of Theorem 3.4, which we will see below. In other words, one could
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a n Prop. thick

1.95 2000 0.53
1.95 2100 0.515
1.95 4000 0

2 2000 0.8
2 2500 0.46
2 3000 0.19
2 4000 0.025

2.5 2500 1
2.5 3000 0.53
2.5 4000 0

a n Prop. thick

3 4000 0.5
3 5000 0

4 4000 1
4 10000 1
5 4000 1
5 10000 1

10 4000 1
10 10000 1

Table 1: Experimental proportion of � 2 G.n; .a log n/=n/ that are thick.
For each a , this proportion tends to 0 as n!1 by Theorem 3.4 but, as
illustrated, may do so quite slowly.

sensibly ask if there are functions g˙m such that W� is aas hyperbolic relative to groups
that are thick of order n for p between g�m and gCm , and if there is a function g1
such that W� is aas hyperbolic — ie hyperbolic relative to hyperbolic subgroups —
when p D o.g1/. In fact, Charney and Farber have established that we can take
g1.n/D n�1 : when np.n/! 0, the group W� is aas hyperbolic, and if p.n/! 0

and p.n/n ! 1, then aas W� is not hyperbolic [18]. However, identifying the
functions gm appears to be an open question.

The results in this section are summarized in Figure 2. These results are consistent
with a positive answer to Question, but there are significant “gaps” in the spectrum
about which nothing is presently known.

Remark 3.1 (thickness and connectivity) If � is disconnected, then W� splits as a
nontrivial free product and is therefore not thick. Hence the function f1 from Question,
if it exists, must satisfy log n=.nf1/! 0, by Theorem 3.4 (as shown in Figure 2),
since .log6 n/=n! 0. In other words, there are densities at which � is aas connected
but W� is not aas thick. However, the convergence to 0 of the proportion of random
graphs at density O..log n/=n/ is quite slow. This is illustrated in Table 1, which
shows data selected from the output of many computer experiments;2 for correctly
chosen a> 0, even at nD 10000 it is not yet clear that W� is not aas thick at density
.a log n/=n.

2Source code available from the authors and at arXiv.
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3.1 Behavior at low densities

In the next theorem, we collect a few facts about random right-angled Coxeter groups.
Recall from [23, Theorem 8.7.4] that W� is one-ended provided � has no separat-
ing clique.

Theorem 3.2 W� asymptotically almost surely decomposes as a nontrivial free prod-
uct if and only if there exists � > 0 such that p.n/ < ..1 � �/ log n/=n. Hence, if
p.n/ < ..1� �/ log n/=n, then the divergence of W� is aas infinite.

If there exists � > 0 such that p.n/> ..1C�/ log n/=n, and there exists k 2N such that
nkp.n/k

2
! 0, then aas � has no separating clique, and hence W� is aas one-ended

and has finite-divergence function.

Proof W� admits a nontrivial free product decomposition if and only if � is discon-
nected, and log n=n is the threshold for p.n/ above which connectedness occurs aas
and below which disconnectedness occurs aas; see [32].

Let KnDKn.�/ equal 1 or 0 according to whether � is disconnected. For 0� j � n,
let Kj

n .�/ D
P
ƒKn�j .� �ƒ/, where ƒ varies over the size-j subgraphs of � .

Then E.Kj
n / D

�
n
j

�
E.Kn�j /p.

j
2/ is an upper bound for the expected number of

separating j –simplices, and the expected number of separating simplices in � is
therefore bounded by

n�2X
jD0

� n

j

�
E.Kn�j /p

.j
2/:

Now, for p.n/ > .1C �/.log.n//=n and p D o.1/, Theorem 1 of [31] implies thatP
j�k

�
n
j

�
E.Kn�j /p.

j
2/ tends to 0 for any fixed k . If p.n/ is sufficiently small to

ensure that aas all cliques in � have size O.1/, ie if there exists k such that
�

n
k

�
p.

k
2/!0,

then the preceding sum bounds the limiting expected number of separating cliques of
any size, and the proof is complete.

Because of the hypothesis that nkp.n/k
2

! 0 for some k 2N , the second assertion
of Theorem 3.2 says nothing about how many ends W� aas has when � 2 G.n;p/

and p ¤ o.1/. This should be expected in light of Theorem 3.9 below, which shows
that if p.n/ ! 1 sufficiently quickly, the random right-angled Coxeter group W�

will have 2 or 0 ends with positive probability. However, it is likely possible to
improve the second assertion to show that W� is aas one-ended for a wider range
of p , provided we still have p 6! 1 as n!1, using the fact that aas all cliques
in � have size in O.log n/ provided p 6! 1, by an application of Markov’s inequality.
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Indeed, under the assumptions that p.n/ � 5.log.n//=n and p 6! 1, it is proven in
[34, Lemma 4.1] that linearly many edges must be removed to disconnect � ; thus
the bound on the size of cliques, as noted above, implies that there are no separating
cliques. It would be interesting to know if this last comment can be improved to hold
when p.n/� .1C �/.log.n//=n and p 6! 1.

Theorem 3.3 If for some � > 0, we have 1�p.n/ � .1C �/.log n/=n, then W� is
not thick of order 0, and hence has at least quadratic divergence, aas.

Proof Let � 0 be the complement of � , ie the graph with the same vertex set as � , but
with each pair of vertices adjacent if and only if they are nonadjacent in � . Observe
that � decomposes as a nontrivial join if and only if � 0 is disconnected. Moreover, note
that if � 2 G.n;p/, then � 0 2 G.n; 1�p/. Hence if 1�p.n/� .1C �/.log.n//=n for
some � > 0, then � 0 is asymptotically almost surely connected; ie � is asymptotically
almost surely not a nontrivial join for such p.n/. In this case, we thus have that W� is
not thick of order 0 and hence has superlinear divergence. By [17, Corollary B], since
W� acts cocompactly on its Davis complex, it contains a periodic rank-one geodesic,
and thus by [40, Proposition 3.3], the divergence of W� is at least quadratic.

Theorem 3.4 If p.n/n!1 and p.n/6n5! 0, then the following holds asymptoti-
cally almost surely: � has a component � 0 such that W� 0 is hyperbolic relative to a
nonempty collection of proper subgroups each isomorphic to D1 �D1 . Hence W�

is aas hyperbolic relative to a nonempty collection of proper D1 �D1 subgroups, at
least one of which is not a proper free factor of W� .

Remark 3.5 Of greatest interest are densities p.n/ growing faster than .log n/=n

but slower than n�1=6 . At such densities, Theorem 3.2 and Theorem 3.4 together
ensure that W� is asymptotically almost surely one-ended and hyperbolic relative to
D1 �D1 subgroups.

Proof of Theorem 3.4 Since pn ! 1, [33] together with [11, Theorem 2.2(ii)]
implies that aas � has a giant component � 0 containing a positive proportion ˛ 2 .0; 1/
of the vertices, and every other component �i has no more than O.log n/ vertices. It
suffices to show that, a.a.s, � 0 contains K2;2 as an induced proper subgraph and �
does not contain K2;3 . Indeed, the second assertion together with Lemma 3.8 implies
that every element of T arising as an induced subgraph of � 0 is isomorphic to K2;2 .
The first assertion, together with Theorem 2.5, will then complete the proof.

K2 ;3 is aas absent Since p.n/6n5! 0 as n!1 by hypothesis, Corollary 5 of [32]
implies that, aas, � , and therefore � 0 , does not contain K2;3 .
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An induced K2 ;2 aas appears in � 0 Let v1; : : : ; v4 be distinct vertices in the random
size-n graph � , and let the random variable I.v1; : : : ; v4/ take the value 1 or 0

according to whether or not fv1; : : : ; v4g is the vertex set of an induced K2;2 in � .
The random variable Sn D

P
v1;v2;v3;v4

I.v1; : : : ; v4/ counts each induced K2;2 in �
24 times, reflecting the eight automorphisms of K2;2 and the three ways of choosing
which pairs of vertices in K2;2 will be nonadjacent. Since there are

�
n
4

�
such quadruples,

and each forms an induced copy of K2;2 exactly when there is some permutation
� W f1; 2; 3; 4g ! f1; 2; 3; 4g such that v�.i/ is adjacent to v�.i/C1 for each i , and the
remaining two possible edges are absent, we have E.S4/D 24

�
n
4

�
p4.1�p/2 .

Let N 2N and let � 2 .0; 1/. The preceding discussion shows that since p.n/n!1,
there exists N1 2N such that E.Sn/�N=� for all n�N1 . The proof of Theorem 4.1
of [18] shows that since pn!1 and .1�p/n2!1,

E.Sn/
2

E.S2
n /
! 1;

so there exists N2 2N such that

E.Sn/
2

E.S2
n /

> 1� �

for n�N2 . The Paley–Zygmund inequality implies that for all n�maxfN1;N2g,

P .Sn �N /� P .Sn � �E.Sn//

� .1� �/2
E.Sn/

2

E.S2
n /

> .1� �/3:

This implies that for each N 2N , we have limn P .Sn <N /D 0. Lemma 3.7 below
states that aas, every component of � is either a tree or equal to � 0 , so it suffices to
find squares in � . We have shown that P .Sn< 48/! 0 as n!1, so � 0 aas contains
at least two induced copies of K2;2 .

Remark 3.6 The fact that W� is hyperbolic relative to D1�D1 subgroups that are
not free factors can be seen slightly more easily as follows. First we produce induced
K2;2 subgraphs in � and verify that � aas does not contain K2;3 , as in the proof of
Theorem 3.4. Then we observe that by Theorem 5.16 of [11], � aas has no component
which is a 4–cycle. Theorem 3.4 is, of course, a stronger conclusion since it rules out
the possibility that W� 0 is hyperbolic and every 4–cycle lies in a unicyclic component
that is not a 4–cycle.

Lemma 3.7 Let � 2G.n;p.n//, with p.n/ satisfying the hypotheses of Theorem 3.4.
Asymptotically almost surely, each component of � is either the giant component or
a tree.
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Proof of Lemma 3.7 This follows immediately from [11, Theorem 6.10(iii)] and [11,
Theorem 2.2(ii)].

Lemma 3.8 If ƒ 2 T , then either ƒŠK2;2 or ƒ contains K2;3 .

Proof Since ƒ must contain the join of two subgraphs of diameter at least 2, we have
that jƒ0j � 4 and either ƒŠK2;2 or jƒj � 5. In the latter case, suppose that each
maximal join in ƒ is isomorphic to K2;2 and let ƒ0 �ƒ be such a join. Then no two
nonadjacent vertices in ƒ0 have a common adjacent vertex, since otherwise ƒ0 would
extend to a copy of K2;3 . Hence ƒŠK2;2 , a contradiction.

3.2 Behavior at high densities

Charney–Farber showed in [18] that a random right-angled Coxeter group on n vertices
is aas finite when .1�p.n//n2! 0 as n!1. The following description of random
right-angled Coxeter groups for rapidly growing p.n/ generalizes this result.

Theorem 3.9 Suppose .1� p.n//n2! ˛ as n!1 for some ˛ 2 Œ0;1/, and let
the random variable Mn count the number of “missing edges” in � 2 G.n;p/, ie the
number of pairs of distinct vertices that are not joined by an edge. Then Mn DO.1/

aas, and the following hold:

(1) With probability tending to e�˛=2 , Mn D 0 and the group W� is finite.

(2) With probability tending to 1
2
˛e�˛=2 , Mn D 1 and the group W� is virtually Z

and thus hyperbolic.

(3) With probability tending to 1� .1C 1
2
˛/e�˛=2 , Mn � 2 and the group W� is

virtually ZMn , and is thus thick of order 0 and has linear divergence.

Proof Finite and virtually Z If MnD 0, then � is a complete graph, so W� ŠZn
2

is finite. Conversely, if W� is finite, then since any two nonadjacent vertices together
generate a subgroup isomorphic to D1 , we see that Mn D 0. Similarly, W� is
virtually Z if and only if Mn D 1.

For k � 0, we have

P .Mn D k/D

��n
2

�
k

�
.1�p.n//kp.

n
2/�k ;

and
p.n/.

n
2/�k
� e�˛=2:

Hence P .Mn D 0/! e�˛=2 , while P .Mn D 1/ �
�
n
2

�
.˛=n2/e�˛=2! 1

2
� ˛e�˛=2 .

This establishes the first two assertions.
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Thick of order 0 For each vertex v2� , let Iv be 1 or 0 according to whether or not v
belongs to exactly one missing edge, so that P .IvD 1/DE.Iv/Dn.1�p.n//p.n/n�2 .
Let En D

P
v Iv count the number of vertices belonging to exactly one missing edge,

and observe that E.En/D n2.1�p.n//p.n/n�2 � ˛ .

Similarly, let Jv be 1 or 0 according to whether or not v belongs to at least one missing
edge, and let Fn D

P
v Jv count the vertices appearing in at least one missing edge.

Note that P .Jv D 1/D E.Jv/D 1�p.n/n�1 . Hence

E.Fn/D n.1�p.n/n�1/

D n
h
1�

�
1�

˛

n2

�n�1i
D
˛n.n� 1/

n2
C o.1/� ˛:

Since Fn �En , and E.Fn�En/! 0, aas Fn DEn . In other words, aas every vertex
occurs in at most one missing edge. Therefore, aas there are pairwise-distinct vertices
v1; : : : ; vk ; w1; : : : ; wk such that vi and wi are not adjacent for all i , and every other
pair of vertices spans an edge. This implies that W� is virtually the product of k copies
of D1 .

The above argument shows that aas MnD
1
2
En . For distinct vertices v and w , we have

P .IvIw D 1/D .n� 1/2p2n�5.1�p/2Cp2n�4.1�p/;

from which a computation shows that E.Mn/!
1
8
˛.˛C1/. It follows from Markov’s

inequality that Mn DO.1/ aas.

3.3 Constant-density behavior

In this section, we prove:

Theorem 3.10 For � 2G
�
n; 1

2

�
, the group W� is aas thick.

The following lemma isolates the most crucial estimates we will use in the proof of the
theorem.

Lemma 3.11 Let �n D P
�
� 62 T j � 2G

�
n; 1

2

��
. Then the following hold:

(1) �2n � �
2
n Cf .n/, where f .n/D 2n

Pn
iD0

�
n
i

�
2�n�.i

2/ .

(2) �2n � �
2
nC2�n.1��n/.nc.n/=2nt.n//C .1��n/

2 , where c.n/ is the number
of cliques in the disjoint union of all T –graphs on n vertices (with the 0–clique
counted once), and t.n/ is the total number of T –graphs on n vertices.

(3) �nC1 � �nCf .n/.
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Proof Let � 2G
�
2n; 1

2

�
and let AtB be a partition of �.0/ into sets of size n. For

v 2 B , we denote by LinkA.v/ the set of vertices in A adjacent to v . Note that if
� 62 T , then one of the following holds:

(i) The subgraphs generated by A and B are not in T .

(ii) There exists v 2 B [or v 2A] such that LinkA.v/ [or LinkB.v/] is a (possibly
empty) clique.

To establish this dichotomy, first we assume (i) does not hold, and hence without loss
of generality, we may assume the subgraph generated by A is in T . If additionally,
(ii) does not hold, we show this yields � 2 T , which is a contradiction. Condition (ii)
implies that for each vertex v of B , the set LinkA.v/ is nonempty and has diameter
exceeding 1. Now, for each v 2 B we have that the subgraph �v of � generated
by A[fvg is in T since it is obtained by coning off a set of diameter at least 2 and
applying Definition 2.3(2). Also, for each v; v0 2 B , since the graphs �v and �v0 are
both thick and their intersection is the thick graph generated by A, we see that the
graph generated by A[fv; v0g, which is the generalized union of �v and �v0 , is thus
thick by Definition 2.3(3). Thus, by adding one vertex from B at a time in the above
way we see that � 2 T .

Next, we claim that P ..i//D �2
n . Indeed, since in the construction of � , edges joining

pairs of vertices in A are added independently of those joining vertices in B , the events
“A generates a subgraph in T ” and “B generates a subgraph in T ” are independent.
Moreover, the subgraphs of � generated by A and B are in G

�
n; 1

2

�
. It follows that

(i) occurs with probability �2
n , whence

�2n � �
2
n CP ..ii//:

We finally show that P ..ii// � f .n/. To this end, let V be the number of vertices
of B whose links in A are (possibly empty) cliques. Then P ..ii//� 2 P .V > 0/ and
P .V > 0/ � E.V/. The initial factor of 2 reflects the fact that we are assuming that
A 2 T and counting vertices in B whose links in A are cliques; (ii) could just as easily
occur with the roles of A and B reversed.

For each v 2 B , if LinkA.v/ has k vertices, then it is generated by one of
�

n
k

�
subsets of A. Each such subset is a clique with probability 2�.

k
2/ , and such a subset

generates LinkA.v/ with probability 2�k2k�n D 2�n , reflecting the fact that the k

vertices of the putative link must be adjacent to v , and the n� k remaining vertices
of A must not. Summing over k yields the probability that LinkA.v/ is a clique, so
E.V/D n

Pn
kD0

�
n
k

�
2�n�.k

2/ , and (1) follows.

To establish (2), write �.0/DAtB as above. If � 62T , then one of the following holds:
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(a) The subgraphs generated by A and B are both not in T . This event occurs with
probability �2

n .

(b) Exactly one of the subgraphs generated by A and B belongs to T . In this case,
suppose that A generates a subgraph in T . This subgraph is among the t.n/

graphs of its size in T , and as above, B must contain a vertex v whose link in A

generates one of the c.n/ possible cliques. There are n choices for this vertex,
and each has a given clique as its link with probability at most 2�n . Hence this
situation occurs with probability at most 2�n.1��n/nc.n/2�nt.n/�1 .

(c) The subgraphs generated by A and B both belong to T . In this case, it must be
true that some vertex in A has link in B a clique (or vice versa), but we do not
use this fact; we just note that the probability of this event is certainly at most
.1��n/

2 .

Finally, to establish (3), regard the size-.nC1/ graph � as the subgraph of � generated
by At fvg, with v a vertex. If � 62 T , then either A 62 T or the link of v is a clique.
The claim now follows by arguing as in the proof of (1). Note that in this case, since
the two parts are not symmetric and we are looking at the link of only one point rather
than n, this removes a factor of 2n from the second term in the sum, and actually
establishes the stronger fact that �nC1 � �nCf .n/=2n.

Remark 3.12 The relation between the first two parts of the above lemma are as
follows. In the language of conditional probability, to prove Lemma 3.11(1), we use
the fact that

�2n � P ŒA;B 62 T �CP Œ.ii/�:

Whereas, for Lemma 3.11(2) we exploited the following:

�2n � P ŒA;B 62 T �C 2 P ŒA 2 T ;B 62 T � �P Œ.ii/B jA 2 T ;B 62 T �CP ŒA;B 2 T �;

where .ii/B is the same as (ii) except that we require only the condition on links of
vertices of B . We then sum over these probabilities to yield Lemma 3.11(2).

We will make use of the following estimate:

Lemma 3.13 Let Xn be a binomial random variable with mean 1
2
�n and variance 1

4
�n.

Then for all M � 1
2
n, we have

P .Xn �M /� exp
�
�

n

2
C 2M �

2M 2

n

�
:
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Proof Viewing Xn as the sum of n Bernoulli trials, this follows from Hoeffding’s
inequality [39].

Lemma 3.14 The function f of Lemma 3.11 has the following properties:

(1) f .n/
n
�! 0 exponentially, and in particular,

P
n�0 f .n/ <1.

(2) f .n/ < 0:03760 for all n� 18.

Proof Let M D bna=bc for natural numbers a< b , and define (I) and (II) by writing

f .n/D 2n

� MX
iD0

�n

i

�
2�n�.i

2/

„ ƒ‚ …
(I)

C

nX
iDMC1

�n

i

�
2�n�.i

2/

„ ƒ‚ …
(II)

�
:

For each n,

.I/� 2�n
MX

iD0

� n

i

�
D P .Xn �M /;

where Xn is a binomial random variable with mean n � 1
2

. From Lemma 3.13, we have,
for M � n=2,

.I/� exp
h
�

n

2
C 2M �

2M 2

n

i
� e�n=2e2bna=bce�2bna=bc2=n

WD g.n;M /:

We also have

.II/� 2�n�.M
2 /

nX
iDMC1

�n

i

�

� 2�n�.M
2 /
�
2n
�

MX
iD0

�n

i

��
� 2�.

M
2 / � 2�na=b.na=b�1/=2:

Suppose now that a and b also satisfy 2a=b > 1. Then the lemma follows from
summing the above estimates: f .n/ decays exponentially and is hence summable. This
establishes the first assertion.

The second assertion requires a refinement of one of the above bounds. Let aD 2 and
b D 3, and let M D bna=bc, Xn and the expressions .I/ and .II/ be as above. As
before, we have

.II/� 2�n2=3.n2=3�1/=2:
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We need to estimate .I/ more carefully when n� 18. We thus write

.I/� 2�n

� 5X
iD0

�n

i

�
2�.

i
2/
�
C 2�.

6
2/ P .Xn � bn

2=3
c/

� 2�n

� 5X
iD0

�n

i

�
2�.

i
2/
�
C 2�.

6
2/g.n; bn2=3

c/ WD h.n/:

The second inequality is an application of Lemma 3.13, justified by the fact that
n2=3 < n=2 for n� 18. Hence

f .n/� 2n � h.n/C 2n � 2�n2=3.n2=3�1/=2:

The second term is strictly decreasing for n� 8, as can be seen by differentiating, and
takes a value less than 3:09 �10�5 at nD 18. Next, a straightforward computation gives

g.n; bn2=3
c/� exp

�
�

n

2
C 2n2=3

� 2n1=3
C 4n�1=3

�
2

n

�
;

which is decreasing for n� 12 and, for nD 18, yields

2n � 2�.
6
2/ �g.n; bn2=3

c/� 0:00273:

The remaining term can be shown by direct differentiation to decrease for n � 5,
and takes the value 0:3484 at n D 18. Combining the above shows that f .n/ �
3:09 � 10�5C 0:00273C 0:03484D 0:03760 for n� 18.

Remark 3.15 As we will see in the proof of Theorem 3.10, any bound sharper than
around f .18/� 0:06045 is sufficient.

Proof of Theorem 3.10 The idea of the proof is to use Lemma 3.11(1) and the fact
that f is small to get convergence to 0 of a subsequence of .�n/. We then use this
in order to show that .�n/ converges to 0, and then we apply Lemma 3.11(3) and the
summability of f .

Accumulation at 0 implies convergence to 0 For each n and k , Lemma 3.11(3)
yields

�nCk � �nC

k�1X
iD0

f .i C n/ < �nC

1X
iDn

f .i/:

Suppose that 0 is an accumulation point of .�n/. Then for each � > 0, we can choose n

so that �n <
1
2
� and

P1
iDn f .n/ <

1
2
� . The latter inequality follows from summability

of f , ie from Lemma 3.14(1). Hence for all k , we have �nCk < � , ie �n
n
�! 0.
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Nonaccumulation at 0 implies convergence to 1 Suppose now that the subsequence
.�k�2m/m2N does not have 0 as an accumulation point for some k 2 N . Then we
claim that .�k�2m/ converges to 1. Indeed, consider the smallest accumulation point �
of the sequence, and suppose that it is the limit of the subsequence .�k�2mi /i2N . We
have to show � D 1. By Lemma 3.11(1) and the fact that f converges to 0, we get that
any accumulation point � 0 of .�k�2mi C1/ satisfies � 0 � �2 . As we also have � � � 0 ,
we get � � �2 , so that � D 1.

A subsequence bounded away from 1 It is thus sufficient to show that the subse-
quence .�k�2m/m2N is bounded away from 1 for some k 2N . In fact, if this is the case,
then .�k�2m/m2N does not converge to 1, hence it must have 0 as an accumulation point,
and hence .�n/ converges to 0 as required. Suppose that for some k , we have m0 2N
and constants ˛; ˇ 2 Œ0; 1/ such that f .k � 2m/� ˇ for all m�m0 , and �k�2m0 � ˛ .
Suppose, moreover, that ˛2Cˇ < ˛ . Then �k�2m0C1 < ˛ by Lemma 3.11(1), and by
induction and the same lemma, we have �k�2m < ˛ for all m�m0 .

Let k D 9 and m0 D 1. The computer program in the online supplement returned the
following data:

� t.9/D 14853635863,

� c.9/D 683846354560,

� �9 D 1� t.9/=2.
9
2/ � 0:78385.

Together with Lemma 3.11(2), this implies

�18 � ˛ WD
�
1�

t.9/

236

�2
C

�
t.9/

236

�2
C 2

�
1�

t.9/

236

�
�

t.9/

236
�

9�c.9/

512�t.9/
� 0:93537:

Lemma 3.14(2) gives f .n/ � ˇ D 0:03760 for all n � 18. The above discussion,
together with the fact that these values satisfy ˛2C ˇ < ˛ , implies that .�9�2m/ is
bounded away from 1, whence �n

n
�! 0; ie � is aas in T .

4 Detecting thickness algorithmically

In this section, we exhibit a polynomial-time algorithm for deciding whether a finite
graph is in T . The construction of the algorithm presented in this section prioritized
simplicity over speed. We also provide a C++ implementation of a simple algorithm
to compute the constants needed in the proof of Theorem 3.10. The main part of
this computer program implements the algorithm for deciding if a given right-angled
Coxeter group is thick.
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Theorem 4.1 There exists an algorithm which decides, in polynomial time, whether a
graph � is in T . Hence the problem of deciding whether a right-angled Coxeter group
admits a relatively hyperbolic structure is soluble in polynomial time.

Proof The second assertion follows from the first by Theorem 2.5. The algorithm
takes as input the finite simplicial graph � on n vertices and decides whether � 2 T .
For ease of exposition, we provide an algorithm which admits an easy description, but
we note that there are more efficient algorithms; in particular, the code in the online
supplement contains an implementation of a more efficient algorithm for the same task.
The steps are:

(1) Make a list M of all induced K2;2 subgraphs of � . The running time is in
O.n4/ and jMj is in O.n4/.

(2) Make a list N of pairs of nonadjacent vertices. The running time is in O.n2/

and jN j is in O.n2/.

(3) Perform a union subroutine; ie for each pair M;M 0 2M, determine whether
M \M 0 contains some .v; v0/ 2N . If so, modify M by removing M and M 0,
and adding the subgraph induced by M [M 0 . The running time of a union
subroutine is in O.n11/.

(4) Perform a coning subroutine; ie for each M 2M and each vertex v , determine
whether there exists .w;w0/ 2 N such that w;w0 2M and both are adjacent
to v . If so, replace M by the subgraph generated by M [ fvg. The running
time of a coning subroutine is in O.n7/.

(5) If M did not change during the coning and union subroutines, then we are
finished: the graph is thick if and only if jMj D 1, and the unique element of M
is � .

(6) If M changed, then return to step (2).

The number of union subroutines that modify M is in O.n4/ since each such union
subroutine decreases jMj. The number of coning subroutines that modify M is in
O.n5/ since each such subroutine increases the size of some subgraph in M. Hence
the total running time is in O.n15/.

4.1 Computing t.9/ and c.9/

To obtain the values used in the proof of Theorem 3.10, one can use the C++ program
in the online supplement, which takes a single command line argument, namely the
number n of vertices. We have also checked the computations by hand up to nD 6
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beyond which they become infeasible. The reader seeking to reproduce our computer
computation for nD 9 should be aware that the program requires being run for several
days with typical 2013 hardware.

The efficiency of the program can be significantly improved. However, we decided
to keep the code as simple as possible. Source code for a much more efficient, albeit
more complex, version of this program can be obtained from the authors.

Appendix: Generalizing to all Coxeter groups
by J Behrstock, P-E Caprace, M F Hagen and A Sisto

All Coxeter groups considered here are assumed finitely generated. In this appendix,
we generalize Theorems I and II to Coxeter groups which are not necessarily right
angled. Further considerations are contained in Section A.3.

We can summarize the main result in this appendix as follows.

Theorem A.1 (minimal relatively hyperbolic structures) Let .W;S/ be a Coxeter
system. Then there is a (possibly empty) collection J of subsets of S enjoying the
following properties:

(i) The parabolic subgroup WJ is strongly algebraically thick for every J 2 J .

(ii) If J ¤ S for all J 2 J , then W is hyperbolic relative to P D fWJ j J 2 J g.

In particular, P is a minimal relatively hyperbolic structure for W .

A.1 Thick Coxeter groups

We consider the class T of Coxeter systems .W;S/ defined as follows.

(1) T contains the class T0 of all irreducible affine Coxeter systems .W;S/ with S

of cardinality at least 3, as well as all Coxeter systems of the form .W;S1[S2/

with WS1
and WS2

irreducible nonspherical and ŒWS1
;WS2

�D 1.

(2) Suppose that .W;S [ s/ is such that s? is nonspherical and .WS ;S/ belongs
to T . Then .W;S [ s/ belongs to T .

(3) Suppose that .W;S/ is such that there exist S1;S2 � S with S1[S2 D S ,
.WS1

;S1/; .WS2
;S2/ 2 T and WS1\S2

nonspherical. Then .W;S/ 2 T .

Proposition A.2 For .W;S/2T , the Coxeter group W is strongly algebraically thick.

The proof requires the following subsidiary fact.

Algebraic & Geometric Topology, Volume 17 (2017)



734 Appendix by J Behrstock, P-E Caprace, M F Hagen and A Sisto

Lemma A.3 Let .W;S/ be a Coxeter system. Let s 2 S and set K D S n fsg. Then
the group hWK [ sWK si has index at most 2 in W .

Proof The group hWK [ sWK si is a reflection subgroup whose fundamental domain
for its action on the Cayley graph of .W;S/ contains at most two chambers, namely
the base vertex 1 and the unique vertex s–adjacent to it, see [26].

Proof of Proposition A.2 If .W;S/ is in T0 then the group W is either virtually
abelian of rank at least 2 or a direct product of two infinite (Coxeter) groups. In
particular, W is wide and, hence, strongly algebraically thick of order 0.

Let .W;S[fsg/ be of the form described in item (2) of the definition of T . Lemma A.3
then implies that W contains the group hWS [sWSsi with index at most 2. Therefore
W is strongly algebraically thick, being an algebraic network with respect to the pair
of strongly thick groups fWS ; sWSsg.

Finally, let .W;S/ be as in item (3) of the definition of T . Then W is strongly
algebraically thick, being an algebraic network with respect to the pair of strongly thick
groups fWS1

;WS2
g.

A.2 Proof of minimal relatively hyperbolic structures theorem

We will use the following criterion for relative hyperbolicity of Coxeter groups, which
corrects [14, Theorem A], where a hypothesis on the peripheral subgroups was missing.

Theorem A.4 [15, Theorem A0 ] Let .W;S/ be a Coxeter system and J a collection
of proper subsets of S . Then W is hyperbolic relative to fWJ j J 2 J g if and only if
the following conditions hold:

(RH1) For each irreducible affine subset K � S of cardinality at least 3, there exists
J 2 J such that K � J . Similarly, given any pair of irreducible nonspherical subsets
K1;K2 � S with ŒK1;K2�D 1, there exists J 2 J such that K1[K2 � J .

(RH2) For all J1;J2 2 J with J1 ¤ J2 , the intersection J1\J2 is spherical.

(RH3) For each J 2 J and each irreducible nonspherical K � J , we have K? � J .

We are now ready to prove Theorem A.1. We will give an explicit description of J :

Theorem A.5 Let .W;S/ be a Coxeter system and let J be the (possibly empty)
collection of all maximal subsets J � S such that .WJ ;J / 2 T . Then we have:

(i) The parabolic subgroup WJ is strongly algebraically thick for every J 2 J .

(ii) If J ¤ fSg, then W is hyperbolic relative to P D fWJ j J 2 J g.

In particular, P is a minimal relatively hyperbolic structure for W .
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Proof By Moussong’s characterization of hyperbolic Coxeter groups [41, Theo-
rem 17.1] (and the fact that S is finite), J is not empty if and only if W is not
hyperbolic, which we assume from now on.

By Proposition A.2, (i) holds.

We are now left to show that J satisfies the three conditions (RH1)–(RH3) from
Theorem A.4.

It is clear that J satisfies (RH1).

If J1;J22J are distinct, then WJ1\J2
must be spherical. In fact, if it was nonspherical,

then we would have J1 [ J2 2 J , contradicting the maximality of either J1 or J2 .
So J satisfies (RH2).

Let K be a nonspherical subgraph of some J 2 J . We have to show that K? is
contained in J as well. Indeed, if there was an element s 2K?nJ , then J [fsg would
be in T , contradicting the maximality of J .

We have now shown the peripherals are in T and hence thick by Proposition A.2. Thus,
as noted in the introduction, minimality now follows from [5, Corollary 4.7].

A.3 Intrinsic horosphericity and further corollaries

We say that a discrete group � is (intrinsically) horospherical if every proper isometric
action of � on a proper hyperbolic geodesic metric space fixes a unique point at infinity.
In particular, the group � cannot be virtually cyclic, and every element of infinite order
acts as a parabolic isometry in any such � –action. As one may expect, thickness and
horosphericity are related properties (compare Theorem 4.1 from [5]):

Proposition A.6 Every strongly algebraically thick group is intrinsically horospherical.

The proof requires the following result, which follows from the exact same arguments
as the proof of Lemma 3.25 in [28].

Lemma A.7 Let H be a finitely generated group (endowed with its word metric with
respect to a finite generating set), .X; d/ a metric space and qWH !X a map which
is Lipschitz up to an additive constant. Given h 2H , if the map Z!X; n 7! q.hn/ is
a Morse quasigeodesic in X , then h is a Morse element in H .

Lemma A.8 Let H be a group acting properly by isometries on a proper Gromov
hyperbolic metric space X . Assume that H has a unique fixed point � at infinity of X .
Then every infinite subgroup of H has � as its unique fixed point at infinity.
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Proof The hypotheses imply that H does not contain any hyperbolic isometry. From
Proposition 5.5 in [16], it follows that every subgroup of H either has a bounded orbit
or has a unique fixed point at infinity of X . The desired conclusion follows since the
H –action on X is proper.

Proof of Proposition A.6 We argue by induction on the order of thickness. In the base
case, let H be a finitely generated group which is wide. Suppose that H acts properly
by isometries on a proper Gromov hyperbolic metric space X . H can not contain a
hyperbolic isometry since otherwise, Lemma A.7 implies that some asymptotic cone
of H has cut-points, which would contradict the assumption that H is wide. Since H

is infinite and the H –action on X is proper, it follows from [16, Proposition 5.5]
that H fixes a unique point at infinity of X . This proves that strongly algebraically
thick groups of order 0 are intrinsically horospherical.

The inductive step is given by the following observation. Let G be an infinite group
which is an M –algebraic network with respect to a finite collection H of subgroups.
If each subgroup in H is intrinsically horospherical, then so is G .

Indeed, let G act properly by isometries on a proper Gromov hyperbolic metric space X .
Then each group H 2H has a unique fixed point �H at infinity of X . Given H;H 02H ,
there is a sequence H DH1; : : : ;HN DH 0 in H in which any two consecutive groups
have an infinite intersection; see Definition 5.2 in [5]. From Lemma A.8, we deduce
that �H D �H1

D � � � D �Hn
D �H 0 . Hence all groups in H have the same fixed point

at infinity, say � . By the definition of an algebraic network, this point � must be fixed
by a finite-index subgroup of G . Thus the G –orbit of � is finite.

If this orbit has exactly one point, then G fixes � (and no other point at infinity of X ),
and we are done. If this orbit contains exactly two points, then G is virtually cyclic
and hence does not contain any intrinsically horospherical subgroups, which is absurd.
If jG�j � 3, then it follows from [38, Proposition-Definition 8.2.L] that G has bounded
orbits in X , contradicting the assumption that G is infinite and acts properly.

Notice that the converse to Proposition A.6 does not hold in general: indeed, horo-
spherical groups include all amenable groups that are not virtually cyclic. In particular,
infinite locally finite groups are examples of horospherical groups that are not strongly
algebraically thick. By Zorn’s lemma, every intrinsically horospherical subgroup of �
is contained in a maximal one. It is thus a natural question to determine all the maximal
intrinsically horospherical subgroups. Theorem A.1 yields the answer to this question
when � is a Coxeter group.
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Corollary A.9 Let W be a Coxeter group. Then the maximal intrinsically horospheri-
cal subgroups of W are parabolic subgroups (in the sense of Coxeter group theory)
with respect to any Coxeter generating set. Those parabolic subgroups are precisely the
conjugates of the elements of the set P afforded by Theorem A.1.

Proof Every strongly algebraically thick group is intrinsically horospherical by
Proposition A.6. Moreover, a subgroup of W properly containing a conjugate of
an element of P cannot be intrinsically horospherical by Theorem A.1. Thus the
elements of P are indeed maximal horospherical subgroups. Since W is relatively
hyperbolic with respect to P , every intrinsically horospherical subgroup is conjugate
to a subgroup of an element of P .

Corollary A.10 Let .W;S/ be a Coxeter system. Then the following conditions are
equivalent:

(i) .W;S/ is in T .

(ii) W is strongly algebraically thick.

(iii) W is intrinsically horospherical.

(iv) W is not relatively hyperbolic with respect to any family of proper subgroups.

(v) W is not relatively hyperbolic with respect to any family of proper Coxeter-
parabolic subgroups.

(vi) For every collection J of subsets of S satisfying (RH1)–(RH3), we have S 2J .

Proof The implication (i) D) (ii) is the content of Proposition A.2. The implication
(ii) D) (iii) follows from Proposition A.6. The implication (iii) D) (iv) is straight-
forward. Property (iv) trivially implies (v). That (v) is equivalent to (vi) follows from
Theorem A.4. Applying Theorem A.5, we get that (v) implies (i).
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[32] P Erdős, A Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató
Int. Közl. 5 (1960) 17–61 MR
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