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Homotopy theory of cocomplete quasicategories

KAROL SZUMIŁO

We prove that the homotopy theory of cocomplete quasicategories is equivalent to
the homotopy theory of cofibration categories. This is achieved by presenting both
theories as fibration categories and constructing an explicit exact equivalence between
them.

55U35; 18G55

Introduction

There are a few notions that formalize the concept of a cocomplete homotopy theory,
but it is not clear how they compare to each other. We consider two of them: cofibration
categories and cocomplete quasicategories and prove that they are indeed equivalent.
More precisely, our main result (Theorems 1.10, 2.14 and 4.9) is as follows.

Theorem Both the category of cofibration categories and the category of cocomplete
quasicategories carry structures of fibration categories and these two fibration categories
are equivalent.

These two models of cocomplete homotopy theories exemplify two different approaches
to abstract homotopy theory: homotopical algebra and higher category theory. Homo-
topical algebra refers broadly to the theory of categories with equivalences and some
further structure which provides tools for constructing derived functors. It was started
by Quillen when he introduced model categories [17], but there are other notions of
a similar flavor, eg (co)fibration categories, first defined by K Brown [6], which are
crucial in the present paper. Higher category theory refers, in this context, to various
models of .1; 1/–categories which provide the language to express homotopy coherent
universal properties. Examples of such models include quasicategories introduced
by Boardman and Vogt [5] and studied in detail by Joyal [14] and Lurie [16], Segal
categories introduced by Dwyer, Kan and Smith [9] and developed by Hirschowitz and
Simpson [12], and complete Segal spaces introduced by Rezk [18].

These (and other) notions of an .1; 1/–category are known to be equivalent to each
other by the results of Bergner [4] and Joyal and Tierney [15]. An abstract axiomatiza-
tion was also developed by Toën [25] and Barwick and Schommer-Pries [3]. Moreover,
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Barwick and Kan [2; 1] established that these concepts are also equivalent to the notion
of a relative category, ie a category equipped with a class of weak equivalences and no
further structure.

Our main theorem can be seen as a structured version of the latter result that concerns
cocomplete homotopy theories as opposed to arbitrary ones. In particular, the compari-
son between cofibration categories and cocomplete quasicategories includes a direct
translation between homotopy colimits computed as derived functors of cofibration
categories and colimits in quasicategories characterized by homotopy coherent universal
properties. The result can be seen as an answer to a version of [13, Problem 8.2] which
asks for a comparison between the theories of model categories and complete Segal
spaces.

This paper is the last in the series of three that summarize the results of the author’s
thesis [21; 22] and relies heavily on the techniques of the previous two. The main
result of the first one [24] was existence of a fibration category of cofibration categories.
In the second one [23] we introduced the quasicategory of frames which is a new
construction of the .1; 1/–category associated to a cofibration category. In the present
paper we construct a fibration category of cocomplete quasicategories and prove that
the quasicategory of frames functor is an equivalence of fibration categories.

Section 2 contains the basic theory of quasicategories, which is mostly cited from
Joyal [14] and Dugger and Spivak [8]. In particular, we establish fibration categories of
quasicategories and of cocomplete quasicategories. This section contains no new results,
except possibly for the existence of the latter fibration category. (The completeness of
the homotopy theory of cocomplete quasicategories is discussed in Lurie [16], but it is
not stated in terms of fibration categories.)

In Section 4 we prove that Nf is a weak equivalence of fibration categories. To this
end we associate with every cocomplete quasicategory D a cofibration category DgD
called the category of diagrams in D. This yields a functor Dg which is not exact but
is an inverse to Nf up to weak equivalence. This suffices to conclude that Nf is an
equivalence of homotopy theories.

The results are parametrized by a regular cardinal number � and concern �–cocomplete
cofibration categories and �–cocomplete quasicategories. In Section 4 the arguments
split into two cases. First, we consider the easier case of � > @0 and then point out the
modifications necessary for the proof when � D @0 .
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1 Review of cofibration categories

Our results are based on the techniques of [24; 23] and we start by summarizing the
contents of the first of these papers. The central notion is that of cofibration categories
which are slightly modified duals of Brown’s categories of fibrant objects [6].

Definition 1.1 [24, Definition 1.1] A cofibration category is a category C equipped
with two subcategories: the subcategory of weak equivalences (denoted by !� ) and
the subcategory of cofibrations (denoted by �) such that the following axioms are
satisfied. (Here, an acyclic cofibration is a morphism that is both a weak equivalence
and a cofibration.)

(C0) Weak equivalences satisfy the 2-out-of-6 property, ie if

W X Y Z
f g h

are morphisms of C such that both gf and hg are weak equivalences, then
so are f , g and h (and thus also hgf ).

(C1) Every isomorphism of C is an acyclic cofibration.

(C2) An initial object exists in C .

(C3) Every object X of C is cofibrant, ie if 0 is the initial object of C , then the
unique morphism 0!X is a cofibration.
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(C4) Cofibrations are stable under pushouts along arbitrary morphisms of C (in
particular these pushouts exist in C ). Acyclic cofibrations are stable under
pushouts along arbitrary morphisms of C .

(C5) Every morphism of C factors as a composite of a cofibration followed by a
weak equivalence.

(C6) Cofibrations are stable under sequential colimits, ie given a sequence of
cofibrations

A0 A1 A2 � � �

its colimit A1 exists and the induced morphism A0!A1 is a cofibration.
Acyclic cofibrations are stable under sequential colimits.

(C7-� ) Coproducts of �–small families of objects exist. Cofibrations and acyclic
cofibrations are stable under �–small coproducts.

The last two axioms are optional. If we drop them, then cofibration categories can be
considered as models of finitely cocomplete homotopy theories. If we include (C6)
and (C7-� ) for a fixed regular cardinal � > @0 , we obtain models of �–cocomplete
homotopy theories; we call them (homotopy) �–cocomplete cofibration categories.
For � D @0 the name (homotopy) @0 –cocomplete cofibration category will refer to a
cofibration category satisfying the axioms (C0)–(C5). The definition readily dualizes
to yield fibration categories which are models of finitely complete homotopy theories
or �–complete homotopy theories depending on the choice of axioms.

First, we recall some classical results about cofibration categories, mostly following [20].
We fix a cofibration category C .

Definition 1.2 (1) A cylinder of an object X is a factorization of the codiagonal
morphism X qX !X as X qX � IX !� X .

(2) A left homotopy between morphisms f;gW X ! Y via a cylinder X qX �
IX !� X is a commutative square of the form

X qX Y

IX Z

Œf;g�

�

(3) Morphisms f;gW X ! Y are left homotopic (notation: f 'l g ) if there exists a
left homotopy between them via some cylinder on X .
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The definition of left homotopies differs from the standard definition as usually given
in the context of model categories where the morphism Y

�� Z is required to be
the identity. This modification is dictated by the lack of fibrant objects in cofibration
categories and makes the definition well-behaved for arbitrary Y while the standard
definition in a model category is only well-behaved for a fibrant Y .

We denote the homotopy category of C (ie its localization with respect to weak equiv-
alences) by Ho C and for a morphism f of C we write Œf � for its image under the
localization functor C ! Ho C . The homotopy category can be constructed in two
steps: first dividing out left homotopies and then applying the calculus of fractions.

Proposition 1.3 The relation of left homotopy is a congruence on C . Moreover, every
morphism of C that becomes an isomorphism in C ='l is a weak equivalence. Thus
left homotopic morphisms become equal in Ho C and C ='l comes equipped with a
canonical functor C ='l ! Ho C .

Proof The first statement is [20, Theorem 6.3.3(1)]. The remaining ones follow by
straightforward 2-out-of-3 arguments.

The next theorem is a crucial tool in the theory of cofibration categories and can be
used to verify many of their fundamental properties. It says that up to left homotopy all
cofibration categories satisfy the left calculus of fractions in the sense of Gabriel and
Zisman [10, Chapter I]. This fact was first proven by Brown [6, Proposition I.2]. In
general, constructing Ho C may involve using arbitrarily long zig-zags of morphisms
in Ho C and identifying them via arbitrarily long chains of relations. However, the
previous proposition implies that C ='l ! Ho C is also a localization functor and in
that case Theorem 1.4 says that it suffices to consider two-step zig-zags (called left
fractions) up to a much simplified equivalence relation.

Theorem 1.4 A cofibration category C satisfies the left calculus of fractions up to left
homotopy, ie

(1) Every morphism ' 2Ho C.X;Y / can be written as a left fraction Œs��1Œf �, where
f W X ! zY and sW Y !� zY are morphisms of C .

(2) Two fractions Œs��1Œf � and Œt ��1Œg� are equal in Ho C.X;Y / if and only if there
exist weak equivalences u and v such that

us 'l vt and uf 'l vg.

(3) If ' 2 Ho C.X;Y / and  2 Ho C.Y;Z/ can be written as Œs��1Œf � and Œt ��1Œg�

respectively and a square
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Y zZ

zY yZ

g

h

s � u �

commutes up to homotopy, then  ' can be written as Œut ��1Œhf �.

Proof Parts (1) and (2) follow from [20, Theorem 6.4.4(1)], and (3) follows from the
proof of [20, Theorem 6.4.1].

We will need the following technical lemma. Even though cofibrations in a cofibration
category do not necessarily satisfy any lifting property, they can still be shown to have
a version of the “homotopy extension property” with respect to left homotopies.

Lemma 1.5 Let i W A� B be a cofibration in C . Let f W A!X and gW B!X be
morphisms such that gi is left homotopic to f . Then there exist a weak equivalence
sW X ! yX and a morphism zgW B ! yX such that zg is left homotopic to sg and
zgi D sf .

Proof Pick compatible cylinders on A and B , ie a diagram

AqA IA A

BqB IB B

�

�

i q i i

such that the induced morphism IAq.AqA/ .BqB/! IB is a cofibration. Let ı0
and ı1 denote the two structure morphisms A� IA.

Pick a left homotopy

AqA X

IA zX

Œf;gi �

Œı0; ı1�

H

�j

between f and gi . Then we have in particular jgi D H ı1 and thus there is an
induced morphism ŒH; jg�W IAqA B! zX so we can take a pushout:
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IAqA B zX

IB yX

ŒH; jg�

�

zH

�zj

Set sD zj j and zgD zH . We have sf D zgi , and zH and id yX constitute a left homotopy
between zg and sg .

The main result of [24] establishes the homotopy theory of cofibration categories in
the form of a fibration category. We recall the prerequisite definitions before stating
the theorem.

Definition 1.6 A functor F W C! D between cofibration categories is exact if it pre-
serves cofibrations, acyclic cofibrations, initial objects and pushouts along cofibrations.

If C and D are �–cocomplete, then F is �–cocontinuous if, in addition, it preserves
colimits of sequences of cofibrations and �–small coproducts.

The category of (small) �–cocomplete cofibration categories and �–cocontinuous
functors will be denoted by CofCat� . It is equipped with classes of weak equivalences
and fibrations as defined below.

Definition 1.7 An exact functor F W C ! D is a weak equivalence if it induces an
equivalence Ho C! HoD .

A typical way of proving that an exact functor is a weak equivalence is by using the
approximation properties of the following proposition. They were originally introduced
by Waldhausen [27, Section 1.6] in his work on algebraic K–theory and later adapted
to the context of cofibration categories by Cisinski.

Proposition 1.8 [7, Théorème 3.19] An exact functor F W C! D is a weak equiva-
lence if and only if it satisfies the following properties:

(App1) F reflects weak equivalences.
(App2) Given a morphism f W FA! Y in D , there exists a morphism i W A! B in

C and a commutative diagram

FA Y

FB Z

f

Fi

�

�

in D .
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Definition 1.9 [24, Definition 2.3] Let P W E! D be an exact functor of cofibration
categories.

(1) P is an isofibration if for every object A 2 E and an isomorphism gW PA! Y

there is an isomorphism f W A! B such that Pf D g .

(2) It is said to satisfy the lifting property for factorizations if for any morphism
f W A! B of E and a factorization

PA PB

X

Pf

j t

�

there exists a factorization

A B

C

f

i s

�

such that Pi D j and Ps D t (in particular, PC DX ).

(3) It has the lifting property for pseudofactorizations if for any morphism f W A!B

of E and a diagram

PA PB

X Y

Pf

j

t

�

v�

there exists a diagram

A B

C D

f

i

s

�

u�

such that Pi D j , Ps D t and PuD v (in particular, PC DX and PD D Y ).

(4) We say that P is a fibration if it is an isofibration and satisfies the lifting
properties for factorizations and pseudofactorizations.

Theorem 1.10 [24, Theorem 2.9] The category CofCat� of small �–cocomplete
cofibration categories with weak equivalences and fibrations as above is a fibration
category.
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The goal of the paper is to prove that this fibration category is equivalent to the
corresponding fibration category of �–cocomplete quasicategories.

2 Cocomplete quasicategories

We will start with a concise summary of the theory of quasicategories. It is well covered
in [14] and [16] so we do not go into much detail. Our main goal is to establish a
fibration category of finitely cocomplete quasicategories in Theorem 2.14. We refer to
[24] for background on fibration categories. We cite [14] for the proof that the fibration
category of all quasicategories can be obtained without constructing the entire Joyal
model structure (Theorem 2.4) which makes the proof rather elementary. (A more
streamlined exposition of the same results can be found in the appendices to [8].) Then
we briefly introduce colimits in quasicategories and state their basic properties used in
the proof of Theorem 2.14.

We will denote the groupoid freely generated by an isomorphism 0! 1 by E.1/ and
its nerve by EŒ1�. Quasicategories are defined as certain special simplicial sets and
are to be thought of as models of .1; 1/–categories where vertices are objects, edges
are morphisms and higher simplices are higher morphisms (or higher homotopies).
Functors between quasicategories are just simplicial maps. In particular, maps out of
EŒ1� are equivalences in quasicategories and EŒ1�–homotopies are natural equivalences
between functors. The account of the homotopy theory of quasicategories below closely
follows the classical approach to simplicial homotopy theory (see eg [11, Chapter I])
with Kan complexes replaced by quasicategories and usual simplicial homotopies
replaced by EŒ1�–homotopies.

Definition 2.1 (1) Let f;gW K!L be simplicial maps. An EŒ1�–homotopy from
f to g is a simplicial map K �EŒ1�!L extending Œf;g�W K � @�Œ1�!L.

(2) Two simplicial maps f;gW K!L are EŒ1�–homotopic if there exists a zig-zag
of EŒ1�–homotopies connecting f to g . (It suffices to consider sequences
instead of zig-zags since EŒ1� has an automorphism that exchanges the vertices.)

(3) A simplicial map f W K ! L is an EŒ1�–homotopy equivalence if there is a
simplicial map gW L!K such that fg is EŒ1�–homotopic to idL and gf is
EŒ1�–homotopic to idK .

Definition 2.2 (1) A simplicial map is an inner fibration if it has the right lifting
property with respect to the inner horn inclusions.

(2) A simplicial map is an inner isofibration if it is an inner fibration and has the
right lifting property with respect to �Œ0� ,!EŒ1�.
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(3) A simplicial map is an acyclic Kan fibration if it has the right lifting property
with respect to @�Œm� ,!�Œm� for all m.

(4) A simplicial set C is a quasicategory if the unique map C!�Œ0� is an inner
fibration.

We will refer to EŒ1�–equivalences between quasicategories as categorical equivalences
and use them to introduce the homotopy theory of quasicategories. (It is also possible
to extend this notion to maps of general simplicial sets, but we have no need to do it.) If
K is any simplicial set and C is a quasicategory, then the relation of “being connected
by a single EŒ1�–homotopy” is already an equivalence relation on the set of simplicial
maps K ! C by [8, Proposition 2.3]. This simplifies the definition of categorical
equivalences since it is always sufficient to consider one-step EŒ1�–homotopies. The
following lemma provides a useful criterion for verifying that a functor between
quasicategories is a categorical equivalence.

Lemma 2.3 [26] A functor F W C ! D between quasicategories is a categorical
equivalence provided that for every commutative square of the form

@�Œm� C

�Œm� D

F

u

v

there exists a map wW �Œm�! C such that wj@�Œm�D u and Fw is EŒ1�–homotopic
to v relative to @�Œm�.

Theorem 2.4 The category of small quasicategories with simplicial maps as mor-
phisms, categorical equivalences as weak equivalences and inner isofibrations as
fibrations is a fibration category.

Proof Only two of the axioms require nontrivial proofs: stability of acyclic fibrations
under pullbacks, which follows from the fact that acyclic (inner iso-) fibrations coincide
with acyclic Kan fibrations by [14, Theorem 5.15], and the factorization axiom which
is verified in [14, Proposition 5.16].

This fibration category is a part of the Joyal model structure on simplicial sets established
in [14, Theorem 6.12]. Indeed, the theorem above is an intermediate step in the
construction of this model category.

Quasicategories are models for homotopy theories and as such they have homotopy
categories. Two morphisms f;gW x! y of a quasicategory D are homotopic if there
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exists a simplex H W �Œ2�!D such that H ı0 D y�0 , H ı1 D g and H ı2 D f . The
homotopy category of D is the category HoD with the same objects as D, homotopy
classes of morphisms of D as morphisms and the composition induced by filling horns.

If f is a morphism of a quasicategory C, then we say that f is an equivalence if
the simplicial map f W �Œ1�! C extends to EŒ1�! C. (By [14, Proposition 4.22] a
morphism is an equivalence if and only if it becomes an isomorphism in the homotopy
category.) Two objects of C are equivalent if they are connected by an equivalence.

We proceed to the discussion of colimits in quasicategories. Such colimits are homotopy
invariant by design and they serve as models for homotopy colimits. However, in
quasicategories there is no corresponding notion of a “strict” colimit and thus it is
customary to refer to “homotopy colimits” in quasicategories simply as colimits. The
general theory of colimits is explored in depth in [16, Chapter 4]; here we only discuss
its most basic aspects.

The quasicategorical notion of colimit is defined using the join construction for sim-
plicial sets. As a functor ?W ���! � it is defined by concatenation: Œm�; Œn� 7!
ŒmC 1C n�. Then the general join is defined as the unique functor sSet� sSet! sSet

which agrees with the above on the representable simplicial sets and such that for
each K the resulting functor K ?�W sSet!K # sSet preserves colimits. As such, the
functor K ?� has a right adjoint which we will denote by .X W K!M / 7!X nM .
(X nM is called the slice of M under X .)

Lemma 2.5 Let P W C�D be a inner isofibration of quasicategories and X W K! C

a diagram. Then the induced map X nC!PX nD is an inner isofibration. In particular,
X nC is a quasicategory.

Proof This follows from [14, Theorem 3.19(i) and Proposition 4.10].

For any simplicial set K we define the under-cone on K as KB DK ?�Œ0�. We also
fix a regular cardinal number � .

Definition 2.6 Let C be a quasicategory and let X W K! C be any simplicial map
(which we consider as a K–indexed diagram in C).

(1) A cone under X is a diagram S W KB! C such that S jK DX .

(2) A cone S under X is universal or a colimit of X if for any m > 0 and any
diagram of solid arrows
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K ? @�Œm� C

K ?�Œm�

U

where U jKB D S , there exists a dashed arrow making the diagram commute.

(3) An initial object of C is a colimit of the unique empty diagram in C.

(4) A simplicial map f W K!L is cofinal if for every quasicategory C and every
universal cone S W LB! C the induced cone Sf B is also universal.

(5) The quasicategory C is �–cocomplete if for every �–small simplicial set K

every diagram K! C has a colimit.

(6) A functor F W C!D between finitely cocomplete quasicategories is said to be
�–cocontinuous if for every �–small simplicial set K and every universal cone
S W KB! C the cone FS is also universal.

Lemma 2.7 A cone S under X is universal if and only if it is an initial object of
X nC.

Proof This follows directly from the fact that the slice functor is a right adjoint of the
join functor.

We will now discuss the counterparts of a few classical statements of category theory
saying that colimits are essentially unique and invariant under equivalences. For a
quasicategory C and a diagram X W K! C we let .X n C/univ denote the simplicial
subset of X nC consisting of those simplices whose vertices are all universal.

Lemma 2.8 The simplicial set .X nC/univ is empty or a contractible Kan complex.

Proof A simplicial set is empty or a contractible Kan complex if and only if it has the
right lifting property with respect to the boundary inclusions @�Œm� ,!�Œm� for all
m> 0. For .X nC/univ such lifting problems are equivalent to the lifting problems

K ? @�Œm� C

K ?�Œm�

U

with U j.K ? fig/ universal for each i 2 Œm�, which have solutions by the definition of
universal cones.
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Corollary 2.9 If X W K! C is a diagram in a quasicategory and S and T are two
universal cones under X , then they are equivalent under X , ie as objects of X nC.

Proof The simplicial set .X nC/univ is nonempty and thus a contractible Kan complex
by the previous lemma. Hence it has the right lifting property with respect to the
inclusion @�Œ1� ,!EŒ1�, which translates to the lifting property

K ? @�Œ1� C

K ?EŒ1�

ŒS;T �

which yields an equivalence of S and T .

Lemma 2.10 If C is a quasicategory and X and Y are equivalent objects of C, then
X is initial if and only if Y is.

Proof Assume that X is initial and let U W @�Œm�! C be such that U j�Œ0�D Y . We
can consider an equivalence from X to Y as a diagram f W �Œ0� ?�Œ0�! C. Then by
the universal property of X there is a diagram �Œ0� ? @�Œm� extending both f and U .
(We can iteratively choose extensions over �Œ0� ?�Œk� for all faces �Œk� ,! @�Œm�.)
This diagram is a special outer horn (under the isomorphism �Œ0�?@�Œm�Šƒ0ŒmC1�)
and thus has a filler by [14, Theorem 3.14]. Therefore U extends over �Œm� and hence
Y is initial.

Our goal is to compare cofibration categories to quasicategories, but we expect �–
cocomplete cofibration categories to correspond to �–cocomplete quasicategories,
not to arbitrary ones. In the remainder of this section we will restrict the fibration
structure of Theorem 2.4 to the subcategory of �–cocomplete quasicategories and
�–cocontinuous functors.

First, we need two lemmas about lifting colimits along inner isofibrations.

Lemma 2.11 Consider a pullback square of quasicategories

P E

C D

G

Q

F

P

where P is an inner isofibration, and let S W KB! P be a cone. If all GS , QS and
PGS D FQS are universal, then so is S .
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Proof Under these assumptions the square

X nP GX nE

QX nC PGX nD

G

Q

F

P

(where X D S jK ) is also a pullback along an inner isofibration by Lemma 2.5. Hence
it suffices to verify the conclusion for initial objects.

Thus assume that KD¿ and let m> 0 and U W @�Œm�!P be such that U j�Œ0�D S .
Then we have

GU j�Œ0�DGS and QU j�Œ0�DQS

and since both GS and QS are initial we can find VE 2 Em and VC 2 Cm such that
VEj@�Œm�DGU and VCj@�Œm�DQU . Next, define zV W @�ŒmC1�!D by replacing
the 1st face of PVE�1j@�ŒmC 1� with FVC and zW W ƒ1ŒmC 1�! E by setting it to
VE�1jƒ

1ŒmC 1�.

By the assumption PGS is initial and zV j�Œ0�D PGS so zV extends to V 2DmC1 .
Then we have a commutative square

ƒ1ŒmC 1� E

�ŒmC 1� D

zW

V

P

which admits a lift W since P is an inner isofibration and 0< 1<mC 1. We have
FVC D PW ı1 and thus .VC;W ı1/ is an m–simplex of P whose boundary is U .
Hence S is initial.

Lemma 2.12 Let P W C� D be an inner isofibration, X W K ! C a diagram and
T W KB!D a colimit of PX . If X has a colimit in C which is preserved by P , then
there exists a colimit S W KB! C of X such that PS D T .

Proof Let zS W KB! C be some colimit of X . Since both T and P zS are universal,
we have a simplicial map U W K ?EŒ1�!D such that U j.K ? @�Œ1�/D ŒT;P zS � by
Corollary 2.9. The conclusion now follows from Lemmas 2.5 and 2.10.

The homotopical content of the next proposition is the same as that of [16, Lemma
5.4.5.5]. However, we need a stricter point-set level statement. See also [19, Sections 3
and 4] for a systematic approach to results of this type.
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Proposition 2.13 Let F W C!D and P W E�D be �–cocontinuous functors between
�–cocomplete quasicategories with P an inner isofibration. Then a pullback of P

along F exists in the category of �–cocomplete quasicategories and �–cocontinuous
functors.

Proof Form a pullback of P along F in the category of quasicategories:

P E

C D

G

Q

F

P

We will check that this square is also a pullback in the category of �–cocomplete
quasicategories and �–cocontinuous functors.

First, we verify that P has �–small colimits. Let X W K! P be a diagram with K

�–small. Let S W KB!C be a colimit of QX , then FS is a colimit of FQX DPGX

in D. Lemma 2.12 implies that we can choose a colimit T of GX in E so that
PT DFS . Then it follows by Lemma 2.11 that .S;T / is a colimit of X D .QX;GX /

in P.

It remains to see that given a square

F E

C D
F

P

of �–cocomplete quasicategories and �–cocontinuous functors, the induced functor
F! P preserves �–small colimits. Indeed, this follows directly from Lemma 2.11.

Theorem 2.14 The category QCat� of small �–cocomplete quasicategories with �–
cocontinuous functors as morphisms, categorical equivalences as weak equivalences
and (�–cocontinuous) inner isofibrations as fibrations is a fibration category.

Proof By Theorem 2.4 it suffices to observe:

(1) A terminal quasicategory is also a terminal �–cocomplete quasicategory (which
is clear).

(2) A pullback (in the category of all quasicategories) of �–cocomplete quasicate-
gories and �–cocontinuous functors one of which is an inner isofibration is also
a pullback in the category of �–cocomplete quasicategories, which follows by
(the proof of) Proposition 2.13.
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(3) For a �–cocomplete quasicategory C, the functor CEŒ1� ! C � C is a �–
cocontinuous functor between �–cocomplete quasicategories. Indeed, CEŒ1� is
�–cocomplete since it is categorically equivalent to C (by Lemmas 2.7 and 2.10)
and C�C is �–cocomplete by (2). Finally, CEŒ1�! C�C preserves �–small
colimits by (2) since both projections CEŒ1�! C do.

3 The quasicategory of frames

In [23] we introduced a functor NfW CofCat� ! QCat� . Let us briefly recall the
construction. For each m let DŒm� be the category of elements of �Œm� with the
face operators as morphisms. It comes equipped with a functor pŒm�W DŒm�! Œm�

that evaluates a map Œk�! Œm� at m. We consider DŒm� as a homotopical category
with weak equivalences created by pŒm� (from the isomorphisms of Œm�). Then for
a cofibration category C we define a simplicial set Nf C (called the quasicategory of
frames in C ) whose m–simplices are homotopical, Reedy cofibrant diagrams DŒm�!C .
See [23, Section 2] for full details.

Theorem 3.1 For a �–cocomplete cofibration category C , the simplicial set Nf C is a
�–cocomplete quasicategory and NfW CofCat�!QCat� is an exact functor of fibration
categories.

Proof By [23, Theorem 2.3] Nf C is a �–cocomplete quasicategory. Moreover, [23,
Propositions 3.5, 3.8 and 3.9] imply that Nf is indeed exact.

The results of the last section heavily depend on the methods of [24; 23] which in turn
involve a lot of notation useful in expressing properties of Nf C in terms of various
diagrams in C . In this section, we recall some of that notation and prove a few auxiliary
lemmas.

First of all, the categories DŒm� introduced above generalize to homotopical categories
DK for all simplicial sets K . The underlying category of DK has all simplices of K

as objects and face operators between them as morphisms. The weak equivalences
in DK are induced from degenerate simplices of K in a manner described in [23,
Section 2]. The following fact is a fundamental tool for translating between properties
of C and Nf C .

Proposition 3.2 [23, Proposition 2.6] Let C be a cofibration category and K a
simplicial set. There is a natural bijection between

� the set of homotopical Reedy cofibrant diagrams DK! C , and
� the set of simplicial maps K! Nf C .
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Moreover, this construction admits useful variations most conveniently described in
terms of marked simplicial complexes. A marked simplicial complex is a simplicial
set K equipped with an embedding K ,!NP , where P is a homotopical poset. In this
case DK stands for the same category as above but with (possibly) richer homotopical
structure, ie one created by the composite DK ,! DP ! P . Here, DP stands for
DNP and the latter functor evaluates an object Œk�! P at k . Sd K stands for the
homotopical poset defined as the full homotopical subcategory of DK spanned by
the nondegenerate simplices of K . Diagrams over Sd K have the same homotopical
content as diagrams over DK , as made precise by the following lemma.

Lemma 3.3 [23, Lemma 3.12] Let K ,! L be an injective map of finite marked
simplicial complexes (which means that it covers an injective homotopical map of the
underlying homotopical posets). Then for every cofibration category C the inclusion
DK[Sd L ,!DL induces an acyclic fibration CDL

R ! CDK[Sd L
R .

This lemma will be useful in various ways, for example in constructing EŒ1�–homotopies
between maps into Nf C . An EŒ1�–homotopy K�EŒ1�!Nf C corresponds to a homo-
topical Reedy cofibrant diagram D.K�EŒ1�/! C . Moreover, [23, Corollary 3.7] says
that in order to specify such a homotopy it is enough to give a diagram D.K� yŒ1�/! C .
(Here, yŒ1� stands for the poset Œ1� with all morphisms as weak equivalences.) These
observations allow us to state and prove the following lemma.

Lemma 3.4 Let K ,!L be an inclusion of marked simplicial complexes, X and Y

homotopical Reedy cofibrant diagrams DL! C , and f W X jSd L! Y jSd L a natural
weak equivalence such that f jSd K is an identity transformation. Then X and Y are
EŒ1�–homotopic relative to K as diagrams in Nf C .

Proof By [23, Corollary 3.7] it suffices to construct a homotopical Reedy cofibrant
diagram D.L� yŒ1�/! C that restricts to ŒX;Y � on D.L� @�Œ1�/ and to the identity
on D.K � yŒ1�/, ie to a degenerate edge of .Nf C/K .

First, observe that we have a homotopical diagram Œf; id�W .Sd L[DK/ � yŒ1�! C
which is Reedy cofibrant when seen as a diagram Sd L [DK ! C yŒ1� . Hence by
Lemma 3.3 it extends to a Reedy cofibrant diagram DL! C yŒ1� . We consider it as
a diagram DL� yŒ1�! C and pull it back to D.L� yŒ1�/! C . It restricts to ŒX;Y �
on D.L� @�Œ1�/ and to the identity on D.K � yŒ1�/. Thus it can be replaced Reedy
cofibrantly relative to D.L� @�Œ1�[K � yŒ1�/ by [23, Lemma 1.9], which finishes the
proof.

Another lemma that we will need says that up to equivalence all frames are Reedy
cofibrant replacements of constant diagrams.
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Lemma 3.5 Any object of X 2Nf C is equivalent to a Reedy cofibrant replacement of
p�
Œ0�

X0 .

Proof By [23, Lemma 3.2] there are homotopical functors f W Œ0� ! DŒ0� and
sW DŒ0�!DŒ0� such that pŒ0�f D idŒ0� and there are weak equivalences

id s fpŒ0�.
� �

These equivalences evaluated at X form a diagram DŒ0��Sd yŒ1�! C which we can
pull back along D yŒ1�! DŒ0�� Sd yŒ1� and then replace Reedy cofibrantly to obtain
a homotopical Reedy cofibrant diagram Y W D yŒ1� ! C such that Y ı1 D X by [23,
Lemma 1.9]. By [23, Corollary 3.7] Y is an equivalence and by the construction Y ı0
is a Reedy cofibrant replacement of p�

Œ0�
X0 .

Perhaps the most useful result of [23] characterizes universal cones KB! Nf C in
terms of the corresponding diagram D.KB/! C . It comes in two versions depending
on whether � > @0 or � D @0 . First, we state it in the case of � > @0 .

Theorem 3.6 [23, Theorem 4.6] Let C be a �–cocomplete cofibration category, K a
�–small simplicial set and S W KB! Nf C . Then S is universal as a cone under S jK

if and only if the induced morphism

colimDK S ! colimD.K B/ S

is a weak equivalence (with S seen, by Proposition 3.2, as a homotopical Reedy
cofibrant diagram D.KB/! C ).

Observe that the assumption � > @0 is necessary for the colimits in the statement
of the theorem to exist. If � D @0 , then K is a finite simplicial set, but DK is still
infinite (unless K is empty). This problem makes both the statement and the proof
more technical in the case of � D @0 .

We filter the category DK by finite subcategories

D.0/K ,!D.1/K ,!D.2/K ,! � � �

as described in detail in [23, Section 5]. Then given a homotopical Reedy cofibrant
diagram X W DK! C the colimits of its restrictions to all D.k/K exist. The homotopy
type of these colimits stabilizes for k sufficiently large and this stable value is the
homotopy colimit of X . This allows us to state the remaining case of the theorem.
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Theorem 3.7 [23, Theorem 5.12] Let C be a cofibration category and K a finite
simplicial set. A cone S W KB! Nf C is universal if and only if the induced morphism

colimD.k/K S ! colimD.k/.K B/ S

is a weak equivalence for k sufficiently large (where S is seen as a homotopical Reedy
cofibrant diagram D.KB/! C by Proposition 3.2).

Both these theorems will be instrumental in the proof of our main result.

4 Cofibration categories of diagrams in quasicategories

In this section we will prove our main result, ie that Nf is a weak equivalence of fibration
categories. This will be achieved by defining a functor Dg� from the category of �–
cocomplete quasicategories to the category of �–cocomplete cofibration categories.
The functor Dg� fails to be exact (eg it does not preserve the terminal object), but it
will be verified to induce an inverse to Nf on the level of homotopy categories which
is sufficient to complete the proof.

Definition 4.1 Let sSet� denote the category of �–small simplicial sets. If C is a
�–cocomplete quasicategory we consider the slice category sSet� #C, we denote it by
Dg� C and call it the category of �–small diagrams in C. Then we define a morphism

K L

C

f

X Y

to be

� a weak equivalence if the induced morphism colimK X ! colimL Y is an
equivalence in C (more precisely, if for any universal cone S W LB! C under
Y the induced cone Sf B is universal under X ),

� a cofibration if f is injective.

In particular, a morphism of Dg� C as above is a weak equivalence whenever f is
cofinal, but there are of course many weak equivalences with f not cofinal. We will
make use of the class of right anodyne maps, which is generated by the right horn
inclusions ƒi Œm� ,!�Œm� (ie the ones with 0 < i �m) under coproducts, pushouts
along arbitrary maps, sequential colimits and retracts.
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Proposition 4.2 With weak equivalences and cofibrations as defined above Dg� C is
a �–cocomplete cofibration category.

Proof (C0) Weak equivalences satisfy 2-out-of-6 since equivalences in C do.

(C1) Isomorphisms are weak equivalences since isomorphisms of simplicial sets are
cofinal.

(C2)–(C3) The empty diagram is an initial object and hence every object is cofibrant.

(C4) Pushouts are created by the forgetful functor Dg� C! sSet� , thus pushouts along
cofibrations exist and cofibrations are stable under pushouts. By [20, Lemma 1.4.3(1)] it
suffices to verify that the gluing lemma holds, which follows by [16, Proposition 4.4.2.2].

(C5) It will suffice to verify that in the usual mapping cylinder factorization

K!Mf !L

the second map is cofinal. Indeed, we have a diagram

K ��Œ0� L

K ��Œ1� Mf

L

f

K � ı0 j

idL

where the square is a pushout. The map K�ı0 is right anodyne by [14, Theorem 2.17]
and thus so is j . Hence it is cofinal by [16, Proposition 4.1.1.3(4)].

(C6)–(C7-� ) The proof is similar to that of (C4). (But there is no analogue of [16,
Proposition 4.4.2.2] for sequential colimits explicitly stated in [16]. Instead, it follows
from the more general [16, Proposition 4.2.3.10 and Remark 4.2.3.9].)

Lemma 4.3 A �–cocontinuous functor F W C!D induces a �–cocontinuous functor
Dg� F D Dg� C! Dg� D and thus we obtain a functor Dg� W QCat�! CofCat� .

Proof Colimits in both Dg� C and Dg� D are created in sSet� and thus are preserved
by Dg� F . Cofibrations are clearly preserved and so are weak equivalences since F

preserves �–small colimits.

For the moment, we focus on the case of � > @0 . The case of � D @0 will be dealt
with later.
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Definition 4.4 For a �–cocomplete cofibration category C we define a functor

ˆC W Dg� Nf C! C

by sending a diagram X W K! Nf C to colimDK X .

Observe that DK is �–small since K is and � > @0 , so the colimit used in this
definition exists in C . It is clear that ˆC is a functor. While we may not be able to
choose colimits so that ˆC is natural in C , it is pseudonatural, ie natural up to coherent
natural isomorphism.

Lemma 4.5 The functor ˆC is �–cocontinuous and a weak equivalence.

Proof Preservation of cofibrations follows by [20, Theorem 9.4.1(1a)] since if K ,!L

is an injective map of simplicial sets, then the induced functor DK ,!DL is a sieve.
Colimits in C are compatible with colimits of indexing categories and thus ˆC is �–
cocontinuous. (Preservation of weak equivalences follows from the argument below.)

To see that it is a weak equivalence, it is enough to verify the approximation properties
of Proposition 1.8. Lemma 4.1 of [23] and Theorem 3.6 imply that a morphism f in
Dg� Nf C is a weak equivalence if and only if ˆCf is. Therefore ˆC preserves weak
equivalences and satisfies (App1). It remains to check (App2), but it follows directly
from [23, Lemma 4.2].

Next, we need a functor D! Nf Dg� D for every �–cocomplete quasicategory D.
Let’s start with unraveling the definition of Nf Dg� D.

An m–simplex of Nf Dg� D consists of a Reedy cofibrant diagram KW DŒm�! sSet�
and for each ' 2DŒm� a diagram X' W K'!D. These diagrams are compatible with
each other in the sense that they form a cone under K with the vertex D. Moreover, the
entire structure is homotopical as a diagram in Dg� D, ie if '; 2DŒm� and �W '! 

is a weak equivalence, then the induced morphism colimK' X'! colimK X is an
equivalence in D.

If �W Œn�! Œm�, then .K;X /�D .K�;X�/ is defined simply by .K�/' DK�' and
.X�/' DX�' .

We can now define a functor ‰DW D! Nf Dg� D as follows.

Definition 4.6 For x 2 Dm we set the underlying simplicial diagram of ‰Dx to
' 7!�Œk�, where 'W Œk�! Œm�, and the corresponding diagram in D to x'W �Œk�!D.
Then ‰Dx is homotopical as a diagram DŒm�! Dg� D since any weak equivalence
in DŒm� induces a right anodyne (and hence cofinal by [16, Proposition 4.1.1.3(4)])
map of simplices.
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Clearly, ‰D is a functor and is natural in D. We check that it is also a categorical
equivalence.

Proposition 4.7 For every �–cocomplete quasicategory D the functor ‰D is a cate-
gorical equivalence.

Proof Consider a square as follows:

@�Œm� D

�Œm� Nf Dg� D

‰D

x

Y

By Lemma 2.3 it will be enough to extend x to a simplex yxW �Œm�!D and construct
an EŒ1�–homotopy from ‰Dyx to Y relative to @�Œm�.

Let’s start by finding yx . Consider YŒm�W AŒm�!D. Since Y agrees with ‰Dx over
@�Œm� the Œm�th latching object of Y is xW @�Œm�!D, ie we have an induced injective
map @�Œm� ,!AŒm� and YŒm�j@�Œm�D x . Choose a universal cone

zYŒm�W A
B

Œm�
!D

under YŒm� and consider zYŒm�j@�Œm�B . We have

@�Œm�B ŠƒmC1ŒmC 1�

which is an outer horn. However, zYŒm�j@�Œm�B is special since ‰Dx is homotopical,
and thus extends to zW �Œm�B!D by [14, Theorem 4.13]. We set yx D zj�Œm�.

By Proposition 3.2, finding an EŒ1�–homotopy from ‰Dyx to Y translates into con-
structing a homotopical Reedy cofibrant diagram D.Œm��E.1//! Dg� D restricting
to Œ‰Dyx;Y � on D.�Œm� � @�Œ1�/. By [23, Corollary 3.7] it will be sufficient to
construct such a diagram on D.Œm�� yŒ1�/ and by Lemma 3.3 it will suffice to define it
on Sd.Œm�� yŒ1�/.

We form a pushout on the left in Dg� D:

zY j@�Œm�B zY @�Œm� AŒm�

z Z �Œm� B

Its underlying square of simplicial sets is .�/B applied to the square on the right.
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This yields the following sequence of morphisms of Dg� D (with morphisms of the
underlying simplicial sets displayed below):

yx z Z zYŒm� YŒm�

�Œm� �Œm�B BB AB

Œm�
AŒm�

The first morphism is a weak equivalence since z is a filler of a special horn. So are
the middle two since the underlying maps of simplicial sets preserve the cone points.
The last one is also a weak equivalence since zYŒm� is universal. All these morphisms
are maps of cones under Y jSd @�Œm� D ‰DxjSd @�Œm� and hence can be seen as
transformations of diagrams over SdŒm� which restrict to identities over Sd @�Œm�.
The conclusion follows by Lemma 3.4.

Before we can prove the main theorem we need to know the following:

Lemma 4.8 The functor Dg� is homotopical.

Proof We begin by constructing a natural equivalence ‚C W Ho Nf C ! Ho C for
every cofibration category C . We send an object X W DŒ0�! C to X0 and a morphism
Y W DŒ1�!C to the composite Œ�1�

�1Œ�0�, where �0 and �1 are the structure morphisms

Y0 Y01 Y1.
�0 �1

�

This assignment is well-defined and functorial since C has homotopy calculus of
fractions, see Theorem 1.4.

We check that ‚C is an equivalence. It is surjective and full since both SdŒ0� ,!DŒ0�

and D@�Œ1�[ SdŒ1� ,! DŒ1� have the Reedy left lifting property with respect to all
cofibration categories by Lemma 3.3. For faithfulness, consider X; zX W DŒ1�! C such
that X jD@�Œ1�D zX jD@�Œ1� and ‚C.X /D‚C. zX /. Since we have already verified
that ‚C is essentially surjective, Lemma 3.5 allows us to assume that X ı0 is a Reedy
cofibrant replacement of p�

Œ0�
X1 so that the structure morphisms of X fit into a cylinder

X1qX1�X11!
� X1.

By Theorem 1.4(2) we have a diagram

X01

X0 Y X1

zX01

�

�

�

z�

' �

z' �
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where both squares commute up to left homotopy. By Lemma 1.5 we can assume that
the left square commutes strictly. Let

X1qX1 Y

X11
yY

Œ'�; z' z� �

Œı0; ı1�

�

� 

be a left homotopy. Then we can form a diagram

X1

X0 X1

X01 X11

zX01

yY

�

�

�

�

�

z�

�

 ' �

�

� z'

which is a homotopical diagram on SdŒ2� and Reedy cofibrant over Sd @�Œ2�. Thus it can
be replaced Reedy cofibrantly without modifying it over Sd @�Œ2� by [23, Lemma 1.9].
Then X , zX and X ı0�0 provide an extension over D@�Œ2�. We know that the inclusion
D@�Œ2�[SdŒ2� ,!DŒ2� has the Reedy left lifting property with respect to all cofibration
categories by Lemma 3.3, so we can find an extension to DŒ2� which is a homotopy
between X and zX in Nf C .

Since equivalences of quasicategories induce equivalences of homotopy categories, it
follows that Nf reflects equivalences. Thus Dg� is homotopical by Proposition 4.7.

Finally, we are ready to prove the main theorem.

Theorem 4.9 The functor NfW CofCat� ! QCat� is a weak equivalence of fibration
categories.

Proof (for � > @0 ) The functor Dg� is homotopical by Lemma 4.8 and thus
induces a functor on the homotopy categories. Since ‰ is a natural categorical
equivalence by Proposition 4.7 the induced transformation Ho‰ is a natural iso-
morphism id! .Ho Nf/.Ho Dg�/. The transformation ˆ is merely pseudonatural, but
natural isomorphisms of exact functors induce right homotopies in CofCat� (by the
construction of path objects in the proof of [24, Theorem 2.8]). Therefore Hoˆ is a
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natural transformation and by Lemma 4.5 it is an isomorphism .Ho Dg�/.Ho Nf/! id.
Hence Ho Nf is an equivalence.

The only part of the argument above that does not work for � D @0 is the construction
of a natural weak equivalence ˆC W Dg� Nf C ! C for every cofibration category C .
Indeed, ˆC was defined using colimits over categories DK which are infinite even
for finite simplicial sets K . Instead, we will define a zig-zag of (pseudonatural) weak
equivalences connecting Dg@0

Nf C to C , namely,

Dg@0
Nf C C zNR C yNR C.

ˆ
.�/
C ev0

Here, yN is the homotopical poset of natural numbers with all morphisms as weak
equivalences so that C yNR is the cofibration category of Reedy cofibrant homotopically
constant sequences. Similarly, C zNR stands for the cofibration category of Reedy cofibrant
eventually homotopically constant sequences; see [23, Section 5] for details.

It was verified in [23, Lemma 5.9] that C yNR ,! C zNR is a weak equivalence. Moreover,
ev0W C

yN
R ! C is induced by a homotopy equivalence Œ0� ! yN hence it is a weak

equivalence, too.

It remains to define ˆ.�/C and prove that it is also a weak equivalence. For each k and
an object X W DK! Nf C we set ˆ.k/C X D colimD.k/K X . This colimit exists since
D.k/K is finite if K is finite.

Lemma 4.10 For a cofibration category C the formula above defines an exact functor
ˆ
.�/
C W Dg@0

Nf C! C zNR . Moreover, it is a weak equivalence.

Proof First, we need to verify that ˆ.�/C X is an eventually constant sequence for all
.K;X / 2 Dg@0

Nf C . Consider X as a diagram in Nf C and choose a universal cone
S W KB! Nf C . Then [23, Lemma 4.8] implies that ˆ.�/C S is eventually constant and
Theorem 3.7 implies that the induced morphism ˆ

.�/
C S !ˆ

.�/
C S is an eventual weak

equivalence. Thus ˆ.�/C S is eventually constant.

Preservation of cofibrations follows by [20, Theorem 9.4.1(1a)] since if K ,!L is an
injective map of simplicial sets, then the induced functors D.k/K[D.k�1/L!D.k/L

are sieves. Colimits in C are compatible with colimits of indexing categories and thus
ˆ
.�/
C is exact. (Preservation of weak equivalences follows from the argument below.)

To see that it is a weak equivalence, it is enough to verify the approximation properties
of Proposition 1.8. Theorem 3.7 and [23, Lemma 5.8] imply that a morphism f in
Dg@0

Nf C is a weak equivalence if and only if ˆ.�/C f is an eventual weak equivalence.
Therefore ˆ.�/C preserves weak equivalences and satisfies (App1). It remains to check
(App2), but it follows directly from [23, Lemma 5.10].
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This yields the proof of Theorem 4.9 in the remaining case of � D @0 since the three
weak equivalences described above induce a natural isomorphism

.Ho Dg�/.Ho Nf/! id

and the rest of the argument applies verbatim.
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