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Turaev genus and alternating decompositions

CODY W ARMOND

ADAM M LOWRANCE

We prove that the genus of the Turaev surface of a link diagram is determined by
a graph whose vertices correspond to the boundary components of the maximal
alternating regions of the link diagram. Furthermore, we use these graphs to classify
link diagrams whose Turaev surface has genus one or two, and we prove that similar
classification theorems exist for all genera.

57M25; 57M27

1 Introduction

The discovery of the Jones polynomial [17] led to the resolution of the famous Tait
conjectures. In particular, Kauffman [18], Murasugi [26], and Thistlethwaite [31] use
the Jones polynomial to prove that an alternating diagram of a link with no nugatory
crossings has the fewest possible number of crossings. In Turaev’s [32] alternate proof
of this result, he associates a closed oriented surface to each link diagram D , now
known as the Turaev surface of D . Let D be a diagram of a nonsplit link L with
c.D/ crossings, let VL.t/ be the Jones polynomial of L, and let gT .D/ be the genus
of the Turaev surface of D . Turaev shows that

(1-1) span VL.t/CgT .D/� c.D/:

In recent years, the Turaev surface has been shown to have further connections to the
Jones polynomial (see Dasbach et al [11; 12]), Khovanov homology (Champanerkar,
Kofman and Stoltzfus [10], Dasbach and Lowrance [14]), and knot Floer homology
(Lowrance [23], Dasbach and Lowrance [13]).

Thistlethwaite [31] uses a decomposition of a link diagram into maximal alternating
pieces to compute a lower bound on crossing number similar to inequality (1-1).
Consider a link diagram D as a 4–valent plane graph with over/under decorations at
the vertices. An edge or face of D should be understood to refer to an edge or face of
the 4–valent plane graph. An edge of D is called nonalternating if both of its endpoints
are overstrands or both of its endpoints are understrands. An edge is called alternating
if one of its endpoints is an overstrand and the other is an understrand. Mark each
nonalternating edge of D with two distinct points, and in each face of D connect those
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Figure 1: Each nonalternating edge is marked with two points. Inside of each
face, draw arcs that connect marked points that are adjacent on the boundary
but do not lie on the same edge of D .

marked points with arcs as depicted in Figure 1. This process results in a collection
of pairwise disjoint simple closed curves f1; : : : ; kg. The pair .D; f1; : : : ; kg/ is
called the alternating decomposition of D .

Thistlethwaite associates to D a graph G , which we call the alternating decomposition
graph of D , as follows. Suppose that D is a connected link diagram, ie when D

is considered as a graph, it is a connected graph. If D is an alternating diagram,
then G is a single vertex with no edges. Otherwise, the vertices of G are in one-to-one
correspondence with the curves 1; : : : ; k of the alternating decomposition of D .
The edges of G are in one-to-one correspondence with the nonalternating edges of D .
Let vi and vj be vertices of G corresponding to curves i and j respectively. An
edge of G connects vi to vj if and only if the corresponding nonalternating edge of D

intersects both i and j . If D is not a connected link diagram, then G is the disjoint
union of the alternating decomposition graphs of its connected components.

The plane embedding of D induces an embedding of each component of G onto a
sphere, as described in Section 3. Since each component of G can be embedded on a
sphere, the graph G is planar. Whenever we refer to G with the sphere embeddings of
its components induced by D , we use the notation G and call it the sphere embedding
induced by D . We also consider G as an oriented ribbon graph of genus zero. See
Section 3 for further discussion on oriented ribbon graphs. Each edge of G can be
labeled as C or � according to whether it corresponds to an overstrand edge of D

or an understrand edge of D respectively. Since the edges in each face of G rotate
between C and � edges, it follows that every face has an even number of edges in its
boundary. Therefore G is bipartite. Also, since every curve i encloses a tangle, it
follows that every vertex of G has even degree. Proposition 3.3 shows that a graph
is an alternating decomposition graph if and only if it is planar, bipartite, and each
vertex has even degree. See Section 3 for examples of alternating decompositions of
link diagrams and their associated alternating decomposition graphs.
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If D has alternating decomposition curves f1; : : : ; kg, then an alternating region
of D is a component of S2�f1; : : : ; kg that contains crossings of D . As the name
suggests, if one follows a strand inside of an alternating region of D , then the crossings
will alternate between over and under. Let ralt.D/ be the number of alternating regions
in the alternating decomposition of D , and let e.G/ be the number of edges in G .
Note that e.G/ is also the number of nonalternating edges in D . Thistlethwaite [31]
proves that if D is a connected diagram of the link L, then

(1-2) span VL.t/� ralt.D/C
1
2
e.G/C 1� c.D/:

Bae and Morton [6] use Thistlethwaite’s approach to study the extreme terms and
the coefficients of the extreme terms in the Jones polynomial. Using combinatorial
data from the planar dual of G , a graph they call the nonalternating spine of D , they
recover inequality (1-1) and show that it is a stronger bound than inequality (1-2).

In this paper, we use Thistlethwaite’s alternating decompositions to study the Turaev
surface of a link diagram. We show that the genus of the Turaev surface of a link
diagram is determined by its alternating decomposition graph. If the Turaev surface is
disconnected, then its genus refers to the sum of the genera of its connected components.

Theorem 1.1 If D1 and D2 are link diagrams with isomorphic alternating decompo-
sition graphs, then gT .D1/D gT .D2/.

Champanerkar and Kofman [8] prove a version of Theorem 1.1 in the case where the
two link diagrams are related by a rational tangle replacement. Lowrance [24] uses
this special case to compute the Turaev genus of the .3; q/–torus links and of many
other closed 3–braids; see also Abe and Kishimoto [2].

The Turaev genus of an alternating decomposition graph G , denoted gT .G/, is defined
to be gT .D/, where D is a link diagram with alternating decomposition graph G .
Corollary 3.9 gives a recursive algorithm to compute gT .G/ without any reference
to link diagrams. Theorem 1.1 coupled with our algorithm for computing gT .G/

show that the genus of the Turaev surface is determined by how the various alternating
regions of D are glued together along the nonalternating edges of D . The recursive
algorithm is at the core of our classification theorems.

A doubled path of length k in G is a subgraph of G consisting of distinct vertices
v0; : : : ; vk such that for each i D 1; : : : ; k there are two distinct edges ei;1 and ei;2

in G connecting vertices vi�1 and vi , and such that deg vi D 4 for i D 1; : : : ; k � 1.
If G is a graph with a doubled path consisting of vertices v0; : : : ; vk , then let G0 be
G=fei;1 [ ei;2g, the contraction of ei;1 and ei;2 from G for some i with 1� i � k .
Then G0 is called a doubled path contraction of G . The inverse operation of lengthening
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a doubled path inside of G is called a doubled path extension of G . Two alternating
decomposition graphs G1 and G2 are called doubled path equivalent if there is a
sequence of doubled path contractions and extensions transforming G1 into G2 .
Doubled path contraction/extension can make a graph nonbipartite (and hence not
an alternating decomposition graph), but we do not require every graph in the sequence
from G1 to G2 to be bipartite. Proposition 3.11 shows that if G1 and G2 are doubled
path equivalent, then gT .G1/D gT .G2/.

A graph is k –edge connected for some positive integer k if the graph remains con-
nected whenever fewer than k edges are removed. An alternating decomposition
graph G is called reduced if G is a single vertex or every component of G is 3–edge
connected. In Section 3, we study the behavior of alternating decomposition graphs
under connected sum. We show that for any link L, there exists a diagram D of L

with reduced alternating decomposition graph such that D minimizes Turaev genus.
The classification theorems characterize all reduced alternating decomposition graphs
of a fixed Turaev genus.

Our main theorems give classifications of all reduced alternating decomposition graphs
of Turaev genus one and two. A doubled cycle C 2

i of length i is the graph obtained
from the cycle Ci of length i by doubling every edge.

Theorem 1.2 A reduced alternating decomposition graph G is of Turaev genus one if
and only if G is doubled path equivalent to C 2

2
, that is, if and only if G is a doubled

cycle of even length.

The previous theorem implies that every Turaev genus one link has a diagram D

obtained by connecting an even number of alternating 2–tangles into a cycle, as in
Figure 2. Dasbach and Lowrance [15] use Theorem 1.2 to compute the signature of all
Turaev genus one knots and to show that either the leading or trailing coefficient of the
Jones polynomial of a Turaev genus one link has absolute value one.

A link is almost-alternating if it is nonalternating and has a diagram D that can be
transformed into an alternating diagram with a single crossing change; see Adams
et al [4]. Abe and Kishimoto’s work [2] implies that all almost-alternating links have
Turaev genus one. It is unknown whether there is a link with Turaev genus one that
is not almost-alternating; see Lowrance [25]. The following corollary shows another
relationship between almost-alternating links and Turaev genus one links.

Corollary 1.3 If L is a link of Turaev genus one, then there is an almost-alternating
link L0 such that L and L0 are mutants of one another.
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Figure 2: Every diagram D where gT .D/D 1 and G is reduced has alter-
nating decomposition as above. Each 2–tangle Ti is alternating. A ˙ sign
on an edge indicates that it is a nonalternating edge of D with endpoints both
over/under crossings respectively. The alternating decomposition graph G

associated to such a diagram is a doubled cycle of length 2k .

We present a similar classification theorem for reduced alternating decomposition
graphs of Turaev genus two. However, instead of only one doubled path equivalence
class, now there are five. Let G1 and G2 be two graphs. A one-sum G1˚1 G2 is
the graph obtained by identifying a vertex of G1 with a vertex of G2 . Let e1 be an
edge in G1 connecting vertices v1 and v2 , and let e2 be an edge in G2 connecting
vertices u1 and u2 . A two-sum G1˚2G2 is the graph obtained by identifying the triple
.v1; v2; e1/ with .u1;u2; e2/, and then deleting the edge corresponding to e1 and e2 .
For example the two-sum of two 3–cycles C3˚2 C3 is a four cycle C4 . Consider the
following five classes of graphs, depicted in Figure 3:

(1) Let C 2
i tC 2

j denote the disjoint union of the doubled cycles C 2
i and C 2

j .

(2) Let C 2
i ˚1C 2

j be the graph obtained identifying a vertex of the doubled cycle C 2
i

with a vertex of C 2
j .

(3) Let Ci;j ;k be the graph obtained by identifying two paths of length k in the
cycle CiCk of length i C k and the cycle CjCk of length j C k . Furthermore,
let C 2

i;j ;k
be the graph Ci;j ;k with each edge doubled.

(4) Let K4.p; q/ be the graph obtained by replacing two nonadjacent edges of the
complete graph K4 with doubled paths of lengths p and q respectively.

(5) Let K4.p/ be the graph K4 with one edge replaced by a doubled path of
length p . Let K4.p/˚2 K4.q/ be the two-sum of K4.p/ and K4.q/ taken
along the unique edge in each summand that is not contained in or adjacent to
the doubled path.

The graphs in the above families are not necessarily bipartite (depending on their
parameters). Informally, the subsequent theorem states that a reduced alternating
decomposition graph has Turaev genus two if and only if it is in one of the above five
families and is bipartite. The precise statement uses doubled path equivalence.
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K4.2; 2/ K4.2/˚2 K4.2/

Figure 3: Representatives of the five doubled path equivalence classes of
reduced alternating decompositions graphs of Turaev genus two. Informally,
a Turaev genus two link diagram is obtained by inserting appropriate alter-
nating tangles inside of the vertices of these graphs. In the case of C 2

2 tC 2
2

one should insert an annular alternating region bounded by two curves that
correspond to vertices in distinct components. See Figure 9 for an example of
a connected link diagram with disconnected alternating decomposition graph.

Theorem 1.4 A reduced alternating decomposition graph G is of Turaev genus two if
and only if G is doubled path equivalent to one of the following five graphs:

C 2
2 tC 2

2 ; C 2
2 ˚1 C 2

2 ; C 2
1;1;1; K4.2; 2/; or K4.2/˚2 K4.2/:

Seungwon Kim [22] has independently proved versions of Theorem 1.2 and Theorem 1.4.
The following theorem shows that for each nonnegative integer k , there exists a similar
classification of reduced alternating decomposition graphs of Turaev genus k .

Theorem 1.5 Let k be a nonnegative integer. There are a finite number of doubled
path equivalence classes of reduced alternating decomposition graphs G with Turaev
genus k .

This paper is organized as follows. In Section 2, we review background material on the
Turaev surface and discuss its connections to other areas of knot theory. In Section 3, we
give the algorithm to compute gT .G/ and prove Theorem 1.1. In Section 4, we classify
alternating decomposition graphs of Turaev genus zero and show that all links have a
Turaev genus minimizing diagram whose alternating decomposition graph is reduced.
In Section 5, we prove the three main classification theorems (Theorems 1.2, 1.4,
and 1.5).

The authors thank Sergei Chmutov, Oliver Dasbach, Nathan Druivenga, Charles
Frohman, and Thomas Kindred for their helpful comments.
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Figure 4: The A and B resolutions of a crossing

D
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Figure 5: In a neighborhood of each crossing of D , a saddle surface transi-
tions between the all-A and all-B states.

2 The Turaev surface

In this section, we give the construction of the Turaev surface of a link diagram D

and discuss its connections to other link invariants. For a more in depth summary, see
Champanerkar and Kofman’s recent survey [9].

Each link diagram D has an associated Turaev surface F.D/, constructed as follows.
Figure 4 shows the A and B resolutions of a crossing in D . The collection of simple
closed curves obtained by performing either an A–resolution or a B –resolution for each
crossing of D is a state of D . Performing an A–resolution for every crossing results in
the all-A state of D . Similarly, performing a B –resolution for every crossings results
in the all-B state of D . Let sA.D/ and sB.D/ denote the number of components in
the all-A and all-B states of D respectively.

To construct the Turaev surface, we take a cobordism from the all-B state of D to the
all-A state of D such that the cobordism consists of bands away from the crossings
of D and saddles in neighborhoods of the crossing, as depicted in Figure 5. Finally, to
obtain F.D/, we cap off the boundary components of the cobordism with disks. The
Turaev surface F.D/ is oriented, and we denote the genus of the Turaev surface of D

by gT .D/. If the Turaev surface (or any oriented surface) is disconnected, then when
we refer to its genus, we mean the sum of the genera of its connected components.
Let k.D/ be the number of split components of the diagram D , ie the number of graph
components of D when D is considered as a 4–valent graph whose vertices are the
crossings. Also, let c.D/ be the number of crossings of D . It can be shown that

(2-1) gT .D/D
1
2
.2k.D/C c.D/� sA.D/� sB.D//:

Algebraic & Geometric Topology, Volume 17 (2017)



800 Cody W Armond and Adam M Lowrance

Figure 6: A crossing ball shows how L is embedded near a crossing of D .

The Turaev genus gT .L/ of a link L is the minimum genus of the Turaev surface
of D , where D is any diagram of L; ie

gT .L/DminfgT .D/ jD is a diagram of Lg:

Turaev [32] constructs his surface in a slightly different, but equivalent way. Turaev’s
construction allows us to see that a diagram D of the link L can be considered as a
4–valent graph simultaneously embedded on the sphere and the Turaev surface F.D/.
First consider D as embedded on a sphere S . Then L can be embedded into S3 by
replacing crossings of D with suitably small balls where one strand passes over the
other, as in Figure 6.

We construct the Turaev surface of D by first replacing each crossing of D with the
disk that is the intersection of the associated crossing ball and S . Each alternating
edge of D is replaced with an untwisted band that lies completely in the projection
sphere S . Each nonalternating edge of D is replaced with a twisted band. One arc on
the boundary of the twisted band will be an arc in a component of the all-A state of D ,
and one arc on the boundary of the twisted band will be an arc in a component of the
all-B state of D . The band can be twisted so that the arc corresponding to the all-A
state lies in the union of S and its exterior, while the arc corresponding to the all-B
state lies in the union of S and its interior.

After replacing each crossing of D with a band, the boundary of the resulting surface
is the union of the all-A state of D and the all-B state of D . Moreover, the boundary
components corresponding to the all-A state lie in the union of S and its exterior, and
the boundary components corresponding to the all-B state lie in the union of S and
its interior. Therefore, the boundary components of this surface can be capped off
with disks embedded in S3 , and the resulting surface is the Turaev surface F.D/. By
projecting the link to S in the crossing balls, one can consider the diagram D to be
embedded on both S and the Turaev surface F.D/; see Figure 7.

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 7: The disks and band associated to an alternating edge (left), and the
disks and band associated to a nonalternating edge (right)

The Turaev surface of a link diagram and the Turaev genus of a link have the following
properties; proofs of these facts can be found in [32; 11]:

(1) The Turaev surface F.D/ is a Heegaard surface in S3 , that is, S3�F.D/ is a
union of two handlebodies.

(2) The diagram D is alternating on F.D/.
(3) The Turaev surface is a sphere if and only if D is a connected sum of alternating

diagrams. Consequently, gT .L/D 0 if and only if L is alternating.
(4) The complement F.D/�D is a collection of disks.

The above conditions do not completely characterize Turaev surfaces. Let galt.L/

be the minimal genus of Heegaard surface F in S3 on which the link L has an
alternating projection such that the complement of that projection to F is a collection
of disks. Adams [3] studies knots and links where galt.L/D 1, and Balm [7] studies the
behavior of galt.L/ under connected sum. Lowrance [25] constructs a family of links
where galt.L/D 1, but the Turaev genus is arbitrarily large. Armond, Druivenga, and
Kindred [5] show how to determine whether a surface satisfying the above conditions is a
Turaev surface using Heegaard diagrams. Indeed, the Heegaard diagrams corresponding
to Turaev surfaces of genus one first inspired Theorem 1.2 and the subsequent work in
this paper.

Like many link invariants defined as minimums over all diagrams, there is no algorithm
to compute the Turaev genus of a link. Instead, our computations rely on various
bounds of Turaev genus. The first bound follows immediately from inequality (1-2).
We have

gT .L/� c.L/� span VL.t/;

where c.L/ is the minimum crossing number of L. Several other bounds on Turaev
genus come from link homologies.
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Khovanov [19] constructs a categorification Kh.L/ of the Jones polynomial, now
known as Khovanov homology. Khovanov homology is a bigraded Z–module with
homological grading i and quantum grading j , and one may write Kh.L/ as a direct
sum over its bigraded summands Kh.L/D

L
i;j Khi;j .L/. Define

ımin.Kh.L//Dminfj � 2i j Khi;j .L/¤ 0g;

ımax.Kh.L//Dmaxfj � 2i j Khi;j .L/¤ 0g:

Champanerkar, Kofman, and Stoltzfus [10] show that

(2-2) ımax.Kh.L//� ımin.Kh.L//� 2� 2gT .L/:

A link diagram D is adequate if the number of components in the all-A (respectively
all-B ) state is strictly greater than the number of components in every state containing
exactly one B –resolution (respectively exactly one A–resolution). A link is adequate
if it has an adequate diagram. Khovanov [20] studies the Khovanov homology of
adequate links, and Abe [1] proves that inequality (2-2) is tight when L is adequate.

Ozsváth and Szabó [28] and independently Rasmussen [29] construct a categorification
bHFK.K/ of the Alexander polynomial of a knot K , called knot Floer homology. Knot

Floer homology is also a bigraded Z–module with homological (or Maslov) grading m

and Alexander grading s , and one may write bHFK.K/ as a direct sum over its bigraded
summands bHFK.K/D

L
m;s

bHFKm.K; s/. Define

ımin. bHFK.K//Dminfs�m j bHFKm.K; s/¤ 0g;

ımax. bHFK.K//Dmaxfs�m j bHFKm.K; s/¤ 0g:

Lowrance [23] shows that

(2-3) ımax. bHFK.K//� ımin. bHFK.K//� gT .K/:

Let �.K/ be the signature of K , let �.K/ be the Ozsváth–Szabó � –invariant [27], and
let s.K/ be the Rasmussen s–invariant [30]. Dasbach and Lowrance [13] show thatˇ̌

�.K/C 1
2
�.K/

ˇ̌
� gT .K/;(2-4) ˇ̌

1
2
.s.K/C �.K//

ˇ̌
� gT .K/;(2-5) ˇ̌

�.K/� 1
2
s.K/

ˇ̌
� gT .K/:(2-6)

Essentially all known computations of the Turaev genus of a link rely on some inequality
among (2-2)–(2-6). Finding a new method for computing the Turaev genus remains a
challenging open question.
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D G

Figure 8: A diagram D of 942 with its alternating regions shaded and its
alternating decomposition graph G D C 2

2

3 Alternating decomposition graphs

Throughout this section, we assume that D is a link diagram, G is the alternating
decomposition graph of D , and G is the graph G with the sphere embedding induced
by D . We begin the section with some examples.

Example 3.1 Figure 8 shows a diagram D of the knot 942 from Rolfsen’s table, along
with its alternating decomposition curves f1; 2g. Since the alternating decomposition
of D has two curves that both intersect the same four nonalternating edges of D , it
follows that the alternating decomposition graph of D is G D C 2

2
, the graph with

two vertices and four parallel edges between them. In this example, gT .D/D 1 and
since 942 is nonalternating, it follows that gT .L/D 1.

Example 3.2 Figure 9 shows a connected link diagram D with a disconnected alter-
nating decomposition graph G . The alternating decomposition graph G is disconnected
when D has an alternating region with more than one boundary component. In this
case, the alternating decomposition graph G is C 2

2
tC 2

2
, the disjoint union of two

doubled 2–cycles. The disjoint union of two copies of the diagram from Figure 8 also
has C 2

2
tC 2

2
as its alternating decomposition graph.

The embedding of D into the plane induces an embedding of each component of the
alternating decomposition graph G onto a sphere. Each curve i of the alternating
decomposition of D is incident to two regions, precisely one of which contains cross-
ings of D . In the examples of Figure 8 and Figure 9, the alternating regions with
crossings are shaded, and the regions without crossings are unshaded. If i and j are
different boundary curves of the same alternating region, then their associated vertices

Algebraic & Geometric Topology, Volume 17 (2017)
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D G

Figure 9: The alternating decomposition of D has an annular alternating
region. Hence its alternating decomposition graph G is disconnected.

belong to different components of G . Let i1
; : : : ; ik

be the curves of the alternating
decomposition graph associated to all of the vertices of a particular component of G .
One may consider the diagram D as being embedded on the sphere S , and thus the
curves i1

; : : : ; ik
are also embedded on S . The embedding of this component of G

onto the sphere S is obtained by considering the vertex associated to ij to be the
disk with boundary ij containing the alternating region incident to ij . This disk
may contain other curves from the alternating decomposition of D , but these other
curves are associated to a different component of G . The edges of this component
are the segments of the nonalternating edges of D that go between two curves of the
alternating decomposition of D . Thus each component of G has an induced embedding
onto a sphere.

Thistlethwaite [31] proved that if G is an alternating decomposition graph of some
link diagram, then G is planar, bipartite, and each vertex of G has even degree. Our
first result of this section is the converse.

Proposition 3.3 Let G be a planar, bipartite graph such that each vertex of G has
even degree. Then G is the alternating decomposition graph of some link diagram D .
Moreover, D may be chosen to be adequate.

Proof Fix a planar embedding for G . For each vertex vi in G , choose an alternating
tangle Ti with deg vi endpoints along the boundary. Each tangle Ti must contain at
least one crossing, and each face of the tangle Ti can only meet the boundary circle in
at most one arc. Assign to each endpoint the sign C or � based on whether the strand
emanating from that point is the overstrand or the understrand, respectively, of the
first crossing it meets. The signs C and � will alternate around the boundary of Ti .

Algebraic & Geometric Topology, Volume 17 (2017)



Turaev genus and alternating decompositions 805

C �

T2

C

� C

�

T4
C

�

C

� C

�
T2k

Figure 10: Inserting the tangles T2i into an alternating decomposition
graph G results in an adequate link diagram D whose alternating decompo-
sition graph is G .

Since G is bipartite, the edges of G can also be assigned C or � in such a way that
the signs alternate around each vertex in the planar embedding. Replace vi with Ti in
the planar embedding of G so that each endpoint of an arc in Ti and the edge of G

which it gets connected to have the same sign. This produces a link diagram with the
property that the nonalternating arcs exactly correspond to the edges of G .

To make the link diagram adequate, appropriate tangles must be chosen for the Ti .
Choosing the tangles shown in Figure 10 will produce an adequate link diagram. This
is because the circles in the all-A and all-B resolutions come in two types: those
completely contained in one of the tangles, and those that pass through multiple tangles.
Each crossing is either between two distinct circles of the first type, or between a circle
of the first type and a circle of the second type. Specifically, each crossing is always
between two distinct circles. Thus if one crossing is changed from the A–resolution to
the B –resolution in the all-A state (or vice-versa in the all-B state), then the number
of circles will decrease by one.

Abe [1] proves that if D is adequate, D minimizes Turaev genus, ie gT .D/D gT .L/.
Consequently, we have the following corollary.

Corollary 3.4 Let G be a planar, bipartite graph such that each vertex has even degree.
Then there is a link diagram D whose alternating decomposition graph is G such that
gT .D/D gT .L/.

An oriented ribbon graph is a graph G cellularly embedded in an oriented surface †.
The genus of an oriented ribbon graph is the genus of †. We often visualize the
vertices of an oriented ribbon graph as round disks and the edges of an oriented ribbon
graph as rectangular bands attached on opposite ends to the round vertices. The sphere
embedding G of an alternating decomposition graph G is a ribbon graph embedded
on a disjoint union of spheres. From G , we construct another ribbon graph zG such

Algebraic & Geometric Topology, Volume 17 (2017)
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D

G

zG

Figure 11: The link diagram D , the sphere embedding G of its alternating
decomposition graph G and the twisted embedding zG of G

that the genus of zG is equal to gT .D/. The ribbon graph zG has the same vertices and
edges as G . To obtain zG from G a half-twist is applied to each edge band of G . We
say that zG is the twisted embedding of the alternating decomposition graph G ; see
Figure 11. The operation of twisting some edges in a ribbon graph has been recently
studied by Ellis-Monaghan and Moffatt under the name partial petrials [16].

Proposition 3.5 Let zG be the twisted embedding of the alternating decomposition
graph of a link diagram D . The genus of zG is gT .D/.

Proof Each vertex in zG corresponds to a curve in the alternating decomposition of D .
Suppose a collection of curves fi1

; : : : ; ij g bound an alternating region R in the
alternating decomposition of D , and let vi1

; : : : ; vij be their corresponding vertices
in zG . The region R is a surface of genus zero with j boundary components. The
vertices vi1

; : : : ; vij all lie in different components zGi1
; : : : ; zGij of zG . Consider the

vertices vi1
; : : : vij as disks. Form the connected sum zGi1

# � � � # zGij by identifying
disks inside of vertices vi1

; : : : ; vij . What was a collection of j disks is now a single
planar surface with j boundary components, just like R. Repeat this process for each
collection of curves that bound an alternating region to form the surface †.

We partially construct the Turaev surface F.D/ as follows. Consider D as embedded
on a sphere S sitting inside of S3 . Replace crossings of D with round disks, and
replace all edges of D with either flat or twisted bands according to whether the edge
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is alternating or nonalternating. The boundary components of the resulting surface
correspond to the union of the all-A and all-B states of D . If one such boundary
component lies completely in S (ie each arc in the component contained in an edge
band is contained in a flat edge band), then cap that boundary component off with
a disk as follows. If the boundary component corresponds to a component of the
all-B state, the interior of the disk should be contained inside S , and if the boundary
component corresponds to a component of the all-A state, the interior of the disk should
be contained outside S . The resulting surface is †, and so g. zG/Dg.†/DgT .D/.

Proposition 3.5 implies that the genus of the Turaev surface of D is determined by
the sphere embedding G of its alternating decomposition graph G . Hence we define
gT .G/ to be gT .D/ for any diagram D with sphere embedding G of its alternating
decomposition graph G . We give a recursive algorithm to compute gT .G/ without
referring to the link diagram D . Our recurrence depends on the following lemma.

Lemma 3.6 Let G be a sphere embedding of a connected, alternating decomposition
graph G , and suppose the number of edges in G is nonzero.

(1) Either G contains a face bounded by exactly two edges or G contains at least
four vertices of degree two.

(2) Either G contains a pair of parallel edges or G contains at least four vertices of
degree two.

Proof The degree of a face is defined to be the number of edges in its boundary.
Suppose that G has no face of degree two and three or fewer vertices of degree two.
Since every vertex in G has even degree, it follows that the other vertices of G have
degree at least four. Let v.G/, e.G/ and f .G/ denote the number of vertices, edges
and faces of G respectively. Also, let V.G/ and F.G/ be the vertex and face sets
of G . The handshaking lemma implies

4.v.G/� 3/C 6D 4v.G/� 6�
X

v2V.G/

deg v D 2e.G/:

Thus v.G/� 1
2
e.G/C 3

2
. Since G is bipartite, all of its faces have even degree, and

since G has no face of degree two, the handshaking lemma applied to the planar dual
of G implies

4f .G/�
X

f 2F.G/

degf D 2e.G/:
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Thus f .G/� 1
2
e.G/. Now since G is connected and planar, its Euler characteristic is

two. Therefore, we have

2D v.G/� e.G/Cf .G/� 1
2
e.G/C 3

2
� e.G/C 1

2
e.G/D 3

2
;

which is a contradiction. Therefore G must have at least four vertices of degree two.
The second statement follows immediately from the first.

For any graph � (or oriented ribbon graph), let k.�/ denote the number of connected
components in � . If e is an edge in � incident to vertices v1 and v2 , then the
contraction of e , denoted �=e is the graph obtained by identifying the vertices v1

and v2 and deleting the edge e . Any graph that can be obtained from � via a sequence
of edge contractions and edge or vertex deletions is called a minor of � . The sphere
embedding of a graph induces a sphere embedding on any of its minors. If � is bipartite,
then ��e is also bipartite. If � is bipartite and k.�/D k.��e/�1, then �=e is also
bipartite. In the following proposition, whenever a set of edges is deleted or contracted,
the induced sphere embedding on the subgraph is assumed. Proposition 3.7 gives a
recursive algorithm to compute gT .G/.

Proposition 3.7 Let G be a sphere embedding of an alternating decomposition
graph G .

(1) If G is a collection of isolated vertices, then gT .G/D 0.
(2) Suppose that G contains a face bounded by exactly two edges e1 and e2 . Let

G0 D G � fe1; e2g, and let G00 D G=fe1; e2g. If k.G0/ D k.G/, then G0

is a sphere embedding of an alternating decomposition graph and gT .G
0/ D

gT .G/�1. If k.G0/D k.G/C1, then both G0 and G00 are sphere embeddings
of alternating decomposition graphs and gT .G

0/D gT .G
00/D gT .G/.

(3) Suppose that G contains a vertex v of degree two, incident to edges e1 and e2 .
Let G0 DG=fe1; e2g. Then G0 is a sphere embedding of an alternating decom-
position graph, and gT .G

0/D gT .G/.

Proof (1) Let D be the disjoint union of m alternating diagrams. Then gT .D/D 0

and G is m isolated vertices. Thus gT .G/D 0.

(2) Deleting or contracting two edges from a graph embedded on a disjoint union of
spheres results in a graph embedded on a disjoint union of spheres. Moreover, since e1

and e2 bound a face, they are incident to the same two vertices. Hence all vertices of G0

and G00 have even degree. As G0 is obtained from G by deleting two edges, it follows
that G0 is bipartite. Also, since e1 and e2 are parallel, it follows that if the deletion of
e1 and e2 increases the number of components in G , then G00 is bipartite. Thus G0 is
a sphere embedding of an alternating decomposition graph, and if k.G0/D k.G/C 1,
then G00 is a sphere embedding of an alternating decomposition graph.
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Let zG , zG0 and zG00 be the twisted embeddings of G , G0 and G00 respectively. Define
f . zG/ to be the number of components of †� zG , where † is the surface on which G
is embedded. Note that f . zG/ is also the number of boundary components of zG .
Similarly define f . zG0/ and f . zG00/.

We have v. zG0/D v. zG/, e. zG0/D e. zG/� 2 and f . zG0/D f . zG/. If H is an oriented
ribbon graph, then its genus is

g.H/D 1
2
.2k.H/� v.H/C e.H/�f .H//:

Both G and zG have the same underlying graph G , and so they have the same number
of components. A similar statement holds for G0 and zG0 . If k.G0/D k.G/C 1, then

gT .G
0/D g. zG0/D g. zG/D gT .G/;

and if k.G0/D k.G/, then

gT .G
0/D g. zG0/D g. zG/� 1D gT .G/� 1:

Also, if k.G0/D k.G/C 1, then zG00 can be obtained from zG0 by taking a connected
sum along the two vertices incident with e1 and e2 in zG . Hence gT .G

00/D gT .G
0/.

(3) As in the previous case, contracting two edges from a graph embedded on a disjoint
union of spheres leads to a graph embedded on a disjoint union of spheres. Let v1

and v2 be the two vertices adjacent to v , and let v12 be the vertex in G0 corresponding
to vertices v1 and v2 in G . If v1 ¤ v2 , then the degree of v12 is deg v1C deg v2� 2,
which is even. If v1 D v2 , then deg v12 D deg v1 � 2, which is also even. All other
vertices in G0 have the same degree as their corresponding vertices in G . Also, the
bipartition of the vertices of G induces a bipartition of the vertices of G0 . Thus G0 is
a sphere embedding of an alternating decomposition graph.

Let zG and zG0 be the twisted embeddings associated to G and G0 , respectively.
Then k. zG0/ D k. zG/ and e. zG0/ D e. zG/ � 2. If v1 ¤ v2 , then v. zG0/ D v. zG/ � 2

andf . zG0/D f . zG/, and if v1 D v2 , then v. zG0/D v. zG/� 1 and f . zG0/D f . zG/� 1.
Hence gT .G

0/D gT .G/.

As the following theorem shows, the Turaev genus of the sphere embedding G of the
alternating decomposition graph G does not depend on its embedding at all.

Theorem 3.8 Let G1 and G2 be sphere embeddings of the same alternating decom-
position graph G . Then gT .G1/D gT .G2/.

Proof We proceed by induction on the number of edges in G . If G has no edges, then
both G1 and G2 are embeddings of a disjoint union of vertices. Hence gT .G1/ D

gT .G2/D 0.
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Suppose that G has n edges and that any two embeddings of an alternating decomposi-
tion graph with fewer than n edges have the same Turaev genus. Suppose that G1 has a
vertex v of degree two incident to edges e1 and e2 . Since G2 has the same underlying
graph G as G1 , the same statement holds for G2 , that is, the vertex v in G2 has degree
two and is incident to edges e1 and e2 . Set G0

1
D G1=fe1; e2g, G0

2
D G0

2
=fe1; e2g

and G0 D G=fe1; e2g. By Proposition 3.7, we have that gT .G
0
1
/ D gT .G1/ and

gT .G
0
2
/DgT .G2/. Since G0

1
and G0

2
are sphere embeddings of the same graph G0 , the

inductive hypothesis implies that gT .G
0
1
/D gT .G

0
2
/. Therefore gT .G1/D gT .G2/.

Now suppose that G1 does not have a vertex of degree two. By Lemma 3.6, G1 has
a face bounded by exactly two edges, say e1 and e2 . Let G0

1
DG1�fe1; e2g. Then

Proposition 3.7 implies that if k.G0
1
/ D k.G1/, then gT .G1/ D gT .G

0
1
/C 1, and

if k.G0
1
/ D k.G1/C 1, then gT .G1/ D gT .G

0
1
/. Since G1 and G2 have the same

underlying graph G , the edges e1 and e2 are parallel in G2 , but do not necessarily
bound a face of degree two. Let G0

2
DG2�fe1; e2g.

The twisted embedding zG2 is obtained from zG0
2

by adding the two twisted edges
corresponding to e1 and e2 . The twisted edges e1 and e2 contain four boundary
arcs that are pieces of boundary components of zG2 . Fix one of the boundary arcs
and fix an endpoint of that boundary arc. As one travels along the boundary of zG2

starting from the fixed endpoint, one of the other seven endpoints of boundary arcs
of e1 and e2 must be encountered first. The planarity of G2 lets us rule out four
of those endpoints. Furthermore, each edge in G2 corresponds to a nonalternating
edge in some link diagram D . The two boundary arcs of that edge correspond to a
segment in a component of the all-A state of D and a segment in a component of
the all-B state of D . In particular, two boundary arcs of the same edge must belong
to different components of the boundary of the twisted embedding of the associated
alternating decomposition graph. This rules out one more of the endpoints as being the
next endpoint encountered. There are two remaining cases, each depicted in Figure 12.

The four boundary arcs of e1 and e2 lie in exactly two components of the boundary
of zG2 . Moreover, if the twisted edges e1 and e2 are removed, then the two boundary
components containing boundary arcs of e1 and e2 are transformed into two boundary
components of the twisted embedding zG0

2
. Since no other boundary components

of zG2 are changed by deleting e1 and e2 , it follows that f . zG0
2
/ D f . zG2/. Since

v. zG0
2
/ D v. zG2/ and e. zG0

2
/ D e. zG2/ � 2, it follows that if k.G0

2
/ D k.G2/, then

gT .G2/ D gT .G
0
2
/C 1, and if k.G0

2
/ D k.G2/C 1, then gT .G2/ D gT .G

0
2
/. The

embedded graphs G0
1

and G0
2

have the same underlying graph, and hence the inductive
hypothesis implies that gT .G

0
1
/DgT .G

0
2
/. Deleting e1 and e2 from G1 increases the

number of components if and only if deleting e1 and e2 from G2 increases the number
of components. Therefore gT .G1/D gT .G2/, and the desired result is proven.
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Figure 12: The two figures on the left show the boundary components of zG2

that contain the boundary arcs of e1 and e2 , and the two figures on the right
show the corresponding boundary components of zG0

2
. Other vertices and

edges of the graph lie inside the two shaded areas.

Proof of Theorem 1.1 Let D1 and D2 be two link diagrams with the same alternating
decomposition graph G . Let G1 be the sphere embedding of G induced by D1 , and
let G2 be the sphere embedding of G induced by D2 . Theorem 3.8 implies that
gT .D1/D gT .G1/D gT .G2/D gT .D2/, as desired.

Since the Turaev genus of an alternating decomposition graph G does not depend
on the sphere embedding of G , we can define gT .G/ to be gT .D/, where D is any
link diagram with alternating decomposition graph G . The recursive algorithm in
Proposition 3.7 can be restated without reference to embedding.

Corollary 3.9 Let G be an alternating decomposition graph.

(1) If G is a collection of isolated vertices, then gT .G/D 0.

(2) Suppose that G contains a set of parallel edges fe1; e2g. Let G0 DG �fe1; e2g

and let G00 DG=fe1; e2g. If k.G/D k.G0/, then gT .G
0/D gT .G/� 1, and if

k.G0/D k.G/C 1, then gT .G
0/D gT .G

00/D gT .G/.

(3) Suppose that G contains a vertex v of degree two, incident to edges e1 and e2 .
Let G0 DG=fe1; e2g. Then gT .G

0/D gT .G/.
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G G0 G00

Figure 13: The graph G is transformed into C 2
2

via the algorithm of
Corollary 3.9. The first step decreases Turaev genus by four, while the
second and third steps do not change Turaev genus. Since gT .C

2
2 /D 1 , it

follows that gT .G/D 5 .

Example 3.10 Let G be the alternating decomposition graph on the top left of
Figure 13. One can apply the algorithm of Corollary 3.9 to G as follows. First, delete
four pairs of parallel edges as shown to obtain the graph G0 . Since k.G/D k.G0/, it
follows that gT .G/DgT .G

0/C4. Second, contract the remaining four pairs of parallel
edges to obtain G00 , and note that gT .G

00/D gT .G
0/. Finally, apply operation (3) of

Corollary 3.9 to four degree-two vertices of G00 to obtain C 2
2

. Since gT .C
2
2
/ D 1,

it follows that gT .G/D 5. This example shows that it is not always possible to find
gT .G/ pairs of parallel edges in G whose deletion does not increase the number of
components.

Proposition 3.11 Suppose that G1 and G2 are doubled path equivalent alternating
decomposition graphs. Then gT .G1/D gT .G2/.

Proof Let G be an alternating decomposition graph with sphere embedding G and
twisted embedding zG . A doubled path extension adds one vertex, two edges and one
face to zG , and a doubled path contraction removes one vertex, two edges and one face
from zG . Therefore the Euler characteristic of zG is unchanged by either doubled path
extensions or doubled path contractions. If G1 and G2 are doubled path equivalent
alternating decomposition graphs with twisted embeddings zG1 and zG2 , then the Euler
characteristics (and hence genera) of zG1 and zG2 agree. Thus gT .G1/D gT .G2/.

We remind the reader that doubled path extensions and contractions can transform an
alternating decomposition graph into a nonbipartite graph whose associated twisted
embedding is nonorientable. However, the Euler characteristic argument in the proof
of Proposition 3.11 applies in both the orientable or nonorientable cases. We also warn
the reader that doubled path extensions and contractions only change the length of
existing doubled paths. Creating new doubled paths or entirely destroying doubled
paths will change the Turaev genus of the graph.
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zDi DiC1F1 F3

F2

zDi DiC1

Figure 14: On the left is the disjoint union of zDi and DiC1 , and on the right
is a connected sum of zDi and DiC1 . The diagram DiC1 is alternating. For
k D 1 , 2 and 3 , let Fk denote the indicated face of zDk tDkC1 .

4 Alternating decomposition graphs of Turaev genus zero

Turaev [32] showed that the genus of the Turaev surface of a link diagram D is zero
if and only if D is a connected sum of alternating diagrams. In this section, we use
Turaev’s result to give a classification of alternating decomposition graphs of Turaev
genus zero. In order to accomplish this, we will study the behavior of the alternating
decomposition graph under certain types of connected sums.

Suppose that D is a link diagram with gT .D/ D 0. Hence D D D1 # � � � # Dk is
a connected sum of alternating diagrams D1; : : : ;Dk . Let zDi D D1 # � � � # Di for
i D 1; : : : ; k . Then D D zDk and zDiC1 D

zDi # DiC1 . Thus to classify connected
sums of alternating diagrams, it suffices to examine the connected sum of a (possibly
nonalternating) diagram zDi and an alternating diagram DiC1 ; see Figure 14.

Let zGi be the alternating decomposition graph of zDi , for each iD1; : : : ; k . Since DiC1

is alternating, its alternating decomposition graph is a single vertex. We examine
how zGiC1 is obtained from zGi . A face of a link diagram is said to be alternating if
every edge in the boundary of that face is alternating. Otherwise, the face is said to
be nonalternating. Let ei be the edge of zDi and let eiC1 be the edge of DiC1 along
which we are taking the connected sum. The edge eiC1 is necessarily alternating,
but ei can be either alternating or nonalternating. Figure 15 shows the alternating
decomposition curves in the seven relevant cases, which we describe in detail below.

Case 1 Suppose that ei is nonalternating. Figure 15 shows the endpoints of ei passing
under the crossing, but the case where the endpoints pass over the crossing is exactly
the same. Taking the connected sum merges the curve in the alternating decomposition
of DiC1 with one of the curves in the alternating decomposition of zDi . Therefore
zGiC1 D

zGi .

Case 2 Suppose that ei is alternating and the connected sum is taken as in Figure 15.
Also, suppose that both F1 and F2 are alternating faces of zDi . Then there are no
alternating decomposition curves of zDi in either F1 or F2 . Hence zGiC1 D

zGi tC2 ,
where C2 is a 2–cycle.

Algebraic & Geometric Topology, Volume 17 (2017)



814 Cody W Armond and Adam M Lowrance

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Figure 15: Taking the connected sum of zDiDD1#� � �#Di and the alternating
diagram DiC1

Case 3 Suppose that ei is alternating and the connected sum is taken as in Figure 15.
Also, suppose that F1 is an alternating face of zDi , while F2 is a nonalternating face
of zDi . Let  be the alternating decomposition curve in F2 that runs along ei . After
performing the connected sum, the curve  transforms into a curve that runs along
the same portion of the boundary of F2 and also along all of F1 . Thus the connected
sum attaches the alternating decomposition curve of DiC1 to  by two edges. Hence
zGiC1 D

zGi ˚1 C2 . The transformation G 7! G ˚1 C2 is called a doubled pendant
move and is depicted in Figure 16.
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::: v1

G G˚1 C2

::: v1 v2

Figure 16: A doubled pendant move on G results in the graph G˚1 C2 .

Case 4 Suppose that ei is alternating and the connected sum is taken as in Figure 15.
Also, suppose that F1 is a nonalternating face of zDi , while F2 is an alternating face
of zDi . Let  be the alternating decomposition curve in F1 that runs along ei . After
performing the connected sum, the curve  transforms into a curve that runs along
the same portion of the boundary of F1 and also along all of F2 . Thus the connected
sum attaches the alternating decomposition curve of DiC1 to  by two edges. Hence
zGiC1 D

zGi ˚1 C2 .

Case 5 Suppose that ei is alternating and the connected sum is taken as in Figure 15.
Also, suppose that both F1 and F2 are nonalternating faces of zDi and that the alter-
nating decomposition curves 1 and 2 that run along ei are distinct curves. Since
the region bounded by 1 and 2 contains crossings of zDi , it follows that the vertices
of zGi corresponding to 1 and 2 lie in different components of zGi . Performing the
connected sum operation merges 1 and 2 , and connects the alternating decomposition
curve of DiC1 to the newly merged 1 and 2 with two edges. Therefore, zGiC1 is
obtained from zGi by taking a one-sum along two vertices in separate components
of zGi and then an additional one-sum with C2 .

Case 6 Suppose that ei is alternating and the connected sum is taken as in Figure 15.
Also, suppose that both F1 and F2 are nonalternating faces of zDi and that there
is a single alternating decomposition curve that runs along ei in both F1 and F2 .
Performing a connected sum operation splits this alternating decomposition curve into
two curves, each of which has a single edge attached to the alternating decomposition
curve of DiC1 . Thus the graph zGiC1 is obtained from zGi by

(1) picking a vertex v of zGi ,

(2) partitioning the edges incident to v into two sets A and B each of odd order,

(3) splitting the vertex v into two new vertices v1 and v2 where, the edge set A is
incident to v1 and the edge set B is incident to v2 , and

(4) creating a new vertex v3 of degree two adjacent to both v1 and v2 .

See Figure 17 for a depiction of this operation, which we call a two-path extension.

Case 7 Suppose that ei is alternating and the connected sum is taken as in Figure 15.
Note that this connected sum is different than Cases 2–6. In this case, it does not matter
whether either, neither, or both of F1 and F2 are alternating or nonalternating. In each
case, we have zGiC1 D

zGi .
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A Bv A Bv1 v3 v2

Figure 17: A two-path extension. The edge sets A and B must each be of odd order.

Theorem 4.1 Let G be an alternating decomposition graph with gT .G/D 0. Then G

can be obtained from a collection of isolated vertices via a sequence of doubled pendant
moves, two-path extensions and one-sums along vertices in different components.

Proof Suppose D is a link diagram with alternating decomposition graph G . Then
gT .D/DgT .G/D0, and hence DDD1#� � �#Dk is a connected sum of alternating dia-
grams D1; : : : ;Dk . Let zDiDD1#� � �#Di , and let zGi be the alternating decomposition
graph of zGi . Our analysis above shows that there is a sequence zG1; zG2; : : : ; zGk DG

of alternating decomposition graphs such that zG1 is a collection of isolated vertices
and zGiC1 can be obtained from zGi by either doing nothing, a doubled pendant move,
a two-path extension, a disjoint union with C2 , or the multistep operation of Case 5
(which stipulated that we glue together two components of zGi along a vertex, and then
perform a doubled pendant move to the same vertex).

We modify the sequence zG1; : : : ; zGkDG so that it still begins in a collection of isolated
vertices, still ends in G , and each graph can be obtained from the previous one via a
doubled pendant move, a two-path extension, or by identifying two vertices in different
components. For each i where zGiC1 is obtained from zGi via a disjoint union with C2 ,
we modify zGj for j � i by adding an isolated vertex v . Since GtC2DGtfvg˚1C2 ,
we have changed adding a disjoint union of C2 into doubled pendant move.

For each i where zGiC1 is obtained from zGi via the operation in Case 5, we note
that zGiC1 is obtained from zGi by taking a one-sum of vertices in different components
and then performing a doubled pendant move. In order to satisfy the conditions in the
theorem, these two operations must be completed in separate steps. Thus we modify
the sequence by increasing the index of each zGj by one, with j � i C 1. Then we
set zGiC1 to be the graph obtained from zGi by taking the prescribed one-sum of vertices
in different components, and then zGiC2 can be obtained from zGiC1 by a doubled
pendant move.

Recall that an alternating decomposition graph G is reduced if it is a single vertex or if
each component of G is 3–edge connected. In the following proposition, we prove that
there exists a Turaev genus minimizing diagram of every nonsplit link with reduced
alternating decomposition graph.

Proposition 4.2 Every nonsplit link L has a diagram D with alternating decomposi-
tion graph G such that G is reduced and gT .G/D gT .L/.
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Proof Equation (2-1) implies that for any choice of edge along which to take a
connected sum of D1 and D2 , we have gT .D1 # D2/ D gT .D1/C gT .D2/. Let
D0 be a diagram of L that minimizes Turaev genus, ie such that gT .D

0/D gT .L/.
Suppose that D0 can be written as a connected sum D1 # � � � # Dk where each Di

cannot be realized as a connected sum. Let Gi be the alternating decomposition graph
of Di .

Since each Di cannot be realized as a connected sum, there is no circle in the plane
that intersects Di exactly twice such that the two 1–tangles formed are nontrivial.
Therefore, there is no circle in the plane that intersects the alternating decomposition
graph of Di exactly twice in two distinct edges. Hence the alternating decomposition
graph Gi is reduced.

However, the alternating decomposition graph G0 of D0 is not necessarily reduced. We
construct another diagram D of L such that gT .D/DgT .D

0/DgT .L/, and such that
the alternating decomposition graph G of D is reduced. Suppose the connected sum of
two diagrams zD1 and zD2 is formed in the same manner as Case 7 of Figure 15. Let e1

and e2 be the edges along which the connected sum is being taken, and let F1 , F2

and F3 be the three faces with e1 and e2 in their boundary, as in Figure 14. If at least
two of F1 , F2 and F3 are alternating faces, then the alternating decomposition graph
of zD1 # zD2 is either the one-sum or disjoint union of the alternating decomposition
graphs of zD1 and zD2 . Therefore, if the alternating decomposition graphs of zD1

and zD2 are reduced, then the alternating decomposition graph of zD1 # zD2 is reduced.

For each summand D1; : : : ;Dk in DDD1 # � � �#Dk , insert a small twist into the edge
on which a connected sum occurs, as in Figure 18. Inserting the twist does not change
the alternating decomposition graph of each Di , and thus does not change the genus of
the associated Turaev surface. Each new twisted edge is an alternating edge, and the face
bounded by that single alternating edge is an alternating face. Therefore, if all of the
connected sums are taken along these twisted edges, then the alternating decomposition
graph G of the resulting diagram D will be reduced. Moreover, since adding the twists
does not change the genus of the Turaev surface, gT .D/D gT .D

0/D gT .L/.

5 Turaev genus classification results

In this section, we classify all reduced alternating decomposition graphs of Turaev
genus one and two. We also show that for any nonnegative integer k , there are a finite
number doubled path equivalence classes of alternating decomposition graphs of Turaev
genus k . Hence there exists a classification of all reduced alternating decomposition
graphs of Turaev genus k for any nonnegative integer k .
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Figure 18: Inserting twists into edges where a connected sum is taken makes
the resulting diagram have reduced alternating decomposition graph.

C4.1; 1; 1; 1/ zK4.1; 1/˚2
zK4.1; 1/

Figure 19: The graphs C4.1; 1; 1; 1/ and zK4.1; 1/˚2
zK4.1; 1/

A graph G is called a doubled forest if it is obtained from a forest by doubling every
edge. A doubled tree is a doubled forest with one component. Let C4.p; q; r; s/ be
the graph obtained by attaching doubled paths of lengths p , q , r and s to the vertices
of a four cycle. Also, let zK4.p; q/ be the graph obtained by removing an edge of the
complete graph on four vertices K4 and then attaching doubled paths of lengths p

and q to the vertices incident to the removed edge. Let zK4.p; q/˚2
zK4.r; s/ be the

two-sum of zK4.p; q/ and zK4.r; s/ taken along the unique edge in each summand that
is not contained in nor adjacent to a doubled path; see Figure 19.

Lemma 5.1 Let H be an alternating decomposition graph without isolated vertices
such that gT .H /D 0 and H has at most four vertices of degree two. Then H is either

(1) a disjoint union of two doubled paths,

(2) a doubled tree with two, three or four leaves,

(3) C4.p; q; r; s/ for nonnegative integers p , q , r and s , or

(4) zK4.p; q/˚2
zK4.r; s/ for nonnegative integers p , q , r and s .
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Proof Each of the above graphs clearly has four or fewer vertices of degree two, and
the algorithm of Corollary 3.9 implies that each of the above graphs is indeed Turaev
genus zero. It remains to show that the above list is exhaustive.

Theorem 4.1 states that every Turaev genus zero alternating decomposition graph can
be obtained from a collection of isolated vertices via a sequence of doubled pendant
moves, two-path extensions and one-sums of vertices in distinct components. If H

is obtained from a collection of isolated vertices via a sequence of doubled pendant
moves and one-sums from distinct components, then H is a doubled forest. Since H

has four or fewer vertices of degree two and no isolated vertices, H is either a disjoint
union of two doubled paths or a doubled tree with two, three, or four leaves.

If a doubled tree H has a vertex of degree 2d for some positive integer d , then H

contains at least d vertices of degree two. A two-path extension always increases the
number of degree-two vertices in the graph. Therefore, we can only apply a two-path
extension to a vertex of degree two, four, or six. Let H 0 be obtained from the doubled
tree H via a two-path extension applied at a vertex v where the set of edges incident
to v is partitioned into sets A and B of odd order, as in Figure 17. Without loss of
generality, assume jAj � jBj.

If the degree of v is two, then jAj D jBj D 1. Therefore, a two-path extension will
add two new vertices of degree two. Hence H must be a doubled path, and H 0 is
C4.p; 0; 0; 0/ for some p . If the degree of v is four, then jAj D 3 and jBj D 1. A
two-path extension will again add two vertices of degree two, and hence H must be a
doubled path. Thus H 0 is C4.p; q; 0; 0/ for some p and q .

If the degree of v is six, then H already has at least three vertices of degree two. If
jAjD 5 and jBjD 1, then a two-path extension would create two new vertices of degree
two, resulting in at least five vertices of degree two. Therefore jAj D 3 and jBj D 3,
and H is a doubled tree with three degree-two vertices. Let N .A/ (respectively N .B/)
be the set of vertices adjacent to v and incident to an edge in A (respectively B ). There
are two cases: either jN .A/j D jN .B/j D 2 or jN .A/j D jN .B/j D 3. In the former
case, H 0 D C4.p; 0; r; 0/ for some p and r . In the latter, H 0 D zK4.p; 0/˚2

zK4.r; s/

for some p , r and s .

In each of the above instances, H 0 already has four vertices of degree two. Thus the
only allowable operation is a doubled pendant move applied to a vertex that is already
of degree two. Alternately, one could take a one-sum between H 0 and a doubled
path that identifies two degree-two vertices. However, this is the same as a doubled
pendant move applied to a vertex of degree two. The only effect this has is changing the
parameters in C4.p; q; r; s/ or zK4.p; q/˚2

zK4.r; s/, and hence the result holds.
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u1 u2 u3 v u1 u2 u3 v2

v3v1

u1 v u2 u3 u1 v1 u2 u3

v3 v2

u1 v u2

u3

u1 v2 u2

v1

u3

v3

u1 v u2 u3

v1

u1 v3 u2 u3

v2

Figure 20: Applying two-path extensions to doubled trees. The short red
lines denote the partition of the edges incident to v into the sets A and B .

Figure 20 shows examples of a two-path extension being applied to a doubled tree with
two or three vertices of degree two.

The previous classification of alternating decomposition graphs of Turaev genus zero
with at most four vertices of degree two leads directly to the classification reduced
alternating decomposition graphs of Turaev genus one and two.

Proof of Theorem 1.2 If G is a doubled cycle of even length, then it is reduced and
Corollary 3.9 implies that gT .G/D 1.

Let G be a reduced alternating decomposition graph with gT .G/ D 1. Lemma 3.6
implies G contains a pair of parallel edges fe1; e2g. Let G0 DG �fe1; e2g. Since G

is reduced k.G0/D k.G/ and thus gT .G
0/D 0. Because G has no vertices of degree

two, it follows that G0 has at most two vertices of degree two. Lemma 5.1 implies
that G0 is a doubled path. Therefore G is a doubled cycle of even length.

Suppose L is a link containing a 2–tangle T inside the ball B . A mutation of L is a
link L0 obtained by removing the ball B , rotating it 180ı about any of its principle
axes, and gluing B back into the link. Two links that are related by a sequence of
mutations are said to be mutants of one another.
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� C � C �

C � C � C

T1 T2 T3 T4

� C �

C � C

T1

T3 T2

T4

Figure 21: The 2–tangle in the upper diagram is rotated 180ı to obtain the
lower diagram. In the lower diagram, the 2–tangle containing T1 and T3 and
the 2–tangle containing T2 and T4 are alternating.

T1 T2

�

C

�

C

�

C

�

C

T1 T2

�

C

�

C

�

C

�

C

Figure 22: A diagram with alternating decomposition graph C 2
2 is trans-

formed into an almost-alternating diagram by pulling one of the nonalternating
edges over one of the tangles. If the circled crossing is changed, then the
diagram will be alternating.

Proof of Corollary 1.3 Since L is Turaev genus one, it has a diagram D as in
Figure 2. The alternating decomposition graph of this diagram is C 2

2k
, a doubled cycle

of length 2k . Let T be a the tangle consisting of Ti and TiC1 . Rotating the tangle T

by 180ı in the plane of the diagram results in a new diagram whose alternating
decomposition graph is C 2

2k�2
, a doubled cycle of length 2k � 2; see Figure 21.

Therefore, through a sequence of mutations, the diagram D can be transformed into a
diagram whose alternating decomposition graph is C 2

2
.

It remains to show that any diagram D0 with alternating decomposition graph C 2
2

is an almost-alternating link. We may assume that D0 consists of two alternating
2–tangles T1 and T2 connected together by four nonalternating edges. If one of those
nonalternating edges is pulled over the tangle T1 as in Figure 22, then the resulting
diagram is almost-alternating.

Many Turaev genus one links are known to be almost-alternating. Kim and Lee [21]
show that nonalternating, three-stranded pretzel links are almost-alternating. If each
tangle Ti in Figure 2 is a rational tangle, then the link L is called a Montesinos link.
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In the appendix to [2], Jong shows that nonalternating Montesinos links are almost-
alternating. Non-alternating Montesinos links include nonalternating pretzel links on
arbitrarily many strands. The manipulation of Figure 22 is a key step in Jong’s work.
All almost-alternating links are Turaev genus one, but it remains open whether all
Turaev genus one links are almost-alternating.

Proof of Theorem 1.4 Suppose that

G 2 fC 2
2 tC 2

2 ;C
2
2 ˚1 C 2

2 ;C
2
1;1;1;K4.2; 2/;K4.2/˚2 K4.2/g:

Corollary 3.9 implies that gT .G/D 2. Proposition 3.11 implies that any alternating
decomposition graph that is doubled path equivalent to G also has Turaev genus two.

Let G be a reduced alternating decomposition graph with gT .G/ D 2. Since G is
reduced and gT .G/D 2, it follows that G contains a pair of parallel edges fe1; e2g

such that gT .G
0/ D 1, where G0 D G � fe1; e2g. The graph G0 has at most two

vertices of degree two. Lemma 3.6 implies that G0 contains at least one pair of parallel
edges. If the deletion of every pair of parallel edges in G0 increased the number of
components of G0 , then every pair could be contracted to obtain the graph zG0 . Then
gT . zG

0/DgT .G
0/D 1, and the graph zG0 has at most two vertices of degree two and no

pairs of parallel edges. Hence Lemma 3.6 implies zG0 has no edges, which contradicts
gT . zG

0/D 1. Thus G0 contains a pair of parallel edges fe3; e4g such that their deletion
results in a graph with no more components.

Let G00 D G � fe1; e2; e3; e4g. Since G00 is an alternating decomposition graph of
Turaev genus zero with at most four vertices of degree two, it is one of the graphs in
Lemma 5.1. It remains to show that if G00 is one of the graphs in Lemma 5.1, G can be
obtained from G00 by adding two pairs of parallel edges, and G is a reduced alternating
decomposition graph of Turaev genus two, then G is doubled path equivalent to one of
the five graphs in the statement of the theorem.

Suppose that G00 is a disjoint union of two doubled paths. Then G00 has four vertices
v1 , v2 , v3 and v4 of degree two, and thus each pair of parallel edges added to G00

must connect two of the degree-two vertices. There are two ways to add these parallel
edges, one that results in a disjoint union of two doubled cycles and the other that
results in a single doubled cycle. However, a doubled cycle only has Turaev genus
one, and so G must be a disjoint union of two doubled cycles, ie G is doubled path
equivalent to C 2

2
tC 2

2
; see Figure 23.

Suppose that G00 is a doubled path where v1 and v2 are its degree-two vertices. If
one adds a pair of parallel edges connecting v1 and v2 , then adds a pair of parallel
edges anywhere else to obtain G , then G is doubled path equivalent to C 2

1;1;1
. If one
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v1 v2

v3 v4

v1 v2

v3 v4

Figure 23: If G00 is a disjoint union of two doubled paths, then G is a disjoint
union of two doubled cycles of even length.

v1 v2 v1 v2

v1 v2

u1

v1 v2

u1

v1 u1

u2 v2

v1 u1

u2 v2

Figure 24: If G00 is a doubled path, then G is doubled path equivalent to
either C 2

2
˚1 C 2

2
or C 2

1;1;1
.

adds a pair of parallel edges connecting v1 and some other vertex u1 and a pair of
parallel edges connecting v2 and some other vertex u2 to obtain G , then there are three
possibilities for G . If u1 is between v1 and u2 , then G is not reduced. If u1 D u2 ,
then G is doubled path equivalent to C 2

2
˚1 C 2

2
. If u2 is between v1 and u1 , then G

is doubled path equivalent to C 2
1;1;1

; see Figure 24.

Suppose that G00 is a doubled tree with three vertices v1 , v2 and v3 of degree two.
Let v be the unique vertex in G00 of degree six. Since G00 contains three vertices
of degree two, it follows that two of those vertices must be connected by a pair of
parallel edges in G . Without loss of generality, assume we add a pair of parallel edges
connecting v1 and v2 . Also, suppose that we add the other pair of parallel edges
connecting v3 and some other vertex u. If v is between u and v3 , then G is doubled
path equivalent to C 2

1;1;1
. If uD v , then G is doubled path equivalent to C 2

2
˚2 C 2

2
.

If u is between v and v3 , then G is not reduced; see Figure 25.
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v1

v2

v3u v1

v2

v3u

v1

v2

u

v3

v1

v2

u

v3

Figure 25: If G00 is a doubled tree with three vertices of degree two, then G

is doubled path equivalent to either C 2
1;1;1

or C 2
2
˚1 C 2

2
.

v1

v2

v3

v4

v1

v2

v3

v4

v1

v2 v3

v4 v1

v2 v3

v4

Figure 26: If G00 is a doubled tree with four vertices of degree two, then G

is doubled path equivalent to either C 2
1;1;1

or C 2
2
˚1 C 2

2
.

Suppose that G00 is a doubled tree with four vertices of degree two. Then one must
add one pair of parallel edges connecting two of the degree-two vertices and another
pair of parallel edges connecting the other two degree-two vertices. Furthermore G00

either contains two vertices of degree six or one vertex of degree eight. If G00 contains
two vertices of degree six, then G is either not reduced or doubled path equivalent
to C 2

1;1;1
. If G00 contains a vertex of degree eight, then G is doubled path equivalent

to C 2
2
˚1 C 2

2
; see Figure 26.

Suppose that G00 D C4.p; q; r; s/ for some nonnegative integers p , q , r and s .
Since G00 has four vertices of degree two, each pair of parallel edges added to G00

must connect two of the degree-two vertices. The resulting graph is K4. Qp; Qq/ for some
values of Qp and Qq . Thus G is doubled path equivalent to K4.2; 2/.

Suppose that G00D zK4.p; q/˚2
zK4.r; s/ for some nonnegative integers p , q , r and s .

Since G00 has four vertices of degree two, each pair of parallel edges added to G00 must
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connect two of the degree-two vertices. The resulting graph is K4. Qp/˚2 K4. Qq/ for
some values of Qp and Qq . Thus G is doubled path equivalent to K4.2/˚2 K4.2/.

Hence if G is a reduced alternating decomposition graph with gT .G/ D 2, then G

is doubled path equivalent to one of C 2
2
t C 2

2
, C 2

2
˚1 C 2

2
, C 2

1;1;1
, K4.2; 2/, or

K4.2/˚2 K4.2/.

Suppose G has v.G/ vertices, e.G/ edges, and k.G/ components. The nullity n.G/

of G is defined as
n.G/D e.G/� v.G/C k.G/:

One can equivalently define the nullity of G to be the nullity of the incidence matrix
of G or to be the number of edges not in a maximal spanning forest of G . The
simplification si.G/ of the graph G is the graph obtained from G by deleting loops
and replacing each set of multiple edges connecting two distinct vertices v1 and v2

with a single edge connecting v1 and v2 . As long as an alternating decomposition
graph G does not have any vertices of degree two, its Turaev genus is bounded below
by the nullity of the simplification of G in the following manner.

Proposition 5.2 Let G be an alternating decomposition graph, and let si.G/ be the
simplification of G . If G contains no vertices of degree two, then 3gT .G/� n.si.G//.

Proof Since G is assumed to have no vertices of degree two, the base case is GDC 2
2

,
a doubled cycle of length two, ie G contains two vertices with four parallel edges
between them. In this case gT .G/D 1 and n.si.G//D 0, and so the result holds.

Now suppose that the desired inequality holds for all alternating decomposition graphs
with no vertices of degree two that have fewer edges than G . Since G does not
contain any vertices of degree two, Lemma 3.6 implies that G contains a pair of
parallel edges e1 and e2 . Let G0 D G � fe1; e2g, and let e12 be the edge in si.G/
corresponding to e1 and e2 .

Suppose that k.G0/D k.G/C 1. Then gT .G
0/D gT .G/. The edge e12 is a bridge

in si.G/, and thus n.si.G0// D n.si.G//. By induction, 3gT .G
0/ � n.si.G0//, and

hence 3gT .G/� n.si.G//.

Suppose that k.G0/Dk.G/. Then gT .G/DgT .G
0/C1 and n.si.G//�n.si.G0//C1.

Let v1 and v2 be the two vertices incident to e1 and e2 in G . For i D 1 or 2, we
consider three cases:

(1) The degree of vi is greater than two.

(2) The vertex vi has degree two and two distinct neighbors.

(3) The vertex vi has degree two and only one distinct neighbor.
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In order to apply our inductive hypothesis, we eliminate all vertices of degree two
in G0 as follows. If deg vi > 2, then nothing needs to be done. If deg vi D 2 and vi

has two distinct neighbors, then perform a two-path contraction at vi . A two-path
contraction does not change the Turaev genus of the graph but could decrease the nullity
of the simplification of the graph by one. Suppose that deg vi D 2 and vi has only
one neighbor. Let Pi be the maximal doubled path embedded in G0 with endpoints vi

and ui such that every interior vertex of Pi has exactly two neighbors. If every edge
in Pi is contracted, then both the Turaev genus and the nullity of the simplification of
the resulting graph remain unchanged.

Let G00 be the graph obtained from G0 by performing the above operations on v1

and v2 . Then G00 has no vertices of degree two. We have

gT .G
00/D gT .G

0/ and n.si.G00//C 2� n.si.G0//:

Therefore

gT .G/D gT .G
00/C 1 and n.si.G//� n.si.G00//C 3:

By the inductive hypothesis, we have n.si.G00//� 3gT .G
00/. Therefore

n.si.G//� n.si.G00//C 3� 3gT .G
00/C 3D 3gT .G/:

We use the next lemma in the proof of Theorem 1.5, which will conclude the paper.

Lemma 5.3 Let n1 and n2 be nonnegative integers. There are a finite number of
graphs G such that n.G/D n1 and such that G contains n2 vertices of degree two.

Proof Because nullity is additive with respect to disjoint union, it suffices to show the
above statement for connected graphs. Let T be a tree, and let d12.T / be the number
of degree-one or degree-two vertices in T . Suppose that T is a spanning tree of a
graph G with n.G/D n1 where G contains n2 vertices of degree two. Hence G is
obtained from T by adding n1 edges. Each of the n1 edges added to T can make at
most two of the vertices of degree one or two in T have degree larger than two in G .
Also, every degree-two vertex in G is either a degree one or a degree-two vertex in T .
Therefore d12.T /� 2n1C n2 .

Every tree can be obtained from a single vertex by repeatedly adding pendant edges.
Each pendant edge addition increases d12.T /, and for a given tree, there are only finitely
many ways to add a pendant edge. Thus the number of trees T with d12.T /� 2n1Cn2

is finite. There are only a finite number of ways to add n1 edges to such a tree, and
hence there exists a finite number of graphs G with nullity n1 that contain n2 vertices
of degree two.
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We end the paper with the proof of Theorem 1.5.

Proof of Theorem 1.5 For each doubled path equivalence class c of reduced alternat-
ing decomposition graphs G with gT .G/D k , let Gc be a representative such that
no other representative of c can be obtained from Gc via a sequence of doubled path
contractions. Let V 0 be the set of vertices v in G such that deg v D 4, each v has
exactly two distinct neighbors u and w , there are two edges incident to both u and v ,
and there are two edges incident to both w and v .

For each vertex v 2 V 0 , there are two pairs of parallel edges incident to v , say parallel
edges ev;1 and ev;2 and parallel edges ev;3 and ev;4 . Let E0 be a set of edges containing
exactly one pair of these parallel edges for each v2V 0 , that is, E0Dfev;1; ev;2 jv2V 0g.
We claim that the graph Gc �E0 , ie the graph obtained by deleting the edges set E0

from Gc , has the same number of components as Gc .

By way of contradiction, suppose that Gc �E0 has more components than Gc . Then
there exists a minimal subset E00 of E0 such that Gc �E00 has one more component
than Gc , but Gc�S has the same number of components as Gc for any proper subset S

of E00 . Note that if an edge ev;1 is in E00 , then its parallel edge ev;2 is also in E00 .
Therefore if G00c DGc=E

00 , ie the contraction of the edges in E00 from Gc , then G00c is
obtained from Gc via a sequence of doubled path contractions.

Let C 00 be a cycle in G00c . Then there is a cycle C in Gc such that C 00DC=.C \E00/.
Since Gc is bipartite, it follows that C has an even number of edges. Since adding any
single edge of E00 to Gc�E00 connects two components of Gc , it follows that C \E00

has an even number of edges. Therefore, C 00 has an even number of edges. Because
each cycle of G00c has an even number of edges, the graph G00c is bipartite. Thus G00c is
an alternating decomposition graph, which contradicts that no other representative of c

can be obtained from Gc via a sequence of doubled path contractions.

Therefore Gc�E0 has the same number of components as Gc . Hence deleting each pair
of parallel edges in E0 from Gc decreases the Turaev genus by one, which implies that
jE0j�2k and jV 0j�k . Each vertex v 2V 0 has degree two in the simplification si.Gc/.

Any other vertex of degree two in si.Gc/ arises from a vertex v in Gc with two distinct
neighbors v1 and v2 such that there are r edges between v and v1 and s edges
between v and v2 , where rC s is even and maxfr; sg> 2. For each such vertex, there
are two parallel edges whose removal decreases Turaev genus by one and does not
change the simplification si.Gc/. Because pairs of such vertices could be adjacent,
there are at most 2k in Gc .

Therefore si.Gc/ has at most 3k vertices of degree two. Moreover 3k D 3gT .Gc/�

n.si.Gc//. Because the nullity and the number of degree-two vertices are bounded,
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Lemma 5.3 implies that there are only a finite number of candidates for the graph si.Gc/.
Because adding arbitrarily many parallel edges to an alternating decomposition graph
increases its Turaev genus without bound, there are only a finite number of alternating
decomposition graphs of a fixed Turaev genus whose simplification is a given graph.
Therefore, there are only finitely many doubled path equivalence classes of alternating
decomposition graphs of Turaev genus k .
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