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On phantom maps into co-H–spaces

JAMES SCHWASS

We study the existence of essential phantom maps into co-H–spaces, motivated by
Iriye’s observation that every suspension space Y of finite type with Hi.Y IQ/¤ 0

for some i > 1 is the target of essential phantom maps. We show that Iriye’s
observation can be extended to the collection of nilpotent, finite-type co-H–spaces.
This work hinges on an enhanced understanding of the connections between homotopy
decompositions of looped co-H–spaces and coalgebra decompositions of tensor
algebras due to Grbic̀, Theriault and Wu.

55P45, 55S37

1 Introduction

We will work in the category Top of spaces having the homotopy type of a pointed CW
complex and pointed maps between them. We will restrict our attention throughout
to simply connected spaces, or their loop spaces. A map X ! Y is called a phantom
map if for every n the composite

Xn!X ! Y

is nullhomotopic, where Xn!X is an n–skeleton for some CW structure of X . We
offer an alternative characterization of this concept to illustrate that the choice of a CW
structure X is insignificant; according to Bousfield and Kan [4], X ! Y is phantom
if and only if X ! Y ! Y .n/ is nullhomotopic for every n, where Y .n/ denotes the
nth Postnikov approximation of Y .

From the definition and characterization given above, it is clear that a phantom map must
induce the zero map on homotopy groups, and on any homology theory, and so these
maps appear trivial upon passage to such common algebraic models for topological
spaces. On the other hand, phantom maps can be of genuine topological interest. The
theory of phantom maps has been used by Harper and Roitberg [12] and Gray [9],
among many others, to produce and study examples of distinct homotopy classes of
spaces X and Y which have the same n–type, ie X .n/' Y .n/ for all n. Roitberg [20]
has also used the theory of phantom maps to compute the homotopy automorphism
groups of particular spaces; in general the computation of homotopy automorphism
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groups is intractable. These examples serve to illustrate that phantom maps play a
significant role in Top. But, since these maps vanish under many of our favorite
functors, they prove difficult to study, or even to locate. The purpose of this work is to
locate new examples of phantom maps; the analysis of particular invariants of these
phantom maps and the structure of the collection of phantom maps will take place
elsewhere.

The constant map is an obvious example of a phantom map. Of more interest are
essential (ie homotopically nontrivial) phantom maps, which abound in Top. We offer,
as evidence of this fact, the following theorems of Iriye, and McGibbon and Møller.
We will say a space X is of finite type (over Z) if each Hn.X IZ/ and �n.X / is a
finitely generated group. We write Ph.X;Y / for the subset of ŒX;Y � consisting of
homotopy classes of phantom maps.

Theorem 1.1 [13] Suppose Y '†X is a nilpotent suspension space of finite type.
If Hi.Y IQ/¤ 0 for some i > 1 then Y is the target of essential phantom maps from
finite-type domains.

Theorem 1.2 [17] If X and Y are of finite type and Ph.X;Y / is not the one point
set, then Ph.X;Y / is uncountably large.

In many senses, the concept of a co-H–space is a mild generalization of that of a
suspension space. As such, many statements that hold true for the collection of
suspension spaces are also true for the collection of co-H–spaces. We wondered if one
could replace the suspension space Y in Theorem 1.1 with any nilpotent co-H–space
of finite type. Our main result is a positive answer to this question.

Theorem 1.3 Suppose Y is a nilpotent co-H–space with Hi.Y IQ/¤0 for some i>1.
Then Y is the target of essential phantom maps from finite-type domains.

The proof of Theorem 1.3 is comprised of several pieces. For a co-H–space whose
rational homology is “large” we develop decomposition methods in phantom map
theory and appeal to recently developed highly structured decompositions of the loop
space of a co-H–space due to Selick, Grbic̀, Theriault and Wu. For a co-H–space with
“small” rational homology we exploit strong connections between phantom map theory
and rational homotopy theory discovered by McGibbon and Roitberg.

Through the theory of Lusternik–Schnirelmann category, this work can be viewed as
providing a solution to the case nD 1 of the following question. Our exposition of
Lusternik–Schnirelmann category here will be limited to the following three obser-
vations: cat.X / is a nonnegative integer, assigned to a space X , which we think of
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as a measure of the complexity of X ; cat.X / D 0 if and only if X is contractible;
the spaces of Lusternik–Schnirelmann category one are precisely the noncontractible
co-H–spaces.

Question 1.4 Suppose Y has finite type, and cat.Y /D n<1. If Hi.Y IQ/¤ 0 for
some i > 1, is Y the target of essential phantom maps from finite-type domains?

In Section 2.1 we lay out the preliminaries on phantom map theory. In Section 2.2
we describe recently developed connections between coalgebra decompositions of
tensor algebras and homotopy decompositions of looped co-H–spaces. In Section 3 we
develop techniques to bridge the gap between the decompositions of Section 2.2 and
the theory of phantom maps. Section 4 contains the proof of Theorem 1.3. Examples
and applications are given in Section 5.

Acknowledgements We would like to thank Jeff Strom, the author’s dissertation
advisor, for many helpful conversations regarding the content and preparation of this
paper. This work grew out of the author’s doctoral dissertation at Western Michigan
University. We are indebted to Kouyemon Iriye for supplying a critical insight into the
proof of Proposition 4.5, which helped this work reach its maturity. We would also
like to thank the referee for suggesting the inclusion of additional examples.

2 Preliminaries

Localization will play a central role in what is to follow. We assume familiarity with
the rudiments of localization; a detailed reference is [15]. Since a rationally nontrivial
p–local space is not of finite type over Z, we will have a need for a p–local analog of
the notion of a finite-type space; a space X is of finite type over Z.p/ if each Hn.X IZ/
and �n.X / is a finitely generated Z.p/–module. We should note that a space of finite
type over Z.p/ is necessarily p–local. Though we will be primarily interested in
phantom maps between finite-type spaces, we will have occasion to examine phantom
maps from finite-type domains into targets having finite type over Z.p/ .

2.1 Background on phantom maps

In Section 2.1.1 we describe a critical identification of Ph.X;Y / with a particular
functor which factors through the category of towers of groups. In Section 2.1.2 we
describe connections between phantom map theory and rational homotopy theory that
are indispensable in discovering new examples of phantom maps from old, among
other things. Most of the material in this section can be found in the wonderful survey
article [16] of McGibbon.
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2.1.1 The tower perspective By a tower fGng of groups we mean a diagram

(1) � � �
pnC1
���!Gn

pn
�!� � �

p3
�!G2

p2
�!G1

in the category of groups. We mean something similar by a tower of abelian groups, or a
tower of sets, or really a tower of any sort of gadget — these are Nop –shaped diagrams
in various categories. A morphism of towers is a natural transformation of Nop shaped
diagrams. By lim Gn we mean the limit of the diagram (1) in the appropriate category.

We now set about describing the functor lim1 . On the category of towers of abelian
groups, by lim1 we mean the first derived functor of lim; more concretely, if fGng is
a tower of abelian groups, then lim Gn is the kernel and lim1Gn is the cokernel of the
map Y

Gn
id�.pn/
����!

Y
Gn

given by
.a1; a2; : : : / 7! .a1�p2.a2/; a2�p3.a3/; : : : /:

Bousfield and Kan [4, pages 254–255] extend the definition of lim1 to the category of
towers of arbitrary groups as follows: Given a tower fGng of groups let

Q
Gn act onQ

Gn by
.gn/ � .xn/D .gnxn.pnC1.gnC1/

�1//;

where GnC1
pnC1
���!Gn is the structure map in the tower fGng. Then lim1Gn is the

orbit space of this action. This is important to us because we will have occasion to
refer to lim1Gn where fGng is a tower of not necessarily abelian groups.

In particular, if X and Y have the homotopy type of CW complexes, then a CW structure
for X gives rise to a tower fŒ†Xn;Y �g of (generally nonabelian) groups; dually the
Postnikov tower for Y gives rise to a tower fŒX; �Y .n/�g of (generally nonabelian)
groups. We now arrive at a fundamental identification in phantom map theory.

Corollary 2.1 [4] For spaces X and Y there are bijections of pointed sets

lim1Œ†Xn;Y �Š Ph.X;Y /Š lim1ŒX; �Y .n/�:

The identification made in Corollary 2.1 allows for the introduction of algebraic methods
for characterizing the condition Ph.X;Y / D �. Given a tower of gadgets (groups,
sets, etc) fGng let G

.n/

k
be the image in Gk of the composite of the structure maps

Gn!Gn�1! � � � !Gk

when n�k and for n<k set G
.n/

k
D1. This defines, for each k�1 a subtower fG.n/

k
g,

indexed by n, of the tower fGng. Notice that for fixed k the sequence of images G
.n/

k
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are nested; we say the tower fGng satisfies the Mittag-Leffler condition if all of the
nested sequences G

.n/

k
satisfy a descending chain condition: explicitly, for each k

there is some N such that for all n�N one has G
.n/

k
DG

.N /

k
.

It is well known that if a tower fGng satisfies the Mittag-Leffler condition, then
lim1Gn D �. When the tower fGng is comprised of countable groups, the converse of
this statement is also true:

Theorem 2.2 [17] Suppose Gn is a tower of countable groups. Then lim1Gn D � if
and only if the tower Gn satisfies the Mittag-Leffler condition. Moreover, if lim1Gn¤�,
then lim1Gn is uncountably large.

It is worthwhile to note that, when X and Y are of finite type over Z or Z.p/ for
some prime p , for each n the groups

Œ†Xn;Y � and ŒX; �Y .n/�

are countable. Theorem 2.2 will be used to develop decomposition methods in phantom
map theory in Section 3.

2.1.2 Phantom maps and rational equivalences McGibbon and Roitberg have char-
acterized the finite-type spaces that are not the targets of essential phantom maps from
finite-type domains in terms of the existence of particular rational equivalences.

Theorem 2.3 [18] For a nilpotent, finite-type space Y , the following are equivalent:

(i) Ph.X;Y /D � for all finite-type domains X .

(ii) Ph.K.Z;m/;Y /D � for all m.

(iii) There is a rational equivalence
Q
˛ K.Z;m˛/!�Y .

We should note that the direction of the rational equivalence in Theorem 2.3(iii) is
significant; for any space Y there is a rational equivalence �Y !

Q
K.Z;mˇ/.

We will need a p–local version of the implication (i)D) (iii) of Theorem 2.3, which
we record as Proposition 2.4. This will be used to establish a lemma in Section 3
required to develop decomposition methods in phantom map theory.

We have previously observed that if X and Y are of finite type over Z or Z.p/ , then
the groups

Œ†Xn;Y � and ŒX; �Y .n/�

are countable for all n. As such, Theorem 2.2 can be used to characterize the condition
Ph.X;Y /D� in terms of the Mittag-Leffler condition. This is the main point required
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to complete the construction of the rational equivalence
Q

K.Z;mˇ/!�Y as given
by McGibbon and Roitberg, given the hypothesis Ph.X;Y / D � for all finite-type
domains X , and so we arrive at the following partial refinement of Theorem 2.3.

Proposition 2.4 Suppose Y is nilpotent and has finite type over Z.p/ . If Ph.X;Y /D�
for all finite-type domains X , then there is a rational equivalenceY

K.Z;mˇ/!�Y:

The converse of this statement could feasibly hold, but we have not yet had occasion
to check this. Indeed, if conjugacy classes in ŒX; �Y .n/� are of finite cardinality for
every n, then the converse of Proposition 2.4 can be established using the proof of
Theorem 2.3 given by McGibbon and Roitberg [18].

Theorem 2.3 only begins to hint at the connections between phantom map theory and
rational homotopy theory. The next result is another glimpse of these strong connections.
We should note that the result stated here is slightly stronger than in [18], though the
authors’ argument establishes the result in light of the observation that ŒX; �Y .n/� is
a countable group when X and Y are of finite type over Z or Z.p/ . Before stating
the result, we remark that Ph.X;Y / is a contravariant functor in X and a covariant
functor in Y .

Theorem 2.5 [18] Suppose Y and Y 0 are of finite type over Z or Z.p/ . If Y ! Y 0

induces a surjection on ��˝Q, then for every finite-type domain X the induced map

Ph.X;Y /! Ph.X;Y 0/

is surjective.

Note that for each prime p and each nilpotent space Y the p–localization Y ! Y.p/
is a rational equivalence, hence induces surjections on ��˝Q, and so we arrive at a
corollary which has been well-known in the phantom map literature, and will be one
of our primary tools for detecting essential phantom maps.

Corollary 2.6 Suppose Y is a nilpotent, finite-type space. If Y.p/ is the target of
essential phantom maps from finite-type domains, then so is Y .

2.2 Homotopy decompositions of looped co-H–spaces

Our jumping off point is the generalized Bott-Samelson theorem, due to Berstein.
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Bott–Samelson theorem [2] If Y is a simply connected co-H–space, then there is a
natural algebra isomorphism

H�.�Y /Š T .†�1 zH�.Y //;

where H�.�Y / is equipped with the Pontryagin product. (Here homology has coeffi-
cients in a PID k and zH�.Y / is a free k –module.)

For the rest of this section we fix a prime p ; the ground ring for all algebraic objects
will be Fp , the field with p elements. All homology in this section has Fp coefficients.
Many of the results of this section remain true if we replace Fp with an arbitrary field,
though we will have no need for such generality. We write T for the free graded tensor
algebra functor taking the category of vector spaces to the category of graded algebras.

In the 1980s, F Cohen, Moore and Neisendorfer developed a technique fueled by
the Bott–Samelson theorem which they use to determine the homotopy exponents of
odd-dimensional spheres; the difficulty of drawing concrete conclusions regarding
homotopy groups of spheres is well documented, and illustrates the power of this
technique. We now loosely outline one component of this program. Cohen, Moore and
Neisendorfer sought out algebraic decompositions of T .†�1 zH�.Y //, and showed that
these algebraic decompositions have geometric realizations in the form of homotopy
decompositions of �Y for Y D S2nC1 , among a few other specific spaces.

In [22], Selick and Wu begin developing functorial analogs of the ad hoc decomposition
methods of Cohen, Moore and Neisendorfer, apparently motivated by the power of these
methods, along with a conjecture of Cohen. The functorial decomposition methods
reach maturity in [11], after contributions by Grbic̀, Theriault, Selick and Wu spanning
the course of about a decade. Before describing these functorial analogs, we lay out
some nomenclature and conventions.

Of course as vector spaces T .V / D
L

n�0 V ˝n , where V ˝0 D Fp . This identifies
V as a submodule of T .V /. The algebra T .V / is equipped with a unit Fp! T .V /

and augmentation T .V /! Fp defined by inclusion of and projection onto Fp D V ˝0 ,
respectively. The tensor algebra T .V / is naturally endowed with the structure of
a Hopf algebra by declaring the elements of V to be primitive. More explicitly,
since T .V / is the free algebra on V , the linear map V ! T .V /˝ T .V / given by
v 7! 1˝ vC v˝1 extends uniquely to a map of algebras �W T .V /! T .V /˝T .V /,
giving a comultiplication on T .V /. One can check that the unit and augmentation are
morphisms of coalgebras and algebras, respectively, and so we have given T .V / the
structure of a Hopf algebra. This discussion serves to illustrate that we can think of the
tensor algebra functor T as taking its values in the categories of algebras, coalgebras
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or Hopf algebras. We will specify which category we mean to take for the target of the
functor T if there is potential for confusion.

A natural coalgebra retract of T is a functor A from vector spaces to coalgebras
equipped with natural transformations A

I
�! T and T

R
�!A such that RI is the

identity natural transformation on A. A natural coalgebra decomposition of T is a
pair of functors A;B from vector spaces to coalgebras equipped with natural coalgebra
isomorphisms T Š A˝ B . Since ˝ is the categorical product in the category of
coalgebras, which happens to be a pointed category, it follows that if T ŠA˝B is
a natural coalgebra decomposition, then both A and B are natural coalgebra retracts
of T . A natural sub-Hopf algebra of T is a subfunctor B from vector spaces to
Hopf algebras. A natural sub-Hopf algebra B of T is coalgebra split if B is a natural
coalgebra retract of T when regarded as a functor into the category of coalgebras.

We will write CoH.p/ for the category of p–local co-H–spaces and co-H–maps between
them. A natural homotopy retract of �W CoH.p/!Top is a functor AW CoH.p/!Top
equipped with natural transformations A

I
�!� and � R

�!A such that RI is naturally
homotopic to the identity natural transformation on A. Such a functor A is a geometric
realization over CoH.p/ of a natural coalgebra retract A of T if there is a natural
isomorphism of functors from Top to the category of coalgebras

H� ıAŠA ı†�1 zH�:

A natural homotopy decomposition of �W CoH.p/!Top is a pair of functors A and B

from CoH.p/! Top equipped with natural homotopy equivalences �' A�B . A
natural homotopy decomposition �'A�B is a geometric realization over CoH.p/ of
the natural coalgebra decomposition T ŠA˝B if A and B are geometric realizations
of A and B , respectively.

We are now equipped to describe the functorial analogs of the decomposition methods
of Cohen, Moore and Neisendorfer. These results give a wonderful algebraic source of
homotopy decompositions of looped co-H–spaces.

Theorem 2.7 [21] Every natural coalgebra retract of T has a geometric realization
over CoH.p/ .

Corollary 2.8 [21] Every natural coalgebra decomposition of T has a geometric
realization over CoH.p/ .

We will be interested in a particular natural coalgebra decomposition of the tensor
algebra functor known as the minimal decomposition, which we now set about describ-
ing. Beginning with Cohen, there was an interest in studying the minimal functorial
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coalgebra retract Amin of T for which V � Amin.V / for every vector space V ;
we should note that constructions of Amin are theoretical, and concrete information
regarding this functor can be difficult to come by [23]. Cohen conjectured that the
primitives of T .V /, considered as a Hopf algebra, having tensor length not a power
of p must lie in the coalgebra complement of Amin.V / in T .V /. This was confirmed
by Selick and Wu, who discovered the minimal decomposition and began studying its
structural properties in [22].

Theorem 2.9 [22] There is a natural coalgebra-split sub-Hopf algebra Bmax of T

and a natural coalgebra decomposition

(2) T ŠAmin
˝Bmax:

Moreover, Ln.V / � Bmax.V / if n is not a power of p . Here Ln.V / denotes the
submodule of homogeneous Lie elements of tensor length n in T .V /. The natural
coalgebra decomposition (2) is known as the minimal decomposition.

By Corollary 2.8, the minimal decomposition has a geometric realization as � '
Amin�Bmax over CoH.p/ . We can find more structure in this homotopy decomposition
of � by making use of the observation that Bmax is a natural sub-Hopf algebra
of T . For a Hopf algebra M , write IM for the augmentation ideal of M , and write
QM D IM=.IM/2 for the module of indecomposables of M . Suppose B is any natural
coalgebra-split sub-Hopf algebra B of T . Since B.V / is a sub-Hopf algebra of T .V /

for each vector space V , it follows that B.V / is also a tensor algebra. That is, there is
a natural isomorphism of algebras

B.V /Š T

�M
n�1

QnB.V /

�
;

where QnB.V / is the image of the submodule

Bn.V /D IB.V /\V ˝n
� T .V /

of B.V / consisting of elements of tensor length n in T .V / lying in the augmentation
ideal of B.V / under the natural map B.V /! QB.V /. The construction of each
QnB.V / is natural, so we obtain natural isomorphisms

B Š T ı
M
n�1

QnB:

Ideally one can geometrically realize this additional structure as well; this is the content
of the following theorem of Grbic̀, Theriault and Wu:

Algebraic & Geometric Topology, Volume 17 (2017)



856 James Schwass

Theorem 2.10 [11] Suppose B is a natural coalgebra-split sub-Hopf algebra of T .
There exist functors QnBW CoH.p/! Top with

(1) †�1 zH�.QnB.Y //ŠQnB.†�1 zH�.Y //,

(2) QnB.Y / is naturally a retract of an .n�1/–fold desuspension of Y ^n , the nth

smash power of Y ,

(3) B.Y /'�
�W

n�1 QnB.Y /
�
.

The statement (2) requires some justification. Theriault [24] has shown that if X and Y

are coassociative co-H–spaces then X ^Y '†Z for some co-H–space Z . Gray [10]
showed that the coassociativity requirement could be relaxed — we need only require
that one of the factors in the smash product be simply connected or a suspension space.
Inductively, it follows that an n–fold smash product of simply connected co-H–spaces
is an .n�1/–fold suspension of a co-H–space; symbolically, for simply connected
co-H–spaces Xi , i D 1; : : : ; n,

(3)
nV

iD1
Xi '†

n�1Z

for some co-H–space Z . Of course there may be many choices for the space Z . For
example, the well-known decomposition

†.X �Y /'†X _†Y _†.X ^Y /

and the failure of the identity

X �Y 'X _Y _ .X ^Y /

witnesses the failure of a cancellation property for †. This ambiguity need not worry
us, since we will only have a need to describe the homology of a space Z fitting
in †n�1Z ' Y ^n . That the space Z can be chosen to admit a co-H–structure also
illustrates that QnB.Y / can be endowed with the structure of a co-H–space, which
will be of importance in the proof of Theorem 1.3.

3 Decomposition methods in phantom map theory

In this section we develop tools which will be used to bridge the gap between the
decompositions of Section 2.2 and phantom map theory. The loop- and wedge-splitting
theorems (and their duals) have many applications outside our present scope, due
to the existence of a vast library of decompositions in the literature to which these
theorems can be applied. To substantiate this claim, we provide an application of the
loop-splitting theorem to special cases of Question 1.4 in Example 5.3.
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Theorem 3.1 (loop-splitting theorem) Suppose Y has finite type over Z or Z.p/ for
some prime p , and �Y 'A��B . If B is the target of essential phantom maps from
finite-type domains, then so is Y .

Proof Take X to be an arbitrary finite-type domain and write

Gn D ŒX; �Y .n/� and Hn D ŒX; �B.n/�:

We make use of the identification

Ph.X;Y /Š lim1Gn and Ph.X;B/Š lim1Hn:

By Theorem 2.2 if Ph.X;Y /D � then fGng is Mittag-Leffler. Since �Y 'A��B

we have a natural projection f W �Y ! �B inducing surjections fnW Gn ! Hn of
pointed sets.

If we knew each fn was a homomorphism of groups, we could conclude Ph.X;B/Š
lim1Hn D � by noting lim1f W lim1Gn! lim1Hn is surjective and lim1Gn D �. In
general, however, we cannot expect the functions fn to be homomorphisms, and so we
must work marginally harder.

Fortunately, the Mittag-Leffler condition makes no reference to the group structure of
the individual stages of a tower, and is more a property of the underlying tower of sets.
In light of Theorem 2.2, to show lim1Hn D � it suffices to show the Mittag-Leffler
condition is preserved under epimorphisms of towers of pointed sets. This is the content
of the following lemma:

Lemma 3.2 If f W fGng ! fHng is an epimorphism of towers of pointed sets, and
fGng satisfies the Mittag-Leffler condition, then so does fHng.

Proof Since fGng is Mittag-Leffler then for each k there is some N 2N so that for
n�N one has

G
.N /

k
DG

.n/

k
:

A quick diagram chase shows that the surjections fk W Gk !Hk induce surjections
f
.n/

k
W G

.n/

k
!H

.n/

k
. In other words,

H
.n/

k
D ff .x/ j x 2G

.n/

k
g:

But, for n�N we have G
.n/

k
DG

.N /

k
and so this shows H

.n/

k
DH

.N /

k
. So, the tower

fHng is Mittag-Leffler, which completes the proof of the lemma, and hence the proof
of the loop-splitting theorem.
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Theorem 3.3 (wedge-splitting theorem) Suppose Y is simply connected and has
finite type over Z or Z.p/ and Y 'A_B . If both A and B are rationally nontrivial,
then Y is the target of essential phantom maps from finite-type domains.

For the proof we will need the following variation of Iriye’s Corollary 1.5 from [13].
The proof is a simple modification of the argument there, replacing Theorem 2.1 with
our Proposition 2.4.

Lemma 3.4 Suppose Y has finite type over Z.p/ . If either

(1) there is some ˛ 2 �2nC1.Y / of infinite order whose image under the Hurewicz
map is also of infinite order, or

(2) there is some v 2H 2n.Y IZ/ of infinite order whose square v2 is also of infinite
order,

then †Y is the target of essential phantom maps from finite-type domains.

Proof of the wedge-splitting theorem We note that since Y is simply connected, so
too are A and B . In the long fiber sequence induced by the inclusion i W A_B!A�B ,

� � � !�F
�f
�!�.A_B/

�i
�!�A��B @

�!F
f
�!A_B i

�!A�B

we can identify F ' .�A/�.�B/, where X �Y denotes the join of topological spaces
X and Y , and we find that @ ' �. It follows that �i has a section, and �f has a
retraction, which gives a natural homotopy equivalence

(4) �.A_B/'�A��B ��..�A/� .�B//:

For a more complete account of this discussion we refer the reader to the work of
Porter [19]. We now proceed by cases.

Case I Suppose Y has finite type over Z. Then so do A and B . Now, if both A

and B are rationally nontrivial, then .�A/� .�B/ is a simply connected, rationally
nontrivial suspension space, hence is the target of essential phantom maps from finite-
type domains by Theorem 1.1. Applying the loop-splitting theorem to the splitting,
(4) then implies A_B is the target of essential phantom maps from finite-type domains.

Case II In case Y has finite type over Z.p/ our goal will be, as above, to show that
�A��B is the target of essential phantom maps from finite-type domains and appeal
to the loop-splitting theorem. But, since �A ��B is not of finite type over Z we
must make use of Lemma 3.4. To do so we need to discover more about �A^�B .
Suppose connQ.A/D n and connQ.B/Dm, where by connQ.X /D k � 1 we mean
�i.X / ˝ Q D 0 for i < k and �k.X / ˝ Q ¤ 0. Choose a 2 H n.�AIZ/ and
b 2H m.�BIZ/ of infinite order. We proceed by cases.
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Case A If n and m are both even, then a2 and b2 can be seen to be of infinite order,
since H�.�AIQ/ contains QŒxa� as a subalgebra, where xa is the image of a under
rationalization, and similarly QŒxb� is a subalgebra of H�.�BIQ/. Then .a˝b/2 has
infinite order in H�.�A^�BIZ/, since .xa˝ xb/2 is nonzero in H�.�A^�BIQ/
and Lemma 3.4(2) applies. Here we use the Künneth theorem to embed H�.�AIZ/˝
H�.�BIZ/ in H�.�A^�BIZ/ as a submodule.

Case B If n is even and m is odd, then connQ.�A^�B/D nCm� 1 and, by the
Hurewicz theorem, �nCm.�A^�B/!HnCm.�A^�B/ is an isomorphism, with
nCm odd, so Lemma 3.4(1) applies.

Case C Suppose n and m are both odd, and without loss of generality assume
n�m. Since connQ.�A^�B/D nCm� 1 the rational Hurewicz homomorphism
�2nCm˝Q!H2nCm.�IQ/ is an isomorphism by the rational Hurewicz theorem.
Since n and m are odd, 2nCm is odd, while �2nCm.�A^�B/˝Q¤ 0, and so
Lemma 3.4(1) applies.

4 Proof of Theorem 1.3

We begin by showing it suffices to prove Theorem 1.3 when the nilpotent co-H–space Y

in question is simply connected, so that we may appeal to the decompositions of looped
co-H–spaces described in Section 2.2. To this end, assume Y is a co-H–space with
Hi.Y IQ/¤ 0 for some i > 1. By Fox [6], zY is a co-H–space, and as a consequence
of the work of Iwase, Saito and Toshio [14] on homology of universal covers of co-
H–spaces we see that if Hi.Y IQ/ ¤ 0 then Hi. zY IQ/ ¤ 0. In light of these facts
and the upcoming Lemma 4.1 we replace Y with its universal cover for the proof of
Theorem 1.3.

Lemma 4.1 Suppose Y is a nilpotent co-H–space and let cW zY ! Y be the universal
cover. If zY is the target of essential phantom maps from finite-type domains, then so
too is Y .

Proof By Theorem 2.3 if zY is the target of essential phantom maps from finite-type
domains, then Ph.K.Z; n/; zY /¤ � for some n� 2. We argue that c induces a weak
injection Ph.K.Z; n/; zY /! Ph.K.Z; n/;Y /.

Suppose 'W K.Z; n/! zY is an essential phantom map. The map c is the fiber of the
classifying map Y ! B�1.Y /. Since Y is a co-H–space �1.Y / is a free group, and
since Y is nilpotent �1.Y / is either trivial or congruent to Z. Since the result is trivial
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in case �1.Y / D 1 we assume �1.Y / Š Z. So B�1.Y / ' S1 and we have a fiber
sequence

�S1 ı
�! zY c

�!Y:

We proceed by contradiction. Suppose c''�. Then there is a lift �W K.Z; n/!�S1

of ' through ı . But �S1 ' Z is discrete and K.Z; n/ is connected so � ' � and
' ' ı� is trivial, a contradiction. Hence c'W K.Z; n/! Y is essential.

We now derive Theorem 1.3 as a consequence of the following three propositions. We
begin with the case dimQ

zH�.Y IQ/� 2. This condition ensures the decompositions
of Section 2.2 are algebraically rich enough to detect essential phantom maps into Y

via techniques developed in Section 3.

Proposition 4.2 Suppose Y is a simply connected co-H–space with dimQ
zH�.Y IQ/

at least 2. Then Y is the target of essential phantom maps from finite-type domains.

Proof Choose a homogeneous basis of integral classes fx1;x2; : : : g for zH�.Y IQ/
with jxi j � jxiC1j for each i , where jxj denotes the homogeneous degree of x in
zH�.Y IQ/. Write

aD†�1x1 2†
�1 zHmC1.Y IQ/ and b D†�1x2 2†

�1 zHnC1.Y IQ/:

Choose a prime p � 5 such that

H�mCnC2.Y
^2
IZ/ and H�2mCnC3.Y

^3
IZ/

have no p–torsion. We identify a and b as elements of Hm.�Y IQ/ and Hn.�Y IQ/,
respectively, via that Bott–Samelson theorem. We will also write a, b 2H�.�Y IZ/
for lifts of a and b , and we will use the same notation for the mod p reductions of
these elements in H�.�Y IFp/, making the context clear by indicating coefficient rings.
We replace Y with its p–localization to avoid cumbersome notation; that is, we write
Y for Y.p/ .

To show Y is the target of essential phantom maps from finite-type domains, we
consider the geometric realization

�Y '�Amin.Y /��
� W

n�2
QnBmax.Y /

�
of the minimal decomposition from Section 2.2. We justify the indexing n�2 by noting
that Q1Bmax D 0, since V �Amin.V / for all vector spaces V . By the loop-splitting
theorem, it suffices to show that

W
n�2 QnBmax.Y / is the target of essential phantom

maps from finite-type domains. By the wedge-splitting theorem, this will follow if
QiB

max.Y / is rationally nontrivial for at least two i . We will show this is the case.
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Write V D†�1 zH�.Y IFp/ and identify

H�.�Y IFp/Š T .V /

through the Bott–Samelson theorem. By Theorem 2.9, when i is not a power of p

one has Li.V /� Bmax.V /. So, since p � 5 we see that Œa; b�, ŒŒb; a�; a� 2 Bmax.V /.
Moreover, Œa; b� is indecomposable in Bmax.V /, since the tensor length of Œa; b�
in T .V / is two and Bmax.V / contains no elements of tensor length one in T .V /

(again, since V � Amin.V /). Similarly, ŒŒb; a�; a� is indecomposable, and we have
Œa; b� 2Q2Bmax.V / and ŒŒb; a�; a� 2Q3Bmax.V /.

It follows that Œa; b� is in the image of

HnCm.�Q2Bmax.Y /IFp/!HnCm.�Y IFp/;

so HnCm.�Q2Bmax.Y /IFp/¤ 0. Finally, we note Q2Bmax.Y / is a co-H–space by
Theorem 2.10 and so, by the Bott–Samelson theorem,

H�.�Q2Bmax.Y /IFp/Š T .†�1 zH�.Q2Bmax.Y /IFp//:

Hence, we infer

(5) zH�mCnC1.Q2Bmax.Y /IFp/¤ 0:

Similarly,

(6) zH�2mCnC1.Q3Bmax.Y /IFp/¤ 0:

Now, according to Theorem 2.10 for each i the space QiB
max.Y / is a retract of

an .i�1/–fold desuspension of Y ^i . In particular, Hk.QiB
max.Y /IZ/ is a retract

of HkCi�1.Y
^i IZ/. So, if H�mCnC1.Q2Bmax.Y /IZ/ has p–torsion, then so does

H�mCnC2.Y
^2IZ/. Similarly, if H�2mCnC1.Q3Bmax.Y /IZ/ has p–torsion, so

does H�2mCnC3.Y
^3IZ/. So, since

H�mCnC2.Y
^2
IZ/ and H�2mCnC3.Y

^3
IZ/

have no p–torsion we find

zH�mCnC2.Q2Bmax.Y /IQ/ and zH�2mCnC3.Q3Bmax.Y /IQ/

are nonzero.

In case Y is a simply connected, finite-type co-H–space with dimQ
zH�.Y IQ/D 1 we

are unable to use the method of the proof of Proposition 4.2 to witness the existence of
essential phantom maps into Y from finite-type domains; we cannot expect to produce
rationally nontrivial commutators in H�.�Y IZ/, which ultimately were the driving
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force behind that argument. In this case, Y is rationally equivalent to a sphere. We
proceed by cases on the parity of the dimension of this sphere.

Proposition 4.3 Suppose Y is a nilpotent co-H–space with H 2n.Y IQ/¤ 0 for some
n� 1. Then Y is the target of essential phantom maps from finite-type domains.

Corollary 4.4 Suppose Y is a nilpotent co-H–space with Y �Q S2n for some n� 1.
Then Y is the target of essential phantom maps from finite-type domains.

Proof of Proposition 4.3 Let Y
g
�!K.Z; 2n/ represent an element of H 2n.Y IZ/

of infinite order. According to Ganea [7], since Y is a co-H–space there is a lift � in
the diagram

†K.Z; 2n� 1/

p

��

Y

�
44

g
// K.Z; 2n/

where pW †K.Z; 2n� 1/'†�K.Z; 2n/!K.Z; 2n/ is the evaluation map. Since
g induces a surjection on �2n˝Q and p induces an isomorphism on �2n we can be
sure �2n.�/˝Q is surjective. Since †K.Z; 2n� 1/ is rationally equivalent to S2n

we have an isomorphism of vector spaces

(7) ��.†K.Z; 2n� 1//˝QŠQ �˛˚Q � Œ˛; ˛�;

where ˛ 2 �2n.†K.Z; 2n � 1//˝Q is a nonzero element and Œ�;�� denotes the
Whitehead product. Since ˛ is in the image of �2n.�/, it follows from the naturality
of the Whitehead product that ��.�/˝Q is surjective.

Finally, note that by Theorem 2.5 the map �W Y !†K.Z; 2n�1/ induces surjections

Ph.X;Y /! Ph.X; †K.Z; 2n� 1//

for all finite-type spaces X . By Theorem 1.1 there is a finite-type space X for which
Ph.X; †K.Z; 2n� 1//¤ �, so Ph.X;Y /¤ �.

Proposition 4.5 If Y is a nilpotent co-H–space with Y �Q S2nC1, n� 1, then Y is
the target of essential phantom maps from finite-type domains.

Proof We first reduce to the case where Y is 2n–connected. According to Golasiński
and Klein [8], if Y is a co-H–space, then one can choose compatible co-H–structures Y

and on each skeleton Yk so that the inclusion maps Yk ,! Y are co-H–maps. Berstein
and Hilton have shown the cofiber of a co-H–map is a co-H–space [3, Theorem 3.4],
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so Y=Yk is a co-H–space. Finally, Y ! Y=Y2n is a rational equivalence, so by
Theorem 2.5 this map induces a surjection Ph.X;Y /! Ph.X;Y=Y2n/ for all finite-
type domains X . Hence, if Y=Y2n is the target of essential phantom maps from
finite-type domains, then so too is Y .

Henceforth we assume the space Y to be 2n–connected. We proceed by contradiction.
Suppose Y is not the target of essential phantom maps from finite-type domains. For
brevity, write K D K.Z; n/. Then by Theorem 2.3 there is a rational equivalence
f W K!�Y . Let uW �Y !K represent a cohomology class of infinite order, and
write F for the homotopy fiber of u. Since f and u are rational equivalences we can
localize at a large enough prime p and find that f.p/ and u.p/ induce isomorphisms
on �2n . For the rest of this section all spaces and maps will be localized at this large
prime p , though the notation will not be burdened with this assumption; we write Y

for Y.p/ .

Now uf is a self-equivalence of K by the Whitehead theorem, so K is a retract of �Y .
Thus �Y 'K �F , which gives rise to a homotopy equivalence

†�Y '†K _†F _†K ^F:

Choose a section sW Y !†�Y of the evaluation map, ensured to exist since Y is a
co-H–space. Let i W Y !K be the composite

Y s
�!†�Y '†K _†F _†K ^F !†K

and let q be the map

†K ,!†K _†F _†K ^F '†�Y ! Y;

where the last map is the evaluation map. Then qi induces an isomorphism on
�2nC1.Y /. Since Y is .2n/–connected and of finite type, it follows from the Hurewicz
theorem that

q�W H 2nC1.Y IZ/!H 2nC1.†KIZ/

is an isomorphism.

We take a generator v 2H 2nC1.†KIZ=p/ and let wD .q�/�1.v/2H 2nC1.Y IZ=p/.
Then v D†zv for zv a generator of H 2n.KIZ=p/, where

†W H 2n.K/!H 2nC1.†KIZ=p/

is the suspension isomorphism. We then consider the morphism of Bockstein spectral
sequences q�W E�.Y /! E�.†K/. Write Pn for the nth reduced pth power map.
Then zvp D Pn.zv/ survives to E1

2np
.K/, so Pn.v/ survives to E1

2npC1
.†K/. Since

Pn.v/D Pn.q�.w//D q�Pn.w/, we infer Pn.w/ survives to E12npC1.Y /. It follows
that H2npC1.Y IQ/¤ 0, contradicting the assumption Y �Q S2nC1 .
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5 Examples

In Examples 5.1 and 5.2 we describe co-H–spaces that satisfy the hypotheses of
Theorem 1.3, but not Theorem 1.1. More specifically, we construct nonsuspension
co-H–spaces whose rational homology is nontrivial. We prefer to present infinite-
dimensional examples, since Zabrodsky obtained much stronger results than we have
herein on phantom maps into finite complexes in [25].

Example 5.1 For each prime p � 3 write p̨W S
2p ! S3 for a representative of

an element of order p in �2p.S
3/. The homotopy cofibers C˛p

of these maps are
classical examples, due to Berstein and Hilton [3, page 444], of co-H–spaces that
do not have the homotopy type of suspension spaces. One key to establishing these
examples is to prove, via Berstein–Hilton–Hopf invariant techniques, that each map

p̨ is a co-H–map. By [3, Theorem 3.4], the cofiber of a co-H–map is a co-H–space.

Write ˛W
W

p�3S2p ! S3 , where the wedge is taken over all odd primes, for the
map whose restriction to each summand S2p is p̨ . Since each p̨ is a co-H–map,
so is ˛ . It follows that the homotopy cofiber C˛ of ˛ is a co-H–space. Evidently
dimQ

zH�.C˛IQ/D1.

We now argue that C˛ is not a suspension space. Assume to the contrary that C˛'†Z .
Then, by the proof of [3, Lemma 3.6], we can choose Z to be 1–connected, so that Z

has a homology decomposition, ie there is a diagram

M1

k1

��

M2

k2

��

� � � Mn

��

MnC1

��

� � �

Z1
i1

// Z2
i2

// � � � // Zn
in

// ZnC1
// � � �

in which Mi DM.HiC1.Z/; i/ for each i , Mi!Zi!ZiC1 is a cofiber sequence
and Z is the homotopy colimit of the tower along the bottom of this diagram. The
space Zi is called the i th stage of the homology decomposition. It follows that †Z

has a homology decomposition in which each stage is a suspension.

Suppose hW C˛!†Z is a homotopy equivalence. Write .C˛/k for the k th stage of
the homology decomposition for C˛ . According to Arkowitz [1, Proposition 3.4], since
Ext.Hn.C˛IZ/IHnC1.†ZIZ// D 0 for all n and †Z is 2–connected, h induces
homotopy equivalences hnW .C˛/n! .†Z/n '†.Zn/. But then .C˛/6 ' C˛3

must
be a suspension space, a contradiction.

Example 5.2 By modifying the construction from Example 5.1 we can obtain an
infinite-dimensional, nonsuspension co-H–space Y with Y �Q S3 . Replace each
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map p̨W S
2p! S3 with a map p̌W M.Z=p; 2p/! S3 representing an element of

�2p.S
3IZ=p/ of order p . The argument of Berstein and Hilton [3] shows that the

cofiber Cˇp
of each p̌ is a co-H–space which is not a suspension space, and so the

argument in Example 5.1 shows that Cˇ is a co-H–space which is not a suspension space.

Finally we present an application of the loop-splitting theorem to spaces that are not
necessarily co-H–spaces. For a space Y write Gm.Y / for the mth space of Ganea
over Y (see [5]; the reader may more readily recognize this space as Gm.Y /DBm�Y ,
where Bm is the mth stage of Milnor’s classifying space construction). The spaces
Gm.Y / can be thought of as prototypes for spaces of Lusternik–Schnirelmann category
at most m. We view this example as a test case for Question 1.4.

Example 5.3 We show that if Hi.Gm.Y /IQ/¤ 0 for some i > 1 then Gm.Y / is the
target of essential phantom maps from finite-type domains.

There is a well-known homotopy decomposition

�Gm.Y /'�Y ��..�Y /�mC1/;

where X �k denotes the k –fold join of X . Since Hi.Gm.Y /IQ/¤ 0 we must have
Hj .Y IQ/¤ 0 for some j > 1 and similarly H�..�Y /�mC1IQ/ is similarly nontrivial,
so, by Theorem 1.1, .�Y /�mC1 is the target of essential phantom maps from finite-type
domains. The loop-splitting theorem then implies Gm.Y / is the target of essential
phantom maps.

References
[1] M Arkowitz, Induced mappings of homology decompositions, from “Homotopy and

geometry” (J Oprea, A Tralle, editors), Banach Center Publ. 45, Polish Acad. Sci.,
Warsaw (1998) 225–233 MR

[2] I Berstein, On co-groups in the category of graded algebras, Trans. Amer. Math. Soc.
115 (1965) 257–269 MR

[3] I Berstein, P J Hilton, Category and generalized Hopf invariants, Illinois J. Math. 4
(1960) 437–451 MR

[4] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Mathematics 304, Springer, Berlin (1972) MR

[5] O Cornea, G Lupton, J Oprea, D Tanré, Lusternik–Schnirelmann category, Math-
ematical Surveys and Monographs 103, Amer. Math. Soc., Providence, RI (2003)
MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-bcpv45i1p225bwm
http://msp.org/idx/mr/1679861
http://dx.doi.org/10.2307/1994268
http://msp.org/idx/mr/0206941
http://projecteuclid.org/euclid.ijm/1255456060
http://msp.org/idx/mr/0126276
http://dx.doi.org/10.1007/978-3-540-38117-4
http://msp.org/idx/mr/0365573
http://dx.doi.org/10.1090/surv/103
http://msp.org/idx/mr/1990857


866 James Schwass

[6] R H Fox, On the Lusternik–Schnirelmann category, Ann. of Math. 42 (1941) 333–370
MR

[7] T Ganea, Lusternik–Schnirelmann category and strong category, Illinois J. Math. 11
(1967) 417–427 MR
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