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We prove that the category of rational SO.2/–equivariant spectra has a simple alge-
braic model. Furthermore, all of our model categories and Quillen equivalences are
monoidal, so we can use this classification to understand ring spectra and module
spectra via the algebraic model.
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1 Introduction

Rational equivariant cohomology theories This paper is a contribution to the study
of equivariant cohomology theories, and gives a rather complete analysis for one class
of theories. To start with, G–equivariant cohomology theories are represented by
G–spectra, so that the category of G–equivariant cohomology theories and stable
natural transformations between them is equivalent to the homotopy category of G–
spectra, and it is natural to study the homotopy theory of G–spectra. One cannot
expect a complete analysis of either cohomology theories or spectra integrally, but if we
rationalize, things are greatly simplified, whilst valuable geometric and group-theoretic
structures remain. Henceforth we restrict attention to rational cohomology theories and
rational spectra without further comment. The general conjecture states that there is
a nice algebraic model for rational G–spectra and, more precisely, a graded abelian
category A.G/ and a Quillen equivalence

G –spectra' dA.G/;

where dA.G/ consists of differential objects of A.G/. The category A.G/ is of
injective dimension equal to the rank of G and of a form that is easy to use in
calculations. Of course one would like the Quillen equivalence to reflect as much
structure as possible. The conjecture is known for quite a number of groups in some
form, and we refer to Greenlees and Shipley [16] for a summary of what is known. In
the present paper we are concerned with the specific case of the circle group, and with
giving a zigzag of Quillen equivalences which are symmetric monoidal.
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The circle group We will entirely focus on the circle group, because it plays a critical
role in understanding the case of all other infinite compact Lie groups. As an added
benefit, it is significantly simpler than any other group, so we can focus on the critical
features without being distracted by extraneous complication. We refer to the group
as SO.2/, because we have in mind as first applications its role as a subgroup of O.2/

(in Barnes [5]) and SO.3/ (in Kędziorek [20]).

Our main result is as follows:

Main Theorem The model category of rational SO.2/–equivariant spectra is Quillen
equivalent to the algebraic model dA.SO.2//dual . Furthermore, these Quillen equiva-
lences are all symmetric monoidal, hence the homotopy category of rational SO.2/–
equivariant spectra and the homotopy category of the algebraic model D.A.SO.2///
are equivalent as symmetric monoidal categories.

The algebraic model is described in Section 2 below.

Rings and commutative rings Our main theorem establishes a zigzag of symmetric
monoidal Quillen equivalences between the symmetric monoidal model category of
rational SO.2/–spectra and the symmetric monoidal model category dA.SO.2//dual .
In particular we may use Schwede and Shipley [24, Theorem 3.12] to see that the model
category of ring spectra is Quillen equivalent to the category of monoids in A.SO.2//.
This means that a ring object Ra in dA.SO.2// corresponds to a ring object Rtop in
SO.2/–spectra in a homotopy-invariant fashion. Furthermore, the category of Ra –
modules is Quillen equivalent to the category of Rtop –modules.

However, it is essential to emphasize that if Ra is commutative, it does not follow that
Rtop will be a commutative SO.2/–ring spectrum. The reason is that the correspon-
dence between Ra and Rtop is not simply applying the symmetric monoidal functors.
Instead it involves derived functors and hence fibrant and cofibrant approximations.
These approximations are only in the category of rings rather than in the category of
commutative rings. This is inevitable, since for example the ring spectrum Rtop D zEF

corresponds to a small and explicit commutative ring Ra , but it is well known — see
McClure [22] — that zEF is not a commutative ring in orthogonal SO.2/–spectra.

Greenlees [9] showed that if C is a generalized elliptic curve over a Q–algebra, there
is an associated SO.2/–spectrum EC representing elliptic cohomology. Indeed the
proof proceeds by writing down an object ECa in A.SO.2//, and taking ECD ECtop

to be the corresponding SO.2/–spectrum. It is transparent from the construction that
ECa is a commutative ring in A.SO.2//, and it is a consequence of the present work
that EC is a ring spectrum. As commented above, this does not prove that EC is a
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commutative ring spectrum, though it is easily verified to be homotopy commutative
and compatible with the homotopy ring structure used by Ando and Greenlees [1].

Contribution of this paper To place the contribution of this paper in the study of
rational SO.2/–spectra, we need to give a little history. A description of the homotopy
category of rational SO.2/–spectra was given by Greenlees [8]. This took the form of
an equivalence of homotopy categories

Ho.SO.2/–spectra/'D.A.SO.2///

for the abelian category A.SO.2// (described in Section 2 below) without giving a
Quillen equivalence of model categories inducing it. Since A.SO.2// is rather simple
and of injective dimension 1, this gives a practical means for calculating the space
ŒX;Y �SO.2/

� of maps for arbitrary (rational) SO.2/–spectra X and Y up to extension.
Since A.SO.2// is (in a sense that will appear later) evenly graded, the extensions split,
and so [8] gives a complete description of the category Ho.SO.2/–spectra/. Unfortu-
nately, [8] claimed that the above equivalence of homotopy categories is an equivalence
of triangulated categories, but there is a gap in this argument. Patchkoria, who noticed
this gap, gave in [23] (and more recent work) an illuminating systematic analysis of
lifting equivalences of homotopy categories to ones that preserve triangulations and
other structures. The purported argument for A.SO.2// in [8] fits into Patchkoria’s
formalism, but does not satisfy the conditions necessary to apply Patchkoria’s results.
Shipley [26] showed that if the claimed triangulated equivalence of homotopy categories
in [8] existed, it would lift to a Quillen equivalence of model categories. Work then
began to give an algebraic model for the homotopy category of G –spectra for a torus G

(eventually leading to Greenlees and Shipley [16]); it was soon apparent that the only
way to approach this is to first prove a Quillen equivalence between G–spectra and
dA.G/ and then deduce the equivalence of homotopy categories as a consequence.
This general project has taken some time, and has a complicated history of its own [13;
14; 15; 16], but the special case of the circle is much simpler than the general case, and
easily explained. The underlying strategy applied in [16] is the same as that adopted
here for the circle group, but there are some significant differences of implementation
adopted from Barnes [2; 5] and Kędziorek [19; 20].

Meanwhile, work began on the group O.2/ (culminating in the model of Barnes [5])
and the group SO.3/ (culminating in the model of Kędziorek [19]). Those models
depended on the Quillen equivalence for SO.2/; they originally built upon Greenlees
and Shipley [16], but the technical context adopted here has advantages for them.
The proof for the general torus is considerably more complicated than that for the
circle, principally because SO.2/ has only two connected subgroups (namely the trivial
group and the whole group) rather than infinitely many for higher-dimensional tori.
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Accordingly, it is much easier to see the essential structure of the argument in the case
of the circle. It is therefore desirable to give a separate account for SO.2/ to show the
simplicity of the argument, and to provide the input to the work on O.2/ and SO.3/.

Perhaps a more important reason for publishing a separate account for SO.2/ is that at
present we can prove more for the circle group than for a general torus. The category
of G –spectra is a monoidal model category, and A.G/ is a monoidal abelian category.
One would like to have a monoidal equivalence between G–spectra and dA.G/. Of
course this requires more care and some more delicate analysis than a simple Quillen
equivalence. As the first step, one needs a monoidal model structure on dA.G/. The
abelian category A.G/ does not have enough projectives and the injective model
structure on dA.G/ used in earlier work is certainly not monoidal. On the other hand,
for G D SO.2/, constructing a monoidal model structure on dA.SO.2// is the primary
task of Barnes [4]. This result relies on some explicit constructions in A.SO.2//
from [8] that are not made explicit in Greenlees [10; 11] for higher tori. It is expected
that a similar construction will work for other groups, but additional work will be
necessary. Once a monoidal model structure is defined on dA.G/, one would need to
ensure that all Quillen pairs making up the equivalence are monoidal. At present, this
is only accessible for G D SO.2/.

The Hasse–Tate isotropy square The overarching strategy for building an algebraic
model is to break the category of SO.2/–spectra into parts, give an algebraic model
of each part and then assemble an algebraic model for all spectra from the algebraic
models of the parts.

To analyse an individual SO.2/–spectrum it is natural to use isotropy separation, to
assemble the spectrum from information at the family F of finite subgroups and the
information at SO.2/ itself. This can be implemented using the Tate square

X //

��

X ^ zEF

��

F.EFC;X / // F.EFC;X /^ zEF

which expresses X as the homotopy pullback of its F–completion, F.EFC;X /, and
its localization away from F, namely X ^ zEF , over the Tate object, F.EFC;X /^ zEF .
Thus X is the homotopy pullback of a punctured square diagram (ie a diagram of
shape P D .�! � �/). The basic idea is to do this at the level of model categories.
We would like to assemble the category of all SO.2/–spectra from the category of
F–complete objects and objects localized away from F . The way we do it here is
to take suitable model categories of F–complete spectra, of spectra away from F ,
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and Tate spectra, and then construct a model structure on the category S�–mod of
P –diagrams of such objects: a cellularization (Ktop–cell–S�–mod) of this model
category of P –diagrams is then shown to be Quillen equivalent to the original category
of SO.2/–spectra essentially using the fact that the Tate square is a homotopy pullback.
The machinery of Greenlees and Shipley [15] was built for this purpose.

The alternative, adopted in Greenlees and Shipley [16], is to say that the category of
SO.2/–spectra is equivalent to the category of S–modules in SO.2/–spectra, where S
is the sphere spectrum. We then consider the special case of the Tate square in which
X DS and say that S is the pullback of a diagram of rings, so that the module category
of S is Quillen equivalent to a cellularization of the model category of modules over
the P –diagram of rings.

After this, the general strategy in either case is to show the P –diagram of model
categories is equivalent to a simpler one that can be made algebraically explicit. In
the present paper, several of the monoidal functors are taken from Barnes [2; 5] and
Kędziorek [19; 20] and, since we work in a context where zEF is not a commutative
ring, we adopt their methods for the formality argument in Section 4.1.

Summary of the zigzag of Quillen equivalences To illustrate the zigzag of Quillen
equivalences in the Main Theorem we present a diagram of key steps:

LSQTSp

S�^�

��

.in TSp/

.Proposition 3:2:5/

Ktop–cell–S�–mod

pb

OO

.�/T

��

.in TSp/

.Corollary 3:3:6/

KT
top–cell–S�top–mod

�#

OO

of Quillen equivalences

��

.in Sp/

.Corollary 3:4:6/

Kt –cell–S�t –mod

zigzag

OO

of Quillen equivalences

��

.in Ch.Q//

.Section 4:1/

Ka–cell–S�a–mod

zigzag

OO

�

��

.in Ch.Q//

.Proposition 4:2:4/

dA.T /dual

�

OO

.in Ch.Q//
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At the top we have our preferred model for rational T –spectra (namely the left Bousfield
localization LSQTSp of the category of orthogonal T –spectra at the rational sphere
spectrum (Definition 3.2.1)) and at the bottom we have our algebraic model dA.T /dual .

The first step, moving into categories of P –diagrams, was suggested in the previous
subsection, and the other steps will be described in the body of the paper. The reader
may wish to refer to this diagram now, but the notation will be introduced as we proceed.
In the diagram, left Quillen functors are placed on the left and T WD SO.2/. References
to specific results are given on the left, and on the right there is an indication of the
ambient category. In the following the subscript “top” indicates that the corresponding
object has a topological origin, whereas the subscript “t ” indicates that the object is
algebraic, but has been produced by applying the results of Shipley [27]. The subscript
“a” indicates that the object is algebraic in nature and has an explicit description. The
symbols S�.�/ refer to particular P –diagrams of model categories, and the various
categories S�

.�/
–mod are generalizations of the notion of a module over a diagram

of rings; see Section 3.1. These model categories are cellularized (ie right Bousfield
localized) at the sets of objects K.�/ , which at every level of the diagram are the
derived images of the usual stable generators T=HC of T –spectra, where H varies
through closed subgroups of T .

Notation From now on we will write T for the group SO.2/. We also stick to the
convention of drawing the left adjoint above the right one in any adjoint pair. We
use Ch.Q/ for the category of chain complexes of rational vector spaces, Sp for the
category of orthogonal spectra, G Sp for the category of orthogonal G–spectra and
Sp† for the category of symmetric spectra.

2 The algebraic model dA.T /

In this section we recall the algebraic category A.T / as developed by the second
author [8]. This category is naturally enriched in graded abelian groups. We use the
notation dA.T / for the category of objects in A.T / with a differential and call it
the algebraic model for rational T–spectra. A nonmonoidal model structure for the
category dA.T / is given in [8]. Work of the first author [4] builds upon this and
constructs a monoidal model structure on dA.T /.

We call A.T / the abelian model for rational T–spectra and dA.T / the algebraic
model for rational T–spectra. The model structures we construct on dA.T / are such
that Ho.dA.T // is equivalent to the derived category of the abelian model, D.A.T //,
which is equivalent to the homotopy category of rational T–spectra by [8].
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2.1 The abelian model A.T /

The abelian model for rational T–spectra is established in [8]. We introduce this
category, explain how to turn it into a differential graded category and then define the
injective model structure.

Definition 2.1.1 Let F be the set of finite subgroups of T . Let OF be the graded ringQ
n>1 QŒcn� with cn of degree �2. Let en be the idempotent arising from projection

onto factor n. In general, let � be a subset of F and define e� to be the idempotent
coming from projection onto the factors in � . We let c be the unique element of OF

such that cn D enc for all n� 1.

We use the notation E�1OFD colimn>1 OFŒc
�1
1
; : : : ; c�1

n �. It is easy to see that E�1OF

is a ring. The notation arises since this ring can also be described in terms of inverting
a certain set of Euler classes. As a vector space, .E�1OF/2k is

Q
n>1 Q for k 6 0 and

is
L

n>1 Q for n> 0.

For any OF module N , we define E�1N to be E�1OF˝OF
N .

Definition 2.1.2 We define the abelian model A D A.T / as follows. Its class of
objects is the collection of triples .N;U; ˇ/ where N is an OF–module, U is a graded
rational vector space and

ˇW N ! E�1OF˝U

is an OF–module map such that E�1ˇ is an isomorphism.1 We will often refer to ˇ
as the structure map.

A map .�; �/ in A is a commutative square

N
ˇ
//

�
��

E�1OF˝U

Id˝�
��

N 0
ˇ0
// E�1OF˝U 0

where � is a map of OF–modules and � is a map of graded rational vector spaces.

The relation between this category and rational T–equivariant spectra is given by the
following pair of theorems from [8].

Theorem 2.1.3 The homotopy category of rational T–equivariant spectra is equivalent
to the derived category of A.

1The tensor product in the target of ˇ is over Q , which we omit from the notation.
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For a rational T–equivariant spectrum X , let �A
� .X / be the following object of A,

which is its counterpart in A:

�A
� .X /D

�
�T
� .X ^DEFC/! �T

� .X ^DEFC ^ zEF/Š E�1OF˝��.ˆ
T X /

�
:

For details of the spectra DEFC and zEF see Definition 3.2.2. The spectrum ˆT X is
the geometric T–fixed points of X .

There is also an Adams short exact sequence which explains how to calculate maps in
the homotopy category of rational T–equivariant spectra:

Theorem 2.1.4 Let X and Y be rational T–equivariant spectra. Then the sequence
below is exact:

0! ExtA.�A
� .†X /; �A

� .Y //! ŒX;Y �T� ! HomA.�
A
� .X /; �

A
� .Y //! 0:

In [8] a model structure is given for the category of objects in A that have a differential.
We define what it means to have a differential and then introduce the model structure.
We will leave the proof that A has all small limits and colimits to the next subsection
(see also [8]).

We can consider OF as an object of Ch.Q/ with trivial differential and, as such, it is a
commutative algebra in Ch.Q/. An OF–module in Ch.Q/ is an OF–module in graded
vector spaces N along with maps dnW Nn!Nn�1 . Note that these maps satisfy the
relations

dn�1 ı dn D 0; cdn D dn�2c:

Definition 2.1.5 We define the category dAD dA.T / as follows. Its class of objects
is the collection of triples .N;U; ˇ/ where N is a rational chain complex with an
action of OF , U is a rational chain complex and

ˇW N ! E�1OF˝U

is a OF–module map in Ch.Q/ such that E�1ˇ is an isomorphism.

A map .�; �/ in dA is then a commutative square as for A such that � is a map in the
category of OF–modules in Ch.Q/ and � is a map of Ch.Q/.

We call this category the algebraic model for rational T–spectra.

Note that the category dA is not the same as Ch.A/, since A is a graded category and
in dA we do not introduce an additional grading; instead we take objects of A with a
differential.

The following result is the subject of [8, Appendix B]:
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Proposition 2.1.6 The category dA has a model structure where the class of weak
equivalences is exactly the class of quasi-isomorphisms. The class of cofibrations is the
class of monomorphisms. (This is called the injective model structure. We write dAi

for this model structure.)

As we shall see shortly, the category A has a monoidal product which induces a
monoidal product on dA. But the injective model structure does not make dA into a
monoidal model category. This failure occurs because of c–torsion, just as the injective
model structure on Ch.Z/ is not monoidal due to torsion.

This is a serious defect, as we are unable to compare the monoidal product in dA to the
smash product of T–spectra. This defect is further complicated by the lack of projective
objects of A. There is however a cofibrantly generated monoidal model structure on
dA which is Quillen equivalent to the injective model structure. It is constructed in [4]
and we recall it in the next subsection.

2.2 The monoidal model structure

This subsection has three aims, namely to prove that A and dA have all small limits
and colimits (see also [8]), define the monoidal product and recall the dualizable model
structure on dA (see [4]), which is monoidal. To do so, we will need to relate A to a
larger category yA, which we introduce next.

We let yA be category of triples .N; U; ˛W N ! E�1OF ˝U / where N is an OF–
module, U is graded Q–module and the map ˛ is a map of OF–modules. A map of
such diagrams is a commutative diagram as below where � is a map of OF–modules,
and � is a map of graded Q–modules:

N //

�
��

E�1OF˝U

Id˝�
��

N 0 // E�1OF˝U 0

Thus yA is A without the restriction that the structure map of an object should be an
isomorphism after E is inverted. There is an adjunction

�W A� yA W�h;

where � is the inclusion. The functor � is full and faithful. The explicit construction of
the right adjoint �h , which we call the torsion functor, is quite intricate and therefore
we leave the details to [8, Section 20.2].
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Our first use of the torsion functor �h is to define limits in A. It follows from [8,
Section 20.2] that the adjunction .�; �h/ passes to categories with differentials, as does
the following definition:

Definition 2.2.1 Let I be some small category and let fNi ! E�1OF˝Uig be the
objects of some I –shaped diagram in A. The colimit over I is

colimi Ni! E�1OF˝ .colimi Ui/:

The limit is formed by applying the functor �, taking limits in yA and then applying �h .
In more detail, we construct the following pullback square:

M //

f
��

lim.Ni/

��

E�1OF˝ lim.Ui/ // lim.E�1OF˝Ui/

The limit of the I –shaped diagram fNi! E�1OF˝Uig is �hf .

Now we turn to the monoidal product of A and dA.

Definition 2.2.2 For ˇW N ! E�1OF˝U and ˇ0W N 0! E�1OF˝U 0 in dA, their
tensor product is

ˇ˝ˇ0W N ˝OF
N 0! .E�1OF˝U /˝OF

.E�1OF˝U 0/Š E�1OF˝ .U ˝Q U 0/:

The unit of this monoidal product is the object S0 D .i W OF! E�1OF˝Q).

This monoidal product is related to the smash product of spectra, as we can see from
the short exact sequence of [8],

0! �A
� .X /˝�

A
� .Y /! �A

� .X ^Y /!†Tor.�A
� .X /; �

A
� .Y //! 0:

This monoidal structure is closed, that is, there is an internal function object describing
the dA–object of maps between two objects. This functor is more complicated than
the tensor product and requires use of the torsion functor �h .

Definition 2.2.3 Consider two elements of dA,

AD .ˇW N ! E�1OF˝U / and B D .ˇ0W N 0! E�1OF˝U 0/:
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The function object F.A;B/ is the map �hı , where ı is defined by the pullback square:

Q

��

ı
// E�1OF˝HomQ.U;U

0/

��

HomOF
.E�1OF˝U;E�1OF˝U 0/

��

HomOF
.N;N 0/ // HomOF

.N;E�1OF˝U 0/

The monoidal product and function object are related by a natural isomorphism by [8,
Lemma 22.6.2]. Let A, B and C be objects of dA; then

dA.A˝B;C /Š dA.A;F.B;C //:

Definition 2.2.4 For K 2 Ch.Q/ we define LK 2 dA as

LK D .i ˝ IdK W OF˝K! E�1OF˝K/:

Note that LK D S0˝K , where S0 D .i W OF! E�1OF˝Q/. For A and B in dA,
we define A.A;B/� to be the graded set of maps of A (ignoring the differential).
We then equip this graded Q–module with the differential induced by the convention
dfn D dBfnC .�1/nC1fndA . This construction gives a functor

RW dA! Ch.Q/; RA WDA.S0;A/�:

The functors L and R form an adjoint pair between Ch.Q/ and dA. Furthermore,
they give dA the structure of a closed Ch.Q/–module in the sense of [18, Section 4.1].

This module structure and the closed monoidal product interact to give dA a tensor
product, a cotensor product and an enrichment over Ch.Q/. Let K 2 Ch.Q/ and
A D .ˇW N ! E�1OF ˝ U / in dA. Their tensor product A ˝ K is defined to
be A˝LK . Thus A˝K is given by

ˇ˝ IdK W N ˝Q K! E�1OF˝ .U ˝Q K/:

There is a cotensor product AK defined to be F.LK;A/. The enrichment is given by
RF.A;B/ for A and B in dA. This enrichment, tensor and cotensor are related by
the natural isomorphisms

dA.A;BK /Š dA.A˝K;B/D dA.A˝LK;B/Š Ch.Q/.K;RF.A;B//:

Now we are ready to recall the monoidal model structure on dA from [4] and compare
it to several other model categories, in particular the injective model structure on dA
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introduced in [8]. This monoidal model structure is defined in terms of the (strongly)
dualizable objects of dA.

Definition 2.2.5 An object A 2A is said to be (strongly) dualizable if for any B 2A

the canonical map
F.A;S0/˝B! F.A;B/

is an isomorphism. The functional dual of an object B is the object DB D F.B;S0/.

Let P be a set of representatives for the isomorphisms classes of dualizable objects
in A. Such a set exists by [4, Corollary 5.8]. The following theorem summarizes [4,
Section 6]:

Theorem 2.2.6 There is a cofibrantly generated model structure on dA with weak
equivalences the class generated by the homology isomorphisms. The generating
cofibrations have the form

Sn�1
˝P !Dn

˝P

for P 2 P and n 2 Z, where Sn is the chain complex consisting of one copy of Q in
degree n and 0 elsewhere and Dn consists of two copies of Q in degrees n and n� 1

with the identity as the only nontrivial differential.

(We call this model structure the dualizable model structure and denote it by dAdual .
The dualizable model structure is proper, symmetric monoidal and satisfies the monoid
axiom.)

Since all cofibrations in the dualizable model structure are in particular monomorphisms
we get the following comparison with the injective model structure of [8], which we
write as dAi (see Proposition 2.1.6 for the description of the injective model structure).

Lemma 2.2.7 The identity functor from dAdual to dAi is the left adjoint of a Quillen
equivalence,

IdW dAdual� dAi WId:

The object S0 is clearly dualizable. Similarly, if V is a finite-dimensional vector space,
then S0˝V is dualizable. As a consequence, we have the following lemma:

Lemma 2.2.8 There is a strong symmetric monoidal Quillen pair

LW Ch.Q/� dAdual WR;

where LV D S0˝V and RADA.S0;A/� (see Definition 2.2.4). Thus, dAdual is a
closed Ch.Q/–model category.

Algebraic & Geometric Topology, Volume 17 (2017)



Rational SO.2/–equivariant spectra 995

3 Obtaining an algebraic category

The method of this section is the synthesis of three ideas. The first idea is to use the
Hasse–Tate square from the introduction to separate the homotopical information of
T–equivariant spectra into pieces where we can remove equivariance without losing
any information.

For T–equivariant spectra, the relevant decomposition is to separate the homotopical
information coming from finite subgroups from the homotopical information coming
from the whole group. For this separation we will need a diagram of model categories
rather than a diagram of commutative rings. We establish the categorical foundations
in the next subsection and then perform the separation in Section 3.2.

The second is that the correct way to remove equivariance is to take fixed points. The
primary example is that taking T–fixed points gives a Quillen equivalence from DETC–
modules in rational T–equivariant spectra to DBTC–modules in rational spectra. Here
DETC is the Spanier–Whitehead dual of ETC in T–spectra and DBTC is the
Spanier–Whitehead dual of BTC in the category of spectra. See Section 3.3.

With the separation complete and equivariance removed, we use the results of [27] to
move to an algebraic setting in Section 3.4. That is, we obtain a Quillen equivalence
between rational T–spectra and some combined cellularization–localization of an
algebraic category.

The next step is to simplify that algebraic category into the algebraic model A.T /, by
directly calculating the effects of these cellularizations and localizations. This is the
essence of the third idea: to leave any examination of localizations or cellularizations
until one is working with an algebraic category. This occurs in Section 4.1, where we
simplify the category created by the results of [27] and remove a localization. Finally,
in Section 4.2 we remove a cellularization to get to the algebraic model.

3.1 Diagrams of model categories

We will use several model categories that are built from diagrams of model categories.
This idea has been studied in some detail in [15]. In this section we introduce the
relevant structures and leave most of the proofs to the reference. We will only use one
shape of diagram, the pullback diagram P :

�! � �:

Pullbacks of model categories are also considered in detail in [7].

Definition 3.1.1 A P –diagram of model categories R� is a pair of Quillen pairs

LW A�B WR; F W C�B WG;
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with L and F the left adjoints. We will usually draw this as

A
L
//
B

R
oo

G
// C:

F
oo

A standard example comes from a P –diagram of rings R D .R1
f
�!R2

g
 �R3/.

Using the adjoint pairs of extension and restriction of scalars we obtain a P –diagram
of model categories R� :

R1–mod
R2˝R1

�
//
R2–mod

f �
oo

g�
// R3–mod:

R2˝R3
�

oo

Definition 3.1.2 Given a P –diagram of model categories R� we can define a new
category, R�–mod. The objects of this category are pairs of morphisms ˛W La! b

and 
 W Fc ! b in B. We usually abbreviate a pair .˛W La! b; 
 W Fc ! b/ to a
quintuple .a; ˛; b; 
; c/. We find this notation suggestive but emphasize that objects of
R�–mod are not usually modules over a diagram of rings.

A morphism in R�–mod from .a; ˛; b; 
; c/ to .a0; ˛0; b0; 
 0; c0/ is a triple of maps
xW a! a0 in A, yW b! b0 in B and zW c! c0 in C such that we have a commuting
diagram in B:

La
˛
//

Lx
��

b

y
��

Fc



oo

Fz
��

La0
˛0
// b0 Fc0


 0
oo

Note that we could also have defined an object as a sequence .a; x̨; b; x
 ; c/, where
x̨W a!Rb is a map in A and x
 W c!Gb is a map in C.

We say that a map .x;y; z/ in R�–mod is an objectwise cofibration if x is a cofibration
of A, y is a cofibration of B and z is a cofibration of C. We define objectwise weak
equivalences similarly.

Lemma 3.1.3 [15, Proposition 3.3] Consider a P –diagram of model categories R� ,
with each category cellular and proper,

A
L
//
B

R
oo

G
// C:

F
oo

The category R�–mod admits a cellular proper model structure with cofibrations and
weak equivalences defined objectwise. (This is called the diagram injective model
structure.)
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Whilst there is also a diagram projective model structure, in this paper we only use the
diagram injective model structure (and cellularizations thereof) on diagrams of model
categories.

Now consider maps of P –diagrams of model categories. Let R� and S� be two
P –diagrams, where R� is as above and S� is

A0
L0
//
B0

R0
oo

G0
// C0:

F 0
oo

Now we assume that we have Quillen adjunctions such that P2L is naturally isomorphic
to L0P1 and P2F is naturally isomorphic to F 0P3 , given by

P1W A�A0 WQ1;

P2W B�B0 WQ2;

P3W C� C0 WQ3:

We then obtain a Quillen adjunction .P;Q/ between R�–mod and S�–mod. For ex-
ample, the left adjoint P takes the object .a; ˛; b; 
; c/ to .P1a;P2˛;P2b;P2
;P3c/.
The commutativity assumptions ensure that this is an object of S�–mod. It is easy to
see the following:

Lemma 3.1.4 If the Quillen adjunctions .Pi ;Qi/ are Quillen equivalences then the
adjunction .P;Q/ between R�–mod and S�–mod is a Quillen equivalence.

Now we turn to monoidal considerations. There is an obvious monoidal product for
R�–mod, provided that each of A, B and C is monoidal and that the left adjoints L

and F are strong monoidal,

.a; ˛; b; 
; c/^ .a0; ˛0; b0; 
 0; c0/ WD .a^ a0; ˛^˛0; b ^ b0; 
 ^ 
 0; c ^ c0/:

Let SA be the unit of A, let SB be the unit of B and let SC be the unit of C. Since L

and F are monoidal, we have maps �AW LSA! SB and �CW FSC! SB . The unit of
the monoidal product on R�–mod is .SA; �A;SB; �C;SC/.

It is worth noting that this category has an internal function object when A, B and C

are closed monoidal categories and thus itself is closed.

Lemma 3.1.5 Consider a P –diagram of model categories R� such that each vertex
is a cellular monoidal model category. Assume further that the two adjunctions of the
diagram are strong monoidal Quillen pairs. Then R�–mod is also a monoidal model
category. If each vertex also satisfies the monoid axiom, so does R�–mod.
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Proof Since the cofibrations and weak equivalences are defined objectwise, the pushout
product and monoid axioms hold provided they do so in each model category in the
diagram R� .

We can also extend our monoidal considerations to maps of diagrams. Return to the
setting of a map .P;Q/ of P –diagrams from R� to S� as described above. If we
assume that each of the adjunctions .P1;Q1/, .P2;Q2/ and .P3;Q3/ is a symmetric
monoidal Quillen equivalence, then we see that .P;Q/ is a symmetric monoidal Quillen
equivalence.

With these formalities out of the way, we are ready to move from the model category
of rational T–spectra to modules over a P –diagram of model categories.

3.2 Isotropy separation

In this subsection we separate the homotopical information of rational T–spectra into
three parts. The first part takes care of the homotopical information coming from
the finite cyclic subgroups. The second part deals with the homotopical information
coming from T . The third part is a comparison term which enforces some compatibility
conditions on the two other parts.

We achieve this separation by replacing the category of rational T–spectra with a
Quillen equivalent category S�–mod, for S� a P –diagram of model categories (see
Definition 3.2.3).

Before we do that, let us first recall some basic definitions and properties for T–spectra.

Definition 3.2.1 Let TSp be the category of T–equivariant orthogonal spectra indexed
on a complete T–universe U considered with the stable model structure.

This model category is monoidal, proper and cellular [21]. The weak equivalences are
those maps f such that �H

� .f / is an isomorphism for all closed subgroups H of T .

Following [3, Section 5] and using [21, Theorem IV.6.3], we localize this model
category at the rational sphere spectrum SQ . That is, we leave the underlying category
unchanged and alter the model structure. We call the weak equivalences of the localized
model structure rational equivalences: a map f is a rational equivalence if �H

� .f /˝Q
is an isomorphism for all closed subgroups H of T . We call this model structure the
rational model structure and use the notation LSQTSp.

The localized model category is still proper, cellular, monoidal and stable.
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Definition 3.2.2 Let F be the collection of finite cyclic subgroups of T . There is a
universal space for this family, called EF , where, by definition, EFH is nonequivari-
antly contractible for each finite cyclic subgroup H and EFT D∅. We define zEF

via the cofibre sequence of T–spaces

EFC! S0
! zEF:

We define DEFC to be F.EFC;N
#S/. Here N # is the lax monoidal right adjoint

described in [21, Theorem IV.3.9] from EKMM T–equivariant S–modules to TSp.

Recall that N # is the right adjoint of a Quillen equivalence when TSp is considered
with the positive stable model structure (see [21, Chapter IV] for more details). The
spectrum DEFC is a commutative ring spectrum, which is fibrant in the positive stable
model structure on TSp.

We can use the above cofibre sequence to produce the Hasse–Tate homotopy pullback
square of T–equivariant spectra [12, Section 17]:

S //

��

zEF

��

DEFC // DEFC ^ zEF

To see that it is a homotopy pullback square, note that the homotopy fibres of the top
and bottom row are weakly equivalent (where the bottom row is the top one smashed
with DEFC ).

We have three model categories:

� LSQ.DEFC–mod/, which captures the behaviour of the finite cyclic groups.

� LSQ^ zEF
TSp, which captures the behaviour of T .

� LSQ^DEFC^ zEF
.DEFC–mod/, which captures the interaction of the first two.

Now we can give our diagram of model categories that separates the behaviour of the
finite cyclic groups from the rest.

Definition 3.2.3 We define S� to be the P –diagram of model categories

LSQ.DEFC–mod/
Id
//
LSQ^DEFC^ zEF

.DEFC–mod/
Id
oo

U
// LSQ^ zEF

TSp :
DEFC^�
oo

Since all of the model categories in the diagram are cellular, proper, monoidal model
categories, we have a cellular proper stable monoidal model category S�–mod that
satisfies the monoid axiom.
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Given an X 2 TSp, we have an S�–module

S�^X WD .DEFC ^X; Id;DEFC ^X; Id;X /:

The functor S�^ � has a right adjoint. Let A D .a; ˛; b; 
; c/ be an S�–module.
Then there are maps in TSp, namely a! b and c!DEFC ^ c! b , where in the
composite the first map is the unit of the adjunction .DEFC ^�;U / and the second
map is 
 . Thus we have a diagram in TSp: a! b  c . We write pb A for the
pullback of this diagram in TSp. We assemble this construction into the following
result, the proof of which is entirely routine:

Proposition 3.2.4 There is a strong symmetric monoidal Quillen adjunction

S�^�W LSQ.TSp/� S�–mod Wpb :

We want to turn this adjunction into a Quillen equivalence. To do so, we apply the cellu-
larization principle of [13, Proposition 2.7]. The idea is to cellularize (right Bousfield
localize; see also Section 5.1) the right-hand model category so that this adjunction
induces a Quillen equivalence. In general, A–cell–M denotes the cellularization of the
model category M with respect to a set of objects A in M, which we call cells.

The generators for the homotopy category of LSQ.TSp/ are all suspensions and
desuspensions of objects of the form T=HC for H a subgroup of T . For later
purposes (see Section 4.2), we want a set of cells with simpler algebraic models. For
every natural n> 1, let

�n D TC ^Cn
eCn

S;

where eCn
is the idempotent in the Burnside ring for Cn (cyclic group of order n)

corresponding to Cn . By [8, Lemma 2.1.5],

T=CnC D

_
Cm�Cn

�mI

hence we know that the set

K D f†kS j k 2 Zg[ f†k�n j n> 1; k 2 Zg

is a set of (cofibrant and homotopically small) generators for LSQ.TSp/.

Let Ktop be the set of images of the objects from K under the functor S�^� (up to
isomorphism). The elements of this set Ktop will be called basic cells.

To apply the cellularization principle of [13] we need to know that these cells are
homotopically small (this is also known as small or compact; see Definition 5.1.4).
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First note that if X is homotopically small in TSp then it is so in LSQTSp (since
rationalization is a smashing localization).

Now consider the three elements of S�–mod

.�;�;DEFC ^X;�;�/; .�;�;DEFC ^X; Id;X /; .DEFC ^X; Id;DEFC ^X;�;�/:

It is routine to check that these are cofibrant and homotopically small whenever X is
cofibrant and homotopically small in TSp. Finally, let X be cofibrant in TSp. There
is a homotopy pushout diagram, where the final term is S�^X :

.�;�;DEFC ^X;�;�/ //

��

.�;�;DEFC ^X; Id;X /

��

.DEFC ^X; Id;DEFC ^X;�;�/ // .DEFC ^X; Id;DEFC ^X; Id;X /

Homotopically small objects are preserved by homotopy pushouts (consider the associ-
ated cofibre sequence). Hence S�^X is homotopically small in S�–mod whenever X

is cofibrant and homotopically small. Since these two conditions hold for the generators
of TSp, we see that every element of Ktop is homotopically small.

Note that the model category L
DEFC^ zEF

DEFC–mod is the same as the model
category L†�fDEFC–mod, where f W DEFC!DEFC ^ zEF and †�f is the set
of all (integer) suspensions and desuspensions of f . This is a similar result to [6,
Lemma 4.14], since zEF–localization (in TSp) is given by smashing with the map of
T–spaces S0! zEF .

Proposition 3.2.5 There is a Quillen equivalence

S�^�W LSQ.TSp/�Ktop–cell–S�–mod Wpb:

Proof This follows from the cellularization principle, [13, Proposition 2.7]. It suffices
to show that the derived unit is a weak equivalence on the set K of generators for the
left-hand side, which are shifts of the objects �n for n> 1 and S . Each such object is
cofibrant and homotopically small, as are the elements of Ktop .

The derived left adjoint on cofibrant objects (such as the elements of K ) is simply
the left adjoint. The right derived functor on objects of the form S�^ k for k 2K is
weakly equivalent to taking a homotopy pullback of the diagram

SQ ^
zEF^ k

Id^Id^�^Id
��

SQ ^DEFC ^ k
Id^a^Id^Id

// SQ ^
zEF^DEFC ^ k
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where the map aW S0! zEF (of T–spaces) is the map to the cofibre and � is the unit
map. Since homotopy pullbacks commute with smash products, the homotopy pullback
of the above is weakly equivalent to the homotopy pullback of

zEF

��

DEFC // DEFC ^ zEF

(in the category TSp) smashed with SQ ^ k . But the homotopy pullback of the
diagram above is S , as discussed after Definition 3.2.2. Hence the derived unit is a
weak equivalence (in LSQ.TSp/) on the cells k 2K .

We will show in Proposition 5.1.6 below that this Quillen equivalence is actually a
symmetric monoidal Quillen equivalence.

Thus we have separated the homotopical information of TSp into a diagram of three
model categories. The advantage of doing so is that we may now remove the equivari-
ance from the model category whilst keeping the correct homotopy category.

3.3 Removing equivariance

Now we are going to remove equivariance using the inflation–fixed points adjunction
."; .�/T /.

Recall the functor .�/T of [21, Section 3]. It takes a spectrum indexed on a complete
T–universe U to the T–trivial universe UT and then applies the space-level fixed point
functor levelwise. We begin by extending this functor to categories of modules over
T–equivariant ring spectra.

If A is a commutative ring object in T–equivariant spectra then AT is a commutative
ring object in spectra. We want to compare A–modules in T–equivariant spectra and
AT–modules in spectra. Using [14, Section 4] there is a Quillen adjunction

A^"�AT "�.�/W AT –mod�A–mod W.�/T

between right transferred model structures (fibrations and weak equivalences are defined
in terms of the underlying categories). To simplify the notation, if �W "�AT ! A is
the inclusion of fixed points, we write

�# DA^"�AT "�.�/

for the left adjoint.
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We consider several cases of this kind of adjunction and use them to build up an
adjunction between S�–mod and a new diagram of model categories S�top–mod. We
then show that this adjunction gives a Quillen equivalence, after cellularizing.

Proposition 3.3.1 For �W "�DEFT
C ! DEFC the inclusion of fixed points, the ad-

junction
�#W LSQ.DEFT

C–mod/�LSQ.DEFC–mod/ W.�/T

is a symmetric monoidal Quillen equivalence.

Proof We have a Quillen equivalence by [14, Corollaries 8.1 and 9.2]. The left adjoint
is strong symmetric monoidal, so the result follows.

We now left Bousfield localize the model categories in this adjunction. We localize
the right-hand side at the set of maps †�f , where f W DEFC!DEFC ^ zEF . Let
.†�f /T be the set of maps obtained by applying the derived right adjoint to the maps
in †�f . By [17, Theorem 3.3.20(1)(b)] we obtain the following result:

Proposition 3.3.2 The adjunction

�#W L.†�f /T LSQ.DEFT
C–mod/�L†�fLSQ.DEFC–mod/ W.�/T

is a symmetric monoidal Quillen equivalence.

Our final version is where we take A to be the sphere spectrum, so the left adjoint is
just "� . By [21, Section V, Proposition 3.10] the adjunction

"�W Sp� TSp W.�/T

is a symmetric monoidal Quillen adjunction. We localize it to obtain a Quillen equiva-
lence:

Proposition 3.3.3 The adjunction

"�W LSQ.Sp/�LSQ^ zEF
.TSp/ W.�/T

is a symmetric monoidal Quillen equivalence.

Proof Since "� is strong monoidal and "�.SQ/ D SQ , the above adjunction is a
composite of two adjunctions, the second being identity adjunction between LSQ.TSp/
and further localization at zEF , namely LSQ^ zEF

.TSp/.

To verify that this is a Quillen equivalence we will work with the derived unit and the
derived counit on generators. The generator for the left-hand side is S . The generators
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for the right-hand side are S D T=TC and .T=Cn/C for n > 1. But .T=Cn/C is
weakly equivalent to a point in LSQ^ zEF.TSp/ (that is, .T=Cn/C ^ zEF' �). So we
only need to consider S for the right-hand side.

The derived functor of .�/T acts as the geometric T–fixed point functor, because, by
definition, for any H �G , �H .X /D .X ^ zEŒ6�H �/H . With this in mind, it is routine
to check that the derived unit and counit are weak equivalences on the generators. It
follows that this adjunction is a Quillen equivalence.

We combine the previous three propositions to compare S�–mod and a new model
category of S�top–mod, where S�top is defined by:

Definition 3.3.4 We define S�top to be the P –diagram of model categories and adjoint
Quillen pairs

LSQ.DEFT
C–mod/

Id
//
Lf.†�f /T gLSQ.DEFT

C–mod/
Id
oo

U
// LSQ.TSp/;

DEFT
C
^�

oo

where U denotes the forgetful functor.

By construction, the functor .�/T induces a functor between S�–mod and S�top–mod.
Since each of the components is a symmetric monoidal Quillen equivalence, we obtain
the following from Lemma 3.1.4:

Theorem 3.3.5 The adjunction

�#W S
�

top–mod� S�–mod W.�/T

is a symmetric monoidal Quillen equivalence.

We now extend this Quillen equivalence to a cellularized version. Define KT
top to

be the set of cells given by applying the derived functor of .�/T to Ktop . By the
cellularization principle of [13, Proposition 2.7], we see that the Quillen equivalence
above is preserved by cellularization.

Corollary 3.3.6 The adjunction below is a Quillen equivalence:

�#W K
T
top–cell–S�top–mod�Ktop–cell–S�–mod W.�/T :

As in the previous section, the above Quillen equivalence is symmetric monoidal, but
for clarity we postpone the proof of that fact to Section 5.2.

The model category KT
top–cell–S�top–mod is constructed from model categories of

nonequivariant spectra. Hence we have removed the equivariance. The reward for
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doing so is in the next section, where we can replace our categories based on spectra
with categories based on rational chain complexes. Such categories are our first
approximation to the algebraic model.

3.4 Passing to algebra

We will replace the model category KT
top–cell–S�top–mod by a Quillen equivalent

Ch.Q/–model category. The results of [27] and the general theory of diagrams of
model categories allow us to do so. To apply the work of [27], we must work with
HQ–modules in symmetric spectra. So we give two Quillen equivalences: the first
moves us from orthogonal spectra to symmetric spectra, the second from symmetric
spectra to HQ–modules.

In more detail, recall U , the forgetful functor from orthogonal spectra (in based
topological spaces) to symmetric spectra (in based simplicial sets) and call P its left
adjoint. Define US�top to be the P –diagram of model categories

LSQ.UDEFT
C–mod/

Id
//
LfU.†�f /T gLSQ.UDEFT

C–mod/
Id
oo

U
// LSQSp†:

UDEFT
C
^�

oo

The functor U preserves all weak equivalences, so we do not need to apply fibrant
replacement when constructing the set U.†�f /T and the commutative ring spectrum
UDEFT

C .

Proposition 3.4.1 The adjunction

U�W S�top–mod�US�top–mod WP �

is a strong symmetric monoidal Quillen equivalence.

Proof The adjunction .P ;U/ is a Quillen equivalence between LSQ Sp and LSQSp† .
Furthermore the left adjoint is strong symmetric monoidal, so the result follows by
Lemma 3.1.4.

The second step is to pass from symmetric spectra to HQ–modules using the adjunction
.HQ^�;U /. This is a Quillen equivalence between LSQSp† and HQ–mod, and
the left adjoint is strong symmetric monoidal. Thus by the same argument as above we
get the following:

Proposition 3.4.2 The adjunction

HQ^��W US�top–mod�HQ^US�top–mod WU �
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is a strong symmetric monoidal Quillen equivalence, where HQ^US�top denotes the
following diagram of model categories:

HQ^UDEFT
C–mod

Id
//
LfH Q^U.†�f /T g.HQ^UDEFT

C–mod/
Id
oo

U

// HQ–mod:
UDEFT

C
^�

oo

Here HQ^UDEFT
C denotes first the cofibrant replacement in the model category of

commutative ring spectra and then application of HQ^�.

Now we are ready to use the results from [27] to move from topology to algebra on P –
diagrams. Let ‚ be the derived functor described in [27, Section 2.2]. This functor ‚
induces an equivalence between HQ–modules and rational chain complexes.

Definition 3.4.3 By [27, Theorem 1.2] there is a commutative rational differential
graded algebra ySt , which is naturally weakly equivalent to ‚.HQ^UDEFT

C/, such
that the model category of ySt –modules (in Ch.Q/) is Quillen equivalent to the model
category of HQ^UDEFT

C–modules (in spectra).

Remark 3.4.4 It is essential for the formality argument in Section 4.1 that the ring
spectrum HQ^UDEFT

C is commutative. Without this, one is unable to replace the
ring ySt by the simpler ring OF , nor can one understand the localising set A00 (defined
in the next section) in terms of the inclusion OF! E�1OF .

Let S�t be the P –diagram of model categories below, where ‚.HQ^U.†�f /T /
denotes the image of the set of maps HQ^U.†�f /T in the category of ySt –modules
under the derived functor:

ySt –mod
Id
//
L‚.H Q^U.†�f /T /.

ySt –mod/
Id
oo

U

// Ch.Q/:
ySt˝�
oo

Proposition 3.4.5 There is a zigzag of symmetric monoidal Quillen equivalences

HQ^US�top–mod' S�t –mod:

Proof There is a zigzag of symmetric monoidal adjunctions between HQ–modules
and Ch.Q/. By [27, Corollary 2.15], this zigzag consists of Quillen equivalences. We
can extend this zigzag from HQ–modules to HQ^UDEFT

C–modules in a natural
way.

We can extend further to diagrams of model categories. Thus we obtain a zigzag
of adjunctions between HQ^US�top–mod and S�t –mod. At each stage, we have
localized the middle category of the diagram at the derived image (ie image under the
derived functor) of the set of maps fHQ^U.†�f /T g. We apply Lemma 3.1.4 to see
that we have a symmetric monoidal Quillen equivalence, as claimed.
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Corollary 3.4.6 Denote the derived images (ie images under the derived functor) of
the cells KT

top in S�t –mod by Kt . Then there is a zigzag of Quillen equivalences

KT
top–cell–S�top–mod'Kt –cell–S�t –mod:

Since cellularization is compatible with Quillen equivalences, all Quillen equivalences
presented above are still Quillen equivalences after cellularizing at the derived images
of the cells from the set KT

top . By the discussion in Sections 5.1 and 5.2, the above
zigzag consists of symmetric monoidal Quillen equivalences.

4 Simplifying the algebraic category

We have shown so far that the category of rational T–spectra has an algebraic model
of the form Kt –cell–S�t –mod. However, since this category is not well understood, in
this section we perform several steps to obtain a more concrete and easier algebraic
model.

4.1 Removing the localization

In this section we have two tasks: replace the commutative dga ySt of Definition 3.4.3
by something simpler and remove the localization of the middle model category,
L‚.H Q^U.†�f /T /.

ySt –mod/.

The main idea is to use a formality argument, similar to the one in [16, Section 10].
However, the important difference lies in adapting the formality argument to one for
modules over a commutative dga. This is enough to simplify the middle model category
in S�t .

The construction of ‚ comes with an isomorphism between H�.‚X / and ��.X / for
any HQ–module X . It follows that the homology of ySt is determined by the rational
homotopy groups of DEFT

C . We prove that the homology of ySt '‚.HQ^UDEFT
C/

is so well-structured that ySt is quasi-isomorphic to its homology. We then use this to
understand the set of maps AD‚.HQ^U.†�f /T /.

Recall that OF is the graded ring
Q

n>1 QŒcn� with each cn of degree �2, and E�1OF

is the colimit over n of OFŒc
�1
1
; : : : ; c�1

n �; see Section 2.1.

Lemma 4.1.1 We have isomorphisms of graded rings

H�. ySt /ŠH�
�
‚.HQ^U.DEFT

C//
�
Š ��.HQ^U.DEFT

C//

Š ��.DEFT
C/˝QŠ �T

� .DEFC/˝QŠ OF;

where the last isomorphism comes from [8].
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Note that for the step ��.DEFT
C/˝QŠ �T

� .DEFC/˝Q we require DEFC to be
a (positive) fibrant spectrum.

We want to create a zigzag of quasi-isomorphisms between ySt and OF . For each
n > 1 there is a cycle xn inside ySt which represents en (projection onto factor n)
in homology. It follows that the homology of ySt Œ.xn/

�1� is equal to en applied to
the homology of ySt . Note that for this argument to hold, we need to know that ySt

is a commutative dga, which requires that DEFC be a commutative ring object in
T–spectra.

Define zSt D
Q

n>1
ySt Œx

�1
n �. There is a canonical map ˛W ySt !

zSt , which is a
homology isomorphism. For each n> 1, pick a representative an in ySt Œx

�1
n � for the

homology class of cn . We thus have a map QŒcn�! ySt Œx
�1
n � which sends cn to an .

Define ˇW OF!
zSt as the product over n of these maps. We now have our zigzag of

quasi-isomorphisms.

Let A0 be the image of the set A under (derived) extension of scalars along ˛ . Define
a new P –diagram of model categories, zS�t , as

zSt –mod
Id
//
LA0. zSt –mod/

Id
oo

U
// Ch.Q/:

zSt˝�
oo

Extension and restriction of scalars along ˛W ySt !
zSt induce a symmetric monoidal

Quillen equivalence between yS�t –mod and zS�t –mod.

We repeat this construction once more using ˇ . Let A00 be the image of the set A0

under restriction of scalars along ˇ . Define a new diagram of model categories, zS�a , as

OF–mod
Id
//
LA00.OF–mod/

Id
oo

U
// Ch.Q/:

OF˝�
oo

Extension and restriction of scalars along ˇW OF!
zSt induce a symmetric monoidal

Quillen equivalence between zS�a–mod and zS�t –mod.

We summarize these results in the following:

Proposition 4.1.2 The adjoint pairs of extension and restriction of scalars along ˛
and ˇ induce symmetric monoidal Quillen equivalences

S�t –mod' zS�t –mod' zS�a–mod:

Let KQt be the derived images of the cells Kt in zS�t –mod and let Kza be the derived
images in zS�a–mod. Then we have Quillen equivalences between Kt –cell–S�t –mod,
KQt –cell– zS�t –mod and Kza–cell– zS�a–mod.
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Our next task is to understand the set of maps in A00 so that we can remove the
localization in the middle model category in the diagram of model categories zS�a . We
show that there is a zigzag of homology isomorphisms between

‚.UDEFT
C/!‚.U. zEF^DEFC/

T / and j W OF! E�1OF:

It will follow that we can replace the set A00 by the set of all shifts of j without
changing the effect of the localization. That is, we will show that the model categories
LA00.OF–mod/ and L†�j .OF–mod/ are equal.

The zigzag of homology isomorphisms of OF modules that we will use is as follows.
Factor ‚.UDEFT

C/ ! ‚.U. zEF ^ DEFC/
T / into a cofibration followed by an

acyclic fibration (with intermediate term R). Let C be the pushout of the top square
below:

‚.UDEFT
C/
// //

' ��

R

'

��

'
// ‚.U. zEF^DEFC/

T /

zSt
f

// C

OF

'

OO

a
//

Id
��

C

Id

OO

��

OF
// E�1C

OF

Id
OO

j
// E�1OF

E�1a

OO

Since OF–mod is left proper it follows that R!C is a quasi-isomorphism. The functor
defined by M 7! E�1M on OF–modules M is exact. It follows that C ! E�1C is
a homology isomorphism, since E�1 is already inverted on homology. The map f
induces a homology isomorphism once E has been inverted, hence so does a. It follows
that E�1a is a homology isomorphism.

Thus we have shown that model categories LA00.OF–mod/ and L†�j .OF–mod/ are
equal. Now we are ready to remove the localization altogether.

Lemma 4.1.3 The adjunction induced by the inclusion of rings j W OF ! E�1OF

induces a symmetric monoidal Quillen equivalence

E�1OF˝OF
�W L†�j .OF–mod/� E�1OF–mod Wj �:

Proof The cofibrations are unchanged by localization. The weak equivalences of the
model category L†�j .OF–mod/ are those maps f such that

H�.E
�1OF˝OF

f /D E�1H�.f /
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is an isomorphism. The left adjoint preserves (and detects) these new weak equivalences,
so we have a symmetric monoidal Quillen adjunction as claimed. The object E�1OF

is a homotopically small generator for (the homotopy category of) E�1OF–mod. If
we can show that the derived counit of this adjunction is a weak equivalence then it
will follow that we have a Quillen equivalence. This follows since the counit map is an
isomorphism on the generator,

E�1OF˝OF
E�1OF! E�1OF:

We use the above result to remove the localization from the middle term in our diagram
of model categories. We have a commuting diagram of model categories as below,
where U denotes the forgetful functor:

OF–mod
Id

//

Id

��

L†�j .OF–mod/
Id

oo

U
//

E�1OF˝OF
�

��

Q–mod
OF˝�

oo

Id

��

OF–mod
E�1OF˝OF

�
//

Id

OO

E�1OF–mod
j�

oo

U
//

j�

OO

Q–mod
E�1OF˝�
oo

Id

OO

We denote the bottom row by S�a , the left adjoint from top to bottom by E�1OF˝OF
�,

the right adjoint by j � and we summarize the above in the following:

Proposition 4.1.4 The adjunction (described above)

E�1OF˝OF
�W zS�a–mod� S�a–mod Wj �

is a symmetric monoidal Quillen equivalence, and thus the adjunction

E�1OF˝OF
�W Kza–cell– zS�a–mod�Ka–cell–S�a–mod Wj �

is a Quillen equivalence, where Ka is the derived image of Kza under the left adjoint.

Again the adjunction at the level of cellularized categories is a symmetric monoidal
Quillen equivalence, by discussion in Section 5.2.

4.2 Removing the cellularization

We now compare Ka–cell–S�a–mod and the algebraic model dAdual of Section 2. The
point is to move from a category whose weak equivalences are quite complicated to
define to a model category whose weak equivalences are the quasi-isomorphisms. The
idea behind this step is similar to one presented in [16, Sections 12 and 13].
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We first introduce an adjoint pair relating S�a–mod and d yA. An object

ˇW M ! E�1OF˝V

of d yA gives an object of S�a–mod defined by

.M; E�1ˇ; E�1OF˝V; Id; V /:

This functor, which we call ~ , includes d yA into S�a–mod. It has a right adjoint �v . Let
.a; ˛; b; 
; c/ be an object of S�a–mod. Then we can draw the diagram of OF–modules

a! E�1OF˝OF
a! b E�1OF˝ c:

If we take the pullback P of this in the category of OF–modules in Ch.Q/ we obtain
a map ıW P ! E�1OF˝ c . This map ı is an object of d yA. For more details see [11,
Section 7]. We call this adjoint pair .~; �v/ and we note that it is a strong symmetric
monoidal adjunction.

We can compose this adjunction with the adjunction .�; �h/ which relates d yA to dA

(see Section 2.2). We let �D ~ ı � and � D �h ı�v .

Lemma 4.2.1 The adjunction .�; �/ between the categories dA and S�a–mod is
symmetric monoidal.

This adjunction is also studied in [4, Section 7], where it is called .inc; �/ and S�a is
called R�a .

Recall that, up to a weak equivalence (and ignoring shifts), the cells Ktop consist of
objects of the form

S�^ k D .k ^DEFC! k ^DEFC ^ zEF k ^ zEF/;

where k 2K , ie k D S or k D �n for n> 1 (see Section 3.2).

Thus we have to calculate the cells in Ka , ie the derived images of cells from K

(or equivalently from Ktop ) in S�a–mod. Since all required Quillen equivalences are
symmetric monoidal (which follows from Section 5), they preserve the unit (up to weak
equivalence) and the unit is always cellular. So the derived image of S 2LSQTSp is
the unit in S�a–mod,

OF! E�1OF Q:

We will use the simplified notation S0 for this object. As for the other cells, consider
some S�^ �n 2Ktop . Let kn D .A! B C / be its derived image in S�a–mod. To
recap this process, one takes homotopy T–fixed points of S�^ �n to get an object
of KT

top and then one applies the derived functor ‚ from [27], to get an object of Kt .
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Finally, one applies a number of algebraic adjunctions from Section 4.1 to get the object
kn of Ka . All of these adjunctions are constructed by taking Quillen equivalences
(which preserve the unit up to weak equivalence) on each of the component categories.
It follows that we have isomorphisms

H�.A/D ŒOF;A�
OF–mod
� Š ŒDEFC;DEFC ^ �n�

DEFC–mod
� Š ŒS;DEFC ^ �n�

T
� :

Similar isomorphisms also hold for the other two components so, by the calculations
of [8, Example 5.8.1], we have

H�.A/D �
T
� .DEFC ^ �n/DQnh1i;

H�.B/D �
T
� .DEFC ^ zEF^ �n/D 0;

H�.C /D �
T
� .
zEF^ �n/D 0;

where Qnh1i is the torsion OF–module consisting of a copy of Q in factor n and
degree 1. It is immediate that there is a homology isomorphism

z�n D .Qnh1i ! 0 0/! .A! B C /D kn

given by simply picking a suitable representative cycle for 1 2Qnh1i. We therefore
have the following description of the cells:

Lemma 4.2.2 The set of cells Ka is given (up to weak equivalence) by all shifts of
objects of the form z�n for n> 1 and all shifts of S0 D .OF! E�1OF Q/.

The above argument on the behaviour of the derived adjunction extends to the following
useful result, which tells us that (after applying homology) our derived functors agree
with the functor �A

� of [8].

Theorem 4.2.3 Let X be a rational T–equivariant spectrum. Let ‡X be its derived
image in S�a–mod. Then H�.‡X /Š ��A

� .X /.

The adjunction .�; �/ is shown to be a symmetric monoidal Quillen equivalence
between dA with the dualizable model structure and a cellularization of S�a–mod in [4,
Theorem 7.6]. The cells for this cellularization are taken to be the “algebraic spheres”.
An algebraic sphere is an object of the form

S� D .OF.�/! E�1OF˝Q Q/;

where OF.�/ is the subset of E�1OF consisting of all those x such that c�x 2OF , for
�W F! Z>0 of finite support. We also allow negative spheres S�� and shifts of such
objects. Essentially these are just “partial shifts” of the unit, where we have shifted

Algebraic & Geometric Topology, Volume 17 (2017)



Rational SO.2/–equivariant spectra 1013

finitely many factors of OF by some varying amount. We let fS�g denote the set of
such objects.

To show that .�; �/ is a Quillen equivalence between dA with the dualizable model
structure and the cellularization of S�a–mod at the set of cells Ka , we want to use
[4, Theorem 7.6], which says that dA with the dualizable model structure is Quillen
equivalent to the cellularization of S�a–mod at the set of cells fS�g. Hence, it is
enough to show that these two cellularizations agree (that is, produce the same model
structure). We will prove that the algebraic spheres can be built via cofibre sequences
and coproducts in S�a–mod from cells in Ka and vice versa. It will follow that the
class of Ka –cellular objects equals the class of fS�g–cellular objects. Hence we will
see that the Ka –cellular equivalences and the fS�g–cellular equivalences agree and
that the model categories Ka–cell–S�a–mod and fS�g–cell–S�a–mod are equal.

The unit S0 (and all its suspensions) is in both sets: in Ka and in the set of “algebraic
spheres”. So consider the algebraic sphere S�1 for the function �1W F!Z>0 sending
a trivial subgroup to 1 and all other subgroups to 0. There is a cofibre sequence (in
S�a–mod)

S0
! S�1 !†�1;

where † denotes the suspension. This shows that we can build S�1 from �1 and
S0 and that we can build �1 from algebraic spheres. We can also create the negative
sphere S��1 using the cofibre sequence

S��1 ! S0
!†�1�1:

To build any algebraic sphere we apply the above argument repeatedly. Note that by
the definition of an algebraic sphere we need only finitely many steps. Equally we can
make all �i for i > 1 from the algebraic spheres.

By [4, Theorem 7.6] we have the following:

Proposition 4.2.4 The pair .�; �/ induces a symmetric monoidal Quillen equivalence
between the model categories dAdual and Ka–cell–S�a–mod.

This finishes the proof that dAdual provides an algebraic model for the category of
rational T–spectra. We leave the consideration that all our Quillen equivalences are in
fact symmetric monoidal to the last section.

5 Symmetric monoidal equivalences

All of the adjunctions in the zigzag between dAdual and TSp have been compatible
with the monoidal properties of the categories. By examining the cellularized model
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structures more clearly we are able to show that each of these model categories is a
proper, stable, cellular, monoidal model category that satisfies the monoid axiom. We
are thus able to conclude that this zigzag of Quillen equivalences consists of monoidal
Quillen equivalences. It follows that we also have Quillen equivalences of model
categories of ring objects and modules over ring objects.

Our method is to prove a monoidal version of the cellularization principle [13, Proposi-
tion 2.7]; see Propositions 5.1.6 and 5.1.7.

5.1 Cellularization of stable model categories

A cellularization of a model category is a right Bousfield localization at a set of objects.
Such a localization exists by [17, Theorem 5.1.1] whenever the model category is right
proper and cellular. When we are in a stable context the results of [6] can be used.

Those results, which we shall introduce in the next subsection, allow us to understand
the sets of generating cofibrations for our cellularized model categories and see that
they are all symmetric monoidal and cellular.

In this subsection we recall the notion of cellularization (when C is stable) and some
of basic definitions and results.

Definition 5.1.1 Let C be a stable model category and K a stable set of objects of C,
ie a class of K–cellular objects of C that is closed under desuspension.2 We say that a
map f W A! B of C is a K–cellular equivalence if the induced map

Œk; f �C�W Œk;A�
C
�! Œk;B�C�

is an isomorphism of graded abelian groups for each k 2K . An object Z 2 C is said
to be K–cellular if

ŒZ; f �C�W ŒZ;A�
C
�! ŒZ;B�C�

is an isomorphism of graded abelian groups for any K–cellular equivalence f .

Definition 5.1.2 A right Bousfield localization or cellularization of C with respect to
a set of objects K is a model structure K–cell–C on C such that

� the weak equivalences are Kcellular equivalences;

� the fibrations of K–cell–C are the fibrations of C;

� the cofibrations of K–cell–C are defined via left lifting property.

2Note that the class is always closed under suspension.
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By [17, Theorem 5.1.1], if C is a right proper, cellular model category and K a set of
objects in C, then the cellularization K–cell–C of C with respect to K exists and is a
right proper model category. The cofibrant objects of K–cell–C are called K–cofibrant
and are precisely the K–cellular and cofibrant objects of C.

We recall some definitions and results from [6] and prove our monoidal version of the
cellularization principle. We use ycK for a cofibrant replacement functor in K–cell–C.

Definition 5.1.3 Let K be a set of cofibrant objects in a monoidal model category C.
We say that K is monoidal if the following two conditions hold:

� Any object of the form k˝ k 0 for k , k 0 2K is K–cellular.

� For ycK SC a K–cofibrant replacement of the unit SC of C and any k 2K , the
map ycK SC˝ k! k is a K–cellular equivalence.

The cellularization of a right proper, cellular, stable model category at a stable set of
cofibrant objects K is very well behaved (see [6, Theorem 5.9]), in particular it is
proper, cellular and stable. Moreover, the second condition of the above definition
holds automatically when the unit of C is K–cellular.

There is another important property we will often want the cells to satisfy, which makes
right localization behave in an even more tractable manner; see [6, Section 9]. This
property is variously called small, compact or finite. We choose to call it homotopically
small to avoid those over-used terms.

Definition 5.1.4 We say that an object X of a stable model category C is homotopi-
cally small if, in the homotopy category,

�
X;
`

i Yi

�C is canonically isomorphic toL
i ŒX;Yi �

C ; see [25, Definition 2.1.2].

Using [25, Lemma 2.2.1] it is routine to check that if K consists of homotopically
small objects of C then K is a set of generators for K–cell–C. Hence we know a set
of generators for each of our cellularizations.

Notice that derived functors of both left and right Quillen equivalences preserve homo-
topically small objects. Now we may turn to monoidal considerations. The following
theorem is [6, Theorem 7.2]:

Theorem 5.1.5 Let C be a proper, monoidal, cellular, stable model category. Let K

be a monoidal and stable set of cofibrant objects of C. Then K–cell–C is a proper,
monoidal, cellular, stable model category. Furthermore, if C satisfies the monoid axiom
then so does K–cell–C.
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The next two results are our upgraded version of the cellularization principle; see [13,
Proposition 2.7]. They have slightly different assumptions according to whether the
given cells are on the left or right of the adjunction. The first has the cells on the left
and behaves as expected. The second starts with cells on the right of the adjunction
and here we need to assume that the adjunction is a Quillen equivalence to start with.
In both cases we have also assumed that a cofibrant replacement of the unit is in the
set of cells (and hence is homotopically small). This simplifies the proofs but is not
needed when the adjunction is already a Quillen equivalence.

For the following we let yc be the cofibrant replacement functor of C, let ycK be the
cofibrant replacement functor of K–cell–C and let yf be the fibrant replacement functor
of D.

Proposition 5.1.6 Consider a symmetric monoidal Quillen adjunction between a pair
of proper, cellular, stable, monoidal model categories,

LW C�D WR:

Let K be a stable and monoidal set of cofibrant objects of C which contains a cofibrant
replacement of the unit. Assume that each element of K and LK is homotopically
small and that the unit map k!R yfLk is a weak equivalence of C for each k 2K .
Then LK is a stable monoidal set of cofibrant objects of D and the unit of D is in LK

(up to weak equivalence). Moreover, we have an induced symmetric monoidal Quillen
equivalence

LW K–cell–C�LK–cell–D WR:

Proof We apply the cellularization principle [13, Proposition 2.7] to see that .L;R/
is a Quillen equivalence on the cellularized categories.

We must show that LK satisfies both parts of the definition of a monoidal set. For
the first part, let k and k 0 be objects of K . Then Lk ^Lk 0 is weakly equivalent to
L.k ^ k 0/, which is LK–cofibrant and hence is LK–cellular. For the second part,
the map L.ycSC/! SD is a weak equivalence since .L;R/ is a monoidal Quillen
pair. Hence SD is in LK (up to weak equivalence) and the second condition holds
automatically.

Now we know that LK–cell–D is a cellular monoidal model category. We must
show that .L;R/ is a symmetric monoidal Quillen adjunction on the cellularized
model categories. We know that the map L.ycSC/! SD is a weak equivalence. The
comonoidal map L.X ^Y /!LX ^LY is also a weak equivalence for any cofibrant
X and Y . Hence the proof is complete.
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Proposition 5.1.7 Consider a symmetric monoidal Quillen equivalence between a pair
of proper, cellular, stable, monoidal model categories

LW C�D WR:

Let H be a stable and monoidal set of cofibrant objects of D which contains a cofibrant
replacement of the unit of D. Assume that every element of H is homotopically small.
Then ycR yfH is a stable monoidal set of homotopically small cofibrant objects of C

which contains the unit up to weak equivalence. Furthermore we have an induced
symmetric monoidal Quillen equivalence

LW ycR yfH–cell–C�H–cell–D WR:

Proof We apply the cellularization principle [13, Proposition 2.7] to see that .L;R/ is
a Quillen equivalence on the cellularized categories. We must prove that K D ycR yfH

is a monoidal set and that the unit of C is in K (up to weak equivalence).

It is simple to check that L takes K–cellular equivalences between cofibrant objects to
H –cellular equivalences. Now consider the pair of maps, for k and k 0 elements of K ,

LycK .k ^ k 0/
Lq
�!L.k ^ k 0/ �

�!Lk ^Lk 0

The map � is the comonoidal map of L and hence is a weak equivalence as .L;R/
is monoidal. Since the codomain of � is H –cellular, so is the domain of � . The
map Lq is L applied to a K–cellular equivalence between cofibrant objects, hence
it is a H –cellular equivalence. We have shown that Lq is a H –cellular equivalence
between H –cellular objects of D and thus must be a weak equivalence. Since .L;R/
is a Quillen equivalence before cellularization, q must be a weak equivalence of C.
Thus k ^ k 0 must be K–cellular.

To complete the proof that K is monoidal it will suffice to prove that SC is K–cellular.
Thus we now show that the unit of C is in K up to weak equivalence. Since .L;R/ is
a symmetric monoidal Quillen pair, the composite map

LycSC!LSC! SD!
yf SD

is a weak equivalence. Hence the adjoint ycSC!R yf SD is a weak equivalence. Thus
we see that ycSC is in K up to weak equivalence. We have now shown that the set K

is monoidal and that K–cell–C is a symmetric monoidal model category.

The proof that this adjunction is symmetric monoidal on the cellularized model cate-
gories follows the same pattern as the previous case.

Algebraic & Geometric Topology, Volume 17 (2017)



1018 David Barnes, J P C Greenlees, Magdalena Kędziorek and Brooke Shipley

5.2 Application to the classification

We start with the Quillen equivalence of Proposition 3.2.5,

S�^�W LSQ.TSp/�Ktop–cell–S�–mod Wpb:

The set of cells Ktop is given by S�^� applied to the set K of generators of LSQ.TSp/.
We know that this set is stable and every element is homotopically small and cofibrant.
By the proof of Proposition 5.1.6, it also follows that Ktop is a monoidal set. Thus
we may apply Proposition 5.1.6 to see that the adjunction .S�^�; pb/ is symmetric
monoidal.

We then have a large number of symmetric monoidal Quillen equivalences relating
S�–mod and S�a–mod. Our initial set of cells Ktop is monoidal, stable, contains the
unit and every element is homotopically small. Hence Propositions 5.1.6 and 5.1.7 tell
us that Ktop–cell–S�–mod and Ka–cell–S�a–mod are Quillen equivalent via symmetric
monoidal Quillen equivalences.

Theorem 5.2.1 The model category of rational T–spectra, TSp, is Quillen equivalent
to the algebraic model dAdual . Furthermore, these Quillen equivalences are all sym-
metric monoidal. Hence the homotopy categories of TSp and dAdual are equivalent as
symmetric monoidal categories.

Proof This now follows by combining Proposition 3.2.5, Corollaries 3.3.6 and 3.4.6,
Section 4.1 and Proposition 4.2.4 with Propositions 5.1.7 and 5.1.6.
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