Volume 17, issue 2 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 9, 5175–5754
Issue 8, 4437–5174
Issue 7, 3789–4436
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Homotopy theory of cocomplete quasicategories

Karol Szumiło

Algebraic & Geometric Topology 17 (2017) 765–791
Bibliography
1 C Barwick, D M Kan, A characterization of simplicial localization functors and a discussion of DK equivalences, Indag. Math. 23 (2012) 69 MR2877402
2 C Barwick, D M Kan, Relative categories: another model for the homotopy theory of homotopy theories, Indag. Math. 23 (2012) 42 MR2877401
3 C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, preprint (2013) arXiv:1112.0040v4
4 J E Bergner, Three models for the homotopy theory of homotopy theories, Topology 46 (2007) 397 MR2321038
5 J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, 347, Springer (1973) MR0420609
6 K S Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973) 419 MR0341469
7 D C Cisinski, Catégories dérivables, Bull. Soc. Math. France 138 (2010) 317 MR2729017
8 D Dugger, D I Spivak, Mapping spaces in quasi-categories, Algebr. Geom. Topol. 11 (2011) 263 MR2764043
9 W G Dwyer, D M Kan, J H Smith, Homotopy commutative diagrams and their realizations, J. Pure Appl. Algebra 57 (1989) 5 MR984042
10 P Gabriel, M Zisman, Calculus of fractions and homotopy theory, , Springer (1967) MR0210125
11 P G Goerss, J F Jardine, Simplicial homotopy theory, 174, Birkhäuser, Basel (1999) MR1711612
12 A Hirschowitz, C Simpson, Descente pour les n–champs, preprint (2001) arXiv:math/9807049v3
13 M Hovey, Model categories, 63, Amer. Math. Soc. (1999) MR1650134
14 A Joyal, The theory of quasi-categories and its applications, from: "Advanced course on simplicial methods in higher categories", Quaderns 45, CRM (2008) 149
15 A Joyal, M Tierney, Quasi-categories vs Segal spaces, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 277 MR2342834
16 J Lurie, Higher topos theory, 170, Princeton University Press (2009) MR2522659
17 D G Quillen, Homotopical algebra, 43, Springer (1967) MR0223432
18 C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 MR1804411
19 E Riehl, D Verity, Completeness results for quasi-categories of algebras, homotopy limits, and related general constructions, Homology Homotopy Appl. 17 (2015) 1 MR3338539
20 A Rădulescu-Banu, Cofibrations in homotopy theory, preprint (2009) arXiv:math/0610009v4
21 K Szumiło, Two models for the homotopy theory of cocomplete homotopy theories, PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2014)
22 K Szumiło, Two models for the homotopy theory of cocomplete homotopy theories, preprint (2014) arXiv:1411.0303
23 K Szumiło, Frames in cofibration categories, J. Homotopy Relat. Struct. (2016) 1
24 K Szumiło, Homotopy theory of cofibration categories, Homology Homotopy Appl. 18 (2016) 345 MR3576003
25 B Toën, Vers une axiomatisation de la théorie des catégories supérieures, K–Theory 34 (2005) 233 MR2182378
26 R M Vogt, The HELP-lemma and its converse in Quillen model categories, J. Homotopy Relat. Struct. 6 (2011) 115 MR2818703
27 F Waldhausen, Algebraic K–theory of spaces, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 318 MR802796