Volume 17, issue 2 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Symplectic embeddings of four-dimensional ellipsoids into integral polydiscs

Daniel Cristofaro-Gardiner, David Frenkel and Felix Schlenk

Algebraic & Geometric Topology 17 (2017) 1189–1260
Bibliography
1 V I Arnol’d, S M Guseĭn-Zade, A N Varchenko, Singularities of differentiable maps, II, 83, Birkhäuser (1988) MR966191
2 P Biran, Symplectic packing in dimension 4, Geom. Funct. Anal. 7 (1997) 420 MR1466333
3 P Biran, A stability property of symplectic packing, Invent. Math. 136 (1999) 123 MR1681101
4 M Burkhart, P Panescu, M Timmons, Symplectic embeddings of 4–dimensional ellipsoids into polydiscs, Involve 10 (2017) 219
5 O Buse, R Hind, Symplectic embeddings of ellipsoids in dimension greater than four, Geom. Topol. 15 (2011) 2091 MR2860988
6 O Buse, R Hind, Ellipsoid embeddings and symplectic packing stability, Compos. Math. 149 (2013) 889 MR3069365
7 O Buse, R Hind, E Opshtein, Packing stability for symplectic 4–manifolds, Trans. Amer. Math. Soc. 368 (2016) 8209 MR3546797
8 O Buse, M Pinsonnault, Packing numbers of rational ruled four-manifolds, J. Symplectic Geom. 11 (2013) 269 MR3046492
9 K Choi, D Cristofaro-Gardiner, D Frenkel, M Hutchings, V G B Ramos, Symplectic embeddings into four-dimensional concave toric domains, J. Topol. 7 (2014) 1054 MR3286897
10 D Cristofaro-Gardiner, ECH capacities and dynamics, in preparation
11 D Cristofaro-Gardiner, Symplectic embeddings from concave toric domains into convex ones, preprint (2014) arXiv:1409.4378
12 D Cristofaro-Gardiner, R Hind, Symplectic embeddings of products, preprint (2015) arXiv:1508.02659
13 D Cristofaro-Gardiner, A Kleinman, Ehrhart polynomials and symplectic embeddings of ellipsoids, preprint (2013) arXiv:1307.5493
14 D Frenkel, D Müller, Symplectic embeddings of 4–dim ellipsoids into cubes, J. Symplectic Geom. 13 (2015) 765 MR3480057
15 M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
16 R Hind, Some optimal embeddings of symplectic ellipsoids, J. Topol. 8 (2015) 871 MR3394319
17 R Hind, E Kerman, New obstructions to symplectic embeddings, Invent. Math. 196 (2014) 383 MR3193752
18 M Hutchings, Quantitative embedded contact homology, J. Differential Geom. 88 (2011) 231 MR2838266
19 M Hutchings, Recent progress on symplectic embedding problems in four dimensions, Proc. Natl. Acad. Sci. USA 108 (2011) 8093 MR2806644
20 Y Karshon, L Kessler, Distinguishing symplectic blowups of the complex projective plane, preprint (2014) arXiv:1407.5312
21 B H Li, T J Li, Symplectic genus, minimal genus and diffeomorphisms, Asian J. Math. 6 (2002) 123 MR1902650
22 T J Li, A K Liu, Uniqueness of symplectic canonical class, surface cone and symplectic cone of 4–manifolds with B+ = 1, J. Differential Geom. 58 (2001) 331 MR1913946
23 D McDuff, Symplectic embeddings of 4–dimensional ellipsoids, J. Topol. 2 (2009) 1 MR2499436
24 D McDuff, The Hofer conjecture on embedding symplectic ellipsoids, J. Differential Geom. 88 (2011) 519 MR2844441
25 D McDuff, L Polterovich, Symplectic packings and algebraic geometry, Invent. Math. 115 (1994) 405 MR1262938
26 D McDuff, F Schlenk, The embedding capacity of 4–dimensional symplectic ellipsoids, Ann. of Math. 175 (2012) 1191 MR2912705
27 F Schlenk, Symplectic embeddings of ellipsoids, Israel J. Math. 138 (2003) 215 MR2031958
28 F Schlenk, Embedding problems in symplectic geometry, 40, de Gruyter (2005) MR2147307
29 F Schlenk, Symplectic embedding problem, old and new, book in preparation
30 P Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999) 145 MR1743463