Volume 17, issue 2 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Spin, statistics, orientations, unitarity

Theo Johnson-Freyd

Algebraic & Geometric Topology 17 (2017) 917–956
Abstract

A topological quantum field theory is hermitian if it is both oriented and complex-valued, and orientation-reversal agrees with complex conjugation. A field theory satisfies spin-statistics if it is both spin and super, and 360–rotation of the spin structure agrees with the operation of flipping the signs of all fermions. We set up a framework in which these two notions are precisely analogous. In this framework, field theories are defined over  Vect, but rather than being defined in terms of a single tangential structure, they are defined in terms of a bundle of tangential structures over Spec(). Bundles of tangential structures may be étale-locally equivalent without being equivalent, and hermitian field theories are nothing but the field theories controlled by the unique nontrivial bundle of tangential structures that is étale-locally equivalent to Orientations. This bundle owes its existence to the fact that π1 ét(Spec()) = π1 BO(). We interpret Deligne’s “existence of super fiber functors” theorem as implying that π2 ét(Spec()) = π2 BO() in a categorification of algebraic geometry in which symmetric monoidal categories replace commutative rings. One finds that there are eight bundles of tangential structures étale-locally equivalent to Spins, one of which is distinguished; upon unpacking the meaning of a field theory with that distinguished tangential structure, one arrives at a field theory that is both hermitian and satisfies spin-statistics. Finally, we formulate in our framework a notion of reflection-positivity and prove that if an étale-locally-oriented field theory is reflection-positive then it is necessarily hermitian, and if an étale-locally-spin field theory is reflection-positive then it necessarily both satisfies spin-statistics and is hermitian. The latter result is a topological version of the famous spin-statistics theorem.

Keywords
TQFT, spin, super, categorification, torsors, Galois theory
Mathematical Subject Classification 2010
Primary: 14A22, 57R56, 81T50
References
Publication
Received: 28 October 2015
Revised: 6 June 2016
Accepted: 24 June 2016
Published: 14 March 2017
Authors
Theo Johnson-Freyd
Department of Mathematics
Northwestern University
2033 Sheridan Road
Evanston, IL 60208
United States
http://math.northwestern.edu/~theojf