Volume 17, issue 2 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Infima of length functions and dual cube complexes

Jonah Gaster

Algebraic & Geometric Topology 17 (2017) 1041–1057
Abstract

In the presence of certain topological conditions, we provide lower bounds for the infimum of the length function associated to a collection of curves on Teichmüller space that depend on the dual cube complex associated to the collection, a concept due to Sageev. As an application of our bounds, we obtain estimates for the “longest” curve with k self-intersections, complementing work of Basmajian [J. Topol. 6 (2013) 513–524].

Keywords
closed curves on surfaces, hyperbolic surfaces, CAT(0) cube complexes, surface groups
Mathematical Subject Classification 2010
Primary: 51M10
Secondary: 51M16
References
Publication
Received: 11 January 2016
Revised: 21 June 2016
Accepted: 11 July 2016
Published: 14 March 2017
Authors
Jonah Gaster
Department of Mathematics
Boston College
140 Commonwealth Avenue
Chestnut Hill, MA 02467
United States
http://www2.bc.edu/jonah-gaster