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Algebraic & Geometric Topology 17 (2017) 1283–1321

Grid diagrams and Manolescu’s unoriented
skein exact triangle for knot Floer homology

C-M MICHAEL WONG

We rederive Manolescu’s unoriented skein exact triangle for knot Floer homology over
F2 combinatorially using grid diagrams, and extend it to the case with Z coefficients
by sign refinements. Iteration of the triangle gives a cube of resolutions that converges
to the knot Floer homology of an oriented link. Finally, we reestablish the homological
� –thinness of quasialternating links.

57R58; 57M25, 57M27

1 Introduction

Heegaard Floer homology was first introduced by Ozsváth and Szabó [16] as an
invariant for 3–manifolds, defined using holomorphic disks and Heegaard diagrams. It
was extended by Ozsváth and Szabó [15], and independently by Rasmussen [19], to
give an invariant, knot Floer homology, for nullhomologous knots in a closed, oriented
3–manifold, which was further generalized by Ozsváth and Szabó [18] to the case of
oriented links. Knot Floer homology comes in several flavors; its most usual form,
bHFK.L/ for an oriented link L, is a bigraded module over F2 D Z=2Z or Z, whose

Euler characteristic is the Alexander polynomial. For the purposes of this paper, we
shall only consider links in S3 .

A combinatorial description of knot Floer homology over F2 was given by Manolescu,
Ozsváth and Sarkar [11], and Manolescu, Ozsváth, Szabó and Thurston [12], using
grid diagrams, which are certain multipointed Heegaard diagrams on the torus. In
this approach, one can associate a chain complex eGC.G/ to a grid diagram G , and
calculate its homology eGH.G/. Sign refinements for the boundary map @ are also
given in [12] in a well-defined manner, allowing the chain complex to be defined over Z.
If G is a grid diagram for a link L of ` components, with grid number n, then

eGH.G/ŠbGH.L/˝V n�l ;

where V is a free module of rank 2 over the base ring RD F2 or Z, and bGH.L/ is
a link invariant, called the combinatorial knot Floer homology or the grid homology
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1284 C-M Michael Wong

of L. Over F2 , bGH.L/ is isomorphic to bHFK.L/; over Z, it has been shown by
Sarkar [21] that bGH.L/ is isomorphic to bHFK.L; o/ for some orientation system o.

Ozsváth and Szabó [17] observed that Heegaard Floer homology of the branched
double cover bHF.�†.L//, like Khovanov homology fKh.L/ (see Khovanov [6; 7]
or Bar-Natan [3]), satisfies an unoriented skein exact triangle. Manolescu [9] then
showed that over F2 , knot Floer homology also satisfies an unoriented skein exact
triangle. More precisely, let L1 be a link in S3 . Given a planar diagram of L1 , let
L0 and L1 be the two resolutions of L1 at a crossing in that diagram, as in Figure 1.
Denote by `1 , `0 and `1 the number of components of the links L1;L0 and L1

respectively, and set mDmaxf`1; `0; `1g.

L1L0L1

Figure 1: L1 , L0 and L1 near a point

Theorem 1.1 (Manolescu) There exists an exact triangle

� � � ! bHFK.L1IF2/˝V m�`1 ! bHFK.L0IF2/˝V m�`0

! bHFK.L1IF2/˝V m�`1 ! � � � ;

where V is a vector space of dimension 2 over F2 .

Remark 1.2 The arrows in the exact triangle point in the reverse direction from those
in [9]; this is caused by a difference in the orientation convention. We follow the
convention in [15] and [11; 12], where the Heegaard surface is the oriented boundary
of the handlebody in which the ˛ curves bound discs.

Manolescu observed that the exact triangle above is different from that of fKh.L/ and
bHF.�†.L// in that it does not even respect the homological grading modulo 2, and
that it is unclear whether an analogous triangle holds for other versions of knot Floer
homology. He also used the exact triangle to show that rk bHFK.LIF2/D 2`�1 det.L/
for quasialternating links, which explains the fact that fKh and bHFK have equal ranks
for many classes of knots.

The goal of the present paper is to reprove Manolescu’s theorem in elementary terms
using grid diagrams, without appealing to the topological theory. The advantages of
this approach are threefold.

Algebraic & Geometric Topology, Volume 17 (2017)



Grid diagrams and Manolescu’s skein exact triangle for knot Floer homology 1285

First, Manolescu’s skein exact triangle was proven in [9] to exist over F2 . By assigning
signs to the maps between chain complexes, we can obtain an analogous exact triangle
in combinatorial knot Floer homology with Z coefficients, which was not known to
exist before. In other words, we obtain the following statement.

Theorem 1.3 For sufficiently large n, there exists an exact triangle

� � �!bGH.L1IR/˝V n�`1!bGH.L0IR/˝V n�`0!bGH.L1IR/˝V n�`1!� � � ;

where RD F2 or Z, and V is a free module of rank 2 over R.

Second, the exact triangle was iterated by Baldwin and Levine [2] to obtain a cube
of resolutions; when using twisted coefficients, this gives a combinatorial description
of knot Floer homology, distinct from that provided by grid diagrams. In the present
context, knowing explicitly the maps between the chain complexes associated to the
grid diagrams, we can likewise iterate the exact triangle to get a cube of resolutions
complex CR.G/ over F2 , with untwisted coefficients. The higher terms in the resulting
spectral sequence are combinatorially computable.

Corollary 1.4 The cube of resolutions CR.GIF2/, which has no diagonal maps, gives
rise to a spectral sequence that converges to bGH.LIF2/˝V m�` .

Note that the spectral sequence is presumably not a knot invariant; see [2, Remark 7.7].

The technique of spectral sequences was first used by Ozsváth and Szabó in [17],
where a spectral sequence from fKh.L/ to bHF.�†.L// was shown to exist. More
recently, Lipshitz, Ozsváth and Thurston [8] have found a way to compute the higher
terms in this spectral sequence using bordered Floer homology. Inspired by this work,
Baldwin [1] has found another method of computing these higher terms.

Third, there exists a ı–grading on bHFK, and Manolescu and Ozsváth [10] investigated
the ı–grading changes in the skein exact triangle [10, Proposition 3.9]. This result
allowed them to apply the skein exact triangle to quasialternating links, to show that
such links are Floer homologically � –thin over F2 . The ı–gradings can also be
determined in the combinatorial picture; doing so, we prove a generalization of the
statement of Floer homological � –thinness to Z.

Theorem 1.5 Suppose that det.L0/, det.L1/> 0 and det.L1/D det.L0/Cdet.L1/.
Then with respect to the ı–grading, the exact sequence in Theorem 1.3 can be written as

� � � !bGH
�� 1

2
�.L1/

.L1IR/˝V n�`1 !bGH
�� 1

2
�.L1/

.L1IR/˝V n�`1

!bGH
�� 1

2
�.L0/

.L0IR/˝V n�`0 !bGH
�� 1

2
�.L1/C1.L1IR/˝V n�`1 ! � � � ;

where RD F2 or Z, and V is a free module of rank 2 over R with grading zero.

Algebraic & Geometric Topology, Volume 17 (2017)



1286 C-M Michael Wong

Theorem 1.6 Quasialternating links are Floer homologically � –thin over Z.

This paper is organized as follows. We review the definition of knot Floer homology in
terms of grid diagrams in Section 2, and reprove the skein exact triangle in Section 3.
In these two sections, we will work only over F2 . Sign refinements are then given in
Section 4 to establish the analogous result over Z. Next, we discuss how the exact
triangle can be iterated to obtain a cube of resolutions over F2 in Section 5. Finally,
we establish the homological � –thinness of quasialternating links over F2 and Z in
Section 6.

Acknowledgements The author is very grateful to John Baldwin for his suggestion
of the topic of the paper, and is indebted to John for many essential ideas in the text.
He also thanks John Baldwin, Robert Lipshitz and Peter Ozsváth for their guidance.
He thanks Ciprian Manolescu for a helpful conversation, and Gahye Jeong for pointing
out a previously missing case in the proof of Lemma 3.6. Lastly, he thanks the referee
for remarkably thorough and useful comments, and for pointing out a mistake in the
statement of the main theorem, Theorem 1.3, in an earlier version.

The author was supported in part by the Princeton University Mathematics Department.

2 Grid diagrams

We review the combinatorial description of knot Floer homology in terms of grid
diagrams. In this and the next section, we will work only over F2 D Z=2Z.

A planar grid diagram zG with grid number n is a square grid in R2 with n� n cells,
together with a collection of O s and Xs, such that

� each row contains exactly one O and exactly one X ;
� each column contains exactly one O and exactly one X ; and
� each cell is either empty, contains one O , or contains one X .

Given a planar grid diagram zG , we can place it in a standard position on R2 as follows.
We place the bottom left corner at the origin, and require that each cell be a square of
edge length one. We can then construct an oriented, planar link projection by drawing
horizontal segments from the O s to the Xs in each row, and vertical segments from the
Xs to the O s in each column. At every intersection point, we let the horizontal segment
be the underpass and the vertical one the overpass. This gives a planar projection of an
oriented link L onto R2 ; we say that zG is a planar grid presentation of L.

We transfer our grid diagram to the torus T , by gluing the topmost segment to the
bottommost one, and gluing the leftmost segment to the rightmost one. Then the
horizontal and vertical arcs become horizontal and vertical circles. The torus inherits

Algebraic & Geometric Topology, Volume 17 (2017)



Grid diagrams and Manolescu’s skein exact triangle for knot Floer homology 1287

its orientation from the plane. The resulting diagram G is a toroidal grid diagram, or
simply a grid diagram. G is then a grid presentation of L; we also say that G is a
grid diagram for L.

Given a toroidal grid diagram G , we associate to it a chain complex .eGC.G/; @/
as follows. The set of generators of eGC.G/, denoted S.G/, consists of one-to-one
correspondences between the horizontal circles and vertical circles. Equivalently, we
can regard the generators as n–tuples of intersection points between the horizontal and
vertical circles, such that no intersection point appears on more than one horizontal or
vertical circle.

We now define the differential map @WeGC.G/!eGC.G/. Given x;y 2 S.G/, let
Rect.x;y/ denote the space of embedded rectangles with the following properties.
First of all, Rect.x;y/ is empty unless x;y coincide at exactly n� 2 points. An
element r of Rect.x;y/ is an embedded disk in T , whose boundary consists of four
arcs, each contained in horizontal or vertical circles; under the orientation induced
on the boundary of r , the horizontal arcs are oriented from a point in x to a point
in y . The space of empty rectangles r 2 Rect.x;y/ with x\ Int.r/D∅ is denoted
Rectı.x;y/.

More generally, a path from x to y is a 1–cycle  on T such that the boundary of
the intersection of  with the union of the horizontal curves is y �x , and a domain p

from x to y is a two-chain in T whose boundary @p is a path from x to y ; the set
of domains from x to y is denoted �.x;y/.

Given x 2 S.G/, we define

@.x/D
X

y2S.G/

X
r2Rectı.x;y/

Int.r/ contains no Os or Xs

y 2eGC.G/:

It is not too difficult to see that indeed @ B @D 0, and so @ is a differential: we have

@ B @.x/D
X

y2S.G/

X
p2�.x;z/

N.p/ � z;

where N.p/ is the number of ways of decomposing p as a composite of two empty
rectangles p D r1 � r2 with r1 2 Rectı.x;y/ and r2 2 Rectı.y ; z/. Let p D r1 � r2 ;
then r1 and r2 either are disjoint, have overlapping interiors or share a corner. If r1

and r2 are disjoint or have overlapping interiors, then p D r2 � r1 ; if they share a
corner, then there exists a unique alternate decomposition of p D r 0

1
� r 0

2
. In any case,

we obtain that N.p/D 0 for all p 2 �.x; z/.

Moreover, to the complex eGC.G/ we can associate a Maslov grading and an Alexander
grading, determined by the functions M W S!Z and S W S! 1

2
Z. For reasons we will

Algebraic & Geometric Topology, Volume 17 (2017)



1288 C-M Michael Wong

see in the next section, we will in general not be concerned with these gradings, unless
otherwise specified. We postpone their definitions to Section 6. It can be checked,
however, that the differential @ decreases the Maslov grading by 1 and preserves the
Alexander grading.

We can now take the homology of the chain complex .eGC.G/; @/, and define

eGH.G/D H�.eGC.G/; @/:

It is shown in [11; 12] that, if G is a grid diagram with grid number n for the oriented
link L with ` components, then

eGH.G/ŠbGH.L/˝V n�`;

where V is a 2–dimensional vector space over F2 , spanned by one generator in (Maslov
and Alexander) bigrading .�1;�1/ and another in bigrading .0; 0/, and bGH.L/ is
a link invariant, often referred to as the combinatorial knot Floer homology, or grid
homology, that is a vector space isomorphic to bHFK.L/. eGH.G/ can also be denoted
by eGH.L; n/.

Remark 2.1 While the proof that @ is a differential is completely elementary, its
method is very useful to what we shall prove in this paper. In general, in order to prove
that a map defined by counting certain domains is a chain map, or to prove that it is a
chain homotopy, we juxtapose two domains and enumerate all possible outcomes.

3 Manolescu’s unoriented skein exact triangle

We now prove our main result over F2 in purely combinatorial terms.

Before we start our main discussion, we make a change in our notation. In the original
description developed in [11; 12], the O s and Xs were used to determine the Alexander
and Maslov gradings of the generators. However, given a link L1 in S3 and its two
resolutions L0;L1 at a crossing, we observe that L1;L0;L1 do not share a compatible
orientation. Since we shall soon combine all three grid diagrams into one, we must
forget the orientations of the links; this implies that we must also forget the distinctions
between the O s and Xs, and ignore the gradings. Notice that using markers of only
one type will not change the definition of eGH.L; n/, since without the gradings, the
definition of the chain complex eGC.G/ associated to a grid diagram G is symmetric
in the O s and the Xs. Therefore, we shall henceforth replace all O s with Xs.

With this new notation, the first two conditions for a grid diagram become the condition
that there are exactly two Xs on each row and each column. We denote by X the set

Algebraic & Geometric Topology, Volume 17 (2017)



Grid diagrams and Manolescu’s skein exact triangle for knot Floer homology 1289

of Xs on a grid diagram. The differential is then given by

@.x/D
X

y2S.G/

X
r2Rectı.x;y/
Int.r/\XD∅

y 2eGC.G/:

To begin, we position L1 , L0 , L1 as in Figure 2, and make sure that their respective
grid diagrams G1;G0;G1 are identical except near the crossing, as indicated in the
same figure. Next, we let Ck D

eGC.Gk/ be the chain complex associated with Gk , for
each k 2f1; 0; 1g. We endow the set f1; 0; 1g with an action by Z=3Z by identifying
1 with 2, so that 1C 1D 0 and 1C 1D1.

L0 L1

G0 G1G1

L1

Figure 2: Grid diagrams for L1;L0 and L1 near a point

Remark 3.1 The leftmost and rightmost columns in each of the diagrams in Figure 2
do not need to be in the form displayed; the markers can be in any row in those two
columns, and the proofs in this and the next section do not rely on the positions of
the markers. In the figures in this section, we leave the markers there for ease of
visualization. However, in Section 5, it will be necessary to have the markers exactly
as they appear in Figure 2, to iterate the exact triangle.

Instead of drawing three different diagrams, we can draw G1;G0 , G1 all on the same
diagram, as in Figure 3. We label by ˇk the vertical circle corresponding to Gk for
each k 2 f1; 0; 1g, as indicated. These three vertical circles, together with all the
other vertical circles, divide T into a number of components; we let b be the unique
component that is an annulus not containing any X in its interior. Also, exactly three
of these components are embedded triangles not containing any X in their interior;

Algebraic & Geometric Topology, Volume 17 (2017)
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we let tk be the triangle whose ˇk arc is disjoint from the boundary of b . Finally, ˇk

and ˇkC1 intersect at exactly two points; we denote by uk the intersection point that
lies on the boundary of b , and by vk the other intersection point. Then uk D b\ tkC2

and vk D tk \ tkC1 .

ˇ0

t1

ˇ1ˇ1

t0

t1

b

u1

u1

u0

v1

v0

v1

Figure 3: Combined grid diagram for L1;L0 and L1 near a point. The
annulus b and the triangles tk are shaded. The circles ˇk and ˇkC1 intersect
at two points; uk are the ones on the right, and vk are those on the left.

In this setting and over F2 , Theorem 1.3 follows from our main proposition:

Proposition 3.2 There exists an exact triangle

� � � !eGH.G1IF2/!eGH.G0IF2/!eGH.G1IF2/! � � � :

We make use of the following lemma from homological algebra, first used by Ozsváth
and Szabó [17], and used also in [9].

Lemma 3.3 Let f.Ck ; @k/gk2f1;0;1g be a collection of chain complexes over an
arbitrary commutative ring, and let ffk W Ck ! CkC1gk2f1;0;1g be a collection of
anti-chain maps such that the following conditions are satisfied for each k :

Algebraic & Geometric Topology, Volume 17 (2017)
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(1) The composite fkC1 Bfk W Ck ! CkC2 is chain-homotopic to zero, by a chain
homotopy 'k W Ck ! CkC2 :

fkC1 Bfk C @kC2 B'k C'k B @k D 0:

(2) The map 'kC1BfkCfkC2B'k W Ck!Ck is a quasi-isomorphism. (In particular,
if there exists a chain homotopy  k W Ck ! Ck such that

'kC1 Bfk CfkC2 B'k C @k B k C k B @k D Id;

then this condition is satisfied.)

Then we have an exact sequence

� � � ! H�.Ck/
.fk/�
����! H�.CkC1/

.fkC1/�
�����! H�.CkC2/! � � � :

We now define the chain maps fk W Ck ! CkC1 by counting pentagons and triangles.

Given x 2 S.Gk/ and y 2 S.GkC1/, let Pentk.x;y/ denote the space of embedded
pentagons with the following properties. First of all, Pentk.x;y/ is empty unless x;y

coincide at exactly n�2 points. An element p of Pentk.x;y/ is an embedded disk in T ,
whose boundary consists of five arcs, each contained in horizontal or vertical circles;
under the orientation induced on the boundary of p , we start at the ˇk –component of x ,
traverse the arc of a horizontal circle, meet its corresponding component of y , proceed
to an arc of a vertical circle, meet the corresponding component of x , continue through
another horizontal circle, meet the component of y contained in ˇkC1 , proceed to an
arc in ˇkC1 , meet the intersection point uk of ˇk and ˇkC1 , and finally, traverse an
arc in ˇk until we arrive back at the initial component of x . Notice that all angles
here are at most straight angles. The space of empty pentagons p 2 Pentk.x;y/ with
x\ Int.p/D∅ is denoted Pentı

k
.x;y/.

Similarly, we let Trik.x;y/ denote the space of embedded triangles with the following
properties. Trik.x;y/ is empty unless x;y coincide at exactly n � 1 points. An
element p of Trik.x;y/ is an embedded disk in T , whose boundary consists of three
arcs, each contained in horizontal or vertical circles; under the orientation induced on
the boundary of p , we start at the ˇk –component of x , traverse the arc of a horizontal
circle, meet the component of y contained in ˇkC1 , proceed to an arc in ˇkC1 , meet
the intersection point vk of ˇk and ˇkC1 , and finally traverse an arc in ˇk to return
to the initial component of x . Again, all the angles here are less than straight angles.
It is clear that all triangles p 2 Trik.x;y/ satisfy x\ Int.p/D∅. Furthermore, for
any generator x , there is at most one generator y such that Trik.x;y/ is not empty.

See Figure 4 for examples of elements of Pentı
k
.x;y/ and Trik.x;y/.

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 4: Two allowed pentagons in Pentık.x;y/ and two allowed triangles
in Trik.x;y/ . The components of x are indicated by solid points, and those
of y are indicated by hollow ones.

Given x 2 S.Gk/, we define elements of CkC1 ,

Pk.x/D
X

y2S.GkC1/

X
p2Pentı

k
.x;y/

Int.p/\XD∅

y ;

Tk.x/D
X

y2S.GkC1/

X
p2Trik.x;y/
Int.p/\XD∅

y ;

fk.x/D Pk.x/C Tk.x/:

Lemma 3.4 The map fk is a chain map. In fact, Pk and Tk are both chain maps.

Proof The proof is similar to that of [12, Lemma 3.1]. We consider domains which
are obtained as the juxtaposition of a pentagon or a triangle, and a rectangle. There
are a few possibilities; in particular, the polygons may be disjoint, their interiors may
overlap, or they may share a common corner. If the polygons are disjoint or if their
interiors overlap, the domain can be decomposed as either r �p or p � r , and so does
not contribute to @kC1 B fk C fk B @k . If the polygons share a common corner, the
resulting domain always has an alternate decomposition, as shown in Figure 5. In
all cases, the domain can be decomposed in two ways, and makes no contribution to
@kC1 Bfk Cfk B @k . Note that each domain has exactly two decompositions, both of
which are counted in @kC1 B fk C fk B @k ; this is not going to be the case in similar
lemmas later.
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Figure 5: Two typical domains that arise as the juxtaposition of a pentagon
and a rectangle, and two that arise as that of a triangle and a rectangle. The
ˇk curve is solid while the ˇkC1 curve is dotted.

Remark 3.5 In the proof above, every domain that arises as the juxtaposition of a
triangle and a rectangle has exactly two decompositions, one contributing to @kC1 B Tk

and one to Tk B @k . The analogous statement is not true for Pk .

Henceforth, when considering the composition of two maps that count polygons, we
shall ignore the cases where the two polygons are disjoint or have overlapping interiors,
since we can always decompose the domain as either p1�p2 or p2�p1 in these cases.

Next, we define the chain homotopies 'k W Ck ! CkC2 by counting hexagons and
quadrilaterals.

Given x 2 S.Gk/ and y 2 S.GkC2/, let Hexk.x;y/ denote the space of embedded
hexagons with the following properties. First, Hexk.x;y/ is empty unless x and y

coincide at exactly n�2 points. An element p of Hexk.x;y/ is an embedded disk in T ,
whose boundary consists of six arcs, each contained in horizontal or vertical circles;
under the orientation induced on the boundary of p , we start at the ˇk –component of x ,
traverse the arc of a horizontal circle, meet its corresponding component of y , proceed
to an arc of a vertical circle, meet the corresponding component of x , continue through
another horizontal circle, meet the component of y contained in ˇkC2 , proceed to
an arc in ˇkC2 , meet the intersection point ukC1 of ˇkC1 and ˇkC2 , traverse an arc
in ˇkC1 , meet the intersection point uk of ˇk and ˇkC1 , and finally, traverse an arc
in ˇk until we arrive back at the initial component of x . All the angles here are at most
straight angles. The space of empty hexagons p 2 Hexk.x;y/ with x\ Int.p/D∅
is denoted Hexı

k
.x;y/.

Similarly, we let Quadk.x;y/ denote the space of embedded quadrilaterals with the
following properties. Quadk.x;y/ is empty unless x;y coincide at exactly n�1 points.
An element p of Quadk.x;y/ is an embedded disk in T , whose boundary consists
of four arcs, each contained in horizontal or vertical circles; under the orientation
induced on the boundary of p , we start at the ˇk –component of x , traverse the arc
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Figure 6: Two allowed hexagons in Hexık.x;y/ and an allowed quadrilateral
in Quadk.x;y/ . The hexagon in the middle figure is the only allowed empty
hexagon that is a left domain.

of a horizontal circle, meet the component of y contained in ˇkC2 , proceed to an
arc in ˇkC2 , meet the intersection point ukC1 of ˇkC1 and ˇkC2 , proceed to an arc
in ˇkC1 , meet the intersection point vk of ˇk with ˇkC1 , and finally traverse an arc
in ˇk to return to the initial component of x . All the angles here are at most straight
angles. It is clear that all quadrilaterals p 2 Trik.x;y/ satisfy x\ Int.p/D∅.

See Figure 6 for examples of elements of Hexı
k
.x;y/ and Quadk.x;y/.

Given x 2 S.Gk/, we define elements of CkC2 by

Hk.x/D
X

y2S.GkC2/

X
p2Hexı

k
.x;y/

Int.p/\XD∅

y ;

Qk.x/D
X

y2S.GkC2/

X
p2Quadk.x;y/
Int.p/\XD∅

y ;

'k.x/DHk.x/CQk.x/:

We say that a domain p is a left domain if Int.p/\ Int.b/D∅, and a right domain if
Int.p/\ Int.b/¤∅.

Lemma 3.6 The maps fk and 'k satisfy condition (1) of Lemma 3.3.

Proof Juxtaposing a triangle and a pentagon appearing in PkC1 B Tk , we generi-
cally obtain a composite domain that admits a unique alternative decomposition as a
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quadrilateral and a rectangle, appearing in either @kC2 BQk or Qk B@k , except for one
special case, which is described in (1) below. Juxtaposing two pentagons appearing in
PkC1 BPk , we generically obtain a composite domain that admits a unique alternative
decomposition as a hexagon and a rectangle, appearing in either @kC2 BHk or Hk B@k ,
except for one special case, which is described in (3) below.

There are three special cases. We consider domains p arising from juxtapositions of:

(1) A pentagon and a triangle appearing in TkC1 BPk , such that the ˇk –component
of x does not lie on the boundary of any annular component of T minus the vertical
circles (including ˇ1 , ˇ0 , ˇ1 ). Visually, the ˇk –component of x lies on the central
vertical axis of the figure. The domain p can only be alternatively decomposed as the
triangle tkC2 and a pentagon, bounded by ˇk , a horizontal arc, a vertical arc, another
horizontal arc and ˇkC2 , in its induced orientation. The pentagon is in the opposite
orientation as one that would be counted in the map fkC2 , and its boundary meets
only the intersection point vkC2 ; such a pentagon is not counted in any map. The
triangle tkC2 is not counted in any map either. Therefore, p is counted exactly once in
fkC1 Bfk C @kC2 B'k C'k B @k . However, we can replace tkC2 with the triangle tk ,
and obtain a corresponding domain p0 that also connects x to y . The new domain p0

admits a unique alternative decomposition as a triangle and a pentagon, counted in
PkC1 B Tk . See Figure 7(1).

(2) A pentagon and a triangle appearing in TkC1 BPk , such that the ˇk –component
of x lies on the boundary of an annular component of T minus the vertical circles
(including ˇ1 , ˇ0 , ˇ1 ). Visually, the ˇk –component of x lies to the left of the central
vertical axis of the figure. The domain p can only be alternatively decomposed as the
triangle tkC2 and a pentagon, bounded by ˇk , a horizontal arc, a vertical arc, another
horizontal arc and ˇkC2 , in its induced orientation. The pentagon is in the opposite
orientation as one that would be counted in the map fkC2 , and its boundary meets
only the intersection point vkC2 ; such a pentagon is not counted in any map. The
triangle tkC2 is not counted in any map either. Therefore, p is counted exactly once in
fkC1 Bfk C @kC2 B'k C'k B @k . However, we can replace tkC2 with the triangle tk ,
and obtain a corresponding domain p0 that also connects x to y . The new domain p0

admits a unique alternative decomposition as a quadrilateral and a rectangle, counted
in @kC2 BQk . See Figure 7(2).

(3) Two triangles appearing in TkC1 BTk . The domain p can only be alternatively de-
composed as the triangle tkC1 and another triangle, bounded by segments of ˇk , ˇkC2

and a horizontal circle in its induced orientation, and having ukC2 as a corner. Since
neither triangle is counted in any of the maps fk or 'k , p is counted exactly once in
fkC1BfkC@kC2B'kC'k B@k . However, we can replace tkC1 with the annulus b , and

Algebraic & Geometric Topology, Volume 17 (2017)



1296 C-M Michael Wong

(2)(1)

(3)
Figure 7: Three special cases. In each case, there are two domains p and p0 ,
each counted exactly once in fkC1 Bfk C @kC2 B'k C'k B @k .

obtain a corresponding domain p0 that also connects x to y . The situation is similar
to the special case in the proof of [12, Lemma 3.1]. Depending on the initial point x ,
the new domain p0 admits a unique alternative decomposition as two pentagons or as
a hexagon and a rectangle, counted either in PkC1 BPk , in @kC2 BHk , or in Hk B @k .
See Figure 7(3).

Finally, the remaining terms in @kC2 B Qk cancel with terms in Qk B @k , and the
remaining terms in @kC2 BHk cancel with terms in Hk B @k . Table 1 summarizes how
the terms cancel each other.

We now define the chain homotopy  k W Ck ! Ck by counting heptagons.
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term in position cancels with term in special case

fkC1 Bfk PkC1 BPk left, right (6� b) @kC2 BHk or Hk B @k

right (� b) TkC1 B Tk (3)

TkC1 BPk left (central x) PkC1 B Tk (1)
left (left x) @kC2 BQk (2)

PkC1 B Tk left (central y) Qk B @k

left (otherwise) TkC1 BPk (1)
right @kC2 BQk

TkC1 B Tk left PkC1 BPk , @kC2 BHk (3)
or Hk B @k

@kC2 B'k @kC2 BHk left PkC1 BPk

right (6� b) PkC1 BPk or Hk B @k

right (� b) TkC1 B Tk (3)

@kC2 BQk left (central y) Qk B @k

left (otherwise) TkC1 BPk (2)
right PkC1 B Tk or Qk B @k

'k B @k Hk B @k left PkC1 BPk

right (6� b) PkC1 BPk or @kC2 BHk

right (� b) TkC1 B Tk (3)

Qk B @k left PkC1 B Tk or @kC2 BQk

right @kC2 BQk

Table 1: This table shows how the terms cancel each other in Lemma 3.6. A
left domain is indicated as “(central x )” if the ˇk –component of x lies on the
central vertical axis of the figure, and “(left x )” if it lies to the left of this axis;
similarly for y . A right domain is indicated as “(� b )” if Int.p/ � Int.b/ ,
and “( 6� b )” otherwise. The special cases are shown in Figure 7.

Given x 2 S.Gk/ and y 2 S.GkC2/, let Heptk.x;y/ denote the space of embedded
heptagons. First of all, Heptk.x;y/ is empty unless x;y coincide at exactly n� 2

points. An element p of Heptk.x;y/ is an embedded disk in T , whose boundary
consists of seven arcs, each contained in horizontal or vertical circles; under the
orientation induced on the boundary of p , we start at the ˇk –component of x , traverse
the arc of a horizontal circle, meet its corresponding component of y , proceed to an
arc of a vertical circle, meet the corresponding component of x , continue through
another horizontal circle, meet the component of y contained in ˇk , proceed to an arc
in ˇk , meet the intersection point ukC2 of ˇk and ˇkC2 , proceed to an arc in ˇkC2 ,
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Figure 8: An allowed heptagon in Heptık.x;y/ . Note that allowed heptagons
are necessarily right domains.

meet the intersection point ukC1 of ˇkC1 and ˇkC2 , traverse an arc in ˇkC1 , meet
the intersection point uk of ˇk and ˇkC1 , and finally, traverse an arc in ˇk until
we arrive back at the initial component of x . All the angles here are again at most
straight angles. The space of empty heptagons p 2 Heptk.x;y/ with x\ Int.p/D∅
is denoted Heptı

k
.x;y/.

See Figure 8 for an example of an element of Heptı
k
.x;y/.

Given x 2 S.Gk/, we define

 k.x/ D Kk.x/ D
X

y2S.Gk/

X
p2Heptı

k
.x;y/

Int.p/\XD∅

y 2 Ck :

Lemma 3.7 We have

'kC1 Bfk CfkC2 B'k C @k B k C k B @k D Id;

so that the maps fk and 'k satisfy condition (2) of Lemma 3.3.

Proof First, we see that juxtaposing either a triangle and a hexagon, or a pentagon
and a quadrilateral, does not contribute to 'kC1 Bfk CfkC2 B'k . In other words, we
first claim that PkC2 BQk CQkC1 BPk CHkC1 B Tk C TkC2 BHk D 0.

There are exactly four cases. We consider domains p formed by juxtaposing:

(1) A quadrilateral and a pentagon appearing in PkC2 BQk , such that p is a right
domain. In this case, p admits a unique alternative decomposition as a triangle and a
hexagon appearing in HkC1 B Tk . See Figure 9(1).
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(3)

(1) (2)

(4)

Figure 9: The four cases when juxtaposing a triangle and a hexagon, or a
pentagon and a quadrilateral. All terms that arise cancel out with each other.

(2) A quadrilateral and a pentagon appearing in PkC2 BQk , such that p is a left
domain with height less than n. Only this decomposition of p is counted. However, we
can replace the triangle tk inside p by the triangle tkC2 , and obtain a corresponding
domain p0 that can be uniquely decomposed as a pentagon and a quadrilateral appearing
in QkC1 BPk . See Figure 9(2).

(3) A quadrilateral and a pentagon appearing in PkC2 BQk , such that p is a right
domain with height n. This is in fact only possible when kD1. Only this decomposition
of p is counted. However, p contains the triangles tk and tkC1 ; we can replace tkC1
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Figure 10: Decomposing the identity map

by the triangle tkC2 , and obtain a corresponding domain p0 that can be uniquely
decomposed as a hexagon and a triangle appearing in TkC2 BHk . See Figure 9(3).

The astute reader may find it strange that in this particular case, in p the triangle tk
is “attached” to the top of the rest of the domain, whereas in p0 it is “attached” to the
bottom. One way to convince oneself of the validity of the procedure of obtaining p0

from p , is to think of it as first replacing tk by tkC2 , and then replacing tkC1 by tk .

(4) A triangle and a hexagon appearing in HkC1 B Tk , such that p is a left domain.
This is only possible when k D 0. Only this decomposition of p is counted. However,
we can replace the triangle tk inside p by the triangle tkC2 , and obtain a corresponding
domain p0 that can be uniquely decomposed as a pentagon and a quadrilateral appearing
in QkC1 BPk . See Figure 9(4).

Juxtaposing a pentagon and a hexagon appearing in HkC1 B Pk or PkC2 BHk , we
generically obtain a composite domain that admits a unique alternative decomposition
as a heptagon and a rectangle, appearing in @k BKk or Kk B @k , except for one special
case discussed below.

Depending on the initial point x , there exists exactly one domain p connecting x to
itself that admits a unique decomposition, either as a triangle and a quadrilateral in
QkC1 B Tk (in which case p is the triangle tkC1 ), as a quadrilateral and a triangle in
TkC2 BQk (p is the triangle tk ), as a pentagon and a hexagon appearing in HkC1 BPk

or PkC2 BHk (p is the annulus b ), or as a rectangle and a heptagon appearing in
Kk B @k or @k BKk (p is again the annulus b ). Of course, in this case, the identity
map is counted once. See Figure 10.
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term in position cancels with term in special case

'kC1 Bfk HkC1 BPk right (¤ b) @k BKk or Kk B @k

right (D b) Id

QkC1 BPk left (ht. < n� 1) PkC2 BQk (2)
left (ht. D n� 1) HkC1 B Tk (4)

HkC1 B Tk left QkC1 BPk (4)
right PkC2 BQk (1)

QkC1 B Tk left Id

fkC2 B'k PkC2 BHk right (¤ b) @k BKk or Kk B @k

right (D b) Id

TkC2 BHk left PkC2 BQk (3)

PkC2 BQk left (ht. < n) QkC1 BPk (2)
left (ht. D n) TkC1 BHk (3)
right HkC1 B Tk (1)

TkC2 BQk left Id

@k B k @k BKk right HkC1 BPk , PkC2 BHk ,
Kk B @k or Id

 k B @k Kk B @k right HkC1 BPk , PkC2 BHk ,
@k BKk or Id

Id n/a HkC1 BPk , PkC2 BHk ,
@k BKk , Kk B @k ,

QkC1 B Tk or
TkC2 BQk

Table 2: This table shows how the terms cancel each other in Lemma 3.7.
The special cases are shown in Figure 9.

Finally, the remaining terms in @kBKk cancel with terms in KkB@k . Table 2 summarizes
how the terms above cancel each other.

The proof of Proposition 3.2 is completed by combining Lemmas 3.3, 3.4, 3.6 and 3.7.

4 Signs

Sign refinements are given by Manolescu, Ozsváth, Szabó and Thurston [12] to extend
the definition of combinatorial knot Floer homology to one with coefficients in Z.
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In this section, we shall likewise assign sign refinements to our maps, to prove the
analogous statement of Proposition 3.2 with coefficients in Z.

Given a grid diagram, we denote by Rectı the union of Rectı.x;y/ for all x;y . We
follow [12] and adopt the following definition.

Definition 4.1 A true sign assignment, or simply a sign assignment, is a function

SW Rectı! f˙1g

with the following properties:

(1) For any four distinct r1; r2; r
0
1
; r 0

2
2 Rectı with r1 � r2 D r 0

1
� r 0

2
, we have

S.r1/ �S.r2/D�S.r 01/ �S.r
0
2/:

(2) For r1; r2 2 Rectı such that r1 � r2 is a vertical annulus, we have

S.r1/ �S.r2/D�1:

(3) For r1; r2 2 Rectı such that r1 � r2 is a horizontal annulus, we have

S.r1/ �S.r2/DC1:

Theorem 4.2 (Manolescu, Ozsváth, Szabó and Thurston) There exists a sign assign-
ment as defined in Definition 4.1. Moreover, this sign assignment is essentially unique:
if S1 and S2 are two sign assignments, then there is a function gW S.G/! f˙1g such
that S2.r/D g.x/ �g.y/ �S1.r/ for all r 2 Rectı.x;y/.

Remark 4.3 In the construction of a sign assignment in [12], the sign of a rectangle
does not depend on the positions of the O s and Xs of the diagram. We can view each
generator x as a permutation �x : if the component of x on the i th horizontal circle
lies on the s.i/th vertical circle, then we let �x be .s.1/ s.2/ � � � s.n//. Then the sign
of a rectangle in Rectı.x;y/ depends only on �x and �y .

The sign assignment from Theorem 4.2 is then used in [12] to construct a chain complex
over Z as follows. The complex fGC.G/D fGC.GIZ/ is the free Z–module generated
by elements of S.G/. Fixing a sign assignment S , the complex fGC.G/ is endowed
with the endomorphism @S W fGC.G/! fGC.G/, defined by

@S.x/ D
X

y2S.G/

X
r2Rectı.x;y/
Int.r/\XD∅

S.r/ �y 2 eGC.G/:

One can then see that .fGC.G/; @S/ is a chain complex. Indeed, the terms in @S B@S.x/
can be paired off as before, by the axioms defining S . Moreover, given S1 and S2 , the
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map ˆW .fGC.G/; @S1
/! .fGC.G/; @S2

/, defined by

ˆ.x/D g.x/ �x;

gives an isomorphism of the two chain complexes. Again, one can take the homology
of the chain complex .fGC.G/; @S/, and define

eGH.G/D H�.eGC.G/; @S/:

It is shown in [12] that
eGH.G/ŠbGH.G/˝V n�`

for some Z–module bGH.G/ that is a link invariant, where V is a rank 2 free module
over Z, spanned by one generator in bigrading .�1;�1/ and another in bigrading .0; 0/.
The link invariant bGH.G/, also denoted by bGH.L/, is shown by Sarkar [21] to be
isomorphic to bHFK.L; o/ for some orientation system o of the link L.

We are now ready to turn to the proof of the analogous statement of Proposition 3.2,
with signs.

Proposition 4.4 There exists an exact triangle

� � � !eGH.G1IZ/!eGH.G0IZ/!eGH.G1IZ/! � � � :

Our proof is reminiscent of that in [12, Section 4]. We adopt the strategy from Section 3;
to do so, we must specify the signs used in defining our various chain maps and chain
homotopies, and check that they indeed satisfy Lemma 3.3.

We begin by considering pentagons. First, we define the notion of a corresponding
generator. For each x 2 Ck , there exist exactly one x0 2 CkC1 and one x00 2 CkC2

that are canonically closest to x ; we require that x , x0 and x00 coincide everywhere
except on the ˇ curves, and x0 and x00 are obtained from x by sliding the ˇk –
component horizontally to the ˇkC1 and ˇkC2 curves respectively. We define the
maps cC

k
W Ck ! CkC1 and c�

k
W Ck ! CkC2 by

cC
k
.x/D x0 and c�k .x/D x00:

We can now define the straightening maps

dP
k W Pentık.x;y/! Rectık.x; c

�
k .y//; ePk W Pentık.x;y/! RectıkC1.c

C

k
.x/;y/;

as follows. Given p 2 Pentı
k
.x;y/, we obtain dP

k
.p/ by sliding the ˇkC1 –component

of y back to the ˇk curve, thereby postcomposing p with a triangle; similarly,
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we obtain eP
k
.p/ by sliding the ˇk –component of x to the ˇkC1 curve, thereby

precomposing p with another triangle. Notice that by Remark 4.3, we have

S.dP
k .p//D S.ePk .p//:

We now define

Pk.x/ D
X

y2S.GkC1/

X
p2Pentı

k
.x;y/

Int.p/\XD∅

�Pk .p/ �y 2 CkC1;

where

�Pk .p/D

�
S.dP

k
.p// if p is a left pentagon;

�S.dP
k
.p// if p is a right pentagon:

Turning to triangles, we again view generators as permutations. The signature sgn.x/ of
a generator x is defined to be the signature sgn.�x/ of the corresponding permutation.
Then we define

Tk.x/ D
X

y2S.GkC1/

X
p2Trik.x;y/
Int.p/\XD∅

�Tk .p/ �y 2 CkC1;

where
�Tk .p/D sgn.x/:

Finally, we define
fk.x/D Pk.x/C Tk.x/ 2 CkC1:

Lemma 4.5 The map fk is an anti-chain map. In fact, Pk and Tk are both anti-chain
maps.

Proof The proof follows from the proof of Lemma 3.4. We first consider the jux-
taposition of a pentagon and a rectangle. If the two polygons are disjoint or have
overlapping interiors, then the domain can be decomposed as either r �p or p0 � r 0 ;
then by property (1) of Definition 4.1, S.r/ � S.dP

k
.p// D �S.dP

k
.p0// � S.r 0/, and

consequently S.r/ � �P
k
.p/D��P

k
.p0/ �S.r 0/. If the two polygons share a corner, then

the domain can be decomposed in two ways; straightening the pentagons (with either
dP

k
or eP

k
) and using property (1) of Definition 4.1, we again see that the terms cancel.

Consider now the juxtaposition of a triangle p and a rectangle r . Notice first that the
differential @ always changes the signature of a generator; this means that S.r/��T

k
.p/D

��T
k
.p0/ � S.r 0/. By Remark 3.5, such a domain can always be decomposed in two

ways, one contributing to @kC1 B Tk , and one to Tk B @k ; moreover, the two rectangles
involved correspond to the same permutation, and so in fact have the same sign.
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We similarly define the straightening maps

dH
k W Hexık.x;y/! Rectık.x; c

C

k
.y//; eHk W Hexık.x;y/! RectıkC2.c

�
k .x/;y/

by sliding the appropriate component, and again notice that S.dH
k
.p//D S.eH

k
.p//.

We define
Hk.x/ D

X
y2S.GkC2/

X
p2Hexı

k
.x;y/

Int.p/\XD∅

�Hk .p/ �y 2 CkC2;

where
�Hk .p/D S.dH

k .p//:

For quadrilaterals,

Qk.x/ D
X

y2S.GkC2/

X
p2Quadk.x;y/
Int.p/\XD∅

�Q
k
.p/ �y 2 CkC2;

where
�Q

k
.p/D sgn.x/:

Lemma 4.6 The maps fk and 'k satisfy condition (1) of Lemma 3.3.

Proof Again the proof follows from that of Lemma 3.6. We say that a domain p is
rectangle-like if it is an allowed rectangle, pentagon, hexagon or heptagon, and we write
p 2RL; we say that it is triangle-like if it is an allowed triangle or quadrilateral, and we
write p 2 TL. We say a domain p is Type I if p 2 RL�RL, Type II if p 2 RL�TL,
Type III if p 2 TL�RL, and Type IV if p 2 TL�TL. (Recall that � and B compose in
the opposite order, so a term in PkC1 B Tk is in TL�RL.) Refer to Table 1. Typically,
a domain can be decomposed in two ways; usually, it fits into one of these cases:

(1) Both decompositions are Type I In this case, we see that the terms cancel out
by straightening the polygons and applying property (1) of Definition 4.1.

(2) One decomposition is Type II and one is Type III The domain is a left domain.
In this case, the terms cancel out because the two rectangle-like polygons have the
same sign, but the two triangle-like polygons have opposite signs.

(3) Both decompositions are Type III The domain is a right domain. In this case,
the two triangle-like polygons have the same sign. However, the two rectangle-like
polygons are both right domains, and one is a rectangle while the other is a pentagon.
Since right pentagons have opposite signs as the straightened rectangles, the two
rectangle-like polygons are of opposite sign.

The only special cases are those that involve two different domains, which are exactly
the special cases in Lemma 3.6.
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(1) In this case, the two pentagons have the same sign, but the two triangles have
opposite signs.

(2) In this case, the rectangle and the pentagon have the same sign, but the triangle
and the quadrilateral have opposite signs.

(3) In one domain, the two triangles have the same sign, and so their composite is
positive; in the other domain, the composite of the straightened rectangles is a vertical
annulus, and so is negative by property (2) of Definition 4.1.

Since there are no other cases, our proof is complete.

For heptagons, there is only one straightening map dK
k
W Heptı

k
.x;y/! Rectı

k
.x;y/.

Since the only allowed heptagons are right heptagons, putting �K
k
.p/D�S.dK

k
.p//

we define
Kk.x/ D

X
y2S.Gk/

X
p2Heptı

k
.x;y/

Int.p/\XD∅

�Kk .p/ �y 2 Ck :

Lemma 4.7 We have

'kC1 Bfk CfkC2 B'k C @k B k C k B @k D Id;

so that the maps fk and 'k satisfy condition (2) of Lemma 3.3.

Proof The typical cases are as in the proof of Lemma 4.6. We check the special cases
in Lemma 3.7.

(1) This is actually a typical case; the two decompositions of the domain are both
Type III.

(2) In this case, the pentagons have the same sign, but the quadrilaterals have opposite
signs.

(3) In this case, the pentagon and the hexagon have the same sign, but the triangle
and the quadrilateral have opposite signs.

(4) Also in this case, the pentagon and the hexagon have the same sign, but the triangle
and the quadrilateral have opposite signs.

We now check the decomposition of the identity map. If it is decomposed as a triangle
and a quadrilateral, we see that they are of the same sign, and so we obtain a positive
domain. If it is decomposed as a pentagon and a hexagon, we see that the composite of
the straightened rectangles is negative by property (2) of Definition 4.1, but the right
pentagon and its straightening have opposite signs; this means that the overall domain
is also positive.

The proof of Proposition 4.4 is completed by combining Lemmas 3.3, 4.5, 4.6 and 4.7.
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5 Iteration of the skein exact triangle

In this section, we will work only over F2 . Let G1 , G0 , G1 be grid diagrams that
are identical except near a point, as indicated in Figure 2. In Section 3, we constructed
the maps fk W

fGC.Gk/ ! fGC.GkC1/ and 'k W
fGC.Gk/ ! fGC.GkC2/ that satisfy

Lemma 3.3. Now Lemma 3.3 and the five lemma together imply that fGC.G1/ is quasi-
isomorphic to the mapping cone of f0W

fGC.G0/! fGC.G1/ (see [17, Lemma 4.2]),
where the quasi-isomorphism is given by

f1C'1WeGC.G1/!eGC.G0/˚eGC.G1/:

We now wish to iterate this quasi-isomorphism to obtain a cube of resolutions that
computes the same homology.

Let the crossings of a link L be numbered from 1 to m. Start with a planar projection
of L, and convert it into a grid diagram. By applying stabilization and commutation as
described in [4; 5; 12], we can require that:

(1) Near every crossing, the diagram is as indicated in Figure 11. For the i th crossing,
the associated 6� 6 block of cells illustrated is referred to as the i th block.

(2) If i ¤ j , then the i th block and the j th block occupy disjoint rows and disjoint
columns.

Let the resulting grid diagram be G. To each sequence k1;k2; : : : ;km with ki 2f1;0;1g

for 1 � i � m, we associate a grid diagram Gk1;:::;km
. The diagram Gk1;:::;km

is
obtained from G by replacing the i th block by the appropriate 6 � 6 block as in

Figure 11: The grid diagram G of an oriented link L near a crossing. The
6� 6 block of cells in the center is the block associated to this crossing.
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Figure 2 (where the central 4� 4 block is shown), depending on the value of ki . In
particular, G1;:::;1DG . Let Ck1;:::;km

be the associated chain complex of Gk1;:::;km
,

equipped with the differential map. For 1� i �m, we let the edge map

f i
k1;:::;km

W Ck1;:::;ki�1;ki ;kiC1;:::;km
! Ck1;:::;ki�1;kiC1;kiC1;:::;km

be the map fk defined in Section 3; this makes sense, since the two chain complexes
differ only near a crossing. Analogously, we have the map

'i
k1;:::;km

W Ck1;:::;ki�1;ki ;kiC1;:::;km
! Ck1;:::;ki�1;kiC2;kiC1;:::;km

;

which is just the map 'k defined earlier.

This allows us to define the big cube of resolutions of G to be the complex

.BCR.G/; @BCR/D

� M
ki2f1;0;1g

Ck1;:::;km
;

X
ki2f1;0;1g

�
@k1;:::;km

C

X
j Wkj2f1;0g

f
j

k1;:::;km
C

X
t WktD1

't
k1;:::;km

��
;

and the (small) cube of resolutions of G to be the complex

.CR.G/; @CR/D

� M
ki2f0;1g

Ck1;:::;km
;
X

ki2f0;1g

�
@k1;:::;km

C

X
j WkjD0

f
j

k1;:::;km

��
;

which is a subcomplex of BCR.G/. In the cube of resolutions CR.G/, each vertex is
associated to a grid diagram in which all crossings have been resolved. The case when
there are two crossings is illustrated below:

C1;1
f 2
1;1

//

'2
1;1

++
C1;0

f 2
1;0

//

f 1
1;0

��

'1
1;0

��

C1;1

f 1
1;1

��

'1
1;1

		

C0;0
f 2

0;0

//

f 1
0;0

��

C0;1

f 1
0;1

��

C1;0
f 2

1;0

// C1;1

The cube of resolutions CR.G/ consists of the 2�2 square on the lower right. The big
cube of resolutions BCR.G/ consists of the whole diagram, together with C0;1 , C1;1 ,
f 1
1;1 , f 1

0;1
, f 2

0;1
, f 2

1;1
, '1
1;1 , '2

0;1
and '2

1;1
, which are not shown. (These

would all be at the lower left of the diagram.)
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Remark 5.1 Neither BCR.G/ nor CR.G/ contains diagonal maps, eg a map that
goes from C1;0 to C0;1 or C1;1 . This is in stark contrast with cubes of resolutions in
many other contexts. For example, in [17], where the technique of spectral sequences
was first applied to Heegaard Floer homology, there are diagonal maps in both the big
f1; 0; 1gm cube and the small f0; 1gm cube. Such diagonal maps are needed because
the edge maps f and ' only commute up to chain homotopy. Below, Lemma 5.3 will
guarantee that our edge maps commute on the nose, allowing us to define the diagonal
maps to be zero.

In the case with two crossings, observe that C1;1 is quasi-isomorphic to the mapping
cone of f 2

1;0
via f 2

1;1C'
2
1;1 . The fact that the diagram commutes now immediately

implies that

(1) the cube of resolutions CR.G/ is a chain complex;

(2) the sum f 1
1;0
Cf 1
1;1
C'1
1;0
C'1
1;1

is a chain map from the mapping cone of
f 2
1;0

to the cube of resolutions CR.G/; and

(3) this chain map is a quasi-isomorphism.

(To see the last statement, observe that if f W C1! C2 and f 0W C 0
1
! C 0

2
are quasi-

isomorphisms, and if there exist maps g1W C1! C 0
1

and g2W C2! C 0
2

such that the
diagram

C1

f
//

g1

��

C2

g2

��

C 0
1

f 0
// C 0

2

commutes, then f C f 0 is a quasi-isomorphism between the mapping cone of g1 and
that of g2 .) Thus, we see that C1;1 is quasi-isomorphic to CR.G/.

The general case is similar; to be precise, our claim is the following.

Proposition 5.2 The cubes of resolutions BCR.GIF2/ and CR.GIF2/ are indeed
chain complexes. Moreover, CR.GIF2/ is quasi-isomorphic to fGC.GIF2/. As a
consequence, BCR.GIF2/ is acyclic.

As mentioned, the main ingredient in proving Proposition 5.2 is the following lemma.

Lemma 5.3 All maps involved commute. Precisely,

f
i2

k1;:::;ki1
C1;:::;km

Bf
i1

k1;:::;ki1
;:::;km

D f
i1

k1;:::;ki2
C1;:::;km

Bf
i2

k1;:::;ki2
;:::;km

;

'
i2

k1;:::;ki1
C1;:::;km

Bf
i1

k1;:::;ki1
;:::;km

D f
i1

k1;:::;ki2
C2;:::;km

B'
i2

k1;:::;ki2
;:::;km

:
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Proof Inspecting the 6� 6 block in Figure 11, we see that there is an X near each
corner of the block, and so each allowed polygon defined in Section 3 counted in a
chain map or a chain homotopy can only leave the block either horizontally or vertically.
If it leaves the block horizontally, then it is contained in the rows that the block spans;
if it leaves the block vertically, then it is contained in the columns that the block spans.
This shows that if two polygons from two different crossings share a corner, one must
be long and horizontal, and the other long and vertical; in such cases, the composite
domain always has an obvious alternative decomposition. The cases where the two
polygons are disjoint or have overlapping interiors are obvious.

Proof of Proposition 5.2 Exactly as in the case with two crossings, Lemma 5.3
implies that the cube of resolutions is indeed a chain complex, and that all appropriate
maps are chain maps. We proceed by induction: at each step, we claim that the chain
complexes� M

ki2f0;1g

C1;:::;1;ktC1;:::;km
;
X

ki2f0;1g

�
@1;:::;1;ktC1;:::;km

C

X
j WkjD0

f
j

1;:::;1;ktC1;:::;km

��
and� M

ki2f0;1g

C1;:::;1;kt ;:::;km
;
X

ki2f0;1g

�
@1;:::;1;kt ;:::;km

C

X
j WkjD0

f
j

1;:::;1;kt ;:::;km

��
are quasi-isomorphic. The quasi-isomorphism is given byX

ki2f0;1g

f t
1;:::;1;ktC1;:::;km

C

X
ki2f0;1g

't
1;:::;1;ktC1;:::;km

:

This map is a quasi-isomorphism by the induction hypothesis and by the comment
after (3) in the case with two crossings above.

Corollary 1.4 follows from Proposition 5.2.

Remark 5.4 Over Z, for the cube of resolutions to be a chain complex, the analogue
of Lemma 5.3 over Z should presumably state that the maps involved anticommute.
However, if we denote by �i (resp. � i ) the maps defined by the rectangle-like (resp.
triangle-like) polygons associated to the i th crossing following the definitions in
Section 4, then we have:

(1) �2 ı �1 D��1 ı �2

(2) �2 ı �1 D��1 ı �2

(3) �2 ı �1 D��1 ı �2

(4) �2 ı �1 D �1 ı �2
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Since only the maps defined by triangle-like polygons commute, the author has thus far
been unable to prove a version of Lemma 5.3, and therefore Proposition 5.2, over Z.

6 Quasialternating links

We now describe an application of the skein exact triangle. To begin, we must first
define the ı–grading on knot Floer homology. The ı–grading is closely related to
the Maslov and Alexander gradings; in view of that, in this section we revert to the
traditional notation with both O s and Xs, and denote the set of O s by O and that of
Xs by X.

The following formulation is found in [12]. Given two collections A and B of finitely
many points in the plane, let

J .A;B/D 1
2

#
˚�
.a1; a2/; .b1; b2/

�
2A�B j a1 < b1 and a2 < b2

	
C

1
2

#
˚�
.a1; a2/; .b1; b2/

�
2A�B j b1 < a1 and b2 < a2

	
:

Treating x 2 S.G/ as a collection of points with integer coordinates in a fundamental
domain for T , and similarly O and X as collections of points in the plane with
half-integer coordinates, the Maslov grading of a generator is given by

M.x/D J .x;x/� 2J .x;O/CJ .O;O/C 1;

while the Alexander grading is given by

A.x/D J .x;X/�J .x;O/� 1
2
J .X;X/C 1

2
J .O;O/� 1

2
.n� 1/;

where n is the size of the grid diagram. Now the ı–grading is just

ı.x/DA.x/�M.x/I

in other words, we have

ı.x/D�J .x;x/CJ .x;X/CJ .x;O/� 1
2
J .X;X/� 1

2
J .O;O/� 1

2
.nC 1/:

These gradings do not depend on the choice of the fundamental domain; moreover,
they agree with the original definitions in terms of pseudoholomorphic representatives.

It has been observed that, for many classes of links, the knot Floer homology over
RD F2 or Z is a free R–module supported in only one ı–grading, which motivates
the following definition by Rasmussen [19; 20] and Manolescu and Ozsváth [10]:

Definition 6.1 Let R D F2 or Z. A link L is Floer homologically thin over R if
bHFK.LIR/ is a free R–module supported in only one ı–grading. If in addition the
ı–grading equals �1

2
�.L/, where �.L/ is the signature of the link, then we say that

L is Floer homologically � –thin.
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Manolescu and Ozsváth [10] showed that a class of links which is a natural generaliza-
tion of alternating knots has the homologically � –thin property over F2 . Precisely, we
recall the following definition from [17]:

Definition 6.2 The set of quasialternating links Q is the smallest set of links satisfying
the following properties:

(1) The unknot is in Q.

(2) If L1 is a link that admits a projection with a crossing such that
(a) both resolutions L0 and L1 at that crossing are in Q, and
(b) det.L1/D det.L0/C det.L1/,
then L1 is in Q.

The result of Manolescu and Ozsváth [10] is then the following statement.

Theorem 6.3 (Manolescu and Ozsváth) Quasialternating links are Floer homologi-
cally � –thin over F2 .

The proof of the theorem is essentially an application of Manolescu’s unoriented skein
exact triangle; the main work is in tracking the changes in the ı–grading of the maps
involved. The same idea works in the current context as well: with grid diagrams, we
may similarly track the changes in the ı–grading, defined by the formula above. Of
course, in our case, we will be proving the result for bGH of a link instead of bHFK ,
as in Theorem 1.5. From this, we will obtain Theorem 1.6, a strengthened version of
Theorem 6.3.

To begin, fix a crossing c0 in the planar diagram of a link L1 . Let LC be the link
with a positive crossing at c0 , and L� the link with a negative crossing; then either
L1 DLC or L1 DL� . Let Lh and Lv be the unoriented and oriented resolutions
of L1 at c0 respectively, and choose an arbitrary orientation for Lh . This is illustrated
in Figure 12. Comparing with Figure 1, if L1 DLC , then L0 DLh and L1 DLv ;
if instead L1 DL� , then L0 DLv and L1 DLh .

Denote by DC;D�;Dv;Dh the planar diagrams of LC;L�;Lv;Lh , differing from
each other only at c0 . The following lemma is used in [10]; for LC , the first equality is

LC L� Lv Lh

Figure 12: LC , L� , Lh and Lv near a point

Algebraic & Geometric Topology, Volume 17 (2017)



Grid diagrams and Manolescu’s skein exact triangle for knot Floer homology 1313

proven by Murasugi [13], while the second is also inspired by a result of Murasugi [14].
The equalities for L� are similarly obtained.

Lemma 6.4 Suppose that det.Lv/; det.Lh/ > 0. Let e denote the difference between
the number of negative crossings in Dh and the number of such crossings in DC . If
det.LC/D det.Lv/C det.Lh/, then

(1) �.Lv/� �.LC/D 1,

(2) �.Lh/� �.LC/D e .

If det.L�/D det.Lv/C det.Lh/, then

(1) �.Lv/� �.L�/D�1,

(2) �.Lh/� �.L�/D e .

Now we investigate the changes in the ı–grading in the maps fk defined in Section 3
and Section 4.

Given two grid diagrams G;G0 of the same size n, we can think of them as being
on the same grid (ie consisting of the same horizontal and vertical circles) but having
different O s and Xs; therefore, we can write G D .n;O;X/ and G0 D .n;O0;X0/.
This allows us to identify S.G/ and S.G0/, by viewing each generator x 2 S.G/ as
the permutation �x referred to in Remark 4.3. In this point of view, we will write
ıG.x/ and ıG0.x/ to denote the gradings defined by applying the ı–grading formula
to .O;X/ and .O0;X0/, respectively.

In particular, for the rest of this section, we will view G1;G0;G1 in this manner.

Lemma 6.5 Let x 2 S.G/ be a fixed generator in a grid diagram G D .n;O;X/.
Then:

(1) If there is an empty rectangle r from x to y , possibly containing O s and Xs,
then ıG.y/D ıG.x/C 1� #.Int.r/\ .O[X//.

(2) Suppose G0D .n;O0;X/ is a grid diagram identical to G except in two adjacent
columns, where the horizontal positions of a pair of O markers are interchanged,
as in Figure 13. Then
(a) ıG0.x/� ıG.x/D �

1
2

if, in G , the component of x on the vertical circle
between the markers lies to the northeast of one marker and to the southwest
of the other (the component of x indicated in the diagrams by a solid point);

(b) ıG0.x/� ıG.x/D
1
2

otherwise (the component of x indicated by a hollow
point).

The same statement holds if, instead, the horizontal positions of a pair of X

markers are interchanged, with G0 D .n;O;X0/.
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(3) If the diagram G0 is obtained from G by reversing the orientation of a component
K of L, then ıG0.x/� ıG.x/ D � �2 , where � is the difference between the
number of negative crossings in G0 and the number of such crossings in G .

G0;xG;x

Figure 13: Moving two markers across a vertical circle. Observe that before
the move, the solid point lies to the northeast of one of the O s and to the
southwest of the other, thus forming two southwest–northeast pairs with the
markers that are destroyed in the move. The hollow point forms the same
number of pairs with the markers before and after the move.

Proof Recall that

ı.x/D�J .x;x/CJ .x;X/CJ .x;O/� 1
2
J .X;X/� 1

2
J .O;O/� 1

2
.nC 1/:

Observe that J .A;B/ is the number of southwest–northeast pairs between A and B ,
divided by two. We make the following observations.

(1) Observe that the last three terms in ı.x/ and ı.y/ are identical. Switching from
x to y destroys exactly one southwest–northeast pair, which is counted twice
and contributes C1 to J .x;x/. For every O or X inside Int.r/, switching
from x to y destroys two southwest–northeast pairs, each counted once, that
contribute C1 to J .x;X/CJ .x;O/.

(2) Consider the first case, where G D .n;O;X/ and G0 D .n;O0;X/, as in
Figure 13. We first see that J .O0;O0/�J .O;O/D�1. If the component of x

on the vertical circle lies to the northeast of one marker and to the southwest
of the other, then J .x;O0/�J .x;O/D�1; otherwise, this quantity is 0. All
other terms in ıG.x/ and ıG0.x/ are identical. The second case is entirely
analogous.

(3) This is simply a restatement of [12, Proposition 5.4].

This completes the proof of the lemma.

The following is an easy consequence of Lemma 6.5(1)–(2).
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Lemma 6.6 Suppose Gk and GkC1 are grid presentations of two links with compati-
ble orientations (so Gk and GkC1 have compatible sets of O s), and fk W Gk !GkC1

is the map defined in Sections 3 and 4. If x 2 S.Gk/, and y 2 S.GkC1/ appears
in fk.x/, then ıGkC1

.y/� ıGk
.x/DC1

2
.

Proof Note first that the grid diagrams Gk D .n;O;X/ and GkC1 D .n;O
0;X0/ are

related as in Lemma 6.5(2). Refer to Figure 14. Without loss of generality, assume that
the two relevant markers are O s. (The case where they are Xs is completely analogous.)
Label the two markers in O by O1 and O2 , so that O1 lies to the northeast of O2 ;
similarly, label the markers in O0 by O 0

1
and O 0

2
, so that O 0

1
lies to the northwest

of O 0
2

. In the current framework, ˇ1 , ˇ0 and ˇ1 are all represented by the vertical
circle ˇ in the middle. Let x be the ˇ–component of x .

Suppose y 2 S.GkC1/ appears in fk.x/. Then

ıGkC1
.y/� ıGk

.x/D .ıGkC1
.x/� ıGk

.x//C .ıGkC1
.y/� ıGkC1

.x//:

There are two cases, as follows.

Suppose there is an empty pentagon p from x to y ; in the framework described in
this section, it can in fact be viewed as an empty rectangle r from x to y in GkC1 .
Observe that the horizontal circles divide T into a number of components; let A be the
unique component containing both O1 in Gk and O 0

1
in GkC1 . Since the boundary

of p contains uk (cf Figure 3), which lies in A, the boundary of r must contain ˇ\A.
Therefore, one of two scenarios must be true:

(1) The point x lies to the northeast of O2 and to the southwest of O1 . Then
Int.r/\ .O [X/D ∅. By Lemma 6.5(2)(a), ıGkC1

.x/� ıGk
.x/D �1

2
, and

by Lemma 6.5(1), ıGkC1
.y/� ıGkC1

.x/D 1. This is illustrated by the top row
of Figure 14.

(2) The point x lies elsewhere. Then Int.r/\ .O[X/ is either fO 0
1
g or fO 0

2
g. By

Lemma 6.5(2)(b), ıGkC1
.x/� ıGk

.x/DC1
2

, and by Lemma 6.5(1), we have
ıGkC1

.y/� ıGkC1
.x/ D 1� 1 D 0. This is illustrated by the middle row of

Figure 14.

Either way, we get that ıGkC1
.y/� ıGk

.x/DC1
2

.

Suppose there is a triangle p from x to y ; then, in the framework of this section,
x D y , and so ıGkC1

.y/ � ıGkC1
.x/ D 0. Since the boundary of p contains vk

(cf Figure 3), we see that Int.p/� Int.tk/[ Int.tkC1/. This implies that x cannot lie
both to the northeast of O2 and to the southwest of O1 . Thus, by Lemma 6.5(2)(b),
ıGkC1

.x/� ıGk
.x/DC1

2
. This case is illustrated by the bottom row of Figure 14.

We can now prove a graded version of Theorem 1.3.
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GkC1;x D y

O2 O 0
2

O 0
1

O 0
2

O1 O 0
1

ˇˇ ˇ

x

x

x

r r

r r

x

O2

O1 O 0
1

O 0
2

Gk ;x

ˇ ˇ

GkC1;x GkC1;yGk ;x

O2 O 02

O 01

O 02

O1 O 01

ˇ
x

ˇ ˇ

GkC1;x GkC1;yGk ;x

Figure 14: Computing the ı–grading change under fk when Gk and GkC1

have compatible orientations. The top and middle rows show the case when
the polygon p being counted is a pentagon, while the bottom row shows the
case when p is a triangle. In both cases, y appears in fk.x/ . Note that there
may be multiple horizontal circles between the O s, which are omitted for the
sake of simplicity, in each of the figures above.

Proposition 6.7 With respect to the ı–grading the skein exact sequence in Theorem 1.3
can be written as

� � � !bGH
�� 1

2
.LvIR/˝V n�`v !bGH�.LCIR/˝V n�`C

!bGH�� e
2
.LhIR/˝V n�`h !bGH

�� 1
2
C1.LvIR/˝V n�`v ! � � �

and

� � � !bGH�� e
2
.LhIR/˝V n�`h !bGH�.L�IR/˝V n�`�

!bGH
�C 1

2
.LvIR/˝V n�`v !bGH�� e

2
C1.LhIR/˝V n�`h ! � � � ;

where RD F2 or Z, V is a free module of rank 2 over R with grading zero, and e is
as in the statement of Lemma 6.4.
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Proof Suppose L1 has a positive crossing at c0 , so that LC DL1 , Lv DL1 and
Lh DL0 . Let G1;G0;G1 be grid diagrams for L1;L0;L1 respectively, differing
with each other only at c0 as in Figure 2. Note that in Figure 2 only Xs are used as
markers, whereas in the present context both Xs and O s are used. Then we are to
prove that in the exact sequence

� � � !eGH.G1/
.f1/�
���!eGH.G1/

.f1/�
����!eGH.G0/

.f0/�
���!eGH.G1/! � � � ;

the map f1 shifts the ı–grading by C1
2

, f1 by � e
2

, and f0 by C1
2
.eC 1/.

Refer to Figure 15. Since L1 and L1 have compatible orientations, Lemma 6.6 shows
that the map f1 shifts the ı–grading by C1

2
.

Lv DL1 LC DL1

G1G1

Figure 15: A straightforward application of Lemma 6.6 gives the ı–grading
shift of f1

Let us now focus on f1 . Let x 2 S.G1/ be a generator, and suppose y 2 S.G0/

appears in f1.x/. We proceed according to whether the two strands of the link LC
meeting at the crossing c0 belong to different components, or to the same component,
of LC , as follows.

Suppose the strands belong to different components; see Figure 16. Starting from G1 ,
we can reverse the orientation of one of the two components to obtain a new dia-
gram G01 ; then we can write

ıG0
.y/� ıG1.x/D .ıG01.x/� ıG1.x//C .ıG0

.y/� ıG01.x//:

By Lemma 6.5(3), we have ıG01.x/�ıG1.x/D�
�
2

, where � is the difference between
the number of negative crossings in G01 and the number of such crossings in G1
(which represents LC ). Now observe that G01 and G0 have compatible orientations;

Algebraic & Geometric Topology, Volume 17 (2017)
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LC DL1

G1;x G01;x G0;y

Lh DL0

Figure 16: Computation of the ı–grading shift of f1 , when the two strands
meeting at c0 belong to different components. The generators x and y are
not shown, as their positions do not affect the argument.

also, G01 has one more negative crossing, near c0 , than does G0 (which represents Lh ).
Therefore, � D e C 1. Furthermore, the fact that G01 and G0 have compatible
orientations implies that Lemma 6.6 can be applied, so ıG0

.y/�ıG01.x/DC
1
2

. Thus,

ıG0
.y/� ıG1.x/D�

1
2
.eC 1/C 1

2
D�

e
2
:

Suppose now the strands belong to the same component. As in the proof of Lemma 6.6,
we write

ıG0
.y/� ıG1.x/D .ıG0

.x/� ıG1.x//C .ıG0
.y/� ıG0

.x//:

Note that this is different from the equation we use when the strands belong to different
components. We first compute ıG0

.x/�ıG1.x/; see Figure 17. Since the two strands
in LC belong to the same component, the two strands in Lv must belong to different
components. Therefore, we can reverse the orientation of one of these components
in G1 (which represents Lv ) to obtain a new diagram G0

1
; then

ıG0
.x/� ıG1.x/D .ıG1

.x/� ıG1.x//C .ıG01
.x/� ıG1

.x//C .ıG0
.x/� ıG0

1
.x//:

Let x be the ˇ–component of x . We can now compute, by Lemma 6.5(2),

ıG1
.x/� ıG1.x/D

(
C

1
2

if x lies at the hollow square in Figure 17,

�
1
2

otherwise.

Now by Lemma 6.5(3), ıG0
1
.x/�ıG1

.x/D� �
2

, where � is the difference between the
number of negative crossings in G0

1
and the number of such crossings in G1 . Observe
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that G1 and G1 (which represents LC ) have compatible orientations and hence the
same number of negative crossings. Similarly, G0

1
and G0 have compatible orientations

and hence the same number of negative crossings. Therefore, we see that � D e . Next,
again by Lemma 6.5(2), we have

ıG0
.x/� ıG0

1
.x/D

8̂<̂
:
�

1
2

if x lies at the solid point, hollow point
or hollow square in Figure 17;

C
1
2

otherwise.

Combining these calculations, we conclude that

ıG0
.x/� ıG1.x/D

8̂<̂
:
�

1
2
.eC 2/ if x lies at the solid point or hollow point

in Figure 17;

�
e
2

otherwise.

We now return to computing ıG0
.y/� ıG1.x/.

Suppose there is an empty pentagon p from x to y ; in the framework described in
this section, it can in fact be viewed as an empty rectangle r from x to y in G0 . By
an argument similar to that in the proof of Lemma 6.6, one of two scenarios must hold:

(1) If the point x lies at the solid point or at the hollow point in Figure 17, then
Int.r/\ .O[X/D∅. By Lemma 6.5(1), ıG0

.y/� ıG0
.x/D 1.

(2) If the point x lies elsewhere, then Int.r/\ .O[X/ contains exactly one point.
By Lemma 6.5(1), ıG0

.y/� ıG0
.x/D 1� 1D 0.

Combining with our earlier calculation, we get that ıG0
.y/� ıG1.x/D�

e
2

.

Suppose there is a triangle p from x to y ; then, in the framework of this section, xDy ,
and so ıG0

.y/� ıG0
.x/D 0. Since the boundary of p contains v1 (cf Figure 3), we

see that Int.p/� Int.t1/[ Int.t0/. This implies that x cannot lie at the solid point or
at the hollow point in Figure 17. Therefore, by our earlier calculation, again we have
ıG0

.y/� ıG1.x/D�
e
2

.

Finally, a calculation analogous to that for f1 can be done for f0 , and we obtain, in
this case, that the shift in the ı–grading is C1

2
.eC 1/.

The case when L1 DL� has a negative crossing at c0 is similar.

Remark 6.8 The proof above only shows that the maps fk are graded chain maps in
the exact sequence. To show that eGC.Gk/ is graded quasi-isomorphic to the mapping
cone of fkC1 (cf Section 5), we would have to show analogous statements for the
chain homotopies 'k also. The proof of such statements are omitted here, but are
completely analogous to the proof of Proposition 6.7.
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G0;xG01;xG1;x

Lv DL1 Lh DL0LC DL1

ˇˇˇˇ

G1;x

Figure 17: Computation of the ı–grading shift of f1 , when the two strands
meeting at c0 belong to the same component. The computation depends on
the position of x , the ˇ–component of x ; the special cases are indicated by
the solid point, the hollow point, and the hollow square.

Proof of Theorem 1.5 This is just a restatement of Proposition 6.7, taking into account
the result of Lemma 6.4.

Proof of Theorem 1.6 By definition, every quasialternating link has nonzero deter-
minant. It can easily be checked that the unknot is homologically � –thin. If L0 and
L1 are resolutions of L1 that are quasialternating, then by induction, L0 and L1 are
homologically � –thin. The exact sequence in Theorem 1.5 collapses into short exact
sequences, all but one of which are zero. Thus L1 is also homologically � –thin.
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Pattern-equivariant homology

JAMES J WALTON

Pattern-equivariant (PE) cohomology is a well-established tool with which to interpret
the Čech cohomology groups of a tiling space in a highly geometric way. We consider
homology groups of PE infinite chains and establish Poincaré duality between the
PE cohomology and PE homology. The Penrose kite and dart tilings are taken as our
central running example; we show how through this formalism one may give highly
approachable geometric descriptions of the generators of the Čech cohomology of
their tiling space. These invariants are also considered in the context of rotational
symmetry. Poincaré duality fails over integer coefficients for the “ePE homology
groups” based upon chains which are PE with respect to orientation-preserving
Euclidean motions between patches. As a result we construct a new invariant, which
is of relevance to the cohomology of rotational tiling spaces. We present an efficient
method of computation of the PE and ePE (co)homology groups for hierarchical
tilings.

52C23; 37B50, 52C22, 55N05

Introduction

In the past few decades a rich class of highly ordered patterns has emerged whose central
examples, despite lacking global translational symmetries, exhibit intricate internal
structure, imbuing these patterns with properties akin to those enjoyed by periodically
repeating patterns. The field of aperiodic order aims to study such patterns, and to
establish connections between their properties, and their constructions, to other fields of
mathematics and the natural sciences. To name a few, aperiodic order has interactions
with areas of mathematics such as mathematical logic — see Lafitte and Weiss [30] —
as established by Berger’s proof [7] of the undecidability of the domino problem;
Diophantine approximation (see Arnoux, Berthé, Ei and Ito [2], Berthé and Siegel [8],
Haynes, Kelly and Weiss [21] or Haynes, Koivusalo and Walton [22]); the structure
of attractors by Clark and Hunton [12]; and symbolic dynamics (see Schmidt [40]).
Outside of pure mathematics, aperiodic order’s most notable impetus comes from solid
state physics, in the wake of the discovery of quasicrystals; Shechtman, Blech, Gratias
and Cahn [41].

A full understanding of a periodic tiling, modulo locally defined reversible redecorations,
amounts to an understanding of its symmetry group. In the aperiodic setting, the
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complexity and incredible diversity of examples demands a multifaceted approach.
Techniques from the theory of groupoids (see Bellissard, Julien and Savinien [6]),
semigroups (see Kellendonk and Lawson [26]), C �–algebras (see Anderson and
Putnam [1]), dynamical systems (see Clark and Sadun [13] and Kellendonk [25]),
ergodic theory (see Radin [35]) and shape theory (see Clark and Hunton [12]) find
natural rôles in the field, and of course these tools have tightly knit connections to each
other; see Kellendonk and Putnam [27]. One approach to studying a given aperiodic
tiling T is to associate to it a moduli space �, sometimes called the tiling space, of
locally indistinguishable tilings imbued with a natural topology; see Sadun’s book [38]
for an accessible introduction to the theory. A central goal is then to formulate methods
of computing topological invariants of �, and to describe what these invariants actually
tell us about the original tiling T. An important perspective, particularly for the latter
half of this objective, is provided by Kellendonk and Putnam’s theory of pattern-
equivariant (PE) cohomology; see Kellendonk [24] and Kellendonk and Putnam [28].
PE cohomology allows for an intuitive description of the Čech cohomology LH �.�/
of tiling spaces. Over R coefficients the PE cochain groups may be defined using PE
differential forms [24], and over general abelian coefficients, when the tiling has a
cellular structure, with PE cellular cochains; see Sadun [37]. Rather than just providing
a reflection of topological invariants of tiling spaces, on the contrary, these PE invariants
are of principal relevance to aperiodic structures and their connections with other fields
in their own right; see, for example, Kelly and Sadun’s use of them [29] in a topological
proof of theorems of Kesten and Oren regarding the discrepancy of irrational rotations.
It is perhaps more appropriate to view the isomorphism between LH �.�/ and the PE
cohomology as an elegant interpretation of the PE cohomology, rather than vice versa,
of theoretical and computational importance.

In this paper we introduce the pattern-equivariant homology groups of a tiling. These
homology groups are based on infinite, or noncompactly supported cellular chains,
sometimes known as “Borel–Moore chains”. We say that such a chain is pattern-
equivariant if there exists some r > 0 for which the coefficient of a cell only depends
on the translation class of that cell and its surrounding patch of tiles to radius r . We
show in Theorem 2.2, via a classical “cell, dual-cell” argument, that for a tiling of finite
local complexity (see Section 1.1) we have PE Poincaré duality:

Theorem 2.2 For a polytopal tiling T of Rd of finite local complexity, we have PE
Poincaré duality H �.T1/ŠHd��.T

1/ between the PE cohomology and PE homology
of T.

The upshot of this is that one may give quite beautiful, and informative, geometric
depictions of the elements of the Čech cohomology groups LH �.�/ of tiling spaces. For
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Figure 1: The PE 1–cycle �0 , with green Ammann bars of the supertiling.

example, the cohomology of the translational hull �1
T of a Penrose kite and dart tiling

in degree one is LH 1.�1
T/ŠH 1.T1/ŠH1.T

1/Š Z5 . The generators of this group
have down-to-Earth interpretations in terms of important geometric features of the
Penrose tilings. For example, one such generator, depicted in Figure 1, is closely linked
to Ammann bars of the Penrose tilings (of which, see the discussion of Grünbaum and
Shephard [20, Section 10.6]). Another simple geometric feature of the Penrose tilings
is that the dart tiles arrange as loops, leading to the cycle depicted in Figure 2. As
described in Example 2.3 these two chains, and close analogues of them, give a nearly
complete description of H1.T

1/.

In Section 3 we consider these PE invariants in the context of rotational symmetry.
Whilst for a tiling of finite local complexity the action of rotation on the PE homology
and cohomology agree via Poincaré duality (Proposition 3.11), the actions at the
(co)chain level behave differently. We consider ePE chains and cochains, which are
required to have the same coefficients at any two cells whenever those cells agree
on patches of sufficiently large radius up to orientation-preserving Euclidean mo-
tion (rather than just translations as in the case of the PE homology groups). We
show in Theorem 3.3 that over divisible coefficients G we still have Poincaré duality
H �.T0IG/ŠHd��.T

0IG/ between the ePE cohomology and ePE homology, but over
Z coefficients this typically fails. For example, for the Penrose kite and dart tilings
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the degree zero ePE homology group has a copy of an order five cyclic subgroup not
present in the corresponding ePE cohomology group in degree two. A degree zero ePE
torsion element is depicted in Figure 3.

So whilst the PE homology gives a curious alternative way of visualising PE invariants,
the ePE homology provides a new invariant to the ePE cohomology, or the Čech
cohomology of the associated space �0

T (defined by Barge, Diamond, Hunton and
Sadun [5], or see Section 3.1). We show in [42] how this new invariant may naturally
be incorporated into a spectral sequence converging to the Čech cohomology of the
“Euclidean hull” �rot

T (see Section 3.1) of a two-dimensional tiling. The only potentially
nontrivial map of this spectral sequence has a very simple description in terms of
the local combinatorics of the tiling. This procedure dovetails conveniently with the
methods that we shall introduce in Section 4 to efficiently compute the Čech cohomology
of Euclidean hulls of hierarchical tilings, leading to some new computations on the
cohomologies of these spaces.

We show how the ePE homology, ePE cohomology and rotationally invariant part of
the PE cohomology are related for a two-dimensional tiling in Theorem 3.13 and give
the corresponding calculations for the Penrose kite and dart tilings. In general, over
rational coefficients all three are canonically isomorphic, but over integral coefficients
the canonical map from the ePE cohomology to the rotationally invariant part of the
PE cohomology is rarely an isomorphism. It turns out that this map naturally factorises
through the ePE homology.

The techniques that we present are not limited to tilings of Euclidean space. In
Section 3.5 we introduce the notion of a system of internal symmetries, which neatly
encodes the necessary data required to define PE cohomology and various other re-
lated constructions. This allows us, for example, to apply the same techniques to
non-Euclidean tilings, such as the combinatorial pentagonal tilings of Bowers and
Stephenson [11].

In Section 4 we change tack by considering the problem of how to actually compute the
PE homology for certain examples. The PE homology formalism naturally leads to a
simple and efficient method of computation for invariants of a hierarchical tiling which
is closely related to that of Barge, Diamond, Hunton and Sadun [5]. The descriptions of
the PE and ePE homology groups that appear in this paper for the Penrose kite and dart
tilings are made possible through this method of calculation. The method is directly
applicable to a broad range of tilings, including “mixed substitution tilings” (see Gähler
and Maloney [18]) but also non-Euclidean examples, such as the pentagonal tilings of
Bowers and Stephenson mentioned above. The “approximant homology groups” of
the computation and the “connecting maps” between them have a direct description in
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terms of the combinatorics of the star patches, making it highly amenable to computer
implementation. Gonçalves [19] used the duals of these approximant chain complexes
for a computation of the K–theory of the C �–algebra of the stable equivalence relation
of a substitution tiling. Our method of computation of the PE homology groups seems
to confirm the observation there of a certain duality between these K–groups and the
K–theory of the tiling space.

Organisation of paper

In Section 1 we shall recall how one may associate to a Euclidean tiling T its trans-
lational hull �1

T . When T has FLC, we also describe the presentation of �1
T as an

inverse limit of approximants. In Section 2 we recall the PE cohomology of an FLC
tiling T, and how it may be identified with the Čech cohomology LH �.�1

T/ of the tiling
space. We then introduce the PE homology of an FLC tiling and establish PE Poincaré
duality between the PE cohomology and PE homology.

In Section 3 we consider PE homology in the context of rotational symmetry. The
ePE (co)homology groups are defined in Section 3.2, where we show, in Theorem 3.3,
that the ePE cohomology and ePE homology are Poincaré dual when taken over
suitably divisible coefficients. In Section 3.3 we show how Poincaré duality for the
ePE homology of a two-dimensional tiling is restored for Z coefficients by a simple
modification of the ePE homology. The action of rotation on the PE cohomology of an
FLC tiling, and its interaction with the ePE homology, is considered in Section 3.4. In
Section 3.5 we demonstrate how the techniques of Section 3 may be naturally extended
to a more general framework.

In Section 4 we develop a method of computation of the PE homology for polytopal
substitution tilings, close in spirit to the BDHS approach [5]. In Section 4.4 we explain
how the method is modified to compute the ePE homology, and how it may be applied to
more general settings, such as mixed substitution systems or to non-Euclidean examples.

Acknowledgements I thank John Hunton, Alex Clark, Lorenzo Sadun and Dan Rust
for numerous helpful discussions. I particularly thank the enormous efforts of the
anonymous referee, whose suggestions have greatly improved the final version of this
article. This research was supported by EPSRC.

1 Tilings and tiling spaces

1.1 Cellular, polytopal and dual tilings

Recall that a CW complex is called regular if the attaching maps of its cells may be
taken to be homeomorphisms. A cellular tiling of Rd shall be defined to be a pair
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TD .T ; l/ of a regular CW decomposition T of Rd along with a labelling l of T , by
which we mean a map from the cells of T to some set of “labels” L. We shall take cell
to mean a closed cell. If the cells are convex polytopes then we call T a polytopal tiling.
For brevity, we will often refer to a cellular tiling as simply a tiling, and a d –cell of a
tiling as a tile. A patch of T is a finite subcomplex P of T together with the labelling
restricted to P . For a bounded set U � Rd , we let TŒU � be the patch supported on
the set of tiles t for which t \U ¤∅.

Homeomorphisms of Rd act on tilings and patches in the obvious way. Two patches
are called translation equivalent if one is a translate of the other. The diameter of a
patch is defined to be the diameter of the support of its tiles. A tiling or, more generally,
a collection of tilings, is said to have (translational) finite local complexity (FLC) if, for
any r > 0, there are only finitely many patches of diameter at most r up to translation
equivalence. It is not difficult to see that a cellular tiling has FLC if and only if there
are only finitely many translation classes of cells and the labelling function takes on
only finitely many distinct values.

One may wish to consider other forms of decoration of Rd , such as Delone sets, or
tilings with overlapping or fractal tiles, and many of the concepts that we describe
here have obvious analogues for them. However, when such a pattern has FLC it is
always essentially equivalent to a polytopal tiling. In more detail, we say that T0 is
locally derivable from T if there exists some r > 0 for which .S1T

0/ŒB0�D .S2T
0/ŒB0�

whenever .S1T/ŒBr �D .S2T/ŒBr �, where the Si are translations x 7! xC ti and Br

is the closed ball of radius r centred at the origin. The tilings T and T0 are said to be
mutually locally derivable (MLD) if each is locally derivable from the other. Loosely,
this means that T and T0 only differ in a very cosmetic sense, via locally defined
redecoration rules. This concept was introduced in [4], along with the finer relation of
S-MLD equivalence, which takes into account general Euclidean isometries rather than
just translations by replacing the translations Si in the definition of a local derivation
above with Euclidean motions. FLC patterns (or even eFLC ones; see Section 3.1) are
always S-MLD to polytopal tilings via a Voronoi construction.

In the following sections we shall usually take our tilings to be polytopal. Since the
properties of tilings of interest to us are preserved under S-MLD equivalence, this is not a
harsh restriction. The major motivation for this choice is that some useful constructions
may be defined for a polytopal complex, namely the barycentric subdivision and dual
complex. In fact, it is sufficient for these constructions to use regular CW complexes
as our starting point, but the most efficient way of dealing with this more general case
is to pass to a combinatorial setting, which we do not cover in full detail here although
shall outline in Section 3.5.
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For a polytopal tiling T D .T ; l/ we may construct the barycentric subdivision T�
of its underlying CW decomposition geometrically, as follows. For each cell c 2 T ,
define b.c/, its barycentre, to be the centre of mass of c in its supporting hyperplane.
We write c1 � c2 for closed cells c1 , c2 of T to mean that c1 � c2 , and c1 � c2 if this
inclusion is strict. The k –skeleton T k

�
for kD 0; : : : ; d is defined by taking as k –cells

those simplices which are the convex hulls of the vertices fb.c0/; b.c1/; : : : ; b.ck/g for
a chain of cells c0 � c1 � � � � � ck of T of length kC 1. Such a cell may be labelled
by the sequence of labels .l.c0/; l.c1/; : : : ; l.ck//; we define the tiling T�D .T�; l�/,
where l� is the labelling of the cells of T� defined in this way. Assuming (without
loss of generality, up to S-MLD equivalence) that cells of different dimension have
different labels, it is easily verified that T and T� are S-MLD.

We may reconstruct T from its barycentric subdivision T� by identifying an open
k –cell c of T with the conglomeration of open simplicial cells corresponding to chains
c0 � � � � � cj � c terminating in c . Flipping this process on its head, we obtain the dual
complex �T . That is, we define an open k –cell of �T as the union of open simplicial cells
corresponding to chains c � c0 � � � � � cj emanating from a .d�k/–cell c . Similarly
to T� , we may easily label �T so as to define a dual tiling of T which is S-MLD
to T� , and hence also S-MLD to the original tiling T. The dual tiling �T typically
won’t have convex polytopal cells, but it is cellular, owing to the piecewise linearity
of the polytopal decomposition T . The k –cells of T are naturally in bijection with
the .d�k/–cells of �T, and we have that a� b for cells of T if and only if ya� yb for
the corresponding dual cells of �T. A similar process would have worked for T only
regular cellular. However, the decomposition of Rd defined by �T need not be cellular
even for nonpiecewise linear simplicial complexes T . Even so, the resulting dual
decomposition �T still retains the analogous homological properties to a CW complex
needed to define cellular homology (see [31, Section 8.64]) and so the constructions
and arguments to follow can, with little extra effort, be extended to this case.

1.2 Tiling spaces

To a tiling T one may associate a moduli space �1
T which, as a set, consists of tilings

“locally indistinguishable” from T. Let S be a set of tilings of Rd . We wish to endow
S with a geometry which expresses the intuitive idea that two tilings are close if, up to
a small perturbation, the two agree to a large radius about the origin.

An approach which neatly applies to a large class of tilings, and captures this idea most
directly, proceeds as follows. Let H.Rd / be the space of homeomorphisms of Rd ;
these shall serve as our perturbations. Equipped with the compact–open topology, we
may consider a neighbourhood V �H.Rd / of the identity as “small” if its elements
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only perturb points within a large distance from the origin of Rd a small amount. In
this case, for f 2 V it is intuitive to think of f T as a small perturbation of T. In fact,
T should still be “close” to any other tiling T0 so long as TŒK� and .f T0/ŒK� agree for
some K �Rd containing a large neighbourhood of the origin. For a neighbourhood
V �H.Rd / of idRd and bounded K �Rd , we define

U.K;V / WD f.T1;T2/ 2 S �S j T1ŒK�D .f T2/ŒK�g:

It is not difficult to verify that the resulting collection of sets U.K;V / is a base for
a uniformity on S . If the reader is unfamiliar with uniformities, the only important
point here is that we have a uniform notion of tilings being “close”: T1 is considered
close to T2 , as judged by K and V , whenever .T1;T2/ 2 U.K;V /. With K a large
neighbourhood of the origin and V a set of homeomorphisms moving points only a
very small amount in the vicinity of K , we recover our intuitive notion of T1 and T2

being close, when they agree to a large radius up to a small perturbation. The above
construction easily generalises to other decorations of Rd , such as Delone sets, and
also tilings with infinite label sets which are equipped with a metric (see [34]).

For a tiling T we define the translational hull or tiling space as

�1
T WD fTCx j x 2Rdg;

where the completion is taken with respect to the uniformity defined above. In the case
that T has FLC, two patches agree up to a small perturbation when they agree up to a
small translation. So in this case the sets

U.K; �/ WD f.T1;T2/ j T1ŒK�D .T2Cx/ŒK� for kxk � �g

serve as a base for our uniformity, where the K �Rd are bounded and � > 0. Loosely,
two tilings are “close” if and only if their central patches agree to a large radius
(parametrised by K ) up to a small translation (parametrised by � ). It is not difficult to
show that the tiling space �1

T is a compact space whose points may be identified with
those tilings whose patches are translates of patches of T. So one may take as basic
open neighbourhoods of a tiling T1 in �1

T the cylinder sets

C.R; �;T1/ WD fT2 2�
1
T j T1ŒBR �D .T2Cx/ŒBR � for kxk � �g

of tilings of the hull, which, up to a translation of at most � , agree with T1 to radius R.

1.3 Inverse limit presentations

Another simplification granted to us by finite local complexity is that the tiling space
�1

T may be presented as an inverse limit of CW complexes �1
i , following Gähler’s
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(unpublished) construction; see [38] for details, and also the alternative approach of
Barge, Diamond, Hunton and Sadun [5]. Inductively define the i –corona of a tile as
follows: the 0–corona of a tile t is the patch whose single tile is t ; for i 2 N , the
i –corona is the patch of tiles which have nonempty intersection with the .i�1/–corona.
That is, one constructs the i –corona of t by taking t and then iteratively appending
neighbouring tiles i times. For x , y 2Rd , write x �i y to mean that there are two
tiles tx and ty of T containing x and y , respectively, for which the i –corona of tx
is equal to the i –corona of ty , up to a translation taking x to y . This is typically
not an equivalence relation, so we define the approximant �1

i to be the quotient of
Rd by the transitive closure of the relation �i . More intuitively, we form �1

i by
taking a copy of the central tile from each translation class of i –corona, glueing them
along their boundaries according to how they can meet in the tiling. We define the
i –corona of a lower-dimensional cell to be the intersection of i –coronas of the tiles
which it is contained in. An alternative way of defining approximants, which avoids
taking a transitive closure (although identifies more points of Rd at each level), is to
identify cells of the tiling which share the same i –coronas, up to a translation. Each
approximant naturally inherits a cellular decomposition from that of the tiling.

For i � j , cells of T identified in �1
j are also identified in �1

i , so we have “forgetful”
cellular quotient maps �i;j W �

1
j ! �1

i . The inverse limit of this projective system

lim
 ��
.�1

i ; �i;j / WD
n
.xi/i2N0

2

1Q
iD0

�1
i

ˇ̌
�i;j .xj /D xi

o
is homeomorphic to the tiling space �1

T . The central idea here is that a point of �1
i

describes how to tile a neighbourhood of the origin, where the sizes of these neigh-
bourhoods increase with i . An element of the inverse limit space then corresponds
to a consistent sequence of choices of larger and larger patches about the origin, so it
defines a tiling. Any two tilings which are “close” correspond to points of the inverse
limit which are “close” on an approximant �1

i for large i , and vice versa.

2 Translational pattern-equivariance

2.1 Identifying Čech with PE cohomology

Locally, the tiling space of an FLC tiling has a product structure of cylinder sets U �C ,
where U is an open subset of Rd , corresponding to small translations, and C is a
totally disconnected space, corresponding to different ways of completing a finite patch
to a full tiling. Globally, �1

T is a torus bundle with totally disconnected fibre [39].
Many classical invariants — homotopy groups and singular (co)homology groups, for
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example — are ill-suited to studying �1
T when T is nonperiodic, in which case this

space is not locally connected. A commonly employed topological invariant with which
to study tiling spaces is Čech cohomology LH �.�/. We shall not cover its definition
here (see [10, Chapter 2.10]), although we recall two important features of it:

(1) Čech cohomology is naturally isomorphic to singular cohomology on the category
of spaces homotopy equivalent to CW complexes and continuous maps.

(2) For a projective system .�i ; �i;j / of compact, Hausdorff spaces �i , we have an
isomorphism LH �.lim

 ��
.�i ; �i;j //Š lim

��!
. LH �.�i/; �

�
i;j /.

Pattern-equivariant cohomology is a tool designed to give intuitive descriptions of the
Čech cohomology of tiling spaces. It was first defined by Kellendonk and Putnam [28]
(see also [24]), where they showed that it is isomorphic to the Čech cohomology of
the tiling space taken over R coefficients. It is constructed by restricting the de Rham
cochain complex of Rd of smooth forms to a subcochain complex of forms which,
loosely, are determined pointwise by the local decoration of the underlying tiling to
some bounded radius.

A second approach, introduced by Sadun [37], is to use cellular cochains, and has
the advantage of generalising to arbitrary abelian coefficients. Let T D .T ; l/ be a
cellular tiling (recall that T is the underlying cell complex of T). Denote by C �.T /
the cellular cochain complex of T ,

C �.T / WD 0! C 0.T / ı
0

�!C 1.T / ı
1

�!� � �
ıd�1

��!C d .T /! 0;

where each C k.T / is the group of cellular k –cochains and ık is the degree k cellular
coboundary map. A cellular k –cochain  is a function which assigns to each orienta-
tion !c of k –cell c an integer, satisfying  .!Cc /D� .!

�
c / for opposite orientations

!Cc and !�c of a cell c . Of course, choosing an orientation for each k –cell induces
an isomorphism C k.T / Š

Q
k–cells Z. Choose orientations for the k –cells so that

!cCx D !cCx whenever c and cCx are cells of T , where !cCx is the orientation
on c C x induced from !c by translation. Write  .c/ WD  .!c/, where !c is the
chosen orientation of c . A cochain  is called pattern-equivariant (PE) if there exists
some i 2N0 for which  .c1/D .c2/ whenever c1 and c2 have identical i –coronas,
up to a translation taking c1 to c2 .

It is easy to check that the coboundary of a PE cochain is PE. Define C �.T1/ to be the
subcochain complex of C �.T / consisting of PE cochains. Its cohomology H �.T1/ is
called the pattern-equivariant cohomology of T.

A cellular cochain  2 C k.T / is PE if and only if it is a pullback cochain from some
approximant, that is, if  D ��i . z /, where z 2 C k.�1

i / is a cellular cochain on an
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approximant and �i is the (cellular) quotient map �i W Rd ! �1
i defining �1

i . This
fact, in combination with the description of the tiling space �1

T as an inverse limit of
Gähler complexes and the two features of Čech cohomology given above, leads to the
proof of the following:

Theorem 2.1 [37] The PE cohomology H �.T1/ of an FLC tiling T is isomorphic
to the Čech cohomology LH �.�1

T/ of its tiling space.

2.2 PE homology and Poincaré duality

We shall now define the PE homology groups of a cellular tiling T. The construction
runs almost identically to the construction of the cellular PE cohomology groups above,
but where we took cellular coboundary maps before we shall take instead cellular
boundary maps. In more detail, let C BM

�
.T / denote the cellular Borel–Moore chain

complex,

C BM
�
.T / WD 0 C BM

0 .T / @1
 �C BM

1 .T / @2
 �� � �

@d
 �C BM

d .T / 0:

The chain groups C BM
k
.T / are canonically isomorphic to the cochain groups C k.T /.

That is, up to a choice of orientations for the k –cells, a cellular Borel–Moore chain
� 2 C BM

k
.T / is given by a choice of integer for each k –cell. But we think of its

elements as possibly infinite, or noncompactly supported cellular chains. The boundary
maps @k are the linear extension to these chain groups of the cellular boundary maps
of the standard cellular chain complex of T .

Pattern-equivariance of a chain � 2 C BM
k
.T / is defined identically to that of a cochain.

That is, � is PE if there exists some i 2 N0 for which, for any two k –cells c1 , c2

of T with identical i –coronas in T up to a translation, c1 and c2 have the same
coefficient in � . It is easy to see that if � is PE then @.�/ is also PE. Restricting to
PE cellular Borel–Moore chains, we obtain a subchain complex C�.T

1/ of C BM
�
.T /

whose homology H�.T
1/ we shall call the pattern-equivariant homology of T. So the

elements of the PE homology are represented by, typically, noncompactly supported
cellular cycles (chains with trivial boundary), where two PE cycles �1 and �2 are
homologous if �1 D �2C @.�/ for some PE chain � .

These homology groups certainly have a highly geometric definition, but what do they
measure? Through a Poincaré duality argument, we may in fact identify them with the
(reindexed) PE cohomology groups and thus, in light of Theorem 2.1, with the Čech
cohomology groups of the tiling space:

Theorem 2.2 For a polytopal tiling T of Rd of finite local complexity, we have PE
Poincaré duality H �.T1/ŠHd��.T

1/.
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Proof Classical Poincaré duality provides an isomorphism of complexes

�\�W C �.T / Š�!C BM
d��.

�T /;
via the cap product with a cellular Borel–Moore fundamental class � , a d –cycle for
which each oriented d –cell has coefficient either C1 or �1, pairing orientations of
k –cells with orientations of their dual .d�k/–cells. Here, T is the underlying cell
complex of T and �T is its dual complex. By definition, a (co)chain is PE whenever it
assigns coefficients to cells in a way which only depends locally on the tiling to some
bounded neighbourhood of that cell. The fundamental class � is also PE. Since the
cap product (and here, its inverse) is defined in a local manner, and T and �T are MLD,
a k –cochain  of T is PE if and only if its dual .d � k )-chain  \� of �T is PE. So
�\� restricts to an isomorphism between PE complexes,

�\�W C �.T1/ Š�!Cd��.�T1/:

The barycentric tiling T� refines both T and �T, and is MLD to both. As one may
expect, taking such a refinement does not effect PE (co)homology. This shall be shown,
in a more general setting, in Lemma 3.2. Precisely, we have quasi-isomorphisms
�W C�.T

1/! C�.T
1
�
/ and O�W C�.�T1/! C�.T

1
�
/; recall that a quasi-isomorphism is a

(co)chain map which induces an isomorphism on (co)homology. In summation we
have the diagram of quasi-isomorphisms

C �.T1/ �\���!Cd��.�T1/ O��!Cd��.T
1
�/

�
 �Cd��.T

1/;

from which PE Poincaré duality H �.T1/ŠHd��.T
1/ follows.

We note, in passing, that PE homology is named according to its geometric construction:
via PE chains. However, we shall not attempt to make it functorial with respect to any
sort of class of structure preserving maps between tilings. In fact, we do not expect
for there to be a natural way of achieving this: with respect to particular kinds of
continuous maps between tiling spaces, pattern-equivariance is a property which pulls
back rather than pushes forward.

Example 2.3 Let T be a Penrose kite and dart tiling. The Čech cohomology of the
translational hull of the Penrose tilings was first calculated in [1] (although see also
the earlier closely related K–theoretic calculations of Kellendonk in the groupoid
setting [23]). In Section 4 we provide a different way of computing these groups which,
as a direct by-product, provides us with explicit descriptions of the generators in terms
of PE chains. Consistently with previous calculations, we find that
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H2�k.T
1/ŠH k.T1/Š LH k.�1

T/Š

8<:
Z for k D 0;

Z5 for k D 1;

Z8 for k D 2:

Let Pc be a pair of a patch P from T along with a choice of oriented k –cell c from P ,
taken up to translation equivalence. We have an associated PE indicator k –chain
1.Pc/ 2 Ck.T

1/ for which each k –cell of T has coefficient one when it is contained
in an ambient patch for which the pair agrees with Pc up to translation, and all other
cells have coefficient zero. The degree zero PE homology group H0.T

1/ for a Penrose
kite and dart tiling may be freely generated by indicator 0–chains 1.Pv/ 2 C0.T

1/,
where each Pv is one of the vertex-stars of T, paired with its central vertex. The full
list of possible translation classes of such patches, up to rotation by some 2�k

10
, are

given (and named, according to Conway’s notation) in Figure 4. As an example of a
choice of elements freely generating H0.T

1/, we may choose two “queen” vertices,
one oriented as in Figure 4 and the other a 2�

10
rotate of it, and six “king” vertices, each

a 2�k
10

rotate of that of Figure 4 with k D 0; : : : ; 5.

We shall go into more detail on generators for H0.T
1/ in Example 3.15. In degree one,

there are two particularly beautiful cycles that we wish to discuss here. There is a PE
1–cycle �0 given by running along the bottoms of the dart tilings, with 1–cells oriented
to point to, say, the right when the darts are oriented to point upwards. The resulting
cycle is illustrated in red in Figure 2, where we have removed cell orientations and
the 1–skeleton of the tiling to decrease clutter. The extra embellishments of the figure
shall be discussed in Section 4; there is a green 1–cycle for the analogous chain of the
supertiling of T, along with a blue PE 2–chain whose boundary relates the two. As
one can see, �0 forms a disjoint union of clockwise and anticlockwise running loops.
Interestingly, deducing which of these two options is the case at some cell of a loop
requires consideration of arbitrarily large patches; in fact, for specific kite and dart
tilings there exists a single infinite fractal-like path along dart tiles. But �0 is not a
generator, there exists another PE 1–cycle � for which Œ�0�D 2Œ�� in H1.T

1/. The
loops of Figure 2 come in two types: ones where the darts along the loops are 2�k

10

rotates of an upwards pointing dart tile with k odd, and ones where the darts are even
rotates. The 1–cycle � is given by restricting �0 to those loops in one of these two
parities; both choices are homologous and equal to 1

2
Œ�0� in H1.T

1/.

A second generator �0 for H1.T
1/ is depicted in Figure 1. The cycle arranges as a

union of infinite paths along the 1–skeleton which closely approximate the Ammann
bars [20, Section 10.6] of the supertiling of T, illustrated in the figure in green. There
are ten further chains �k defined by 2�k

10
rotates of �0 (see Section 3.4). We calculate

that H1.T
1/ is freely generated by the homology classes of � , �0 , �1 , �2 and �3 ;

every other PE 1–cycle is equal, up to a PE 2–boundary, to a linear combination of

Algebraic & Geometric Topology, Volume 17 (2017)



1336 James J Walton

Figure 2: The PE 1–cycle �0 of a Penrose kite and dart tiling (red), with the
analogous chain of the supertiling (green) and a PE 2–chain (blue) whose
boundary relates the two.

these cycles. It turns out that �4 '��0C �1� �2C �3 in homology. This formula is
unsurprising following the observation that one may associate each �k with a direction
given by a tenth root of unity, and we have the identity

P4
kD0.�1/k exp

�
2� i�k

10

�
D 0.

3 PE homology and rotations

In the previous section we showed that topological invariants of tiling spaces may be
described in a highly geometric way, using infinite cellular chains on the tiling. However,
PE homology is essentially just offering a different perspective on the generators of
the PE cohomology here. As we shall see in Section 4, PE homology does provide
a valuable alternative insight into the calculation of these invariants for hierarchical
tilings. In this section, we shall show that PE homology provides a new invariant to
the PE cohomology when one considers these invariants in the context of rotational
symmetries.

3.1 Rotational tiling spaces

Let SE.d/ŠRd Ì SO.d/ denote the transformation group of orientation-preserving
isometries of Rd; elements of SE.d/ shall be called rigid motions. There are two
topological spaces naturally associated to a tiling T of Rd which incorporate the action
of SE.d/ on T. The first, defined analogously to the translational hull �1

T , is the
Euclidean hull

�rot
T WD ff T j f 2 SE.d/g:
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It follows directly from the definitions that the special Euclidean group SE.d/ acts
uniformly on the Euclidean orbit of T, and so this action extends to the entire Euclidean
hull. In particular, the subgroup SO.d/� SE.d/ of rotations at the origin acts on �rot

T .
The second space, the one which we shall concentrate on in this section, is the quotient

�0
T WD�

rot
T =SO.d/:

We shall say that T has Euclidean finite local complexity (eFLC, for short) if, for
every r > 0, there exist only finitely many patches of diameter at most r up to rigid
motion. Interesting examples of tilings which have eFLC, but not translational FLC,
are the Conway–Radin pinwheel tilings of R2 , whose tiles are all rigid motions of a
.1; 2;

p
5/ triangle, or its reflection, but are found in the tiling pointing in infinitely

many directions. Much of what can be said for FLC tilings and their translational hulls
has an analogue for eFLC tilings and their Euclidean hulls. In particular, for an eFLC
tiling T, its Euclidean hull �rot

T is a compact space whose points may be identified
with those tilings whose patches are rigid motions of the patches of T. The space �0

T

is then the quotient of �rot
T given by identifying tilings which differ by a rotation at the

origin. One may define inverse limit presentations of these spaces in a similar way to
the construction of the Gähler complexes, which is tantamount to being able to define
pattern-equivariant cohomology.

To explain this further, we now focus on the space �0
T . For i 2 N0 we define CW

complexes �0
i analogously to the complexes of the translational setting, replacing

translations with rigid motions. For example, we may define the complexes �0
i by

identifying cells c1 , c2 of T via rigid motions which take c1 to c2 , and the i –corona
of c1 to the i –corona of c2 . The CW complexes �0

i , along with the “forgetful maps”
between them, define a projective system whose inverse limit is homeomorphic to �0

T .

It may be the case that cells of T have nontrivial isotropy, that is, there may be cells c

whose i –coronas are preserved by rigid motions mapping c to itself nontrivially, which
will cause points of c to be identified in the quotient spaces �0

i . Given a cell c 2 T ,
the rigid motions mapping c to itself and preserving its i –corona is a group, which
we call the isotropy, and denote by Iso.c; i/. Write �Iso.c; i/, the cell isotropy, for the
group of transformations of Iso.c; i/ restricted to c .

The cell isotropy groups of the barycentric subdivision T� are always trivial. Indeed,
a barycentric cell is determined by its vertices, which are determined by a chain of
incidences c0 � � � � � ck in T , and a rigid motion taking a barycentric cell to itself
is determined by the map restricted to these vertices. A nontrivial map on such a
vertex set would have to correspond to a rigid motion taking b.ci/ to some b.cj /

with i ¤ j , which cannot be the case since ci ¤ cj have distinct dimensions, and thus,
by assumption, distinct labels.
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3.2 Euclidean pattern-equivariance

A cellular cochain  2 C k.T / shall be called Euclidean pattern-equivariant (ePE) if
there exists some i 2N0 for which  .!c/D .f�.!c// whenever f is a rigid motion
taking the i –corona of a k –cell c to the i –corona of some other k –cell; here, !c is
an orientation on c and f�.!c/ is the push-forward of this orientation to the cell f .c/.
In the case that the cells of T have trivial cell isotropy, one may consistently orient the
cells of T, and this definition then just says that there exists some i for which  is
constant on cells which have identical i –coronas up to rigid motion. The coboundary
of an ePE cochain is ePE, so we have a cochain complex C �.T0/ defined by restricting
C �.T / to ePE cochains. Taking the cohomology of this cochain complex, we define
the ePE cohomology H �.T0/.

One may follow the proof from [37] of Theorem 2.1 almost word-for-word, replacing
the Gähler complexes �1

i by the complexes �0
i , to obtain the following:

Theorem 3.1 Let T be an eFLC tiling whose cell isotropy groups �Iso.c; i/ are trivial
for some i 2 N0 . Then the ePE cohomology H �.T0/ is isomorphic to the Čech
cohomology LH �.�0

T/.

We define Euclidean pattern-equivariance for cellular Borel–Moore chains identically
as for cochains. Restricting C BM

�
.T / to ePE chains we thus define the ePE chain

complex C�.T
0/ and its homology, the ePE homology H�.T

0/.

The proof of PE Poincaré duality in Theorem 2.2 essentially relied on two simple
observations:

(1) The classical Poincaré duality isomorphism � \ � , given by taking the cap
product with a Borel–Moore fundamental class, restricts to a cochain isomor-
phism �\�W C �.T1/! Cd��.�T1/ between the PE cohomology of T and the
PE homology of its dual tiling.

(2) The refinement of a tiling to its barycentric subdivision does not effect PE
homology.

Step (1) will still hold for the ePE complexes: we have a Poincaré duality isomorphism
�\�W C �.T0/! Cd��.�T0/ between ePE cochains of a tiling and ePE chains of its
dual tiling. However, step (2) will not generally hold when restricting to ePE (co)chains
if our tiling has nontrivial cell isotropy. One would like to refuse taking the ePE
(co)homology of a tiling which has cells of nontrivial isotropy by replacing it with the
barycentric subdivision. Unfortunately, our hand is forced, since, in the presence of
nontrivial patch isotropy, one of T or �T will have nontrivial cell isotropy.
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The next lemma determines to what extent one may expect refinement to preserve
ePE homology and cohomology. Thus far, our invariants have been taken over Z
coefficients. For a unital ring G we may consider the cochain complex C �.T IG/
of cellular cochains which assign to oriented cells elements of G , and similarly for
C BM
�
.T IG/. We may restrict these complexes to PE and ePE (co)chains, and denote

the corresponding (co)homology by H �.T1IG/, etc. We say that G has division by n

if n �1G has a multiplicative inverse in G , where 1G is the multiplicative identity in G

and
n �g WD gCgC � � �Cg„ ƒ‚ …

n times

:

Lemma 3.2 Let T be a polytopal tiling with eFLC and G be a unital ring. If for some
K 2N0 the coefficient ring G has division by # �Iso.c;K/ for every cell c of T, then
there exist quasi-isomorphisms

�W C�.T
0
IG/! C�.T

0
�IG/;

�W C �.T0
�IG/! C �.T0

IG/:

The analogous statement holds for the refinement of the dual tiling �T to T� .

Proof We shall prove the existence of the homology quasi-isomorphism, the proof
for cohomology is similar. An elementary chain is a chain which assigns coefficient 1

to some oriented cell and 0 to all other cells. We have a chain map

�W C BM
�
.T IG/! C BM

�
.T�IG/;

which is defined by sending an elementary chain to the corresponding barycentric chain
with coefficient 1 on barycentric k –cells contained in c , suitably oriented with respect
to c , and 0 on all other cells. It is easy to see that � restricts to ePE chains and we
claim that it is a quasi-isomorphism.

To show that � is surjective on homology, let � 2 Ck.T
0
�
/ be an ePE cycle of the

barycentric subdivision; � is in the image of � if and only if it is supported on the
k –skeleton of T. If k D d , then � is already supported on the d –skeleton, so suppose
that k < d .

Whilst � need not be in the image of � at the chain level, there exists some � for which
� C @.�/ is. To construct � , we firstly find an ePE chain �.d/ for which � C @.�.d//
is supported on the .d�1/–skeleton. Having the same i –corona up to rigid motion
is an equivalence relation on the cells of T for every i 2N0 . By Euclidean pattern-
equivariance of � , there exists some i for which, if two d –cells c1 , c2 of T have
identical i –coronas up to a rigid motion f , then f sends � restricted at c1 to its
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restriction at c2 . We may choose i � K ; note that, since �Iso.c; i/ is a subgroup of�Iso.c;K/, we have that # �Iso.c; i/ divides # �Iso.c;K/, so the coefficient group G has
division by # �Iso.c; i/ for every cell c of T.

For each equivalence class of d –cell, choose a representative c and a barycentric
.kC1/–chain �c supported on c for which � C @.�c/ is supported outside of the
interior of c ; by the homological properties of cells of a CW decomposition, we
may find such a chain. Define the .kC1/–chain � 0c by copying �c to every cell
equivalent to c , via every rigid motion which preserves the i –corona of c . We define
�.d/ WD

P
� 0c=.# �Iso.c; i//, where the sum is taken over every equivalence class of

d –cell.

The chain �.d/ is ePE by construction, and we claim that � C @.�.d// is supported
on the .d�1/–skeleton. Indeed, let c be a chosen representative of d –cell; we have
that @.�c/D��c , where �c is the restriction of � to the interior barycentric cells of c .
By our assumption on � being ePE, for any f 2 �Iso.c; i/ we have that f�.@.�c//D

f�.��c/D��c . Hence, the restriction of @.�.d// to the interior of c is given byX
f 2 �Iso.c;i/

f�.@.�c//=.# �Iso.c; i//D
X

f 2 �Iso.c;i/

��c=.# �Iso.c; i//D��c :

By construction of �.d/, the same is true at every other d –cell equivalent to c , and
by our assumption on � being ePE it follows that � C @.�.d// is supported on the
.d�1/–skeleton.

We may continue this procedure down the skeleta. That is, we may construct in an
analogous way ePE chains �.d/, �.d�1/; : : : ; �.kC1/ for which �C@

�Pd
mDn �.m/

�
is supported on the n–skeleton of T. It follows that � C @

�Pd
mDkC1 �.m/

�
is in the

image of �, so �� is surjective on homology.

Showing injectivity of �� is analogous (indeed, the above is really just a relative
homology argument applied to the filtration of the skeleta). Suppose that �.�/D @.�/
for � 2 Ck.T

0/ and � 2 CkC1.T
0
�
/. Then � is ePE and has boundary in the k –

skeleton of T. We may construct ePE .kC2/–chains �.d/; �.d � 1/; : : : ; �.k C 2/,
analogously to above, for which � C @

�Pd
mDkC2 �.m/

�
is contained in the .kC1/–

skeleton. So there is an ePE chain � 0 with �.� 0/D � C @
�Pd

mDkC2 �.m/
�
. It follows

from @.�.� 0//D @.�/D �.�/ that � D @.� 0/ represents zero in homology, as desired.

By the above lemma, the ePE (co)homology of a tiling is stable under barycentric
subdivision after one application, by the fact that the cell isotropy groups �Iso.c; i/ are
trivial in the barycentric subdivision. Invariance under barycentric refinement allows us
to deduce ePE Poincaré duality, so long as our coefficient group is suitably divisible:
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Theorem 3.3 Let T be an eFLC polytopal tiling. Suppose that, for some K 2N , the
coefficient ring G has division by the orders of isotropy groups # Iso.c;K/ for every
cell c of T. Then we have ePE Poincaré duality H �.T0IG/ŠHd��.T

0IG/.

Proof The proof is essentially identical to the proof of translational PE Poincaré
duality of Theorem 2.2. All that needs to be checked is that we have invariance under
refinement to the barycentric subdivision for the tiling and dual tiling, that is, that we
have quasi-isomorphisms �W C�.T0IG/!C�.T

0
�
IG/ and O�W C�.�T0IG/!C�.T

0
�
IG/.

The cell isotropy groups �Iso.c;K/ of the tiling are quotient groups of the isotropy
groups of K–coronas Iso.c;K/ by the subgroups of those transformations leaving c

fixed, and similarly for the dual tiling. Furthermore, any rigid motion preserving the
.KC1/–corona of a dual cell yc , sending yc to itself, also preserves the K–corona of
the cell c in the original tiling. It follows that the cell isotropy groups (at level K for T
and KC 1 for the dual tiling) have orders which divide those of the groups Iso.c;K/.
A unital ring which has division by n also has division by any divisor of n, and so by
Lemma 3.2 we have the required refinement quasi-isomorphisms � and O�.

Example 3.4 Let T be the periodic cellular tiling of R2 of unit squares whose vertices
lie on the integer lattice, with the standard cellular decomposition. The cells of T

have nontrivial isotropy: �Iso.f; i/ Š Z=4 for a face f and �Iso.e; i/ Š Z=2 for an
edge e . So the ePE (co)homology groups are not necessarily invariant under barycentric
subdivision unless taken over coefficients G with division by 4. Since there is only one
0–cell and one 2–cell up to rigid motion, the ePE complexes over Q coefficients read

0!Q! 0!Q! 0:

There is no generator in degree one, since an indicator (co)chain at an edge e is not
invariant under the rigid motion at e reversing its orientation. So the ePE invariants
are H k.T0IQ/ŠH2�k.T

0IQ/ŠQ for k D 0, 2 and are trivial otherwise.

To calculate over Z coefficients, we pass to the barycentric subdivision T� so that the
cells have trivial isotropy. In this case we have that H k.T0

�
/Š Z for k D 0; 2 and

are trivial otherwise. This agrees with the observation that �0
T is homeomorphic to the

2–sphere, which by Theorem 3.1 has isomorphic cohomology. For the ePE homology
we have that Hk.T

0
�
/Š Z˚ .Z=2/˚ .Z=4/, 0, Z for k D 0, 1, 2, respectively.

For this example ePE Poincaré duality H k.T0
�
/ŠHd�k.T

0
�
/ fails over Z coefficients.

Theorem 3.3 does not apply since, whilst the cells of T� have trivial isotropy, the
isotropy groups Iso.v; i/ of rigid motions preserving patches are nontrivial. The ePE ho-
mology in degree zero for a periodic tiling of equilateral triangles is Z˚.Z=2/˚.Z=3/.
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Figure 3: Torsion element t with 5t C @1.�1.E1/C1.E2/�1.E4/� 2 � 1.E7//D 0

However, its associated moduli space �0
T is still the 2–sphere, so we see that the ePE

homology is not a topological invariant of �0
T but of a finer structure.

Example 3.5 Let T be a Penrose kite and dart tiling. Its ePE cohomology is

H k.T0/Š LH k.�0
T/Š

8<:
Z for k D 0;

Z for k D 1;

Z2 for k D 2:

In degrees k D 1, 2 we have ePE Poincaré duality Hk.T
0/ Š H 2�k.T0/. But in

degree zero, as we shall calculate in Section 4, we have that H0.T
0/Š Z2˚ .Z=5/.

A 0–chain t representing a 5–torsion homology class is depicted in Figure 3, along
with an ePE 1–chain whose boundary is �5t . Specifically, the torsion element t D

1.sun/C 1.star/� 1.queen/ is a linear combination of indicator 0–chains of certain
rigid equivalence classes of star patches of 0–cells (the seven equivalence classes of
such star patches are given in Figure 4). This torsion element turns out to be relevant
to calculation of the Čech cohomology LH �.�rot

T / of the Euclidean hull [42].

Generators for the free part of H0.T
0/ may be taken as 1.sun/ and 1.star/. A generator

of H1.T
0/ŠZ is illustrated in red in Figure 2. It is the cycle running along the bottoms

of the dart tiles, named �0 in the discussion of Example 2.3.
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3.3 Restoring Poincaré duality

The above examples show that ePE Poincaré duality can fail in the presence of nontrivial
rotational symmetry. We consider the discrepancy between the ePE homology and
ePE cohomology to be a feature of interest, which is relevant to the cohomology of
Euclidean hulls [42]. However, to relate the ePE homology back to more familiar
invariants, we shall describe here how one may modify the definition of ePE homology
so as to restore duality with the ePE cohomology.

We restrict to the case that T is a tiling of R2 . The higher-dimensional situation is
much more complicated; see the comments at the end of this subsection. We assume
that T has eFLC and that it has been suitably subdivided so that any points of local
rotational symmetry are contained in the vertex set of T; this may be achieved for any
eFLC polytopal tiling by a single barycentric subdivision.

Definition 3.6 Define the subchain complex

C |
�
.T0/ WD 0 C

|
0
.T0/

@1
 �C

|
1
.T0/

@2
 �C

|
2
.T0/ 0

of the ePE complex C�.T
0/ of T as follows. We let C

|
k
.T0/ WD Ck.T

0/ for k D 1, 2.
In degree zero we let C

|
0
.T0/ consist of those ePE chains � for which there exists

some i 2N such that, whenever the i –corona of a vertex v has rotational symmetry
of order n, then the coefficient of v in � is divisible by n. Denote the homology of
this chain complex by H |

�
.T0/.

To see that C |
�
.T0/ is well-defined, firstly note that the boundary of an ePE chain

is ePE, so it suffices to check that, given an ePE 1–chain � , there exists some i for
which @.�/ assigns values multiples of n to vertices whose i –coronas have n–fold
symmetry. Since � is ePE, there exists some j for which � assigns the same (oriented)
coefficients to any two edges whose j –coronas are equivalent up to a rigid motion.
Suppose that the .jC1/–corona of a vertex v has n–fold rotational symmetry; these
symmetries induce rigid equivalences between j –coronas of the edges incident with v .
Since no edge is fixed by any nontrivial rotation, the rotations partition these edges into
orbits of n elements, each having equivalent j –coronas. It follows that the coefficient
of v in @.�/ is some multiple of n, as desired.

With only minor modifications to the proof of Theorem 3.3 we obtain the following:

Theorem 3.7 Let T be a polytopal tiling of R2 with eFLC and with points of local
rotational symmetry contained in the vertex set of T. Then we have Poincaré duality

H �.T0/ŠH
|
2��
.T0/:
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Proof From the classical Poincaré duality pairing, we have an isomorphism of com-
plexes C �.T0/ Š Cd��.�T0/ between the ePE cohomology and the ePE homology
of the dual tiling. The issue with ePE Poincaré duality is that we do not necessarily
have an isomorphism H�.�T0/ŠH�.T

0/. In particular, we may not have a refinement
quasi-isomorphism O�W C�.�T0/!C�.T

0
�
/; the conditions of Lemma 3.2 are not satisfied

since vertices with local rotational symmetry in T lead to dual tiles of �T with nontrivial
cell isotropy.

Following the proof of Lemma 3.2, we see that O� can be made a quasi-isomorphism by
replacing its range with C |

�
.T0
�
/. Let

O�|W C�.�T0/! C |
�
.T0
�/

be the canonical inclusion of chain complexes. The map O� may fail to be a quasi-
isomorphism in degree zero. It may not be the case that an ePE 0–chain � of T�
is homologous to a chain supported on the 0–skeleton of �T, since we are forced to
“remove” 0–chains of C0.T

0
�
/ from barycentres of rotationally invariant dual cells

in multiples of the local symmetry at the corresponding vertices of T. This issue is
alleviated by passing to C |

�
.T0
�
/, since now the barycentres of such dual cells may

only be assigned coefficients which are multiples of the orders of symmetries of the
corresponding i –corona in the dual tiling for some sufficiently large i . The rest of the
proof follows similarly to the proof of Theorem 3.3; we end up with the diagram of
quasi-isomorphisms

C �.T0/ �\���!Cd��.�T0/ O�
|

�!C
|
d��

.T0
�/

�|
 �C

|
d��

.T0/:

This modification to the ePE homology is perhaps not too surprising when we think of
the approximant spaces to �0 as branched orbifolds rather than just quotient spaces.
Points of rotational symmetry in the tiling correspond to cone points on these orbifolds,
and the modification above is essentially to count such points with fractional multiplicity.

The above theorem shows that we may express the ePE cohomology of a two-dimension-
al tiling, and hence the Čech cohomology of the associated space �0

T , in terms of the
ePE homology of T but with certain restricted coefficients in degree zero. One may
ask on the relationship between the ePE homology before and after the modification to
restore Poincaré duality in degree zero. The only nontrivial chain group of the relative
chain complex of the pair C�.T

0/� C |
�
.T0/ is a torsion group in degree zero. It is not

difficult to show that it is isomorphic to
Q

Ti
Z=niZ, where the product is taken over

all rotation classes of tilings Ti of �0
T with ni –fold rotational symmetry at the origin,

at least in the case that there are only finitely many such tilings (and a similar statement
holds still with infinitely many such tilings). It follows that the ePE homology and the
Čech cohomology of �0

T are isomorphic in cohomological degrees one and two, and
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in degree zero we have that H0.T
0/ is an extension of LH 2.�0

T/ by a torsion group
determined by the rotational symmetries of tilings in the hull of T.

In higher dimensions the situation is far more complicated, and we delay exposition
of it to future work. The precise relationship between the ePE homology and ePE
cohomology is then best expressed via a more complicated gadget, a spectral sequence
analogous to the one of Zeeman [43].

Example 3.8 Consider again the periodic tiling T of unit squares. Its barycentric
subdivision T� has trivial cell isotropy, but has rotational symmetry at the vertices
of T� (ie at the barycentres of the cells of T). In particular, the vertices have rotational
symmetry of orders 4, 2 and 4 at the vertices of T� corresponding, respectively, to
the vertices, edges and faces of T. So we replace the degree zero ePE chain group

C0.T
0
�/Š Zhvi˚Zhei˚Zhf i:

by its modified version

C
|
0
.T0
�/Š 4Zhvi˚ 2Zhei˚ 4Zhf i:

One easily computes the resulting homology group in degree zero to be H
|
0
.T0
�
/ŠZ,

restoring Poincaré duality:

H
|
0
.T0
�/ŠH 2.T0

�/Š
LH 2.�0

T�
/ŠH 2.S2/Š Z:

Example 3.9 We saw in Example 3.5 that ePE Poincaré duality Hk.T
0/ŠH 2�k.T0/

fails for the Penrose kite and dart tilings in homological degree k D 0; we have extra
5–torsion in the ePE homology, a generator is depicted in Figure 3. Our method of
calculation for the ePE homology of substitution tilings in Section 4 may be modified
to compute instead H

|
0
.T0/. We calculate that, indeed, Poincaré duality is restored:

H
|
0
.T0/ŠH 2.T0/Š LH 2.�0

T/Š Z2:

The modified degree zero ePE homology group is freely generated by, for example, the
indicator 0–chains of the “queen” and “king” vertex types (see Figure 4).

3.4 Rotation actions on translational PE cohomology

In the case that our tiling T is FLC (and not just eFLC) there is an alternative way of
integrating the action of rotations with the PE invariants of T. Firstly, we assume that
some rotation group acts nicely on T:

Definition 3.10 We say that a finite subgroup ‚ � SO.d/ acts on T by rotations
if, for every patch P of T and g 2 ‚, we have that gP is also a patch of T, up to
translation. If, additionally, we have that patches P and Q agree up to a rigid motion
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only when P and gQ agree up to translation for some g 2‚, then we say that T has
rotation group ‚.

A PE k –cochain  2 C k.T1/ may be identified with a sum of indicator cochains of
i –coronas of k –cells of T for some sufficiently large i . So if ‚ acts on T by rotations,
then ‚ naturally acts on C �.T1/. On an indicator cochain 1.Pc/, the group ‚ acts by
g �1.Pc/ WD 1.g�1 �Pc/. Replacing cellular cochains with cellular Borel–Moore chains,
the same is true of the PE homology. The action of ‚ commutes with the (co)boundary
maps, and so we have an action of ‚ on the PE (co)homology. Furthermore, ‚
naturally acts as a group of homeomorphisms on the tiling space �1

T ; the points of �1
T

may be identified with tilings, and ‚ acts by rotation at the origin. So ‚ acts on the
Čech cohomology LH �.�1

T/. These actions are compatible:

Proposition 3.11 Suppose that T is FLC and that ‚ acts on T by rotations. Then the
isomorphisms LH �.�1

T/ Š H �.T1/ Š Hd��.T
1/ of Theorems 2.1 and 2.2 commute

with the group actions of ‚.

Proof The action of rotation on �1
T is canonically induced at the level of the approxi-

mants �1
i . The isomorphism between the Čech cohomology of an inverse limit space

and the direct limit of the cohomologies of its approximants is natural with respect to
maps like this, so the isomorphisms

LH �.�1
T/Š

LH �.lim
 ��
.�1

i ; �i;j //Š lim
��!
.H �.�1

i /; �
�
i;j /ŠH �.T1/

each commute with the action of rotation. The Poincaré duality isomorphism H �.T1/Š

Hd��.T
1/ of Theorem 2.2 was induced by the classical pairing of a cochain with its

dual chain, along with the induced maps (and their inverses) associated to barycentric
refinement. Each of these maps, at the chain level, are easily seen to commute with the
action of rotation.

Suppose that T has rotation group ‚. One may ask to what extent the Čech cohomology
LH �.�0

T/ naturally corresponds to the subgroup of LH �.�1
T/ of elements of which are

invariant under the action of ‚. More concretely, we have the quotient map

qW �1
T!�0

T D�
1
T=‚

given by identifying tilings which agree up to a rotation at the origin. Since q D q ıg

for all g 2‚, the induced map

q�W LH �.�0
T/!

LH �.�1
T/

has image contained in the rotationally invariant part of LH �.�1
T/, denoted by

LH �‚.�
1
T/ WD fŒ � 2

LH �.�1
T/ j Œ �D g � Œ � for all g 2‚g:
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Let q�
‚

be the corestriction of q� to the range LH �
‚
.�1

T/. It is not difficult to show that
q�
‚

is an isomorphism when taking cohomology over divisible coefficients:

Proposition 3.12 Let T be FLC with rotation group ‚. If G is a unital ring with
division by #‚ then q�

‚
W LH �.�0

TIG/!
LH �
‚
.�1

TIG/ is an isomorphism.

Proof We suppose that the cell isotropy groups of T are trivial (without loss of
generality, since otherwise we may simply pass to the barycentric subdivision). By the
natural identification of the Čech cohomology with the PE cohomology, the map q�

corresponds to the induced map of the inclusion of cochain complexes

�W C �.T0/ ,! C �.T1/I

note that C �.T0/ is the subcochain complex of C �.T1/ of cochains which are invariant
under the action of ‚. There is a self-cochain map

r W C �.T1/! C �.T1/

defined by r. / WD
P

g2‚ g � . Clearly g �r. /D r. / for any  2C �.T1/, so r in
fact defines a map into the ePE cochain complex. We have that rı�D �ır is the times #‚
map upon restriction to the rotationally invariant part of the PE cohomology. By our
assumption on the divisibility of the coefficient group G , this map is an isomorphism
when taking cohomology over G coefficients, and so q�

‚
, is an isomorphism.

When working over nondivisible coefficients, q�
‚

is typically not an isomorphism. For
a two-dimensional tiling, we may factor q�

‚
through the ePE homology of T:

Theorem 3.13 Suppose that T is two-dimensional, FLC, has points of local rotational
symmetry contained in the vertex set of T and has rotation group ‚. Then we have the
following commutative triangle, with i injective:

LH �.�0
T/

H2��.T
0/

LH �
‚
.�1

T/

i

q�
‚

f

Proof The inclusions of chain complexes C |
�
.T0/ � C�.T

0/ � C�.T
1/ induce a

triangle much like the one above. The first inclusion induces an inclusion on homology,
since the corresponding relative homology group is concentrated in degree zero. The rest
of the proof follows from establishing that, up to isomorphism, the map q� corresponds
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to the induced map of the inclusion C |
�
.T0/�C�.T

1/. This is a straightforward check,
applying the ideas of the proof of Proposition 3.11.

One might hope for the homomorphism f in the theorem above to always be surjective.
In that case, we may interpret the theorem as follows: the ePE homology extends the
ePE cohomology by adding “missing” elements corresponding to PE cochains whose
cohomology classes are ‚–invariant, but are not actually represented by ‚–invariant
(ePE) cochains. Whilst f usually does have a larger image than q�

‚
, the example of

the Penrose tiling below shows that, in fact, f need not be surjective in general.

Example 3.14 Let T� be the barycentric subdivision of the periodic square tiling. In
degree two we have that LH 2.�1

T/Š Z which, in terms of PE cohomology, is freely
generated by an indicator cochain for the square tiles, by a choice of some 2–simplex
of the barycentric subdivision of the unit square. Its cohomology class (but not the
cochain itself) is invariant under rotation, so H 2

‚
.�1

T/DH 2.�1
T/.

The ePE cohomology is freely generated by the 2–cochain which indicates each 2–
simplex of a chosen handedness, the map q�

‚
W Z! Z is the times 4 map in degree

two. So there are classes of the PE cohomology which are invariant under rotation, but
are not represented by rotationally invariant cochains. These “missing” elements are
represented in the ePE homology, though. We have that H0.T�/ŠZ˚.Z=2/˚.Z=4/
has free part generated by the 0–chain indicating the centres of squares. In degree
zero q�

‚
factorises as q�

‚
D f ı i where i is the �4 map onto the free component of

H
|
0
.T0/, and the map f is given by the projection f .x; Œy�2; Œz�4/D x .

Example 3.15 Let T be a Penrose kite and dart tiling. The cohomology LH 2.�1
T/,

along with the action of rotation by Z=10 on it, was first analysed in [32]. By
Proposition 3.11, we may essentially mimic such calculations using instead PE homol-
ogy. We compute (according to the method to be outlined in the next section), consis-
tently with previous calculations, that over rational coefficients the action of rotation on
LH 2.�1

TIQ/ŠH0.TIQ/ŠQ8 splits into the following irreducible subrepresentations.
We have two one-dimensional irreducibles corresponding to the trivial representation.
There are two one-dimensional irreducibles corresponding to the representation sending
the generator Œ1�10 2 Z=10 to the map x 7! �x . And we have a four-dimensional
irreducible, the “vector representation” QŒr �=.r4� r3C r2� rC1/, which sends Œ1�10

to the map .w;x;y; z/ 7! .�z; wC z;x� z;yC z/.

However, over integral coefficients the representation does not decompose into irre-
ducibles. We find elements �1; : : : ; �4 of H0.T

1/ Š Z8 upon which rotation acts
trivially on �1 and �2 , and sends �3 7! ��3 and �4 7! ��4 . One may extend either
of the pairs .�1; �2/ and .�3; �4/ to integer bases for Z8 , but the integer span of
.�1; �2; �3; �4/ only extends to an index 4 subgroup of H0.T

1/.
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In degree one, over integral coefficients, the action of rotation on LH 1.�1
T/ŠH1.T

1/Š

Z5 decomposes to irreducibles. In terms of PE chains, it splits as the direct sum of
the one-dimensional trivial representation generated by the cycle � (see Example 2.3)
and the four-dimensional vector representation generated by �0 (see Example 2.3 and
Figure 1) and its first three rotates.

We may now explain how the ePE (co)homology and the invariant part of the PE
cohomology are tied together. Recall from Examples 3.5 and 3.9 that

LH 1.�0
T/ŠH

|
1
.T0/ŠH1.T

0/Š Zh�0i;

LH 2.�0
T/ŠH

|
0
.T0/Š Zh1.queen/i˚Zh1.king/i;

H0.T
0/Š Zh1.sun/i˚Zh1.star/i˚ .Z=5/h1.sun/C1.star/� 1.queen/i:

The rotationally invariant parts of the cohomology are

LH 1
‚.�

1
T/Š Z; LH 2

‚.�
1
T/Š Z2:

Repeating this calculation using PE homology, we find that, indeed, the rotationally
invariant part of H0.T

1/ is isomorphic to Z2 , and of H1.T
1/ is isomorphic to Z.

Furthermore, we may calculate explicit generators for these subgroups in PE homology.
We find that the rotationally invariant part in degree zero is generated by PE 0–chains
�1 and �2 for which 5�1 ' 1.queen/ and 5�2 ' 1.king/. The rotationally invariant
part of the PE homology in degree one is freely generated by the chain � , discussed
in Example 2.3, given by restricting the 1–chain of Figure 2 to loops of a chosen
rotational parity.

With respect to the basis elements discussed above, we may summarise with the
following commutative diagrams in cohomological degrees one and two:

LH 1.�0
T/Š Z

H1.T
0/Š Z

LH 1
‚
.�1

T/Š Z

i1 D id

q1
‚
D�2

f 1 D�2

LH 2.�0
T/Š Z2

H0.T
0/Š Z2˚ .Z=5/

LH 2
‚
.�1

T/Š Z2

i2

q2
‚
.x;y/D .5x; 5y/

f 2
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The maps i2 and f 2 are given by i2.x;y/ D .x C 2y;x � 3y; Œ4x C 3y�5/ and
f 2.x;y; Œz�5/D .3xC 2y;x�y/. In degree one, the ePE (co)homology only corre-
sponds to an index 2 subgroup of the rotationally invariant part of the PE cohomology.
In top cohomological degree, we have that the ePE cohomology H 2.T0/ (which
corresponds to LH 2.�0

T/ or H
|
0
.T0/) maps to an index 25 subgroup of the rotationally

invariant part LH 2
‚
.�1

T/ of the PE cohomology. More, but not all, is added by consid-
ering instead the ePE homology: H

|
0
.T0/ŠH 2.T0/ is an index 5 subgroup of the

ePE homology H0.T
0/, and the image of H0.T

0/ under f is an index 5 subgroup
of LH 2

‚
.�1

T/.

3.5 Generalising the PE framework

Many of the constructions and results of this section did not rely on having a polytopal
tiling of Euclidean space, so much as simply having a cell complex (the underlying
complex of the tiling) along with a notion of when cells of that complex are equivalent
to a certain radius (that is, when those cells have identical i –coronas, up to an agreed
type of transformation). There are interesting examples of combinatorial tilings, such
as the pentagonal tilings of Bowers and Stephenson [11], which are most naturally
viewed as tilings of spaces which are non-Euclidean. We outline below a unified setting
which allows one to deal with tilings such as this, as well as more general structures;
see Example 3.18.

Recall that a CW complex is called regular if the attaching maps of its cells may be
taken to be homeomorphisms. Regular CW complexes are a sensible starting point
for us here, since they allow for the construction of barycentric subdivisions and
dual complexes (which, in analogy to simplicial complexes, is owing to them being
essentially determined combinatorially by their face posets; see [9]). Let T be a regular
CW complex, it will play the rôle of the underlying cell complex of our tiling of interest.

To define the analogue of pattern-equivariance of a (co)chain, we need a notion of two
(oriented) cells being equivalent in the tiling to a certain magnitude. This “magnitude”
could be parametrised by, say, R>0 if we want to express agreement between local
patches to a certain radius, or perhaps by N for a combinatorial notion of patch size,
such as agreement between i –coronas. Ultimately, there is no gain in preferring one,
or indeed either of these choices. Recall that a partially ordered set .ƒ;�/ is called
directed if for any two elements �1 , �2 2ƒ there is a third satisfying �� �1 , �2 . We
shall let some such directed set parametrise magnitude of agreement between cells of
our tiling.

It is not quite enough to know which cells of our tiling are equivalent to a certain
magnitude, one also needs to know how they are equivalent. For a cell c of T , its
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(closed) star StT .c/ is defined to be the subcomplex of T whose support is the set of
cells containing c . The way in which a cell c1 may be considered as “equivalent” to a
cell c2 to some magnitude � will be recorded by a finite set of cellular homeomorphisms
ˆW StT .c1/! StT .c2/. The star of a cell defines a neighbourhood of that cell, so we
may consider such morphisms as defining germs of maps by which two cells are
equivalent.

With these interpretations of the ingredients, we may give the following definition,
which provides a structure upon which one may define PE (co)homology and various
other related constructions. The axioms will be further motivated below.

Definition 3.16 A system of internal symmetries (or SIS, for short) T consists of the
following data:
� A finite-dimensional and locally finite regular CW complex T .
� A directed set .ƒ;�/ called the magnitude poset.
� For each � 2ƒ and each pair of cells a, b 2 T , a set T�

a;b
of cellular homeo-

morphisms ˆW StT .a/! StT .b/ sending a to b . We denote the collection of
all such morphisms by T� .

This data is required to satisfy the following:
(G1) For all � 2ƒ and a 2 T we have that idSt.a/ 2 T

�
a;a .

(G2) For all � 2ƒ and ˆ 2 T�
a;b

we have that ˆ�1 2 T�
b;a

.

(G3) For all � 2ƒ, ˆ1 2 T
�
a;b

and ˆ2 2 T
�
b;c

, we have that ˆ2 ıˆ1 2 T
�
a;c .

(Inc) For all �1 � �2 we have that T�1 � T�2 .

(Res) For all � 2ƒ there exists some �res � � satisfying the following. Given any
b 2 T and face a� b , every morphism of T�res

a;� restricts to a morphism of T�
b;�

.

( �Res) Dually, for all � 2ƒ there exists some ��res � � satisfying the following. Given
any a 2 T and coface b � a, every morphism of T��res

b;�
is a restriction of some

morphism of T�a;� .

As explained above, morphisms ˆ 2 T�
a;b

should be interpreted as recording that cell
a is equivalent to cell b to magnitude � via ˆ. The groupoid axioms (G1)–(G3)
state that such morphisms should include the identity morphisms, be invertible and
that compatible morphisms are composable. The inclusion axiom (Inc) simply states
that if two cells are equivalent to magnitude �2 , via morphism ˆ, then they are still
equivalent via ˆ to any smaller magnitude �1 � �2 . In short, for �1 � �2 we have an
inclusion of groupoids T�2 ,!T�1 . The final two axioms (Res) and ( �Res) of restriction
and corestriction establish a coherence between the cellular structure of T and the
restrictions between the various morphisms of T.
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The results of this section may be generalised to systems of internal symmetries with
only minor modifications to the definitions and proofs, although these proofs are most
efficiently given in a combinatorial setting. We may derive direct analogues of the
following for SISs:

(1) PE or ePE (co)homology.

(2) The tiling space inverse limit presentation �T D lim
 ���2ƒ

.��; ��;�/ where the
approximants �� are CW complexes given by identifying cells of T which are
equivalent to magnitude �.

(3) Theorem 3.1, that the Čech cohomology of �T agrees with the PE cohomology
of T when the cells of T (for sufficiently large magnitudes) have trivial isotropy.

(4) Lemma 3.2, that we have invariance of the PE (co)homology of T over G

coefficients under barycentric refinement whenever G (for sufficiently large
magnitudes) has divisibility by the order of isotropy of cells in T.

(5) Theorem 3.3, ePE Poincaré duality H �.TIG/ŠHd��.TIG/. For this to hold,
we need firstly that the ambient space of T is a G–oriented d –manifold (or
even just homology G –manifold) with pattern-equivariant fundamental class � .
We also require the analogous condition on the divisibility of the coefficient
ring; that is, there exists some � 2ƒ for which G has division by the order of
isotropy groups T�a;a at every cell a of T.

Example 3.17 The initial insight in Penrose’s discovery of his famous tilings was
that “a regular pentagon can be subdivided into six smaller ones, leaving only five
slim triangular gaps” [33]. Bowers and Stephenson [11] took a similar subdivision but
chose, instead of methodically filling in the slim triangular gaps, to simply remove
them by identifying edges of the pentagons. Of course, this cannot be achieved in
Euclidean space with regular pentagons; the result is a combinatorial substitution. One
may produce, in an analogous way to in the Euclidean setting of [1; 16], limiting
combinatorial tilings. Declaring that each 2–cell of such a combinatorial tiling should
metrically correspond to a regular pentagon, the resulting tilings are of spaces which
are homeomorphic, but not isometric to Euclidean 2–space.

There is no notion of translation on the ambient spaces of these tilings, but there is of
orientation. Let T be a Bowers–Stephenson pentagonal tiling, which we consider here
simply as a regular cell complex with a choice of identification of each 2–cell with
the regular pentagon. We may define a corresponding SIS T0 as follows. Given cells
a, b 2 T and i 2N , consider the collection of maps taking the i –corona of a to the
i –corona of b , preserving orientation and distances on each pentagonal tile (such a
map is, of course, determined combinatorially by how it acts on cells). We let .T0/i

a;b

be the set of such maps restricted to the stars of a and b .
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We may construct from this data an inverse limit of approximants and associated
inverse limit space �0

T , analogously to the Euclidean setting. The points of �0
T may be

identified with pointed Bowers–Stephenson pentagonal tilings, two being “close” if they
agree via an orientation-preserving isometry on large patches about their origins, up to a
small perturbation of their origins. We have analogues of the ePE (co)homology groups,
and of Theorems 3.3 and 3.7. We may not identify the (integer) ePE cohomology with
the Čech cohomology of �0

T , since the cells have nontrivial isotropy, but we may after
replacing the tiling with its barycentric subdivision. These cohomology groups are
Poincaré dual to a modification of the ePE homology of T0

�
, defined in an analogous

fashion to the modified chain complexes C |
�
.T0
�
/ of Definition 3.6.

Our method of computation of the ePE homology groups in Section 4 easily generalises
to examples such as this, we find that

LH 1.�0
T/ŠH

|
1
.T0
�/ŠH1.T

0
�/Š 0;

LH 2.�0
T/ŠH

|
0
.T0
�/Š Z˚Z

�
1
6

�
;

H0.T
0
�/Š Z˚Z

�
1
6

�
:

Example 3.18 In this example we shall see how more general objects are also naturally
captured in this framework. The magnitude poset will be N , but endowed with the
partial ordering of m� n if m divides n; note that .N; j / is a directed set. Let T be
the standard cellular decomposition of Rd associated to the tiling of unit cubes with
vertices at the lattice points Zd . If cells a, b 2 T are equal up to a translation in nZd ,
then we let .T1/n

a;b
consist of the single map given by the restriction of this translation

between the stars of a and b . Otherwise, we set .T1/n
a;b
D∅.

It is easy to check that T1 thus defined satisfies the conditions of an SIS. A (co)chain
of T is PE with respect to T1 if and only if it is invariant under translation by
some full rank sublattice of Zd . We have trivial isotropy (everything is generated by
translations), and the analogous theorems and constructions of the previous sections
apply. For example, in dimension d D 1 we may calculate that

LH 0.�1
T/ŠH 0.T1/ŠH1.T

1/Š Z;

LH 1.�1
T/ŠH 1.T1/ŠH0.T

1/ŠQ:

The first isomorphisms are given by the analogue of Theorem 2.1 and the second
by the analogue of PE Poincaré duality of Theorem 2.2. The tiling space �1

T is
homeomorphic — in a fashion entirely analogous to the Gähler construction — to the
inverse limit

�1
T D lim

 ��
.S1; �m;n/;
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where, for mjn, the map �m;n is the standard degree n=m covering map of S1 . The
degree one PE homology group H1.T

1/ is generated by a Borel–Moore fundamental
class for R1 and the homology class p=q 2H0.T

1/ŠQ is represented by, for example,
the Borel–Moore 0–chain which assigns value p to each of the vertices of qZ. Note
that the sequence ni WD i ! is linearly ordered and cofinal in .N; j /, so the tiling space
could instead be expressed as

�1
T D lim

 ��
.S1 �2
 �S1 �3

 �S1 �4
 �S1 �5

 �� � � /:

We may restrict the construction of T1 above to the linearly ordered subset of mag-
nitudes f2n j n 2N0g. In this case, a (co)chain is PE if and only if it invariant under
translation by 2nZd for some n 2N0 . For d D 1, the corresponding tiling space is
the dyadic solenoid

�1
T D lim

 ��
.S1 �2
 �S1 �2

 �S1 �2
 �S1 �2

 �� � � /:

Whilst these examples are not given by tilings of finite local complexity, they are close
in spirit. Indeed, one may think of the dyadic example above as a hierarchical tiling. The
tiles (unit cubes) may be grouped into supertiles (cubes of side-length 2), which may
be grouped into level n supertiles (cubes of side-length 2n ). However, the groupings
of tiles cannot be determined using local geometric information in the underlying
tiling; one says that the substitution corresponding to this example is nonrecognisable.
The resulting system of internal symmetries is what one would get if the tiling were
capable of deducing such an imposed hierarchy from local geometric information. For
an alternative derivation of the dyadic solenoid as the tiling space of an infinite local
complexity tiling, see [34].

4 PE homology of hierarchical tilings

4.1 Substitution tilings and their hulls

The two main approaches to producing interesting examples of aperiodic tilings, such as
the Penrose tilings, are through the cut-and-project method (see [15]) and through tiling
substitutions (see [1]). A substitution rule consists of a finite collection of prototiles
of Rd, a rule for subdividing them and an expanding dilation which, when applied
to the subdivided prototiles, defines patches of translates of the original prototiles.
By iterating the substitution and inflating, one produces successively larger patches.
A tiling is said to be admitted by the substitution rule if every finite patch of it is
a subpatch of a translate of some iteratively substituted prototile. In analogy with
symbolic dynamics, one may think of the substitution rule as generating the allowed
language for a family of tilings.
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Under certain conditions on the substitution rule, tilings admitted by it exist and, in addi-
tion, for each such tiling T0 there is a supertiling T1 , based on inflated versions of the
prototiles, which subdivides to T0 and is itself a (dilation of an) admitted tiling. So T0

has a hierarchical structure: there is an infinite list of substitution tilings T0 , T1 , T2; : : :

of progressively larger tiles for which the tiles of Tn may be grouped to form the tiles
of TnC1 , with the substitution decomposing TnC1 to Tn . For fuller details on the
definition of substitution rules and their tilings, we refer the reader to [1; 16; 38].

To compute the Čech cohomology of a substitution tiling space �1 , one typically
constructs a finite CW complex � along with a self-map f of � for which

�1
Š lim
 ��
.�

f
 ��

f
 ��

f
 �� � � /:

The CW complex � may be defined in terms of the short-range combinatorics of the
patches of the substitution tilings, and the map f by the action of substitution. This
makes the Čech cohomology of a substitution tiling space computable.

Anderson and Putnam showed that when the substitution rule has a property known as
forcing the border, one may take � as, what is now known as, the AP complex [1], which
is precisely the level zero Gähler complex �1

0
(see Section 1.3). If the substitution

fails to force the border, one may work with the collared AP complex �1
1

instead.
Whilst conceptually simple, passing to the collared complex can be computationally
demanding; even for relatively simple substitution rules, the number of collared tiles
can be unwieldy. A powerful alternative approach was developed by Barge, Diamond,
Hunton and Sadun [5], which typically results in much smaller cochain complexes
than for the collared AP complex. One constructs a CW complex K� by, instead of
collaring tiles, collaring points of the ambient space of the tiling. A point of K� is
a description of how to tile an �–neighbourhood of the origin. The self map on the
complex defined by the substitution is not cellular, but for small � is homotopic to
a cellular map in a canonical way, which is sufficient for cohomology computations.
Another advantage of the BDHS approach is that the resulting inverse system possesses
natural stratifications, which are useful in breaking down the calculations to something
more tractable.

4.2 Overview of PE homology approach to calculation

We shall present below a method of calculation of the PE homology of a substitution
tiling. There are various motivations for introducing it. Firstly, as we shall see, the
“approximant complexes” and “connecting map” of the method are constructed from
the combinatorial information of the substitution in a very direct way, which makes
the approach highly amenable to computer implementation. An early implementation
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has been coded by the author, in collaboration with James Cranch, in the programming
language Haskell, and at present is applicable to any polytopal substitution tiling of
arbitrary dimension (although, aside from cubical substitutions, efficiently commu-
nicating the combinatorial information of a tiling substitution to the program is still
problematic, an issue shared with any machine computation of the cohomology of
substitution tilings). The approximant chain complexes of the method are much smaller
than for the collared AP method; the combinatorial information required from the
patches is the same as that for the BDHS approach.

Another reason for introducing this method is that it may be used to find the ePE
homology of a substitution tiling (see Example 4.9), which, as we have seen, yields
different information to the cohomology calculations. Furthermore, the method provides
explicit generators in terms of pattern-equivariant chains. The result for the ePE
homology of the Penrose tiling, along with precise descriptions of the generators of the
ePE homology, is essential in [42].

In the translational setting, our approach can be seen to produce isomorphic direct limit
diagrams to the approximant cohomologies of the BDHS method [5], at least after
collaring points of the tiling for the BDHS approximants in a way compatible with
the combinatorics of the tiling (although the method that we shall describe provides
a more combinatorial way of determining this diagram). The argument proceeds via
a stratification of the BDHS approximants (although one which is not preserved by
the connecting maps) or by applying a certain homotopy to the projective system of
BDHS approximants. However, the full details of this seem to be technical, at least in
general dimensions, and we avoid providing them here. In any case, the approximant
complexes and connecting maps between the approximant homologies that we shall
define are most naturally described in the PE homology framework. The approximant
complexes used here are precisely the duals of those used by Gonçalves [19] in his
computation of the K–theory of the C �–algebra associated to the stable relation of
a one or two-dimensional substitution tiling. This K–theory appears to be dual in a
certain sense to the K–theory of the hull (that is, of the unstable relation). The fact
that our technique — which involves the duals of the approximant complexes of [19] —
calculates the (regraded) Čech cohomology of the hull of a substitution tiling seems
to confirm this duality. A complete confirmation of the relationship would, however,
require consideration of the connecting maps of each method of calculation.

4.3 The method of computation

4.3.1 The approximant complex We shall assume throughout that T D T0 is a
cellular FLC tiling admitted by a primitive, recognisable, polytopal substitution rule !
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with inflation constant � > 1. We refer the reader to [1] for the notion of a primitive
polytopal substitution. We note that many of these assumptions may be relaxed sub-
stantially; instead of letting that detain us here, we shall discuss various generalisations
in Section 4.4.

Being a recognisable substitution means that for any tiling T0 admitted by ! there
exists a unique FLC tiling T1 , based on prototiles which are �–inflations of the original
prototiles, for which

� the rescaled tiling ��1.T1/ is also admitted by ! ;

� !.T1/D T0 ;

� T1 is locally derivable from T0 .

The first item simply states that the supertiling T1 is itself an inflate of an admitted
tiling. The second says that the substitution rule decomposes the supertiles of T1 to
the tiles of T0 . Thinking upside-down, one may group the tiles of T0 so as to form the
supertiling T1 . The third item states that this grouping may be performed using only
local information. Since !.T1/DT0 implies that T0 is locally derivable from T1 , the
two are MLD. This process may be repeated, yielding a hierarchy of tilings fTngn2N0

.
Each Tn carries a polytopal decomposition Tn , with Ti refining Tj for i � j .

Given a k –cell c of T0 , we name the pair of c along with the set of tiles properly
containing c the star of c . Henceforth, the translation class of such a star (where
translations preserve labels, if the cells are labelled) will be simply called a star, or
a k –star if we wish to specify the dimension of the central cell c . The first step of
the calculation is to enumerate the set of stars. This may be efficiently performed
algorithmically as follows:

(1) Begin with the set of d –stars, consisting of the prototiles of T. Put these stars
into sets Snew

0
and S acc

0
.

(2) Suppose that Snew
n ¤ ∅ and S acc

n have been constructed. Substitute each star
of Snew

n and find all stars whose centres are contained in the substituted central
(open) cell of the original star. All such stars which are not already elements of
S acc

n define the set Snew
nC1

, and are added to S acc
n to define S acc

nC1
.

(3) If Snew
n and S acc

n have been constructed but Snew
n D ∅, then the process is

terminated and the full list of stars is S WD S acc
n .

The stars, and the incidences between them, define our approximant chain complex:

Definition 4.1 We define the approximant chain complex

C .0/
�
.T1/ WD 0 C

.0/
0
.T1/

@1
 �C

.0/
1
.T1/

@2
 �� � �

@d
 �C

.0/

d
.T1/ 0
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Figure 4: The seven rigid equivalence classes of 0–stars, named, in Conway’s
notation, “sun”, “star”, “ace”, “deuce”, “jack”, “queen” and “king”, in this
order, followed by the seven 1–stars E1–E7

as follows. The degree k chain group C
.0/

k
.T1/ is freely generated by the k –stars;

C
.0/

k
.T1/ŠZn, where n is the number k –stars. The star of a .k�1/–cell c0 determines

the star of any k –cell c containing c0 . Orienting the central cell of each star, the
boundary maps @k are induced from the standard cellular boundary maps by

@k.s/D
X

.k�1/–stars s0

Œs0; s� � s0

and extending linearly. Here, Œs0; s� is the incidence number between the .k�1/–star s0

and k –star s . It is defined, for fixed s0 and s , to be the sum of incidence numbers Œc0; c�
where c0 is the central .k�1/–cell of s0 and c is a k –cell of s0 whose star is s . The
homology of the approximant chain complexes is the approximant homology H .0/

�
.T1/.

Note that since we are considering translation classes of stars, it may be that there are
multiple occurrences of a k –star s in a .k�1/–star s0 . An instructive perspective on
the definition of the approximant chain complex is to identify a generator star s with the
PE indicator chain 1.s/ 2 Ck.T

1/, the k –chain given by the (infinite) sum of k –cells
in TDT0 which are the centres of s in the tiling. With this identification, the boundary
maps of the approximant complex correspond to the standard cellular boundary maps
of C�.T

1/ defined in the ambient tiling. That is, C .0/
�
.T1/ is the subchain complex of

the PE complex C�.T
1/ consisting of those chains which, at any given cell c , depend

only on the local patch of tiles of T properly containing c .

Example 4.2 In the one-dimensional case, we may identify our tiling with a bi-infinite
sequence s 2 AZ over a finite alphabet A, and the substitution rule with a map
!W A!A� from the alphabet A to the set of nonempty words in A. A 0–star then
corresponds to a two-letter word from A2 which appears in s ; let us denote the set of
such admissible two-letter words by A2

! . A 1–star is simply a tile type, an element
of A. So the approximant complex is given by

0 Zm @1
 �Zn

 0;
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where mD #A2
! and nD #A. The boundary map @1 is defined on a2A as the formal

sum of admissible two-letter words whose first letter is a minus those whose second
letter is a.

Example 4.3 One may easily verify that, up to rigid motion, there are seven distinct
ways for a patch of Penrose kite and dart tiles to meet at a vertex, and seven ways
for them to meet at an edge. These stars are given in Figure 4. Any rotate of such a
patch by some 2�k

10
appears in a Penrose kite and dart tiling, so there are 54 0–stars

(the “sun” and “star” vertices are preserved by rotation by 2�
5

), there are 70 1–stars
and there are 20 2–stars, corresponding to the rotates of the kite and dart tiles. So the
approximant chain complex is of the form

C .0/
�
.T1/D 0 Z54 @1

 �Z70 @2
 �Z20

 0:

The boundary maps have a simple description in terms of the standard cellular boundary
maps. For example, the boundary of the indicator chain of the E1 edge is given by

@1.1.r
0 E1//D 1.r1 sun/C1.r5 jack/�1.r0 ace/�1.r5 queen/I

the head of an E1 edge is always a “sun” or “jack” vertex, and the tail is always an “ace”
or “queen”. The notation rk above indicates that the named patch has been rotated
by 2�k

10
relative to its depiction in Figure 4. We compute the approximant homology

groups as

H
.0/

k
.T1/Š

8<:
Z8 for k D 0;

Z5 for k D 1;

Z for k D 2:

Representative cycles for the generators of these approximant homology groups are as
in Example 2.3.

4.3.2 The connecting map In the case of the Penrose kite and dart substitution,
the inclusion of the approximant chain complex into the full PE chain complex is
a quasi-isomorphism. This is not true in general. We shall now describe how one
constructs a homomorphism

f W H .0/
�
.T1/!H .0/

�
.T1/

from the approximant homology to itself, called the connecting map, for which the PE
homology H�.T

1/ is isomorphic to the direct limit lim
��!
.H .0/
�
.T1/; f /.

To construct f , we now need to consider the passage from the tiling T0 to its super-
tiling T1 . By the explanation following Definition 4.1, we may identify C .0/

�
.T1/

with the subchain complex of PE chains which are determined at a cell c by the
patch of tiles properly containing c . To define f , we firstly define an auxiliary chain
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complex C .1/
�
.T1/, still a subcomplex of C�.T

1/, which consists of those PE chains of
TD T0 which are determined at any given cell of T0 by only which supertiles of T1

properly contain c . An alternative take on this is that one has a new set of generators
which, in degree k , are given by k –cells of the substituted central cells of the original
stars. The boundary maps of C .1/

�
.T1/ are induced from the standard cellular boundary

maps, analogously to C .0/
�
.T1/. That is, for a translation class of oriented k –cell s

from T0 , labelled by the patch information of supertiles which contain it, we define
@k.s/ by identifying s with the PE indicator chain 1.s/ 2 Ck.T

1/, and then define
@k.s/ to be the element of C

.1/

k�1
.T1/ corresponding to @.1.s// 2 Ck�1.T

1/.

There are two very natural maps from C .0/
�
.T1/ to C .1/

�
.T1/ which we shall use to

construct f . Let s be some k –star, which we identify with the PE indicator chain
1.s/ 2Ck.T

1/. Since 1.s/ is determined at any cell by the patch of supertiles properly
containing that cell, 1.s/ is also an element of C

.1/

k
.T1/. We define the chain map �

as this inclusion of chain complexes.

The combinatorics, and hence stars, of T0 and T1 are identical. Since we may identify
the stars of each, we may associate any chain � 2C

.0/

k
.T1/ with a chain � 0 2C BM

k
.T1/

which assigns coefficients to k –cells of T1 based on their neighbourhood stars in T1

identically to how � does in T0 . The chain map q is given by identifying � 0 with its
representation on the finer subcomplex T0 , induced by identifying the elementary chain
of a k –cell c of T1 with the sum of k –cells of T0 contained in c , suitably oriented
with respect to c . It is easily seen that q.�/ 2 C

.1/

k
.T1/. The chain map q is in some

sense simply a refinement. So as one may expect, q is a quasi-isomorphism; that is,
the induced map on homology

q�W H
.0/
�
.T1/!H .1/

�
.T1/

is an isomorphism; see Lemma 4.14.

Definition 4.4 We define the connecting map as

f WD .q�/
�1
ı ��W H

.0/
�
.T1/!H .0/

�
.T1/;

where the chain maps � and q are defined as above.

Theorem 4.5 There is a canonical isomorphism lim
��!
.H .0/
�
.T1/; f /ŠH�.T

1/.

By canonical here, we mean that the isomorphism is induced by a natural association
of cycles of the direct limit with PE cycles of C�.T

1/; a chain at the nth level of the
direct limit corresponds to a PE chain which only depends cellwise on its immediate
surroundings in the level n supertiling Tn . We delay the details of the proof to the
final subsection.
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We remark that the connecting map f is not canonically induced by a chain map
from C .0/

�
.T1/ to itself; it is defined at the level of homology rather than of chains.

Nonetheless, we may provide a geometrically intuitive picture of the action of f on the
approximant cycles. Suppose that � 2C .0/

k
.T1/ is a cycle, which we may identify with

a PE k –cycle of T0 that only depends at any k –cell c on the patch of tiles containing c .
Considered as a chain living inside the supertiling T1 (but still a chain of the finer
complex T0 ), � may no longer be supported on the k –skeleton of T1 , but it is still
determined cellwise by the local patches in T1 . Due to the homological properties of the
cells, we may find a chain � 2C .1/

kC1.T
1/ for which � 0 WD�C@.�/ is supported on the k –

skeleton of T1 . The combinatorics of T1 are identical to that of T0 , so we may identify
� 0 with a cycle of C

.0/

k
.T1/. The homology class of this cycle is precisely f .Œ��/, and

does not depend on the representative of Œ� � or � 2 C .1/
kC1

.T1/ that we chose. So, to
define f .Œ��/, we may “push” � to the k –skeleton of T1 in a way which is locally deter-
mined in T1 , and identify the result with the analogous homology class from H

.0/

k
.T1/.

Example 4.6 Recall from Example 4.2 that in the one-dimensional case we may
identify the generators of the degree zero approximant group with the admissible two-
letter words of A2

! , and in degree one with the letters of A. In degree one, as is always
the case in top degree, we have that H1.T

1/Š Z is generated by a fundamental class.
To compute the connecting map in degree zero, let ab be an admissible two-letter
word, which represents an indicator chain of C

.0/
0
.T1/ (which, abusing notation, we

shall also name ab here). Considered as a chain of the supertiling, ab lifts to the
element �.ab/ which marks each xy vertex of the supertiling for which the last letter
of !.x/ is a and the first letter of !.y/ is b , as well as vertices of the original tiling
interior to the supertiles, corresponding, for a supertile with label x , to occurrences of
ab in !.x/. There exists a 1–chain � of the original CW decomposition of the tiling
which only depends on ambient supertiles and for which abC @.�/ is supported on
the 0–skeleton of the supertiling. For example, we may choose � so as to shift all ab

vertices of T0 contained in the interiors of supertiles to the right endpoints of these
supertiles. So f .Œab�/ is represented by the chain

� WD
X

xy2A2
!

.!ab
left.xy// �xy;

where !ab
left.xy/ is the number of occurrences of the word ab in the substituted word

!.x/ �!.y/ with first letter of that occurrence of ab lying to the left of the � place-
holder. In the notation of the definition of the connecting map f , we have that
q.�/D �.ab/C@.�/, so f .Œab�/ WD q�1

� .��.Œab�//D Œ� �. Since those cycles associated
to indicator cochains of admissible two-letter words generate H

.0/
0
.T1/, the above rule

determines the connecting map f .
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Example 4.7 The approximant homology groups for the Penrose kite and dart tilings
are free abelian of ranks 8, 5 and 1 in degrees 0, 1 and 2, respectively. The connecting
map turns out to be an isomorphism in each degree. There is a subtlety with the Penrose
kite and dart substitution [33], in that the substituted tiles have larger support than the
inflated prototiles. In particular, the cell complex T0 of the tiling does not refine the
complex T1 of the supertiling. This is only a minor inconvenience; one may work over
a finer complex, corresponding to a Robinson triangle tiling, which refines both. The
general procedure described above remains essentially the same, and we shall subdue
this point in our discussion.

To demonstrate a typical application of the connecting map, we shall consider how it
acts on the cycle �0 2 C .0/

1
.T1/ of Example 2.3, illustrated in red in Figure 2, which

trails the bottoms of the dart tiles. We firstly consider �0 as a 1–cycle of the complex T0

which only depends at any given 1–cell by those supertiles of T1 properly containing it;
formally we consider the chain �.�0/ 2 C

.1/
1
.T1/. Let � 2 C .1/

2
.T1/ be the indicator

2–chain of the dart tiles of T0 ; it is the blue chain of Figure 2 (of course, we in fact have
that � is a member of the subcomplex C

.0/
2
.T1/, that is, � only depends on ambient

tiles, rather than supertiles in this case). Then �0C @.�/ is the 1–cycle, illustrated in
green in Figure 2, which runs along the 1–cells at the bottoms of the superdart tiles, but
with the opposite corresponding orientation to �0 . That is to say, �.�0/C@.�/D q.��0/,
so f .Œ�0�/ WD q�1

� .��.Œ�
0�//D�Œ�0�. More informally, we “push” the 1–cycle �0 to the

1–skeleton of the supertiling by adding to it the boundary of � , which is defined at any
2–cell by only which supertiles contain it, and identify the result with the corresponding
homology class of H .0/

1
.T1/.

4.4 Generalisations

There are several ways in which the method discussed above may be generalised, and
conditions of the substitution rule which may easily be relaxed. For example, the
primitivity condition of the substitution and the compatibility of the substitution with
the cellular decomposition may be weakened. More significantly, the method may be
modified to apply to mixed substitution systems, to compute the ePE homology groups
and applies naturally to non-Euclidean hierarchical tilings. Instead of providing the
full details of each generalisation, which is not our main focus here, we shall mostly
give brief outlines of the changes that need to be made in each case; the adaptations
needed to the proofs of the analogues of Theorem 4.5 are relatively straightforward in
each case.

4.4.1 Mixed substitutions A mixed or multi-substitution system [18] is a family
of substitutions acting upon the same prototile set. Loosely, whereas the language
for admissible tilings of a substitution rule ! is given by iteratively applying ! to
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the prototiles, in a mixed system one builds the language by applying the family of
substitutions to the prototiles in some chosen sequence.

Passing to the setting of mixed substitutions adds far more generality. For example, the
Sturmian words associated to some irrational number ˛ may be defined using a mixed
substitution system, which will be purely substitutive if and only if ˛ is a quadratic
irrational. In contrast to the purely substitutive case, the family of one-dimensional
mixed substitution tilings exhibit an uncountable number of distinct isomorphism
classes of degree one Čech cohomology groups [36]. In a mixed substitution tiling the
tiles group together to the supertiles, those into higher order supertiles, and so on, just
as in the purely substitutive case, but now the rules connecting the various levels of the
hierarchy are not constant. A general framework which captures this idea is laid out
in [17].

Passing to mixed substitution systems adds some complications, since the local combi-
natorics of the tilings Tn and the passage between them vary in n. However, the method
as described easily generalises to such examples. Now one needs to compute the list of
stars for each Tn to find the approximant homology groups, and the connecting maps
may vary at each level.

Example 4.8 (Arnoux–Rauzy sequences) The Arnoux–Rauzy words were originally
introduced in [3] as a generalisation of Sturmian words. Let k 2N�2 . The Arnoux–
Rauzy substitutions are defined over the alphabet AkDf1; 2; : : : ; kg and the k different
substitutions �i are given by �i.j / D j i for i ¤ j and �i.i/ D i . Fix an infinite
sequence .ni/i D .n0; n1; : : : / 2AN0

k
for which each element of Ak occurs infinitely

often. Then there exist bi-infinite Arnoux–Rauzy words for which every finite subword is
contained in some translate of a “supertile” �n0

ı�n1
ı� � �ı�nl

.i/. We may consider such
a word as defining a tiling of labelled unit intervals of R1. The system is recognisable,
so for such a tiling T0 , one may uniquely group the tiles to a tiling T1 of tiles of
labelled intervals for which the substitution �n0

decomposes T1 to T0 . The process
may be repeated, leading to an infinite hierarchy of tilings Tn for which the substitution
�ni

subdivides TiC1 to Ti ; the supertiles of these tilings become arbitrarily large as
one passes up the hierarchy.

The two-letter words of Ti are the elements of A2
k

with at least one occurrence of
ni 2 Ak . So the degree zero approximant homology at level i , based upon stars of
supertiles of Ti , is isomorphic to Zk , freely generated by the indicator 0–chains of
vertices of the form ni � j , where j 2Ak is arbitrary. A simple calculation shows that,
with this choice of basis, the connecting map between level i and level i C 1 is the
unimodular matrix Mi given by the identity matrix but with a column of 1’s down the
nth

i column, which, incidentally, is the incidence matrix of the substitution �ni
.
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So the degree one Čech cohomology of the tiling space of the Arnoux–Rauzy words
associated to any given sequence .ni/i 2AN0

k
is

LH 1.�1
T/ŠH 1.T1/ŠH0.T

1/Š lim
��!
.Zk M0
��!Zk M1

��!Zk M2
��!� � � /Š Zk :

It is interesting to note that the matrices above are related to continued fraction algo-
rithms. For the k D 2 case, the Arnoux–Rauzy words are precisely the Sturmian words.
To an irrational ˛ , the sequence .ni/i is chosen according to the continued fraction
algorithm for ˛ (see [14, Section 3.2]) and the sequence of matrices Mi of the above
direct limit determine the partial quotients of ˛ . Whilst the isomorphism classes of
the first Čech cohomology groups do not distinguish these tiling spaces, their order
structure [32] is a rich invariant. Although we shall not give full details here, features
such as the order structure of the cohomology groups are preserved by the method
calculation described above, via Poincaré duality.

4.4.2 Euclidean pattern-equivariance The method is easily adjusted to compute
the ePE homology groups, based on chains which are determined cellwise by their
i –coronas, for sufficiently large i , up to rigid motion rather than just up to translation.
The method proceeds as before, but where one took translation classes of stars one
simply now takes stars up to rigid equivalence.

Nontrivial isotropy may cause issues in this setting. If any of the stars have self-
symmetries which act nontrivially on the central cells, then one may only compute over
suitably divisible coefficients.

Computations of this sort are of particular interest since they provide different results
to the ePE cohomology calculations. However, it is possible to modify the method
to compute the ePE cohomology (and thus the Čech cohomology of the space �0

T )
using this method for two-dimensional tilings. The ideas follow naturally from the
discussions of Section 3.3. One computes H |

�
.T0/ by using a similar method but

restricting to indicator chains on 0–stars which assign coefficients which are divisible
by n to 0–stars with n–fold rotational symmetry.

Example 4.9 Instead of providing more detail on the general method, we now demon-
strate it on the Penrose kite and dart tilings, which should provide sufficient detail to
the general method. To begin calculation, we must firstly enumerate the list of stars up
to rigid motion, as we have already done in Figure 4. Since there are seven 0–stars,
seven 1–stars and two 2–stars (the kites and darts) up to rigid motion, the approximant
chain complex for the ePE homology is given by

C .0/
�
.T0/D 0 Z7 @1

 �Z7 @2
 �Z2

 0:
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Again, the boundary maps are induced from the standard cellular boundary maps after
identifying the generators of these chain groups with indicator chains of the tiling. For
example,

@1.1.E1//D 1.sun/C1.jack/� 1.ace/� 1.queen/:

We calculate the approximant homology groups as

H
.0/

k
.T0/Š

8<:
Z2˚ .Z=5/ for k D 0;

Z for k D 1;

Z for k D 2:

The connecting map is defined essentially identically to the translational case, and we
find that it is an isomorphism in each degree. So the approximant homology groups
above are isomorphic to the ePE homology groups of the Penrose kite and dart tilings,
and the generators of the approximant homology groups may be taken as generators of
the ePE homology.

The most interesting feature here is the 5–torsion in degree zero, which is not found in
the degree two ePE cohomology, breaking Poincaré duality over integral coefficients.
It is generated by the element t D 1.sun/C1.star/�1.queen/, illustrated in Figure 3,
where one can see that 5t is nullhomologous via the boundary of

�1.E1/C1.E2/�1.E4/� 2 � 1.E7/:

To calculate the ePE cohomology, or equivalently (according to Theorem 3.1) the Čech
cohomology LH �.�0

T/, we may compute the Poincaré dual groups H
|
2��
.T0/ (see

Section 3.3). The method is similar to before, but now one replaces the approximant
complex with the subcomplex

0 5Z˚ 5Z˚Z5 @1
 �Z7 @2

 �Z2
 0;

where the degree zero chain group is the subgroup of C
.0/
0
.T0/ which restricts the

coefficients on the sun and star vertices to multiples of 5, since these vertices have
5–fold rotational symmetry and the other vertices have trivial rotational symmetry. We
calculate the modified approximant homology groups in degree zero as Z2 and the
connecting maps as isomorphisms, in agreement with the chain of isomorphisms

LH 2.�0
T/ŠH 2.T0/ŠH

|
0
.T0/Š lim

��!
.Z2; f /Š Z2:

4.4.3 Non-Euclidean tilings The final generalisation which we shall discuss is to
non-Euclidean tilings. Again, we shall use the pentagonal tilings of Bowers and
Stephenson as our running example. There is no natural action of translation for
these tilings but, as discussed in Example 3.17, there is a natural analogue of the ePE
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(co)homology groups. The method above, with essentially no modifications, may be
used to compute them:

Example 4.10 One begins by listing the rigid equivalence classes of stars from the
tiling. For a Bowers–Stephenson pentagonal tiling, there are two 0–stars, corresponding
to those vertices meeting three tiles and those meeting four, there is one 1–star and one
2–star. However, the 1–star has rotational symmetry which reverses the orientation
of its central 1–cell. Since we have nontrivial cell isotropy, we may only compute over
suitably divisible coefficients. Over Q coefficients, the approximant complex is given by

C .0/
�
.T0/D 0 Q2 @1

 � 0
@2
 �Q 0:

It follows that the approximant homology over Q coefficients is H
.0/

k
.T0IQ/ Š

Q2 , 0, Q for k D 0, 1, 2, respectively. The connecting map has the analogous
definition to the Euclidean case, and we find it to be an isomorphism in each degree.

To compute homology over integral coefficients, we pass to the barycentric subdivision.
Now we have four 0–stars: two of them corresponding to the two 0–stars of the original
tiling, one corresponding to the barycentre of each edge and one corresponding to
the barycentre of each pentagon. There are three 1–stars and two 2–stars. So the
approximant chain complexes over Z coefficients are

C .0/
�
.T0
�/D 0 Z4 @1

 �Z3 @2
 �Z2

 0:

One computes H
.0/
0
.T0
�
/ŠZ2, H

.0/
1
.T0
�
/Š 0 and H

.0/
2
.T�/ŠZ. So H1.T

0
�
/Š 0,

and of course H2.T
0
�
/Š Z is generated by a fundamental class. One may calculate

the connecting map in degree zero as having eigenvectors which span Z2 and have
eigenvalues 1 and 6, so H0.T

0
�
/Š Z˚Z

�
1
6

�
.

To compute the analogue of the ePE cohomology of T� (and hence the Čech coho-
mology of the associated tiling space �0

T ), one may calculate the modified groups
H |
�
.T0
�
/ and implement Poincaré duality. At the approximant stage, this amounts to

using instead the chain complexes

0 2Z˚ 3Z˚ 4Z˚ 5Z
@1
 �Z3 @2

 �Z2
 0;

since the 0–stars of T� possess isotropy of orders 2, 3, 4 and 5. After computing
the connecting maps and corresponding direct limits, we find that

LH 0.�0
T/ŠH 0.T0

�/ŠH
|
2
.T0
�/Š Z;

LH 1.�0
T/ŠH 1.T0

�/ŠH
|
1
.T0
�/Š 0;

LH 2.�0
T/ŠH 2.T0

�/ŠH
|
0
.T0
�/Š Z˚Z

�
1
6

�
:
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It should be remarked that the above calculation may be performed quite painlessly by
hand, the combinatorial information required being surprisingly manageable, in spite
of the substitution rule not forcing the border.

4.5 Proof of Theorem 4.5

Definition 4.11 For a cellular Borel–Moore k –chain �2C BM
k
.T0/, write �2C

.n/

k
.T1/

to mean that � is determined at any k –cell c of T0 by the immediate surroundings
of c in the level n supertiling Tn . More precisely, whenever there is a translation
mapping k –cell a to b in T0 , and also the patch of tiles of Tn containing a to the
corresponding patch at b , the k –cells a and b have the same coefficient in � . We say
that � is hierarchical if � 2 C

.n/

k
.T1/ for some n 2N0 and write C

.1/

k
.T1/ for the

collection of all hierarchical k –chains.

It is not hard to see that for � 2 C
.n/

k
.T1/ we also have that @.�/ 2 C

.n/

k�1
.T1/, so

we have chain complexes C .n/
�
.T1/ for every n 2N0[f1g. Furthermore, since the

level n supertiling Tn is determined locally by the level nC 1 supertiling TnC1 via
the substitution rule, for all m� n we have an inclusion of chain complexes

�m;nW C
.m/
�

.T1/ ,! C .n/
�
.T1/:

Importantly, every hierarchical chain is PE. Indeed, if a chain � is determined locally
at a cell c depending only on where c sits in the patch of supertiles containing c ,
then � is also determined there by the i –corona of c in T0 , where i is chosen large
enough so as to deduce the level n supertile decomposition at c (such an i exists by
recognisability). We denote the inclusion of chain complexes by

�1W C
.1/
�

.T1/ ,! C�.T
1/:

Unfortunately, it is not true that a PE chain must be hierarchical. Indeed, the i –corona
of a cell c of T0 need not be determined by the supertile containing c when c is
interior, but close to the boundary of a supertile. On the other hand, if a k –cycle �
is PE, intuitively � only depends on very local combinatorics of the tiles of Tn , relative
to the sizes of the tiles of Tn , for n sufficiently large. One would expect that such a
k –cycle could be perturbed, in a pattern-equivariant way, to a hierarchical k –cycle.
More precisely, one would expect for there to exist a PE .kC1/–chain � for which
� C @.�/ is supported on the k –skeleton and is still PE to a small radius relative to
the sizes of the tiles, which would force � C @.�/ to be hierarchical. To this end, we
introduce the following technical lemma:

Lemma 4.12 Let P be a d –dimensional polytope, with polytopal decomposition
@P of its boundary and ı > 0; there exist a function hW R>0 ! R>0 satisfying the
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following: Let � > 1 and the inflated polytope �P have a cellular decomposition P�
whose cells have diameter bounded by ı . For any relative k –cycle � of P� modulo
the boundary @P� , with k < d , there exists �� 2 CkC1.P�/ for which � C @.�� / is
supported on @P� ; we may choose such chains �� such that, if �1 and �2 agree at
distance greater than r from a subset of cells of �.@P/, then ��1

and ��2
agree at

distance greater than h.r/ from those cells.

Proof Let � 2 Ck.P�/ be a chain with @.�/ supported on @P� . By the homological
properties of cells, there exists some �� for which �C@.�� / is supported on @P� . For
any other choice of � 0 which agrees with � further than distance r from @P� , we have
that � 0C @.�� / is supported on an .rCı/–neighbourhood of @P� . So we may restrict
attention to those relative cycles � supported on an .rCı/–neighbourhood of @P� .

So now suppose that � is supported on an rCı neighbourhood of @P� , and let c 2 @P
be a .d�1/–cell of the boundary of P . There exists a chain � of P� , supported on
a .C rCı/–neighbourhood of �c , for which � C @.�/ is supported on @P� union a
.C rCı/–neighbourhood of the remaining d �1 cells of �.@P/; here, C only depends
on the polytope P . Indeed, for sufficiently large �, this statement would hold for
P� replaced with a cellular decomposition of the disc of radius �, the chain � being
induced by a radial deformation retraction of an .rCı/–neighbourhood of the boundary
of the disc to its boundary. The result for the polytope P may be lifted from the case
of a disc by the fact that polytopes are bi-Lipschitz equivalent to the standard unit disc.
We may repeat this construction for the remaining d�1 cells. As a result, we construct
a chain �� for which � C @.�� / is supported on @P� . For any relative cycle � 0 which
agrees with � distance further than r1 away from the .d�2/–skeleton of �@P , we
have that � 0C @.�� / is supported on some r2 –neighbourhood of the .d�2/–skeleton,
where r1 and r2 depend only on r and not �. We may now repeat this argument for
those relative chains which are supported on neighbourhoods (of radius depending only
on r ) of the k –skeleton of �.@P/ for successively smaller k , from which the result
follows.

Lemma 4.13 The inclusion �1W C .1/
�

.T1/ ,! C�.T
1/ is a quasi-isomorphism.

Proof For a cellular Borel–Moore k –chain � of T0 , let us write that � is PEn.r/

to mean that the values of � at two k –cells a and b of T0 are equal whenever there
are points x 2 a and y 2 b (as open cells) for which the patches TnŒBr C x� and
TnŒBr C y� are equal up to a translation taking a to b . So a hierarchical chain is
nothing other than a chain which is PEn.0/ for some n 2N0 .

Let � 2 Ck.T
1/, so � is PEn.r/ for all n 2N0 for some r . By the fact that the cells

are polytopal, for sufficiently large n we have that the patch of tiles of Tn within
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radius r of any cell c of T0 is determined by the star in Tn of a cell of Tn within
C r of c . So the value of � at any cell c of T0 contained in a supertile t of Tn is
determined by the star of a subcell of t in Tn within radius C r of c .

We may now appeal to the previous lemma. By FLC, there are only a finite number
of translation classes of polytopal cells in T0 , and they all have diameter bounded
by some ı > 0. We may find a function hW R>0! R>0 satisfying the result of the
above lemma for each polytopal cell. Since � only depends at subcells of supertiles on
stars of cells within C r of those cells, we may construct a chain � for which �C@.�/
is supported on the .d�1/–skeleton of Tn and which only depends on stars of cells
within h.r/ in Tn . So we may find a chain � for which � C @.�/ is supported on the
.d�1/–skeleton of Tn and which is PEn.r

0/, where r 0 only depends on r and not
on n.

For sufficiently large n, we may repeat this process down the skeleta. As a result, we
construct a chain � for which � C @.�/ is supported on the k –skeleton of Tn (recall
that k is the degree of � ) and is PEn.r

0/ with r 0 depending only on r . We claim that
for sufficiently large n such a cycle must be hierarchical. Indeed, since � is a cycle, it
is determined across any k –cell of Tn by its value on any k –cell of T0 contained in
that cell. For sufficiently large n, for each k –cell c of Tn there is an interior k –cell
of T0 for which the tiles of Tn within radius r 0 about that cell are precisely those of
the star of c in Tn . Since � C @.�/ is PEn.r

0/, it follows that � is determined at any
k –cell of Tn by the star of that cell. Hence, � C @.�/ 2 C

.1/

k
.T1/, so we have shown

that �� is surjective. Showing injectivity is analogous, applying the same procedure to
boundaries in place of cycles.

The lemma above allows us to work with the chain complex C .1/
�

.T1/ in computing
the homology of C�.T

1/. The advantage to this is that C .1/
�

.T1/ possesses a natural
filtration by the subchain complexes C .n/

�
.T1/. The following lemma shows that the

approximant homology groups H .n/
�
.T1/ of these subcomplexes are all isomorphic,

and in a way such that the induced inclusions .�n;nC1/� between them are the same:

Lemma 4.14 For n 2N0 we have canonical quasi-isomorphisms

qnW C
.0/
�
.T1/ ,! C .n/

�
.T1/

for which .q1/
�1
� ı .�0;1/� D .qnC1/

�1
� ı .�n;nC1/� ı .qn/� .

Proof Let m � n. Up to rescaling, the set of stars of Tm and Tn are identical. A
generating element of C

.m/

k
.T1/ is an indicator chain 1.c/ of a translation class of

k –cell c of T0 , labelled by where it lies in the patch of tiles of Tm containing it. We
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may define chain maps qm;nW C
.m/
�

.T1/! C .n/
�
.T1/ by sending such an element to

the sum of indicator chains 1.c0/ of translation classes of k –cells c0 , suitably oriented,
which are contained in the regions occupied by the analogous (inflated) locations of c

in the tiling Tn .

Let us write qn for q0;n . A k –cycle � 2 C
.n/

k
.T1/ is in the image of qn if and only if

it is supported on the k –skeleton of Tn . We may now mimic the proof of Lemma 3.2,
replacing � with qn , to show that each qn is a quasi-isomorphism. The following
identities are easily verified: qj ;k ı qi;j D qi;k and �j ;jC1 ı qj D q1;jC1 ı �0;1 for
i�j �k . It follows that .qnC1/

�1
� ı.�n;nC1/�ı.qn/�D .qnC1/

�1
� ı.q1;nC1/�ı.�0;1/�D

.qnC1/
�1
� ı ..q0;nC1/� ı .q0;1/

�1
� / ı .�0;1/� D .q1/

�1
� ı .�0;1/� .

The chain maps �0;1 and q1 are denoted by � and q , respectively, in the definition of
the connecting map f WD .q�/�1 ı �� . We may now prove Theorem 4.5, that H�.T

1/

is canonically isomorphic to the direct limit lim
��!
.H .0/
�
.T1/; f /. By Lemma 4.14, we

have the following diagram:

H .0/
�
.T1/ H .0/

�
.T1/ H .0/

�
.T1/ H .0/

�
.T1/ � � �

H .0/
�
.T1/ H .1/

�
.T1/ H .2/

�
.T1/ H .3/

�
.T1/ � � �

f f f f

.�0;1/� .�1;2/� .�2;3/� .�3;4/�

.q0/� D idŠ .q1/�Š .q2/�Š .q3/�Š

This isomorphism of directed systems induces an isomorphism

lim
��!
.H .0/
�
.T1/; f /Š lim

��!
.H .n/
�
.T1/; .�m;n/�/:

Since, by definition, C .1/
�

.T1/D
S1

nD0 C .n/
�
.T1/, we may identify C .1/

�
.T1/ with

the direct limit lim
��!
.C .n/
�
.T1/; �m;n/. So by Lemma 4.13 we have the string of quasi-

isomorphisms

lim
��!
.C .n/
�
.T1/; �m;n/

Š
�!C .1/

�
.T1/

�1
,�!C�.T

1/:

Applying homology and combining with the isomorphism of direct limits established
above, we have that lim

��!
.H .0/
�
.T1/; f /ŠH�.T

1/.

References
[1] J E Anderson, I F Putnam, Topological invariants for substitution tilings and their

associated C �–algebras, Ergodic Theory Dynam. Systems 18 (1998) 509–537 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.1017/S0143385798100457
http://dx.doi.org/10.1017/S0143385798100457
http://msp.org/idx/mr/1631708


Pattern-equivariant homology 1371

[2] P Arnoux, V Berthé, H Ei, S Ito, Tilings, quasicrystals, discrete planes, generalized
substitutions, and multidimensional continued fractions, from “Discrete models: combi-
natorics, computation, and geometry”, Discrete Math. Theor. Comput. Sci. Proc. AA,
Maison Inform. Math. Discrèt., Paris (2001) 59–78 MR

[3] P Arnoux, G Rauzy, Représentation géométrique de suites de complexité 2nC1 , Bull.
Soc. Math. France 119 (1991) 199–215 MR

[4] M Baake, M Schlottmann, P D Jarvis, Quasiperiodic tilings with tenfold symmetry
and equivalence with respect to local derivability, J. Phys. A 24 (1991) 4637–4654 MR

[5] M Barge, B Diamond, J Hunton, L Sadun, Cohomology of substitution tiling spaces,
Ergodic Theory Dynam. Systems 30 (2010) 1607–1627 MR

[6] J Bellissard, A Julien, J Savinien, Tiling groupoids and Bratteli diagrams, Ann. Henri
Poincaré 11 (2010) 69–99 MR

[7] R Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. No. 66,
Amer. Math. Soc., Providence, RI (1966) MR

[8] V Berthé, A Siegel, Tilings associated with beta-numeration and substitutions, Integers
5 (2005) art. id. A2 MR

[9] A Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5
(1984) 7–16 MR

[10] R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Mathemat-
ics 82, Springer, New York (1982) MR

[11] P L Bowers, K Stephenson, A “regular” pentagonal tiling of the plane, Conform.
Geom. Dyn. 1 (1997) 58–68 MR

[12] A Clark, J Hunton, Tiling spaces, codimension one attractors and shape, New York J.
Math. 18 (2012) 765–796 MR

[13] A Clark, L Sadun, When shape matters: deformations of tiling spaces, Ergodic Theory
Dynam. Systems 26 (2006) 69–86 MR

[14] F Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift
factors, Ergodic Theory Dynam. Systems 20 (2000) 1061–1078 MR

[15] A Forrest, J Hunton, J Kellendonk, Topological invariants for projection method
patterns, Mem. Amer. Math. Soc. 758, Amer. Math. Soc., Providence, RI (2002) MR

[16] N P Frank, A primer of substitution tilings of the Euclidean plane, Expo. Math. 26
(2008) 295–326 MR

[17] N P Frank, L Sadun, Fusion: a general framework for hierarchical tilings of Rd ,
Geom. Dedicata 171 (2014) 149–186 MR

[18] F Gähler, G R Maloney, Cohomology of one-dimensional mixed substitution tiling
spaces, Topology Appl. 160 (2013) 703–719 MR

Algebraic & Geometric Topology, Volume 17 (2017)

https://hal.inria.fr/hal-01182971
https://hal.inria.fr/hal-01182971
http://msp.org/idx/mr/1888763
http://www.numdam.org/item?id=BSMF_1991__119_2_199_0
http://msp.org/idx/mr/1116845
http://stacks.iop.org/0305-4470/24/4637
http://stacks.iop.org/0305-4470/24/4637
http://msp.org/idx/mr/1132337
http://dx.doi.org/10.1017/S0143385709000777
http://msp.org/idx/mr/2736888
http://dx.doi.org/10.1007/s00023-010-0034-7
http://msp.org/idx/mr/2658985
http://msp.org/idx/mr/0216954
https://eudml.org/doc/129035
http://msp.org/idx/mr/2191748
http://dx.doi.org/10.1016/S0195-6698(84)80012-8
http://msp.org/idx/mr/746039
http://dx.doi.org/10.1007/978-1-4757-3951-0
http://msp.org/idx/mr/658304
http://dx.doi.org/10.1090/S1088-4173-97-00014-3
http://msp.org/idx/mr/1479069
http://nyjm.albany.edu:8000/j/2012/18_765.html
http://msp.org/idx/mr/2991423
http://dx.doi.org/10.1017/S0143385705000623
http://msp.org/idx/mr/2201938
http://dx.doi.org/10.1017/S0143385700000584
http://dx.doi.org/10.1017/S0143385700000584
http://msp.org/idx/mr/1779393
http://dx.doi.org/10.1090/memo/0758
http://dx.doi.org/10.1090/memo/0758
http://msp.org/idx/mr/1922206
http://dx.doi.org/10.1016/j.exmath.2008.02.001
http://msp.org/idx/mr/2462439
http://dx.doi.org/10.1007/s10711-013-9893-7
http://msp.org/idx/mr/3226791
http://dx.doi.org/10.1016/j.topol.2013.01.019
http://dx.doi.org/10.1016/j.topol.2013.01.019
http://msp.org/idx/mr/3022738


1372 James J Walton

[19] D Gonçalves, On the K–theory of the stable C �–algebras from substitution tilings, J.
Funct. Anal. 260 (2011) 998–1019 MR

[20] B Grünbaum, G C Shephard, Tilings and patterns, W H Freeman, New York (1987)
MR

[21] A Haynes, M Kelly, B Weiss, Equivalence relations on separated nets arising from
linear toral flows, Proc. Lond. Math. Soc. 109 (2014) 1203–1228 MR

[22] A Haynes, H Koivusalo, J Walton, A characterization of linearly repetitive cut and
project sets, preprint (2015) arXiv

[23] J Kellendonk, The local structure of tilings and their integer group of coinvariants,
Comm. Math. Phys. 187 (1997) 115–157 MR

[24] J Kellendonk, Pattern-equivariant functions and cohomology, J. Phys. A 36 (2003)
5765–5772 MR

[25] J Kellendonk, Pattern equivariant functions, deformations and equivalence of tiling
spaces, Ergodic Theory Dynam. Systems 28 (2008) 1153–1176 MR

[26] J Kellendonk, M V Lawson, Tiling semigroups, J. Algebra 224 (2000) 140–150 MR

[27] J Kellendonk, I F Putnam, Tilings, C �–algebras, and K–theory, from “Directions in
mathematical quasicrystals” (M Baake, R V Moody, editors), CRM Monogr. Ser. 13,
Amer. Math. Soc., Providence, RI (2000) 177–206 MR

[28] J Kellendonk, I F Putnam, The Ruelle–Sullivan map for actions of Rn , Math. Ann.
334 (2006) 693–711 MR

[29] M Kelly, L Sadun, Pattern equivariant cohomology and theorems of Kesten and Oren,
Bull. Lond. Math. Soc. 47 (2015) 13–20 MR

[30] G Lafitte, M Weiss, Computability of tilings, from “Fifth International Conference on
Theoretical Computer Science” (G Ausiello, J Karhumäki, G Mauri, L Ong, editors),
Int. Fed. Inf. Process. 273, Springer, New York (2008) 187–201 MR

[31] J R Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, CA
(1984) MR

[32] N Ormes, C Radin, L Sadun, A homeomorphism invariant for substitution tiling
spaces, Geom. Dedicata 90 (2002) 153–182 MR

[33] R Penrose, Pentaplexity: a class of nonperiodic tilings of the plane, from “Geometrical
combinatorics” (F C Holroyd, R J Wilson, editors), Res. Notes in Math. 114, Pitman
(1984) 55–65 MR

[34] N Priebe Frank, L Sadun, Fusion tilings with infinite local complexity, Topology Proc.
43 (2014) 235–276 MR

[35] C Radin, Aperiodic tilings, ergodic theory, and rotations, from “The mathematics of
long-range aperiodic order” (R V Moody, editor), NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci. 489, Kluwer, Dordrecht (1997) 499–519 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.1016/j.jfa.2010.10.020
http://msp.org/idx/mr/2747010
http://msp.org/idx/mr/857454
http://dx.doi.org/10.1112/plms/pdu036
http://dx.doi.org/10.1112/plms/pdu036
http://msp.org/idx/mr/3283615
http://msp.org/idx/arx/1503.04091
http://dx.doi.org/10.1007/s002200050131
http://msp.org/idx/mr/1463824
http://dx.doi.org/10.1088/0305-4470/36/21/306
http://msp.org/idx/mr/1985494
http://dx.doi.org/10.1017/S014338570700065X
http://dx.doi.org/10.1017/S014338570700065X
http://msp.org/idx/mr/2437225
http://dx.doi.org/10.1006/jabr.1999.8120
http://msp.org/idx/mr/1736698
http://msp.org/idx/mr/1798993
http://dx.doi.org/10.1007/s00208-005-0728-1
http://msp.org/idx/mr/2207880
http://dx.doi.org/10.1112/blms/bdu088
http://msp.org/idx/mr/3312959
http://dx.doi.org/10.1007/978-0-387-09680-3_13
http://msp.org/idx/mr/2757375
http://msp.org/idx/mr/755006
http://dx.doi.org/10.1023/A:1014942402919
http://dx.doi.org/10.1023/A:1014942402919
http://msp.org/idx/mr/1898159
http://msp.org/idx/mr/777156
http://topology.auburn.edu/tp/reprints/v43/
http://msp.org/idx/mr/3104922
http://msp.org/idx/mr/1460035


Pattern-equivariant homology 1373

[36] D Rust, An uncountable set of tiling spaces with distinct cohomology, Topology Appl.
205 (2016) 58–81 MR

[37] L Sadun, Pattern-equivariant cohomology with integer coefficients, Ergodic Theory
Dynam. Systems 27 (2007) 1991–1998 MR

[38] L Sadun, Topology of tiling spaces, University Lecture Series 46, Amer. Math. Soc.,
Providence, RI (2008) MR

[39] L Sadun, R F Williams, Tiling spaces are Cantor set fiber bundles, Ergodic Theory
Dynam. Systems 23 (2003) 307–316 MR

[40] K Schmidt, Multi-dimensional symbolic dynamical systems, from “Codes, systems,
and graphical models” (B Marcus, J Rosenthal, editors), IMA Vol. Math. Appl. 123,
Springer, New York (2001) 67–82 MR

[41] D Shechtman, I Blech, D Gratias, J W Cahn, Metallic phase with long-range orien-
tational order and no translational symmetry, Phys. Rev. Lett. 53 (1984) 1951–1953

[42] J Walton, Cohomology of rotational tiling spaces, preprint (2016) arXiv

[43] E C Zeeman, Dihomology, III: A generalization of the Poincaré duality for manifolds,
Proc. London Math. Soc. 13 (1963) 155–183 MR

Department of Mathematics, University of York
Heslington, YO10 5DD, United Kingdom

jamie.walton@york.ac.uk

http://maths.york.ac.uk/www/jjw548

Received: 10 February 2014 Revised: 22 September 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.topol.2016.01.020
http://msp.org/idx/mr/3493307
http://dx.doi.org/10.1017/S0143385707000259
http://msp.org/idx/mr/2371606
http://dx.doi.org/10.1090/ulect/046
http://msp.org/idx/mr/2446623
http://dx.doi.org/10.1017/S0143385702000949
http://msp.org/idx/mr/1971208
http://dx.doi.org/10.1007/978-1-4613-0165-3_3
http://msp.org/idx/mr/1861953
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://dx.doi.org/10.1103/PhysRevLett.53.1951
http://msp.org/idx/arx/1609.06606
http://dx.doi.org/10.1112/plms/s3-13.1.155
http://msp.org/idx/mr/0153011
mailto:jamie.walton@york.ac.uk
http://maths.york.ac.uk/www/jjw548
http://msp.org
http://msp.org




msp
Algebraic & Geometric Topology 17 (2017) 1375–1405

Fully irreducible automorphisms of the free group
via Dehn twisting in ]k.S

2�S 1/

FUNDA GÜLTEPE

By using a notion of a geometric Dehn twist in ]k.S
2 �S1/ , we prove that when

projections of two Z–splittings to the free factor complex are far enough from each
other in the free factor complex, Dehn twist automorphisms corresponding to the
Z–splittings generate a free group of rank 2 . Moreover, every element from this free
group either is conjugate to a power of one of the Dehn twists or is a fully irreducible
outer automorphism of the free group. We also prove that, when the projections
of Z–splittings are sufficiently far away from each other in the intersection graph,
the group generated by the Dehn twists has automorphisms that are either conjugate
to Dehn twists or atoroidal fully irreducible.

20F28, 20F65, 57M07

1 Introduction

Due to their dynamical properties, fully irreducible outer automorphisms are important
to understanding the dynamics and geometric structure of Out.Fk/ and its subgroups;
see Levitt and Lustig [22], Clay and Pettet [5] and Behrstock, Bestvina and Clay [1].
Just like pseudo-Anosov surface homeomorphisms, fully irreducibles are characterized
to be the class of automorphisms no power of which fixes a conjugacy class of a proper
free factor of Fk . Since their dynamical properties and their role in Out.Fk/ are
similar to those of pseudo-Anosov mapping classes for the mapping class group, to
construct fully irreducibles it is natural to seek ways similar to those of pseudo-Anosov
constructions. In this work we will provide such a construction using Dehn twist
automorphisms, by composing powers of Dehn twists from the free group of rank 2

that they generate. This is inspired by the work of Thurston on pseudo-Anosov mapping
classes of the mapping class group of a surface; see Thurston [30]. Yet in our proof
we use a ping-pong method similar to that used by Hamidi-Tehrani [12] to generalize
Thurston’s result to Dehn twists along multicurves.

Finding free groups of rank 2 generated by outer automorphisms and constructing fully
irreducible automorphisms by composing (possibly powers of) other automorphisms
and is not new to the study of Out.Fk/. For instance, Clay and Pettet in [5] constructed
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fully irreducibles by composing elements of a free group of rank 2 which was generated
by powers of two Dehn twist automorphisms. However, the powers of the Dehn twists
used to generate the free group were not uniform but depended on the twists; one
needed to take a different power for each pair of Dehn twists to obtain a free group.

In their work, Clay and Pettet studied Dehn twists algebraically, as outer automorphisms
of the free group, and they used algebraic tools to study them. As a result their
construction produced the nonuniform powers of twists. In this paper, our goal is to
construct fully irreducible automorphisms by studying Dehn twist automorphisms. To
obtain a certain type of uniformity on the way, we first change the model for Out.Fk/

from the 1–dimensional one to the 3–dimensional one: M D ]k.S
2 �S1/. This way,

we are able to understand Dehn twists geometrically, using essential embedded tori
in M . This approach results in a more geometric construction of fully irreducibles.

More specifically, we will prove the following theorem using geometric Dehn twists.

Theorem 1.1 Let T1 and T2 be two Z–splittings of the free group Fk with rank k>2

and ˛1 and ˛2 be two corresponding free factors in the free factor complex FFk of
the free group Fk . Let D1 be a Dehn twist fixing ˛1 and D2 a Dehn twist fixing ˛2 ,
corresponding to T1 and T2 , respectively. Then there exists a constant N D N.k/

such that whenever dFFk
.˛1; ˛2/�N ,

(1) hD1;D2i ' F2 , and

(2) all elements of hD1;D2i which are not conjugate to the powers of D1 and D2

in hD1;D2i are fully irreducible.

Now we would like to give the definitions necessary to understand the statement
of Theorem 1.1 and explain the ideas used in its proof.

Splittings and Out.Fk/–complexes A Dehn twist automorphism is an element
of Out.Fk/ defined by using Z–splittings of Fk either as an amalgamated free product
(eg Fk DA�hciB ) or as an HNN extension of the free group (eg Fk DA�hci ). More
precisely, it is induced by the following automorphisms corresponding to each type
of Z–splitting:

A�hciBW
a 7! a for a 2A;

b 7! cbc�1 for b 2 B
and A�htct�1Dc0iW

a 7! a for a 2A;

t 7! tc:

Given a Z–splitting of Fk as Fk DA1�hc1i
B1 at least one of A1 , B1 is a proper free

factor. In the HNN extension case Fk DA1�hc1i
, the stable letter is a proper free factor.

By Bass–Serre theory, each Z–splitting of Fk gives rise to a tree whose quotient with
respect to the action of the free group is a single edge. The edge stabilizer is Z, and the
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vertex stabilizers in the amalgamated case are A1 and B1 while in the HNN case the
vertex stabilizer is A1 . We will coarsely project each splitting onto the vertex which is
a proper free factor. In the amalgamated case we consider the Dehn twist automorphism
corresponding to the Z–splitting which fixes this free factor and in the HNN case the
Dehn twist automorphism will be the one fixing the vertex stabilizer. We study the action
of this Dehn twist on the free factor complex FFk of the free group Fk of rank k and we
determine under which conditions the compositions of the Dehn twist automorphisms
give fully irreducible automorphisms. The free factor complex is a simplicial complex
whose vertices are conjugacy classes of proper free factors of Fk and the adjacency
between two vertices corresponding to two free factors A and B is given whenever
A<B or B <A. This complex was first introduced by Hatcher and Vogtmann in [15]
as a curve complex analog for Out.Fk/ and in this work we will use its geometric
properties due to its hyperbolicity, which are given in [2] by Bestvina and Handel.

There are several geometrically distinct hyperbolic simplicial complexes Out.Fk/

acts on by simplicial automorphisms which are considered to be analogs to the curve
complex for the mapping class group. Contrary to the case with the curve complex
and the action of the mapping class group on it, it is not always possible to identify
fully irreducible elements with respect to the way they act on a curve complex analog.
For example, an element of Out.Fk/ might act hyperbolically on a curve complex
analog yet it may not be fully irreducible. In this work the free factor complex was used
since loxodromic action of an automorphism on the free factor complex completely
characterizes being fully irreducible for a free group automorphism. Thus, to identify
fully irreducibles in a group generated by two Dehn twists, it is enough to have a
loxodromic action.

By geometric Dehn twist we mean the following: For each equivalence class of a
Z–splitting, by Lemma 2.6, there is an associated homotopy class of a torus in M .
More specifically, an amalgamated free product gives a separating torus in M whereas
an HNN extension corresponds to a nonseparating torus. Hence each Dehn twist
automorphism corresponds to a Dehn twist along the torus given by the Z–splitting.
The Dehn twist along a torus will be called a geometric Dehn twist.

Dehn twists and their almost fixed sets To prove the main theorem we use what we
call a ping-pong argument for an elliptic-type subgroup since Dehn twists have fixed
points in the free factor complex. To set up such an argument one needs to construct
so-called ping-pong sets. Thus we need to know first that the points of the free factor
complex which are not moved too far away by a power of a Dehn twist are manageable.
More precisely, let � 2 Out.Fk/ and let

FC .�/D fx 2 FFk W 9n¤ 0 such that d.x; �n.x//� C g
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be the almost fixed set corresponding to h�i in FFk . The following theorem is the
main ingredient in the elliptic-type ping-pong argument.

Theorem 1.2 Let T be a Z–splitting of the free group Fk with k > 2 and DT denote
a corresponding Dehn twist. Then, for all sufficiently large constants C , there exists
a C 0DC 0.C; k/ such that the diameter of the almost fixed set FC .DT / corresponding
to hDT i is bounded above by C 0 .

We will drop the reference to the automorphism from the notation for the almost fixed
set whenever it is clear from the context.

Relative twisting and distances along paths Now, to prove that the almost fixed
sets of Dehn twists have bounded diameter, one needs to be able to calculate distances
between points in the free factor complex effectively. However we cannot assume that
there is a geodesic between two points in the free factor complex which is appropriate
for our calculation purposes since we do not know what these geodesics are. But it is
known that the folding paths in outer space give rise to geodesics in outer space and
their projections to the free factor complex are quasigeodesics. To prove Theorem 1.2,
we prove that there is a folding path whose projection to the free factor complex is at a
bounded distance from the given free factor. To achieve this one would need an analog
of the annulus projection and to be able to calculate distances on an annulus complex.
Then using a version of the bounded geodesic image theorem of Masur and Minsky [24]
one would conclude that whenever the number of twists is more than the universal
constant given in that theorem, the quasigeodesic between a point and its twisted image
has a vertex which does not intersect the core curve of the annulus. However, we do
not have the main tool needed, which is an analog for annulus projection, since the
subfactor projection is not defined for free factors of rank 1; see Bestvina and Feighn [3]
and Taylor [29].

To calculate distances between points related to a rank-1 free factor without using a
projection onto that free factor we refer to a theorem of Clay and Pettet. In [6] they give a
pairing twa.G;G

0/ called the relative twisting number between two graphs G;G02CVk

relative to some nontrivial a 2 Fk and it is defined using the Guirardel core. Using
this pairing, they obtain a condition on the graphs G;G0 2 CVk that, when satisfied,
enables them to construct a connecting geodesic between them, traveling through the
thin part of CVk .

Relative twisting along tori in ]k.S 2
�S 1/ We have used the interpretation of the

relative twisting number pairing twa.G;G
0/ for two spheres relative to an element of the

free group, which is in our case the generator of the core (longitudinal) curve of a torus.
Then the relative twist is a number which calculates distances between two spheres
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which are intersecting the same torus along its core curve. Mimicking annulus projection,
the relative twisting number might be interpreted as the number of intersections between
projections of some spheres in M onto a torus (yet we do not make a formal definition
of such a projection). With the relative twisting number we are able to calculate a lower
bound for the twisting number between a sphere and its Dehn-twisted image, relative
to a torus hence in some sense relative to a rank-1 free factor (related to its core curve).
Afterwards, a lemma of Clay and Pettet [6] guarantees the existence of a geodesic
between the corresponding points in outer space along which the core curve gets short.
Using a lemma of Bestvina and Feighn [2], we project this geodesic to the free factor
complex and using the distance calculations we show easily that the almost fixed set of
a Dehn twist automorphism has a bounded diameter. This completes the preparation for
ping-pong with elliptic-type groups as it is given by Kapovich and Weidmann in [19].
Now we have ping-pong sets that we have control over.

The main argument, which also finishes the proof of our main result, is encoded in the
following theorem.

Theorem 1.3 Let G be a group acting on a ı–hyperbolic metric space X by isometries
and �1 , �2 2 G . Suppose C > 100ı and the almost fixed sets XC .�1/ and XC .�2/

of h�1i and h�2i, respectively, have diameters bounded above by a constant C 0 . Then
there exists a constant C1 such that whenever dX .XC .�1/;XC .�2//� C1 ,

(1) h�1; �2i ' F2 , and

(2) every element of h�1; �2i which is not conjugate to the powers of �1 and �2

in h�1; �2i acts loxodromically in X .

Finally, we project Dehn twists to the intersection graph Pk , which is a simplicial
complex with vertex set given by marked roses up to equivalence. There are two
instances connecting vertices of Pk . The first one is that whenever two roses share
an edge with the same label, corresponding vertices are connected by an edge in Pk .
The second one is obtained whenever there is a marked surface with one boundary
component such that the element of the fundamental group represented by the boundary
crosses each edge of both roses twice. This simplicial complex is closely related to the
intersection graph introduced by Kapovich and Lustig in [17], and it is proven to be
hyperbolic by Mann in [23].

A fully irreducible automorphism is called geometric if it is induced by a pseudo-
Anosov homeomorphism of a surface with one boundary component. A fully irreducible
automorphism is atoroidal if no positive power of it preserves the conjugacy class of
a nontrivial element of Fk . Moreover, only nongeometric fully irreducible automor-
phisms are atoroidal by a theorem of Bestvina and Handel in [4]. The important feature
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of the intersection graph for us is that the atoroidal fully irreducibles act loxodromically
on this graph; see Mann [23].

We obtain the following theorem.

Theorem 1.4 Let T1 and T2 be two Z–splittings of Fk with k > 2 with correspond-
ing free factors ˛1 and ˛2 , and let D1 and D2 be two Dehn twists corresponding
to T1 and T2 , respectively. Then there exists a constant N2 D N2.k/ such that
hD

1
;D

2
i ' F2 whenever dPk

.�.˛1/; �.˛2//�N2 , and all elements from this group
which are not conjugate to the powers of D1 and D2 in hD1;D2i are atoroidal fully
irreducible.
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2 Preliminaries

2.1 Sphere systems and normal tori

The manifold ]k.S
2�S1/ is a reducible, connected 3–manifold which can be described

as follows. We remove the interiors of 2k disjoint 3–balls from the 3–sphere S3 and
identify the resulting 2–sphere boundary components in pairs by orientation-reversing
diffeomorphisms, creating k many S2�S1 summands. Out.Fk/ is isomorphic to the
mapping class group of ]k.S

2 �S1/ up to twists about 2–spheres in ]k.S
2 �S1/;

see [21]. From now on we will let M D ]k.S
2 �S1/.

Associated to M is a rich algebraic structure coming from the essential 2–spheres
that M contains. A sphere system is a collection of isotopy classes of disjoint and
nontrivial 2–spheres in M no two of which are isotopic.

We call a collection † of disjointly embedded essential, nonisotopic 2–spheres in M a
maximal sphere system if every complementary component of † in M is a 3–punctured
3–sphere.

A fixed maximal sphere system † in M gives a description of the universal cover zM
of M as follows. Let P be the set of 3–punctured 3–spheres in M given by a maximal
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sphere system † and regard M as obtained from copies of P in P by identifying pairs
of boundary spheres. Note that both boundary spheres in a pair might be contained
in a single P , in which case the image of P in M is a once-punctured S2 �S1 . To
construct zM , begin with a single copy of P and attach copies of P in P inductively
along boundary spheres, as determined by unique path lifting. Repeating this process
gives a description of zM as a treelike union of copies of P . We remark that zM is
homeomorphic to the complement of a Cantor set in S3 .

To be able to define a concept of geometric Dehn twist we need to use the one-to-one
correspondence between the equivalence classes of Z–splittings of Fk and homotopy
classes of essential tori in M . This important correspondence is given in Lemma 2.6.

For us, a torus in M is an embedding of a 2–torus in M so that the image of its
fundamental group in �1.M / is a cyclic group isomorphic to Z. Moreover, we consider
only the tori which do not bound a solid torus in M and we call such a torus essential.
There are two types of essential tori in M , depending on the type of the splitting of
the free group they correspond to. Namely, for an amalgamated free product we have
a separating torus in M and a nonseparating one for an HNN extension of the free
group. Two examples can be seen in Figure 1.

Figure 1: Embeddings with the given identifications correspond to a separat-
ing torus (left) and a nonseparating torus (right) in ]4.S

2 �S1/ .

Given a homotopy class of a torus, it is necessary for our purposes to identify a
representative which intersects the spheres in a given maximal sphere system of M

minimally. To this end, the normal form for tori is defined. Following Hatcher’s normal
form for sphere systems in [13], a normal form for tori is defined in [11] so that the
intersection of the normal torus with each complementary 3–punctured 3–sphere is a
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disk, a cylinder or a pants piece. By [11], if a torus � is in normal form with respect to
a maximal sphere system †, the number of components of the intersection between �
and any S in † is minimal among all the representatives of the homotopy class � .

In this work we will implicitly use the following existence theorem from [11].

Theorem 2.1 Every embedded essential torus in M is homotopic to a normal torus
and the homotopy process does not increase the intersection number with any sphere of
a given maximal sphere system †.

2.2 Geometric models, complexes and projections

Given the free group Fk on k letters, the associated outer space of the marked metric
graphs which are homotopy equivalent to Fk was introduced by Culler and Vogtmann
in [7]. We will denote by CVk the projectivized outer space, in which the graphs
will all have total volume 1. A marked metric graph is an equivalence class of a pair
consisting of a metric graph � and a marking, which is a homotopy equivalence with a
rose. Outer space might be thought as an analog to Teichmüller space for the mapping
class group. For the details we refer the reader to [7] and [31].

The free factor complex of a free group is defined first by Hatcher and Vogtmann in [15]
as a simplicial complex whose vertices are conjugacy classes of proper free factors and
adjacency is determined by inclusion. It is hyperbolic by [2].

We will use the coarse projection � W CVk ! FFk defined as follows. For each proper
subgraph �0 of a marked graph G that contains a circle, its image in FFk is the
conjugacy class of the smallest free factor containing �0 . Now by [2, Lemma 3.1],
for two such proper subgraphs �1 and �2 , we have dFFk

.�.�1/; �.�2// � 4. Then
for G 2 CVk we define

�.G/ WD f�.�/ j � is a proper, connected, noncontractible subgraph of Gg:

We will denote the induced map CVk ! FFk also by � , which is clearly a coarse
projection in that the diameter of each �.G/ is bounded by 4. Another hyperbolic
Out.Fk/–graph we refer to is the free bases graph FBk given by Kapovich and Rafi
in [18]. For k � 3, this graph has vertices the free bases of Fk up to equivalence
(two bases are equivalent if their Cayley graphs are Fk –equivariantly isometric), and
whenever two bases representing the vertices have a common element, these vertices are
connected by an edge. What is useful for us is that FBk and FFk are quasi-isometric.

The intersection graph Pk has vertex set consisting of marked roses up to equivalence.
Two roses are connected by an edge if either they have a common edge with the same
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label, or there is a marked surface with one boundary component and the representative
of this component crosses each edge of both roses twice. There is a Lipschitz map
between FBk and Pk , constructed by thinking of each basis of Fk as its corresponding
rose marking and observing that Pk shares the edges and vertices of FBk and has some
additional edges between roses.

2.3 Tori in M and Z–splittings of the free group

In this section we will establish the correspondence between an equivalence class of a
Z–splitting and a homotopy class of a torus in M . Consider an embedded essential
torus � in M . There is a simplicial tree associated to this torus. To obtain this
simplicial tree we take a neighborhood of each lift in the set of lifts z� of � and we
take a vertex for each complementary component. Two complementary components
are adjacent if they bound the neighborhood of the same lift. We will denote this tree
by T� and as correspondence between this tree and the torus � we will understand
the Fk –equivariant map zM ! T� which sends each complementary component of
a neighborhood of a lift to a vertex and shrinks each such neighborhood to an edge.
The tree constructed this way is referred to as the Bass–Serre tree corresponding to � .
Recall that by Bass–Serre theory, the action of Fk on T� gives a single-edged graph
of groups decomposition of Fk , and hence a Z–splitting of the free group Fk .

The next lemma gives the existence of an equivalence class of a Z–splitting for each
homotopy class of a torus in M and its proof is based on the notion of the ends of zM .

An end of a topological space is a point of the so-called Freudenthal compactification
of the space. More precisely:

Definition 2.2 Let X be a topological space. For a compact set K , let C.K/ denote
the set of components of the complement X �K . For L compact with K � L, we
have a natural map C.L/! C.K/. These compact sets define a directed system under
inclusion. The set of ends E.X / of X is defined to be the inverse limit of the sets C.K/.

The space zM is noncompact and it has infinitely many ends. We denote the set of ends
of zM by E. zM /. It is homeomorphic to a Cantor set; in particular, it is compact. For
a maximal sphere system † in M , the set E.T†/ of ends of the Bass–Serre tree T†
of † is identified with the set E. zM /. By analyzing this set we were able to prove the
following.

Lemma 2.3 Let T�1
and T�2

be two Bass–Serre trees corresponding to two tori �1

and �2 , respectively. If �1 and �2 are homotopic, T�1
D T�2

and hence �1 and �2 have
equivalent Z–splittings.
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Proof Let � be an embedded essential torus. We claim that each lift of � is 2–sided.
If it is not, then there is a nontrivial (nonhomotopic to a point) loop which intersects a
lift once and connects an end of zM to itself. By the loop theorem this loop bounds a
disk in zM . Then the projection of this disk to M bounds a disk in M , which means
that the torus bounds a solid torus in M . This contradicts the fact that � is essential.
Hence each lift divides zM into two disjoint parts.

A transverse orientation on the torus gives an orientation on the spheres on each disjoint
part and hence there is a labeling on the valence-2 vertices corresponding to these
spheres. It is clear that each lift LD S1 �R of � defines a decomposition of the set
of ends of T† into two sets LC and L� , where LC \ L� consists of two endpoints
corresponding to the axis of the lift L. For each torus, let us consider all the endpoints
corresponding to the axes of all lifts and eliminate them from the set of ends E. zM /

of zM . Let us denote the remaining set zE. zM /.

Now, for each lift L, we have a partition (LC; L� ) of the set zE. zM /. Since lifts are
disjoint, for any two lifts L1 and L2 we have either LC1 � LC2 or LC1 � L�2 .

We construct a tree corresponding to the set of partitions as follows. For each par-
tition (LC; L� ) we take a vertex. Given a pair of partitions (LC1 ; L

�
1 ) and (LC2 ; L

�
2 )

with LC1 � LC2 or LC1 � L�2 , we connect the corresponding vertices with an edge when-
ever there is no collection of ends .ZC;Z�/ satisfying LC1 �ZC�LC2 or LC1 �Z��L�2 .
For each maximal subset of zE. zM / which is not separated by any lift, we take a vertex.
Since the partitions of ends do not intersect, we have a tree. We will denote this tree
by TP .

Since for each lift we have a partition of the ends, there is an isomorphism between
the tree TP given by the partitions and the Bass–Serre tree T� . To see this we first
introduce another set of vertices in T� given by midpoints of edges and we map these
“edge-midpoint” vertices of T� to the set of partitions, which are the components of z� .
The image of the vertices of T� given by the components of zM � z� are collections
of lifts having the following property: assuming that we select the notation so that
LC1 � LC2 for the two lifts L1 and L2 , there is no L3 in the collection for which
LC1 � LC3 � LC2 or LC1 � L�3 � LC2 .

Now we claim that for a homotopy of embedded tori in M , the initial and final tori
determine the same partition of the ends in zE. zM /, and hence they have the same
partition tree, and the same Bass–Serre tree as a result.

To see this, let �1 be homotopic to �2 . To see that the lifts of �1 and the lifts of �2

give the same partition of ends we need to show that if two endpoints are separated by
a component L of z�1 , and L is homotopic to a component L0 of z�2 , then they are
separated by L0 too.
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Let p and q be two endpoints separated by L. Fix an arc between them that
crosses LD S1 �R in one point. During the homotopy, although no longer embedded,
L moves in zM . In particular, it does not touch any endpoint. So assuming that the
homotopy is transverse to the arc, its inverse image in S1 �R� I consists of circles
and arcs properly embedded in S1 �R� I . Note that if the homotopy could cross an
endpoint of the arc, then an arc of the inverse image could fail to be properly embedded
in S1 �R� I . But this does not happen since the homotopy between the two tori
induces a homotopy between normal representatives of each tori, corresponding to a
fixed maximal sphere system in M . By [11], such a homotopy is normal at each stage
hence cannot cross an endpoint.

Back to the inverse image of the homotopy between the two tori, since only one endpoint
of the inverse image of the arc is in L, there must be an odd number of endpoints
in L0 (ie the arc crosses L0 an odd number of times) and therefore L0 also separates
p and q .

Recall that given a Z–splitting of Fk , an associated Dehn twist automorphism of Fk

is defined in the following two ways:

A�hciBW
a 7! a for a 2A;

b 7! cbc�1 for b 2 B
and A�htct�1Dc0iW

a 7! a for a 2A;

t 7! tc:

On the left is the definition when the Z–splitting is given by an amalgamated product
Fk D A �hci B and on the right is the definition when the Z–splitting is an HNN
extension A�hci of the free group Fk . Note that the Dehn twist automorphism in the
amalgamated case is defined up to conjugacy since it is possible to reverse the roles
of A and B .

Before we give the last lemma in this section, we give two theorems relating Z–splittings
to free splittings which will be used in the proof.

Theorem 2.4 (Shenitzer [26]) Suppose that a free group F is an amalgamated free
product F DA�B C , where B is cyclic. Then B is a free factor of A or a free factor
of C .

Theorem 2.5 (Swarup [28]) Suppose that a free group F is an HNN extension
F DA�B , where B ¤ 1 is cyclic. Then A has a free product structure ADA0 �A1

in such a way that one of the following symmetric alternatives hold, where t is the
stable letter:

(1) B �A0 and there exists a 2A such that t�1Bt D a�1A1a, or

(2) t�1Bt �A0 and there exists a 2A such that B D a�1A1a.
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Finally, the following lemma gives the converse relationship between a torus and
a Z–splitting and hence explains why we are interested in tori in M . The proof is due
to Matt Clay.

Lemma 2.6 Given a Z–splitting Z and an associated Dehn twist automorphism, there
is a torus � in M unique up to homotopy such that TZ D T� , where TZ and T� are
the corresponding Bass–Serre trees.

Proof In this proof we will build a homotopy class of a torus from a sphere and a loop.
First we use Theorems 2.4 and 2.5, which relate a Z–splitting of Fk to a free splitting
of Fk . Then, to relate the free splitting to a homotopy class of a sphere, we use a
theorem originally due to Kneser [20]. This theorem is later developed by Grushko [9],
and most recently by Stallings [27], and these are the versions we will be referring to. We
treat the amalgamated product and HNN-extension cases separately. The amalgamated
case has schematic pictures Figure 2 and Figure 3 associated to the proof.

Case 1 We first consider the case of an amalgamated free product Fk D A �hbi B .
By Shenitzer’s theorem, Theorem 2.4, hbi is either a free factor of A or a free factor
of B . Hence there is a free splitting FkDA�B0 , where BDhbi�B0 , or FkDA0�B

with ADA0�hbi. Let us assume the former, and let S �M be an embedded (separat-
ing) sphere representing this splitting. We fix a basepoint �2M and assume it lies on S .
As b2A, there is an embedded loop  �M that represents b2F and only intersects S

at �. For small � , the boundary of the closed �–neighborhood of S[ consists of two
components: an embedded sphere isotopic to S and an embedded essential torus � .

Every torus can be written as a sphere and a loop attached to it. Hence it is clear
from the construction that the splitting of Fk associated to � is the original splitting.
However, there are some choices made in the construction of � and it must be shown
that different choices result in homotopic tori. It is clear that changing S or  in the
construction by a homotopy results in a change of � by a homotopy.

Now since Shenitzer’s theorem, Theorem 2.4, gives many possible splittings differing
by automorphisms of B fixing hbi (hence Nielsen automorphisms that fix b ), we
need to consider two different complementary free factors B0 and B1 of A such that
hbi �B0 D hbi �B1 D B and show that the tori obtained after we add the loop to
corresponding spheres are homotopic, even when the spheres themselves are not. For
this, let S0 and S1 be the spheres representing the splittings A �B0 and A �B1 ,
respectively, and �0 and �1 be the tori as constructed above using these spheres. We
assume that  intersects S0 only at the fixed basepoint � 2M .

We first treat the special case that B1 is obtained from B0 by replacing a generator x

in B0 by xb . Fix a basis for Fk consisting of a basis for A and a basis for B0 ,
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where x is one of the generators for B0 . This corresponds to a sphere system in M

which decomposes as †A[†B0
; the sphere S0 separates the two sets †A and †B0

.
In terms of these sphere systems, we can describe a homeomorphism that takes S0 to
(a sphere isotopic to) S1 .

Denote by † the ordered set of spheres (all in †A ) pierced by  starting from the
basepoint. Cut M open along the sphere ˇ corresponding to the generator x and
via a homotopy push the boundary sphere ˇ� through the spheres in † in order,
dragging S0 along. After regluing ˇC and ˇ� , the image of S0 is S1 and the sphere ˇ
now corresponds to xb . By shrinking ˇ� and S0 , we can assume that the homotopy
is the identity on �0 and  . Thus, we have a homeomorphism taking S0 to S1 , taking
S0[ to S1[ and which is the identity on �0 . As a homeomorphism takes a regular
neighborhood to a regular neighborhood, �0 is homotopic to �1 .

Figure 2: The homotopy which slides the pink sphere along the red loop 
representing b , where �1.M /Dha; b; ci . In the first picture, a sphere (black)
and the b loop (red) are given, where the base point is on the sphere. c is
depicted in blue in the picture.

To see a schematic picture of this homotopy we refer the reader to Figure 2. In the first
picture, the black sphere (an example of S0 ) and a neighborhood of the red loop give
a torus (�0 ), and this torus is homotopic to the torus obtained from the last picture by
taking a neighborhood of the black sphere (now an example of S1 ) and the red loop.

A similar argument works if we replace x by xb�1, bx or b�1x .

The general case now follows as we can transform B0 to B1 by a finite sequence of the
above transformations plus changes of basis that do not affect the associated spheres.
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Indeed, by [32, Theorem 4.1], the subgroup of automorphisms of B that fix b 2 B is
generated by the Nielsen automorphisms that fix b .

Last, we consider the possibility FkDA0�hbi�B0 , where ADhA0; bi and BDhB0; bi.
Let SA and SB be the spheres representing the splittings A �B0 and A0 �B , re-
spectively, fix loops A and B representing b , and consider the neighborhoods
sA of SA[ A and sB of SB [ B . Since these neighborhoods each give a torus and
a sphere, we have tori �A and �B that both represent the splitting A �hbi B . In this
case, as a component of M � .SA [ SB/ is S1 � S2 with two balls removed, it is
easy to see that �A and �B are homotopic. Indeed, let us model S1�S2 as the region
between the spheres of radius 1 and 2 in R3 after identifying the boundary spheres.
Remove a ball of radius 1

4
at each of the points

�
0; 0; 3

2

�
and

�
0; 0;�3

2

�
. For A we can

choose the intersection with the positive z–axis; for B we can choose the intersection
with the negative z–axis. Then clearly the torus obtained from the intersection with
the xy –plane is homotopic to both �A and �B . For a simple example see Figure 3.

Figure 3: In this example, F3Dhai�hbi�hci and ADhA0; bi with A0Dhai

and B D hb;B0i with B0 D hci . Spheres SA and SB are displayed in black.

Case 2 We now consider the case of an HNN-extension Fk DA�hbi . By Swarup’s
theorem, Theorem 2.5, there is a free factorization ADA0 � ht

�1bti for some t 2 Fk

such that A0 is a corank-1 free factor of Fk and such that b 2A0 . Let S �M be an
embedded (nonseparating) sphere representing the splitting FkDA0�f1g . We fix a base-
point p2M and assume it lies on S . As b2A0 , there is an embedded loop  �M that
represents b 2 Fk and only intersects S at p . Further, both ends of  are on the same
side of S and so a neighborhood of sDS[ gives a torus. Let � be this neighborhood
of s , and as in Case 1, it is clear that the splitting associated to � is the original splitting.

Given another torus � 0 �M that represents the same splitting, we can compress � 0

to a union of a sphere and a loop s0 D S 0 [  0 such that S 0 represents a splitting of
the form A1�f1g , where AD A1 � htbt�1i. Then, as in Case 1, there is a sequence
of transformations taking A0 to A1 that do not change the homotopy type of the
corresponding torus.
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3 Geometric intersection and relative twisting using ends
of zM

3.1 Intersection criterion and the relative twisting number

The Guirardel core C is a way of assigning a closed, connected CAT(0) complex to
a pair of splittings which counts the number of times the corresponding Bass–Serre
trees intersect. Guirardel’s version unifies several notions of intersection number in
the literature, including the one for two splittings of finitely generated groups given
by Scott and Swarup [25]. For two Fk –trees T0 and T1 , the core is roughly the main
part of the diagonal action of Fk on T0 � T1 . For the details we refer the reader
to [10] and [1].

Definition 3.1 Let T be a tree and p a point in it. A direction is a connected
component of T �p . Given two trees T0 and T1 , a quadrant is a product ı � ı0 of
two directions ı � T0 and ı0 � T1 .

We fix a basepoint �D .�0;�1/ in T0�T1 and we say that a quadrant Q is heavy if there
exists a sequence fgng in Fk such that gn.�/2Q for every n and dTi

.�i ;gn.�i//!1

as n!1. A quadrant is light if it is not heavy.

Definition 3.2 Let T0 and T1 be two Fk –trees. The Guirardel core C is defined as

C D C.T0 �T1/D .T0 �T1/�[I Q;

where I is over all of the light quadrants.

Let p be a point in T0 . Then Cp D fx 2 T1 j .p;x/ 2 Cg is a subtree of T1 called
the slice of the core above the point p . The slice which is a subtree of T0 is defined
similarly.

Given two trees T0 and T1 , we define the Guirardel intersection number between
them by

i.T0;T1/D vol.C=Fk/;

where the right-hand side is the volume of the action of Fk on the Guirardel core
C.T0�T1/ for the product measure on T0�T1 . Note that for simplicial trees T0 and T1

this volume is the number of 2–cells in C=Fk , which will be our case.

Given two homotopy classes of sphere systems S1 and S2 in M , the intersection
number between them is the number i.S1;S2/ of components of the intersection of
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normal representatives of S1 and S2 in S1 and S2 , respectively, when the intersections
are transversal [13]. This is called the geometric intersection number.

The work of Horbez in [16] relates the geometric intersection number between two
sphere systems to the Guirardel intersection number between corresponding trees.
Each sphere in zM corresponds to an edge in the associated Bass–Serre tree. By
taking �–neighborhoods of each edge, one obtains for each geometric intersection
between two spheres a square in the product of the Bass–Serre trees. If the intersection
is essential, this square is in the Guirardel core. By the definition of the Guirardel
core, a square which is in the core is in a heavy quadrant. As a consequence there
are 4 unbounded disjoint regions in zM corresponding to such a square. On the
other hand, each sphere zS gives two disjoint sets EC. zS/ and E�. zS/ of ends of zM .
Thus whenever two spheres zS1 and zS2 intersect essentially in zM there are four
disjoint sets of ends EC. zS1/\EC. zS2/, EC. zS1/\E�. zS2/, E�. zS1/\EC. zS2/ and
E�. zS1/\E�. zS2/ of zM in the complement of the intersection circle, each matching
with the corresponding unbounded region.

Finally we have the following definition which we will use in the next section.

Definition 3.3 We will call the existence of four disjoint sets of ends of zM in the
complement of an intersection circle between two spheres the intersection criterion for
that intersection circle.

According to the discussion above, an intersection circle between two spheres is essential
if and only if we have the intersection criterion satisfied for that intersection circle.

Now we will define the relative twisting number for two intersecting sphere systems
†1 and †2 .

Given an axis of an element in zM , there are two ends of zM which are fixed by this
axis.

Definition 3.4 A sphere zS is said to intersect an axis a whenever the two ends of zM
determined by a are separated by the two disjoint sets EC. zS/ and E�. zS/ of ends
corresponding to zS .

Now we will define the relative twisting number between †1 and †2 relative to an
element a 2 Fk . This number is meaningful when both sphere systems intersect an
axis a of a in zM . The definition of geometric relative twisting of [6] is for two points
in outer space, which are simple sphere systems in our setting. For our purposes we
will translate their definition to one which is stated in terms of ends of zM .
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Before we give the definition given in [6], we set up some notation first. Let †1

and †2 be two simple sphere systems in M and T†1
and T†2

the corresponding
Bass–Serre trees. Let e zS1

and e zS2
be two edges in T†1

and T†2
corresponding to

spheres S1 2†1 and S2 2†2 , respectively. For an element a 2 Fk , let us call T a
†1

and T a
†2

the sets of edges of T†1
and T†2

, respectively, whose elements intersect a
fixed axis a of a. Also denote by ake zS1

the k th iterate of e zS1
under the action of hai

on T†1
along an axis a.

Definition 3.5 [6] For an element a 2Fk , the relative twisting number twa.†1; †2 )
of †1 and †2 relative to a is defined to be

twa.†1; †2/ WD max
e zS1
�T a

†1

e zS2
�T a

†2

f k j ake zS1
� e zS2

2 C and e zS1
� e zS2

2 Cg:

Using the fact that a geometric intersection between two spheres is a square in the
Guirardel core and hence gives a separation of ends of zM into 4 nonempty disjoint
sets, we tailor the definition of [6] above to the one below to suit our needs.

Definition 3.6 For i 2 f1; 2g, let zSi be two spheres and E�. zSi/ be the set of ends
of zM separated by these spheres. Assume that both spheres intersect an axis of a2Fk .
Then the relative twisting number twa. zS1; zS2/ of zS1 and zS2 relative to a is defined by

twa. zS1; zS2/ WD max
˚
k 2Z jE�. zSi/ \E�.ak zSj /¤∅

whenever E�. zSi/ \ E�. zSj /¤∅ and fi; j g2 f1; 2g
	
:

4 Dehn twist along a torus: the geometric picture

4.1 Definition of a Dehn twist along a torus

We will now give the definition of the Dehn twist homeomorphism about a torus
in M , a description of the action of such a homeomorphism on spheres in M , and a
description of the action on Fk .

To define a Dehn twist along an embedded torus � , we will take a parametrized tubular
neighborhood of the torus in M .

Definition 4.1 Let � W R=Z � R=Z � Œ0; 1� ! M be an embedding such that the
image �.f0g �R=Z� f0g/ bounds a disk in M . Denote by � the associated torus
�.R=Z�R=Z� f0g/. The geometric Dehn twist D� along the torus � is the homeo-
morphism of M that is the identity on the complement of the image of the map � and
for which a point p D �.x;y; t/ is sent to �.xC t;y; t/.
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Figure 4: The image of the intersection annulus under a Dehn twist along the
thick black torus

Here, the direction of the associated torus which bounds a disk in M will be called the
meridional direction and the other one will be called the longitudinal direction. For a
geometric description of the twist, we refer the reader to Figure 4.

Now, an ambiguity might arise in the definition of a geometric Dehn twist when it
comes to determining a longitudinal curve for the parametrization. But two such choices
differ by a map x 7! x C ny for some integer n and a twist along the meridional
direction. By work of Laudenbach [21], the meridional direction does not give a
nontrivial homeomorphism since twists along the meridional direction correspond to
twists along 2–spheres in M . It is known that such mapping classes act trivially on Fk ,
and hence they are in the kernel of the homomorphism Map.M /!Out.Fk/; see [14].
Hence the induced outer automorphism D�� from the geometric Dehn twist D� is
independent of the parametrization of the neighborhood of the torus (the image of the
map � ).

Now, assume that we have a loop � intersecting a torus � transversely. Then the
image D� .�/ of the loop under the geometric twist D� is obtained as follows: We
surger the loop at the intersection point and insert a loop ˇC or ˇ� representing a
generator of �1.�/ in �1.M /, depending on which side of the torus the intersection
point is. Hence the induced automorphism conjugates � with one of ˇC or ˇ� and
fixes the other. If � is nonseparating, then the stable letter is multiplied by � .

This coincides with the action of D�� on the corresponding splitting: When the splitting
is an amalgamated product of the form A �hci B , the factor A is fixed whereas B

is conjugated by the generator of the fundamental group of torus � in M . (The
roles of A and B might be changed.) When we have A�htct�1Dc0i , the Dehn twist
automorphism D�� fixes A and t is multiplied by c .

As a summary we have:
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Lemma 4.2 Let � be an embedded torus and D� the associated geometric Dehn twist.
Then D�� DDZ , where D�� is the Dehn twist automorphism induced by the homeo-
morphism D� and DZ is the Dehn twist automorphism given by the Z–splitting Z

associated to the torus � .

From Lemmata 4.2 and 2.3, we easily deduce the following.

Proposition 4.3 Let �1 and �2 be two homotopic tori. Then up to conjugacy we have
D�1� DD�2� , where D�1� and D�2� are the Dehn twist automorphisms induced by
the geometric Dehn twists D�1

and D�2
.

Proof Since homotopic tori give equivalent splittings by Lemma 2.3, the Dehn twist
automorphisms are equal by definition. Then by Lemma 4.2 the corresponding Dehn
twists induced by the geometric Dehn twists are equal.

For our purposes, we need to find a lower bound on twa.G;D
n
T
.G// for a given simple

sphere system G and a Z–splitting T . Now we have DT D D� , where � is the
essential embedded torus given by the Z–splitting T for which the Dehn twist is
defined and a is the generator of the image of the fundamental group of � in �1.M /

under the map induced from the embedding �W �!M . Now we take a maximal sphere
system † containing G and homotope � to be normal with respect to this sphere
system. Then, by [11], � intersects the spheres of † minimally. Now we take a lift
of the torus which has an axis a conjugate of a. The relative twisting number counts
the number of iterates of a sphere which intersect the image of another sphere under a
Dehn twist along an axis. Hence we have

twa.G;D
n
T .G//D tw� .G;Dn

� .G//:

5 Lower bound on the relative twisting number

In this section we will prove that the relative twisting number of a simple sphere system
and its Dehn-twisted image has a lower bound, which is linear with respect to the power
of the Dehn twist. We first have the following introductory lemma. Recall that a simple
sphere system in M is one which has the complementary components in M simply
connected.

Given a sphere S and a torus � an intersection circle of S \ � which does not bound
a disk in � is called a meridian in � .
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Lemma 5.1 Given an embedded essential torus � and a simple sphere system G ,
there exists a sphere S 2 G such that at least one intersection between S and � is a
meridian in � .

Proof We first complete G to a maximal sphere system and homotope � to be normal
with respect to this maximal sphere system. Then � intersects minimally every sphere
of G it intersects [11]. Assume that no isotopy class of spheres in G intersects � in a
way that the intersection is a meridian in � . On the other hand, since � is essential, the
image of the fundamental group of � in �1.M / is nontrivial. Hence the core curve
of � exists and by the assumption it must be contained in a complementary component
of G in M . But this is not possible since G is simple.

Theorem 5.2 Let T be a Z–splitting of the free group Fk , let � be the associated
torus, and let D� be the Dehn twist along � . For G 2 CVk and n� 2,

tw� .G;Dn
� .G//� n� 1:

Proof We will prove this theorem by taking G as a simple sphere system instead
of a marked metric graph. Let † be a maximal sphere system completing G and
homotope � to be the normal with respect to †.

Now, let S 2G be such that S and � intersect in a way that �D S \ � is a meridian
in � . Existence of a meridional intersection circle is given by Lemma 5.1. As before,
let D� be the Dehn twist along the normal torus � . More precisely, let N.�/ be a
tubular neighborhood of � in which D� is supported. Let z� be the full preimage of �
in zM and z�0 2 z� . Denote also by N.z�/ the full preimage of N.�/ and by N.z�0/ the
component containing z�0 . Let zS be the full preimage of S and zS0 a component such
that zS0\z�0D z�0 , a lift of �. Let us denote by a the generator of �1.�/ corresponding
to z�0 , and hence we have a covering transformation aW zM ! zM which stabilizes z�0 .
Let � be the region between zS0 and a zS0 which is the fundamental domain of hai
on zM . Set zS0; j D aj zS0 . Then aj� is the region bounded by zS0; j and zS0; jC1 .

Since tw� .G;Dn
� .G//� tw� .S;Dn

� .S//, it is sufficient to prove that

tw� .S;Dn
� .S//� n� 1:

Recall that we denote by E. zM / the ends of zM . As discussed in Section 2.2, there
is a pair of ends of zM fixed by a and z�0 separates the remaining set of ends into
two disjoint sets EC

0
and E�

0
. Since z�0 is separating in zM , there is a ray ` which

connects an end eC 2EC
0

to an end e� 2E�
0

, intersecting z�0 only once. Observe that
since � is essential, there is always such a ray which is disjoint from z� � z�0 .
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Let XC and X� be the components of zM �N.z�/ whose closures meet N.z�0/. Since
D� is the identity on M �N.�/ we choose a lift zD� which is the identity on X�

and a translation on XC . Without loss of generality we may assume this is translation
by a. Hence zD� .e

�/D e� and zDm
� .e
C/D ameC .

EC
0

E�
0

zS0 `0

z�0

zS0;1
zS0;2

zS0;n

� a� : : : an�1� an�

Figure 5: Fundamental domains, sets of ends separated by z�0 and an arc `0

connecting them

Let E�
0;0
�E�

0
and EC

0;0
�EC

0
be two disjoint sets of ends in �. Now, as described

above, in this fundamental domain there is a line `0 which connects an end e�0 in E�
0;0

to an end eC0 in EC
0;0

intersecting z� once in z�0 . (See Figure 5.) Now, after n times
Dehn twisting along z� , the image ray zDn

� .`0/ will connect the point e�0 in E�
0;0

to the
point zDn

� .e
C
0 /D aneC0 D eCn in EC

0;n�1
D zDn

� .E
C

0;0
/. (See schematic picture Figure 6.)

zDn
� .`0/

EC. zS0;1/\EC0;0 E�. zS0;1/\EC0;0

EC. zS0;1/\E�
0;0

E�. zS0;1/\E�
0;0

z�0

zS0
zS0;1

zS0;2 : : : zS0;n

Figure 6: The image of `0 under Dehn twisting and sets of ends correspond-
ing to the intersection zDn

� .
zS0/\ zS0;1

On the other hand, let us denote by EC. zS0;s/ and E�. zS0;s/ the two disjoint sets of ends
corresponding to the sphere zS0;s for s 2 f1; : : : ; ng. Now, without loss of generality,
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assume that e�0 2E�. zS0;1/. Then, since the image ray zDn
� .`0/ still intersects z�0 only

once, and intersects neither zS0 (this would create a bigon) nor any other lift of the torus,
zDn
� .e
C
0 /D eCn 2EC. zS0;1/. So for s D 1 we have 4 disjoint, nonempty sets of ends

EC. zS0;1/\E�0;0; EC. zS0;1/\EC
0;0
; E�. zS0;1/\E�0;0; E�. zS0;1/\EC

0;0
:

By the intersection criterion, this shows that zDn
� .`0/ intersects zS0;1 . Since

EC. zS0;1/�EC. zS0;n/ and E�. zS0;n/�E�. zS0;0/;

we similarly have the nonempty disjoint sets of ends

EC. zS0;n/\E�0;n�1; EC. zS0;n/\EC
0;n�1

; E�. zS0;n/\E�0;n�1; E�. zS0;n/\EC
0;n�1

:

Again by the intersection criterion this means that zDn
� .`0/ intersects zS0;n as well. As

a result, zDn
� .`0/ intersects all iterates zS0;s of zS0 , where s 2 f1; : : : ; ng.

Hence zDn
� .
zS0/ intersects all n iterates of zS0 . More precisely,

zDn
� .
zS0/\ zS0; j ¤∅ for j D 1; : : : ; n with n� 2;

and thus we conclude that

tw� .S;Dn
� .S//� n� 1:

6 The almost fixed set

In this section we will prove the following theorem which says that there is an upper
bound on the diameter of the almost fixed set of a Dehn twist and this upper bound
depends only on the rank of the free group.

Theorem 1.2 Let T be a Z–splitting of Fk with k>2 and DT denote the correspond-
ing Dehn twist. Then, for all sufficiently large constants C , there exists a C 0DC 0.C; k/

such that the diameter of the almost fixed set

FC D fx 2 FFk W 9n¤ 0 such that d.x;Dn
T .x//� C g

corresponding to hDT i is bounded above by C 0 .

6.1 Finding the folding line

For G1 and G2 in CVk , let m.G1;G2/ be the infimum of the set of maximal slopes
of all change of marking maps (maps linear on edges) f W G1!G2 . Then we define a
function dLW CVk �CVk !R�0 by

dL.G1;G2/D log m.G1;G2/:
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Despite being nonsymmetric, since this is its only failure to be a distance, dL is referred
to as the Lipschitz metric on CVk .

For an interval I � R the folding lines zgW I ! CVk are the paths connecting any
given two points in the interior of CVk , obtained as follows:

For G1;G2 2 CVk let f W G1 ! G2 be a change of marking map whose Lipschitz
constant realizes the maximal slope. We find a path based at G1 which is contained in
an open simplex of unprojectivized outer space and parametrize it by arclength. Then
we concatenate this path with another geodesic path outside the open simplex obtained
by the folding process. The resulting path gW Œ0; dL.G1;G2/�! CVk is a geodesic by
Francaviglia and Martino [8] and is called the folding line.

For a given Fk –tree � and an element a2Fk , let `�.a/ denote the minimal translation
length of a in � . To prove Theorem 1.2, we use the following result from [6].

Theorem 6.1 [6] Suppose G;G02CVk with dDdL.G;G
0/ such that twa.G;G

0/ is
at least nC2 for some a 2Fk . Then there is a geodesic (folding line) gW Œ0; d �!CVk

such that g.0/D G and g.d/D G0 and for some t 2 Œ0; d �, we have `g.t/.a/� 1=n.
In other words, g.Œ0; d �/\CV1=n

k
¤∅.

6.2 Converting short length to distance

Let � be the coarse projection � W CVk ! FFk .

Lemma 6.2 [2, Lemma 3.3] Let a 2 Fk be a simple class and G a point in CVk so
that the loop corresponding to a in G intersects some edge �m times. Then

dFFk
.˛; �.G//� 6mC 13;

where ˛ is the smallest free factor containing the conjugacy class of a.

Using this lemma we prove the following:

Lemma 6.3 Let ˛ be a free factor containing the conjugacy class of an element a2Fk

and G a point in CVk , and suppose `G.a/ � m. Then there is a constant B and a
number A depending only on the rank of the free group such that

dFFk
.˛; �.G//�AmCB:

Proof Let e be the edge of G with the greatest length. Hence `.e/�1=.3kC3/. Then
˛ crosses e less than .3kC3/m times. Therefore dFFk

.˛; �.G//�6.3kC3/mC13 by
Lemma 6.2. Here AD 6.3kC3/ clearly depends only on the rank of the free group.
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6.3 Proof of Theorem 1.2

Given x 2FC , let us assume that G 2CVk is a point which is projected to x . We will
write �.G/D x . Let � be the essential embedded torus in M corresponding to the
given Z–splitting T .

Let n be such that dFFk
.G;Dn

T
.G// � C . Up to replacing C by a constant we

can assume that n � 4. By Theorem 5.2, we have tw� .G;Dn
� .G// � n� 1. Since

tw� .G;Dn
� .G// D twa.G;D

n
T
.G//, with a 2 Fk representing the core curve of the

torus � , we use the theorem of Clay and Pettet, Theorem 6.1, to deduce that there is
a folding path Gt W Œ0; d �! CVk such that G0 DG and Gd DDn

� .G/ and such that
`Gt

.a/� 1=.n� 3/ for some t 2 Œ0; d �.

Now, by [2] and [18], the projection �.fGtg/ of the folding path fGtgt onto FFk is a
quasigeodesic in FFk between �.Dn

� .G// and �.G/D x . Let ˛ be the smallest free
factor containing a. Since n� 4 we use Lemma 6.3 to deduce that

dFFk
.˛; �.Gt //�

A

n�3
C 13;

where A is the same as it is given in the lemma. Since �.fGtg/ is uniformly Hausdorff-
close to a geodesic and dFFk

�
�.G/; �.Dn

� .G//
�
�C , by the triangle inequality we have

dFFk
.�.G/; ˛/�

A

n�3
CC CH C 13�ACC CH C 13;

where H DH.k/ is the distance between the geodesic and the unparametrized quasi-
geodesic �.fGtg/. Hence we have

C 0 D 2 .ACC CH C 13/:

7 Constructing fully irreducibles

In this section we will prove the main theorem of this paper.

Theorem 1.1 Let T1 and T2 be two Z–splittings of the free group Fk with rank k>2

and ˛1 and ˛2 be two corresponding free factors in the free factor complex FFk of
the free group Fk . Let D1 be a Dehn twist fixing ˛1 and D2 a Dehn twist fixing ˛2 ,
corresponding to T1 and T2 , respectively. Then there exists a constant N D N.k/

such that whenever dFFk
.˛1; ˛2/�N ,

(1) hD1;D2i ' F2 , and

(2) all elements of hD1;D2i which are not conjugate to the powers of D1 and D2

in hD1;D2i are fully irreducible.

Algebraic & Geometric Topology, Volume 17 (2017)



Fully irreducible automorphisms of the free group via Dehn twisting in ]k.S
2 �S1/ 1399

We will start with some basic definitions and lemmata that are standard for ı–hyperbolic
spaces.

Let .X; d/ be a metric space. For x;y; z 2X , the Gromov product .y; z/x is defined as

.y; z/x WD
1
2
.d.y;x/C d.z;x/� d.y; z//:

If .X; d/ is a ı–hyperbolic space, the initial segments of length .y; z/x of any two
geodesics Œx;y� and Œx; z� stay close to each other. In other words, these geodesics are
in 2ı–neighborhoods of each other. Hence the Gromov product measures how long
two geodesics stay close together. This characterization of ı–hyperbolicity will be
used in our work as the definition of being ı–hyperbolic for a metric space.

The Gromov product .y; z/x also approximates the distance between x and the geo-
desic Œy; z� within 2ı :

.y; z/x � d.x; Œy; z�/� .y; z/xC 2ı:

Definition 7.1 A path � W I!X is called a .�; �/–quasigeodesic if � is parametrized
by arclength and if, for any s1; s2 2 I , we have

js1� s2j � �d.�.s1/; �.s2//C �:

If the restriction of � to any subsegment Œa; b� � I of length at most ` is a .�;L/–
quasigeodesic, then we call � an `–local .�;L/–quasigeodesic.

Let X be a geodesic metric space and Y �X . We say that Y is c–quasiconvex if for
all y1;y2 2 Y the geodesic segment Œy1;y2� lies in the c–neighborhood of Y .

For any x 2X we call px 2 Y an �–quasiprojection of x onto Y if

d.x;px/� d.x;Y /C �:

The lemma below shows that in hyperbolic spaces, quasiprojections onto quasiconvex
sets are quasiunique.

Lemma 7.2 Let X be a ı–hyperbolic metric space and let Y �X be c–quasiconvex.
Let x 2X and let px and px0 be two �–quasiprojections of x onto Y . Then

d.px;px0/� 2cC 4ıC 2�:

For a ı–hyperbolic geodesic G –space X , consider the almost fixed set XC .g/ corre-
sponding to a subgroup hgi for g 2G . Then the quasiconvex hull XC .g/ of XC .g/

is defined to be the union of all geodesics connecting any two points of XC .g/. From
now on we will work with quasiconvex hulls of almost fixed sets. The following is
standard for ı–hyperbolic spaces.

Algebraic & Geometric Topology, Volume 17 (2017)



1400 Funda Gültepe

Lemma 7.3 [19, Lemma 3.9] XC .g/ is g–invariant and 4ı–quasiconvex.

The following lemma appears as Lemma 3.12 in [19].

Lemma 7.4 Let .X; d/ be a ı–hyperbolic space and let Œxp;xq � be a geodesic
segment in X . Let p; q 2 X be such that xp is a projection of p on Œxp;xq �

and such that xq is a projection of q on Œxp;xq �. Then if d.xp;xq/ > 100ı , the
path Œp;xp �[ Œxp;xq �[ Œxq; q� is a .1; 30ı/–quasigeodesic.

In the proof of Theorem 1.3 we use Lemma 7.4, which assumes that the projections
onto almost fixed sets exist. However, given a geodesic metric space X and Y �X a
subset which is not necessarily closed in X , the closest point projection onto Y may
not exist. To fix this we will use quasiprojections which exist quasiuniquely when there
is quasiconvexity, by Lemma 7.2.

Now we state and prove the following theorem, which essentially proves Theorem 1.1.

Theorem 1.3 Let G be a group acting on a ı–hyperbolic metric space X by isometries
and �1; �2 2 G . Suppose C > 100ı and the almost fixed sets XC .�1/ and XC .�2/

of h�1i and h�2i, respectively, have diameters bounded above by a constant C 0 . Then
there exists a constant C1 such that, whenever dX .XC .�1/;XC .�2//� C1 ,

(1) h�1; �2i ' F2 , and

(2) every element of h�1; �2i which is not conjugate to the powers of �1 and �2

in h�1; �2i acts loxodromically in X .

Proof Let p1 2 XC .�1/ and p2 2 XC .�2/ be two points such that

dX .p1;p2/D dX .XC .�1/;XC .�2//:

To prove the theorem we will pick a random word ! and construct a ping-pong argument
involving the sets XC .�1/ and XC .�2/. The goal is to show that the iterates of Œp1;p2�

under ! give a local quasigeodesic, hence a quasigeodesic. Without loss of generality,
for g 2 h�1i, we will start with proving that the path Œp2;p1�[ Œp1;gp1�[gŒp1;p2�

is a quasigeodesic.

Let �.p2/ and �.gp2/ be quasiprojections of the points p2 and gp2 on the geodesic
segment Œp1;gp1�. Then p1 and �.p2/ are both 4ı–quasiprojections. This is true
for �.gp2/ and gp1 also. Since the difference is negligible we will assume p1 and gp1

are closest point projections.
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Now we prove that d.p1;gp1/ � C . To see this suppose that dX .p1;gp1/ < C .
We take a point x on the geodesic segment Œp1;p2� such that d.x;p1/ < � , where
� D 1

2
.C � d.p1;gp1//. Then we have

d.x;gx/� 2�C d.p1;gp1/D C;

which contradicts the assumption that p1 is the closest point of XC .�1/ to XC .�2/.
Since we proved that d.p1;gp1/ � C , we apply Lemma 7.4 to conclude that the
path Œp2;p1�[ Œp1;gp1�[gŒp1;p2� is a quasigeodesic.

gp1

gp2

p2

p1

x

gx�2.XC .�1//

XC .�2/

XC .�1/

�1.XC .�2//

Figure 7: The ping-pong sets and a quasigeodesic between iterated points

Given two points p1 2 XC .�1/ and p2 2 XC .�2/ as above, a geodesic connecting
them is called a bridge and it is not unique. However, by [19, Lemma 5.2], when two
sets are sufficiently far apart it is almost unique. Hence we first assume that

d.p1;p2/� C:

Since C > 100ı this is sufficient to have a quasiunique bridge. Now we take a
word !D�ml

2
�

sl

1
� � ��

m1

2
�

s1

1
and consider the iterates of the quasiunique bridge Œp1;p2�

under ! .

It is known that by the hyperbolicity of X , given .�;L/, there exists ` > 0 such that
an `–local .�;L/–quasigeodesic is a .�0;L0/–quasigeodesic, where �0 D �0.�;L; `/
and L0 D L0.�;L; `/. Since we have .1; 30ı/–quasigeodesic pieces, we have such
an ` which satisfies `D `.30ı/. Hence we let

d.p1;p2/� C1 WDmaxf100ı; `g:

Algebraic & Geometric Topology, Volume 17 (2017)



1402 Funda Gültepe

Now consisting of previously given quasigeodesic pieces, the path

 WD Œp1;p2�[ Œp1; �
s1

1
p1�[ Œ�

s1

1
p1; �

s1

1
p2�[ Œ�

s1

1
p2; �

m1

2
�

s1

1
p2�[ � � � [ Œ!p1; !p2�

is an `–local .1; 100ı/–quasigeodesic, and as a result, it is a quasigeodesic.

In particular, for any word ! in h�1; �2i we have d.!.x/;x/� j!j, where j!j denotes
the syllable length, up to conjugation. Now, it follows that h�1; �2i is free. Since the
path which is obtained by iterating any segment between two almost fixed sets under !
is a quasigeodesic, ! is loxodromic.

Proof of Theorem 1.1 Consider the action of Out.Fk/ on the free factor complex FFk .
By Theorem 1.2, for a sufficiently large constant C DC.k/ there exists a C 0DC 0.C /

such that the diameter of the almost fixed set of a Dehn twist is bounded above by C 0 .
Let C1 be the constant from Theorem 1.3.

Now assume that D1 and D2 are the Dehn twists so that dFFk
.˛1; ˛2/ � 2C 0CC1 ,

where ˛1 and ˛2 are the projections of the given Z–splittings T1 and T2 to FFk ,
respectively. Since Theorem 1.2 implies diamfFC g �ACC CH C13DC 0 , we have

d.FC .D1/;FC .D2//� C1:

Hence Theorem 1.3 applies to hD1;D2i with N D 2 diamfFC gCC1 D 2C 0CC1 . It
is clear that N DN.k/. As a result, since loxodromically acting elements in the free
factor complex are fully irreducible, every element from the group hD1;D2i is either
conjugate to powers of the twists or fully irreducible.

8 Constructing atoroidal fully irreducibles

In this section we prove the following theorem which produces atoroidal fully irre-
ducibles. Recall FF.1/

k
is the 1–skeleton of the free factor complex (free factor graph)

and that � W FF.1/
k
! Pk is a coarse surjective map and that both graphs have the same

vertex sets.

Theorem 1.4 Let T1 and T2 be two Z–splittings of Fk with k > 2 with correspond-
ing free factors ˛1 and ˛2 , and let D1 and D2 be two Dehn twists corresponding
to T1 and T2 , respectively. Then there exists a constant N2 D N2.k/ such that
hD

1
;D

2
i ' F2 whenever dPk

.�.˛1/; �.˛2//�N2 , and all elements from this group
which are not conjugate to the powers of D1 and D2 in hD1;D2i are atoroidal fully
irreducible.
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Proof To see that hD1;D2i ' F2 we use Theorem 1.3. To do that, we need to show
that given a Z–splitting T and a constant C there is another constant depending only
on C which bounds from above the diameter of the almost fixed set PC of a Dehn
twist corresponding to T .

Let x be a point in PC and ��.G/ D x for some G 2 CVk . Then, as before, we
use the theorem of Clay and Pettet, Theorem 6.1, to obtain a folding line fGtgt

between G and Dn
� .G/ along which a is short, where a is the generator of the

fundamental group of the torus � in M . Then, since distances in the intersection graph
are shorter, the lemma of Bestvina and Feighn, Lemma 6.2, applies, and

dPk
.�˛; ��.G//� dFFk

.˛; �.G//� 6mC 13:

Hence we can convert the short length to distance in the intersection graph. Thus there
exists constants A and B such that

dPk
.˛; �.Gt //�AmCB;

where Gt is the point along which a is short. Then the rest of the proof follows the same
since the image of the folding line in Pk is a quasigeodesic and it is Hausdorff-close
to a geodesic by [18] and [23]. Hence the diameter of PC is uniformly bounded above
by a constant, and Theorem 1.3 applies to hD1;D2i with N2 D 2 diamfPC gCC1 .

Since in Pk loxodromically acting automorphisms are atoroidal fully irreducible [23], an
element of hD1;D2i which is not conjugate to the powers of D1 and D2 in hD1;D2i

is atoroidal fully irreducible.
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Pair of pants decomposition of 4–manifolds

MARCO GOLLA

BRUNO MARTELLI

Using tropical geometry, Mikhalkin has proved that every smooth complex hypersur-
face in CP nC1 decomposes into pairs of pants: a pair of pants is a real compact 2n–
manifold with cornered boundary obtained by removing an open regular neighborhood
of nC 2 generic complex hyperplanes from CP n.

As is well-known, every compact surface of genus g > 2 decomposes into pairs of
pants, and it is now natural to investigate this construction in dimension 4 . Which
smooth closed 4–manifolds decompose into pairs of pants? We address this problem
here and construct many examples: we prove in particular that every finitely presented
group is the fundamental group of a 4–manifold that decomposes into pairs of pants.

57M99, 57N13

Introduction

The decomposition of surfaces into pairs of pants is an extraordinary instrument in
geometric topology that furnishes, among many other things, a nice parametrization for
Teichmüller spaces. Mikhalkin has generalized this notion in [4] to all even dimensions
as follows: he defines the 2n–dimensional pair of pants as the manifold obtained by
removing nC 2 generic hyperplanes from CPn. One actually removes open regular
neighborhoods of the hyperplanes to get a compact real 2n–manifold with stratified
cornered boundary: when nD 1, we get CP1 minus three points, whence the usual
pair of pants.

Using some beautiful arguments from tropical geometry, Mikhalkin has proved in [4]
that every smooth complex hypersurface in CPnC1 decomposes into pairs of pants.
We address here the following natural question:

Question 0.1 Which smooth closed manifolds decompose into pairs of pants?

The question makes sense, of course, only for real smooth manifolds of even dimen-
sion 2n. It is natural to expect the existence of many smooth manifolds that decompose
into pairs of pants and are not complex projective hypersurfaces: for instance, the

Published: 17 July 2017 DOI: 10.2140/agt.2017.17.1407
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Figure 1: The model fibration CP 1
!…1

hypersurfaces of CP2 are precisely the closed orientable surfaces of genus g D
1
2
.d �1/.d �2/ for some d > 0, while by assembling pairs of pants, we obtain closed

orientable surfaces of any genus.

In this paper, we study pants decompositions in (real) dimension 4. We start by con-
structing explicit pants decompositions for some simple classes of closed 4–manifolds:
S4, torus bundles over surfaces, circle bundles over 3–dimensional graph manifolds,
toric manifolds, the simply connected manifolds #k.S

2�S2/ and #kCP2#hCP2 . Then
we prove the following theorem, which shows that the 4–manifolds that decompose
into pairs of pants form a quite large class:

Theorem 0.2 Every finitely presented group is the fundamental group of a closed
4–manifold that decomposes into pairs of pants.

We get in particular plenty of non-Kähler, and hence nonprojective, 4–manifolds. We
expose a more detailed account of these results in the remaining part of this introduction.

Pair of pants decompositions Mikhalkin’s definition of a pair of pants decomposition
is slightly more flexible than the usual one adopted for surfaces: the boundary of a
pair of pants (of any dimension 2n) is naturally stratified into circle fibrations, and an
appropriate collapse of these circles is allowed. With this language, the sphere S2 has
a pants decomposition with a single pair of pants, where each boundary component is
collapsed to a point.

More precisely, a pair of pants decomposition of a closed 2n–manifold M 2n is a
fibration M 2n!X n over a compact n–dimensional cell complex X n which is locally
diffeomorphic to a model fibration CPn

!…n derived from tropical geometry. The
fiber of a generic (smooth) point in X n is a real n–torus.

When nD 1, the model fibration is drawn in Figure 1, and some examples of pair of
pants decompositions are shown in Figure 2. The reader is invited to look at these
pictures that, although quite elementary, describe some phenomena that will also be
present in higher dimensions. When nD 1, the base cell complex X 1 may be of these

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 2: Pair of pants decompositions of surfaces

limited types: either a circle, or a graph with vertices of valence 1 and 3. There are three
types of points x in X 1 (smooth, a vertex with valence 1, or a vertex with valence 3),
and the fiber over x depends only on its type (a circle, a point, or a � –shaped graph,
respectively).

In dimension 2n, the model cell complex …n is homeomorphic to the cone of the
.n�1/–skeleton of the .nC1/–simplex; the model fibration sends nC2 generic hyper-
planes onto the base @…n of the cone and the complementary pair of pants onto its
interior …n n @…n . We are interested here in the case nD 2.

Dimension 4 In dimension 4, a pair of pants is CP2 minus (the open regular neigh-
borhood of) four generic lines: it is a 4–dimensional compact manifold with cornered
boundary; the boundary consists of six copies of P � S1, where P is the usual 2–
dimensional pair-of-pants, bent along six 2–dimensional tori.

The model fibration CP2
! …2 is sketched in Figure 3: the cell complex …2 is

homeomorphic to the cone over the 1–skeleton of a tetrahedron, and there are 6 types of
points in …2 ; the fiber of a generic (ie smooth) point of …2 is a torus, and the fibers over
the other 5 types are: a point, S1, � , � �S1, and a more complicated 2–dimensional
cell complex F2 fibering over the central vertex of …2 . The central fiber F2 is a spine
of the 4–dimensional pair of pants and is homotopically equivalent to a punctured
3–torus. (Likewise, when n D 1, the fiber of the central vertex in CP1

!…1 is a
� –shaped spine of the 2–dimensional pair of pants and is homotopically equivalent to
a punctured 2–torus.)

A pair of pants decomposition of a closed 4–manifold M 4 is a map M 4!X 2 locally
diffeomorphic to this model. The cell complex X 2 is locally diffeomorphic to …2 ,
and the fiber over a generic point of X 2 is a torus.

Algebraic & Geometric Topology, Volume 17 (2017)
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F2

Figure 3: Fibers of the model fibration CP 2
!…2

We note that pants decompositions are similar to (but different from) Turaev’s shadows
(see [7] and also Costantino and Thurston [1]), which are fibrations M 4!X 2 onto
similar cell complexes, where the generic fiber is a disc and M 4 is a 4–manifold with
boundary that collapses onto X 2.

The main object of this work is to introduce many examples of 4–manifolds that
decompose into pairs of pants. These examples are far from being exhaustive, and we
are very far from having a satisfactory answer to Question 0.1: for instance, we are not
aware of any obstruction to the existence of a pants decomposition, so we do not know
if there is a closed 4–manifold which does not admit one.

Sketch of the proof of Theorem 0.2 Once we set up the general theory, Theorem 0.2
is proved as follows. We first solve the problem of determining all the possible fibrations
M 4!X 2 on a given X 2 by introducing an appropriate system of labelings on X 2. We
note that the same X 2 may admit fibrations M 4!X 2 of different kinds, sometimes
with pairwise nondiffeomorphic total spaces M 4, and each such fibration is detected
by some labeling on X 2. This combinatorial encoding is interesting on its own because
it furnishes a complete presentation of all pants decompositions in dimension 4.

We then use these labelings to construct a large class of complexes X 2 for which there
exist fibrations M 4!X 2 that induce isomorphisms on fundamental groups. Finally,
we show that every finitely presented G has an X 2 in this class with �1.X

2/DG .

Structure of the paper We introduce pair of pants decompositions in all dimensions
in Section 1, following and expanding from Mikhalkin [4] and focusing mainly on the
4–dimensional case. In Section 2, we construct some examples.
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In Section 3, we study in detail the simple case when X is a polygon. In this case,
M !X looks roughly like the moment map on a toric manifold, and every fibration
M !X is encoded by some labeling on X . We then extend these labelings to more
general complexes X in Section 4.

In Section 5, we prove Theorem 0.2.

Acknowledgements We thank Filippo Callegaro and Giovanni Gaiffi for stimulating
discussions, and the referee for helpful comments and for finding a mistake in an earlier
proof of Theorem 0.2.

1 Definitions

We introduce here simple complexes, tropical fibrations, and pair of pants decomposi-
tions. We describe these objects with some detail in dimensions 2 and 4.

Recall that a subcomplex X �M of a smooth manifold M is a subcomplex of some
smooth triangulation of M .

We work in the category of smooth manifolds: all the objects we consider are subcom-
plexes of some RN, and a map between two such complexes is smooth if it locally
extends to a smooth map on some open set.

1.1 The basic cell complex …n

Let � be the standard .nC1/–simplex

�D f.x0; : : : ;xnC1/ 2RnC2
j x0C � � �CxnC1 D 1; xi > 0g:

We use the barycentric coordinates on �; that is, for every nonzero vector x D

.x0; : : : ;xnC1/ 2 RnC2
>0

, we denote by Œx0; : : : ;xnC1� the unique point in � that is
a multiple of x . Every point p 2� has a unique description as Œx0; : : : ;xnC1� with
max xi D 1, and we call it the normal form of p .

Definition 1.1 Let …n �� be the following subcomplex:

…n D f Œx0; : : : ;xnC1� j 0 6 xi 6 1 and xi D 1 for at least two values of ig:

The subcomplex …n � � may be interpreted as the cut-locus of the vertices of �;
see …1 in Figure 4. Every point x 2…n has a type .k; l/ with 0 6 k 6 l 6 n, which
is determined by the following requirements: the normal form of x contains l � kC 2
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Œ1; 0; 0� Œ0; 1; 0�

Œ0; 0; 1�

Œ1; 1; 0�

Œ1; 1; 1�Œ1; 0; 1� Œ0; 1; 1�

Figure 4: The subcomplex …1 inside the standard simplex �

.0; 0/

.1; 1/

.0; 1/

.0; 0/
.0; 1/

.1; 1/ .1; 2/ .2; 2/

.0; 2/

Figure 5: The subcomplexes …1 and …2 . Every point is of some type .k; l/
with 0 6 k 6 l 6 n , and points of the same type define strata. Here k is
the dimension of the stratum and l C 1 is the dimension of the face of �
containing it.

different 1–entries and n� l different 0–entries. More concretely, see Figure 5 for the
cases nD 1 and 2, which are of interest for us here.

Points of the same type .k; l/ form some open k –cells, and these cells stratify …n .
Geometrically, a point x of type .k; l/ is contained in the k –stratum of …n and in the
.lC1/–stratum of �. An open star neighborhood of x in …n is diffeomorphic to the
subcomplex

…l;k DRk
�…l�k � Œ0;C1/

n�l:

A point of type .n; n/ is a smooth point, while the points with l < n form the boundary

@…n D…n\ @�:
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Œ1; 0; 0� Œ0; 1; 0�

Œ0; 0; 1�

Œ1; 1; 0�

Œ1; 0; 1� Œ0; 1; 1�

Figure 6: The projection of �� onto …n

1.2 Tropical fibration of CP n

Using tropical geometry, Mikhalkin has constructed in [4] a map

� W CPn
!…n:

The map is defined as a composition � D �2 ı�1 of two projections. The first one is a
restriction of the projection

CPnC1 �1
�!�; Œz0; : : : ; znC1� 7! Œjz0j; : : : ; jznC1j �:

We identify CPn with the hyperplane H � CPnC1 defined by z0C � � � C znC1 D 0

and restrict �1 to H . The image �1.H / is a region in � called an amoeba, which
contains …n as a spine [5]. There is a simple projection that retracts the amoeba onto
its spine …n : it is the restriction of a map

�2W �
�
!…n;

where �� is � minus its vertices. The map �2 is drawn in Figure 6 and is defined
as follows: up to permuting the coordinates, we suppose for simplicity that x D

Œx0; : : : ;xnC1� with x0 > x1 > : : :> xnC1 , and we define

�2.x/D Œx1;x1;x2; : : : ;xnC1�:

The composition � D �2 ı�1 is a map that sends CPn
DH onto …n .

The map �2 is only piecewise smooth; it can then be smoothened as explained in [4,
Section 4.3], so that the composition � is also smooth. In the following sections, we
study �2 in the cases nD 1 and nD 2 before the smoothening, because it is easier to
determine the fibers of � concretely using the nonsmoothed version of �2 . We remark
that in dimension 4, wherein lies our interest, every piecewise-linear object can be
easily smoothened, so this will not be an important issue anyway.
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1.3 The case n D 1

We now explicitly describe the fibration

� W CP1
!…1:

Recall that CP1 is identified with the line H D fz0 C z1 C z2 D 0g in CP2 , and
that …1 contains points of type .0; 0/, .1; 1/ and .0; 1/.

Proposition 1.2 The fiber ��1.x/ of a point x 2…1 is

� a point if x is of type .0; 0/,

� a piecewise-smooth circle if x is of type .1; 1/,

� a � –shaped smooth graph if x is of type .0; 1/.

Proof Up to reordering we have x D Œ1; 1; 0�, Œ1; 1; t �, or Œ1; 1; 1� with 0 < t < 1

depending on the type. Using the calculation made in Figure 7 (left) we can describe
the fibers explicitly:

��1.Œ1; 1; 0�/D Œ1; 1; 0�;

��1.Œ1; 1; t �/D
�˚
Œx; ei� ; t �

ˇ̌
jxj> 1

	
[
˚
Œei� ;x; t �

ˇ̌
jxj> 1

	�
\H

D
˚
Œ�ei�

� t; ei� ; t �
ˇ̌
cos � > � t

2

	
[
˚
Œei� ;�ei�

� t; t �
ˇ̌
cos � > � t

2

	
;

��1.Œ1; 1; 1�/D
�˚
Œx; ei� ; 1�

ˇ̌
jxj> 1

	
[
˚
Œei� ; 1;x�

ˇ̌
jxj> 1

	
[
˚
Œ1;x; ei� �

ˇ̌
jxj> 1

	�
\H

D
˚
Œ�ei�

� 1; ei� ; 1�
ˇ̌
cos � > �1

2

	
[
˚
Œei� ; 1;�ei�

� 1�
ˇ̌
cos � > �1

2

	
[
˚
Œ1;�ei�

� 1; ei� �
ˇ̌
cos � > �1

2

	
:

The fiber ��1.Œ1; 1; t �/ consists of two arcs with disjoint interiors but coinciding
endpoints Œe˙i� ; e�i� ; t � with cos � D �t=2; therefore, ��1.Œ1; 1; t �/ is a piecewise
smooth circle. Analogously ��1.Œ1; 1; 1�/ consists of three arcs joined at their endpoints
Œe˙2�i=3; e�2�i=3; 1� to form a � –shaped graph.

The fibration � is homeomorphic to the one drawn in Figure 8. The smoothing
described in [4, Section 4.3] transforms the piecewise smooth circles into smooth
circles, so that the resulting fibration is diffeomorphic to the one shown in the picture.

We note that the � –shaped graph is a spine of the pair of pants, and is also homotopic
to a once-punctured 2–torus. Both of these facts generalize to higher dimensions.
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t

ei�

�ei� � t

u

ei' t ei' t Cuei�

�ei� � ei' t �u

Figure 7: The points Œ�ei��t; ei� ; t � with j�ei��t j> 1: when cos � D�t=2 ,
we get �ei� � t D e�i� ; as the point ei� moves along the green arc of the unit
circle, the point �ei� � t moves along the red arc, and hence has norm bigger
than 1 . This identifies one of the two arcs in ��1.Œ1; 1; t �/ (left). The fiber
��1.Œ1; 1; t;u�/ is considered similarly, with ei' t Cu instead of t (right).

Figure 8: The tropical fibration CP 1
!…1

1.4 The case n D 2

We now study the fibration � W CP2
!…2 , and our main goal is to show that its fibers

are as in Figure 3.

Recall that we identify CP2 with the plane H D fz0C z1C z2C z3 D 0g in CP3.
The subcomplex …2 has points of type .0; 0/, .1; 1/ and .0; 1/ on its boundary, and
of type .2; 2/, .1; 2/ and .0; 2/ in its interior.

Proposition 1.3 The fiber ��1.x/ of a point x 2…2 is

� a point if x is of type .0; 0/,
� a piecewise-smooth circle if x is of type .1; 1/,
� a � –shaped smooth graph � if x is of type .0; 1/,
� a piecewise-smooth torus if x is of type .2; 2/,
� a piecewise-smooth product � �S1 if x is of type .1; 2/,
� some 2–dimensional cell complex F2 if x is of type .0; 2/.
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Proof Up to reordering, the point x is one of the following:

Œ1; 1; 0; 0�; Œ1; 1; t; 0�; Œ1; 1; 1; 0�; Œ1; 1; t;u�; Œ1; 1; 1; t �; Œ1; 1; 1; 1�;

with 1> t > u> 0.

Let f1 , f2 , f3 and f4 be the faces of �, with fi D fxi D 0g. The preimage ��1
1
.fi/

is the plane fzi D 0g in CP3 and intersects H in a line li . The four lines l1 , l2 , l3
and l4 are in general position in H and intersect pairwise in the six points obtained by
permuting the coordinates of Œ1;�1; 0; 0�.

The map � sends li onto the Y –shaped graph fi \…2 exactly as described in the
previous section; see Figure 8. The map � sends the four lines li onto @…2 , each line
projected onto its own Y –shaped graph; the six intersection points are sent bijectively
to the six points of type .0; 0/ of …2 .

It remains to understand the map � over the interior of …2 . Similarly as in the
1–dimensional case, Figure 7 (right) shows that

��1.Œ1; 1; t;u�/

D
�˚
Œx; ei� ; ei' t;u�

ˇ̌
jxj> 1

	
[
˚
Œei� ;x; ei' t;u�

ˇ̌
jxj> 1

	�
\H

D
˚
Œ�ei�

� ei' t �u; ei� ; ei' t;u�
ˇ̌

cos.� � arg.ei' t Cu//> �1
2
jei' t Cuj

	
[
˚
Œei� ;�ei�

� ei' t �u; ei' t;u�
ˇ̌

cos.� � arg.ei' t Cu//> �1
2
jei' t Cuj

	
:

For every fixed ei' 2 S1 , we get two arcs parametrized by � with the same endpoints,
thus forming a circle as in the 1–dimensional case. Therefore, the fiber over Œ1; 1; t;u�
is a (piecewise smooth) torus.

Analogously, the fiber over Œ1; 1; 1; t � is a piecewise smooth product of a � –shaped
graph and S1. Finally, the fiber over Œ1; 1; 1; 1� is a more complicated 2–dimensional
cell complex F2 .

The different fibers are shown in Figure 3. Let Fi be the fiber over a point of type .0; i/.
The fibers F0 , F1 and F2 are a point, a � –shaped graph and some 2–dimensional
complex. These fibers “generate” all the others: the fiber over a point of type .k; l/ is
piecewise-smoothly homeomorphic to Fl � .S

1/k.

1.5 More on dimension 4

The fibration CP2
! …2 plays the main role in this work, and we need to fully

understand it. We consider here a couple of natural questions.
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l1

l2

l3

l4

B

Figure 9: A regular neighborhood of the four lines. It decomposes into six
pieces diffeomorphic to D2 �D2 (red) and four pieces diffeomorphic to
P �D2 (yellow), where P is a 2–dimensional pair of pants. (Every yellow
piece is a D2 –bundle over P , and every such bundle is trivial. Note however
that the normal bundle of each line is not trivial.)

How does the fibration look on a collar of @…2 ? It sends a regular neighborhood of the
four lines l1 , l2 , l3 and l4 shown in Figure 9 onto a regular neighborhood of @…2 as
drawn in Figure 10. Note that the regular neighborhood of the lines decomposes into
pieces diffeomorphic to D2�D2 and P �D2, where P is a pair of pants; see Figure 9.
On the red regions, the fibration sends D2�D2 to Œ0; 1�� Œ0; 1� as .w; z/ 7! .jwj; jzj/.
On the yellow zone, each piece P �D2 is sent to Y � Œ0; 1� as .x; z/ 7! .�.x/; jzj/,
where Y is a Y –shaped graph.

What is the fiber F2 ? By construction, it is a 2–dimensional spine of CP2 minus the
four lines. It is a well-known fact (proved for instance using the Salvetti complex [6])
that the complement of four lines in general position in CP2 is homotopically equivalent
to a punctured 3–torus. More generally, the fiber Fn is homotopic to a once-punctured
.nC1/–torus (compare the case nD 1). We have determined F2 only up to homotopy,
but this is sufficient for us.

1.6 Simple complexes

Always following Mikhalkin, we use the fibration � as a standard model to define
more general fibrations of manifolds onto complexes.

Definition 1.4 A simple n–dimensional complex is a compact connected space X�RN

such that every point has a neighborhood diffeomorphic to an open subset of …n .

For example, a simple 1–dimensional complex is either a circle or a graph with vertices
of valence 1 and 3.
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Figure 10: A regular neighborhood of the four lines projects onto a regular
neighborhood of @…2 . Yellow and red blocks from Figure 9 project to the
yellow and red portions in …2 drawn here. Note that there is a sixth sheet
with a sixth red block behind the five that are shown.

Every point in X inherits a type .k; l/ from …n , and points of the same type form a k –
manifold called the .k; l/–stratum of X . As opposed to …n , a connected component
of a .k; l/–stratum need not be a cell: for instance, a closed smooth n–manifold is a
simple complex where every point is smooth, ie of type .n; n/.

We use the word “simple” because it is largely employed to denote 2–dimensional
complexes with generic singularities; see for instance [3].

1.7 Pants decomposition

Let M be a closed smooth manifold of dimension 2n. Following [4], we define a
pants decomposition for M to be a map

pW M !X

over a simple n–dimensional complex X which is locally modeled on the fibration
� W CPn

! …n ; that is, the following holds: for every point x 2 X there are an
open neighborhood U of x , a point y in an open subset V �…n , a diffeomorphism
.U;x/! .V;y/, and a fiber-preserving diffeomorphism ��1.V /!p�1.U / such that
the resulting diagram commutes:

��1.V / //

�

��

p�1.U /

p

��

V // U

When n D 1, a pants decomposition is a fibration pW M ! X of a closed surface
onto a 1–dimensional simple complex. If X is not a circle and contains no 1–valent
vertices, the fibration induces on M a pants decomposition in the usual sense: the
complex X decomposes into Y –shaped subgraphs whose preimages in M are pairs
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Figure 11: A pants decomposition of a surface M in the usual sense induces
a fibration M !X onto a simple complex.

of pants; see Figure 11. Conversely, every usual pants decomposition of M defines a
fibration M !X of this type.

In general, the base complex X may be quite flexible; for instance, it might just be an
n–manifold. Therefore, every smooth n–torus fibration on a n–manifold X is a pants
decomposition. Mikhalkin has proved the following remarkable result:

Theorem 1.5 (Mikhalkin [4]) Every smooth complex hypersurface in CPnC1 admits
a pants decomposition.

As stated in the introduction, we would like to understand which manifolds of even
dimension admit a pants decomposition. In dimension 2, every closed orientable
surface has a pants decomposition. Those having genus g > 1 admit a usual one, while
the sphere and the torus admit one in the more generalized sense introduced here: they
fiber respectively over a segment (or a Y –shaped graph, or any tree) and a circle.

We now focus on the case nD 2; that is, we look at smooth 4–manifolds fibering over
simple 2–dimensional complexes.

2 Four-manifolds

We now construct some closed 4–dimensional manifolds M that decompose into pairs
of pants, that is, that admit a fibration M !X onto some simple complex X locally
modeled on CP2

! …2 . In the subsequent sections, we will study fibrations on a
given X in a more systematic way.
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Figure 12: Three simple 2–dimensional complexes: a closed surface (all
points are smooth), a surface with a disc attached (all points are of type .1; 2/
or .2; 2/), and a polygon (all points are of type .0; 0/ , .1; 1/ or .2; 2/)

2.1 Some examples

We construct three families of examples of fibrations M !X that correspond to three
simple types of complexes X shown in Figure 12: surfaces, surfaces with triple points,
and polygons.

If X is a closed surface, the fibrations M !X are precisely the torus bundles over X.

If X contains points of type .1; 2/ and .2; 2/, we obtain more manifolds. Recall that
a Waldhausen graph manifold [8] is any 3–manifold that decomposes along tori into
pieces diffeomorphic to P � S1 and D2 � S1, where P is the pair of pants. For
example, all lens spaces and Seifert manifolds are graph manifolds.

Proposition 2.1 Let pW M !N be a circle bundle over an orientable closed graph
manifold N . The closed manifold M has a pants decomposition M !X for some X

consisting of points of type .1; 2/ and .2; 2/ only.

Proof It is proved in [1, Proposition 3.31] that every orientable graph manifold N

admits a fibration � over some simple complex X , called a shadow, that consists
of points of type .1; 2/ and .2; 2/ only, with fibers respectively diffeomorphic to a
� –shaped graph and a circle. The composition of the two projections � ıpW M !X

is a pair of pants decomposition.

If X has only points of type .0; 0/, .1; 1/ and .2; 2/, then it is a surface with polygonal
boundary consisting of vertices and edges. We also get interesting manifolds in this case.

Proposition 2.2 A closed 4–dimensional toric manifold M has a pants decomposition
M !X for some polygonal disc X . In particular, CP2 fibers over the triangle.

Proof The moment map M ! X is a fibration onto a polygon X locally modeled
on CP2

!…2 near a vertex of type .0; 0/.
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The 4–dimensional closed toric varieties are S2 �S2 and CP2 # hCP2 ; see [2]. In
all the previous examples, the base complex X has no vertex of type .0; 2/.

Problem 2.3 Classify all the pair of pants decompositions M ! X onto simple
complexes X without vertices of type .0; 2/.

This is a quite interesting set of not-too-complicated 4–manifolds, which contains torus
bundles over surfaces, circle bundles over graph manifolds, and toric manifolds.

2.2 Smooth hypersurfaces

We now turn to more complicated examples where X contains vertices of type .0; 2/.
Mikhalkin’s theorem [4, Theorem 1] produces the following manifolds.

Theorem 2.4 The smooth hypersurface M of degree d in CP3 has a pants decom-
position M !X on a simple complex X with d3 vertices of type .0; 2/.

Recall that the diffeomorphism type of M depends only on the degree d . When
d D 1; 2; 3; 4, the manifold M is CP2, S2 �S2, CP2 # 6CP2 , and the K3 surface,
respectively.

2.3 Euler characteristic

The Euler characteristic of a pants decomposition can be easily calculated, and it
depends only on the base X .

Proposition 2.5 Let M !X be a pants decomposition. We have

�.M /D n0� n1C n2;

where ni is the number of points of type .0; i/ in X .

Proof All fibers have zero Euler characteristic, except the fibers Fi above vertices of
type .0; i/, that have �.Fi/D .�1/i.

2.4 The nodal surface

Proposition 2.6 Let pW M ! X be a pants decomposition. The preimage S D

p�1.@X / is an immersed smooth compact surface in M .
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Proof The fibration p is locally modeled on the tropical fibration CP2
!…2 , and the

preimage of @…2 in CP2 is an immersed surface consisting of four lines intersecting
transversely in six points lying above the vertices of type .0; 0/.

We call S the nodal surface of the fibration p . It is an immersed surface in M with
one transverse self-intersection above each point of type .0; 0/ of X . Every such
self-intersection is called a node.

Remark 2.7 We note that a vertex of type .0; 1/ connected to three vertices of type
.0; 0/ determines an embedded sphere in S . Two vertices of type .0; 0/ connected by
an edge also determine an embedded sphere.

3 Polygons

Let X be a 2–dimensional simple complex. Is there a combinatorial way to encode all
the pants decompositions M !X fibering over X ? Yes, there is one, at least in the
more restrictive case where every connected stratum in X is a cell: every fibration is
determined by some labeling on X , which is roughly the assignment of some 2� 2

matrices to the connected 1–strata of X satisfying some simple requirements. We
describe this method here in the simple case when X is a polygon. We will treat the
general case in the next section.

3.1 Fibrations over polygons

Let X be a n–gon as in Figure 13 (left), that is, a simple 2–dimensional complex
homeomorphic to a disc with n > 1 points of type .0; 0/ called vertices. The strata of
type .0; 1/ form n edges (or sides).

Let � W M ! X be a pair of pants decomposition. We first make some topological
considerations.

Proposition 3.1 The manifold M is simply connected, and �.M /D n. The nodal
surface consists of n spheres.

Proof We have �.M /D n by Proposition 2.5. The manifold M is simply connected
because X is, and every loop contained in some fiber ��1.x/ is homotopically trivial:
it suffices to push x to a vertex v of X and the loop contracts to the point ��1.v/.

Thanks to Remark 2.7, the nodal surface consists of n spheres, one above each edge
of X.
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S1 �D S1 �S1

D �S1

Figure 13: A fibering M !X over a pentagon (left) can be broken into n

basic pieces (center). The fibering over each basic piece (right).

3.2 Orientations

In this paper, we will be often concerned with orientations on manifolds, their products
and their boundaries. This can be an annoying source of mistakes, so we need to be
careful. We will make use of the following formula on oriented manifolds M and N :

(1) @.M �N /D .@M �N /[ .�1/dim M .M � @N /:

Moreover, recall that the map

(2) M �N !N �M

that interchanges the two factors is orientation-preserving if and only if dim M �dim N

is even.

3.3 The basic fibration

Again, let M ! X be a fibration over a polygon. We now break the given fibration
M !X into some basic simple pieces and show that M !X can be described by
some simple combinatorial data.

We break the n–gon into n star neighborhoods of the vertices as in Figure 13 (center).
Above each star neighborhood, the fibration is diffeomorphic to the basic fibration

D2
�D2

! Œ0; 1�� Œ0; 1�

that sends .w; z/ to .jwj; jzj/, which we encountered in Section 1.5 and sketched
in Figure 13 (right). The whole fibration M ! X is constructed by gluing n such
basic fibrations as suggested in Figure 14 (left). We only need to find a combinatorial
encoding of these gluings to determine M !X .

Consider a single basic fibration D2 �D2 ! Œ0; 1� � Œ0; 1� as in Figure 13 (right).
The point .0; 0/ is the fiber of .0; 0/, the blue vertex in the figure. The boundary of
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L1 L2

L3

L4

L5

Figure 14: The fibering M !X may be reconstructed by gluing the basic
fibrations (left). The gluing can be determined by some label matrices Li

(right).

D2 �D2 is
@.D2

�D2/D .D2
�S1/[ .S1

�D2/;

which is two solid tori (we call them facets) cornered along the torus S1�S1 (a ridge).
The manifold D2 �D2 is naturally oriented, and by (1) and (2), both solid tori inherit
from D2�D2 their natural orientations, which are invariant if we swap the factors D2

and S1. The ridge torus S1 � S1 , however, inherits opposite orientations from the
two facets.

The ridge torus S1 �S1 is the fiber of .1; 1/, the white dot in the figure, and the two
facets, the solid tori, fiber over the two adjacent sides f1g � Œ0; 1� and Œ0; 1�� f1g.

Every arrow in Figure 14 (left) indicates a diffeomorphism  W D2 �S1! S1 �D2

between two facets of two consecutive basic fibrations. It is convenient to write  as a
composition

D2
�S1  0

�!D2
�S1 j

�! S1
�D2;

where j simply interchanges the two factors. By standard 3–manifold theory, the
diffeomorphism  0 is determined (up to isotopy) by its restriction to the boundary torus
S1 �S1, which is in turn determined (up to isotopy) by the integer invertible matrix
L 2GL.2;Z/ that encodes its action on H1.S

1�S1/DZ�Z. The only requirement
is that L must preserve the meridian; that is, it must send .1; 0/ to .˙1; 0/. Summing
up, we have the following.

Proposition 3.2 The isotopy class of  0 is determined by a matrix

LD

�
" k

0 "0

�
with "; "0 D˙1 and k 2 Z.

Algebraic & Geometric Topology, Volume 17 (2017)



Pair of pants decomposition of 4–manifolds 1425

L

�
1 0
0 �1

�

�
�1 0

0 1

�
�

1 �1
0 �1

� �
1 �1
0 �1

�

�
1 �1
0 �1

�

�
1 0
0 �1

� �
1 0
0 �1

�

�
1 0
0 �1

��
1 0
0 �1

�
Figure 15: The monogon has no admissible labeling. The other admissible
labelings shown here represent S4, CP 2 and S2 �S2.

We can encode all the gluings by assigning labels L1; : : : ;Ln of this type to the n

oriented edges of X as in Figure 14 (right). We call such an assignment a labeling of
the polygon X . We define the matrices

I D

�
1 0

0 1

�
; J D

�
0 1

1 0

�
:

Not every labeling defines a fibration M !X . A necessary and sufficient condition is
that the global monodromy around the central torus must be trivial.

Proposition 3.3 The labeling defines a fibration M !X if and only if

JLnJLn�1 � � �JL1 D I:

If det Li D�1 for all i , the manifold M is oriented.

Proof We only need to ensure that the monodromy around the central torus S1 �S1

is isotopic to the identity, that is, JLn � � �JL1 D I . (The composition  D  0 ı j

translates into JL.) If det Li D�1, the standard orientations of the pieces D2 �D2

match to induce an orientation for M .

We say that the labeling is admissible if LnJ � � �L1J D I and oriented if det Li D�1

for all i . Summing up, we have proved the following.

Proposition 3.4 Every fibration M ! X over an n–gon X is obtained by some
admissible labeling on X .

Some examples are shown in Figure 15. The monogon in Figure 15 (left) has no
admissible labeling L because LJ ¤ I for every LD

�
" k
0 "0

�
. The figure shows some

oriented admissible labelings on the bigon, the triangle and the square (admissibility is
easily checked). Each determines a fibration M !X .
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L1

L2

�L1

�L2

Figure 16: If we change the signs of the labels of two consecutive edges, the
fibration M !X remains unaffected.

Proposition 3.5 The bigon in Figure 15 represents S4.

Proof The bigon X decomposes into two pieces Œ0; 1�� Œ0; 1�, and M decomposes
correspondingly into two pieces D2 �D2. The manifold M decomposes smoothly
into two 4–discs and is diffeomorphic to S4.

We have discovered that S4 decomposes into pairs of pants. We will soon prove that
the triangle and square in Figure 15 represent CP2 and S2 �S2 , respectively.

Recall that we work entirely in the smooth (or equivalently, piecewise-linear) category.

3.4 Moves

We now introduce some moves on admissible labelings.

Let L1; : : : ;Ln be a fixed oriented admissible labeling on the n–gon X with edges
e1; : : : ; en . We know that it determines an oriented fibration � W M !X . We start by
noting that different labelings may yield the same fibration.

Proposition 3.6 The move in Figure 16 produces a new oriented admissible labeling
that encodes the same fibration M !X .

Proof The fibration D2�D2! Œ0; 1�� Œ0; 1� has the orientation-preserving automor-
phism .z; w/ 7! .xz; xw/, which acts on S1�S1 like �I . By employing it, we see that
the move produces isomorphic fibrations M !X .

Since det Li D�1 by hypothesis, every label Li is either
�

1 ki

0 �1

�
or
�
�1 ki

0 1

�
, and we

correspondingly say that Li is positive or negative. By applying the move of Figure 16
iteratively on the vertices of X , we may require that all labels Li are positive except
at most one. Positive labels are preferable because of the following.
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Let Si be the sphere in the nodal surface lying above the edge ei of X . Note that
two spheres Si and Sj with i ¤ j intersect if and only if ei and ej are consecutive
edges, and in that case, they intersect transversely at the point (a node) projecting to
the common vertex.

Proposition 3.7 If Li is positive, the sphere Si has a natural orientation. If Li

and LiC1 are positive, then Si �SiC1 DC1.

Proof The label Li represents the gluing of two pieces D2�D2 and D2�D2 along
a map  W D2�S1!S1�D2 that sends the core f0g�S1 to S1�f0g. The sphere Si

decomposes into two discs as .f0g �D2/[ .D
2 � f0g/.

If Li is positive, then  identifies f0g �S1 to S1 � f0g orientation-reversingly, and
hence the natural orientations of the two discs match to give an orientation for Si .

The intersection of two consecutive Si and Sj is transverse and positive (when they
are both naturally oriented) because they intersect like f0g �D2 and D2 � f0g inside
D2 �D2.

Recall that the self-intersection Si �Si is independent of the chosen orientation for Si

and is hence defined for all i , no matter whether Li is positive or not. The self-
intersection of Si is easily detected by the labeling as follows.

Proposition 3.8 For each i , we have

Li D

�
˙1 �.Si �Si/

0 �1

�
:

Proof Up to using the move in Figure 16, we may restrict to the positive case Li D�
1 k
0 �1

�
, and we need to prove that Si �Si D�k . We calculate Si �Si by counting (with

signs) the point in Si \S 0i where S 0i is isotopic and transverse to Si .

Recall that Si D .f0g � D2/[ .D
2 � f0g/. We construct S 0i by taking the discs

f1g�D2 and D2 �f1g: their boundaries do not match in S1 �S1 because they form
two distinct longitudes in the boundary of the solid torus S1 �D2, of type .1; 0/ and
.1; k/. We can isotope the former longitude to the latter inside the solid torus, at the
price of intersecting the core S1 � 0 some jkj times. In this way, we get an S 0i that
intersects Si transversely into these jkj points, always with the same sign.

We have proved that Si � Si D ˙k . To determine the sign, it suffices to consider
one specific case. We pick the triangle X in Figure 15, where all labels are

�
1 �1
0 �1

�
.

Here �.M / D 3, and M is simply connected; therefore, H2.M / D Z. The nodal
surface contains three spheres S1 , S2 and S3 that represent elements in H2.M / with
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L1

L2

L1 �
�
�1 1

0 �1

�
�

1 �1
0 �1

�
�

1 1
0 1

�
�L2

L1

L2

L1 �
�

1 1
0 1

�
�

1 1
0 �1

�
�

1 �1
0 1

�
�L2

L

L

�
�1 0

0 1

�
�

1 0
0 �1

�

Figure 17: Three moves that transform M by connected sum with CP 2 (top
left), CP 2 (top right), and S2 �S2 (bottom center).

Si � Si D " D ˙1 for each i , and Si � Sj D 1 when i ¤ j . In particular, Si is a
generator of H2.M / for each i . Since S1 �S2 D S1 �S3 D 1, then S2 D S3 D "S1 ,
and hence 1D S2 �S3 D "

2 �S1 �S1 D "; thus Si �Si DC1.

We now consider two more moves on positive admissible labelings, shown in Figure 17.
It is easily checked that they both transform L1; : : : ;Ln into a new positive admissible
labeling on a bigger polygon.

Proposition 3.9 The three moves in Figure 17 respectively transform M into

M # CP2; M # CP2 and M # .S2
�S2/:

Proof Both moves transform a fibration M ! X into a new fibration M 0 ! X 0 .
The first two moves substitute a vertex v of X with a new edge e . The preimages
of v and e in M and M 0 are a point x 2M and a sphere S �M 0 with S �S DC1

or S �S D�1 depending on the move. Substituting x with S amounts to making a
topological blowup, that is, a connected sum with CP2 and CP2 , respectively.

The third move substitutes a point x contained in some edge of X with a new edge e .
The preimages of x and e in M and M 0 are a circle  and a sphere S �M 0 with
S �S D 0. The substitution of  with S is called a surgery, and since M is simply
connected, the effect is a connected sum with S2 �S2.

In particular, the triangle and square from Figure 15 represent the oriented smooth
4–manifolds CP2 and S2 �S2.
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Corollary 3.10 If M D #hCP2 #k CP2 or M D #h.S
2�S2/, then M decomposes

into pairs of pants; more precisely, M fibers over the n–gon, with nD �.M /.

These oriented manifolds are, in fact, all we can get from a polygon X .

Proposition 3.11 Every oriented labeling on a polygon X represents one of the
manifolds of Corollary 3.10.

Proof Every label is of type Li D
�
˙1 hi

0 �1

�
. If jhi j6 1, we can simplify X via one

of the moves from Figure 17 and proceed by induction. If jhi j> 2 for all i , it is easy to
show that the coloring cannot be admissible, because the product LnJ � � �L1J cannot
be equal to I .

Indeed, we have Mi D LiJ D
�

hi ˙1
�1 0

�
. The matrix M1 sends the vector

�
1
0

�
to

some
�

a
b

�
with jaj> jbj> 0, and any such vector is sent by any Mi to a vector

�
a0

b0

�
with ja0j> jb0j> 0 again, so Mn � � �M1

�
1
0

�
¤
�

1
0

�
.

4 The general case

We now extend the discussion of the previous section from polygons to more general
simple complexes X . For the sake of simplicity, we restrict our investigation to a class
of complexes called special, whose strata are all discs.

Definition 4.1 A simple complex X is special if the connected components of all the
.k; l/–strata are open k –cells.

For instance, the polygons and the model complex …n are special. Every connected
component of each stratum in a special 2–dimensional complex X is a cell, called
vertex, edge or face according to its dimension. Vertices are of type .0; 0/, .0; 1/ or
.0; 2/, and edges are of type .1; 1/ or .1; 2/. Each face is a polygon with m edges
and m vertices for some m, and the vertices may be of different types.

4.1 The basic fibrations

Let M ! X be a fibration over some special complex X . We now extend the
discussion of the previous section to this more general setting: we break M !X into
basic fibrations of three types, and we show that M !X may be encoded by some
combinatorial labeling on X that indicates the way these basic fibrations match along
their (cornered) boundaries.
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Figure 18: The complex …1 (left) decomposes into the star neighborhoods
of its vertices (right).

P �S1

P �S1

P �S1

P �S1
P �S1

D2 �S1 D2 �S1

D2 �S1
D2 �S1

D2 �S1

Figure 19: Every block Mv is a compact 4–manifold with corners; its bound-
ary is a closed connected 3–manifold cornered along tori. There is one corner
torus above each white dot, and the tori decompose the 3–manifold @Mv into
pieces diffeomorphic to S1 � P or S1 �D2. Here P indicates the pair
of pants.

A n–gon breaks into n star neighborhoods of its vertices as in Figure 13; analogously,
every special complex X decomposes into star neighborhoods Sv of its vertices v ,
which are now of three different types .0; 0/, .0; 1/ and .0; 2/. For instance, the model
complex …2 decomposes into 11 pieces as shown in Figure 18: these are 6, 4 and 1

stars of vertices of type .0; 0/, .0; 1/ and .0; 2/, respectively.

The fibration � W CP2
!…2 decomposes correspondingly into 6C 4C 1D 11 basic

fibrations Mv! Sv above the star neighborhood Sv of each vertex v . Every mani-
fold Mv is a regular neighborhood in CP2 of the fiber ��1.v/ of v , and its topology
is deduced from Figures 9 and 10.

There are three basic fibrations Mv ! Sv to analyze, depending on the type of the
vertex v . If v is of type .0; 0/ or .0; 1/, the fibration Mv ! Sv is respectively
diffeomorphic to

D2
�D2

! Œ0; 1�� Œ0; 1�; .z; w/ 7! .jzj; jwj/
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or
D2
�P ! Œ0; 1��Y; .z;x/ 7! .jzj; �.x//;

where Y is a Y –shaped graph and � W P ! Y is the tropical fibration; see Figure 19.
Both D2 and P are naturally oriented as subsets of some complex line in CP2. In
both cases, Mv is a product, and its boundary is

@.D2
�D2/D .D2

�S1/[ .S1
�D2/

or
@.D2

�P /D .D2
� @P /[ .S1

�P /;

respectively. Recall the orientation formulas (1) and (2). The boundary consists of
some facets cornered along tori (the ridges). The facets are either solid tori or S1 �P .
Once and for all, we orientation-preservingly identify every boundary component of P

with S1, so that D2 � @P is identified to three copies of D2 � S1. There are three
corner tori in S1 � @P .

4.2 The pair of pants

If v is of type .0; 2/, the block Mv is not a product: it is the compact pair of pants,
as named by Mikhalkin [4], diffeomorphic to the complement of an open regular
neighborhood of four generic lines l1; : : : ; l4 in CP2. Its boundary has four facets
f1; : : : ; f4 , each diffeomorphic to S1 � P , cornered along six tori, one for each
pair li ; lj of distinct lines.

The facet fi is an S1 –bundle over some pair of pants Pi � li obtained from li by
removing open discs containing the intersection points with the other lines. The bundle
is necessarily trivial since it is a circle bundle over a compact orientable surface with
nonempty boundary; hence fi is diffeomorphic to S1 �P , but unfortunately not in a
canonical way (not even up to isotopy): the diffeomorphism depends (up to isotopy)
on the choice of a section of the bundle, and on an orientation of the fibers (this is a
standard fact on circle bundles over surfaces with boundary).

A natural way to construct a section goes as follows. Pick a line r 2 CP2 that
intersects li in one of the three points li \ lj , for some j ¤ i . The line r provides a
section of the normal bundle of li that vanishes only at li \ lj , and hence a section of
the circle bundle over Pi . In fact, the isotopy class of the section does not depend on
the chosen line r , but only on the point li \ lj , so there are three possible choices.

We now fix an arbitrary partition fl1; l2g; fl3; l4g of the four lines into two pairs, and
define r to be the line passing through the points l1\ l2 and l3\ l4 . We use the line r

to define sections on all the four facets fi simultaneously as just explained.
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�
1 �1
0 �1

�
�

1 �1
0 �1

�

�
1 �1
0 �1

�
�

1 �1
0 �1

�

Figure 20: At every vertex of type .0; 2/ , we fix two (of the six) opposite
faces and we mark them with red dots (left). An admissible oriented labeling
on X that represents the tropical fibration CP 2

!…2 (center) and one that
represents .S1 �S3/ # .S1 �S3/ (right).

Each section is oriented as a subset of r and identified with P . To complete the
identification of fi with S1 �P we need to orient the fibers: we orient them so that
S1 �P gets the correct orientation as a boundary portion of the block Mv (which is
in turn oriented as a domain in CP2 ).

Remark 4.2 By taking an affine chart that sends r to infinity, we see that

CP2
n .l1[ l2[ l3[ l4[ r/Š .Cnf0; 1g/� .Cnf0; 1g/;

so Mv minus an open neighborhood of r is naturally diffeomorphic to a product
P �P . This diffeomorphism furnishes the identifications of each fi with S1 �P

just described.

There are, of course, three possible partitions of fl1; l2; l3; l4g to choose from. To
indicate on X which partition we use, we mark with a dot the two opposite faces near v
that correspond to the pairs l1; l2 and l3; l4 , as in Figure 20 (left). This mark fixes an
identification of every facet fi with the product S1 �P .

4.3 Labeling

Every fibration M !X decomposes into basic fibrations, glued along facets that are
either D � S1 or S1 � P . We now encode every such gluing with an appropriate
labeling on X that extends the one introduced in Section 3 for polygons.

A typical face f of X is shown in Figure 21: it may have vertices and edges of various
kinds, and its closure need not be embedded (it may also be adjacent multiple times to
the same edge or vertex). We want to assign labels Li to the oriented edges (that is,
sides) of f as shown in the figure.
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f

L1

L2

L3 L4

L5

L6

Figure 21: A face f of a special complex X , with vertices and edges of
various types: here f has two vertices of each type .0; 0/ , .0; 1/ and .0; 2/ ,
and three edges of each type .1; 1/ and .1; 2/ . We label the oriented edges
with some matrices Li (left), and we break f into star neighborhoods of its
vertices (right).

Figure 22: Four possible gluings along an oriented edge of type .1; 1/

An edge ei of f can be of either type .1; 1/ or type .1; 2/, and we respectively call it
an interior edge or a boundary edge. A boundary edge is contained in @X and connects
two vertices v and v0 that may be of type .0; 0/ or .0; 1/. There are four possible
cases, shown in Figure 22. In any case, the fibrations Mv! Sv and Mv0 ! Sv0 get
identified along some diffeomorphism  W D2 �S1!D2 �S1 identifying two solid
torus facets. As in Section 3, we encode this diffeomorphism unambiguously (up to
isotopy) via a label

Li D

�
" k

0 "0

�
with "; "0 D˙1 and k 2 Z. This label is assigned to the side ei of f .
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If ei is an interior edge, it connects two vertices v and v0 that may be of type .0; 1/
or .0; 2/. The two fibrations Mv ! Sv and Mv0 ! Sv0 are now glued along a
diffeomorphism  W S1 �P ! S1 �P between two facets.

The restriction of  to the boundary torus lying above f is a diffeomorphism
S1 �S1! S1 �S1 whose isotopy class is encoded by a matrix Li 2 GL.2;Z/.
This is the label that we assign to ei .

Since the fiber generates the center of �1.S
1�P /, the diffeomorphism  W S1�P !

S1�P must preserve the fiber (up to reversing the orientation). Therefore, the label Li

has the same nice form as in the previous case:

Li D

�
" k

0 "0

�
:

Summing up, a labeling of X is simply the assignment of a matrix
�
" k
0 "0

�
to every

oriented side e of every face f in X .

We implicitly agree that the orientation reversal of the side e changes the label from L

to L�1 . Note that an interior edge e inherits three labels, one for each incident face,
while a boundary edge has only one label.

4.4 The fibration of CP 2 over …2

As an example, we now analyze in detail the labeling on …2 induced by the tropical
fibration � W CP2

!…2 ; the answer is depicted in Figure 20 (center), where every
unlabeled edge is tacitly assumed to have label

�
1 0
0 �1

�
. This analysis is not necessary

for the rest of the paper, so the reader may skip it and jump to Section 4.5.

Recall that the preimage of all points of type .k; l/ with l 6 1 is the union of four
lines in CP2, intersecting in the six points of type .0; 0/. Call these lines l1; : : : ; l4 ,
and denote by q1; : : : ; q4 the four points of type .0; 1/ corresponding to l1; : : : ; l4 ,
respectively.

Fix an ordered pair .i; j /. At the intersection point pij D li\ lj , we have an identifica-
tion of a neighborhood Nij of pij with D2�D2 such that D2�f0g is the intersection
of li with Nij , and f0g �D2 is the intersection of lj with Nij . (The identification is
sensitive to swapping i and j .) Set qij D �.pij /.

We fix as above an auxiliary line r going through the points l1\ l2 and l3\ l4 . The
line r induces a section of the normal bundles of the four lines, and we use it to fix
an identification of all the other facets involved with S1 �P . With this identification,
every internal edge gets a label

�
�1 0

0 1

�
; one only needs to check signs by looking at
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orientations. Using a move that will be described in Proposition 4.7, we can change all
these labels with

�
1 0
0 �1

�
.

We need to determine the labels on the external edges. Consider the point q13 . We are
interested in the isotopy class of the section above l1 in the boundary of N13 . Since
all lines going through p12 are isotopic, the section induced by r on N13 is parallel
to the curve S1 � f1g in @N13 . Therefore, the label on the edge connecting q1 to q13

is diagonal, and by looking at the orientations, we get
�

1 0
0 �1

�
. Likewise, all edges

incident to q14 , q23 and q24 are labeled with
�

1 0
0 �1

�
.

At the point p12 , the section determined by r on l1 is no longer parallel to S1 � f1g

in @N12 . However, one checks that the section is parallel to the diagonal curve S1 in
the corner torus S1 �S1 in N12 , and we get

�
1 �1
0 �1

�
.

Notice that in no case do we need to specify an orientation of the edges, since
�

1 0
0 �1

�2
D�

1 �1
0 �1

�2
D I .

4.5 Admissibility

As in the polygonal case, every fibration is encoded by some (nonunique) labeling
of X , but not every labeling defines a fibration: some simple conditions need to be
verified.

Let f be a face of X , with oriented sides e1; : : : ; en . Let vi be the vertex of f
adjacent to ei and eiC1 . We assign a matrix Ji to vi as follows:

� if vi is of type .0; 0/, then Ji D
�

0 1
1 0

�
;

� if vi is of type .0; 1/, then Ji D
�

1 0
0 1

�
;

� if vi is of type .0; 2/ and is not dotted, then Ji D
�

0 1
1 0

�
;

� if vi is of type .0; 2/ and is dotted, then Ji D
�
�1 0

1 1

�
.

Recall that we have fixed two dots at every vertex of type .0; 2/ as in Figure 20. Note
that in all cases, we get J 2

i D I .

Proposition 4.3 A labeling defines a fibration M ! X if and only if the follow-
ing hold:

(1) at every oriented interior edge, the three labels of the incident faces are�
" k1

0 "0

�
;

�
" k2

0 "0

�
and

�
" k3

0 "0

�
for some constants "; "0 D˙1, with the condition k1C k2C k3 D 0;
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(2) at every face f , we have

JnLn � � �J1L1 D I:

If det Li D�1 for all i , the manifold M is oriented.

Proof At every interior edge we need to build a diffeomorphism  W S1�P!S1�P ,
and it is a standard fact in three-dimensional topology that such a diffeomorphism
exists if and only if it acts on the boundary tori S1 �S1 as specified by condition (1).

Condition (2) is that the monodromy around the central torus must be the identity. The
role of Ji is to translate between the two bases of the same corner torus, used by the
two adjacent facets. A careful case by case analysis is needed here:

� if vi is of type .0; 0/, the facets are S1 �D2 and D2 �S1, so Ji D
�

0 1
1 0

�
;

� if vi is of type .0; 1/, the facets are D2 �S1 and S1 �P , so Ji D
�

1 0
0 1

�
;

� if vi is of type .0; 2/, both facets are S1 �P and there are two cases:

– if vi is not dotted, the factors in S1 �P are interchanged as in the case of
.0; 0/, so we get Ji D

�
0 1
1 0

�
;

– if vi is dotted, the boundaries S1 � @P of the two sections coincide, and
we get Ji D

�
�1 0

1 1

�
.

In the latter case, we have three complex lines l1 , l2 and r passing through a point p

and determining three oriented curves 1 , 2 and � in the corner torus S1 � S1.
The bases to be compared are .1; �/ and .2; �/ and we have �D 1C 2 ; hence
2 D �� 1 , and we get Ji D

�
�1 0

1 1

�
.

A labeling on X satisfying the requirements of Proposition 4.3 is admissible. If
det Li D �1, then it is oriented. An oriented label is either L D

�
1 k
0 �1

�
or
�
�1 k

0 1

�
,

and we have respectively called them positive and negative. Note that LDL�1 , and
hence we do not need to orient the edge when assigning it an oriented label. Also in
this setting, positive labels are preferable (at least on boundary edges).

Proposition 4.4 If all labels are oriented and positive, the nodal surface S is naturally
oriented. Every nodal point has positive intersection C1.

Proof This is the same as for Proposition 3.7, with P �D2 replacing D2 �D2.

We now turn to self-intersection. The nodal surface S is the union of some closed
surfaces S1 [ � � � [Sk intersecting transversely, such that the abstract resolution of
each Si is connected.
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Proposition 4.5 If the labels are oriented and positive, and Si is embedded, then

Si �Si D�

X
j

kj

as Lj D
�

1 kj

0 �1

�
varies among all labels on edges onto which Si projects.

Proof This is the same as for Proposition 3.8.

Example 4.6 Consider the two labelings in Figure 20 (center) and (right), where every
unlabeled edge is tacitly assumed to have label

�
1 0
0 �1

�
. Both labelings are oriented

and admissible: the three labels at the interior edges are equal to
�

1 0
0 �1

�
and hence

condition (1) is fulfilled. In the central figure, there are two kinds of faces; the nondotted
ones give

J4L4 � � �J1L1

D

�
1 0

0 1

��
1 0

0 �1

��
0 1

1 0

��
1 0

0 �1

��
1 0

0 1

��
1 0

0 �1

��
0 1

1 0

��
1 0

0 �1

�
D I;

and on the dotted ones we get

J4L4 � � �J1L1

D

�
1 0

0 1

��
1 0

0 �1

��
�1 0

1 1

��
1 0

0 �1

��
1 0

0 1

��
1 �1

0 �1

��
0 1

1 0

��
1 �1

0 �1

�
D I:

As seen above, this labeling represents the tropical fibration CP2
!…2 .

On the right figure, we note that there are only two vertices v , both of type .0; 1/, and
at every face we have

J2L2J1L1 D

�
1 0

0 1

��
1 0

0 �1

��
1 0

0 1

��
1 0

0 �1

�
D I:

The manifold M here is the double of the basic piece Mv along its boundary. The
fiber above v is a � –shaped graph � and Mv is a regular neighborhood of � , that is,
a handlebody with one 0–handle and two 1–handles. The double of such a manifold is
M D .S3 �S1/ # .S3 �S1/.

4.6 Moves

Let X be a special complex equipped with an admissible labeling, defining a fibration
M ! X . The moves described in Section 3.4 apply also here, and there are more
moves that involve vertices of type .0; 1/ and .0; 2/ that modify a labeling without
affecting the fibration M !X .
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Proposition 4.7 Let v be a vertex of X , of any type .0; 0/, .0; 1/ or .0; 2/. If
we change the signs simultaneously of the labels on all the (two, three or four) edges
incident to v , we get a new admissible labeling that encodes the same fibration M !X .

Proof The manifolds D2 �D2, D2 �P and the four-dimensional pair-of-pants B

have orientation-preserving self-diffeomorphisms that act like �I on the homologies
of all the corner tori in the boundary.

To see this for B , consider B as the complement of some lines in CP2 defined by
equations with real coefficients. The map Œz0; z1; z2� 7! Œxz0;xz1;xz2� preserves B and
acts as required.

We note in particular that Proposition 3.9 is still valid in this context.

Proposition 4.8 The three moves in Figure 17 respectively transform M into

M # CP2; M # CP2 and M # .S2
�S2/:

Remark 4.9 In this section, we have dealt only with special complexes, as this
simplifies the labelings, but an extension of Propositions 4.3 and 4.8 to all simple
complexes can be done quite easily. In the first proposition, condition (1) is local,
and is required also when dealing with nonspecial complexes. Condition (2), on the
other hand, is only needed to ensure that the torus fibration on the boundary extends to
the interior of the cell; if a connected component of the .2; 2/–stratum is not a disc,
we need to require that the fibration on its boundary extends to the interior. Notice
that this extension is not unique in general; hence a labeling in the above sense does
not determine a fibration M ! X . In order to get uniqueness, we need to specify
the monodromy on the boundary as well as its extension. We do not explore this
further here.

Remark 4.10 A 3–manifold decomposing into pieces diffeomorphic to D2 � S1

and P �S1 was called a graph manifold by Waldhausen [8]: such 3–manifolds are
classified and well understood.

5 Fundamental groups

In the previous section, we have made some effort in defining some labelings that
encode all pants decompositions M !X over a given special complex X . We now
use them to prove the following, which is the main result of this paper.

Theorem 5.1 For every finitely presented group G , there is a pants decomposition
M !X with �1.M /DG .
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5.1 Even complexes

We say that a special complex is even if every face is incident to an even number of
vertices (counted with multiplicity). Recall that there are three types of vertices, .0; 0/,
.0; 1/ and .0; 2/, and each of these must be counted. For instance, the complex …2 is
even: every 2–cell is incident to four vertices.

Even complexes are particularly useful here because of the following.

Proposition 5.2 If X is even, there is a pants decomposition M !X .

Proof We note that every face f in any simple complex contains an even number
of vertices of type .0; 1/. So the evenness hypothesis on X says that the number of
vertices of type .0; 0/ or .0; 2/ is even for every f .

Every vertex v of type .0; 2/ in X is adjacent to six faces, and we assign dots to two
opposite ones arbitrarily.

We will first try to assign trivial labels L D
�

1 0
0 1

�
everywhere. Condition (1) of

Proposition 4.3 is trivially satisfied, and at every face f we get a product monodromy
J2nL2n � � �J1L1 D J2n � � �J1 that we now compute.

If there were no dots in f , we would get J2n � � �J1 D J 2k D I with J D
�

0 1
1 0

�
and

2k 6 2n is the number of vertices of type .0; 0/ or .0; 2/. In that case, condition (2)
would also be satisfied.

If there are some dots, we adjust the labeling so that the above construction still works.
For every maximal string of dotted corners of odd length in a polygonal face, we put a
label

�
1 1
0 1

�
at the two oriented edges incoming and outcoming the string, both oriented

towards the string; eg if there is an isolated dotted corner v , the two labels on the
edges incoming into v will have label

�
1 1
0 1

�
, while if there are two connected dotted

corners w and w0 isolated from all other dotted corners, the label on all the edges
incident to w or w0 will simply be

�
1 0
0 1

�
.

This works for the compatibility condition (2) since two consecutive dotted corners
contribute with

�
�1 0

1 1

�2
D I ; in an even chain, the product is trivial, while in an odd

chain of 2kC 1 dotted vertices, we obtain�
1 1

0 1

��
�1 0

1 1

�2kC1 �
1 �1

0 1

�
D

�
1 1

0 1

��
�1 0

1 1

��
1 �1

0 1

�
D

�
0 1

1 0

�
:

In either case, after the simplification, we are left with a power of
�

0 1
1 0

�
for each chain

of odd length, and the global monodromy will be trivial for parity reasons (because X

is even).
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The addition of these labels, however, may have destroyed condition (1). Consider an
oriented interior edge e that connects either two vertices of type .0; 2/ or one of type
.0; 1/ and one of type .0; 2/.

If e is incident to two vertices of type .0; 2/, there are two possibilities: either the dots
are on the same face of X incident to e , or they are on different faces.

In the former case, the three labels of e are left unchanged, namely LD
�

1 0
0 1

�
, and

condition (1) is trivially satisfied. In the latter, two of its three labels have been
modified to

�
1 1
0 1

�
and

�
1 �1
0 1

�
and then condition (1) still holds (note the role of the

edge directions).

If e is incident to a vertex v2 of type .0; 2/ and one v1 of type .0; 1/, it is inci-
dent to three faces, exactly one of which has a dotted corner at v2 ; denote this face
with f . If the label of e as part of @f is the trivial label

�
1 0
0 1

�
, condition (1) is again

automatically satisfied.

Suppose now the label of e has been changed. Then condition (1) is violated along e

since exactly one label has been modified to
�

1 1
0 1

�
. We need to modify the labeling

further, and we do so by modifying both the labels at such edges e and on some
boundary edges that share a vertex with them.

Consider the set E1 of all external edges e1 with the following property: e1 shares
exactly one vertex with an interior edge e such that the label on e on the face f1 that
they span is nontrivial; ie it is

�
1 1
0 1

�
. Let E2 be the set of all external edges e2 with

the following property: e2 shares both endpoints with two interior edges e0 and e00 ,
and the labels on e0 and e00 on the face f2 that they span are both nontrivial; ie they
are

�
1 1
0 1

�
. By construction, E1 and E2 are disjoint, and so are the associated sets of

interior edges. Also, notice that the faces and edges denoted by f1 and e (respectively,
f2 , e0 and e00 ) are all determined by e1 (resp. e2 ).

For every edge e1 in E1 , we orient it towards e , we replace the label of e1 with
�

1 1
0 1

�
and let e , seen as part of the boundary of f , have the trivial label

�
1 0
0 1

�
. For every

edge e2 in E2 , we replace the two labels on the two associated edges e0 and e00 (as part
of the boundary of f2 ) by the trivial label

�
1 0
0 1

�
, and leave the label of e2 unchanged,

ie trivial.

It is readily checked that now both conditions (1) and (2) are satisfied.

There are many even complexes:

Proposition 5.3 Every finitely presented group is the fundamental group of an even
complex without boundary.
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v

S

ri

rj

X X 0 X 00

Figure 23: How to construct an even complex. The base surface S here is
horizontal, and the relator faces ri and rj are attached vertically.

Proof Every finitely presented group GDhg1; : : : ;gk j r1; : : : ; rsi is the fundamental
group of some special complex X without boundary, constructed by attaching discs to
a genus-k surface S . To see this, first attach discs to S to transform the fundamental
group of S into a free group Fk with k generators (for instance, you may take the
meridians of a handlebody with boundary S ). Then attach discs on S along s generic
curves that represent the relators r1; : : : ; rs in a sufficiently complicated way, so that S

is cut into polygons by them (add a trivial relator r1 in case there are none).

We now modify X to an even complex X 00 with the same fundamental group G . The
modification is depicted in Figure 23 and consists of two steps: the first is a local
modification at every vertex v of S , where two relator faces ri and rj intersect. Note
that every face in X 0 is even, except the new small triangles created by the move.
Then we double each relator ri as shown in the figure (that is, for every i D 1; : : : ; s

we attach two parallel discs), Now triangles are transformed into squares: the final
polyhedron X 00 is even and has the same fundamental group G of X and X 0 .

5.2 Fundamental group

How can we calculate the fundamental group of M by looking at the fibration M!X ?
We answer this question in some cases. We start by showing that in dimension 4, any
facet of the compact pair of pants carries the fundamental group of the whole block (in
contrast with dimension 2).

Lemma 5.4 Let B be the compact 4–dimensional pair of pants and F Š P �S1 any
of its four facets. The map �1.F /! �1.B/ induced by inclusion is surjective.

Proof Recall that B is CP2 minus the open regular neighborhood of four lines
l1 , l2 , l3 and l4 . Let F correspond to l4 . Using the Salvetti complex [6], we see
that �1.B/Š Z3 is generated by three loops turning around any three of these lines,
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say l1 , l2 and l3 . These loops can be homotoped inside F Š P � S1, where they
correspond to three meridians on the boundary tori.

Let X 1 denote the 1–stratum of X , that is, the set of all nonsmooth points of X .

Proposition 5.5 Let M ! X be a pants decomposition. Then the induced map
�1.M /! �1.X / on fundamental groups is surjective. It is also injective, provided the
following hold:

� X is not a surface,

� every connected component of X 1n@X is incident to a vertex in @X whose fiber
is contained in a (possibly immersed) spherical component of the nodal surface.

Proof The map �1.M /! �1.X / is surjective because all fibers are connected and
arcs lift from X to M .

Let Fx D �
�1.x/ be the fiber of x and let Gx be the image of the map �1.Fx/!

�1.M / induced by inclusion (with some basepoint in Fx ). It is easy to prove that
if Gx is trivial for every x 2X , then �1.M /! �1.X / is an isomorphism. We now
prove that the additional assumptions listed above force all groups Gx to be trivial.

We use the term connected stratum to denote a connected component of some .k; l/–
stratum of X . If Gx is trivial for some x , then Gx0 is trivial for all points x0 lying
in the same connected stratum of x , and we say that the connected stratum is trivial.
We now show that the triviality propagates along incident connected strata in most
(but not all!) cases. Let s and t be two incident connected strata, that is, such that
either s � xt or t � xs . Suppose that s is trivial. We claim that, if any of the following
conditions holds, then t is also trivial:

(1) dim t > dim s ;

(2) t � @X , s 6� @X , and dim t D dim s� 1;

(3) t is a vertex of type .0; 2/ and s is an edge of type .1; 2/.

To prove the claim, pick x 2 s and y 2 t ; by assumption, Gx is trivial.

(1) We have s � xt , and the fiber Fy can be isotoped to Fy0 where y0 is close
to x , so Fy0 lies in a regular neighborhood of Fx ; therefore, Gy is naturally a
subgroup of Gx , hence trivial.

(2) In this particular case, Fx Š Fy �S1 , and Fy can be isotoped inside Fx .

(3) It follows from Lemma 5.4.
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X

e

X 0

Figure 24: How to create some boundary on an even complex, preserving
evenness and the fundamental group. The complex X 0 is constructed by
attaching a product � � Œ0; 1� to X along � � 0 as shown, where � is a
� –shaped graph. The boundary @X 0 D � � 1 contains four vertices of type
.0; 0/ and two of type .0; 1/; all dotted points are vertices of some type.

By assumption, every connected component C of X 1 n @X is incident to a vertex v
of type .0; 1/ in @X , whose fiber Fv is contained in a sphere; therefore, Gv is trivial.
By property (2), the edge of type (1,2) adjacent to v is also trivial, and we can use (1)
and (3) to propagate the triviality along all the connected strata of C .

Since X is not a surface, every 2–dimensional connected stratum of X is incident to
X 1 n @X , and is hence trivial by property (1). Finally, the triviality extends to the rest
of @X by (2).

Corollary 5.6 Let M ! X be a pants decomposition. If X 1 n @X is connected,
@X ¤ ¿, and the nodal surface consists of (possibly immersed ) spheres, the map
�1.M /! �1.X / is an isomorphism.

The homomorphism �1.M /!�1.X / may not be injective in general: Figure 20 (right)
shows a fibration M !X with �1.M /D Z�Z and �1.X /D feg.

5.3 Proof of the main theorem

We can finally prove the main result of this paper, Theorem 5.1.

Proof of Theorem 5.1 For every finitely presented group G there is an even special
complex X without boundary and with �1.X /DG by Proposition 5.3. We slightly
modify X to a complex X 0 with nonempty boundary by choosing an arbitrary edge e

and modifying X near e as shown in Figure 24.

We have �1.X /D �1.X
0/, and X 0 is still even. Note that @X 0 is a � –shaped graph

with two vertices of type .0; 1/ and also four vertices of type .0; 0/ as indicated in the
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picture. Note also that X 1 is connected because X is special without boundary, and
hence .X 0/1 n @X 0 is also connected.

By Proposition 5.2, there is a pants decomposition M !X 0 . By looking at @X 0 , we
see that the nodal curve consists of three spheres. Corollary 5.6 hence applies and gives
�1.M /D �1.X

0/DG .
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Heegaard Floer homology of spatial graphs

SHELLY HARVEY

DANIELLE O’DONNOL

We extend the theory of combinatorial link Floer homology to a class of oriented
spatial graphs called transverse spatial graphs. To do this, we define the notion of
a grid diagram representing a transverse spatial graph, which we call a graph grid
diagram. We prove that two graph grid diagrams representing the same transverse
spatial graph are related by a sequence of graph grid moves, generalizing the work of
Cromwell for links. For a graph grid diagram representing a transverse spatial graph
f W G! S3 , we define a relatively bigraded chain complex (which is a module over
a multivariable polynomial ring) and show that its homology is preserved under the
graph grid moves; hence it is an invariant of the transverse spatial graph. In fact, we
define both a minus and hat version. Taking the graded Euler characteristic of the
homology of the hat version gives an Alexander type polynomial for the transverse
spatial graph. Specifically, for each transverse spatial graph f , we define a balanced
sutured manifold .S3 nf .G/;  .f // . We show that the graded Euler characteristic
is the same as the torsion of .S3 nf .G/;  .f // defined by S Friedl, A Juhász, and
J Rasmussen.

57M15; 05C10

In memory of Tim Cochran

1 Introduction

Knot Floer homology, introduced by P Ozsváth and Z Szabó [18], and independently
by J Rasmussen [20], is an invariant of knots in S3 that categorifies the Alexander
polynomial. Knot Floer homology is widely studied because of its many applications in
low-dimensional topology. For example, it detects the unknot (Ozsváth and Szabó [17]),
whether a knot is fibered (P Ghiggini [5] and Y Ni [15]) and the genus of a knot [17].
The theory was generalized to links by Ozsváth and Szabó [19]. The primary goal of
this paper is to extend link Floer homology to a class of oriented spatial graphs in S3 ,
called transverse spatial graphs.

Originally, knot Floer homology was defined as the homology of a chain complex ob-
tained by counting certain holomorphic disks in a 2g–dimensional symplectic manifold

Published: 17 July 2017 DOI: 10.2140/agt.2017.17.1445
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Figure 1: Example of a diagram of a transverse spatial graph; the lines at
each vertex indicate the grouping of the incoming and outgoing edges.

with some boundary conditions that arose from a (doubly pointed) Heegaard diagram
for S3 compatible with the knot. As such, the chain groups were combinatorial but one
could not, a priori, compute the boundary map. However, Sucharit Sarkar discovered a
criterion that would ensure that the count of said holomorphic disks is combinatorial.
This crucial idea was used by C Manolescu, P Ozsváth and S Sarkar [11] to give a
combinatorial description of link Floer homology using grid diagrams. Using this
description, C Manolescu, P Ozsváth, Z Szabó and D Thurston [12] gave a combi-
natorial proof that link Floer homology is an invariant. In this paper, we generalize
the combinatorial description of Heegaard Floer homology and proof in [11; 12] to
transverse spatial graphs. Specifically, we define a relatively bigraded chain complex
(a combinatorial minus version) which is a module over F ŒU1; : : : ;UV �, where V is
the number of vertices of the transverse spatial graph and F D Z=2Z is the field with
two elements. We then show that it is well defined up to quasi-isomorphism. We
note that, independently, Y Bao [1] defined a (noncombinatorial version of) Heegaard
Floer homology for balanced bipartite spatial graphs with a balanced orientation; see
Section 6 for the relationship to our theory.

Informally, a transverse spatial graph is an oriented spatial graph where the incoming
(respectively outgoing) edges are grouped at each vertex and any ambient isotopy must
preserve this grouping. See Figure 1 for an example. Details can be found in Section 2.
To define the chain complex, we first introduce the notion of a graph grid diagram
representing a transverse spatial graph in Section 3. Roughly, a graph grid diagram
is an n� n grid of squares each of which is decorated with an X, an O (sometimes
decorated with �) or is empty, and satisfies the following conditions. Like for links,
there is precisely one O per row and column. There are no restrictions on the X’s but
if an O shares a row or column with multiple (or no) X’s then it must be decorated
with �. Moreover, each connected component must contain an O decorated with �.
See Section 3.1 for a precise definition and Figure 2 for an example.
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O X
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Figure 2: Example of a graph grid diagram
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O X X

X

X

X

O

�

�

Figure 3: Associating a transverse spatial graph to a graph grid diagram

To each graph grid diagram we associate a transverse spatial graph by connecting
the X’s to the O’s vertically and the O’s to the X’s horizontally with the convention
that the vertical strands go over the horizontal strands. See Section 3.2 for more details
and Figure 3 for an example.

We prove that every transverse spatial graph can be represented by a graph grid diagram.

Proposition 3.3 Let f W G! S3 be a transverse spatial graph. Then there is a graph
grid diagram g representing f .

However, this representative is not unique. We define a set of moves on graph grid
diagrams (cyclic permutation, commutation 0 , and stabilization 0 ), called graph grid
moves, generalizing the grid moves for links. See Section 3.2 for their definitions. We
prove that any two representatives for the same transverse spatial graph are related by
a sequence of graph grid moves.

Theorem 3.6 If g and g0 are two graph grid diagrams representing the same transverse
spatial graph, then g and g0 are related by a finite sequence of graph grid moves.

In Section 4, to each (saturated) graph grid diagram g , we assign a chain complex
.C�.g/; @�/. Saturated means that there is at least one X per row and column, and
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these graph grid diagrams correspond to transverse spatial graphs where the underlying
graphs have neither sinks nor sources. We need this technical condition to show that
@�ı@�D 0. The chain group consists of bigraded free F ŒU1; : : : ;UV �–modules, where
V is the number of O’s decorated with �. Like in link Floer homology, the generators
of the chain groups are unordered tuples of intersection points between the horizontal
and vertical line segments in the grid, with exactly one point on each horizontal and
vertical line segment. The Maslov grading is defined exactly as in [12]. Note that this
is possible since it only depends on the set of O’s on the grid. For links, the Alexander
grading lives in Zm . For transverse spatial graphs, we define an Alexander grading
that has values in H1.S

3 nf .G//, where f W G! S3 is the transverse spatial graph
associated to g . To compute this, for each point in the lattice of the grid, we define an
element of H1.S

3 n f .G//, called the generalized winding number. It is defined so
that if you can get from one point to another by passing an edge of the projection of
f .G/ coming from g , then the difference between their values is (plus or minus) the
homology class of the meridian of that edge. The Alexander grading of a generator
is obtained by taking the sum of the generalized winding numbers of the points of
the generator. Each Ui is associated with an O, and we define the Alexander grading
so that multiplication by Ui corresponds to lowering the Alexander grading by the
element of H1.S

3 n f .G// represented by the meridian of the O. See Section 4.3 for
more details. The @� map is defined by counting empty rectangles in the (toroidal) grid
that do not contain X’s. We show in Section 4 that @� ı @� D 0 and so the homology
of .C�.g/; @�/ gives a well-defined invariant for each saturated graph grid diagram.

For a given transverse spatial graph, there are infinitely many graph grid diagrams
representing it. In Section 5, we show that the homology of the bigraded chain complex
is independent of the choice of saturated graph grid diagram. To prove this, we show
that the quasi-isomorphism type of the chain complex is preserved under the three
graph grid moves.

Theorem 4.22 If g1 and g2 are saturated graph grid diagrams representing the
same transverse spatial graph f W G ! S3 then .C�.g1/; @

�/ is quasi-isomorphic
to .C�.g2/; @

�/ as relatively absolutely .H1.E.f //;Z/–bigraded F ŒU1; : : : ;UV �–
modules. In particular, HFG�.g1/ is isomorphic to HFG�.g2/ as relatively absolutely
.H1.E.f //;Z/–bigraded F ŒU1; : : : ;UV �–modules.

Thus, we can define the graph Floer homology of the sinkless and sourceless transverse
spatial graph f , denoted HFG�.f /, to be HFG�.g/ for any saturated grid diagram g

representing f . We also define a hat variant, bHFG.f / by taking the homology of the
chain complex obtained by setting U1; : : : ;UV to zero. See Sections 4.2–4.4 for more
details.
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As far as the authors are aware, there have been no papers in the past that have defined
an Alexander polynomial for an arbitrary spatial graph that do not just depend on the
fundamental group of the exterior. Kinoshita [9] defines the Alexander polynomial of an
oriented spatial graph as the Alexander polynomial of its exterior. In contrast, Litherland
[10] defined the Alexander polynomial of a spatial graph where the underlying graph is
a theta graph and his definition does not depend solely on the exterior of the embedding.
At the same time as this paper was being written, Bao [1] independently defined an
Alexander polynomial of a balanced bipartite spatial graphs with a balanced orientation
and produces a state sum formula for the polynomial. Bao’s invariant is essentially the
same as ours; see Section 6 for more details.

In Section 6, we define an Alexander polynomial for any transverse spatial graph
f W G! S3 . To do this, we associate a balanced sutured manifold .S3 nf .G/;  .f //

to f . We then define the Alexander polynomial of f , �f 2 ZŒH1.S
3 n f .G//�, to

be the torsion invariant associated to balanced sutured manifold .S3 n f .G/;  .f //

defined by S Friedl, A Juhász, and J Rasmussen [4]. We show that the graded Euler
characteristic of bHFG.f / is essentially �f . Note that �f is the image of �f under the
mapping that sends each element of H1.S

3 nf .G// to its inverse.

Corollary 6.8 If f W G ! S3 is a sinkless and sourceless transverse spatial graph
where G has no cut edges, then

�. bHFG.f // :D�f :

That is, they are the same up to multiplication by units in ZŒH1.S
3 nf .G//�.

To prove this, we first prove the stronger result that the hat version of our graph Floer
homology is essentially the same as the sutured Floer homology of .S3 nf .G/;  .f //.
We say rSHF.E.f /;  .f // to mean SFH.E.f /;  .f // considered as a bigraded
.H1.E.f //;Z2/–module but with the H1.S

3 nf .G// Alexander grading changed by
a negative sign.

Theorem 6.6 Let f W G! S3 be a sinkless and sourceless transverse spatial graph
where G has no cut edges. Then

bHFG.f /Š rSHF.E.f /;  .f //

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

To complete the proof of Corollary 6.8, we use the theorem of S Friedl, A Juhász
and J Rasmussen stating that the decategorification of sutured Floer homology is their
torsion invariant [4].
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2 Transverse disk spatial graphs

Graph Floer homology is a version of Heegaard Floer homology defined for transverse
spatial graphs. In this section we will define the term transverse spatial graph and the
notion of equivalence of transverse spatial graphs. We will also discuss their diagrams
and Reidemeister moves.

We will work in the PL category. A graph Y is a 1–dimensional complex, consisting of
a finite set of vertices (0–simplices) and edges (1–simplices) between them. A spatial
graph f W Y ! S3 is an embedding of a graph Y in S3 . A diagram of a spatial graph
is a projection of f .Y / to S2 with only transverse double points away from vertices,
where the over and under crossings are indicated. Two spatial graphs f1 and f2 are
equivalent if there is an ambient isotopy between them. Notice that the ambient isotopy
gives a map hW S3! S3 which sends f1.Y / to f2.Y / sending edges to edges and
vertices to vertices.

Theorem 2.1 (Kauffman [8]) Let f1 and f2 be spatial graphs. Then f1 is ambient
isotopic to f2 if and only if any diagram of f2 can be obtained from any diagram of f1

by a finite number of graph Reidemeister moves (shown in Figure 4) and planar isotopy.

An oriented graph is a graph together with orientations given on each of the edges.
Let D be the 2–complex obtained by gluing three copies of the 2–simplex Œe0; e1; e2�

together so that their union is a disk and with all three of the e0’s identified to a single
point in the interior of D . Note that e0 is the unique vertex in the interior of D . We
say that D is a standard disk and e0 is the vertex associated to D . An oriented disk
graph G is a 2–complex constructed as follows. Start with an oriented graph Y . Then,
for each vertex v of Y , glue a standard disk D to Y by identifying the vertex associated
to D with v . We note that Y is a subset of the oriented disk graph, which we call the
underlying oriented graph of the oriented disk graph (or the underlying graph of G if
we do not want to consider the orientations). We say that a vertex of an oriented disk
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RI RIII

RII RIV

RV RV�

Figure 4: The graph Reidemeister moves. Reidemeister moves RI, RII, and
RIII are the same as those for knots and links. Reidemeister move RIV
moves an edge past a vertex, either over or under (over is pictured here).
Reidemeister move RV swaps two of the edges next to the vertex.

graph is a graph vertex (respectively graph edge) if it is a vertex (respectively edge) of
its underlying oriented graph. When it is clear, we will just refer to them as vertices and
edges of the oriented disk graph (and will not refer to the other 0 and 1–simplices of
the oriented disk graph as vertices or edges). For an oriented disk graph G and a given
graph vertex v of G , the set of graph edges of G with orientation going towards v are
called the incoming edges of v and the set of edges with the orientation going away
from v are called the outgoing edges of v .

Definition 2.2 A transverse spatial graph is an embedding f W G!S3 of an oriented
disk graph G into S3 where each vertex of the graph locally looks like Figure 5, each
standard disk of G lies in a plane, and locally the disk separates the incoming and
outgoing edges of the given vertex. We call the image of each of the standard disks
of G a disk of f , and the embedding of the underlying graph of G the underlying
spatial graph of f . Two transverse spatial graphs are equivalent if there is an ambient
isotopy between them.

Note that in a transverse spatial graph the incoming and outgoing edges are each
grouped together. In the ambient isotopy, at each vertex, both the set of incoming
and the set of outgoing edges can move freely. However, in an ambient isotopy, the
incoming and outgoing sets cannot intermingle, because the disk separates the edges.

Definition 2.3 A regular projection of a transverse spatial graph f W G ! S3 is a
projection that satisfies the following two conditions: (1) For each point p in the
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Figure 5: A vertex of a transverse spatial graph shown with the disk

Figure 6: A diagram of a transverse spatial graph; the projections of the disks,
transverse to the plane of projection, are indicated by the straight yellow line
segments.

image of the underlying graph of G , f �1.p/ contains no more than two points and
if f �1.p/ contains two points then neither is a graph vertex. (2) All of the standard
disks of f are perpendicular to the plane of projection. A diagram for a transverse
spatial graph f W G! S3 is a regular projection of f where all the over and under
crossings are indicated.

In Figure 6, a diagram of a transverse spatial graph is shown, where the disks are
also shown in the projection. Notice that the incoming edges and outgoing edges are
grouped in the projection. We will from here forward not indicate disks in diagrams,
because the position of the disk is already clear from the diagram.

The Reidemeister moves for transverse spatial graphs are the same as the Reidemeister
moves for graphs shown in Figure 4, with the restriction that RV may only be made
between pairs of incoming edges or pairs of outgoing edges. For clarity, we will say
RV for this restriction of RV.

Theorem 2.4 Every transverse spatial graph has a diagram. If two transverse spatial
graphs are ambient isotopic, then any two diagrams of them are related by a finite
sequence of the Reidemeister moves RI–RIV, RV and planar isotopy.

Proof We first show that every transverse spatial graph has a diagram. Let f W G!S3

be a transverse spatial graph. A regular projection for the transverse spatial graph is a
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Pv

Dv

Pproj

Figure 7: The plane of projection Pproj together with a disk Dv of the
vertex v and Pv ; the plane Pv is the plane perpendicular to Pproj meeting Dv

in the line parallel to Pproj .

projection of f .G/ which is a regular projection of the underlying spatial graph of f .
That is, the projection only has transverse double points and these are away from the
vertices. We will first obtain a regular projection for the transverse spatial graph, and
next find a representative in the ambient isotopy class where the disks are transverse
to Pproj , where Pproj denotes the plane of projection for the regular projection. A
regular projection for a spatial graph is obtained in the usual way: a point projection
of a representative of the ambient isotopy class is obtained via �–perturbations of the
graph. To have the disks perpendicular to Pproj , a similar process is used. If the disk
is transverse to Pproj , we will see that there is a unique way to move it via an ambient
isotopy of f to a position where it is perpendicular to Pproj . So we need only have
all of the disks transverse to Pproj . For an arbitrary vertex v with disk Dv , let x be the
vector that is perpendicular to D and pointing in the direction of the outgoing edges.
If v remains in the same place and the neighborhood around it is allowed to rotate, there
is a full sphere of directions in which x can be pointing. Only two of these directions
will result in Dv being parallel to Pproj . By dimensionality arguments having the disks
transverse to Pproj is generic. If any of the disks are not transverse, an �–perturbation is
done. For each vertex v , let Pv be the plane that is perpendicular to Pproj and meets Dv

in the line through v and parallel to Pproj . For each disk transverse to Pproj there is
a unique map via rotation through the acute angle between Dv and Pv , moving Dv

into the plane Pv , so that it is perpendicular to Pproj ; see Figure 7.

For (topological) spatial graphs, any ambient isotopy is made up of elementary moves.
Recall that an elementary move of a spatial graph replaces a linear segment of an
edge Œei ; ej � by two new linear segments Œei ; ek � and Œek ; ej � that, together with Œei ; ej �,
bound a 2–simplex which intersects the original spatial graph only in Œei ; ej �, or is
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ei
ej ei

ek

ej

Figure 8: An elementary move

Figure 9: An example of what can happen when a disk flips over, moving
through a position parallel to Pproj

the reverse of this move; see Figure 8. Kauffman [8] showed that any elementary
move for a spatial graph can be obtained by a sequence of the Reidemeister moves
shown in Figure 4. Now we consider transverse spatial graphs. An elementary move
of a transverse spatial graph f W G! S3 replaces a linear segment of an edge of the
underlying graph Œei ; ej � by two new linear segments Œei ; ek � and Œek ; ej � that, together
with Œei ; ej �, bound a 2–simplex T which intersects f .G/ in Œei ; ej �, or is the reverse
of this move; see Figure 8. We note that T must miss all the transverse disks. We will
show that any ambient isotopy of transverse spatial graphs is made of elementary moves
of a transverse spatial graph. First note that Reidemeister moves RI–RIV preserve the
isotopy class of a transverse spatial graph. In addition, one can still interchange a pair of
neighboring incoming edges or a pair of neighboring outgoing edges in RV. However, if
one tried to interchange an incoming with a neighboring outgoing edge at the vertex v ,
the disk from the elementary move that would result in RV would intersect the transverse
disk Dv . So Reidemeister move RV is restricted to RV. Recall that RV is the move
RV where only neighboring incoming (respectively outgoing) edges are interchanged.

We claim that one needs only Reidemeister moves RI–RIV and RV to get all ambient iso-
topies. One might be concerned that this is incomplete because of the danger of a vertex
flipping over (ie moving through a position where the disk is parallel to the plane of pro-
jection) resulting in a change in the diagram like that shown in Figure 9. However, this
move and any move like it can be obtained with the set of Reidemeister moves RI–RIV,
and RV. To discuss this we will introduce another type of graph. A flat vertex graph or
rigid vertex graph is a spatial graph where the vertices are flat disks or polygons with
edges attached along the boundary of the vertex at fixed places. The set of Reidemeister
moves for flat vertex graphs is RI–RIV as before, and the move RV* [8]. Reidemeister
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RV� RV�

Figure 10: Two different RV* moves for flat vertex graphs

RIV RI

Figure 11: How to move between the two different RV* moves shown in
Figure 10; thus only one RV* move is needed for each valence of vertices

RV RV RV RV

Figure 12: This shows how many RV moves will give a RV* move

Figure 13: The RV* move that is a result of many RV moves

move RV* is the flipping over of a flat vertex by 180ı ; see Figure 10. For the move RV*
a choice is made of how many edges are on each side when the vertex is flipped, but only
one of these moves is need together with Reidemeister moves RI–RIV to do any of the
other ones [8]; see Figure 11. In the case of transverse spatial graphs repeated use of RV
will result in what looks like a RV* move, shown in Figures 12 and 13. Thus flipping
the vertex over can be accomplished by Reidemeister moves RI–RIV and RV.

3 Graph grid diagrams

In this section, we define the notion of graph grid diagrams and explain their relationship
to transverse spatial graphs. To each graph grid diagram we associate a unique transverse
spatial graph. On the other hand, we show that every transverse spatial graph can
be represented by a nonunique graph grid diagram. As with grid diagrams for knots
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and links, we define a set of moves on graph grid diagrams (cyclic permutation,
commutation 0 , and stabilization 0 ) that we call graph grid moves. Finally, we prove that
any two graph grid diagrams representing the same transverse spatial graph are related
by a sequence of graph grid moves.

3.1 Graph grid diagrams

We will assume that the reader is familiar with grid diagrams for knots and links; see
[11; 12]. Recall that a (planar) grid diagram for a link is an n� n grid of squares in
the plane where each square is decorated with an X, an O or nothing, and such that
every row (respectively column) contains exactly one X and exactly one O. Here we
are using the notation of [12]. To each grid diagram, one can associate a planar link
diagram by drawing horizontal line segments from the O’s to the X’s in each row, and
vertical line segments from the X’s to the O’s in each column with the convention
at the crossings that a vertical segment always goes over a horizontal segment. We
will define a more general class of grid diagrams that will represent transverse spatial
graphs. Before defining a grid diagram we need a technical definition.

Definition 3.1 Suppose D is an n by n grid where each square is decorated with
an X, an O or is empty. We let X be the set of X’s and O be the set of O’s. We
say that two elements p; q 2 X[O are related if p and q share a row or column.
Let � be the equivalence relation generated by this relation. We define the connected
components of D to be the equivalence classes of �.

Definition 3.2 A graph grid diagram g is an n by n grid where each square is
decorated with an X, O or is empty, a subset of the O’s are decorated with �, and
that satisfies the following conditions. There is exactly one O in each row and column.
Each connected component contains at least one O decorated with �. If a row or
column does not contain exactly one X then the O in that row or column must be
decorated with �. The total number of rows (equivalently columns) n is called the grid
number of g . The O’s decorated with � are called vertex O’s, the number of which
will be denoted V . We will say that an O is standard if the O has exactly one X in its
row and exactly one X in its column; otherwise we say it is nonstandard. Often, it will
be convenient to number the O’s and X’s by fOig

n
iD1

and fXig
m
iD1

. When numbering,
we always assume that O1; : : : ;OV correspond to the vertex O’s.

For convenience, we may sometimes omit the � from a figure when it is clear which O’s
should have �, ie the nonstandard ones. It will also be convenient to think of the grid
as the set Œ0; n�� Œ0; n� in the plane, with vertical and horizontal grid lines of the form

Algebraic & Geometric Topology, Volume 17 (2017)



Heegaard Floer homology of spatial graphs 1457

fig� Œ0; n� and Œ0; n��fig, where i is an integer from 0 to n, and the X’s and O’s are
at half-integer coordinates.

As in [11; 12], our chain complex is obtained from a graph grid diagram, with the
main difference being the definition of the Alexander grading. To define this, it is
sometimes necessary to consider toroidal graph grid diagrams instead of (planar)
graph grid diagrams. A toroidal graph grid diagram is a graph grid diagram that is
considered as being on a torus by identifying the top and bottom edges of the grid
and identifying the left and right edges of the grid. We denote the toroidal graph grid
diagram by T . We view the torus as being oriented and the orientation being inherited
from the plane. When the context is clear, we will just call it a graph grid diagram. In
a toroidal graph grid diagram, the horizontal and vertical grid lines, become circles.
We denote the horizontal circles by ˛1; : : : ; ˛n , the vertical circles ˇ1; : : : ; ˇn and we
let ˛D f˛1; : : : ; ˛ng and ˇ D fˇ1; : : : ; ˇng. When the grid is drawn on a plane, by
convention, we will order the horizontal (respectively vertical) circles from bottom
to top (respectively left to right) so that the leftmost circle is ˇ1 and the bottommost
circle is ˛1 . Note that to get a (planar) diagram from a toroidal diagram, one takes a
fundamental domain for the torus and cuts along a horizontal and vertical grid circle
and identifies it with Œ0; n/� Œ0; n/.

3.2 Graph grid diagram to transverse spatial graphs and their diagrams

Let g be a graph grid diagram. We can associate a transverse spatial f to g as follows.
First put a vertex at each of the O’s that are decorated with �. Let Oi be an O in g

lying in row ri and column ci . For each Xj in row ri , connect Oi to Xj with an
arc inside of the row (oriented from Oi to Xj ) so that it is disjoint from all the X’s
and O’s and so that all the arcs in row ri are disjoint from one another. We will call
these horizontal arcs. Now push the interior of the arcs in row ri slightly upwards,
above the plane. For each Xj in column ci , connect Xj to Oi with an arc inside of
the column (oriented from Xj to Oi ) so that it is disjoint from all the X’s and O’s and
so that all the arcs in row ci are disjoint from one another. We will call these vertical
arcs. Now push the interior of the arcs in column ci slightly downward, below the
plane. Put a disk in the squares containing O’s decorated with � and the vertex at the
disks center. In this case we say that the graph grid diagram g represents the spatial
graph f . Any choice of arcs gives the same transverse spatial graph.

Note that the aforementioned procedure will actually give us a (nonunique) projection
of the transverse spatial graph. However, this will not be a diagram of f since the
transverse disks will be parallel to the plane of projection. It will be convenient for
us to define a class of grid diagrams that give a well-defined diagram of a transverse
spatial graph when following this procedure.
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O X X X

X

X

�

Figure 14: A graph grid diagram of a nonstandard O with the flock in L–
formation (left), and the diagram of the associated vertex for this portion of
the graph grid diagram, showing the order in which the edges appear around
the vertex (right)

O X

X

X

O

O

O

O X X

X

�

�

Figure 15: A preferred grid diagram (left), and the diagram of the transverse
spatial graph associated with this graph grid diagram (right)

Consider a graph grid diagram. For a nonstandard O, let the set of X’s that appear in a
row or column with this O be called its flock. If the X’s in the flock of an O are all
adjacent to the O or adjacent to other X’s that are adjacent to the O, then the flock
is said to be clustered. A flock is in L–formation, if the X’s are all to the right and
above the O. It should be noted that the choice of having the X’s above and to the
right of the O is arbitrary; any pair of below and to the right, above and to the left, or
below and to the left will work similarly. A preferred graph grid diagram is a graph
grid diagram where all nonstandard O’s (with more than one X in it’s flock) have their
flocks in L–formation.

Now suppose that g is a preferred graph grid diagram. We follow the procedure in the
first paragraph of this section except that now we put the transverse disks perpendicular
to the plane so that they divide the horizontal and vertical arcs. Moreover, to get a
unique diagram D , the ordering of the edges around the vertex for nonstandard O’s is
given by the convention illustrated in Figure 14. In this case we say that the graph grid
diagram g represents the diagram of the transverse spatial graph, D . We note that
the transverse spatial graph associated to this diagram is equivalent to the transverse
spatial graph obtained by following the procedure in the first paragraph of this section.
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3.3 Graph embedding to preferred graph grid diagram

We have shown that to each graph grid diagram, we can associate a transverse spatial
graph. We now show that for each transverse spatial graph, there is a (preferred) graph
grid diagram representing it.

Proposition 3.3 Let f W G ! S3 be a transverse spatial graph. Then there is a
preferred graph grid diagram g representing f . Moreover, for each diagram of a
transverse spatial graph, D , there is a preferred graph grid diagram g representing D .

Proof Choose a diagram D of the transverse spatial graph f . We construct a graph
grid diagram g , representing D , by the following procedure. At the vertices, the edges
are partitioned into two sets: incoming edges and outgoing edges, as D is a diagram of
a transverse spatial graph. Move the edges around each vertex (and perhaps the disk) by
planar isotopy so that all outgoing edges are to the right of the vertex and all incoming
edges are above the vertex, as shown in Figure 14. Away from vertices the process
is the same as that for knots or links. The arcs of the edges are made “square”. All
crossings are made so that the horizontal arc goes under the vertical arc; see Figure 16.
Then the diagram is moved via a planar isotopy so that no vertical arcs or vertices with
their incoming edge arcs are in the same vertical line, and similarly for horizontal arcs
and vertices with their outgoing edge arcs. A vertex along with its incoming edge arcs
are associated with a single column, and the vertex together with its outgoing edge arcs
are associated with a single row; see Figure 14. Each of the vertical and horizontal arcs
are also associated with a column and row of the grid, respectively. This will result
in an equal number of rows and columns. Each vertex will add a row and a column.
Each vertical arc that is not next to a vertex will add a column. Each vertical arc can
be paired with the following horizontal arc that is not next to a vertex, which will add
a row. A graph grid representation is then given by placing X’s and O’s on the n by n

grid. At each vertex a single O� is placed, then an X is placed in the same row at the
corner of each of the outgoing edges and an X is placed in the same column at the
corner for each of the incoming edge, this is done as shown in Figure 14. Next X’s
and O’s are placed along the edges at the corners consistent with the orientation: arcs
go from X’s to O’s in columns and from O’s to X’s in rows.

Figure 16: How to change a horizontal over-crossing to a vertical over-
crossing without changing the embedded graph
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Figure 17: An example of cyclic permutation of columns

3.4 Grid moves

Following Cromwell [2] and Dynnikov [3], any two grid diagrams of the same link are
related by a finite sequence of grid moves:

Cyclic permutation The rows and columns can be cyclically permuted; see
Figure 17.

Commutation Pairs of adjacent columns (respectively rows) may be exchanged
when the following conditions are satisfied. For columns, the four X’s and O’s
in the adjacent columns must lie in distinct rows, and the vertical line segments
connecting O and X in each column must be either disjoint or nested (one
contained in the other) when projected to a single vertical line. There is an
obvious analogous condition for rows; see Figure 18.

Stabilization/destabilization Let g be an .n� 1/� .n� 1/ graph grid diagram
with decorations fOig

n�1
iD1

and fXj g
n�1
jD1

. Then Ng , an n� n graph grid diagram,
is a stabilization of g if it is obtained from g as follows. Suppose there is a
row of g that contains Oi and Xj . In Ng , we replace this one row with two new
rows and add one new column. We place Oi into one of the new rows (and in
the same column as before) and Xj into the other new row (and in the same
column as before). We place decorations On and Xn into the new column so
that On occupies the same row as Xj and Xn occupies the same row as Oi . See
Figure 19 for an example. There is a similar move with the roles of columns
and rows interchanged. A destabilization is the reverse of a stabilization.

For the graph grid moves there are two differences. We will replace the usual commu-
tation with a slightly more general commutation 0 to include exchanging neighboring
columns which have entries in the same row (or rows with entries in the same columns)
and to include exchanges of rows and columns that have more than a single X in them
(or no X’s). We will also restrict the stabilization/destabilization move to only occur
along edges (which we explain below).
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Figure 18: An example of commutation of columns

ox

Figure 19: An example of stabilization

The graph grid moves

Cyclic permutation is unchanged.

Cyclic permutation The rows and columns can be cyclically permuted; see
Figure 17.

Commutation will be replaced with the more general commutation 0 .

Commutation 0 Pairs of adjacent columns may be exchanged when the following
conditions are satisfied. There are vertical line segments LS1 and LS2 on the
torus such that (1) LS1[LS2 contain all the X’s and O’s in the two adjacent
columns, (2) the projection of LS1[LS2 to a single vertical circle ˇi is ˇi , and
(3) the projection of their endpoints, @.LS1/[@.LS2/, to a single ˇi is precisely
two points. Here we are thinking of X and O as a collection of points in the
grid with half-integer coordinates. There is an obvious analogous condition for
rows; see Figure 20.

We define a generalization of stabilization, called stabilization 0 . This move will add a
jog or a nugatory crossing to the edge of the projection of the associated transverse
spatial graph.

Stabilization 0 /destabilization 0 Let g be an .n�1/� .n�1/ graph grid diagram
with decorations fOig

n�1
iD1

and fXj g
m�1
jD1

. Then Ng , an n� n graph grid diagram,
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Figure 20: Two examples of commutation 0 moves of columns

is a row stabilization 0 of g if it is obtained from g as follows. Suppose there
is a row of g that contains the decorations Ok ;Xj1

; : : :Xjl
with l � 1. In Ng ,

we replace this one row with two new rows and add one new column. We
place Ok ;Xj2

; : : : ;Xjl
into one of the new rows (and in the same column as

before) and Xj1
into the other new row (and in the same column as before). We

place decorations On and Xm into the new column so that On occupies the same
row as Xj1

and Xm occupies the same row as Ok . See Figure 21 for an example.
A column stabilization 0 is a row stabilization 0 where one reverses the roles of
rows and columns. We say that Ng is obtained from g by a stabilization 0 if it is
obtained by a row or column stabilization 0 . A destabilization 0 is the reverse of a
stabilization 0 .

Note that On will not be associated to a vertex so will not be decorated with �. Also,
if any Oi is decorated with � (including Ok ) in g then it will also be decorated with �
in Ng . We do not allow stabilization 0 of rows with no X’s in them.

Remark 3.4 If Ng is obtained as row stabilization 0 on the graph grid diagram g then
one can use multiple commutation 0 moves to change Ng into a row stabilization 0 obtained
from g , where Xj1

;Xm;On share a corner, Xj1
is directly to the left of On , and On

is directly above Xm (as in Figure 21). Note that by using only commutation, like
in [12], one can only assume that Xj1

;Xm;On share a corner, which leaves four cases
instead of one. This will allow us to simplify the proof of stabilization 0 . There is a
similar statement for column stabilization 0 .
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X1 X2 O�k X3
X1

X2 On

Xm O�k X3

Figure 21: An example of stabilization 0

3.5 The graph grid theorem

Before the main theorem of this section we need a lemma. To each diagram of a
transverse spatial graph f there are an infinite number of different graph grid diagrams
representing f that can be constructed using the procedure described in the proof of
Proposition 3.3. This procedure produces a preferred grid diagram. However, doing a
graph grid move on a preferred graph grid diagram will result in diagrams that are not
necessarily in preferred form. Moreover, if one chooses a random graph grid diagram
representing a transverse spatial, it will not necessarily be in preferred form. Indeed, in
practice, one can often reduce the size of the grid number by moving it out of preferred
form.

Lemma 3.5 Every graph grid diagram g representing a transverse spatial graph f is
related to a preferred graph grid diagram representing f by a finite sequence of graph
grid moves.

Proof Recall that a preferred grid diagram is one in which all of the nonstandard O’s
have their flocks in L–formation. Given a graph grid diagram, choose a nonstandard O
that is not in L–formation. We will explain an algorithm to move this O into L–
formation, but first we must separate this flock from any of the other flocks that are
in L–formation. If there are any X’s in the flock with this O that are also in a flock
of another O that is in L–formation, then the other L–formation flock will need to be
moved. If our nonstandard O of interest is in a column with an X that is in L–formation
with another nonstandard O, we use the following procedure to move the flock out
of the way. An example of this is shown in Figure 22. We do a row stabilization 0 at
said X; the new row is placed below the L–formation flock. Now the nonstandard O’s
no longer share an X, but if there were any X’s to the right of the previously shared X,
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O*
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STAB0 COMM 0

Figure 22: An example of the moves needed to separate the flocks of two O�

and move the upper most flock back into L–formation

X XO*

XO

X XO*
XO

X XO*

STAB0 2 �COMM0

XO

X XO*

XO

XO

X XO*

XO

STAB0 4 �COMM0

Figure 23: An example of the moves needed to move the X in the row into L–formation

the flock was split by the stabilization 0 move and so it is no longer in L–formation. To
move the flock back into L–formation a stabilization 0 move is done at each of the X’s
to the right of the split (going from left to right), each time adding a row below the
flock. After the stabilization 0 moves are done, the columns containing an X in the
flock can be moved by commutation 0 moves to be next to the other X’s in the flock.
This is done with all of the X’s, so the flock is in L–formation again. If the X shares a
row with our O and a column with a different nonstandard O that is in L–formation, a
similar procedure is done with the roles of the rows and columns switched.
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Suppose there is no X in the flock that is already in L–formation with a different O.
Use cyclic permutation to put the O at the lower left corner of the grid. Then, a row
stabilization 0 is done on the rightmost X that is in the row with the O, adding a row to
the bottom of the diagram and adding an X and O next to each other in the new column.
Commutation 0 can be used to move the new column next to the nonstandard O, or
next to X’s that are next to the O; see Figure 23. This is repeated until all of the X’s
in the row are adjacent to the O. A similar process is done with the X’s in the column
of the O, bringing the O into L–formation. This process can be repeated until all of
the O’s are in L–formation.

This will increase the number of nonstandard O’s in L–formation, because no other
flock is moved out of L–formation. We continue until all flocks are in L–formation.

For the following proof, we need a few more definitions. If an O� is associated with a
vertex v and is in L–formation, then all of the columns that contain an X in the flock
are called v–columns, similarly those rows containing the flock are called v–rows. We
will give a name to certain sequences of the graph grid moves, which will be called
(column or row) vertex stabilization (and destabilization). A column (or row) vertex
stabilization introduces a stabilization to the left of (or below) all of the X’s in the
column (or in the row) with a nonstandard O, as shown in Figure 24. The row vertex
stabilization is a combination of a number of stabilization 0 s and commutation 0 s. For
a nonstandard O, first a row stabilization 0 is done, where the rightmost X is placed
into the lower new row by itself, the new column is placed to the left and the new X
and O are added. Next, the second from the right X is moved by commutation 0 so that
it is in the rightmost position. A stabilization 0 move is done in the same way. Then
commutation 0 moves are done on the rows, moving the newest row directly below the
flock, below the rows created in the stabilization 0 s that happened before. Finally, the X
in the flock is moved back to the original place in the flock via commutation 0 . Follow
the same procedure for all of the X’s in the row.

Theorem 3.6 If g and g0 are two graph grid diagrams representing the same transverse
spatial graph, then g and g0 are related by a finite sequence of graph grid moves.

Proof First, using Section 3.5 we move both g and g0 to preferred graph grid diagrams.
We know that the diagrams of two isotopic transverse spatial graphs are related by a
finite sequence of the graph Reidemeister moves, RI–RIV and RV, shown in Figure 4,
together with planar isotopy. So we need only show that preferred graph grid diagrams
that result from embeddings that differ by a single Reidemeister move (or planar
isotopy) can be related by a finite sequence of graph grid moves.

Due to the work of Cromwell [2] and Dynnikov [3], it is known that any two grid
diagrams of the same link are related by a finite sequence of grid moves, cyclic
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Figure 24: An example of a row vertex stabilization

Figure 25: Examples of the two planar isotopies that can occur which contain
vertices: two vertices are moved parallel to each other (left), and an arc and a
vertex move parallel to each other (right)

permutation, commutation, and stabilization/destabilization. The Reidemeister moves
are local moves. In the grid diagram there is a set of columns and or rows that will be
moved to accomplish any one of RI–RIII. Because the first three Reidemeister moves do
not involve vertices and we are working with preferred diagrams, the rows and columns
that are moved will not contain an O� . It could however contain rows or columns that
contain X’s that are in a flock with an O� . In this case, first a vertex stabilization is
done, so that the flock is not disrupted and the graph grid stays in preferred formation.
Thus we need only show that any two preferred graph grid diagrams that come from the
same embedding and differ as a result of a single Reidemeister move or planar isotopy
which involves vertices can be related by a finite sequence of graph grid moves.

There are two moves and three planar isotopies with vertices to be considered: RIV, RV,
a planar isotopy in which a valence two-vertex is moved along the arc of the edges,
a planar isotopy in which two vertices are moved parallel to each other, and a planar
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Figure 26: An example of a vertex stabilization move followed by three
commutation 0 moves, resulting in a RIV move in the associated graph

isotopy in which an arc and a vertex move parallel to each other, shown in Figure 25.
For the figures of the graph grid diagrams in this proof we will only place � on an O
if it is not obvious from the grid that it is an O� .

RIV move The move RIV moves an arc from one side of a vertex to the other, either
over or under the vertex. Up to planar isotopy we can assume that the edge is next to
the vertex that it will pass over (or under). An example of RIV is shown in Figure 26,
here a row vertex stabilization is done followed by three column commutation 0 moves.
In general, RIV can be obtained via the following: first a vertex stabilization move, if
needed, then a number of commutation 0 moves between the v–columns (resp. v–rows)
and other column (resp. row) that is associated with an appropriate arc.

RV move The RV move corresponds to switching the order of the edges in the
projection next to the vertex, which introduces a crossing between these edges. See the
leftmost move in Figure 12 for reference. Since we are working with transverse spatial
graphs, such a move can only occur between pairs of incoming edges and outgoing
edges. We will look at the graph grid moves needed for an RV move between two
outgoing edges. The proof is similar for two incoming edges.

In general, a commutation 0 move between columns or rows that contain X’s in the
same flock will result in a RV move between the two associated edges involved. In
order to be able to iterate such moves, we present the follow processes. In an RV move,
two edges are switched next to a vertex. Let’s call one of them the left edge and one
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Figure 27: A row vertex stabilization move, followed by a commutation 0

move in the grids, producing a RV move in the associated spatial graph

the right edge. There are two possibilities with a RV move: the right edge either goes
under or over the left edge.

In Figure 27, we show an example of RV where the right edge goes under the left
between the two leftmost outgoing edges. In general, to have the right edge go under
the left edge between two outgoing edges, first a row vertex stabilization move is done,
followed by a commutation 0 move between the columns containing the X’s associated
with the edges involved.

In Figure 28, we show an example of RV where the right edge goes over the left
between the two leftmost outgoing edges. Let X1 and X2 , from left to right, be the X’s
in the flock that are associated with the edges that will be interchanged next to the
vertex. In general to have the right edge go over the left edge, a row vertex stabilization
move is done, if needed. Next a row stabilization 0 move is done on the row that contains
the standard O that is in the same column as X2 . Call this O Oi . The column that
is added in the stabilization 0 is placed immediately to the right of the flock. Then a
commutation 0 move is done to move the row containing Oi below the row containing
the standard O that is in the same column as X1 . Finally a commutation 0 move is
done between the columns containing X1 and X2 . To do RV for the incoming edges,
one needs only switch the role of the row and column.

Movement of a valence-two vertex The movement of a valence-two vertex is equiv-
alent to moving an O� with a single X in both its row and column to the position of a
standard O that is on one of the incident edges. This could be thought of as choosing
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Figure 28: A row vertex stabilization move, followed by a row
stabilization 0 move, a row commutation 0 move and a column commutation 0

move in the grids, producing a RV move in the associated spatial graph

a different O on the edge to be special, and was first addressed for grid diagrams in
[12, Lemma 2.12]. A proof of the independence of which O is special is given in [21,
Lemma 4.1]. Since this is a local change, the same diagrammatic proof works in the
graph case. We outline the proof here.

We will describe in words the moves needed to do this. However, the reader may just
choose to look at the moves done in Figure 29. To move a valence-two vertex along
an edge, we move the associated O� to the position of a standard O on an adjacent
edge. First a row stabilization 0 is done at one of the neighboring X’s, between the X
and the O� . The new column containing the new X and O are moved by commutation 0

next to O� , shown in the second image in Figure 29. Then the row containing O�

can be moved by commutation 0 moves to the X in the column with the O� . Then
the column containing O� can be moved by commutation 0 to the O in the column
with the X that is next to O� . Now O� is left and the O and X can be moved in their
row by commutation 0 to the X that is in the O’s column. These X and O can then be
removed by a column destabilization 0 .

Two vertices pass each other The planar isotopy where one vertex v passes another
vertex w can be obtained via first vertex stabilization moves if needed, and then a
number of commutation 0 moves between the v–columns and the w–columns. In
Figure 30, we show an example where only a single stabilization 0 move is needed
before the commutation 0 moves, switching the order of the v–columns and the w–
columns. To have the vertices move passed each other vertically rather than horizontally,
the roles of the rows and columns are interchanged.
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Figure 29: The graph grid moves needed to move a standard O� to the
position of an O

A vertex and arc pass each other The planar isotopy where an arc and a vertex move
passed each other can be obtained via first vertex stabilization moves if needed and
then commutation 0 moves between a set of v–columns (resp. v–rows) and another
column (resp. row) that is associated with an appropriate arc; see Figure 31.

This shows that even though there are numerous different graph grid diagrams that will
represent the same transverse spatial graph, all such grids are related by a sequence of
the graph grid moves.

4 Graph Floer homology

In this section, we will define the main invariant of this paper, which we call the graph
Floer homology of a spatial graph. This will take the form of the homology of a
bigraded chain complex that is a module over a polynomial ring (or more generally, the
quasi-isomorphism type of the chain complex). One of the gradings is the homological
grading (also called the Maslov grading) and the other grading is called the Alexander
grading, and will take values in the first homology of the exterior of the transverse
spatial graph. Our definitions will generalize those given in [11] and [12] except that
we only get a (relatively) bigraded object instead of a filtered object. In particular, when
the spatial graph is a knot or link, we recover the associated graded objects from [12]
(but with a relative Alexander grading). In this section and throughout the rest of the
paper, we assume that the reader is familiar with the material of [12, Sections 1–3].
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Figure 30: An example illustrating the two steps to construct a planar isotopy
in which one vertex passes another vertex in the diagram of the associated
transverse spatial graph. First a stabilization 0 move was done then a number
of the commutation 0 moves were done.
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Figure 31: An example illustrating the two steps to construct a planar isotopy
where a vertex passes an arc in the diagram of the associated transverse spatial
graph. First a row vertex stabilization move was done then a number of the
commutation 0 moves were done.
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4.1 Algebraic terminology

We start with some algebraic preliminaries. The reader can skip this section upon first
reading and refer back to it as needed. Many of these definitions are similar to those of
[12, Section 2.1].

Let C be a vector space over F , where F is the field with 2 elements and let G , G1

and G2 be abelian groups. Recall that a G–grading on C (also called an absolute
G–grading) is a decomposition C D

L
g2G Cg , where Cg � C is a vector subspace

of C for each g . In this case we say that C is graded over G or is graded. A linear
map �W C ! C 0 between two graded vector spaces is a graded map of degree h if
�.Cg/�C 0gCh for all g 2G . A relative G–grading on C is a G–grading that is well
defined up to a shift in G . That is, C D

L
g2G Cg and C D

L
g2G C 0g give the same

relative G–gradings if there exists an a2G such that Cg DC 0gCa for all g 2G . Thus
if C D

L
g2G Cg has a well-defined relative grading and x 2 Cg1

and y 2 Cg2
, then

the difference between their gradings g1�g2 is well-defined and independent of the
choice of direct sum decomposition. In this case, we say that C is relatively graded
over G or is relatively graded. A linear map �W C !C 0 between two relatively graded
vector spaces is a graded map if there exists an h 2G such that �.Cg/� C 0gCh for
all g 2G . Note that it does not make sense to talk about the degree of this map since
we can shift the subgroups and get a different value for h. In this paper, we will be
interested in relatively bigraded vector spaces over H1.E.f // and Z, where E.f / is
the complement of a transverse spatial graph in S3 .

Definition 4.1 A .G1;G2/–bigrading on C is a G1˚G2 –grading on C . In this case
we say that C is bigraded over G1 and G2 , or is graded. We may also refer to a
bigrading as an absolute bigrading when convenient. A linear map �W C!C 0 between
two bigraded vector spaces is a bigraded map of degree .h1; h2/ if �.C.g1;g2// �

C 0.g1Ch1;g2Ch2/
for all .g1;g2/2G1˚G2 . A relative bigrading on C over G1 and G2

is a relative G1˚G2 –grading on C . In this case we say that C is relatively bigraded
over G1 and G2 or is relatively graded. A linear map �W C ! C 0 between two
relatively graded vector spaces is a bigraded map if there exists an .h1; h2/ 2G1˚G2

such that �.C.g1;g2//� C 0.g1Ch1;g2Ch2/
for all .g1;g2/ 2G1˚G2 .

Note that a (relative) bigrading of C over G1 and G2 gives a well-defined (relative)
grading over Gi for i D 1; 2 in the obvious way:

C D
M

g12G1

C.g1;g2/

� M
g22G2

C.g1;g2/

�
and C D

M
g22G2

C.g1;g2/

� M
g12G1

C.g1;g2/

�
:
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Our main invariant will turn out to be graded over two groups, one of which will
be relatively graded and one of which will be (absolutely) graded. In the following
definition, RA stands for relative absolute or relatively absolutely.

Definition 4.2 Let G1 and G2 be abelian groups and C be a vector space. An RA
.G1;G2/–bigrading on C is a G1 ˚G2 –grading that is well defined up to a shift
in G1˚f0g. That is, C D

L
g2G Cg and C D

L
g2G C 0g give the same RA .G1;G2/–

bigradings if there exists some .g1; 0/2G such that Cg DC 0gC.g1;0/
for all g 2G . In

this case, we say that C is RA bigraded over G1 and G2 , or, simply, is RA bigraded.
A linear map �W C !C 0 between two RA bigraded vector spaces is a bigraded map of
degree .�; h2/ if there exists an h1 2G1 such that �.C.g1;g2//� C 0.g1Ch1;g2Ch2/

for
all .g1;g2/ 2G1˚G2 . A linear map �W C ! C 0 between two RA bigraded vector
spaces is a bigraded map if it is a bigraded map of some degree.

Note that an RA .G1;G2/–bigrading of C gives a well-defined relative grading over G1

and a well-defined (absolute) grading over G2 . We will also need to define bigraded
chain complexes and their equivalences.

Definition 4.3 A .G;Z/–bigraded chain complex is a .G;Z/–bigraded vector space C

and bigraded map @W C!C of degree .0;�1/ such that @2D 0. For g 2G and i 2Z,
a linear map �W C ! C 0 between G˚Z–bigraded chain complexes is a bigraded
chain map of degree .g; i/ if it is a chain map, ie @ ı� D � ı @, and it a bigraded map
of degree .g; i/. We say that � is a bigraded chain map if it is a bigraded chain map
of some degree.

Note that if C D
L

g2G Cg has a relative G–grading then it makes sense to talk about
a graded map �W C !C of degree h as one that satisfies �.Cg/�CgCh for all g 2G .
For, suppose a 2 G and C D

L
g2G C 0g are such that for all g 2 G , Cg D C 0gCa .

Then �.C 0g/D �.Cg�a/� Cg�aCh D C 0gCh for all g 2G . Similarly, we can define a
bigraded map of degree .g1;g2/ between a relatively (or RA) bigraded vector space
and itself. We say a linear map (between absolutely, relatively or RA bigraded vector
spaces) is a bigraded map if it is a bigraded map of some degree.

Definition 4.4 A relative (respectively RA) .G;Z/–bigraded chain complex is a rela-
tive (respectively RA) .G;Z/–bigraded vector space C and bigraded map @W C ! C

of degree .0;�1/ such that @2 D 0. A linear map �W C ! C 0 between relative
(respectively RA) G˚Z–bigraded chain complexes is a bigraded chain map if it is a
chain map, ie @ ı� D � ı @, and it is a bigraded map.

Similarly, we can define .G;Z2/–bigraded, relatively bigraded, and RA bigraded chain
complexes. This will be used in the last section of the paper when we compare our
invariant to sutured Floer homology.
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The primary invariant will be a chain complex that also takes the form of a module
over a multivariable polynomial ring. Recall that a G–graded ring is a commutative
ring R with a direct sum decomposition as abelian groups R D

L
g2G Rg , where

Rg is a subgroup of R and Rg1
Rg2
�Rg1Cg2

for all gi 2G . If R is a G–graded
ring, a G–graded (left) R–module is a (left) R–module with a direct sum decom-
position as abelian groups M D

L
g2G Mg , where Mg is a subgroup of M and

Rg1
Mg2

�Mg1Cg2
for all gi 2G . A graded R–module homomorphism of degree h

is a graded map �W C ! C 0 (of degree h) between G–graded R–modules that is also
an R–module homomorphism. We can similarly define relatively graded, bigraded,
relatively bigraded, and relatively absolutely bigraded R–modules and graded module
homomorphisms in these cases.

Definition 4.5 A .G;Z/–bigraded (left) R–module chain complex is a .G;Z/–
bigraded (left) R–module C and bigraded R–module homomorphism @W C ! C of
degree .0;�1/ such that @2D 0. For g 2G and i 2Z, an R–module homomorphism
�W C ! C 0 between G ˚ Z–bigraded R–module chain complexes is a bigraded
R–module chain map of degree .g; i/ if @ ı � D � ı @ and it is a bigraded map
of degree .g; i/. We say that �W C ! C 0 is a bigraded R–module chain map if it
is a bigraded R–module map of some degree. We can similarly define a relative
(respectively RA) .G;Z/–bigraded R–module chain complex and a relative bigraded
R–module chain map.

We remark that if C is a .G;Z/–bigraded chain complex of (left) R–modules then
it is not necessarily the case that any of C.g;m/ ,

L
h2G C.g;m/ or

L
m2Z C.g;m/ is an

R–module.

The primary invariant of this paper associates to each graph grid diagram a bigraded R–
module chain complex. However, choosing different graph grid diagrams representing
the same transverse spatial graph will lead to different chain complexes. We will show
that they are all quasi-isomorphic.

Definition 4.6 A chain map �W C ! C 0 of chain complexes is a quasi-isomorphism
if it induces an isomorphism on homology. We say that two chain complexes C

and D are quasi-isomorphic if there is a sequence of chain complexes C0; : : : ;Cr and
quasi-isomorphisms

C0 C2 Cr�2 Cr

� � �

C1

�

� 2
�
1

-

C3

�
3

-

Cr�3

�
� r�

2

Cr�1

�

� r
�
r�

1
-
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such that C0DC , Cr DD . Suppose C and D are .G;Z/–bigraded R–module chain
complexes. We say that �W C!C 0 is a bigraded R–module quasi-isomorphism if � is
a quasi-isomorphism and a bigraded R–module homomorphism. We say that C and D

are quasi-isomorphic (as .G;Z/–bigraded R–module chain complexes) if they are
quasi-isomorphic and all the quasi-isomorphisms are bigraded R–module chain maps.
We can similarly define quasi-isomorphism for two relative (or RA) .G;Z/–bigraded
R–module chain complexes.

Remark 4.7 In the definition of quasi-isomorphism, it suffices to consider sequences
of length r D 2. To see that these are equivalent, see [16, Proposition A.3.11].

4.2 The chain complex

For technical reasons, we need to restrict our definition to graphs that are both sinkless
and sourceless. The graph grid diagrams representing these transverse spatial graphs
have at least one X per column and row. We will need this condition to ensure
that @2 D 0.

Definition 4.8 A graph grid diagram is saturated if there is at least one X in each
row and each column. A transverse spatial graph f W G! S3 is called sinkless and
sourceless if its underlying graph G is sinkless and sourceless (ie has no vertices with
only incoming edges or only outgoing edges).

Remark 4.9 (1) Suppose that g is a graph grid diagram representing the transverse
spatial graph f . Then g is saturated if and only if f is sinkless and sourceless. (2) If
one performs a graph grid move on a saturated graph grid diagram, then the resulting
graph grid diagram is saturated.

Convention For the rest of this paper, unless otherwise mentioned, we will assume
that all transverse spatial graphs are sinkless and sourceless and all graph grid diagrams
are saturated.

Let f W G! S3 be a sinkless and sourceless transverse spatial graph, define E.f /D

S3 nN.f .G//, where N.f .G// is a regular neighborhood of f .G/ in S3 , let g be
an n� n saturated graph grid diagram representing f , and T be its corresponding
toroidal diagram. Now, let

S D ffxig
n
iD1 j xi D ˛i \ˇ�.i/; � 2 Sng;

where Sn is the symmetric group on n elements, and define C�.g/ to be the free (left)
Rn –module generated by S , where

Rn D F ŒU1; : : : ;Un�
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and F DZ=2Z denotes the field with two elements. When working with generators on
a planar grid diagram, we use the convention that places the intersection point on the
bottom leftmost grid line (as opposed to the top rightmost grid line). When we want to
specify the grid, we may write S .g/ instead of S .

Using the toroidal grid diagram, we can view the torus T as a two-dimensional
CW complex with n2 0–cells (intersections of ˛i and ǰ ), 2n2 1–cells (consisting
of line segments on ˛i and ǰ ), and n2 2–cells (squares cut out by ˛i and ǰ ). Note
that a generator x 2 S can be viewed as a 0–chain. Let U˛ be the 1–dimensional
subcomplex of T consisting of the union of the horizontal circles. We define paths,
domains, and rectangles in the same way as [12]. Given two generators x and y

in S , a path from x to y is a 1–cycle  such that the boundary of the 1–chain
obtained by intersecting  with U˛ is y�x . A domain D from x to y is an 2–chain
in T whose boundary @D is a path from x to y . The support of D is the union of
the closures of the 2–cells appearing in D (with nonzero multiplicity). We denote
the set of domains from x to y by �.x;y/ and note that there is a composition of
domains �W �.x;y/��.y ; z/!�.x; z/. A domain from x to y that is an embedded
rectangle r is called a rectangle that connects x to y . Let Rect.x;y/ be the set of
rectangles that connect x to y . Notice if x and y agree in all but two intersection
points then there are exactly two rectangles in Rect.x;y/, otherwise Rect.x;y/D∅.
A rectangle r 2 Rect.x;y/ is empty if Int.r/\x D∅ where Int.r/ is the interior of
the rectangle in T . Let Recto.x;y/ be the set of empty rectangles that connect x to y .

We now make C�.g/ into a chain complex .C�.g/; @�/ in the usual way: by counting
empty rectangles. Note that in [11; 12], the authors consider rectangles that contain
both X’s and O’s. However, because there is no natural filtration of H1.E.f //, we
must restrict to rectangles without any X’s and thus we get a graded object instead of a
filtered object. Let X and O be the set of X’s and O’s in the grid. Put an ordering on
each of these sets, ODfOig

n
iD1

and XDfXig
m
iD1

so that O1; : : : ;OV are associated to
the V vertices of the graph. For a domain D2�.x;y/, let Oi.D/ (respectively Xi.D/)
denote the multiplicity with which Oi (respectively Xi ) appear in D . More precisely, D

is a domain so DD
P

aj rj , where rj is a rectangle in T . Thus Oi.D/D
P

aj Oi.rj /,
where Oi.rj / is 1 if Oi 2 rj and 0 otherwise (similarly for Xi.D/). We note that if r

is a rectangle then Oi.r/� 0. Define @�W C�.g/!C�.g/ as follows. For x 2S , let

@�.x/D
X
y2S

X
r2Recto.x;y/
Int.r/\XD∅

U
O1.r/
1

� � �U On.r/
n �y :

Extend @� to all of C�.g/ so that it is an Rn –module homomorphism. When we
want to specify the grid, we will write @�g instead of @� .
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Proposition 4.10 If g is a saturated graph grid diagram then @�g ı @
�
g D 0.

Proof This proof follows that of [12, Proposition 2.10, page 2349] almost verbatim.
The only change is that we only consider regions that do not contain any X’s. Briefly,
let x 2 S . Then

@� ı @�.x/D
X
z2S

X
D2�.x;z/

N.D/ �U
O1.D/
1

� � �U On.D/
n � z;

where N.D/ is the number of ways one can decompose D as D D r1 � r2 , where
r1 2 Recto.x;y/, r2 2 Recto.y ; z/ and Int.ri/\XD∅. When x ¤ z there are three
general cases. The rectangles are either disjoint, overlapping or share a common edge.
In each of these cases there are two ways that the region can be decomposed as empty
rectangles. Thus the resulting z occurs in the sum twice. The case where x D z is
the result of domains D 2 �.x;x/, which are width-one annuli. Such domains do
not occur in the image of @� ı @�.x/ because @� only counts rectangles that do not
contain X’s, and we have assumed that our graph grid diagram is saturated. Thus we
see that @� ı @�.x/ vanishes.

4.3 Gradings

We put two gradings on the .C�.g/; @�/. The first is the homological grading, also
called the Maslov grading. This will be defined exactly the same as in [12]. We quickly
review the definition for completeness.

Given two finite sets of points A and B in the plane and a point q D .q1; q2/ in the
plane, define I.q;B/ D #f.b1; b2/ 2 B j b1 > q1; b2 > q2g. That is, I.q;B/ is the
number of points in B above and to the right of q . Let I.A;B/ D

P
q2A I.q;B/

and J .A;B/D .I.A;B/C I.B;A//=2. It will be useful to note that an equivalent
definition of I.A; q/ is the number of points in the set fa 2 A j q1 > a1; q2 > a2g,
ie the number of points in A below and to the left q . So J .q;A/ counts with weight
one half all the points in A above and to the right of q and down and to the left of q .
Slightly abusing notation, we view O as a set of points in the grid with half-integer
coordinates (the points where the O’s occur). Similarly, we view X as a set of points
in the grid with half-integer coordinates. We extend J bilinearly over formal sums
and differences of subsets in the plane and define the Maslov grading of x 2 S to be

M.x/D J .x�O;x�O/C 1:

This is consistent with the definition given in [12], and only depends on the set O .
Since, like in [12], we have exactly one O per column and row, [12, Lemmas 2.4
and 2.5] also hold for grid diagrams of transverse spatial graphs. Thus, it follows that
M is a well-defined function on the toroidal grid diagram [12, Lemma 2.4]. In addition,
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w.e/

e

Figure 32: The weight w.e/ assigned to an edge e 2E.G/

for x;y 2S , we can define the relative Maslov grading by M.x;y/ WDM.x/�M.y/.
By [12, Lemma 2.5],

(1) M.x;y/DM.x/�M.y/D 1� 2nO.r/;

for any empty1 rectangle r connecting x to y , where nO.r/ is the number of O’s
in r .

Before defining the Alexander grading we first need to establish a weight system
on the edges of G . Let E.G/ be the set of edges of the graph G . We define
wW E.G/!H1.E.f // by sending each edge to the meridian of the edge, with orien-
tation given by the right-hand rule, seen as an element of H1.E.f //; see Figure 32.
We say that w.e/ is the weight of the edge e . We will denote the weight of X by w.X/
and the weight of O by w.O/, and define them based on the weight of the associated
edge. If X or O appear on the interior of an edge e 2E.G/ in the associated transverse
spatial graph, then w.X/ WD w.e/ and w.O/ WD w.e/. If the O is associated to the
vertex v in the associated transverse spatial graph, then

w.O/ WD
X

e2In.v/

w.e/D
X

e2Out.v/

w.e/;

where In.v/ and Out.v/ are the sets of incoming and outgoing edges of v , respectively.

Remark 4.11 Recall that an edge of a graph G is called a cut edge if the number of
connected components of G n e is greater than the number of connected components
of G . Observe that w.e/D 0 if and only if e is a cut edge. This will be useful in the
proof of Theorem 6.6.

Let the function �W O[X! f1;�1g be defined by

�.p/D

�
1 if p 2X,
�1 if p 2O.

For a point q in the grid, define

Ag.q/D
X

p2O[X

J .q;p/w.p/�.p/:

1If the rectangle r contains m points of x in its interior, then M.x/DM.y/C 1C 2.m� nO.r// .
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We define the Alexander grading of x with respect to the grid g to be

Ag.x/D
X

p2O[X

J .x;p/w.p/�.p/D
X

xi2x

Ag.xi/:

This value a priori lives in 1
2
H1.E.f //; however, by Lemma 4.16, Ag.x/2H1.E.f //.

Note that this definition depends on the choice of planar grid g , and is not a well-
defined function on the toroidal grid.2 However, the relative Alexander grading is a
well-defined function on the toroidal grid diagram.

Definition 4.12 For x;y 2 S , let Arel.x;y/ WD Ag.x/ � Ag.y/ be the relative
Alexander grading of x and y .

When it is clear, we may drop the “rel” or “g” on A. By the following lemma,
Arel does not depend on how you cut open the toroidal diagram T to give a planar
grid diagram g . We first need to define some notation. For a rectangle r , we define
wO.r/D

P
q2O\r w.q/ and, similarly, wX.r/D

P
q2X\r w.q/. If D is a domain

then D D
P

aiDi , where Di is a rectangle. We extend wO and wX linearly to
domains, so that wO.D/D

P
aiwO.Di/ and wX.D/D

P
aiwX.Di/.

Note that a path from x to y , on the toroidal grid, gives a 1–cycle in E.f /. To see
this, recall that the transverse spatial graph associated to the graph grid diagram is
constructed from vertical arcs going from an X to an O outside the torus (above the
plane) and horizontal arcs going from O to X inside the torus (below the plane). Thus,
the intersection of the transverse spatial graph and the torus is X[O . Since a path is
a 1–cycle on the torus missing X[O , we get an element of H1.E.f //. Since the ˛i

and ˇi bound disks in E.f /, this is a well-defined element of H1.E.f //, independent
of the choice of path.

Lemma 4.13 Let x;y 2 S . If D 2 �.x;y/ is a domain connecting x to y then

(2) Ag.x/�Ag.y/D wX.D/�wO.D/:

If  is a path connecting x to y then

(3) Ag.x/�Ag.y/D Œ �;

where Œ � 2H1.E.f // is the homology class of  .

We note that the domain (or rectangle) in this lemma does not have to be empty.

2One can slightly change this definition to make it well-defined on the toroidal grid diagram. Our
invariant will still only be relatively graded in the end however.

Algebraic & Geometric Topology, Volume 17 (2017)



1480 Shelly Harvey and Danielle O’Donnol

r

x1

x2

y1

y2

Figure 33: The rectangle r with the intersections labeled

r

x1

x2

r

y1

y2

Figure 34: The lightly shaded regions are those that will be counted with weight
one half in J .x1;�/ and J .x2;�/ (left), or in J .y1;�/ and J .y2;�/ (right).

Proof Let r be a rectangle connecting x to y . We will first show that (2) holds for r .
Consider

Ag.x/�Ag.y/D
X

q2O[X

J .x; q/w.q/�.q/�
X

q2O[X

J .y ; q/w.q/�.q/:

Let x1;x2;y1 , and y2 be the intersection points at the corners of r , as shown in
Figure 33. Since the intersection points of x and y only differ at the corners of the
rectangle r this difference reduces toX

q2O[X

�
J .x1; q/CJ .x2; q/�J .y1; q/�J .y2; q/

�
w.q/�.q/:

By definition, J .x1;O[X/ counts with weight one half all those X’s and O’s above
and to the right of x1 and below and to the left of x1 . In Figure 34 (left), we show which
regions will have points counted in J .x1;�/ and J .x2;�/. The shading indicates if
it will be counted with a weight of a half or one, this depends on whether it is counted
in one or both of J .x1;�/ and J .x2;�/. Similarly, in Figure 34 (right) we show
which regions will have points counted in J .y1;�/ and J .y2;�/. These counts differ
by the points in r counted with weight one.
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So we see that this difference is exactlyX
q2r\ŒO[X�

w.q/�.q/D
X

q2X\r

w.q/�
X

q2O\r

w.q/:

Thus, (2) holds for rectangles.

Now we show that (3) holds. Let  be a path connecting x to y . Using the fact
that Sn is generated by transposition, it follows that x;y 2 S are related by a finite
sequence of rectangles in T . That is, there is a sequence xD x1; : : : ;xl Dy of points
in S and rectangles rj connecting xj to xjC1 for 1� j � l � 1. Thus,

Ag.x/�Ag.y/D
X

j

.Ag.xj /�Ag.xjC1//

D

X
j

.wX.rj /�wO.rj //D
X

j

Œ@rj �D

�X
j

@rj

�
:

Since
P

j @rj is also a path connecting x to y ,
�P

j @rj
�
D Œ �. Thus, we have

proved (3).

Finally, we prove (2) for a general domain. Suppose D is a domain connecting x

to y . Then D D
P

aiDi for some rectangles Di , and @D is a path connecting x

to y . Thus Ag.x/�Ag.y/ D Œ@D� D
P

i ai Œ@Di � D
P

i ai.wX.Di/�wO.Di// D

wX.D/�wO.D/.

Corollary 4.14 The relative grading ArelW S � S ! H1.E.f // is a well-defined
function on the toroidal graph grid diagram.

Proof Any two x;y 2 S are related by a sequence of rectangles and hence there is
always a path  connecting x to y . Since the homology class of the path is independent
of the choice of path and Arel.x;y/D Œ �, we see that Arel is independent of how you
cut open the toroidal graph grid diagram to get a planar graph grid diagram.

We now provide an easy way to compute Ag for a planar graph grid diagram g . Let L
be the lattice points in the grid, that is, the n2 intersections between the horizontal
and vertical grid lines (ie the set of points that on the torus become ˛i \ ǰ ). Define
hW L!H1.E.f //, the generalized winding number, of a point q 2L as follows. Place
the planar graph grid diagram g on the Euclidean plane with the lower left corner at
the origin (and the upper right corner at the point .n; n/). Now consider the following
projection of the associated transverse spatial graph pr.f /. Like in the last section, this
is obtained by connecting the X’s to O’s by arcs in the columns and O’s to the X’s
in the rows. However, we now require that the arcs do not leave the n � n planar
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Cw.e/ �w.e/

e e

c.q/c.q/

Figure 35: �.bi/D˙w.e/ , where the sign is given by the sign of e � c.q/

grid (they cannot go around the torus). We also project this to the plane and ignore
crossings. For q 2 L, let c be any path along the horizontal and vertical grid lines
starting at the origin and ending at q . We also require that c meets pr.g/ transversely.
Then c intersects pr.g/ in a finite number of points b1; : : : ; bk , where bi lives on the
interior of some edge of the spatial graph. Suppose bi lies on edge e . Define �.bi/ to
be ˙w.e/, where the sign is given by the sign of the intersection of e with c.q/, with
the usual orientation of the plane; see Figure 35. Using this, we set

h.q/D

kX
iD1

�.bi/:

When it is useful, we may also write hg to specify that we are computing h in the
graph grid diagram g .

Lemma 4.15 The map h is well defined.

Proof Consider the transverse spatial graph associated to g whose projection is pr.g/
but which is pushed slightly above the plane. Fix a base point at infinity in S3 . It is
easy to see that h.q/ is the homology of a loop made up of the path from infinity to
the origin, then a path in the plane, from the origin to q , and finally the path from q

to the point at infinity. This is independent of the choice of path from the origin to q .
Therefore h is well defined.

Lemma 4.16 For any point q on the lattice

(4) Ag.q/D�h.q/:

Proof Let g be a graph grid diagram. First we see that h.q/D 0 for any point on the
boundary of g by definition. Notice that we haveX

p2coli

w.p/�.p/D 0

for each i , where coli is the set of O’s and X’s in the i th column. Similarly,X
p2rowi

w.p/�.p/D 0
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qi qiC1

A

B

qi qiC1

A

B

Figure 36: Here we shade the regions that will be counted with weight one
half in J .qi ;�/ (left), or J .qiC1;�/ (right).

for each i , where rowi is the set of O’s and X’s in the i th row. Given these observations,
it is immediate that Ag.q/D

P
p2O[X J .q;p/w.p/�.p/ is also zero for any point

on the boundary of g .

We will proceed by induction on the vertical grid line on which our lattice point occurs.
Suppose the equality in (4) holds for qi a lattice point on the i th vertical arc, and
consider qiC1 the point immediately to the right of qi on the grid. Let

RHS WD
X

p2O[X

J .qiC1;p/w.p/�.p/�
X

p2O[X

J .qi ;p/w.p/�.p/;

and
LHS WD �h.qiC1/� .�h.qi//:

Figure 36 shows the regions in which the points of O[X will be counted with weight
one half in J .qi ;O[X/ and J .qiC1;O[X/. These differ only in what is counted
in the i th column. So we see that

RHSD 1

2

� X
p2B\.O[X/

w.p/�.p/�
X

p2A\.O[X/

w.p/�.p/

�
:

Using the fact
P

p2coli w.p/�.p/D 0 again, we can simplify this to,

RHSD�
X

p2A\.O[X/

w.p/�.p/D
X

p2B\.O[X/

w.p/�.p/:

We now consider LHS D �h.qi/� Œ�h.qiC1/� D h.qiC1/� h.qi/. Suppose the O
in the i th column is in A. Then all the vertical arcs of pr.g/ in the i th column that
intersect the arc from qi to qiC1 are oriented upwards. Thus LHSD

P
p2X\B w.p/DP

p2B\.O[X/w.p/�.p/. If the O in the i th column is in B , the all the vertical arcs
of pr.g/ in the i th column that intersect the arc from qi to qiC1 are oriented downwards.
So LHSD

P
p2X\A�w.p/D�

P
p2A\.O[X/w.p/�.p/.
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Corollary 4.17 For all x 2 S .g/,

Ag.x/D�
X

xi2x

h.xi/ 2H1.E.f //:

For a given saturated graph grid diagram g , the functions Ag and M make C�.g/

into a well-defined .H1.E.f //;Z/–bigraded Rn –module chain complex once we say
how the grading changes when we multiply a generator by Ui . We set

(5) Ag.Ui/D�w.Oi/; M.Ui/D�2

and define

Ag.U
a1

1
� � �U an

n x/DAg.x/C

nX
iD1

aiA
g.Ui/

and

M.U
a1

1
� � �U an

n x/DM.x/C

nX
iD1

aiM.Ui/:

We remark that since g is saturated, Ag.Ui/¤ 0.

For each a2H1.E.f // and m2Z, let C�.g/.a;m/ be the (vector) subspace of C�.g/

with basis fU a1

1
� � �U

an
n x j Ag.U

a1

1
� � �U

an
n x/ D a; M.U

a1

1
� � �U

an
n x/ D mg. This

gives a bigrading on C�.g/D
P
.a;m/ C�.g/.a;m/ .

Proposition 4.18 The differential @� drops the Maslov grading by one and respects the
Alexander grading. That is, @�W C�.g/.a;m/! C�.g/.a;m�1/ for all a 2H1.E.f //

and m 2 Z.

Proof Consider U O1.r/
1

� � �U Om.r/
m �y appearing in the boundary of x . Since x and y

are connected by an empty rectangle r , we see that M.x/DM.y/C1�2nO.r/ by (1).
Since each Ui drops the Maslov grading by two, M.x/DM.U O1.r/

1
� � �U Om.r/

m �y/C1.
Thus the differential @� drops the Maslov grading by one.

Next Ag.x/DAg.y/C
P

X\r w.X/�
P

O\r w.O/, but by definition of the differential
X\ r D ∅. So Ag.x/D Ag.y/�

P
O\r w.O/D Ag.U O1.r/

1
� � �U Om.r/

m �y/. Thus
the differential @� respects the Alexander grading.

We are interested in viewing .C�.g/; @�/ as a module instead of just a vector space.
Using the definition in (5), F ŒU1; : : : ;Un� becomes an .H1.E.f //;Z/–bigraded ring
(ie H1.E.f //˚Z–graded), and with this grading, .C�.g/; @�/ is a .H1.E.f //;Z/–
bigraded Rn –module chain complex. We would like to define an invariant of the graph
grid diagram that is unchanged under any graph grid moves, giving an invariant of the
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e

Figure 37: A singular edge e

transverse spatial graph. Since F ŒU1; : : : ;Un� depends on the size of the grid, we need
to view C�.g/ as a module over a smaller ring. One choice would be to view C�.g/

as a module over F ŒU1; : : : ;UVCE �, where U1; : : : ;UV correspond to the vertices of
the graph and UVC1; : : :UVCE each correspond to a choice of O on a distinct edge
of the graph. However, by Proposition 4.21, multiplication by a Ui corresponding to
an edge is chain homotopic either to 0 or to multiplication by a Uj corresponding to
a vertex, where 1 � j � V . Thus it makes sense to view C�.g/ as a module over
F ŒU1; : : : ;UV � (recall that we ordered O such that O1; : : : ;OV are vertex O’s).

Let I W F ŒU1; : : : ;UV �! F ŒU1; : : : ;Un� be the natural inclusion of rings defined by
setting I.Ui/DUi for 1� i � V . Using I , any module over F ŒU1; : : : ;Un� naturally
becomes an F ŒU1; : : : ;UV �–module. Thus, we will view C�.g/ as an RV –module,
where RV DF ŒU1; : : : ;UV �. Note that @� preserves the homology, hence the homology
of .C�.g/; @�/ inherits the structure of a .H1.E.f //;Z/–bigraded RV –module.

Definition 4.19 Let g be a saturated graph grid diagram representing the trans-
verse spatial graph f W G ! S3 . The graph Floer chain complex of g is the RA
.H1.E.f //;Z/–bigraded RV –module chain complex .C�.g/; @�/. The graph Floer
homology of g , denoted HFG�.g/, is the homology of .C�.g/; @�/ viewed as an RA
.H1.E.f //;Z/–bigraded RV –module.

Before stating Proposition 4.21, we need some terminology.

Definition 4.20 We say an edge of a graph is singular if at each of its endpoints it is
the only outgoing edge or the only incoming edge. See Figure 37 for an example.

We note that if a component of the graph is a simple closed curve, then every edge in
that component is singular.

Proposition 4.21 .1/ If Oi and Oj are on the interior of the same edge, then multi-
plication by Ui is chain homotopic to multiplication by Uj . .2/ If Oi is associated
to a vertex with a single outgoing or incoming edge e and Oj is on the interior of e ,
then multiplication by Ui is chain homotopic to multiplication by Uj . .3/ If Oi is on
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the interior of an edge that is not singular, then multiplication by Ui is null homotopic.
Moreover, each of the chain homotopies is a bigraded Rn –module homomorphism of
degree .�w.Oi/;�1/.

Note that this implies that the chain homotopies are also bigraded RV –module homo-
morphisms.

Proof Let Xk 2 X. We define Hk W C
�.g/! C�.g/ by counting rectangles that

contain Xk but do not contain any other Xs . Specifically,

Hk.x/ WD
X
y2S

X
r2Recto.x;y/;Xk2r
Xs 62r 8Xs2XnfXkg

U
O1.r/
1

� � �U On.r/
n �y :

Note that Hk W C
�.g/.a;m/ ! C�.g/.a�w.Oi /;m�1/ . Suppose that Xk shares a row

with Oi and shares a column with Oj . There are three cases we need to consider:

(i) If Xk is the only element of X in its row and column then, like in the proof of [12,
Lemma 2.8], we have that

@� ıHk CHk ı @
�
D Ui CUj :

(ii) If Xk is the only element of X in its row but it shares its column with other
elements of X, then

@� ıHk CHk ı @
�
D Ui :

The difference here is that the vertical annulus containing Xk also includes another Xs

for s ¤ k . Thus it does not contribute to @� ıHk CHk ı @
� .

(iii) Similarly, if Xk is the only element of X in its column but it shares its row with
other elements of X, then

@� ıHk CHk ı @
�
D Uj :

Note that we need not consider the case where Xk shares both its row and column
with other elements of X. We use the fact that w.Oi/D w.Oj / in parts (1) and (2)
and the fact that you can add two chain homotopies to get another chain homotopy to
complete the proof.

In Section 5, we show that .C�.g/; @�/, viewed as an RA .H1.E.f //;Z/–bigraded
RV –module chain complex, changes by a quasi-isomorphism under graph grid moves.
Thus, its homology is an invariant of the spatial graph and not just the grid representative.
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Theorem 4.22 If g1 and g2 are saturated graph grid diagrams representing the
same transverse spatial graph f W G! S3 then .C�.g1/; @

�/ is quasi-isomorphic to
.C�.g2/;@

�/ as RA .H1.E.f //;Z/–bigraded RV –modules. In particular, HFG�.g1/

is isomorphic to HFG�.g2/ as RA .H1.E.f //;Z/–bigraded RV –modules.

Proof Suppose g1 and g2 are saturated graph grid diagrams that are related by a cyclic
permutation move. Then they have the same toroidal grid T . Note that there is a natural
identification of S for both graph grid diagrams so that C.g1/D C.g2/ as abelian
groups. Let x;y 2 S . By Corollary 4.14, Ag1.x/�Ag1.y/ D Ag2.x/�Ag2.y/.
Hence Ag1.x/ � Ag2.x/ D Ag1.y/ � Ag2.y/ is a constant a that is independent
of element of S . By [12, Lemma 2.4], M.x/ gives the same value for both g1

and g2 . Thus the identity map idW C�.g1/!C�.g2/ is an .H1.E.f //;Z/–bigraded
RV –module chain map of degree .a; 0/. Thus .C�.g1/; @

�/ is quasi-isomorphic
to .C�.g1/; @

�/ as RA .H1.E.f //;Z/–bigraded RV –modules. If g1 and g2 are
saturated graph grid diagrams that are related by a commutation 0 or stabilization 0 moves
then by Propositions 5.1 and 5.5, .C�.g1/; @

�/ is quasi-isomorphic to .C�.g1/; @
�/

as RA .H1.E.f //;Z/–bigraded RV –modules. By Theorem 3.6, g1 and g2 are
related by a finite sequence of graph grid moves, which completes the proof.

By Theorem 4.22, the following definitions of QI�.f / and HFG�.f / are well defined
and independent of choice of grid diagram.

Definition 4.23 Let f W G! S3 be a sinkless and sourceless transverse spatial graph.
We define QI�.f / to be the quasi-isomorphism class of the RA .H1.E.f //;Z/–
bigraded RV –module chain complex .C�.g/; @�/, for any saturated graph grid dia-
gram g representing f . The graph Floer homology of f , denoted HFG�.f /, is the
homology of .C�.g/; @�/ viewed as an RA .H1.E.f //;Z/–bigraded RV –module,
for any saturated graph grid diagram g representing f .

We note that C�.g/ is a finitely generated Rn –module. However, as an RV –module,
it is not finitely generated, but, using Proposition 4.21, we can show that HFG�.f / is.

Proposition 4.24 HFG�.f / is a finitely generated RV –module for any sinkless and
sourceless transverse spatial graph f W G! S3 .

Proof The proof is similar to [12, Lemma 2.13]. Let g be a saturated graph grid
diagram representing f . We first note that C�.g/ is a finitely generated Rn –module, so
H�.C

�.g// is finitely generated as an Rn –module. Let Œz1�; : : : ; Œzr � be the generators
of H�.C

�.g// as a finitely generated Rn –module. Let Œc� 2H�.C
�.g//. Then we

can write Œc�D
P

pi Œzi � for some pi 2Rn . Let V C 1� j � n and Œb� 2 HFG�.f /.
Then by Proposition 4.21, Uj Œb� is either 0 or equal to Ui Œb� for some 1 � i � V .
Using this repeatedly, it follows that pi Œzi �D qi Œzi � for some qi 2RV .

Algebraic & Geometric Topology, Volume 17 (2017)



1488 Shelly Harvey and Danielle O’Donnol

4.4 Tilde and hat variants

For a saturated graph grid diagram g , we can define two other variants of .C�.g/; @�/.
First we define the hat theory. Let UV be the F –vector subspace of C�.g/ spanned
by U1C�.g/[ � � � [UV C�.g/. Define yC .g/ to be the quotient C�.g/=UV . Since
@�.UV /� UV , it follows that @� descends to an RV –module homomorphism

y@W yC .g/! yC .g/:

Since C�.g/ has a basis of homogeneous elements fbigi2I as an F –vector space,
with respect to the .H1.E.f //;Z/–grading on C�.g/, and UV has a basis that is
a subbasis of fbigi2I , the .H1.E.f //;Z/–bigrading on C�.g/ descends to a well-
defined .H1.E.f //;Z/–bigrading on yC .g/.

Definition 4.25 Let g be saturated graph grid diagram representing the sinkless
and sourceless transverse spatial graph f W G ! S3 . The graph Floer hat chain
complex of g is the .H1.E.f //;Z/–bigraded chain complex . yC .g/; y@/. The graph
Floer hat homology of g , denoted bHFG.g/, is the homology of . yC .g/; y@/ viewed as
an .H1.E.f //;Z/–bigraded vector space over F .

For a given sinkless and sourceless transverse spatial graph f , we can use Theorem 4.22
to show that the quasi-isomorphism class (and hence homology) of . yC .g/; y@/ does not
depend on the choice of graph grid diagram representing f . The following lemma is
well-known but we include it for completeness.

Lemma 4.26 Let C and D be F ŒU1; : : : ;UV �–module chain complexes and let
�W C !D be an F ŒU1; : : : ;UV �–module quasi-isomorphism. Then � descends to
a quasi-isomorphism y�W yC ! yD of F –vector spaces, where yC D C=UV and yD D
D=UV .

Proof We prove this by induction on V . Suppose V D 1. Then � is an F ŒU1�–
module homomorphism, and � descends to a well-defined chain map y�W yC ! yD . The
following diagram commutes and the horizontal sequences are exact:

0 - C
U1- C

q- yC - 0

0 - D

�
? U1- D

�
? q- yD

y�
?

- 0

Here U1 indicates the map that is multiplication by U1 and q is the quotient map.
Thus on homology, we get the following commutative diagram with horizontal long
exact sequences:
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H�.C /
.U1/�- H�.C /

q�- H�. yC / - H�.C /
.U1/�- H�.C /

H�.D/

��
?

.U1/�- H�.D/

��
? q�- H�. yD/

y��
?

- H�.D/

��
?

.U1/�- H�.D/

��
?

Since �� is an isomorphism, by the five lemma, so is y�� .

Now suppose the lemma is true for V and let C and D be F ŒU1; : : : ;UVC1�–module
chain complexes and �W C !D be an F ŒU1; : : : ;UVC1�–module quasi-isomorphism.
Consider C and D as F ŒU1; : : : ;UV �–modules. Then by the inductive hypothesis,
�0W C=UV !D=UV is a quasi-isomorphism, where �0 is induced from � (which we
called y� before). Moreover, note that �0 is an F ŒUVC1�–module homomorphism. Let
C 0 D C=UV and D0 DD=UV . Using the proof from the case when V D 1, we can
show that the induced map y� 0W C 0=UVC1C 0!D0=UVC1D0 is a quasi-isomorphism.
It is straightforward to show that the natural map C=UVC1! C 0=UVC1C 0 is a chain
isomorphism (similarly for D ), which completes the proof.

Corollary 4.27 If g1 and g2 are saturated graph grid diagrams that represent the
same transverse spatial graph f W G! S3 , then . yC .g1/;y@/ and . yC .g2/;y@/ are quasi-
isomorphic as RA .H1.E.f //;Z/–bigraded vector spaces. In particular, bHFG.g1/ is
isomorphic to bHFG.g2/ as RA .H1.E.f //;Z/–bigraded vector spaces.

As a result, the following definitions of bQI.f / and bHFG.f / are well-defined and
independent of choice of graph grid diagram.

Definition 4.28 Let f W G! S3 be a sinkless and sourceless transverse spatial graph.
We define bQI.f / to be the quasi-isomorphism class of the RA .H1.E.f //;Z/–
bigraded chain complex . yC .g/; y@/, for any saturated graph grid diagram g repre-
senting f . The graph Floer hat homology of f , denoted bHFG.f /, is the homology
of . yC .g/; y@/ viewed as an RA .H1.E.f //;Z/–bigraded vector space over F , for any
saturated graph grid diagram g representing f .

Note that . yC .g/; y@/ is an infinitely generated vector space, but in the same way as
Proposition 4.24 one can show that its homology is finitely generated.

Proposition 4.29 bHFG.f / is a finitely generated vector space over F for any sinkless
and sourceless transverse spatial graph f W G! S3 .

Proof Choose a saturated graph grid diagram g representing f . Let j be such that
VC1�j �n. Then by Proposition 4.21, there is a chain homotopy H WC�.g/!C�.g/
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(H is Hk for some k ) that is an RV –module homomorphism and satisfies one of the
following conditions: (i) @� ıH CH ı@� DUj or (ii) there exists an 1� i � V such
that @� ıH CH ı @� D Ui CUj . Since H is an RV –module homomorphism, H

descends to a well-defined yH W yC .g/! yC .g/ satisfying

y@ ı yH C yH ı y@D Uj :

Therefore Uj Œb�D 0 for all Œb� 2 bHFG.g/. The rest of the proof is similar to the proof
of Proposition 4.24.

We now define the tilde theory. The tilde theory will be the easiest theory to compute.
However, it narrowly fails to be an invariant of the spatial graph since it will depend
on the grid size. On the other hand, one can recover the hat theory from it, which
makes it quite useful. It will also be easier to compute the bigraded Euler characteristic
(Alexander polynomial) of the hat theory using tilde theory; for more details, see
Section 6.

Let Un be the F –vector subspace of C�.g/ spanned by U1C�.g/[ � � � [UnC�.g/.
Define zC .g/ to be the quotient C�.g/=Un . Since @�.Un/ � Un , it follows that @�

descends to a linear map
z@W zC .g/! zC .g/

of vector spaces over F . Since C�.g/ has a basis of homogeneous elements fbigi2I

as an F –vector space, with respect to the .H1.E.f //;Z/ grading on C�.g/, and
Un has a basis that is a subbasis of fbigi2I , the .H1.E.f //;Z/–bigrading on C�.g/

descends to a well-defined .H1.E.f //;Z/–bigrading on zC .g/. Thus . zC .g/; z@/ is a
.H1.E.f //;Z/–bigraded chain complex.

Definition 4.30 Let g be a saturated graph grid diagram representing the sinkless
and sourceless transverse spatial graph f W G ! S3 . The graph Floer tilde chain
complex of g is the .H1.E.f //;Z/–bigraded chain complex . zC .g/; z@/. The graph
Floer tilde homology of g , denoted eHFG.g/, is the homology of . zC .g/; z@/ viewed
as an .H1.E.f //;Z/–bigraded vector space over F .

We will relate eHFG.g/ and bHFG.g/ for a given graph grid diagram g . First, we
recall the (bigraded) mapping cone which we will use in the next lemma.

Let .A; @A/ and .B; @B/ be .G;Z/–bigraded chain complexes and let �W A! B

be a bigraded chain map of degree .g;m/ for some g 2 G and m 2 Z. Define the
(bigraded) mapping cone complex of � , denoted .cone.�/; @/, as follows:

cone.�/D
M

.h;n/2G˚Z

cone.�/.h;n/;
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where
cone.�/.h;n/ DA.h�g;n�m�1/˚B.h;n/

and the boundary map is defined as

@.a; b/D .�@A.a/;��.a/C @B.b//

for all a 2 A and b 2 B . Checking the definitions, we see that @ is a bigraded map
of degree .0;�1/. We also note that if A and B are .G;Z/–bigraded R–module
chain complexes and � is a bigraded R–module chain map then .cone.�/; @/ is an
.G;Z/–bigraded R–module chain complex.

The following lemma is similar to [12, Lemma 2.14] except now we have bigraded
chain complexes instead of filtered graded chain complexes. For g 2G and m 2 Z,
let W .�g;�mC 1/ be the two dimensional .G;Z/–bigraded vector space over F
spanned by one generator in degree .0; 0/ and the other in degree .�g;�mC 1/.
If .C; @/ is any bigraded .G;Z/–chain complex over F , then C ˝W .�g;�mC 1/

becomes a bigraded chain complex with boundary @˝ id in the usual way. That is,

.C ˝W .�g;�mC 1//.h;l/ D
M

.h;l/D.h1Ch2;l1Cl2/

C.h1;l1/˝W .�g;�mC 1/.h2;l2/
:

Lemma 4.31 Let .C; @/ be a .G;Z/–bigraded F ŒU1; : : : ;Us �–module chain complex
and g 2G and m 2 Z be fixed group elements. Suppose that for each i � 2, multipli-
cation by Ui (which we denote by Ui ) is a bigraded F ŒU1; : : : ;Us �–module chain map
of degree .�g;�m/ and that

(1) Ui is chain homotopic to U1 or

(2) Ui is null-homotopic (where the chain homotopy is an F ŒU1; : : : ;Us �–module
homomorphism).

Then .C=Us; @/ is quasi-isomorphic to .C=U1˝W .�g;�mC 1/˝s�1; @˝ id/ and
hence

H�.C=Us/ŠH�.C=U1/˝W .�g;�mC 1/˝s�1:

Note that by H�.C=U1/ (respectively H�.C=Us/), we mean the homology of the
chain complex whose chain group is C=U1 (respectively C=Us ) and whose boundary
map is induced by @.

Proof Let D D C=U1 D C=U1C and @D W D ! D be induced by @. Consider
multiplication by U2 on D , yU2W D ! D . Since U1 and U2 commute, this is a
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well-defined bigraded map. There is a long exact sequence

0!D
yU2
�!D

pr
�!D= yU2D! 0;

where pr is the natural projection to the quotient. Let F W cone. yU2/!D= yU2D be de-
fined by F.c1; c2/D pr.c2/. By [23, Section 1.5.8], the map F is a quasi-isomorphism.
Moreover, F is a bigraded map of degree .0; 0/.

If U2 is chain homotopic to U1 via a chain homotopy H that is an F ŒU1; : : : ;Us �–
module homomorphism, then H induces a well-defined map yH W D!D such that

@D
ı yH C yH ı @D

D yU2:

This also holds if U2 is null-homotopic. Since yU2 is null-homotopic, there is a
bigraded chain isomorphism from cone. yU2/ to cone.0W D ! D/ of degree .0; 0/.
Hence cone. yU2/ is isomorphic to D˚DŒg;m�1� as bigraded chain complexes, where
DŒg;m� 1� is the bigraded vector space defined by DŒg;m� 1�.h;n/ DDhCg;nCm�1

and the boundary map on D˚DŒg;m�1� is @D˚@D . Moreover, this is isomorphic, as
bigraded chain complexes, to D˝W .�g;�mC 1/. The proof for nD 2 is complete
after noting that the obvious map C=U2 to D= yU2D is a bigraded chain isomorphism.
To complete this proof, continue this type of argument, one by one for each Ui .

We can use this to relate the tilde and hat chain complexes.

Proposition 4.32 Let g be a saturated graph grid diagram representing the sinkless
and sourceless transverse spatial graph f W G! S3 . Then

eHFG.g/Š bHFG.g/˝
O

e2E.G/

W .�w.e/;�1/˝ne

as .H1.E.f //;Z/–bigraded F –vector spaces, where ne is the number of O’s in g

associated to the interior of e (not including the vertices).

Proof We note that if Oi is on the interior of edge e then multiplication by Ui is
a graded map of degree .�w.e/;�2/. In addition, Ui is either null homotopic or
homotopic to some Uj with j � V , where Oj is a vertex. Use Lemma 4.31 repeatedly
to complete the proof.

5 Invariance of HFG�.f /

In this section we will complete the necessary steps to prove that HFG�.f / is an
invariant of a sinkless and sourceless transverse spatial graph; see Theorem 4.22 and its
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proof for more details. That is, we will show that HFG�.g/ is invariant under each of
the graph grid moves: commutation 0 and stabilization 0 . The proofs will be similar to
the proofs found in [12]. There are two major differences though. The first is that we
are working with more general commutation and stabilization moves, commutation 0

and stabilization 0 . The second difference is the Alexander grading.

5.1 Commutation 0 invariance

Proposition 5.1 Suppose g and Ng are saturated graph grid diagrams that differ by a
commutation 0 move. Let f W G! S3 be the transverse graph associated to g and Ng ,
and V be the number of vertices of G . Then there is an .H1.E.f //;Z/–bigraded
RV –module quasi-isomorphism .C.g/; @�g /! .C. Ng/; @�

Ng / of degree .ı.g; Ng/; 0/ for
some ı.g; Ng/ 2H1.E.f //.

We remark that the quasi-isomorphism above will be a bigraded map for some degree
(that depends on g and Ng ), but will not necessarily be of degree .0; 0/.

The proof of Proposition 5.1 will take up the rest of this subsection. We will prove the
case when Ng is obtained from g by a commutation 0 move of columns. The case where
you exchange rows is similar.

As in [12], we draw both graph grid diagrams on a single n � n grid (respectively
torus when the sides are identified), which we will call the combined grid diagram,
as follows. Let the vertical line segment (respectively circle) between the columns
that are exchanged be labeled ˇ in g and  in Ng and call the other vertical circles
ˇ1; : : : ; ˇn�1 , where n is the size of the grid for g . Let  be a simple closed curve
on the graph grid diagram g such that the following conditions are held: (1)  is
homotopic to ˇ , (2)  hits each of the horizontal curves, ˛i , precisely once, (3) 
does not intersect ˇi for i � n� 1, (4) after removing the ˇ curve, one obtains Ng ,
(5)  and ˇ intersect transversely exactly twice, and (6) the intersections of  and ˇ
do not lie on the horizontal curves. It is easy to use the line segments LS1 and LS2 in
the definition of commutation 0 to see that such a curve exists. First, note that we can
assume the endpoints of the line segments do not lie on ˛ curves by slightly changing
them. Now, take pushoffs of the line segments LS1 and LS2 to the left or right as
needed, and connect them up so that they satisfy the requirements above. Let a and b

be the intersections of ˇ and  . See Figures 38 and 39 for examples. We still let T be
the torus of the combined grid diagram obtained by gluing the top/bottom and sides.

We will define a chain map ˆˇ W C�.g/!C�. Ng/ and show that it is a chain homotopy
equivalence. This will show that ˆˇ is a quasi-isomorphism. For x 2 S .g/ and
y 2 S . Ng/, we let Pentˇ .x;y/ be the set of embedded pentagons with the following
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o
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x
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x

x
x

g Ng

ˇ  ˇ 

D

Figure 38: Commutation 0 move between g and Ng (top), and the correspond-
ing combined grid diagram, where we show the line segments in the definition
of commutation 0 on the left (bottom)

o

o

xx

ˇ

o

x

o

x



o

x

o

x

ˇ 

Figure 39: Another example of a commutation 0 move, in which the X’s
appear in the same row; from left to right we have g , Ng and the combined
grid diagram

properties. If x and y do not coincide at n� 2 points, then we let Pentˇ .x;y/D∅.
Suppose that x and y coincide at n� 2 points (say x3 D y3; : : : ;xn D yn ). Without
loss of generality, let x2D x\ˇ and y2D y\ . An element p 2 Pentˇ .x;y/ is an
embedded disk in T , whose boundary consists of five arcs, each of which are contained
in the circles ˇi , ˛i , ˇ or  and satisfies the following conditions. The intersections
of the arcs lie on the points x1;x2;y1;y2 and a. The point a is in ˇ\  and locally
looks like the top intersection in Figure 40 (b is the one that locally looks the bottom
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o
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Figure 40: Examples of pentagons in Pentoˇ .x;y/

intersection point in ˇ \  ). Moreover, start at the point in x2 and transverse the
boundary of p , using the orientation given by p . The condition to be in Pentˇ .x;y/
is that you will first travel along a horizontal circle, meet y1 , proceed along a vertical
circle ˇi , meet x1 , continue along another horizontal circle, meet y2 , proceed though
an arc in  until you meet a, and finally traverse an arc in ˇ until arriving back at x2 .
Finally, all angles are required to be less than straight.

The set of empty pentagons, Pento
ˇ
.x;y/, are those pentagons p 2 Pentˇ .x;y/

such that x \ Int.p/ D ∅. The map ˆˇ WC�.g/! C�. Ng/ is defined by counting
empty pentagons, that do not contain X’s in the combined grid diagram as follows. For
x 2 S .g/, define

ˆˇ .x/D
X

y2S . Ng/

X
p2Pento

ˇ
.x;y/

Int.p/\XD∅

U
O1.p/
1

� � �U On.p/
n �y 2 C�. Ng/:

Extend ˆˇ to C�.g/ so that it is an Rn –module homomorphism. In particular, it is
also an RV –module homomorphism.

Lemma 5.2 ˆˇ is an .H1.E.f //;Z/–bigraded RV –module chain map of some
degree.

Proof Since ˆˇ is an RV –module homomorphism, the proof is broken into three
parts: checking that each grading is preserved, and showing that

@� ıˆˇ Dˆˇ ı @
�:

The map ˆˇ preserves the Maslov grading Since the definition of the Maslov
grading only depends on the set O , and we consider a subset of the pentagons considered
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A B C D

E p

F

G
H

I J

K

L

M

a

b

y1

x1

x2

y2

Figure 41: The combined grid diagram, with regions A; : : : ;M labeled and
the pentagon p shaded

in the proof of commutation in [12, Section 3.1], this technically follows from [12,
Lemma 3.1]. However, since they do not include a proof that the Maslov grading is
preserved (this is left to the reader), we will include a sketch of the proof here.

We will go though the details of this computation for the case pictured in Figure 41,
other cases follow similarly. Consider a U O1.p/

1
� � �U On.p/

n �y in the sum of ˆˇ .x/.
Recall that

M.x/D J .x;x/� 2J .x;O/CJ .O;O/C 1:

To compare the Maslov grading we interpret each of these terms for x in the grid g

in relation to y in the grid Ng . Let the intersection points of x be x1; : : : ;xn and the
intersection points of y be y1; : : : ;yn , with the same subscript where they coincide.
Label the intersection points where x and y differ as x1 , x2 , y1 and y2 and break
the combined grid diagram into 14 regions labeled A; : : : ;M, and p , as shown in
Figure 41.

Notice that the count for xi is the same as yi for i ¤ 1; 2. The number of points
in O up and to the right, and down and to the left are not changed, since this could
only be changed for an intersection between the commuted edges (ie x2 or y2 ). So
J .xi ;O/DJ .yi ;O/. The number of points in x and y up and to the right and down
and to the left are the same, this can be checked region by region. If an intersection
point is in region E then x2 will be counted in the points up and to the right; this is
replaced by the point y1 which is also up and to the right. Similarly, for all of the
regions, since xi D yi 2 fA;B; : : : ;Mg, we have J .xi ;x/D J .yi ;y/ for all i ¤ 1; 2.

Now for the points where x and y differ, Figure 42 (left) shows the regions that are
counted for x1 and x2 , and Figure 42 (right) shows the regions that are counted for
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Figure 42: The lightly shaded regions are those that will be counted with weight
one half in J .x1;�/ and J .x2;�/ (left), or in J .y1;�/ and J .y2;�/ (right).

y1 and y2 . So we see that the regions C, F, G and K are counted with weight 1
2

more
for x1 and x2 , and the region p is counted with weight 1 more for x1 and x2 and,
lastly, region L is counted with weight 1

2
less for x1 and x2 . So,

J .x;x/D J .y ;y/C 1;

because x1 will count x2 with weight 1
2

and vice versa, but y1 and y2 do not count
each other. Next, x will count all of the points in O that y will count and, additionally,
will count those O’s in the region p with weight 1, those O’s in the regions C, F, G,
and K with weight 1

2
and those O’s in the region L with weight �1

2
. Notice that the

region made up of G and K must contain exactly one O. Thus,

J .x;O/D J .y ;O/CO1.p/C � � �COn.p/C
1
2
.O.C /CO.F /C 1/� 1

2
O.L/;

where O.C /, O.F /, and O.L/ are the number of O’s in the respective regions.

Lastly, if we look at what happens for the different diagrams with the sets of O , the
only difference is for the O’s in the columns that are changed. Again we know that
there is exactly one O in the regions G and K . So we have

J .O;O/g D J .O;O/ NgCO.C /CO.F /�O.L/:

Putting this all together, we have

M.x/D ŒJ .y ;y/C 1�

� 2ŒJ .y ;O/CO1.p/C � � �COn.p/C
1
2
.O.C /CO.F /C 1/� 1

2
O.L/�

C ŒJ .O;O/ NgCO.C /CO.F /�O.L/�C 1

D J .y ;y/� 2J .y ;O/CJ .O;O/ Ng � 2ŒO1.p/C � � �COn.p/�C 1

D J .y �O;y �O/C 1� 2ŒO1.p/C � � �COn.p/�:
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Thus we see that the Maslov grading is unchanged.

The map ˆˇ preserves the Alexander grading up to a shift Now, consider the
H1.E.f //–grading on C�.g/, C�.g/D

L
a2H1.E.f //

C�.g/a (similarly for C�. Ng/).
We will show that there is an element ı.g; Ng/ that only depends on g and Ng (not on x )
such that ˆˇ .C�.g/a/� C�. Ng/aCı.g; Ng/ . We will work with the second definition
of the Alexander grading, Ag.x/D

P
xi2x Œ�hg.xi/� to prove this.

Let x 2 S .g/ and p 2 Pento
ˇ
.x;y/ such that p \X D ∅ and Pento

ˇ
.x;y/ ¤ ∅.

Then U O1.p/
1

� � �U On.p/
n �y is a term in ˆˇ .x/. We use the convention as before that

xi D yi for i � 3, x2 2 ˇ , and y2 2  . We note that hg.xi/D h Ng.yi/ for i � 3. So
we need to show that

(6) hg.x1/C hg.x2/� h Ng.y1/� h Ng.y2/�

nX
iD1

w.Oi/Oi.p/D ı.g; Ng/

for some fixed ı.g; Ng/ 2H1.E.f //.

We will prove the case when a is the topmost intersection of ˇ and  and p is a
pentagon lying to the left of a. See two examples of these pentagons in Figure 43.
Note that the boundary of the pentagon can contain b , and p can contain an O that
lies between ˇ and  . The other three cases are similar. Let ˇn�1 be the vertical line
segment/circle in g directly to the left of ˇ , and ˇ1 be the vertical line segment/circle
in g directly to the right of ˇ . We will label the ˛i in the usual way so that ˛i is
height i � 1. Let ˛l be the horizontal line segment/circle directly below b , ˛lC1 be
the horizontal line segment/circle directly above b , ˛k be the horizontal circle directly
below a, and ˛kC1 be the horizontal line segment/circle directly above a. Finally,
let u1 be the point on ˇn�1 that is at the same height as x1 and let u2 be the point
on ˇn�1 that is at the same height as x2 . See Figures 43 and 44 for our conventions.

We will say that the pentagon p is narrow if y1 2 ˇn�1 . If p is not narrow, then there
is a rectangle in g that is contained in p . Let r be the largest such rectangle. Then p

decomposes into r and a narrow pentagon p0 . Note that r 2 Recto.fx1;u2g; fu1;y1g/

and p0 2Pento.fx2;u1g; fy2;u2g/. Moreover, r\XDp\XD∅. Since the boundary
map on C�.g/ preserves the Alexander grading, we see that

hg.x1/C hg.u2/D

nX
iD1

w.Oi/Oi.r/C hg.y1/C hg.u1/:

We consider hg.x2/� hg.u2/ and h Ng.y2/� h Ng.u1/D h Ng.y2/� hg.u1/.

In order to compute hg or h Ng , draw the transverse spatial graph for g and g0 so that
the horizontal and vertical arcs connecting the X’s and O’s are inside the grid, and
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Figure 43: Decomposing p into a narrow pentagon p0 and a rectangle r

ˇn�1 ˇ ˇ1

˛kC1

˛k

˛lC1

˛l

A

B

ˇn�1  ˇ1

˛kC1

˛k

˛lC1

˛l

˛1 ˛1

A

B

g Ng

Figure 44: A commutation 0 move; regions A and B contain X’s and O’s

consider their projections pr.g/ and pr.g0/. We will think of column n� 1 as the
column with ˇn�1 on the left and column n as the column with ˇ or  on the left.
Assume that LS1 lies inside column n� 1 and LS2 lies in column n. Let A be the
union of rectangles containing LS1 and B be the union of rectangles containing LS2

(recall, we are assuming the ends of LSi do not lie on an ˛ curve). Then the X’s
and O’s in columns n� 1 and n are contained in A[B and projections of A and B

intersect in the two rows that contain a and b . Since there are no X’s or O’s in colnnB ,
the vertical arcs in pr.g/\ .colnnB/ form a collection of parallel arcs starting and
stopping at ˛k and ˛kC1 which are all oriented in the same direction (all upwards or
all downwards). In addition, pr.g/\ .coln�1 nA/ is empty. See Figure 44.
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Let O0 be the O in column n�1 of g and let O00 be the O in column n�1 of Ng . Note
that p0 either contains O0 or O00 or both or is empty (in particular, it never contains
an element of X). We first consider hg.x2/� hg.u2/. There are three cases. First
suppose x2 2 ˛i for i � kC 1 or i � l . Then hg.x2/� hg.u2/D 0 since the region
above and below A in g contains no vertical arcs in pr.g/. In addition, we see that p0

cannot contain O0 so that hg.x2/�hg.u2/D 0D O0.p0/w.O0/ where by O0.p0/, we
mean the number of O0 s in p0 . Now suppose x2 2 ˛i for lC1� i � k . If p0 does not
contain O0 then hg.x2/� hg.u2/D 0D O0.p0/w.O0/. If p0 contains O0 then the arc
going from u2 to x2 crosses all the vertical strands emanating from this O, all oriented
downwards, since p0 does not contain any X’s. Thus, hg.x2/�hg.u2/DO0.p0/w.O0/.
Thus, in all cases, we see that hg.x2/� hg.u2/D O0.p0/w.O0/.

Now consider h Ng.y2/� h Ng.u1/. We again have three cases to consider. First suppose
that y2 2 j̨ for l C 1� j � k . Then the arc from u1 to y2 crosses m vertical arcs,
all oriented in the same direction so h Ng.y2/�h Ng.u1/D � for some � 2H1.E.f //. In
addition, O00.p/D 0 so that h Ng.y2/� h Ng.u1/D ��O00.p0/w.p0/. Now suppose that
x2 2 ˛i for i � k C 1 or i � l . If p0 does not contain O00 then h Ng.y2/� h Ng.12/D

�D ��O00.p0/w.p0/. If p0 contains O00 , h Ng.y2/�h Ng.u1/D ��w.O00/. Thus, in all
cases, h Ng.y2/� h Ng.u1/D ��O00.p0/w.p0/.

Putting this together and using that h Ng.y1/D hg.y1/ and h Ng.u1/D hg.u1/, we have

hg.x1/C hg.x2/� h Ng.y1/� h Ng.y2/

D .hg.x1/ C hg.u2//� .h
g.y1/C hg.u1//

C .hg.x2/� hg.u2//� .h
Ng.y2/� h Ng.u1//

D

nX
iD1

w.Oi/Oi.r/CO0.p0/w.O0/� .��O00.p0/w.p0//

D

nX
iD1

w.Oi/Oi.p/� �:

Thus, (6) holds with ı.g; Ng/D �� which completes the proof that ˆˇ is a graded
map (with respect to the Alexander grading).

ˆˇ is a chain map The remaining portion of the proof that ˆˇ is a chain map
follows almost immediately from the proof of [12, Lemma 3.1]. However, our pentagons
and rectangles cannot count X’s so we need to be a little more careful.

For x 2 S .g/, there is a unique element c.x/ of S . Ng/, called the canonical closest
generator of x , defined as follows. Let t be such that x \ ˇ 2 ˛t and let x0 be the
point in ˛t \  . Define

c.x/ WD fxi 2 x j xi 62 ˇg[ fx
0
g 2 S . Ng/:
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ˇ 

Figure 45: An example of two domains connecting x to c.x/ . The generators
x and c.x/ are both in black circles; they only disagree on one row.

Suppose D is a domain of the form p � r representing a term in @� ıˆˇ; .x/ and D

connects x to y with y ¤ c.x/. By this, we mean to consider the juxtaposition of the
pentagon p connecting x to z and the rectangle r connecting z to y , in the combined
grid diagram. Note that the domain does not contain any element of X. Then there
is exactly one other empty rectangle r 0 (in g or Ng ) and empty pentagon p0 such that
r 0 �p0 or p0 � r 0 gives a decomposition of D . Note that most of the time the other
decomposition is of the form r 0 �p0 . To see this, one just needs to draw every possible
domain of the form p � r and r �p , where r is an empty rectangle (in g or Ng ) and p

is an empty pentagon. In addition since p0 and r 0 will be contained in D , they will not
contain any element of X so r 0 �p0 or p0 � r 0 will represent an element of ˆˇ; ı @�

or @�ıˆˇ; . The same statement is true if you start with a domain D of the form r �p

representing a term in @� ıˆˇ; .x/ as long as D connects x to y with y ¤ c.x/.

Suppose D is a domain of the form p � r representing a term in @� ı ˆˇ; .x/

and D connects x to c.x/. Then D consists of two regions C and E , where C

is the region that lies to the left of both  and ˇ and to the right of ˇn�1 , and
E is a subset of the region that lies to the right of ˇ and to the left of  . Note
that the C \O D C \ X D E \ X D ∅. There is exactly one other domain D0

connecting x to c.x/ of the form p0 � r 0 or r 0 �p0 . See Figure 45 for an example.
This domain consists of a region C 0 and E , where C 0 is the region that lies to the
right of both  and ˇ and to the left of ˇ1 . Note that C 0\XD C 0\XD∅ and so
Oi.D/D Oi.D

0/ and D0\XD∅. Thus D0 represents an element of ˆˇ; ı @�.x/
or @� ıˆˇ; .x/. A similar statement holds for domain of the form p � r representing
a term in @� ıˆˇ; .x/ and connecting x to c.x/. Thus, every term is canceled by
another. So @� ıˆˇ .x/Dˆˇ ı @�.x/.

In order to prove that ˆˇ is a chain homotopy equivalence we define a similar
map Hˇˇ which counts hexagons in the combined grid diagram. These hexagons
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are just like the ones in [12] except they don’t contain elements of X. We recall the
definition. For x;y 2S .g/, let Hexˇˇ.x;y/ be the set of embedded hexagons defined
as follows. If x and y don’t coincide at n� 2 points then Hexˇˇ.x;y/ is the empty
set. Suppose that x and y coincide at n�2 points (say x3Dy3; � � � ;xnDyn ). Without
loss of generality, let x2 D x\ˇ and y2 D y \  . An element H 2 Hexˇˇ.x;y/ is
an embedded disk in the combined grid diagram, whose boundary consists of six arcs,
each of which are contained in the circles ˇi , ˛i , ˇ or  and satisfies the following
conditions. The intersections of the arcs lie on the points of x1 , x2 , y1 , y2 , a and b .
Moreover, start at the point in x2 and transverse the boundary of H , using the orientation
given by H . The condition to be in Hexˇˇ.x;y/ is that you will first travel along
a horizontal circle, meet y1 , proceed along a vertical circle ˇi , meet x1 , continue
along another horizontal circle, meet y2 , proceed though an arc in ˇ until you meet b ,
then travel along an arc in  until you hit a and finally travel along an arc in ˇ

until arriving back at x2 . Finally, all angles are required to be less than straight. For
x;y 2 S . Ng/, there is a corresponding set of hexagons Hexˇ .x;y/. The set of
empty pentagons Hexo

ˇˇ
are those hexagons q 2Hexˇˇ.x;y/ where x\Int.q/D∅.

Define HˇˇWC
�.g/! C�.g/ by

Hˇˇ.x/D
X

y2S .g/

X
q2Hexo

ˇˇ
.x;y/

Int.q/\XD∅

U
O1.q/
1

� � �U On.q/
n �y :

Proposition 5.3 The map ˆˇ WC�.g/! C�. Ng/ is a chain homotopy equivalence.

Proof To prove this, we show that

IdCˆˇ ıˆˇ C @
�
ıHˇˇCHˇˇ ı @

�
D 0

and
IdCˆˇ ıˆˇC @

�
ıHˇ CHˇ ı @

�
D 0:

The proof is similar to the proof of [12, Proposition 3.2]. Let x 2 S.g/. Typically,
every domain that arises as the composition of two empty pentagons or an empty
hexagon and an empty rectangle representing terms from ˆˇ ıˆˇ .x/, @�ıHˇˇ.x/

or Hˇˇ ı @
�.x/ can be decomposed in exactly two ways representing terms from

ˆˇ ıˆˇ .x/, @� ıHˇˇ.x/ or Hˇˇ ı @
�.x/. The only case when this does not

happen is when the domain connects x to x . In this case, the domain consists of the
region that is either (1) to the left of both  and ˇ and to the right of ˇn�1 or (2) to
the right of both  and ˇ and to the left of ˇ1 . Such a domain can be decomposed
in three ways representing terms in ˆˇ ıˆˇ .x/, @� ıHˇˇ.x/ or Hˇˇ ı @

�.x/.
The other case follows similarly.
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Remark 5.4 Hˇˇ is a .H1.E.f //;Z/–bigraded RV –module homomorphism of
degree .0; 1/. Therefore .C.g/; @/ and .C. Ng/; @/ are chain homotopy equivalent as
bigraded RV –module chain complexes.

5.2 Stabilization 0 invariance

Proposition 5.5 Suppose g and Ng are saturated graph grid diagrams that differ by a
stabilization 0 move. Let f W G! S3 be the transverse graph associated to g and Ng
and V be the number of vertices of G . Then there is an .H1.E.f //;Z/–bigraded
RV –module quasi-isomorphism .C.g/; @�g /! .C. Ng/; @�

Ng / of degree .ı.g; Ng/; 0/ for
some ı.g; Ng/ 2H1.E.f //.

The proof of Proposition 5.5 will take up the rest of this section. The proof of
stabilization 0 is similar to the proof of stabilization in [12]. However, because of
the fact that we only have a graded theory instead of a filtered theory, the proof
becomes drastically simplified. We also fill in some of the details and clarify some of
the arguments in the proof of [12]. We will only prove the case for row stabilization 0 .
The proof of column stabilization 0 is similar.

Let g be a graph grid diagram and Ng be obtained from g by a row stabilization 0 move.
An example of a row stabilization 0 move is shown in Figure 46. To get Ng , we take
some row R in g with l X’s, delete it and replace it with two new rows and then
add a new column. We place Ok ;Xj2

; : : : ;Xjl
into one of the new rows (and in the

same columns as before) and Xj1
into the other new row (and in the same column as

before). We place decorations On and Xm into the new column so that On occupies
the same row as Xj1

, and Xm occupies the same row as Ok . By Remark 3.4, we may
assume that Xj1

, Xm and On share a corner, called ?, where Xj1
is directly to the

left of On , and On is directly above Xm ; see Figure 46. Let ˇn be the vertical grid
circle directly to the left of On and let ˇ1 be the vertical grid circle directly to the right
of On . Let ˛n be the horizontal grid circle to between On and Xm .

Let .B; @B/ D .C�.g/; @�g / and .C; @C / D .C�. Ng/; @�Ng /. Let .BŒUn�; @B/ be the
chain complex obtained as follows. BŒUn� is the free (left) Rn –module generated
by S .g/, and @B is the unique extension of @g to BŒUn� so that @B is an Rn –module
homomorphism. We note that .BŒUn�; @B/ is isomorphic to the chain complex whose
group is B ˝Rn�1

Rn and whose boundary map is @B ˝ id. .BŒUn�; @B/ becomes
an .H1.E.f //;Z/–bigraded Rn –module chain complex by setting the H1.E.f //–
grading of Un to be w.Xj1

/ and the Z–grading of Un to be �2.

Definition 5.6 Let

� D

�
UnCUk if l D 1;

Un if l � 2;
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R X1 X2 O�k X3 ˛n
X1

X2 On

Xm O�k X3

ˇn ˇ1

?

Figure 46: An example of stabilization 0

so that �W BŒUn�!BŒUn� is a bigraded Rn –module chain map of degree .�w.On/;�2/.
Let .C 0; @0/ be the mapping cone complex of � . Since .BŒUn�; @B/ is a .H1.E.f //;Z/–
bigraded Rn –module chain complexes, the .cone.�/; @0/ is a .H1.E.f //;Z/–bigraded
Rn –module chain complex. See page 1490 for the definition of the mapping cone and
its grading.

We will first show that C 0 is quasi-isomorphic to B and then we will show that C

is quasi-isomorphic to C 0 . The first step follows from basic facts from homological
algebra. Consider the cokernel of � , BŒUn�=im.�/. The .H1.E.f //;Z/–bigrading
on C�.g/ descends to a well-defined .H1.E.f //;Z/–bigrading on BŒUn�=im.�/ and
so .BŒUn�=im.�/; @B/ is an .H1.E.f //;Z/–bigraded Rn –module chain complex. In
addition, using the inclusion Rn�1 � Rn , it is also naturally an .H1.E.f //;Z/–
bigraded Rn�1 –module chain complex. Moreover the map

B
Š
�! BŒUn�=im.�/;

which sends b 2B to the equivalence class of itself, is a bigraded Rn�1 –module chain
isomorphism of degree .0; 0/. Thus, we just need to show that C 0 is quasi-isomorphic
to B=im.�/.

Lemma 5.7 Let prW BŒUn�!BŒUn�=im.�/ be the quotient map. The map from C 0 to
BŒUn�=im.�/ that sends .a; b/ to pr.b/ is a bigraded Rn –module quasi-isomorphism
of degree .0; 0/.

Proof There is a short exact sequence of chain complexes

0! BŒUn�
�
�! BŒUn�

pr
�! BŒUn�=im.�/! 0:
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Therefore, by [23, Section 1.5.8], the map cone.�/! BŒUn�=im.�/ sending .a; b/
to pr.b/ is a quasi-isomorphism. This map is bigraded of degree .0; 0/ and an Rn –
module homomorphism.

We now define a quasi-isomorphism F W C ! C 0 similar to the one in [12]. However,
since we are only considering a bigraded chain complex instead of a filtered chain
complex and we only need to consider one of the four stabilization 0 s, our map becomes
very simple. We first consider some notation.

Let I � S . Ng/ be the set of x 2 S . Ng/ that contain ?: the intersection of the new
grid lines/circles ˛n and ˇn . There is a natural one-to-one correspondence between I

and S .g/. For x 2 S .g/ let  .x/ be the point in I defined by x [ ?. Note that
if x 2 I then xDfx1;x2; : : : ;xn�1; ?g so  �1.x/Dfx1; : : : ;xn�1g is the generator
of B obtained by removing ?. The gradings of x 2 S .g/ and  .x/ are related as
follows:

M g.x/DM C 0.x; 0/C 1DM C 0.0;x/DM Ng. .x//C 1;(7)

Ag.x/DAC 0.x; 0/Cw.On/DAC 0.0;x/DA Ng. .x//�A Ng.?/:(8)

Define FLW C ! BŒUn� by

FL.x/D

�
0 if x 62 I

 �1.x/ if x 2 I

and extend it to C so that it is an Rn –module homomorphism. The reason for this
choice of map is that the trivial region is the only type-L region in [12] that doesn’t
contain Xj1

when Xj1
is directly to the left of On . For the definition of an type-L

region, see [12, Definition 3.4 and Figure 13].

There is one type-R region that does not contain Xj1
: the rectangle with ? in its

upper left corner. For x 2 S. Ng/ and y 2 S.g/, let �R.x;  .y// be the set of p 2

Recto.x;  .y// whose upper left corner is ?; see Figure 47. We will call such a
domain an R–domain. Define FRW C ! BŒUn� by

FR.x/D
X

y2S.g/

X
p2�R.x; .y//
.XnXm/\Int.p/D∅

U
O1.p/
1

� � �U
On�1.p/
n�1

y :

Note that we are counting domains in Ng that cannot contain X1; : : : ;Xm�1 but can
contain Xm . Also, there is no factor of Un in the terms of FR.x/. Using these, we
define F W C ! C 0 by

F.x/D .FL.x/;FR.x//:
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X On

Xm
?

Figure 47: A domain in �R.x;  .y//; the points of x are in black, the
points of y are in white, the domain is shaded

Lemma 5.8 F W C ! C 0 is a .H1.E.f //;Z/–bigraded Rn –module chain map of
degree .�w.Xm/�A Ng.?/; 0/.

Proof F is an Rn –module homomorphism by definition. It follows from [12,
Lemma 3.5] that the Maslov grading is preserved.

F is an H1.E.f //–graded map of degree �A Ng.?/�w.On/ Let x 2 S . Ng/. We
first consider the grading of .FL.x/; 0/. FL.x/ is either 0 or is  �1.x/. Suppose
FL.x/¤ 0. Then FL.x/D  

�1.x/, so by (8),

AC 0.FL.x/; 0/DAg. �1.x//�w.On/DA Ng.x/�A Ng.?/�w.On/:

We now consider the grading of .0;FR.x//. Let U
O1.p/
1

� � �U
On�1.p/
n�1

y be a term
in FR.x/. Then p is a rectangle connecting x to  .y/ that doesn’t contain any
elements of X except Xm . Moreover, p does not contain On and contains Xm exactly
once. So by Lemma 4.13,

A Ng.x/�A Ng. .y//D wX.p/�wO.p/D w.Xm/�

n�1X
iD1

Oi.p/w.Oi/:

Therefore, by (8), we have

AC 0.0;U
O1.p/
1

� � �U
On�1.p/
n�1

y/DAC 0.0;y/�

n�1X
iD1

Oi.p/w.Oi/

DA Ng. .y//�A Ng.?/�

n�1X
iD1

Oi.p/w.Oi/

DA Ng.x/�w.Xm/�A Ng.?/

DA Ng.x/�w.On/�A Ng.?/:

F is a chain map Let x 2 S . Ng/. Recall that

@0.F.x//D .@B.FL.x//; 0/C .0; �.x//C .0; @B.FR.x//
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and
F.@C .x//D .FL.@C .x//; 0/C .0;FR.@C .x//:

The proof that F is a chain map is similar to the proof that the commutation 0 map ˆˇ;
is a chain map.

For this proof, whenever we have an empty rectangle r in g (contributing to a term
in @B ), we will view it as living in Ng in the obvious way. Note that such a rectangle
cannot have a boundary on ˛n or ˇn and hence cannot have ? on its boundary. Usually
(in a filtered theory), such a rectangle could contain the point ? in its interior. However,
since r cannot contain Xj1

, it also cannot contain ? in its interior.

We first show that @B.FL.x//DFL.@C .x//. Suppose D is a domain of the form p�r

representing a nontrivial term in @B ıFL.x/. Then p is a trivial domain connecting a
point in I to itself and r is an empty rectangle in g . We will think of p as a point
at ?. Since ? cannot be on the corner of r or in its interior, r and p must be disjoint.
Suppose D is a domain of the form r 0 �p0 representing a term in FL ı @C .x/. Then
p0 is a trivial domain connecting a point in I to itself and r is an empty rectangle in Ng .
Since r 0 is empty, ? is not in the interior of p0 . Since r 0 cannot contain Xm or Xj1

, it
cannot have ? as one of its corners. Thus r 0 and p0 are disjoint. Therefore the terms
in .@B.FL.x//; 0/ and .FL.@C .x//; 0/ cancel each other out.

We now wish to show that @B.FR.x//C �.x/D FR.@C .x/. Suppose D is a domain
of the form p � r representing a nontrivial term in @B ıFR.x/. Then p is an empty
rectangle in Ng with ? on its upper left corner and r is an empty rectangle in g . If p

and r share zero corners or share one corner then there is exactly one empty rectangle r 0

in Ng and R–domain p such that r 0 �p0 gives a decomposition of D (p0 and r 0 will
also share zero corners or share one corner). These represent terms in FR ı @C .x/.
Note that p and r cannot share two or three corners. Conversely, suppose D is a
domain of the form p0 � r 0 representing a nontrivial term in FR ı @C .x/. Then p0 is
an empty rectangle in Ng with ? on its upper left corner and r 0 is an empty rectangle
in Ng . If p0 and r 0 share no corners or share one corner then there is exactly one other
empty rectangle r 00 (in g or Ng ) and R–domain p00 such that r 00�p00 or p00�r 00 gives a
decomposition of D . Here p00 and r 00 will also share zero corners or share one corner.
These will represent terms in @B ıFR.x/ or FR ı @C .x/. Note that p0 and r 0 cannot
share two or three corners. Thus, these terms cancel one another out.

First note that if D is a domain of the form p � r representing a nontrivial term in
@B ıFR.x/, then p and r cannot share more than one corner (hence cannot share four
corners). Suppose D is a domain of the form p0 � r 0 representing a nontrivial term
in FR ı @C .x/ where p0 and r 0 share four corners. Then D is either the width-one
horizontal annulus containing Xm or the width-one vertical annulus containing On .
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The width-one vertical annulus always contributes Unx . If there is more than one
element of X in row R (l � 2) then the width-one horizontal annulus contains an
element of X that is not Xm , so is not counted. If there is exactly one element of X in
row R (l D 1) then the width-one horizontal annulus containing Xm contributes Ukx .
Thus these terms cancel with �.x/.

To show that F is a quasi-isomorphism, we will first show that zF W zC ! zC 0 is a
quasi-isomorphism, where zC is the quotient C=Un defined in Section 4.4. To do this,
we introduce a filtration on zC and zC 0 so that zF is a filtered map, and show zF induces
a quasi-isomorphism on its associated graded object. The rest of the proof will follow
from the following well-known lemma.

Lemma 5.9 [14, Theorem 3.2] Suppose that F W C ! C 0 is a filtered chain map that
induces an isomorphism on the homology of the associated graded object. Then F is a
filtered quasi-isomorphism.

The definition of the filtration and the proof that zF induces a quasi-isomorphism on its
associated graded object is essentially the same as in [12]. However, there is a small
mistake in their definition of the filtration which we fix. We also give more details
which we believe clarifies their proof.

For any F ŒU1; : : : ;Un�–module chain complex .C; @/, one can define the chain complex
. zC ; z@/ like we did in Section 4.4. Let UV be the F –vector subspace of C spanned by
U1C [ � � � [UnC . Define zC to be the quotient C=Un . Since @�.Un/� Un , it follows
that @ descends to a linear map

z@W zC ! zC

of vector spaces over F .

Define the Q–filtration FQ

k
.C / on .C; @C /, where C DC�.g/, as follows. Let Q be

the collection of .n� 1/2 dots in Ng , with one dot placed in each square which does
not appear in the row or column containing On . For a domain p 2 �.x;y/, let O.p/
be the total number of O’s in p counted with sign. That is, O.p/ D

Pn
iD1 Oi.p/.

Similarly, we define Q.p/ to be the total number of dots in p counted with sign. Here,
we are viewing the points in O and Q as having positive orientation. Note with this
convention, if r is a rectangle connecting x to y , then Q.r/� 0 and O.r/� 0.

Lemma 5.10 Let p and p0 be domains in Ng connecting x to y such that

On.p/D On.p
0/D 0DO.p/DO.p0/:

Then Q.p/DQ.p0/.
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Proof For 1 � i � n, let Ri 2 �.x;x/ (respectively Ci ) be the domain that is
the positively oriented row (respectively column) contain Oi . Note that Ok.Ri/ D

Ok.Ci/D ıik . Suppose p;p0 2 �.x;y/ then p and p0 differ by a domain in �.x;x/
so that

(9) p0 D pC

nX
iD1

.aiRi C biCi/:

This follows from the fact that the space of domains on the torus of the form �.x;x/

is generated by Ri and Ci with the relation that
Pn

iD1.Ri �Ci/D 0.

Now, we note that Q.Ri/ D Q.Ci/ D n� 1 for i ¤ n and Q.Rn/ D Q.Cn/ D 0.
Thus

Q.p0/DQ.p/C .n� 1/

n�1X
iD1

.ai C bi/:

Since On.p/D On.p
0/D 0 by hypothesis, using (9) we get

0D On.p
0/D On.p/COn

� nX
iD1

.aiRi C biCi/

�
D anC bn:

Similarly since O.p/DO.p0/D 0,

0DO

� nX
iD1

.aiRi C biCi/

�
D

nX
iD1

.ai C bi/:

Using these three equalities, we have that Q.p/DQ.p0/.

Lemma 5.11 Let x;y 2 S . Ng/, then there is a domain p 2 �.x;y/ with On.p/ D

O.p/D 0.

Proof Let x;y 2 S . Ng/. First we note that there is domain connecting x to y . Since
Sn is generated by transpositions, there is a sequence of rectangles connecting x to y

(not necessarily empty). The sum of these rectangles is a domain p0 connecting x

to y .

Let m0 D On.p/, which is not necessarily zero. We replace each rectangle containing
On with the other rectangle connecting its corners as follows. Let

p1 D p0�m0

�
RnC

n�1X
iD1

Ci

�
:
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Then p1 connects x to y since Rn C
Pn�1

iD1 Ci is periodic. Moreover, we have
On.RnC

Pn�1
iD1 Ci/D 1 so that On.p1/D 0. (We could also let p1 D p0 �m0Rn

or p1 D p0�m0Cn .) Now let m1 DO.p1/ and define p2 D p1�m1R1 . Then p2

connects x to y and as On.R1/D 0 and O.R1/D 1, On.p2/DO.p2/D 0.

We use this to define a function F QW S . Ng/!Z by first defining F Q.x0/D 0, where
x0 is the lower left corner of the O’s. (It doesn’t really matter what value we choose.)
Then for x 2 S . Ng/, use Lemma 5.11 to pick a domain px connecting x to x0 with
On.px/DO.px/D 0. Define

F Q.x/D F Q.x0/CQ.px/DQ.px/:

This is well defined by Lemma 5.10.

Lemma 5.12 Suppose that x;y 2S . Ng/ and p is any domain connecting x to y with
On.p/DO.p/D 0. Then

F Q.x/�F Q.y/DQ.p/:

Proof Let px be a domain connecting x to x0 with On.px/DO.px/D0. Define py

similarly. Then px � py is a domain connecting x to y with On.px � py/ D

O.px � py/ D 0. So by Lemma 5.10, F Q.x/ � F Q.y/ D Q.px/ �Q.py/ D

Q.px �py/DQ.p/.

We now use F Q to define the Q–filtration on zC by

FQ
p .
zC /D

nX
b.x/x 2 zC

ˇ̌
F Q.x/� p whenever b.x/¤ 0

o
:

By Lemma 5.12, z@C W F
Q
p . zC /! FQ

p . zC / so that . zC ; z@C / becomes a Z–filtered chain
complex.

Note that we have already shown that F is a .H1.E.f //;Z/–bigraded Rn –module
chain map. Thus, the following proposition will complete the proof that two grids
that differ by a stabilization 0 move are quasi-isomorphic as .H1.E.f //;Z/–bigraded
Rn –module chain complexes.

Proposition 5.13 F W C ! C 0 is a quasi-isomorphism.

Proof Since C 0 is an Rn –module chain complex, we can consider the chain complex
. zC 0; z@0/ obtained by setting all the Ui equal to zero as explained above, zC 0DC 0=UnC 0 .
Since F is an Rn –module homomorphism and a chain map, it descends to a well-
defined chain map zF W zC ! zC 0 .
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Now we can define a Q–filtration on zC 0 using the Q–filtration on zC . Specifically, we
define F QW zB! Z by F Q.x/D F Q. .x// for all x 2 S .g/. From this we have

FQ
p .
zB/D

nX
b.x/x 2 zB

ˇ̌
F Q.x/� p whenever b.x/¤ 0

o
:

One can identify . zC 0; z@0/ with the mapping cone of z�W zB! zB (this is the direct sum
because z� is the zero map). Then we can define the Q–filtration on C 0 by FQ

p . zC
0/D

FQ
p . zB/˚FQ

p . zB/. It is easy to check that zF preserves this filtration.

Consider the map induced on their associated graded complexes

zFQW
zCQ!

zC 0Q:

The first chain complex zCQ is the F vector space generated by S . Ng/ whose boundary
map counts rectangles supported in the column and row through On that do not contain
On , Xm or Xj1

. Since the column and row through On look exactly the same as the
column and row through O1 in [12] (after renumbering), this chain complex is the same
as it is for links. In particular, [12, Lemma 3.7] holds in our case. Similarly, like in [12],
zC 0

Q
is the chain complex whose underlying group is zB˚ zB and whose boundary maps

are trivial. Moreover, the map zFQ is exactly the same as in [12]. Thus, their proof
holds in our case to show that zFQ is a quasi-isomorphism. Now by Lemma 5.9, zF is
a quasi-isomorphism.

We remark that one can define a filtration on C so that . zC ; z@C / is its associated graded
object. Define

FU
p .C /D

nX
b.x/U

a1.x/
1

� � �U an.x/
n x 2 C

ˇ̌X
ai.x/� p whenever b.x/¤ 0

o
:

The boundary preserves the filtration making .C; @C / into a filtered chain complex.
We can do the same with B , making .B; @B/ into a filtered chain complex. Since � is
a filtered map, we can define a filtration on the mapping cone as before: FU

p .C
0/D

FU
p .B/˚FU

p .B/. It is easy to see that F is a filtered map. Moreover, the map on
the associated graded objects of C and C 0 induced by F , FU W CU ! C 0

U
, can be

identified with zF W zC ! zC 0 . Since zF is a quasi-isomorphism, so is FU . Therefore, F

is a quasi-isomorphism by Lemma 5.9.

6 The Alexander polynomial and sutured Floer homology

In this section, we will define the Alexander polynomial of a transverse spatial graph
f W G ! S3 as a torsion invariant of a balanced sutured manifold associated to f
and show that it agrees with the graded Euler characteristic of bHFG.f / (when f is
sourceless and sinkless and G has no cut edges). In addition, we will relate the sutured
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s. .f //
6

� -

R�. .f //RC. .f //

Figure 48: The sutured manifold .E.f /;  .f //

Floer homology of this balanced sutured manifold to bHFG.f / (when f is sourceless
and sinkless and G has no cut edges).

6.1 The Alexander polynomial of a spatial graph

Let f W G ! S3 be a transverse spatial graph, and E.f / D S3 nN.f .G//, where
N.f .G// is a regular neighborhood of f .G/ in S3 . Then E.f / has the structure
of a (strongly) balanced sutured manifold .E.f /;  .f // which is defined as follows.
There will be one suture per edge and one suture per vertex. The suture associated to a
vertex is the boundary of the transverse disk at that vertex and the suture associated
to an edge is the boundary of a disk transverse to that edge of f . The sutures,
denoted by s. .f //, are oriented as shown in Figure 48. This  .f / is a collection
of annuli that are small neighborhoods of the sutures in @E.f /. Recall that R. /D

@E.f / n int. / is the oriented surface where the orientation of R. / is such that the
induced orientation on each component of @R. / agrees with the orientation of the
corresponding suture. Then RC. / (respectively R�. /) is the set of components of
R. / whose normal vectors point out of (respectively into) E.f /. Note that RC. / is
the set of components of @E.f / that have the same orientation as @E.f /. It is easy to
check that for each component † of @E.f /, �.†\R�. .f ///D �.†\RC. .f ///

so that .E.f /;  .f // is strongly balanced (in particular, it is balanced). In addition,
we note that  .f / contains no toroidal components. Note that we do not need f to
be sourceless and sinkless to define this. See [7, Sections 2–3] for the definition of a
balanced and strongly balanced sutured manifold.

In [4], S Friedl, A Juhász, and J Rasmussen assign to each balanced sutured manifold
.M;  /, a torsion invariant T .M;  / 2 ZŒH1.M /� that is well defined up to ˙h for
h 2 H1.M /. This invariant is essentially the maximal abelian torsion for the pair
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.M;R�. //. See [4, Sections 3–4] for details. Using their torsion invariant and the
sutured manifold associated to a transverse spatial graph defined above, we can define
our Alexander polynomial.

Definition 6.1 Let f W G! S3 be a transverse spatial graph. The (refined) Alexander
polynomial of f , denoted by �f , is defined to be T .E.f /;  .f // considered as an
element of ZŒH1.E.f //� modulo units.

Remark 6.2 Others have considered Alexander polynomials of spatial graphs in the
past.

(1) The first place this seems to appear is in a 1958 paper by Kinoshita [9]. In this
paper, Kinoshita defines the Alexander polynomial of a spatial graph as the Alexander
polynomial of its exterior. However, this can be computed using �1.S

3 n f .G// and
cannot differentiate between graphs with the same exterior. Our definition depends
on more than just the exterior, so it gives more information about the graph than the
polynomial defined by Kinoshita.

(2) In 1989, Litherland defined an Alexander polynomial for an embedding of a
generalized theta graph that is not determined by its exterior [10]; see also [13]. He
considers the Alexander polynomial associated to the torsion free abelian cover of
the pair .S3 n f .G/;R�/, where R� is half of the boundary obtained by cutting
open @.S3 n f .G// along the meridians of the edges and throwing away one of the
components. We note that, for theta graphs, Litherland’s definition and ours are very
similar; the main difference is how we decompose @.S3 n f .G//. In our case the
sutures depend on the orientation of the edges. We note that if all the edges are oriented
in the same direction, �f will be zero since R�. / will contain a disjoint disk.

(3) If G contains a vertex all of whose edges are incoming or outgoing, then for any
transverse spatial graph f W G! S3 , R�. / will contain a disjoint disk and hence
�f D 0.

(4) Like in Litherland’s paper, instead of just studying the Alexander polynomial of a
transverse spatial graph, one could study the entire Alexander module ZŒH1.E.f //�–
module H1.E.f /;R�. .f ///.

6.2 The sutured Floer homology of a spatial graph

In the preceding subsection, we defined a balanced sutured manifold .E.f /;  .f //,
associated to a transverse spatial graph f . Instead of just considering the torsion of this
sutured manifold, we can consider the sutured Floer homology of it. We will describe
this in more detail in this subsection. We will also show that this homology theory
coincides with our hat theory. We begin with more definitions and background.
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O

OX

X

Figure 49: A graph grid diagram g for the unknot

Associated to each n � n graph grid diagram g representing f , there is another
sutured manifold .E.f /;  .g// which is defined as follows. For each X and O on
the torus, remove an (open) disk. Then one obtains an oriented torus with nC r disks
removed, where n is the size of the grid and r is the number of X’s in the grid; call
this surface †.g/. Note that the orientation of the torus comes from the standard
counterclockwise orientation of the plane. Recall that the horizontal circles of g are
called ˛i , the vertical circles are called ǰ , ˛D f˛1; : : : ; ˛ng and ˇ D fˇ1; : : : ; ˇng.
Thus .†.g/;˛;ˇ/ gives a sutured Heegaard decomposition associated to g whose
underlying manifold is E.f /. Let .E.f /;  .g// be the sutured manifold associated
to .†.g/;˛;ˇ/. Recall that E.f / is obtained by from .†.g/;˛;ˇ/ by attaching
3–dimensional 2–handles to †.g/ � I along the curves ˛i � f0g and ǰ � f1g for
i; j 2 f1; : : : ; ng. The sutures are defined by taking s. .g// D @†.g/ �

˚
1
2

	
and

 .g/ D @†.g/� I . Here, we are using the outward normal first convention for the
induced orientation on the boundary and we are viewing I with the usual orientation
(oriented from 0 to 1). Thus, the induced orientation on the boundary would give
†.g/ � f1g the same orientation as †.g/, and †.g/ � f0g the opposite. Note that
.E.f /;  .g// is a strongly balanced sutured manifold with one suture for each X
and O. An example for the trivial knot is shown in Figures 49 and 50. Here, we are
viewing one of the O’s as being associated with a vertex. In Figure 50, one needs to
attach 2–handles to ˛i � f0g and ˇi � f1g to obtain E.f /.

The sutured manifold .E.f /;  .g// is similar to the sutured manifold .E.f /;  .f //
except that there are an extra 2ne sutures per edge (all parallel and alternating in
orientation), where ne is the number of O’s associated to the edge e (this does not count
the O’s associated to the vertices at the boundary of the edge). Since .E.f /;  .f //
and .E.f /;  .g// are balanced sutured manifolds, we can consider their sutured Floer
homologies

SFH.E.f /;  .f // and SFH.E.f /;  .g//;

respectively. See [6] for the definition of sutured Floer homology. We note that the
former group is an invariant of the spatial graph while the latter group SFH.E.f /;  .g//
depends on the grid g . Each of these groups has two (relative) gradings, an H1.M /

(or equivalently Spinc ) and a homological grading, which we discuss below.
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RC. /

Figure 50: The sutured manifold .E.f /;  .g// corresponding to the graph
grid diagram g in Figure 49

Let .M;  / be a balanced sutured manifold. We first discuss the homological grading
on SFH.M;  /. Let .†;˛;ˇ/ be a balanced and admissible diagram for .M;  /,
where ˛ and ˇ each contain d disjointly embedded curves. Admissible means that
every nontrivial periodic domain has both positive and negative coefficients. Recall
that SFH.M;  / is defined as the homology of a chain complex CFH.†;˛;ˇ/ which
is an F –vector space and is roughly defined as follows. Consider T˛ D ˛1 � � � � �˛d

and Tˇ D ˇ1 � � � � �ˇd , the d –dimensional tori in Symd .†/. The set of generators
of CFH.†;˛;ˇ/ is x 2 T˛ \ Tˇ and the differential is defined by counting rigid
holomorphic disks in Symd .†/ connecting two points in T˛\Tˇ . Choose orientations
on T˛ , Tˇ and Symd .†/, and define m.x/ to be the intersection sign of T˛ and Tˇ in
Symd .†/. This depends on the choice of orientations but the difference m.x/m.y/�1

between m.x/ and m.y/ is independent of the choice of orientations. So m gives a
well-defined relative f˙1g–grading on CFH.†;˛;ˇ/. Let Z2 D f0; 1g be the group
with 2 elements and let expW Z2!f˙1g be the isomorphism sending l to .�1/l . Using
em WD exp�1 ım (instead of just m), we get a relative Z2 –grading on CFH.†;˛;ˇ/.
Since the parity of the Maslov index of a holomorphic disk connecting x to y is equal to
exp�1.m.x/m.y/�1/, the differential reduces the homological grading by 1 .mod 2/.

We now briefly review the Spinc –grading. See [7, Section 3] for details. Recall that
for any balanced sutured manifold .M;  /, one can define Spinc.M;  /, the set of
Spinc structures of .M;  /, as the set of homology classes of nowhere-zero vector
fields on M that restrict to a special vector field �0 on @M . The vector field �0

depends on the sutures. One can use obstruction theory to see that Spinc.M;  /
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forms an affine space over H 2.M; @M / which we will identify with H1.M / via the
Poincaré duality isomorphism (PDW H 2.M; @M /!H1.M /). Thus, once we pick a
fixed s0 2 Spinc.M;  /, there is a unique bijective correspondence �s0

W H1.M /!

Spinc.M;  /, v 7! vC s0 , making Spinc.M;  / into an abelian group. Moreover, for
any s; t 2 Spinc.M;  /, there is a well-defined difference, denoted s� t 2 H1.M /,
that is defined as the unique element in H1.M / such that .s� t/C tD s. Note that
the difference does not depend on any choices. Indeed, it is easy to see that for any
s0 2 Spinc.M;  / and v;w 2H1.M /, .vC s0/� .wC s0/D v�w .

To each x 2 T˛ \ Tˇ , one can assign an element of Spinc.M;  /, denoted s.x/,
making CFH.†;˛;ˇ/ into a graded vector space over Spinc.M;  /. The differential
on CFH.†;˛;ˇ/ preserves the Spinc.M;  /–grading, giving a Spinc.M;  /–grading
to SFH.M;  /. Using the bijection �s0

W H1.M /! Spinc.M;  / as described above,
SFH.M;  / becomes a relatively graded vector space over H1.M /. We can easily
compute the relative grading as follows. Let x;y 2 T˛ \ Tˇ and choose paths
aW I ! T˛ and bW I ! Tˇ with @aD @b D y �x . Then a� b can be viewed as a
1–cycle in †. Using the inclusion map of † into M , we can view this as a cycle in M .
Let ".y ;x/2H1.M / be the homology class of a�b . By [6, Lemma 4.7], ".y ;x/ is the
relative grading in H1.M / associated to the Spinc.M /–grading on .M;  /. That is,

(10) s.y/� s.x/D ".y ;x/:

Note that [6] actually says that PD.s.y/ � s.x// D ".y ;x/, but we have already
identified s.y/�s.x/ with an element of H1.M / using Poincaré duality. Using the map
.��1

s0
ıs/˚mW T˛\Tˇ!H1.M /˚Z2 , we see that CFH.†;˛;ˇ/ is a well-defined

relatively .H1.M /;Z2/–bigraded chain complex and SFH.M;  / is a well-defined
relatively .H1.M /;Z2/–bigraded F –vector space. Even though CFH.†;˛;ˇ/ de-
pends on the choice of Heegaard diagram for .M;  /, by [6], the isomorphism class
of SFH.M;  / as a relatively .H1.M /;Z2/–bigraded vector space only depends on
the sutured manifold.

Definition 6.3 For a transverse spatial graph f W G! S3 , the sutured graph Floer
homology is SFH.E.f /;  .f // considered as a relatively .H1.E.f //;Z2/–bigraded
F –vector space.

Unless otherwise stated, when we refer to SFH.E.f /;  .f // and SFH.E.f /;  .g//,
we will be considering them as relatively bigraded vector spaces.

6.3 Relating AHFG.f / and SFH.E.f /; .f //

The main result of this section is that the graph Floer homology of a sinkless and
sourceless transverse spatial graph is isomorphic to its sutured Floer homology (after a
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slight change of the Alexander grading). To prove this, we first notice that the sutured
Floer homology of a grid is the same as eHFG.g/. First we need to discuss how the
grading is changed.

Let G be an abelian group and C be a .G;Z2/–bigraded chain complex or F –
vector space with bigrading C D

L
.g;m/2G˚Z2

C.g;m/ . Let .rC /.g;m/ D C.�g;m/

for each g 2 G and m 2 Z2 . Then C has a .G;Z2/–bigrading given by C DL
.g;m/2G˚Z2

.rC /.g;m/ , which we call the reverse bigrading on C . We denote by rC
the underlying vector space C with its reverse bigrading. If C is a chain complex,
then @W .rC /.g;m/ ! .rC /.g;m�1/ . So @ is a degree .0;�1/ map on rC and rC is
a .G;Z2/–bigraded chain complex. If C has a relative .G;Z2/–bigrading then rC
has a well-defined relative .G;Z2/–bigrading. Note that we are only “reversing” the
G–grading.

We note that using the natural projection of Z to Z2 , bHFG.f /, eHFG.f /, bHFG.g/
and eHFG.g/ become relatively .H1.E.f //;Z2/–bigraded F –vector spaces (similarly
for the chain complexes defining them).

Lemma 6.4 Let f W G ! S3 be a sinkless and sourceless transverse spatial graph
and g be a graph grid diagram representing f . Then

eHFG.g/Š rSHF.E.f /;  .g//

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

Proof Let .†.g/;˛;ˇ/ be the specific Heegaard decomposition for E.f / associated
to the graph grid g as defined beforehand. Both CFH.†.g/;˛;ˇ/ and zC .g/ are
F –vector spaces with the same generating set. One can check that the boundary maps
are the same, giving an identification of the two chain complexes. Thus, we just need
to compare their (relative) gradings.

Let x and y be generators (in either chain complex). If there is a rectangle connecting x

and y , then by (1), M.x/�M.y/D1 .mod 2/. Moreover, using the definition of m as
described in the previous subsection, it is straightforward to check that m.x/m.y/�1D

�1 2 f˙1g. Now, for any x and y , there is a sequence of rectangles r1; : : : ; rk

connecting x and y . Thus, M.x/�M.y/Dk .mod 2/ and m.x/m.y/�1D .�1/k 2

f˙1g. Hence
.�1/M.x/�M.y/

Dm.x/m.y/�1:

By Lemma 4.13 and Equation (10), we see that

A.x/�A.y/D ".y ;x/D�.s.x/� s.y//:
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Using [7, Proposition 5.4], we can relate SFH.E.f /;  .f // and SFH.E.f /;  .g//.
For g2G and m2Z2 , let W .�g;�1/ (which equals W .�g; 1/) be the 2–dimensional
.G;Z2/–bigraded vector space over F spanned by one generator in degree .0; 0/ and
the other in degree .�g;�1/. (Note that we are slightly abusing notation since, in
Section 4, we defined W .�g;�1/ to be the .G;Z/–bigraded vector space over F
spanned by one generator in degree .0; 0/ and the other in degree .�g;�1/.) If .C; @/
is a relatively bigraded .G;Z2/–chain complex over F , then C˝W .�g;�1/ becomes
a relatively bigraded .G;Z2/ chain complex with boundary @˝ id in the usual way.

Proposition 6.5 Let f W G! S3 be a sinkless and sourceless transverse spatial graph
and let g be a graph grid diagram representing f . Then

SFH.E.f /;  .g//Š SFH.E.f /;  .f //˝
O

e2E.G/

W .w.e/; 1/˝ne

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces, where ne is the number
of O’s in g associated to the interior of e (not including the vertices).

Proof Recall that .E.f /;  .g// is a sutured manifold with 2neC1 sutures associated
to each edge e (ne sutures are associated to O’s on the interior of e and the other
neC 1 sutures are associated to X’s on the interior of e ). Pick an edge e . If ne D 0,
leave the sutures on that edge alone. If ne � 1, then there are at least three sutures
associated to the edge that are parallel and have alternating orientations. Let S be the
properly embedded surface in E.f / as pictured in Figure 51 with either orientation.
In this figure, the inner annulus is part of the boundary of the neighborhood of the edge
of the graph. It contains the three parallel sutures with alternating orientations. Since
G is sinkless and sourceless, no component of @S will bound a disk in R. /. Thus,
one can verify that S is a decomposing surface and hence it defines a sutured manifold
decomposition

.E.f /;  .g//
S .E.f /0;  .g/0/:

See [7, Definition 2.5] for the definition of a decomposing surface and a sutured manifold
decomposition. The resulting manifold E.f /0 is defined as E.f / n int.N.S//, where
N.S/ is a neighborhood of S in E.f / and hence is homeomorphic to the disjoint
union of E.f / and S1 �D2 . To get the sutures on E.f /�E.f /0 , we remove two
of the three aforementioned sutures associated to e with opposite orientations. There
are four sutures on S1 �D2 �E.f /0 ; they are all parallel to S1 � fpg for p 2 @D2

and have alternating orientations. Let .M1; 1/ be the component of .E.f /0;  .g/0/
with M1 homeomorphic to E.f / and .M2; 2/ be the component of .E.f /0;  .g/0/
with M2 homeomorphic to S1 �D2 .
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S

R�. / RC. /

E.f /

Figure 51: The decomposing surface S (shaded) properly embedded in E.f /

Since S is a nice decomposing surface (see [7, Definition 3.22] for the definition of nice),
we can use [7, Proposition 5.4] to compute SFH.E.f /0;  .g/0/. First we need some no-
tation. Let i W E.f /0!E.f / be the inclusion map and i� W H1.E.f /

0/!H1.E.f //

be the induced map on H1.�/. For s2Spinc.E.f /;  .g//, CFH.†;˛;ˇ; s/ is defined
as the chain complex generated by x 2 T˛\Tˇ with s.x/D s, where .†;˛;ˇ/ is a
balanced admissible diagram for .E.f /;  .g//. SFH.E.f /;  .g/; s/ is the homology
of CFH.†;˛;ˇ; s/ (similarly for .E.f /0;  .g/0/). By [7, Proposition 5.4], there is an
affine map

fS W Spinc.E.f /0;  .g/0/! Spinc.E.f /;  .g//

satisfying the following two conditions:

(1) There is an isomorphism

ypW SFH.E.f /0;  .g/0/
Š
�!

M
s2=.fS /

SFH.E.f /;  .g/; s/

such that for every s0 2 Spinc.E.f /0;  .g/0/ we have

yp.SFH.E.f /0;  .g/0; s0//� SFH.E.f /;  .g/; fS .s
0//:

(2) If s0
1
; s0

2
2 Spinc.E.f /0;  .g/0/, then

i�.s
0
1� s02/D fS .s

0
1/�fS .s

0
2/ 2H1.E.f //:

Note that in [6], Juhász identifies Spinc.E.f /;  .g// with H 2.E.f /; @E.f //, so the
statement looks slightly different. Since ijM1

W M1!E.f / is a homotopy equivalence,
i�W H1.E.f /

0/ ! H1.Ef / is surjective. Fix an s0
0
2 Spinc.E.f /0;  .g/0/ and let

s0 WD fS .s
0
0
/. Use s0 to identify H1.E.f // and Spinc.E.f /;  .g//. This identifies

v 2H1.E.f // with vCs0 2 Spinc.E.f /;  .g//. Let s2 Spinc.E.f /; @E.f //. Then
sD vC s0 for some v 2H1.E.f //. Since i� is surjective, there is a v0 2H1.E.f /

0/

with i�.v
0/D v . The second statement above implies that

i�.v
0/D i�..v

0
C s00/� s00/D fS .v

0
C s00/�fS .s

0
0/D fS .v

0
C s00/� s0:
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Therefore, sD vC s0 D i�.v
0/C s0 D fS .v

0C s0
0
/, so fS is surjective.

Choose an orientation on †, ˛i and ǰ for all i; j . Then we have an absolute Z2 –
grading on SFH.E.f /;  .g// given by emD exp�1 ım. It can be shown that, as a
relative grading, it agrees with gr .mod 2/. For a definition of gr see [6, Definition 8.1].
However, gr is only defined for two generators that have the same Spinc class. Thus,
we will need to consider the proof [7, Proposition 5.4], in order to show that em

is preserved under yp . In this proof, he considers a balanced diagram .†;˛;ˇ;P /

adapted to the surface S in .E.f /;  .g//. Here .†;˛;ˇ/ is a Heegaard diagram for
.E.f /;  .g// and P �† is a quasipolygon. Using P , he then constructs a Heegaard
diagram .†0;˛0;ˇ 0/ for .E.f /0;  .g/0/ and a map

pW †0!†

such that p sends ˛0i to ˛i and ˇ0j to ǰ and

pj†0np�1.P/W †
0
np�1.P /!† nP

is a diffeomorphism. Moreover, since fS is onto in our case, it follows that all the
intersections of ˛i and ǰ lie in † nP and all the intersections of ˛0i and ˇ0j lie in
†0np�1.P /. The map p induces a bijection ypW T˛0\Tˇ 0!T˛\Tˇ . This gives the
isomorphism ypW SFH.E.f /0;  .g/0/! SFH.E.f /;  .g//. Choose the orientations
of †0 , ˛0i and ˇ0j coming from †, ˛i and ǰ so that p preserves all the orientations.
It then follows that if x0 2 T˛0 \Tˇ 0 then

(11) m. yp.x0//Dm.x0/:

Using fS and using the above identification of H1.E.f // and Spinc.E.f /;  .g//,
SFH.E.f /0;  .g/0/ inherits an H1.E.f //–grading. This makes SFH.E.f /;  .g//
and SFH.E.f /0;  .g/0/ into .H1.E.f //;Z2/–bigraded F –vector spaces. We can
now show that ypW SFH.E.f /0;  .g/0/! SFH.E.f /;  .g// is an .H1.E.f //;Z2/–
bigraded map. Let x0 2 SFH.E.f /0;  .g/0/.v;i/ , where .v; i/ 2 H1.E.f // ˚ Z2 .
Since

fS .v
0
C s00/D i�.v

0/C s0;

x0 is in SFH.E.f /0;  .g/0; v0C s0
0
/ for some v0 2 H1.E.f /

0/ with i�.v
0/ D v . So

by [7, Proposition 5.4(1)],

yp.SFH.E.f /0;  .g/0; v0C s00//� SFH.E.f /;  .g/; vC s0/:

Using this and (11), it follows that yp.x0/ 2 SFH.E.f /;  .g//.v;i/ .

We show that

SFH.E.f /0;  .g/0/Š SFH.M1; 1/˝W .w.e/; 1/:
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To see this, note that .E.f /0;  .g0// is the disjoint union of .M1; 1/ and .M2; 2/.
Moreover, it is easy to see that

SFH.M2; 2/ŠW .e.g/; 1/

as a relatively .H1.E.f //;Z2/–bigraded F –vector space. To complete the proof, we
keep removing pairs of sutures on each edge until we are left with .E.f /;  .f //.

We can use this to complete the relationship between bHFG.f / and rSHF.E.f /;  .f //.

Theorem 6.6 Let f W G! S3 be a sinkless and sourceless transverse spatial graph
where G has no cut edges. Then

bHFG.f /Š rSHF.E.f /;  .f //

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

Proof Let g be a graph grid diagram representing f . By Proposition 4.32, Lemma 6.4,
and Proposition 6.5, we have that

bHFG.f /˝
O

e2E.G/

W .�w.e/;�1/˝neŠ eHFG.g/

Š rSHF.E.f /;  .g//

Š r
�

SFH.E.f /; .f //˝
O

e2E.G/

W .w.e/;1/˝ne

�
Š rSHF.E.f /; .f //˝

O
e2E.G/

W .�w.e/;�1/˝ne

as relatively .H1.E.f //;Z2/–bigraded F –vector spaces.

The result follows from a slight generalization of [22, Lemma 3.18] (replace Z2

with H1.E.f //˚Z2 Š Zl ˚Z2 in the proof) that bHFG.f /Š rSHF.E.f /;  .f //
as relatively .H1.E.f //;Z2/–bigraded F –vector spaces. We will sketch of proof
of this. Let V D

N
e2E.G/W .�w.e/;�1/˝ne . After shifting by an element of

H1.E.f //˚ Z2 , we can assume that rSHF.E.f /;  .f // is (absolutely) bigraded
and that bHFG.f /˝ V Š rSHF.E.f /;  .f //˝ V as .H1.E.f //;Z2/ (absolutely)
bigraded F –vector spaces. Since G has no cut edges, w.e/¤ 0 for all e 2E.G/.

Suppose V1 ˝W .a;m/ Š V2 ˝W .a;m/ as .H1.E.f //;Z2/–bigraded F –vector
spaces, where .a;m/ 2 H1.E.f //˚ Z2 , a ¤ 0 and Vi is a finitely generated F –
vector space. Vi can be represented as a function fi W H1.E.f //˚Z2!Z�0 , where
fi.h; n/DdimF .Vi/.h;n/ . Since Vi is finitely generated, fi.h; n/D0 for all but finitely
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many pairs .h; n/ 2H1.E.f //˚Z2 . Then Vi ˝W .h;�1/ can be represented by the
function gi W H1.E.f //˚Z2! Z�0 where

gi.h; n/D fi.h; n/Cfi.h� a; n�m/:

Since V1 ˝W .a;m/ Š V2 ˝W .a;m/, we have that g1 D g2 . We now note that
since fi.h; n/D 0 for all but finitely many pairs .h; n/ that gi.h; n/D 0 for all but
finitely many pairs. In addition, since a¤ 0 and H1.E.f //ŠZl , .h�ja; n�j m/¤

.h�j 0a; n�j 0m/ whenever j ¤ j 0 . Hence
P1

jD0 gi.h�ja; n�j m/ is a well-defined
function and

fi.h; n/D

1X
jD0

gi.h� ja; n� j m/

for all .h; n/ 2H1.E.f //˚Z2 . Since g1 D g2 , it follows that f1 D f2 and hence
V1 Š V2 as .H1.E.f //;Z2/–bigraded F –vector spaces.

As a result we see that the decategorification of bHFG.f / is essentially the torsion
invariant T .E.f /;  .f // associated to sutured manifold .E.f /;  .f //.

Definition 6.7 Let f W G! S3 be a sinkless and sourceless transverse spatial graph.
Define

�. bHFG.f //D
X

.h;i/2.H1.E.f //;Z/

.�1/i rankF bHFG.f /.h;i/h

considered as an element of ZŒH1.E.f /� modulo positive units; ie as an element
of H1.E.f //.

If r 2 ZŒH1.E.f //� then r D
P

i aihi , where ai 2 Z and hi 2 H1.E.f //. Define
Nr WD

P
i aih

�1
i , where here we are viewing H1.E.f // as a multiplicative group.

Corollary 6.8 If f W G ! S3 is a sinkless and sourceless transverse spatial graph
where G has no cut edges then

�. bHFG.f // :D�f :

That is, they are the same up to multiplication by units in ZŒH1.E.f //�.

Proof Choose an s0 2 Spinc.E.f /;  .f //. By [4, Theorem 1.1], we have that
�.SFH.E.f /;  .g/// :D�f , where

�.SFH.E.f /;  .g///D
X

x2T˛\Tˇ

m.x/��1
s0
.s.x//
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Figure 52: Transverse spatial graph to balanced bipartite graph with balanced orientation

for any admissible balanced Heegaard diagram .†;˛;ˇ/ for .E.f /;  .f //. By a
standard argument,X

x2T˛\Tˇ

m.x/��1
s0
.s.x//D

X
.h;i/2.H1.E.f //;Z/

.�1/i rankF bSFH.E.f /;  .g//.h;i/h:

Hence, the result follows from Theorem 6.6.

We now relate Bao’s theory for balanced bipartite spatial graph with balanced orienta-
tions to ours. Given a transverse spatial graph, one can get a balanced bipartite spatial
graph with balanced orientation by replacing each vertex with an edge; see Figure 52.

Conversely, suppose one has a balanced bipartite spatial graph F W GV1;V2
! S3 with

balanced orientation. This means that V1[V2 is the set of vertices, jV1j D jV2j and
each edge connects a vertex in V1 with one in V2 . Moreover, since this has a balanced
orientation, there are precisely jV1j edges that are oriented from V1 to V2 , and these
edges give a bijection between V1 and V2 ; see [1] for the precise definitions. Thus, we
can isotope F so that all of these edges are very short straight arcs like on the right-
hand side of Figure 52. We can collapse this edge to obtain a transverse spatial graph.
Moreover, Bao constructs a sutured manifold which is the same as .E.f /;  .f // for a
transverse spatial graph f , and points out in [1, Proposition 4.11] that her hat version is
the same as the sutured Floer homology of her sutured manifold. Thus, by Theorem 6.6
and Corollary 6.8, our hat theory (and decategorification) is the same as her hat theory
(and decategorification), up to reversing the bigrading, as long as the underlying graph
for the transverse graph has no sinks, sources or cut edges.
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Positive factorizations of mapping classes

R İNANÇ BAYKUR

NAOYUKI MONDEN

JEREMY VAN HORN-MORRIS

In this article, we study the maximal length of positive Dehn twist factorizations of sur-
face mapping classes. In connection to fundamental questions regarding the uniform
topology of symplectic 4–manifolds and Stein fillings of contact 3–manifolds coming
from the topology of supporting Lefschetz pencils and open books, we completely
determine which boundary multitwists admit arbitrarily long positive Dehn twist
factorizations along nonseparating curves, and which mapping class groups contain
elements admitting such factorizations. Moreover, for every pair of positive integers
g and n , we tell whether or not there exist genus-g Lefschetz pencils with n base
points, and if there are, what the maximal Euler characteristic is whenever it is
bounded above. We observe that only symplectic 4–manifolds of general type can
attain arbitrarily large topology regardless of the genus and the number of base points
of Lefschetz pencils on them.

20F65, 53D35, 57R17

1 Introduction

Let †n
g be a compact orientable genus-g surface with n boundary components, and �n

g

denote the mapping class group composed of orientation-preserving homeomorphisms
of †n

g which restrict to identity along @†n
g , modulo isotopies fixing the same data. We

denote by tc 2 �
n
g the positive (right-handed) Dehn twist along the simple closed curve

c � †n
g . If ˆD tcl

� � � tc1
in �n

g , where ci are nonseparating curves on †n
g , we call

the product of Dehn twists a positive factorization of ˆ in �n
g of length l .

Our motivation to study positive factorizations comes from their significance in the
study of Stein fillings of contact 3–manifolds, as in Giroux [10] or Loi and Pier-
gallini [17], and that of symplectic 4–manifolds via Lefschetz fibrations and pencils,
as in Donaldson [9]. Provided all the twists are along homologically essential curves, a
positive factorization of a mapping class in �n

g , n�1, prescribes an allowable Lefschetz
fibration which supports a Stein structure filling the contact structure compatible with
the induced genus-g open book on the boundary with n binding components; see Loi
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and Piergallini [17] and Akbulut and Ozbagci [1]. Similarly, a positive factorization
of a boundary multitwist �, ie the mapping class tı1

� � � tın
for ıi boundary parallel

curves, describes a genus-g Lefschetz pencil with n base points. Conversely, given any
allowable Lefschetz fibration or a Lefschetz pencil, one obtains such a factorization.

The main questions we will take on in this article are the following.

Question 1 When does the page F Š†n
g of an open book impose an a priori bound on

the Euler characteristics of allowable Lefschetz fibrations with regular fiber F filling it?

Question 2 When does the fiber F Š†g and a positive integer n imply an a priori
bound on the Euler characteristics of allowable Lefschetz pencils with regular fiber F

and n base points? When it does, what is the largest possible Euler characteristic?
More specifically, for which g; n do there exist genus-g Lefschetz pencils with n base
points?

By Giroux, contact structures on 3–manifolds up to isotopies are in one-to-one corre-
spondence with supporting open books up to positive stabilizations [10]. Moreover, a
contact 3–manifold .Y; �/ admits a Stein filling .X;J / if and only if .Y; �/ admits
a positive open book, ie an open book whose monodromy can be factorized into
positive Dehn twists along homologically essential curves on the page [17]. Since
b1.X /� b1.Y / for any Stein filling X , Question 1 above, up to stabilizations, amounts
to asking when the page of an open book (ie its genus g and number of binding
components n) on a contact 3–manifold implies a uniform bound on the topology of
its Stein fillings. On the other hand, Question 2 can be seen as a special version of
Question 1 with page †n

g and the particular monodromy �.

Related to our focus is the following natural function defined on mapping class groups.
The positive factorization length, or length (as the length, in this paper) of a mapping
class ˆ, which we denote by L.ˆ/, is defined to be the supremum taken over the
lengths of all possible positive factorizations of ˆ along nonseparating curves, and it
is �1 if ˆ does not admit any positive factorization. L is a superadditive function on
�n

g taking values in N [ f˙1g. It is easy to see that L <C1 translates to having
the uniform bound in the above questions.

We will investigate the length of various mapping classes, leading to a surprisingly
diverse picture, where our results will in particular provide complete solutions to the
above problems. Below, the ıi always denote boundary parallel curves along distinct
boundary components of †n

g for i D 1; : : : ; n.

Algebraic & Geometric Topology, Volume 17 (2017)
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Theorem A Let �D tı1
� � � tın

on †n
g , where n� 1.1 Then

L.�/D

8<:
�1 if g D 1 and n> 9; or g � 2 and n> 4gC 4;

C1 if n� 2g� 4;

finite otherwise.

When finite, the exact value of L.�/ is

L.�/D

8̂̂̂<̂
ˆ̂:

12 if g D 1;

40 if g D 2;

6gC 18 if 3� g � 6;

8gC 4 if g � 7:

In particular, when L.�/ is finite, its value depends solely on g , and not n.

Translating this to Lefschetz pencils, for every pair of fixed positive integers g; n,
Theorem A allows us to tell (i) if there are any symplectic 4–manifolds admitting a
genus-g Lefschetz pencil with n base points (and with only irreducible singular fibers),
(ii) when the Euler characteristic of these 4–manifolds can get arbitrarily large, and (iii)
if bounded, what the largest Euler characteristic exactly is. Parts (i) and (ii) completely
answer [8, Question 5.1]. In the course of the proof, we will note that only symplectic
4–manifolds of general type, ie of Kodaira dimension 2, realize arbitrarily large Euler
characteristic. In contrast, when there is a uniform bound, we will see that the largest
Euler characteristic can be realized by a symplectic 4–manifold of Kodaira dimension
�1, 0 or 2.

Our second theorem, inspired by partial observations in Dalyan, Korkmaz and Pa-
muk [8], shows that when Question 1 is formulated for higher powers of the boundary
multitwist � (ie for Lefschetz fibrations with sections of self-intersection less than �1

instead of pencils) or for the product of � with a single Dehn twist along a nonseparating
curve, the uniform bounds in Theorem A disappear for all g � 2.

Theorem B Let � D tı1
� � � tın

on †n
g , where n � 1 is any integer, and a be any

nonseparating curve on †. Then

(1) L.�k/D 12k if g D 1, k � 1, and n� 9,

(2) L.�k/DC1 if g � 2, k � 2,

(3) L.� ta/DC1 if g � 2.

1As we will review while proving the above theorem, it is well-known that for �D tı1
� � � tın

on †n0
g

with n< n0 , we have L.�/D�1 . We have therefore expressed our results only for the nontrivial case
nD n0 .

Algebraic & Geometric Topology, Volume 17 (2017)
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A simple variation of L is obtained by allowing separating Dehn twists along homo-
logically essential curves on †n

g in the factorizations, which we denote by zL. Clearly
L.ˆ/ � zL.ˆ/ for all ˆ, and L.�n

g/ �
zL.�n

g/. Our last theorem determines the full
image of L and zL on mapping class groups �n

g .

Theorem C For n� 1, the image of �n
g under zL and L is

(1) zL.�n
g/D L.�n

g/DN [f�1g if g D 0 and n� 2, or if g D 1,

(2) zL.�n
g/D L.�n

g/DN [f˙1g if g � 2.

Theorem C, along with parts of Theorems A and B, records the existence of mapping
classes with arbitrarily long positive factorizations. In the course of its proof we will in
fact spell out mapping classes (as multitwists along nonseparating curves) with positive
factorizations of unique lengths.

Any ˆ with L.ˆ/DC1 provides an example of a contact 3–manifold with arbitrarily
large Stein fillings. The mapping class ˆ prescribes an open book, which in turn
determines a contact 3–manifold by the work of Thurston and Winkelnkemper, whose
Stein fillings are obtained from the allowable Lefschetz fibrations corresponding to
respective positive factorizations. We therefore extend our earlier results in [6; 7], and
obtain many more counter-examples to Stipsicz’s conjecture [29], which predicted an
a priori bound on the Euler characteristics of Stein fillings. Clearly, any contact 3–
manifold Stein cobordant to one of these examples also bears the same property. Since
having a supporting open book with infinite length monodromy is a contact invariant,
our detailed analysis summarized in the results above can be used to distinguish contact
structures on 3–manifolds.

The novelty in the proofs of the above theorems is the engagement of essentially four
different methods:

(1) Underlying symplectic geometry and Seiberg–Witten theory The bounds and
calculations of the maximal length in the finite cases in Theorem A will follow from
our analysis of the underlying Kodaira dimension of the symplectic Lefschetz pencils
corresponding to these factorizations. Here the symplectic Kodaira dimension will
provide a useful way to organize the essential information. Indeed, we will observe
that the only classes of 4–manifolds yielding pencils or fibrations with unbounded
Euler characteristic are symplectic 4–manifolds of general type, ie of Kodaira dimen-
sion 2. Both our Kodaira dimension calculations following Sato [23] and Baykur and
Hayano [3] — even the very fact that the Kodaira dimension is a well-defined invariant
(see Li [13]) — and the sharp inequalities we obtain heavily depend on Taubes’ seminal

Algebraic & Geometric Topology, Volume 17 (2017)
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work on pseudoholomorphic curves and Seiberg–Witten equations on symplectic 4–
manifolds.

(2) Dehn monoid and right-veering Realizing the finite lengths in Theorem B (the
content of Proposition 4), as well as our recap of previous results which establishes
the lack of any positive factorizations for certain mapping classes in Theorems A and
C (Proposition 5) will be obtained using Thurston type right-veering arguments as in
Short and Wiest [24] and Honda, Kazez and Matić [11], and will rely on the structure
of the positive Dehn twist monoid of �n

g .

(3) Homology of mapping class groups of small genus surfaces The precise cal-
culation for the genus-1 case in Theorem B, and the bounds in Theorem C for low
genus cases (Proposition 1), will follow from our complete understanding of the first
homology group of the corresponding mapping class groups.

(4) Constructions of new monodromy factorizations We will show that an artful
application of braid, chain and lantern substitutions applied to carefully tailored mapping
class group factorizations allows one to obtain arbitrarily long positive factorizations in
Theorems A and B (Theorems 9, 16 and 17). This greatly extends the earlier array of
partial results of Baykur, Korkmaz and Monden [5], Baykur and Van Horn-Morris [6;
7] and Dalyan, Korkmaz and Pamuk [8] to the possible limits of these constructions as
dictated by our results above.

The outline of our paper is as follows. In Section 2, we discuss mapping classes with
bounded lengths, and in Section 3 we construct those with infinite lengths. These
results will be assembled to complete the proofs of our main theorems in Section 4,
where we will also present a couple more results on lengths of mapping classes and
special subgroups of mapping class groups, and discuss some related questions.

Acknowledgements The first author was partially supported by the NSF Grant DMS-
1510395 and the Simons Foundation Grant 317732. The second author was supported
by the Grant-in-Aid for Young Scientists (B) (No. 13276356), Japan Society for
the Promotion of Science. The third author was partially supported by the Simons
Foundation Grant 279342.

2 Mapping classes with finite lengths

Here we investigate various examples of mapping classes with no positive factorizations
or with only factorizations of bounded length. We first probe mapping classes on small
genus surfaces, as well as those with small compact support in the interior, who have
unique lengths. We then move on to showing that boundary multitwists involving too
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many boundary components have an a priori bound on the length of their positive
factorizations.

2.1 Simple mapping classes with prescribed lengths

There are two tools that we will use to bound the number of Dehn twists in a given
factorization. The first uses the fact that the mapping class group �n

g for g D 0; 1

surjects to Z, based on H1.�
n
g IZ/ having a Z component. Secondly, we will use

right-veering methods of Thurston [24] and Honda, Kazez and Matić [11].

We begin with analyzing the g D 0; 1 case, for any n � 1. When g D 0, equivalent
arguments were given by Kaloti in [12] and Plamenevskaya in [19].

Proposition 1 For g � 1 any positive factorization of ˆ 2 �n
g along homologically

essential curves has bounded length. So zL.ˆ/ is bounded above for any ˆ. Further,
when g D 1, the length of any factorization into nonseparating Dehn twists is fixed.

Proof While a careful look at H1.�
n
g/ will yield more information, a bound on the

number of nontrivial Dehn twists in a positive factorization of a mapping class ˆ can
be obtained by capping off to the base cases of g D 0, nD 2 or g D 1, nD 1.

(Genus 0) For genus 0, the base case is n D 2. The mapping class group of the
annulus �2

0
is isomorphic to Z, where the right-handed Dehn twist about the core

of the annulus is mapped to 1. In this case, zL.ˆ/D Œˆ�, the image of ˆ under this
isomorphism, and moreover, a positive factorization, if it exists, is unique.

When n> 2, one can fix an outer boundary component, and identify † with a disk with
holes. The homomorphism induced by capping off all but a single interior boundary
component @i counts the number of Dehn twists (in any factorization) that enclose @i .
Every essential curve must enclose at least one interior boundary component and so
shows up in at least one of these counts. Adding up the images of ˆ for all of these
homomorphisms then gives a bound on the number of Dehn twists in any positive
factorization of ˆ.

(Genus 1) For genus 1, the base case is nD 1. The first homology of the mapping
class group H1.�

1
1
/ isomorphic to Z, where the right-handed Dehn twist about any

nonseparating curve is mapped to 1. The boundary Dehn twist has Œt@�D 12. In this
case, L.ˆ/D Œˆ�, the image of ˆ under this isomorphism, and zL� Œˆ�.

When n> 1, then just as above, one can cap off all but one boundary component and
calculate the value of ˆ there. Any essential curve will remain essential for at least
one of these maps, and so adding up the values of all of the images of ˆ will give a

Algebraic & Geometric Topology, Volume 17 (2017)
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bound on the length of any factorization of ˆ into Dehn twists along homologically
essential curves and an upper bound on zL.ˆ/.

Even better, though, any nonseparating curve will remain nonseparating after every
capping, so the length of any positive factorization into nonseparating Dehn twists can
be found by capping off all but one boundary component of † and calculating Œˆ�
there. This determines L.ˆ/ on the nose.

Remark 2 Notice that combining the above with a theorem of Wendl [31] we recover
the following theorem of [19; 12]:

If the open book prescribed by ˆ 2 �n
g , n � 1, is stably equivalent to a

planar open book, then zL.ˆ/ is finite.

Equivalently, a mapping class ˆ2�n
g , n� 1 with zLDC1 cannot be stably equivalent

to a mapping class ‰ 2 �m
0

, for any m� 1.

We now move on to producing particular mapping classes with prescribed finite lengths
in �n

g for any g; n� 1, for which we first review the notion of right-veering [11]. Let
˛ and ˇ two properly embedded oriented arcs in an oriented surface † with @†¤∅,
having the same endpoints ˛.0/ D ˇ.0/ D x0 and ˛.1/ D ˇ.1/ on @†. Choose a
lifted base point zx0 of x0 and lifts to the universal cover z̨ and ž of the arcs ˛ and ˇ
starting at zx0 . We say ˇ is to the right of ˛ at x0 if the boundary component of z†
containing ž.1/ is to the right of that containing z̨.1/ when viewed from zx0 .

When † is an annulus, we can simply define a mapping class to be right-veering if
it is a nonnegative power of the right-handed Dehn twist. For surfaces other than the
annulus, think of z† as sitting in the Poincaré disk model of the hyperbolic plane, lift
the arcs to geodesics, and consider the endpoints z̨.1/ and ž.1/ radially from the
boundary of z† to the boundary of the disk. If the oriented path from ž.1/ to z̨.1/,
avoiding zx0 , has the same orientation as the boundary orientation induced by the disk,
then ˇ is to the right of ˛ . (More generally, one can take homotopic representatives of
˛ and ˇ which intersect minimally and are transverse at x0 , and ask whether in the
neighborhood of x0 , ˇ lies on the right or left of ˛ .) A diffeomorphism ˆ is called
right-veering if for every base point x0 and every properly embedded arc ˛ starting
at x0 , either ˆ.˛/ is to the right of ˛ at x0 or ˆ.˛/ is homotopic to ˛ , fixing the end
points. It is straightforward to see that this property is well-defined for an isotopy class
of ˆ rel boundary, and is independent of the choice of the base point. Hence we call
a mapping class ˆ right-veering if any representative of it is. It turns out that Veern

g ,
generated by right-veering mapping classes in �n

g is a monoid of �n
g , and contains

Dehnn
g , generated by all positive Dehn twists in �n

g as a submonoid [11].
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Proposition 3 Let
Qn

iD1 tci
be a positive Dehn twist factorization of a mapping class

element ˆ. If ˆ preserves an arc ˛ , then every curve ci is disjoint from the arc ˛ .

Proof If ˆ is a mapping class which preserves the homotopy class of an arc ˛ , then
for any factorization of ˆ as a product of right-veering maps ˆDˆr ı � � � ıˆ1 , we
can see that each of the ˆi also preserve ˛ . For if any ˆi moves ˛ , then it has to send
it to the right, after which every ĵ , for i < j � r , either fixes it, or sends it further to
the right. Since Dehn twists are right-veering, the proposition follows.

A multicurve C on †, which is a collection of disjoint simple closed curves, is said to
be nonisolating if every connected component of †nC contains a boundary component
of †. Next, we observe that Dehn twists along such C can realize any finite length l .

Proposition 4 Let C Dc1[� � �[cr be a nonisolating multicurve on † and m1; : : : ;mr

nonnegative integers. Then the multitwist
Qr

iD1 t
mi
ci

has a unique factorization in �n
g

into positive Dehn twists and hence zL
�Qr

iD1 t
mi
ci

�
Dm1C � � �Cmr .

Proof Let ˆ D
Qr

iD1 t
mi
ci

with m1; : : : ;mr nonnegative integers as above. By
Proposition 3, for any positive factorization of ˆ, each factor fixes every arc which is
disjoint from C . Since C is nonisolating, we can find arcs disjoint from C which cut
† into disjoint annuli that respectively deformation retract onto

S
ci . Thus all factors

are supported on these annuli, must be Dehn twists along these annuli, and give the
obvious factorization

Qn
iD1 t

mi
ci

.

Lastly, we note a general source of mapping classes in �n
g , n � 1, with no positive

factorizations.

Proposition 5 If ˆ is a nontrivial element in Veern
g , where n � 1, then ˆ�1 is not.

Thus if ˆ admits a nontrivial positive factorization, then ˆ�1 is not right-veering. In
particular, L.�k/D zL.�k/D�1 for k < 0 and L.1/D zL.1/D 0.

Proof If ˆ is nontrivial and right-veering, then it moves at least one arc ˛ to the right.
Then ˆ�1 sends ˆ.˛/ to ˛ ; that is, to the left.

The particular case we noted above, that �k for k � 0 does not admit any nontrivial
positive factorizations, was first observed by Smith [25] (whose arguments are similar
to ours) and also by Stipsicz [27] (who used Seiberg–Witten theory).
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2.2 Boundary multitwists with finite lengths

We are going to prove:

Theorem 6 Let � D tı1
� tı2
� � � tın

be the boundary multitwist on †n
g , with n �

2g� 3� 0. If n> 4gC 4, then L.�/D�1. If n� 4gC 4, we have

L.�/D

8<:
40 if g D 2;

6gC 18 if 3� g � 6;

8gC 4 if g � 7:

In particular, when L.�/ is finite, its value depends solely on g , and not n.

Let us briefly review here the notion of symplectic Kodaira dimension we will repeatedly
refer to in our proof of this theorem. The reader can turn to [13] for more details.
First, we recall that a symplectic 4–manifold .X; !/ is called minimal if it does not
contain any embedded symplectic sphere of square �1, and also that it can always
be blown-down to a minimal symplectic 4–manifold .Xmin; !

0/. Let �Xmin be the
canonical class of a minimal model .Xmin; !min/. We define the symplectic Kodaira
dimension of .X; !/, denoted by � D �.X; !/, as follows:

�.X; !/D

8̂̂̂<̂
ˆ̂:
�1 if �Xmin � Œ!min� < 0 or �2

Xmin
< 0;

0 if �Xmin � Œ!min�D �
2
Xmin
D 0;

1 if �Xmin � Œ!min� > 0 and �2
Xmin
D 0;

2 if �Xmin � Œ!min� > 0 and �2
Xmin

> 0:

Here � is independent of the minimal model .Xmin; !min/ and is a smooth invariant of
the 4–manifold X .

Proof of Theorem 6 Assume that � admits a positive Dehn twist factorization
W D tcl

� � � tc1
along nonseparating curves ci in �n

g . Let .X; f / be the genus-g
Lefschetz fibration with n disjoint .�1/–sphere sections, S1; : : : ;Sn , associated to
this factorization. We can support .X; f / with a symplectic form ! , with respect to
which all Sj are symplectic as well. Note that by the hypothesis, g � 2 and n� 1, the
latter implying that X is not minimal.

For fixed g , the length l is maximized if and only if the Euler characteristic of X is,
where e.X /D 4�4gC l ; whereas fixing n, along with g , will play a role in narrowing
down the possible values of the symplectic Kodaira dimension �.X /. We will read
off �.X / based on the number of .�1/–sphere sections of f . In principle, we need
to know that there are no other disjoint .�1/–sphere sections than S1; : : : ;Sn , that
is, there are no lifts of the positive factorization to a boundary multitwist in �n0

g with
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1536 R İnanç Baykur, Naoyuki Monden and Jeremy Van Horn-Morris

n0 > n. We will overcome this issue by simply presenting our arguments starting with
�D�1 and going up to nonnegative �D 0 cases. (Meanwhile, it will become evident
that the � D 1 and 2 cases cannot occur, so the proof will boil down to realizing and
comparing the bounds we obtain in the � D�1 and 0 cases.)

If n > 2g� 2, we can blow-down the n .�1/–sphere sections S1; : : : ;Sn to derive
a symplectic surface F 0 from a regular fiber F of f , which has genus g and self-
intersection n. Since the Seiberg–Witten adjunction inequality

2g� 2D�e.F 0/� ŒF 0�2Cjˇ �F 0j � ŒF 0�2 D n

is violated by F 0 , we conclude that X 0 (and thus X ) should be a rational or ruled
surface [16]. These are precisely the symplectic 4–manifolds with Kodaira dimension
� D�1.

If n D 2g � 2, and X is not rational or ruled, it follows from Sato’s work on the
canonical class of genus g � 2 Lefschetz fibrations on nonminimal symplectic 4–
manifolds that the canonical class KX can be represented by the sum

Pn
jD1 Sj of

the exceptional sphere sections in H2.X IQ/ (see [23] and also [3]).2 Blowing down
all Sj we get KX 0 D 0 in H2.X IQ/. In particular, the canonical class is torsion, and
so X is a blow-up of a symplectic Calabi–Yau surface, �.X /D 0. The minimal model
of X should then have the rational homology type of a torus bundle over a torus, the
Enrique surface, or the K3 surface by the work of Li and independently of Bauer [2;
14; 15].

Now if nD 2g�3, and X is not rational or ruled or a (blow-up of a) symplectic Calabi–
Yau surface, then the collection

Pn
jD1 Sj realizes the maximal disjoint collection of

representatives of its exceptional classes intersecting the fiber. It therefore follows
from Sato’s work in [23] that, provided g � 3 for the genus-g Lefschetz fibration
on X , the canonical class of X is represented by 2S1C

Pn
jD2 Sj CR, where S1 is

a distinguished Sj we get by relabeling if necessary, and more importantly, R is a
genus 1 irreducible component of a reducible fiber with ŒR�2D�1. The latter condition
however is not realized by any Lefschetz fibration with only nonseparating vanishing
cycles, which allows us to rule out this case. Finally, in the remaining gD 2 and nD 1

case, it follows from Smith’s analysis of genus-2 pencils in [26, Theorem 5.5] that the
maximal number of irreducible singular fibers is l D 40.

We have thus seen that for n� 2g�3, the �D 2 and �D 1 cases are already ruled out.
It therefore suffices to discuss the � D�1 and 0 cases, and compare the largest l we

2As the author’s argument in [23] is based on positive intersections of holomorphic curves, it essentially
captures the homology class of KX only in Q coefficients, which otherwise would lead to a contradiction
for pencils on the Enriques surface. Hence we quote here the result with this small correction [3].
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get in these cases to determine the winner, all while remembering we have an additional
candidate in the g D 2 case as noted above.

Let �.X /D�1. As X is not minimal, and because CP2# CP2 does not admit any
genus g> 0 Lefschetz fibration with a .�1/–section,3 we have X ŠS2�†h #mCP2

for some h� 0, m� 1. We have e.X /D 2.2� 2h/CmD 4� 4gC l , so

(1) l D 4.g� h/Cm� 4gCm:

On the other hand, it was shown in [28] that 4.b1.X /�g/C b�
2
.X /� 5bC

2
.X /. For

X with b1.X /D 2h, bC
2
.X /D 1, and b�

2
.X /DmC 1, we get

(2) m� 4� 4.2h�g/� 4C 4g:

Combining the inequalities (1) and (2), we conclude that l � 8gC 4.

The first conclusion, namely that L.�/D�1 when n> 4gC 4, is rather immediate.
Here X Š S2 �†h # mCP2 , and either h > 0 and we have m � n or h D 0 and
we only have mC 1 � n. The inequality (2) above, combined with our assumption
n> 4gC 4, implies that the former is impossible, whereas the latter can hold only if
mD 4gC 4.

We claim that there is no genus-g Lefschetz pencil on CP2 with 4gC 5 base points.
Let H represent the generator of H2.CP2/, and F D aH represent the potential
fiber class of the pencil. Since there exists a symplectic form for which the fiber is
symplectic, and since CP2 has a unique symplectic structure up to deformations and
symplectomorphisms, we can invoke the adjunction equality as

2g� 2D F2
� 3H �F D 4gC 5� 3a;

so 3a D 2g C 7. As F is a fiber class, a2 D F2 D 4g C 5 should be satisfied as
well. The only possible solution is when aD 3, which is the case of a g D 1 pencil
(indeed, the well-known case of an elliptic pencil on CP2 ) we have excluded from our
discussion (recall our hypothesis n� 2g� 3� 0).

Moreover, note that the equality l D 8gC 4 holds only if m D 4gC 4 and h D 0.
There exist such genus-g Lefschetz fibrations with l D 8gC 4 irreducible fibers and
mD 4gC4 sections of square �1 on CP2 # .4gC5/CP2Š S2�S2 # .4gC4/CP2 ;
see [30; 22].

Now, let �.X /D 0. Recall that l is maximal when e.X / is. Rational cohomology K3
has the largest Euler characteristics among all minimal candidates, and as discussed

3If it did, one would get a homology class F D aH with F2 D 1 , where H is the generator of
H2.CP2/ . This is only possible when aD 1 , which implies that the fiber genus is zero.
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above, one can hope to have a genus-g Lefschetz fibration on at most 2g�2 blow-ups of
a symplectic Calabi–Yau surface. It follows that the maximal l is realized when X is a
rational cohomology K3 surface blown up 2g�2 times. So 2.2�2g/ClD24C2g�2,
implying lD6gC18. Such Lefschetz fibrations on symplectic Calabi–Yau K3 surfaces
are constructed in [4]; also see [26, Proof of Theorem 3.10].

Hence all remaining conclusions of the theorem follow from a comparison of the
maximal l we get in the � D�1 and � D 0 cases, along with the additional (� D 2)
case when g D 2.

Remark 7 As seen in our proof, there is an a priori upper bound, determined by the
genus g and the number of base points n, on the number of critical points of Lefschetz
pencils when � < 1, and for pencils with only irreducible fibers when � � 1. So
arbitrarily large topology is specific to pencils on symplectic 4–manifolds of general
type, ie when � D 2. In contrast, when the uniform topology is bounded, the maximal
Euler characteristic for a genus-g Lefschetz pencil with n base points can be realized
by an .X; f / with � D 2 when g D 2, � D 0 when 3 � g � 7, and � D �1 when
g � 7.

3 Mapping classes with infinite lengths

Here we will construct arbitrarily long positive factorizations of various mapping classes
involving boundary multitwists in �n

g , for g � 2, n� 1.

3.1 Preliminary results

We begin with a brief exposition of various recent results on arbitrarily long positive
factorizations in [5; 6; 7; 8], which creates leverage for many of our results to follow. We
hope that the proofs given below will help with making the current article self-contained
in this aspect.

First examples of arbitrarily long positive factorizations were produced in [5] by Kork-
maz and the first two authors of this article, for a varying family of single commutators
in �2

g , for any g � 2. The proof of this result is based on the following well-known
relations. Let c1; c2; : : : ; c2hC1 be simple closed curves on †n

g such that ci and cj

are disjoint if ji � j j � 2 and that ci and ciC1 intersect at one point. Then, a regular
neighborhood of c1[ c2[ � � � [ c2hC1 is a subsurface of genus h with two boundary
components, b1 and b2 . We then have the chain relations,

tb1
tb2
D .tc1

tc2
� � � tc2hC1

/2hC2
D .tc2hC1

� � � tc2
tc1
/2hC2:
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Now for a chain of length 3, we get td te D .tc1
tc2

tc3
/4 and by applying the relation (6)

below to .tc1
tc2

tc3
/2 , we obtain

td te D .tc1
tc2

tc3
/2tc2

tc3
tc1

tc2
tc3

tc3
:

Since d; e; c1 and c3 are disjoint, we have

.tc1
tc2

tc3
/2tc2

tc1
tc3

tc2
D td t�1

c3
tet�1

c3
:

Taking the mth power of both sides, we obtain T10m D tm
d

t�m
c3

tm
e t�m

c3
for any positive

integer m, where T10m D f.tc1
tc2

tc3
/2tc2

tc1
tc3

tc2
gm . Now let

�12 D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc4
td tc3

tc4
:

Since �12.c3/D e and �12.d/D c3 , we get

�12 D �12t�m
d tm

c3
t�m
e tm

c3
T10m

D �12t�m
d tm

c3
��1

12 �12t�m
e tm

c3
T10m

D t�m
�12.d/

tm
�12.c3/

�12t�m
e tm

c3
T10m

D t�m
c3

tm
e �12t�m

e tm
c3

T10m:

We thus obtain the commutator relation in [5],

Cm D Œ�12; t
m
c3

tm
e �D T10m;

the right-hand side of which contains arbitrarily long positive factorizations as m

increases.

These commutator relations prescribe a family of genus-2 Lefschetz fibrations over T 2

with sections of self-intersection zero. Taking the complement of the regular fiber and
the section, the first and the third authors of this article produced allowable Lefschetz
fibrations filling a fixed spinal open book, leading to the first examples of contact
3–manifolds with arbitrarily large Stein fillings and arbitrarily negative signatures [6].
Guided by these examples, in a subsequent work [7], the same authors produced the
first examples of mapping classes with arbitrarily long positive factorizations. They
showed that any family of commutators Cm D ŒAm;Bm� with arbitrarily long positive
factorizations can be crafted into arbitrarily long positive factorizations of the boundary
multitwist tı1

tı2
in �2

g , for g � 8.

The arguments of [7] were taken further in an elegant article by Dalyan, Korkmaz and
Pamuk in [8], who observed that for special commutators Cm D ŒA;Bm�, where one
entry is a fixed mapping class, as in the commutator relation we reproduced above, one
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can manipulate the relations so as to produce arbitrarily long positive factorizations
in �2

2
. Namely, by repeating the relation (6), we have

.tc1
tc2

tc3
tc4

tc5
/6 D .tc1

tc2
tc3

tc4
/5tc5

tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc5

D tc1
tc2

tc3
tc4
.tc1

tc2
tc3

tc4
/4tc5

tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc5

D tc1
tc2

tc3
tc4
.tc1

tc2
tc3
/4tc4

tc3
tc2

tc1
tc5

tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc5
:

As tı and tı0 are center elements of �2
2

, by the chain relations tıtı0 D .tc1
tc2

tc3
tc4

tc5
/6

and td te D .tc1
tc2

tc3
/4 we obtain

tıtı0 D tc1
tc2

tc3
tc4

td tetc4
tc3

tc2
tc1

tc5
� tc4

tc3
tc2

tc1
tc1

tc2
tc3

tc4
� tc5

D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4
� tc5
� tc1

tc2
tc3

tc4
td tetc4

tc3
tc2

tc1
tc5

D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4
� tc4

td tc3
�D9

DD9 � tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4
� tc4

td tc3
;

where D9 D t.tc4
td tc3

/�1.c5/
tc1

tt�1
c3
.c2/

t.tc4
td tc3

/�1.c3/
tett�1

c3
.c4/

tc2
tc1

tc5
. By multiply-

ing both sides of this relation by tc4
, we obtain

tıtı0 tc4
DD9 ��12;m �T10m:

We sum these up in the following theorem.

Theorem 8 [5; 8] Let d , e and ci , i D 1; 2; 3; 4; 5, be the simple closed curves on
†2

2
as in Figure 1, and let

�12 D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc4
td tc3

tc4
;

�12;m D t�m
c3

tm
e �12t�m

e tm
c3
;

T10m D f.tc1
tc2

tc3
/2tc2

tc1
tc3

tc2
g
m;

D9 D t.tc4
td tc3

/�1.c5/
tc1

tt�1
c3
.c2/

t.tc4
td tc3

/�1.c3/
tett�1

c3
.c4/

tc2
tc1

tc5
:

Then, for all positive integers m, the following relations hold in �2
2

:

�12 D �12;m �T10m; (Baykur, Korkmaz and Monden)(3)

tıtı0 tc4
DD9 ��12;m �T10m: (Dalyan, Korkmaz and Pamuk)(4)

Finally, let us recall the following generalization of the lantern relation, now often
called the daisy relation [20; 5] (also see [18; 21]). This relation will be key for
inflating number of boundary components, and extending Theorem 8 to �n

g for any
1� n� 2g� 4,

t
p�1

ı0
tı1

tı2
� � � tıpC1

D tx1
tx2
� � � txpC1

;
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c1
c2

c3
c4

c5

c2g

c2gC1

a

b

d

e

d 0

e0

ı

ı0

Figure 1: The curves c1; c2; : : : ; c2gC1 and a; b; d; d 0; e; e0 and the boundary
curves ı; ı0 on †2

g

in �pC2
0

, the mapping class group of a 2–sphere with pC 2 � 4 boundary compo-
nents. Here ı0; ı1; ı2; : : : ; ıpC1 denote the p C 2 boundary curves of †pC2

0
, and

x1;x2; : : : ;xpC1 are the interior curves as shown in Figure 2. The p D 2 case is the
usual lantern relation.

x3

x2

x1

xpC1

ı3

ı2

ı1

ıpC1

ı0

Figure 2: The curves ı0; ı1; : : : ; ıpC1 and x1;x2; : : : ;xpC1

3.2 Boundary multitwist of infinite length

Theorem 9 Let g � 3. Then, in �2g�4
g , the multitwist

tı1
tı2
� � � tı2g�4

can be written as a product of arbitrarily large number of right-handed Dehn twists
about nonseparating curves.

Let a; b; d; d 0; e; e0 and ci .i D 1; 2; : : : ; 2gC 1/ be the simple closed curves on †2
g ,

and let ı and ı0 be the two boundary curves of †2
g as in Figure 1.
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We will now introduce the key lemma for the proofs of Theorems 9 and 16, namely
Lemma 10.

Let l be a positive integer such that l � n. Let ˇ and ˛; ˛0 be the separating curve
and the nonseparating curves on †n

g in Figure 3, respectively. Note that ˇ separates
†n

g into a surface of genus g with one boundary ˇ and a sphere with lC1 boundaries
d; ı1; ı2; : : : ; ıl and that ˛ and ˛0 separate †n

g into a surface of genus g � 1 with
2 boundaries ˛ and ˛0 and a sphere with l C 2 boundaries ˛; ˛0; ı1; ı2; : : : ; ıl . Let
x1;x2; : : : ;xl be the nonseparating curves on †n

g in Figure 3.

˛

˛0

ˇ
xl

xi

x1

ıl

ıl�1

ıi

ı2

ı1

Figure 3: The curves ˛; ˛0; ˇ and x1;x2; : : : ;xl

Lemma 10 Suppose that the following relation holds in �n
g :

U � tˇ D T � t l�1
˛ t˛0 ;

where U and T are elements in �n
g . Then, the following relation holds in �n

g :

U � tı1
tı2
� � � tıl

D T � tx1
� � � txl

:

This is a generalization of a technical lemma from [4], which we provide a different
proof of below.

Proof Multiplying both sides of the relation U � tˇ D T � t l�1
˛ t˛0 by ı1ı2 � � � ıl , we

obtain the following relation:

U � tˇtı1
tı2
� � � tıl

D T � t l�1
˛ t˛0 tı1

tı2
� � � tıl

:

Since tı1
; tı2

; : : : ; tıl
are elements in the center of �n

g , we can rewrite this relation as
follows:

U � tı1
tı2
� � � tıl

tˇ D T � t l�1
˛ tı1

tı2
� � � tıl

t˛0 :
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Here, by the daisy relation t l�1
˛ tı1

tı2
� � � tıl

t˛0 D tx1
tx2
� � � txl

tˇ , we have

U � tı1
tı2
� � � tıl

tˇ D T � tx1
tx2
� � � txl

tˇ:

Removing tˇ from both sides of this relation we get the desired relation.

d4 d5 f6 f7 d2gC1

e4 e5 e2gC1

ı

ı0

ı

ı0

Figure 4: The curves dj ; ej .j D 4; 5; : : : ; 2gC 1/ and fh .hD 6; 7; 8; 9/ on †2
g

Let dj , ej .j D 4; 5; : : : ; 2gC 1/, fh .hD 6; 7; 8; 9/ be the simple closed curves on
†2

g as in Figure 4 which are defined by

dj D t�1
cj�3

t�1
cj�2

t�1
cj�1

.cj /; ejD tcj�3
tcj�2

tcj�1
.cj /;

fh D tch�5
tch�4

tch�3
tch�2

tch�1
.ch/:

Letting i; l;m be positive integers such that lC 1� i �m� 1, the following relations
hold from the braid relations:

tci�1
� tcm

tcm�1
� � � tcl

D tcm
tcm�1

� � � tcl
� tci
;(5)

tcl
tclC1

� � � tcm
� tci�1

D tci
� tcl

tclC1
� � � tcm

:(6)

Next is a lemma from [4], whose proof we include here for completeness.

Lemma 11 [4] For k D 1; 2; : : : ; 2g� 2, the following relations hold in †2
g :

2g�2Y
iDk

tciC3
tciC2

tciC1
tci
D .tckC2

tckC1
tck
/2g�1�k tdkC3

tdkC4
� � � td2gC1

(7)

kY
iD2g�2

tci
tciC1

tciC2
tciC3

D te2gC1
� � � tekC4

tekC3
.tck

tckC1
tckC2

/2g�1�k(8)

1Y
iD4

tci
tciC1

tciC2
tciC3

tciC4
tciC5

D tf9
tf8

tf7
tf6
.tc1

tc2
tc3

tc4
tc5
/4(9)
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Proof First, we prove the relation (7) by induction on 2g � 1 � k . Suppose that
k D 2g� 2. Then, we have

tc2gC1
� tc2g

tc2g�1
tc2g�2

D tc2g
tc2g�1

tc2g�2
� td2gC1

:

Therefore, the conclusion of the relation holds for k D 1. Let us assume, inductively,
that the relation holds for kC 1< 2g� 2. By (5), we have

2g�2Y
iDk

tciC3
tciC2

tciC1
tci

D tckC3
tckC2

tckC1
tck
�

2g�2Y
iDkC1

tciC3
tciC2

tciC1
tci

D tckC3
tckC2

tckC1
tck
� .tckC3

tckC2
tckC1

/2g�1�.kC1/tdkC4
tdkC5

� � � td2gC1

D .tckC2
tckC1

tck
/2g�1�.kC1/

� tckC3
tckC2

tckC1
tck
� tdkC4

tdkC5
� � � td2gC1

D .tckC2
tckC1

tck
/2g�1�.kC1/

� tckC2
tckC1

tck
� tdkC3

� tdkC4
tdkC5

� � � td2gC1
:

Hence, the relation (7) is proved.

Next, we prove the relation (8) by induction on 2g� 1� k . Suppose that k D 2g� 2.
Then, we have

tc2g�2
tc2g�1

tc2g
� tc2gC1

D te2gC1
� tc2g�2

tc2g�1
tc2g

:

Therefore, the conclusion of the relation holds for kD2g�2. Let us assume, inductively,
that the relation holds for kC 1< 2g� 2. By (6), we have

kY
iD2g�2

tci
tciC1

tciC2
tciC3

D

� kC1Y
iD2g�2

tci
tciC1

tciC2
tciC3

�
� tck

tckC1
tckC2

tckC3

D te2gC1
� � � tekC5

tekC4
.tckC1

tckC2
tckC3

/2g�2�k
� tck

tckC1
tckC2

tckC3

D te2gC1
� � � tekC5

tekC4
� tck

tckC1
tckC2

tckC3
� .tck

tckC1
tckC2

/2g�2�k

D te2gC1
� � � tekC5

tekC4
� tekC3

� tck
tckC1

tckC2
� .tck

tckC1
tckC2

/2g�2�k :

Hence we obtain the relation (8). The proof for the relation (9) is very similar, and we
leave it to the reader.
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Let

Hi WD tc1
tc2
� � � tci

; H i WD tci
� � � tc2

tc1
; I2g�8 WD td10

td11
� � � td2gC1

;

J2g�6 WD te2gC1
� � � te9

te8
; K4 WD tf9

tf8
tf7

tf6
; L16 WD

4Y
iD1

tciC3
tciC2

tciC1
tci
:

Lemma 12 For g � 4, the following relation holds in †2
g :

.tc1
tc2
� � � tc2gC1

/4 D .H3/
4.H 3/

2g�8K4.H5/
4I2g�8

Proof It is easy to check that from the braid relations we have

.tc1
tc2
� � � tc2gC1

/4 D .tc1
tc2

tc3
/4

1Y
iD4

tci
� � � tciC2g�3

D .H3/
4

2g�2Y
iD1

tciC3
tciC2

tciC1
tci
:

By the relation (7) for k D 7 repeating (5), we obtain

.tc1
tc2
� � � tc2gC1

/4 D .H3/
4

� 6Y
iD1

tciC3
tciC2

tciC1
tci

�
.tc9

tc8
tc7
/2g�8I2g�8

D .H3/
4.tc3

tc2
tc1
/2g�8

� 6Y
iD1

tciC3
tciC2

tciC1
tci

�
I2g�8:

It is easy to check that from the braid relations we have

6Y
iD1

tciC3
tciC2

tciC1
tci
D

1Y
iD4

tci
tciC1

tciC2
tciC3

tciC4
tciC5

:

Hence, by (9), we obtain the desired relation.

Lemma 13 For g � 4, the following relation holds in †2
g :

.tc1
tc2
� � � tc2gC1

/2g�2
D J2g�6L16.H3/

2g�6td 0 te0

Proof From the braid relations we have

.tc1
tc2
� � � tc2gC1

/2g�2
D

� 1Y
iD2g�2

tci
tciC1

tciC2
tciC3

�
.tc5

tc6
� � � tc2gC1

/2g�2:
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By the chain relation td 0 te0 D .tc5
tc6
� � � tc2gC1

/2g�2 , the relation (8) for k D 5 and
repeating (6),

.tc1
tc2
� � � tc2gC1

/2g�2
D J2g�6.tc5

tc6
tc7
/2g�6

� 1Y
iD4

tci
tciC1

tciC2
tciC3

�
td 0 te0

D J2g�6

� 1Y
iD4

tci
tciC1

tciC2
tciC3

�
.tc1

tc2
tc3
/2g�6td 0 te0 :

Since it is easy to check that from the braid relations we have

1Y
iD4

tci
tciC1

tciC2
tciC3

D

4Y
iD1

tciC3
tciC2

tciC1
tci
;

we obtain the relation in the statement.

Proposition 14 Let g � 4. Then the following relation holds in †2
g . If g is even,

then we have

tıtı0 DK4.H5/
4I2g�8J2g�6L16.H3/

2t
g�3

d
td 0 t

g�3
e te0 :

If g is odd, then we have

tıtı0 DK4.H5/
4I2g�8J2g�6L16.H 3/

2t
g�3

d
td 0 t

g�3
e te0 :

Proof By Lemmas 12, 13 and the chain relation

tıtı0 D .tc1
tc2
� � � tc2gC1

/2gC2
D .tc1

tc2
� � � tc2gC1

/4 � .tc1
tc2
� � � tc2gC1

/2g�2;

we have

tıtı0 D .H3/
4.H 3/

2g�8K4.H5/
4I2g�8J2g�6L16.H3/

2g�6td 0 te0 :

Since c1; c2; c3 are disjoint from d 0 and e0 , by conjugation by .H3/
4.H 3/

2g�8 we
obtain

tıtı0 DK4.H5/
4I2g�8J2g�6L16.H3/

2g�2.H 3/
2g�8td 0 te0 :

The claim follows from this relation and the chain relations td te D .H3/
4D .H 3/

4 .

Lemma 15 Let g � 4. For any positive integer m, we have

L16.H5/
4
D �12;mT10mM9 � tc5

tc3
tc4

tc2
tc3
;

where M9 D t.tc4
td tc3

tc4
/�1.c5/

tc2
t.tc5

tc4
/�1.c6/

td tt�1
c4
.c3/

tc7
t.tc5

tc4
/�1.c6/

td tt�1
c4
.e/ .
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Proof By (6) and the braid relations, we have

L16.H5/
4
D tc4

tc3
tc2

tc1
H5tc4

tc3
tc2

tc1
tt�1

c5
.c6/

tc4
tc3

tc2
tc7

tt�1
c5
.c6/

tc4
tc3
.H5/

3

D tc4
tc3

tc2
tc1

H5tc4
tc3

tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
� tc1

tc2
tc3
.H5/

3

D tc4
tc3

tc2
tc1

H5tc4
tc3

tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
.H3/

4tc4
tc5

tc3
tc4

tc2
tc3
:

Here, by the chain relation td te D .H3/
4 ,

tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
.H3/

4tc4
D tc2

tt�1
c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
td tetc4

D tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
td tc4

tt�1
c4
.e/

D td tc4
�N7 � tc4

tt�1
c4
.e/;

where N7 D .td tc4
/�1.tc2

tt�1
c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
/.td tc4

/. Note that it is easy to
check that N7 D tc2

t.tc5
tc4
/�1.c6/

td tt�1
c4
.c3/

tc7
t.tc5

tc4
/�1.c6/

td . Therefore, we have

L16.H5/
4
D tc4

tc3
tc2

tc1
H5tc4

tc3
� td tc4

�N7 � tc4
tt�1

c4
.e/ � tc5

tc3
tc4

tc2
tc3

D tc4
tc3

tc2
tc1
� tc1

tc2
tc3

tc4
tc5
� tc4

td tc3
tc4
�N7 � tc4

tt�1
c4
.e/ � tc5

tc3
tc4

tc2
tc3

D tc4
tc3

tc2
tc1
� tc1

tc2
tc3

tc4
� tc4

td tc3
tc4
�M9 � tc5

tc3
tc4

tc2
tc3

D �12 �M9 � tc5
tc3

tc4
tc2

tc3
:

The lemma follows from the relation (3).

Proof of Theorem 9 Suppose that g � 4. Let S and S 0 be two spheres with g� 1

boundary components, and let ı; ı1; ı2; : : : ; ıg�2 and ı0; ıg�1; ıg; : : : ; ı2g�4 denote
the boundary curves of S and S 0 , respectively. We attach S and S 0 to †2

g along ı
and ı0 . Then we obtain a compact oriented surface of genus g with 2g� 4 boundary
components ı1; ı2; : : : ; ı2g�4 , denoted by †2g�4

g . By Proposition 14 and Lemma 10,
there are simple close curves x1;x2; : : : ;x2g�4 such that the following relations hold
in �2g�4

g . Let

Zg�2 WD tx1
tx2
� � � txg�2

; Wg�2 WD txg�1
txg
� � � tx2g�4

:

If g is even, then we have

tı1
tı2
� � � tı2g�4

DK4.H5/
4I2g�8J2g�6L16.H3/

2Zg�2Wg�2:

If g is odd, then we have

tı1
tı2
� � � tı2g�4

DK4.H5/
4I2g�8J2g�6L16.H 3/

2Zg�2Wg�2:
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By conjugation by L16 and Lemma 15, we have the following relation. If g is even,
then we have

tı1
tı2
� � � tı2g�4

DK04�12;mT10mM9 � tc5
tc3

tc4
tc2

tc3
� I2g�8J2g�6.H

0
3/

2Z0g�2W 0g�2;

where K0
4
D L16K4L�1

16
, H 0

3
D L16H3L�1

16
Z0

g�2
D L16Zg�2L�1

16
and W 0

g�2
D

L16Wg�2L�1
16

. If g is odd, then we have

tı1
tı2
� � � tı2g�4

DK04�12;mT10mM9 � tc5
tc3

tc4
tc2

tc3
� I2g�8J2g�6.H 03/

2Z0g�2W 0g�2;

where H 03 DL16H 3L�1
16

.

Note that K0
4

, H 0
3

, H 03 , Z0
g�2

and W 0
g�2

are also products of 4, 3, 3, g � 2 and
g� 2 right-handed Dehn twists about nonseparating curves, respectively. Therefore,
for any positive integer m, the mapping class tı1

tı2
� � � tı2g�4

may can be written as a
product of 6gC 2C 10m right-handed Dehn twists about nonseparating curves. This
completes the proof.

3.3 Factorizations of boundary multitwist and a single Dehn twist

Theorem 16 Let g� 2. Let a be a nonseparating curve on †n
g . Then, for any positive

integer n, in the mapping class group �n
g , the multitwist

tı1
tı2
� � � tın

ta

can be written as a product of an arbitrarily large number of right-handed Dehn twists
about nonseparating curves.

The proof of Theorem 16 is a direct application of Lemma 10 (and Theorem 8).

Proof of Theorem 16 By the relation (4) and Theorem 9 we may assume that n� 3.
Let k be a positive integer, and recall that T10m D f.tc1

tc2
tc3
/2tc2

tc1
tc3

tc2
gm . By the

chain relation td te D .tc1
tc2

tc3
/4 , we may write

T10�2.n�2/ D T � .tc1
tc2

tc3
/4.n�2/

D T � tn�2
d tn�2

e D T � tn�2
e tn�2

d ;

where T is a product of 8.n�2/ right-handed Dehn twists about nonseparating curves.
Therefore, if m> 2.n� 2/, then we can rewrite T10m in �2

2
as

(10) T10m D T10fm�2.n�2/g �T10�f2.n�2/g DO10m�11.n�2/ � t
n�2
d ;

where O10m�11.n�2/D T10fm�2.n�2/g �T � t
n�2
e , so it is a product of 10m�11.n�2/

right-handed Dehn twists about nonseparating curves.
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Let S be a sphere with n boundary components ı; ı1; ı2; : : : ; ın�1 . We attach S to
†2

g along ı . Set ı0 D ın . Then we obtain a compact oriented surface of genus g

with n boundary components ı1; ı2; : : : ; ın , denoted by †n
g . Note that we obtain a

separating curve on †n
g from ı . We continue to write ı for the resulting separating

curve on †n
g .

Suppose that g D 2. Let D8 DD9t�1
c5

. By the relations (4) and (10), we have

tıtın
tc4
DD8 � tc5

��12;m �O10m�11.n�2/ � t
n�2
d

DD8 ��
0
12;m �O10m�11.n�2/ � t

n�2
d tc5

;

where �0
12;m
D tc5

�12;mt�1
c5

. Note that O10m�11.n�2/D tc5
O10m�11.n�2/t

�1
c5

since c5

is disjoint from c1; c2; c3 . By Lemma 10, there are nonseparating curves x1; : : : ;xn�1

on †n
2

such that the following relation holds in �n
2

:

(11) tı1
� � � tın�1

tın
tc4
DD8 ��

0
12;m �O10m�11.n�2/ � tx1

tx2
� � � txn�1

Therefore, if g D 2, then the element tı1
� � � tın�1

tın
tc4

can be written as a product of
10m� 10nC 41 right-handed Dehn twists about nonseparating simple closed curves
for any m> 2.n� 2/.

Suppose that g � 3. Let a, b and d 0 be the simple closed curves on †2
g as in Figure 1.

We obtain three nonseparating simple closed curves on †n
g from a; b; d 0 by attaching

S to †2
g along ı . We use the same letter a; b; d 0 for the three resulting curves on †n

g .
By the chain relation, the relation

tıtın
td 0 D .tc1

tc2
� � � tc2gC1

/2gC2
� td 0

holds in �n
g . By the chain relation tatb D .tc1

tc2
� � � tc5

/6 we may write

tıtın
td 0 D .tc1

tc2
� � � tc5

/6tc4
�P4g2C6g�29td 0 D tatbtc4

�P4g2C6g�29 � td 0 ;

where P4g2C6g�29 is a product of 8.n� 2/ right-handed Dehn twists about nonsepa-
rating curves. Therefore, by relations (4) and (10), we have

(12) tıtın
td 0 DD9 ��12;m �O10m�11.n�2/ � t

n�2
d �P4g2C6g�29 � td 0

DD9 ��12;m �O10m�11.n�2/ �P
0

4g2C6g�29
� tn�2

d td 0 ;

where P 0
4g2C6g�29

D tn�2
d

P4g2C6g�29t�nC2
d

. By Lemma 10, there are nonseparating
curves x1; : : : ;xn�1 on †n

g such that the following relation holds in �n
g :

(13) tı1
� � � tın

td 0 DD9 ��12;m �O10m�11.n�2/ �P
0

4g2C6g�29
� tx1
� � � txn�1
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Therefore, if g � 3, then the element tı1
� � � tın�1

tın
td 0 can be written as a product of

4g2C 6gC 13C 10m� 10n right-handed Dehn twists about nonseparating simple
closed curves for any m> 2.n� 2/.

3.4 Powers of boundary multitwists have infinite length

Theorem 17 Let g � 2, and let k � 2 be a positive integer. Then, for any k and n, in
the mapping class group �n

g the element

.tı1
tı2
� � � tın

/k

can be written as a product of an arbitrarily large number of right-handed Dehn twists
about nonseparating curves.

Proof of Theorem 17 Suppose that k 2 f2; 3g and n� 3.

Suppose that g D 2. Since O10m�11.n�2/ contains at least two tc1
, we may write the

relation (11) as
tı1
� � � tın�1

tın
tc4
DQ10m�10nC39 � t

2
c1
;

where Q10m�10nC39 is a product of 10m� 10nC 39 right-handed Dehn twists about
nonseparating curves. Since c1 and c4 are nonseparating curves and disjoint from
each other, there is an element ‰1 in �n

2
such that ‰1.c4/ D c1 and ‰1.c1/ D c4 .

Therefore, by the relation t‰1.c/ D‰1tc‰
�1
1

, we obtain the relation

tı1
� � � tın�1

tın
tc1
DQ010m�10nC39 � t

2
c4
;

where Q0
10m�10nC39

D‰1Q10m�10nC39‰
�1
1

. From the above relations, we have

.tı1
� � � tın�1

tın
/k tk�1

c4
tc1
D .tı1

� � � tın�1
tın

tc4
/k�1.tı1

� � � tın�1
tın

tc1
/

D .Q10m�10nC39 � t
2
c1
/k�1.Q010m�10nC39 � t

2
c4
/:

Since k D 2; 3, we can remove tk�1
c4

tc1
from both sides of this relation. Hence,

.tı1
� � � tın�1

tın
/k can be written as a product of k.10m� 10nC 39/Ck right-handed

Dehn twists about nonseparating curves. The proof for g� 3 is similar. In this case, we
use the relation (13) and an element ‰2 in �n

g such that ‰2.d
0/D c1 and ‰2.c1/D d 0 .

The existence of ˆ2 follows from the fact that c1 and d 0 are disjoint simple closed
curves.

Suppose that k � 4. Since k D 2q C 3� for q � 1 and � D 0; 1, the element
.tı1
� � � tın

/k D f.tı1
� � � tın

/2gq.tı1
� � � tın

/3� in �n
g .g � 2/ can be written as a product

of an arbitrarily large number of right-handed Dehn twists about nonseparating curves.
The case of nD 1; 2 follows from gluing disks along boundary components of †n

g .
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Remark 18 A close look at the proof of Theorem 6 makes it evident that whenever
we have arbitrarily long positive factorizations of any multitwist along boundary curves
t
k1

ı1
t
k2

ı2
� � � t

kn

ın
, all but finitely many of the corresponding Lefschetz fibrations will be on

symplectic 4–manifolds of general type. In particular, the total spaces of the positive
factorizations of the multitwists .tı1

tı2
� � � tın

/k , k � 2, in the above proof should have
symplectic Kodaira dimension � D 2, no matter what n is, which is very different than
the case of k D 1 corresponding to Lefschetz pencils.

4 Completing the proofs of main theorems and further re-
marks

We now bring together various results we have obtained to complete the proofs of
Theorems A, B and C. We will also discuss the length function for further mapping
classes, as well as for its restrictions to subgroups of mapping classes, and list a few
interesting questions.

4.1 Proofs of Theorems A, B and C

To prove our main theorems, we will simply provide navigational guides to the relevant
results one needs to assemble, many of which we have obtained in the previous sections.

Proof of Theorem A It is well-known that there is a unique genus-1 Lefschetz
fibration with .�1/–sphere sections, whose total space is X DE.1/DCP2 # 9CP2 .
Since b�.X / D 9, there are no more than 9 disjoint .�1/–sphere sections in this
fibration. It follows that L.�/D�1 if n> 9 and 12 if 1� n� 9.

All the remaining values of L.�/ are given by Theorem 6 and by Theorem 9.

Proof of Theorem B The mapping class group �1
1

is isomorphic to the braid group
on three strands, and it is generated by ta; tb for any two nonseparating simple closed
curves intersecting at one point. Here H1.�

1
1
IZ/Š Z, generated by any Dehn twist

along a nonseparating curve. By the 1–boundary chain relation, we have tı D .tatb/
6

in �1
g . So for Œta�D 1 in H1.�

1
1
IZ/, we have Œtı �D 12 in H1.�

1
1
IZ/.

If n > 1, we can cap off all boundary components of †n
1

but one, which induces a
homomorphism from �n

g onto �1
g . Thus, any positive product of �k in �n

1
, if it exists,

yields a positive product of tk
ı

in �1
1

, which by the above calculation is equal to 12k .
It follows that �k has a positive factorization of length 12k C l in �n

g , where l is
the number of Dehn twists along curves that separate some of the n� 1 boundary
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components we capped off. Since L is calculated only for nonseparating curves, the
latter contribution does not occur, completing the proof of our claim that �k is precisely
12k , part (1) of the theorem. It is a standard fact that any elliptic surface E.k/ admits
n� 9 sections of self-intersection �k , so �k admits a positive factorization provided
n� 9.

Part (2) is covered by Theorem 17 and part (3) by Theorem 16.

Proof of Theorem C In both parts, the value �1 of zL or L is realized by 1 2 �n
g

by Proposition 5, whereas any positive k is realized by tk
c along any homologically

essential curve c by Proposition 4. Note that for g D 0 and n D 1, there are no
homologically essential curves, and thus no positive factorizations to consider.

The fact that zL.�n
g/ does not contain C1 under the assumptions in part (1) follows

from Proposition 1. However for g � 2, either by Theorem 16 or Theorem 17, we
have mapping classes in �n

g with infinite length, completing the proof of part (2) of
the theorem.

4.2 Further observations and questions

As our results demonstrate, knowing that a mapping class admits a positive factorization
in the mapping class group of a surface (say the page of an open book) does not in general
mean that there is an upper bound on the length of all its positive factorizations. The
exceptions occur in low genus cases which is essentially due to positive factorizations
being lifts of quasipositive braid factorizations, where for the latter, it is known that the
degree of a factorization determines the length of all possible factorizations. We can
thus ask for which subgroups N < �n

g , the restriction of L to N , which we denote
by LN , has bounded image.

Consider the subgroup H1
g of �1

g , which consists of mapping classes that commute
with a fixed hyperelliptic involution on †1

g . This group has a nontrivial abelianization,
namely Z, which in a similar fashion to our arguments above provides a bound on
the length of any factorization into hyperelliptic Dehn twists in H1

g : the length of
any factorization into hyperelliptic Dehn twists along nonseparating curves is fixed.
The quotient of †1

g under the hyperelliptic involution gives the disk with 2g C 1

marked points. Since any ˆ 2H1
g commutes with the hyperelliptic involution, it gives

a mapping class of the disk with 2gC 1 marked points. Projecting the branch locus to
the quotient then gives a braid in S3 , and the class Œf � in the abelianization is exactly
the writhe of this braid under the obvious identification of Ab.z�1

g/ with Z.
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Now for g � 3, let ˆD tı in H1
g . By the above observation, ˆ has finite length in

this subgroup. On the other hand, we have the 1–boundary component chain relation

tı D .tc1
tc2
� � � tc2g

/4gC2:

It is easy to see that by applying braid relators successively, we get

ˆD .tc1
tc2
� � � tc2g�1

/4gC2
�W;

where W is a positive word that consists of products of conjugates of tc2g
. By the

2–boundary chain relation, we get .tc1
tc2
� � � tc2g

/2gC2 D tb1
tb2

, which is a mapping
class with infinite length. It follows that ˆ has infinite length in �1

g , even though it
has finite length in the subgroup H1

g . We have thus seen:

Proposition 19 The image of the positive factorization length function on the subgroup
N D LH1

g
is strictly smaller than its image on the mapping class group �1

g . Namely,
LH1

g
.H1

g/DN [f�1g, whereas L.�1
g/DN [f˙1g.

We therefore see that if the related geometric problem is restrained by positive factor-
izations in a subgroup of the mapping class group, one can achieve uniform bounds
on the topology of the fillings, which are in addition asked to come from branched
coverings of the 4–ball in the above case. This raises a question that is interesting in
its own right:

Question 20 For which subgroups N < �n
g does LN have finite, positive image?

What is the geometric significance of such N ?
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On bordered theories for Khovanov homology

ANDREW MANION

We describe how to formulate Khovanov’s functor-valued invariant of tangles in the
language of bordered Heegaard Floer homology. We then give an alternate construc-
tion of Lawrence Roberts’ type D and type A structures in Khovanov homology,
and his algebra B�n , in terms of Khovanov’s theory of modules over the ring H n .
We reprove invariance and pairing properties of Roberts’ bordered modules in this
language. Along the way, we obtain an explicit generators-and-relations description
of H n which may be of independent interest.

57M27

1 Introduction

We consider two tangle theories for Khovanov homology which are inspired by the
bordered Heegaard Floer homology of Lipshitz, Ozsváth and Thurston [5]. The first
theory is a reformulation of Khovanov’s functor-valued invariant [4] in the bordered
language. The second theory was introduced by Lawrence Roberts in [11; 12].

These bordered Khovanov theories share the same basic structure. Each assigns a
differential bigraded algebra B to a collection of 2n points on the line f0g �R in the
plane R �R. To a tangle diagram T1 in R�0 �R with 2n endpoints on f0g �R,
these theories assign a (left) type D structure yDT1

over B . The definitions of type D
structures, and other elements of the algebra of bordered Floer homology, will be given
in Section 2.

To a tangle diagram T2 in R�0 �R with 2n endpoints on f0g �R, bordered theories
assign a (right) type A structure (ie an A1–module) yAT2

over B . There is a natural
pairing operation between type D and type A structures over B called the box tensor
product, denoted � (or �B when B is unclear). If T2T1 denotes the link diagram
obtained by concatenating T2 and T1 horizontally, bordered theories compute the
Khovanov complex CKh.T2T1/ using the following pairing formula:

CKh.T2T1/Š yAT2
�B yDT1

:

In Section 3, we will obtain a bordered theory with the above structure by taking B to
be Khovanov’s arc algebra H n from [4], viewed as a differential bigraded algebra with
the differential and one of the two gradings identically equal to zero. The type D and
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type A structures yDT1
and yAT2

will be referred to as yD.T1/ and yA.T2/ in this setting.
Both come from Khovanov’s tangle invariants ŒTi �

Kh , which are chain complexes of
projective graded H n modules up to homotopy equivalence.

1.0.1 Theorem (Theorem 3.2.1) After multiplying the intrinsic gradings on yA.T2/�Hn

yD.T1/ by �1,
CKh.T2T1/Š yA.T2/�H n yD.T1/:

Roberts [11; 12] has a different construction of a bordered theory for Khovanov
homology, including a differential bigraded algebra B�n as well as type D and type A
structures for tangles. The goal of Section 5 and Section 6 is to construct Roberts’
theory using Khovanov’s theory. The basic idea is to refine Khovanov’s proofs of the
existence and invariance of his tangle invariants by splitting the equations involved into
subequations, each of which holds individually.

The construction of Roberts’ theory from Khovanov’s is not straightforward or trivial;
the combinatorics is quite involved. Moreover, at various points we take our inspiration
directly from [11; 12] rather than from abstract algebraic definitions. In particular, see
Remark 5.3.5 below. While it would be interesting to search for the most general or
natural possible explanation for the connection between these two theories, we do not
pursue this goal here.

We take the first step toward relating Roberts’ and Khovanov’s theories in Section 4. In
Section 4.1, we discuss quadratic and linear-quadratic algebras following Polishchuk
and Positselski [10]. In Section 4.2, we show that H n may be viewed as a linear-
quadratic algebra.

1.0.2 Theorem (Theorem 4.2.1) With the set of generators specified at the beginning
of Section 4.2, H n is a linear-quadratic algebra.

This theorem allows us to write H n as the quotient of the tensor algebra on the specified
generators by an ideal generated by certain explicitly given relations, which are listed
in items (1)–(4) of the proof of Theorem 4.2.1. See Corollary 4.2.7 for a more precise
statement.

A combinatorial lemma about noncrossing partitions, Lemma 4.2.4, is needed to prove
Theorem 1.0.2. While Theorem 1.0.2 is not necessary for the remainder of the paper,
Lemma 4.2.4 is important for Section 5. Proofs of Lemma 4.2.4 were found by Dömötör
Pálvölgyi [9] and independently by Aaron Potechin in a private email communication.
This lemma, and Theorem 1.0.2, may be of interest to readers independently of the
other constructions in this paper.
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In Section 4.3, we consider a notion of Polishchuk and Positselski [10] of quadratic
duality for linear-quadratic algebras. In Section 4.5, we discuss a bordered-algebra
version of this duality using type DD bimodules. Generalized Koszul duality between
two algebras B and B 0 in bordered Floer homology is defined (see Lipshitz, Ozsváth
and Thurston [6]) by the existence of a quasi-invertible rank-one type DD bimodule
over B and B 0 . The algebras used in Lipshitz, Ozsváth and Thurston’s construction have
interesting Koszul self-duality properties. However, it seems that no such properties
hold for H n . Viewing H n as a linear-quadratic algebra, we will see in Section 4.4
that its quadratic dual is infinite-dimensional, whereas H n is always finitely generated
over Z.

One could ask whether the duality between H n and this infinite-dimensional algebra
is a (generalized) Koszul duality; one could also explore related theories in which
everything stays finite-dimensional. We will take the second option here.

In Section 5, we will outline an alternate construction, based on H n , of Roberts’
algebra B�n . We define an algebra BDBR.H

n/, and we show in Proposition 5.1.7 that
the algebra B is linear-quadratic. The proof is very similar to the proof of Theorem 4.2.1
asserting that H n is linear-quadratic, and it also uses Lemma 4.2.4 in an essential
way. We deduce that B is isomorphic to the subalgebra BR�n of B�n generated by
right-pointing generators �!e .

The quadratic dual B ! of B is closely related to the subalgebra BL�n of B�n generated
by left-pointing generators  �e . In more detail, a mirroring operation m is defined on
certain algebras in Definition 5.2.6. We will see in Proposition 5.2.8 that BL�n is
a quotient of the mirror m.B !/ of B ! by certain additional relations, listed in that
proposition. As Remark 5.2.3 points out, B ! is finitely generated for idempotent
reasons.

In Section 5.3, we define a product algebra m.B !/ ˇ B of m.B !/ and B . We may
describe Roberts’ full algebra B�n as a quotient of m.B !/ˇ B .

1.0.3 Theorem (Corollary 5.3.4) B�n is isomorphic to the quotient of m.B !/ˇ B
by the extra relations on m.B !/ listed in Proposition 5.2.8.

The duality properties of B�n and m.B !/ˇ B seem more promising than those of H n .
In Proposition 5.3.6 we define a rank-one type DD bimodule over m.B !/ˇ B and its
mirror version m.m.B !/ ˇ B/. Conjecture 5.3.9 predicts that this DD bimodule is
quasi-invertible and thus yields a Koszul duality. By taking quotients of the type DD
algebra outputs, we can obtain a related rank-one DD bimodule over B�n and its mirror
version m.B�n/. Thus, we could also ask if Conjecture 5.3.9 is true with m.B !/ˇ B
replaced by B�n . A proof of either conjecture would establish that, with regard to
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Koszul duality, Roberts’ bordered theory (or the version over m.B !/ˇ B ) has closer
formal parallels with bordered Floer homology than Khovanov’s H n theory does.

In Section 6, we show how to obtain type A and type D structures over m.B !/ ˇ B
from chain complexes of graded projective H n –modules satisfying certain algebraic
conditions.

1.0.4 Theorem The following constructions are well-defined:

� Let M be a chain complex of projective graded right H n –modules satisfying
the algebraic condition Cmodule of Definition 6.1.1. To M we may associate a
type A structure yA.M / over m.B !/ˇ B .

� Let N be a chain complex of projective graded left H n –modules satisfying the
condition Cmodule of Definition 6.3.3. To N we may associate a type D structure
yD.N / over m.B !/ˇ B .

Theorem 1.0.4 is a summary of Definition 6.2.4, Proposition 6.2.5 and Definition 6.3.7
(as well as the definitions and propositions preceding them).

The chain complexes ŒTi �
Kh associated to tangles by Khovanov satisfy Cmodule , so

Theorem 1.0.4 gives us type A and type D structures yA.ŒT2�
Kh/ and yD.ŒT1�

Kh/ over
m.B !/ ˇ B . By Proposition 6.2.6, the extra relations of Theorem 1.0.3 act as zero
on the type A structure yA.ŒT2�

Kh/, so we get a type A structure over the quotient
algebra B�n . We may also take quotients of the algebra outputs of the type D structure
yD.ŒT1�

Kh/ to get a type D structure over B�n .

1.0.5 Theorem (Proposition 6.2.7 and Proposition 6.3.10) The type A structure
yA.ŒT2�

Kh/ over B�n , and the type D structure yD.ŒT1�
Kh/ over B�n , are isomorphic to

the type A and D structures Roberts associates to T2 and T1 in [11; 12].

We show that the pairing of the bordered modules over m.B !/ ˇ B agrees with the
tensor product of the original chain complexes over H n .

1.0.6 Theorem (Proposition 6.4.1) Given M and N as in Theorem 1.0.4, we have

yA.M /�m.B!/ˇB yD.N /ŠM ˝H n N;

after multiplying the intrinsic gradings on M ˝H n N by �1.

By Proposition 6.4.3, the pairing � is the same over m.B !/ˇ B and its quotient B�n .
Thus, we get an alternate proof that the pairing of Roberts’ type D and type A structures
computes Khovanov homology.

Algebraic & Geometric Topology, Volume 17 (2017)
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Finally, in Section 6.5 and Section 6.6 we show that the homotopy types of yA.ŒT2�
Kh/

and yD.ŒT1�
Kh/, as type A and type D structures over m.B !/ˇ B , are invariants of the

tangles underlying the diagrams T1 and T2 .

1.0.7 Theorem (Corollary 6.5.21 and Corollary 6.6.9) Performing a Reidemeister
move on T2 or T1 yields a homotopy equivalence between the corresponding type A
structures yA.ŒT2�

Kh/ or type D structures yD.ŒT1�
Kh/ over m.B !/ˇ B .

With the help of Proposition 6.5.22, we also obtain an alternate proof that Roberts’
type A and type D structures over B�n are homotopy-invariant under Reidemeister
moves.
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2 Some bordered algebra

The standard reference for the algebra of bordered Floer homology is Lipshitz, Ozsváth
and Thurston [7]. We will use only a subset of the full algebraic machinery; however,
we will work with coefficients in Z rather than Z=2Z. For this sign lift, we will follow
the conventions of Roberts in [11; 12].

2.1 Differential graded algebras and modules

2.1.1 Convention Unless otherwise specified, all algebras and modules discussed in
this paper will be assumed to be finitely generated over Z.

The following is the notion of differential graded algebra which will be most useful for
us; we will not need to use more general A1–algebras. In this paper, the coefficient
ring R is always a direct product of finitely many copies of Z.

2.1.2 Definition A differential bigraded algebra, or dg algebra, is a bigraded unital
associative algebra B over a coefficient ring R, equipped with an R–bilinear differential
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�1 which is homogeneous of degree .0;C1/ with respect to the bigrading. The two
gradings on a dg algebra will be called the intrinsic and homological gradings (in that
order). Thus, the differential should preserve the intrinsic grading and increase the
homological grading by 1.

The differential must satisfy the following Leibniz rule:

�1.xy/D .�1/degh y.�1.x//yCx.�1.y//;

where degh denotes the homological degree, for elements x and y of B which are
homogeneous with respect to the homological grading. The coefficient ring R is
required to coincide with the summand B0;0 of B in bigrading .0; 0/.

2.1.3 Definition Suppose R D Z�k . The elements e1 D .1; 0; : : : ; 0/; : : : ; ek D

.0; : : : ; 0; 1/ will be called the minimal, or elementary, idempotents of B . The coeffi-
cient ring R will also be referred to as the idempotent ring of B . For each elementary
idempotent ei , there is a left R–module Rei ' Z.

2.1.4 Remark The usual convention in bordered Floer homology is to have the
differential decrease the homological grading by 1; we have chosen to reverse this
convention since the differentials in Khovanov homology increase homological grading
by 1.

2.1.5 Remark Bordered Floer homology requires more general gradings by a (possi-
bly nonabelian) group G and a distinguished element � in the center of G . We use
here only the special case where G is the abelian group Z2 and � is .0; 1/.

When dealing with bigraded algebras or modules, we will use the following degree
shift convention: if X D

L
i;j Xi;j is any type of bigraded object, then X Œm; n� is

the same type of bigraded object, and the summand of X Œm; n� in bigrading .i; j /
is Xi�m;j�n .

Since we are working over Z, the following notation will also be useful, following
Roberts [11; 12]. If X is any type of bigraded object, then jidjW X ! X is defined
by multiplication by .�1/degh , where degh denotes the homological degree. Simi-
larly, jidjj W X ! X is defined by multiplication by .�1/j degh , and jidjj˝k is the
k –fold tensor product of jidjj . In this notation, if �2 denotes the multiplication on a
dg algebra B , then the Leibniz rule for the differential �1 on B can be written as

�1 ı�2 D �2 ı .�1˝jidj/C�2 ı .id˝�1/:

2.1.6 Definition A left differential bigraded module, or left dg module, over a dg
algebra B , is a bigraded left B–module M equipped with a differential d of bidegree
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.0;C1/, such that the Leibniz rule

d ımDm ı .�1˝jidj/Cm ı .id˝ d/

is satisfied, where mW B˝R M!M is the action of B on M and �1 is the differential
on B .

2.1.7 Definition A right differential bigraded module, or right dg module, over a
dg algebra B , is a bigraded right B–module M equipped with a differential d of
bidegree .0;C1/, such that the Leibniz rule

d ımDm ı .d ˝jidj/Cm ı .id˝�1/

is satisfied, where mW M˝RB!M is the action of B on M and �1 is the differential
on B .

If M is a right dg module and M 0 is a left dg module over B , then we can take the
tensor product of M and M 0 over B to produce a chain complex of graded abelian
groups, or equivalently a differential bigraded Z–module.

2.1.8 Definition Let M be a right dg module and M 0 be a left dg module over B .
The differential on the tensor product M ˝B M 0 is defined to be

dM˝BM 0 WD dM ˝jidM 0 jC idM ˝ dM 0 :

2.2 Type D structures

2.2.1 Definition Let B be a differential bigraded algebra over R as in Definition 2.1.2.
Let �1 and �2 denote the differential and multiplication on B , respectively.

A type D structure over B is, firstly, a bigraded left R–module yD which is isomorphic
to a finite direct sum of R–modules Rei˛ Œj˛; k˛ �, where the ei˛ are elementary
idempotents of B (all in bigrading .0; 0/) and Œj˛; k˛ � is a grading shift. The module yD
should be equipped with a bigrading-preserving R–linear map

ıW yD! .B ˝R
yD/Œ0;�1�;

such that
.�1˝jidj/ ı ıC .�2˝ id/ ı .id˝ ı/ ı ı D 0:

2.2.2 Remark The condition that yD D
L
˛ Rei˛ Œj˛; k˛ � would be unnecessary if R

were a direct product of copies of Z=2Z, rather than Z. But over Z, we want to
exclude cases like B DRDZ, yD DZ=2Z, ı D 0 from being valid type D structures.
The reason for this restriction is that we want Proposition 2.2.3 below, which is true
over Z=2Z, to hold over Z as well.
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2.2.3 Proposition If . yD; ı/ is a type D structure over B , then B˝R
yD is a projective

left dg B–module when equipped with the differential

d WD �1˝jidjC .�2˝ id/ ı .id˝ ı/;

where �1 and �2 denote the differential and multiplication on B , respectively.

Proof First, since yD (as an R–module) is a direct sum of R–modules Rei˛ Œj˛; k˛ �,
B˝R

yD is a direct sum of B–modules Bei˛ Œj˛; k˛ �. These are each projective because
they are summands of grading shifts of B : if RD Z�k , we have B D

Lk
iD1 Bei as

left B–modules. Thus, B ˝R
yD is a projective B–module.

Before showing that d2 D 0, we check that d satisfies the Leibniz rule. The action of
the algebra B on B ˝R

yD is given by the following map:

m WD �2˝ idW B ˝R .B ˝R
yD/D .B ˝R B/˝R

yD! B ˝R
yD:

We want to show that dımDmı.�1˝jidj/Cmı.id˝d/, as maps from B˝R.B˝R
yD/

to .B ˝R
yD/. We can write out the left side:

d ımD .�1˝jidjC .�2˝ id/ ı .id˝ ı// ı .�2˝ id/

D .�1 ı�2/˝jidjC .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/

D .�2 ı .�1˝jidj//˝jidjC .�2 ı .id˝�1//˝jidj

C .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/

D .�2˝ id/ ı .�1˝jidj˝ jidj/C .�2˝ id/ ı .id˝�1˝jidj/

C .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/:

Meanwhile, the right side is this:

mı.�1˝jidj/Cmı.id˝d/

D .�2˝ id/ı.�1˝jidj˝jidj/C.�2˝ id/ı.id˝d/

D .�2˝ id/ı.�1˝jidj˝jidj/C.�2˝ id/ı.id˝.�1˝jidjC.�2˝ id/ı.id˝ı///

D .�2˝ id/ı.�1˝jidj˝jidj/C.�2˝ id/ı.id˝�1˝jidj/

C.�2˝ id/ı.id˝..�2˝ id/ı.id˝ı///:

The first two terms on the left side cancel with those on the right side, and we only
need show that

.�2˝ id/ ı .id˝ ı/ ı .�2˝ id/D .�2˝ id/ ı
�
id˝ ..�2˝ id/ ı .id˝ ı//

�
:
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This identity follows since

.�2˝ id/ ı
�
id˝ ..�2˝ id/ ı .id˝ ı//

�
D .�2˝ id/ ı .id˝�2˝ id/ ı .id˝ id˝ ı/

D .�2˝ id/ ı .�2˝ id˝ id/ ı .id˝ id˝ ı/

D .�2˝ id/ ı .id˝ ı/ ı .�2˝ id/:

Now suppose a˝x is a generator of B˝R
yD ; we want to show d2.a˝x/D 0. We

may write a˝x as m.a; 1˝x/ and apply the Leibniz rule

d.a˝x/D .�1/degh xm.�1.a/; 1˝x/Cm.a; ı.x//;

so

d2.a˝x/D .�1/deghxd.m.�1.a/;1˝x//Cd.m.a;ı.x///

D .�1/deghxm.�1.a/;ı.x//C.�1/deghxC1m.�1.a/;ı.x//Cm.a;d.ı.x///:

The first two terms cancel each other, so it suffices to show that d.ı.x//D 0. Writing
out d , this equation amounts to

.�1˝jidj/ ı ıC .�2˝ id/ ı .id˝ ı/ ı ı D 0:

This is exactly the type D structure relation.

The following propositions will be useful in the description of Khovanov’s functor-
valued invariant as a bordered theory.

2.2.4 Proposition Let B be a dg algebra over R. Suppose that B is concentrated in
homological degree 0 (it may have nontrivial intrinsic gradings). Then a dg module
over B is the same as a chain complex of singly graded B–modules with B–linear
grading-preserving differential maps.

Proof Since B is concentrated in homological degree 0, the differential on B must
be zero. Let M be a dg module over B , with summand Mj ;k in bigrading .j ; k/.
Then, for each homological grading k , the summand

L
j Mj ;k of M is preserved

when multiplying by B ; it is a singly graded B–module. Define a chain complex with
chain module Ck D

L
j Mj ;k . The differential Ck ! CkC1 is the differential on M ;

it is B–linear by the Leibniz rule, since B has no differential.

In the other direction, taking direct sums over chain modules yields a map from chain
complexes to dg modules. These operations are inverse to each other.

The next proposition involves isomorphisms of type D structures; see Definition 6.6.1
for the basic definitions.
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2.2.5 Proposition Let B be a dg algebra over R. Suppose that B is concentrated in
homological degree 0, and that all intrinsic gradings of B are nonnegative. Then a
type D structure over B is the same, up to isomorphism, as a chain complex of singly
graded projective left B–modules with B–linear grading-preserving differential maps.

Proof Given a type D structure yD over B , Proposition 2.2.3 shows that B˝R
yD is

a dg module over B , or equivalently a chain complex of graded left B–modules by
Proposition 2.2.4. In fact, each term of the chain complex is projective, since it is a
direct sum of modules Bei˛ Œj˛; k˛ �.

Conversely, suppose � � � ! Ck! CkC1! � � � is a chain complex of graded projective
left B–modules. Since each Ck is assumed to be finitely generated, it may be written as
a direct sum of indecomposable graded projective left R–modules Ck;˛ . By Khovanov
[4, Lemma 1 of Section 2.5], which assumes that the intrinsic gradings of B are
nonnegative, we see that each Ck;˛ is isomorphic to Beik;˛

Œjk;˛ � for some uniquely
determined elementary idempotent eik;˛

and grading shift jk;˛ . Define yD as a bigraded
R–module to be the direct sum, over all k and ˛ , of Reik;˛

Œjk;˛; k�.

We may identify
L

k Ck with B ˝R
yD , since

L
k Ck D

L
k;˛ Beik;˛

Œjk;˛; k� and
yD D

L
k;˛ Reik;˛

Œjk;˛; k�. Let d denote the differential on the dg module
L

k Ck .
Then the type D operation ıW yD ! B ˝R

yD is obtained by restricting d to yDŠ
1˝R

yD � B ˝R
yD . It has the correct grading properties because d does.

Since d satisfies the Leibniz rule, we may write d D �1˝jidjC .�2˝ id/ ı .id˝ ı/.
Thus, the type D relations for ı are equivalent to d ı ı D 0, which holds because ı is
a restriction of d .

Finally, we show the two constructions given above are inverses up to isomorphism.
Suppose we start with a chain complex � � � !Ck!CkC1! � � � , decompose each Ck

as
L
˛ Ck;˛ and take the corresponding type D structure yD . Then B ˝R

yD is clearly
isomorphic to the dg module associated to � � � ! Ck ! CkC1! � � � . On the other
hand, suppose we start with a type D structure yD and then obtain a type D structure by
decomposing B˝R

yD into indecomposable projectives. The resulting type D structure
has the same number of generators as yD , with the same idempotents and bigradings.
However, the type D operation may be different: in decomposing B ˝R

yD , we may
have incorporated a change of basis.

From Definition 6.6.1, we see that if yD and yD0 are two type D structures such that
B ˝R

yD and B ˝R
yD0 are isomorphic as dg modules, then yD and yD0 are isomorphic

as type D structures. The required isomorphisms of type D structures may be obtained
by restricting the isomorphisms of dg modules. Thus, any type D structure obtained by
decomposing B˝R

yD as above is isomorphic to yD .
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2.3 Type A structures and pairing

2.3.1 Definition Let B be a dg algebra over R as in Definition 2.1.2. Let �1 and �2

denote the differential and multiplication on B , respectively.

A type A structure yA over B , synonymous with A1–module over B , is a bigraded
right R–module yA, finitely generated over R as usual by Convention 2.1.1, together
with R–linear bigrading-preserving maps mi W yA˝R B˝.i�1/! yAŒ0; i � 2�, i 2 Z�1 ,
satisfyingX
iCjDnC1

.�1/j.iC1/mi ı .mj ˝jidjj˝.i�1//

C .�1/nC1
n�1X
kD1

mn ı .id˝k
˝�1˝jidj˝.n�k�1//

C

n�2X
kD1

.�1/kmn�1 ı .id˝k
˝�2˝ id˝.n�k�2//D 0

for every n� 1. The type A structure yA is called strictly unital if m2.�; 1/D id yA and
mn D 0 for n> 2 when any of the algebra inputs to mn is 1.

2.3.2 Example If M is a (right) dg B–module, then M is a strictly unital type A
structure over B with mi D 0 for i ¤ 1; 2. If M is an ordinary bigraded module
over B , with no differential, then M is a strictly unital type A structure with mi D 0

for i ¤ 2.

2.3.3 Remark We will only need to work with type A structures which come from
dg modules as in Example 2.3.2. Thus, all our type A structures will be strictly unital,
so we will omit mention of this condition in what follows. However, although our
type A structures will have no nontrivial higher action terms, we will eventually need to
work with A1–morphisms between these type A structures. We will need to consider
morphisms which do have nontrivial higher A1–terms; see Section 6.5.

Given a type D structure . yD; ı/ and a type A structure . yA; fmi j i � 1g/ over B , with
either yD or yA operationally bounded in an appropriate sense, the natural way to pair
them is known as the box tensor product. It yields a differential bigraded abelian
group yA � yD . We will not worry about boundedness in this paper since all type D
and type A structures under consideration are bounded. See Lipshitz, Ozsváth and
Thurston [7] for more details and algebraic properties of � over Z=2Z. The material
below follows Roberts [11]; we include proofs for completeness.

To define �, the following notation will be useful.
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2.3.4 Definition Let . yD; ı/ be a type D structure over B . The map ık W yD!Bk˝R
yD

is

ık
WD .

k�1‚ …„ ƒ
id˝ � � �˝ id˝ ı/ ı � � � ı .id˝ ı/ ı ı;

where ı is applied k times. In particular, ı D ı1 .

2.3.5 Definition [11, Definition 79] yA � yD , as a bigraded abelian group, is the
tensor product yA˝R

yD . The differential on yA � yD is

@�
WD

1X
nD1

.mn˝jidjn/ ı .id˝ ın�1/:

Since we are implicitly assuming boundedness, only finitely many terms of the sum
are nonzero.

2.3.6 Proposition [11, Theorem 80] The operator @� , as defined in Definition 2.3.5,
satisfies

.@�/2 D 0:

Proof In this proof, when referring to identity operators, we will use subscripts to
explicitly indicate which identity operators we mean.

First, note that as maps from yA˝R Bj�1˝R
yD to yA˝R B i�1˝R

yD , we have

.id yA˝ ı
i�1/ı .mj ˝jid yD j

j /D .�1/j.iC1/.mj ˝jidBi�1˝ yD
j
j /ı .id yA˝Bj�1˝ ı

i�1/:

This identity is immediate over Z=2Z, and we need only verify that the signs are right.
On the right side of the equality, we have jidBi�1˝ yD

jj which is computed from the
homological degree of an output of ıi�1 . Since ı increases homological degree by 1,
ıi�1 increases homological degree by i � 1. Thus, compared with the left side, the
right side has an extra factor of .�1/j.i�1/ D .�1/j.iC1/ .

Thus,

.@�/2 D
X
n�1

X
iCjDnC1

.mi˝jid yD j
i/ı.id yA˝ı

i�1/ı.mj˝jid yD j
j /ı.id yA˝ı

j�1/

D

X
n�1

X
iCjDnC1

.�1/j.iC1/.mi˝jid yD j
i/ı.mj˝jidBi�1 j

j
˝jid yD j

j /

ı.id yA˝idBj�1˝ıi�1/ı.id yA˝ı
j�1/

D

X
n�1

X
iCjDnC1

.�1/j.iC1/..mi ı.mj˝jidBi�1 j
j //˝jid yD j

nC1/ı.id yA˝ı
n�1/
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D

X
n�1

��
.�1/n

n�1P
kD1

mnı.id yA˝idBk�1˝�1˝jidBn�k�1 j/

�

n�2P
kD1

.�1/kmn�1ı.id yA˝idBk�1˝�2˝idBn�k�2/

�
˝jid yD j

nC1

�
ı.id yA˝ı

n�1/;

where the type A relations for yA were used in the final equality. It remains to show
that the derivative termsX
n�1

��
.�1/n

n�1X
kD1

mnı.id yA˝ idBk�1˝�1˝jidBn�k�1 j/

�
˝jid yD j

nC1

�
ı.id yA˝ı

n�1/

are equal to the multiplication terms

X
n�1

�� n�2X
kD1

.�1/kmn�1ı.id yA˝idBk�1˝�2˝idBn�k�2/

�
˝jid yD j

nC1

�
ı.id yA˝ı

n�1/:

For a fixed n� 1 and 1� k � n� 1, we claim that the derivative term is equal to

.�1/kC1.mn˝jid yD j
n/ı

�
id yA˝

�
.idBn�2˝ı/ı � � �

ı.idBk�1˝�1˝jid yD j/ı.idBk�1˝ı/ı � � �ı.idB˝ı/ıı
��
:

Over Z=2Z, this equality follows from expanding out ın�1 . To see that the formula
holds over Z, note that when k D n� 1, the sign in front of the above expression
is .�1/n , in agreement with the original expression for the derivative term. Each time k

is decreased by 1, the sign should flip because jid yD j occurs after one fewer instance
of ı in the second expression, compared to the original.

Now,

.idBk�1 ˝�1˝jid yD j/ ı .idBk�1 ˝ ı/D idBk�1 ˝ ..�1˝jid yD j/ ı ı/

D�idBk�1 ˝ ..�2˝ id yD/ ı .idB˝ ı/ ı ı/

by the type D relations for yD . Thus, the sum of the derivative terms is

X
n�1

n�1X
kD1

.�1/k.mn˝jid yD j
n/ ı

�
id yA˝

�
.idBn�2 ˝ ı/ ı � � �

ı .idBk ˝ ı/ ı .idBk�1 ˝�2˝ id yD/ ı .idBk ˝ ı/ ı .idBk�1 ˝ ı/ ı � � � ı ı
��

D

X
n�1

n�1X
kD1

.�1/k.mn˝jid yD j
n/ ı .id yA˝Bk�1 ˝�2˝ idBn�k�1˝ yD

/ ı .id yA˝ ı
n/:
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Since the nD 1 multiplication term is zero, and jid yD j
nC1 D jid yD j

n�1 , the sum of the
multiplication terms is

X
n�2

n�2X
kD1

.�1/k.mn�1˝jid yD j
n�1/ ı .id yA˝Bk�1 ˝�2˝ idBn�k�2˝ yD

/ ı .id yA˝ ı
n�1/

D

X
n�1

n�1X
kD1

.�1/k.mn˝jid yD j
n/ ı .id yA˝Bk�1 ˝�2˝ idBn�k�1˝ yD

/ ı .id yA˝ ı
n/:

The sums of the derivative and multiplication terms agree, proving that .@�/2 D 0.

2.3.7 Proposition [5, Example 2.2.7] Let B be a dg algebra over R as in Definition
2.1.2. Let yD be a type D structure over B , and let yA be a right dg module over B . Then
yA � yD and yA˝B .B ˝R

yD/ are isomorphic as differential bigraded abelian groups.

For completeness, and since we are working over Z, we will give a proof of this
proposition.

Proof of Proposition 2.3.7 As bigraded abelian groups,

yA˝B .B ˝R
yD/Š . yA˝B B/˝R

yD Š yA˝R
yD:

Thus, yA˝B .B˝R
yD/ and yA � yD have the same underlying group; we must verify

that the differentials agree.

The differential on yA˝B .B ˝R
yD/ may be written as

d yA˝ .jidBj˝ jid yD j/C id yA˝ .�1˝jid yD jC .�2˝ id yD/ ı .idB˝ ı//

D d yA˝ .jidBj˝ jid yD j/C id yA˝ .�1˝jid yD j/

C .id yA˝ .�2˝ id yD// ı .id yA˝ .idB˝ ı//:

Regrouping the parentheses, we get

.d yA˝jidBj/˝jid yD jC .id yA˝�1/˝jid yD jC ..id yA˝�2/˝ id yD/ ı ..id yA˝ idB/˝ ı/:

Identifying yA with yA˝B B , the differential on yA becomes d yA˝ jidBj C id yA˝�1 .
Similarly, the algebra multiplication mW yA˝B! yA becomes

id yA˝�2W . yA˝B B/˝B! . yA˝B B/:

Thus, we can identify the above formula for the differential on yA˝B.B˝R
yD/Š yA˝R

yD

with
d yA˝jid yD jC .m˝ id yD/ ı .id yA˝ ı/:

This is also the differential on yA � yD .
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3 Khovanov’s functor-valued invariant as a bordered theory

We will assume some familiarity with Khovanov’s paper [4]. Here we briefly introduce
some useful conventions and notation.

Khovanov’s arc algebra H n has one Z–grading. We will view H n as a differential
bigraded algebra, concentrated in homological degree 0 and with no differential. The
usual Z–grading on H n becomes the intrinsic component of the bigrading. The intrinsic
gradings of H n are nonnegative. Thus, both Proposition 2.2.4 and Proposition 2.2.5
apply to H n as a dg algebra.

The component of H n in degree 0 (or, with our conventions, in bidegree .0; 0/) will be
denoted In and referred to as the idempotent ring of H n . It is isomorphic to Z�.Cn/ ,
where Cn is the nth Catalan number. The elementary idempotents of H n are the
idempotents 1a described by [4, Section 2.4]. The index a runs over elements of the
set Bn of crossingless matchings of 2n points; since this set will be important later,
we recall its definition here.

3.0.1 Definition Let P be a set of 2n distinct points p1; : : : ;p2n on the line f0g�R�
R�R, ordered from top to bottom. A crossingless matching a of P is a partition
of P into n pairs of points, such that there exists an embedding of n arcs Œ0; 1�

F
n

disjointly into R�0 �R with each arc connecting a pair of points matched in a. The
set of crossingless matchings of 2n points will be denoted Bn (different choices of P

yield canonical bijections between the relevant sets Bn ).

3.0.2 Remark The set Bn is also in bijection with the set NCn of noncrossing
partitions of n points. A noncrossing partition a of a set Q of n points q1; : : : ; qn on
f0g �R (ordered from top to bottom again) is defined to be any partition of Q into k

disjoint subsets, such that there exists an embedding of k acyclic graphs disjointly into
R�0�R, with each graph bounding one of the k subsets of fq1; : : : ; qng comprising a.

To go from a crossingless matching a of 2n points p1; : : : ;p2n to a noncrossing
partition a0 of n points q1; : : : ; qn , checkerboard color the half-plane R�0 with respect
to some embedding of arcs representing a, such that the unbounded region of the half-
plane is colored white. Without loss of generality, we may put the point qi on the
line f0g �R between the points p2i�1 and p2i . In the noncrossing partition a0 , two
points qi and qj are placed in the same subset if they can be connected in R�0 �R
by a path through the black region of the checkerboard coloring. The skeleton of the
black region provides the planar graphs which verify that a0 is a noncrossing partition.

On the other hand, given a noncrossing partition a0 of n points, one can pick an
embedding of graphs representing a0 , and fatten each graph to obtain a planar surface.
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Figure 1: Bijection between crossingless matchings on 2n points and non-
crossing partitions on n points

The boundary of this surface is a crossingless matching of 2n points. These two
constructions are inverse to each other; see Figure 1 for an illustration.

Let T be an oriented tangle diagram in the half-plane, with 2n endpoints, and assume
we have chosen an ordering of the crossings of T . Khovanov’s construction assigns
a bounded chain complex of finitely generated projective graded H n –modules, with
H n –linear differential maps, to T . We will call this complex ŒT �Kh ; we will often
view ŒT �Kh as a dg H n –module using Proposition 2.2.4. If T lies in R�0 � R,
then ŒT �Kh is a left dg module; if T lies in R�0 �R, then ŒT �Kh is a right dg module.

If T1 is an oriented tangle diagram in R�0 �R, Proposition 2.2.5 gives us an isomor-
phism class of type D structures yD.T1/ over H n , such that

ŒT1�
Kh
ŠH n

˝In
yD.T1/:

As we will see in Section 3.1, Khovanov’s construction of ŒT1�
Kh naturally gives us an

explicit type D structure yD.T1/ with this property.

If T2 is an oriented tangle diagram in R�0 � R, we will simply take the type A
structure yA.T2/ of T2 to be the right dg module ŒT2�

Kh . Suppose T2 and T1 have
consistent orientations; put them together to obtain an oriented link diagram L. Order
the crossings of L so that those of T1 come before those of T2 and let CKh.L/ be
the Khovanov complex of L. Khovanov shows in [4] that

CKh.L/Š ŒT2�
Kh
˝H n ŒT1�

Kh;

after multiplying the intrinsic gradings on ŒT2�
Kh˝H n ŒT1�

Kh by �1. By Proposition
2.3.7, we have

CKh.L/Š yA.T2/� yD.T1/;
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as in bordered Floer homology, after applying the same intrinsic-grading reversal
to yA.T2/ � yD.T1/. We will summarize this discussion more formally below in
Theorem 3.2.1.

3.0.3 Remark The reversal of the gradings here comes from Khovanov’s choice [4,
pages 672–673] to make H n positively rather than negatively graded. It is only a
convention; one could define the basic generators of H n to live in degrees �1 and �2,
rather than 1 and 2, and then no grading reversal would be necessary.

3.0.4 Remark Up to isomorphism, the bigraded chain complex CKh.L/ does not
depend on the ordering of the crossings. Indeed, suppose we reverse the ordering of
two adjacent crossings i and i C 1. Then an isomorphism

F W .CKh.L/; first ordering/! .CKh.L/; second ordering/

can be defined, on the summand of CKh.L/ corresponding to a vertex � of the cube
of resolutions, to be F WD .�1/f .�/ � id, where f .�/ WD 1 if � resolves crossings i

and i C 1 both as 1, rather than 0, and f .�/ WD 0 otherwise.

The same argument applies unchanged to the tangle complexes ŒT �Kh : the isomorphism
type of ŒT �Kh does not depend on the ordering of the crossings.

3.0.5 Remark Khovanov avoids having to choose an ordering of the crossings by
using the skew-commutative cubes formalism. We will not do this here, but we will
usually suppress mention of the choice of ordering of the crossings.

3.1 Type D structures

In this section we give a concrete definition of yD.T1/. First, we recall some properties
of H n and Khovanov’s dg modules ŒT �Kh . This section has some overlap with the
author’s PhD thesis [8, Sections 4.2–4.3].

The algebra H n has an additive basis ˇ , over Z, consisting of elements which we
will denote ..W .a/b/; �/. Here, a and b are elements of Bn , the set of crossingless
matchings of 2n points, and the operation W mirrors the matching from the right
half-plane to the left half-plane. The horizontal concatenation W .a/b is a collection
of disjoint circles in R2 . The remaining datum � consists of a choice of sign, C
or �, on each of these circles. For a 2 Bn , the idempotent 1a is .W .a/a; all plus/.
Multiplication in H n is defined using minimal cobordisms and a two-dimensional
topological quantum field theory; we refer the reader to Khovanov [4] for a precise
definition.
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Figure 2: Top line: crossingless matchings a and b , with b obtained by surg-
ering a bridge  in a . Second line: the idempotent element .W .a/a; all plus/
and the multiplicative generators h D .W .a/b; all plus/ and h˛ D

.W .a/a; minus on W .˛/˛/ . Third line: left and right idempotents of h .

Below we use the notion of a bridge of a crossingless matching; see Roberts [12,
Definition 8]. The dotted arc  in the first line of Figure 2 is a bridge of the crossingless
matching a.

Certain of the basis elements ..W .a/b/; �/ form a natural set of multiplicative gen-
erators for H n . These generators come in two forms: the first are elements h D

.W .a/b; all plus/, where a 2Bn , the element b 2Bn is obtained from a by surgering
one pair of arcs along a bridge  , and all circles of W .a/b are labeled C. The
other generators are elements h˛ D .W .a/a; minus on W .˛/˛/, where a 2 Bn and
all circles of W .a/a are labeled C except one circle, W .˛/˛ for some arc ˛ of a,
which is labeled �. Each generator h and h˛ has a unique left idempotent and right
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0 1

Figure 3: Zero- and one-resolutions of a crossing

idempotent in In . We will denote the set of multiplicative generators fh ; h˛g as ˇmult ;
it is a subset of ˇ . Some examples are shown in Figure 2.

3.1.1 Proposition The elements h and h˛ of ˇmult generate H n multiplicatively.

Proof We have not defined the multiplication on H n here, so we will only sketch
the proof. It suffices to show that any element of the form .W .a/b/; all plus/ may
be written as a product of h generators; the rest of the elements of ˇ may then be
obtained using these elements and h˛ generators.

The element .W .a/b/; all plus/ may be identified with a disjoint union of disks em-
bedded in D2�I with boundary restricting to a on D2�f0g, b on D2�f1g, and 2n

straight lines on .@D2/�I (in other words, a cobordism from a to b ). Here we identify
crossingless matchings in the right half-plane with crossingless matchings in D2 ; see
Figure 5 below.

We may assume (after an isotopy if necessary) that the I –coordinate of D2 � I gives
a Morse function on the disjoint union of disks which has only index-1 critical points,
each of which occurs at a distinct value of the I –coordinate. In such a configuration, the
disjoint union of disks can be viewed as a composition of elementary saddle cobordisms
beginning at a and ending at b . Each saddle cobordism corresponds to a generator h .
Furthermore, the composition of the saddle cobordisms in this sense agrees with
the result of multiplying the elements h in H n using minimal cobordisms; see [8,
Figure 4.3] for an illustration of this fact. Thus, we may write .W .a/b/; all plus / as
a product of generators h .

Let T be an oriented tangle diagram in R�0 �R. To specify a generator xi of ŒT �Kh ,
we first specify a resolution �i of all crossings of T ; we can view �i as a function
from the set of crossings to the two-element set f0; 1g (see Figure 3). If T�i

denotes
the diagram T with the crossings resolved according to �i , then T�i

consists of a
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T

xi D D $

C

C

h � xi D h �xi

C C

C

C

xj D D $

� �

C

C �

h � xj D h �xj

C C

C �

C

�

Figure 4: Some generators xi and h �xi of ŒT �Kh

crossingless matching of 2n points together with some circles contained in R>0 �R.
Following Roberts [12], these circles will be called free circles. The remaining data
needed to specify xi are a choice of C or � on each free circle.

Identify xi with the diagram obtained by gluing the mirror of the crossingless-matching
part of T�i

to the left side of T�i
and labeling all resulting circles with C. Then ŒT �Kh

has a Z–basis consisting of elements h �xi , where the right idempotent of h agrees
with the crossingless-matching part of T�i

. (By multiplying h with xi in Khovanov’s
usual minimal-cobordism sense, one obtains the basis for ŒT �Kh described in [4].) See
Figure 4 for an illustration of the generators xi and basis elements h �xi .

The remainder of this section may also be found in the author’s thesis [8, Section 4.3.1],
with minor modifications.
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3.1.2 Definition [8, Definition 4.3.1] Let T1 be an oriented tangle diagram in
R�0�R, with nC positive crossings and n� negative crossings, and let 0� r �nCCn� .
Define yD.T1/ to be generated as an (intrinsically) graded abelian group, in homological
degree r � n� , by the generators 1 � xi of .ŒT1�

Kh/r�n� , where .ŒT1�
Kh/r�n� is the

chain space of ŒT1�
Kh in degree r � n� . These generators have the same crossingless

matching on the left and right sides of f0g �R, and all circles touching the boundary
line have a C sign. With this definition, yD.T1/ is an In –submodule of ŒT1�

Kh .

3.1.3 Proposition [8, Proposition 4.3.2] As H n –modules,

ŒT1�
Kh
ŠH n

˝In
yD.T1/;

with yD.T1/ as defined in Definition 3.1.2.

Proof This follows from Definition 3.1.2.

Let � WD � yD.T1/
(the inclusion of yD.T1/ into ŒT1�

Kh ) and let d be the differential
on ŒT1�

Kh . Let � denote the multiplication on H n .

3.1.4 Definition [8, Definition 4.3.3] The type D differential ı on yD.T1/ is defined
by restricting the differential d to the In –submodule yD.T1/ of ŒT1�

Kh :

ı WD yD.T1/
�
�! ŒT1�

Kh d
�! ŒT1�

Kh
ŠH n

˝In
yD.T1/:

It is an In –linear map because � and d are.

Lemma 3.1.5 and Proposition 3.1.6 below follow from the proof of Proposition 2.2.5,
but we give short justifications to keep this section self-contained.

3.1.5 Lemma [8, Lemma 4.3.4] Under the identification ŒT1�
Kh ŠH n˝In

yD.T1/

from Proposition 3.1.3, we have

d D .�2˝ id/ ı .id˝ ı/;

where �2W H
n˝H n!H n is the algebra multiplication.

Proof Let h � �.x/ denote a generator of ŒT1�
Kh . Then, by the Leibniz property

for ŒT1�
Kh , we have d.h � �.x//D h � d �.x/, since H n has no differential. But since

d �.x/D ı.x/, we can conclude that

d.h � �.x//D .�2˝ id/ ı .id˝ ı/.h � �.x//:

3.1.6 Proposition [8, Proposition 4.3.5] . yD.T1/; ı/ satisfies the type D relations:

.�1˝jidj/ ı ıC .�2˝ id/ ı .id˝ ı/ ı ı D 0:
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Proof There is no differential on H n , so the �1 term is zero. For the other term, if x

is a generator of yD.T1/, then

..�2˝ id/ ı .id˝ ı/ ı ı/.x/D .d/ ı .d ı �/.x/D 0;

since d2 D 0 on ŒT1�
Kh .

In Definition 3.1.2 and Definition 3.1.4, we constructed yD.T1/ as an In –submodule
of ŒT �Kh following the proof of Proposition 2.2.5. Thus, the isomorphism class
of yD.T1/ agrees with the isomorphism class of type D structures obtained from ŒT �Kh

by using Proposition 2.2.5.

3.2 Type A structures and pairing

Let T2 be an oriented tangle diagram in R�0 �R. Since dg modules are special cases
of type A structures, Proposition 2.2.4 tells us that the right dg module ŒT2�

Kh is a valid
example of a type A structure over H n . We define yA.T2/ to be ŒT2�

Kh .

3.2.1 Theorem (Theorem 1.0.1) Let T1 and T2 be oriented tangle diagrams in
R�0 �R and R�0 �R, respectively, with orderings chosen of the crossings of T1

and T2 . Assume that T1 and T2 have consistent orientations, so that their horizontal
concatenation is an oriented link diagram L in R2 . Order the crossings of L such that
those of T1 come before those of T2 . Then

CKh.L/Š yA.T2/� yD.T1/;

after multiplying the intrinsic gradings on yA.T2/� yD.T1/ by �1.

Proof Since, up to a grading reversal, CKh.L/ Š ŒT2�
Kh˝H n ŒT1�

Kh , which is the
same as yA.T2/˝H n .H n˝In

yD.T1//, this proposition follows from Proposition 2.3.7,
Remark 3.0.3, Lemma 3.1.5 and Khovanov’s results from [4].

4 Quadratic and linear-quadratic algebras and duality

4.1 Quadratic and linear-quadratic algebras

We now consider a method of describing algebras using explicit generators and relations.
It will be important for the following sections where we relate the bordered Khovanov
theory discussed above with Roberts’ constructions in [11; 12]. The definitions and
basic properties of quadratic and linear-quadratic algebras here all follow Polishchuk
and Positselski [10], with some minor modifications.
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Let B be a unital associative algebra over a ring R, where RŠ Ze1 � � � � �Zek as
above. We will not assume B is graded; however, we will assume B comes equipped
with an augmentation, ie an algebra homomorphism � from B to the coefficient ring R.
The algebras of interest to us have a grading of some form, and R is the degree-zero
summand. Such an algebra has a natural augmentation given by projection onto this
summand.

Suppose b1; : : : ; bm is a set of multiplicative generators of B , each in the kernel BC
of � . We may assume that for each bi , there is a unique idempotent ej such that
ej bi D bi and e0j bi D 0 for j 0 ¤ j . Indeed, if ej bi D 0 for all j , then bi D 0

so bi is irrelevant as a generator, and if eja
bi were nonzero for multiple indices a,

we could remove bi from the list of generators and add each of the nonzero ele-
ments eja

bi to the list. So we may assume ej bi ¤ 0 for exactly one j , and then
bi D 1bi D .

P
j 0 ej 0/bi D ej bi . The idempotent ej will be called the left idempotent

of bi and denoted eL.bi/.

Similarly, we may further assume that for each bi , there exists a unique right idempo-
tent eR.bi/ such that bieR.bi/D bi and biej D 0 for ej ¤ eR.bi/.

Let V be the free Z–module spanned by fb1; : : : ; bmg. The assumptions above equip V

with left and right module structures over R. The statement that the bi generate B
multiplicatively means that B is isomorphic to T .V /=J , where

T .V /D
M
n�0

T n.V /DR˚V ˚ .V ˝R V /˚ .V ˝R V ˝R V /˚ � � �

and J is the kernel of the natural map T .V /! B sending a string of generators to
their product in B . As above, we may assume that each generator of the ideal J has
unique left and right idempotents.

4.1.1 Definition The augmented algebra B , with its choice of generators, is a qua-
dratic algebra if the ideal of relations J � T .V / is generated multiplicatively by its
intersection with T 2.V /D V ˝R V . In other words,

J D T .V / � I �T .V /;

where I WD J \ .V ˝R V /. Note that J always contains T .V / � I �T .V /, so B is a
quadratic algebra if J � T .V / � I �T .V /.

4.1.2 Remark If B is a quadratic algebra, then B obtains a grading by word-length
in the generators fb1; : : : ; bmg.
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4.1.3 Remark Let B be a quadratic algebra. At various points it will be helpful to
work with the generators and relations of B more explicitly. Following Polishchuk
and Positselski [10, Chapter 4.1], choose an ordering of the multiplicative generators
fb1; : : : ; bmg; we may assume that bi < bj when i < j . Use this order to put a
lexicographic ordering on monomials in these generators: the leftmost factor in a
product is defined to be the most significant part.

Let Q denote the set of quadratic monomials in the bi . Then Q can be naturally
partitioned into two subsets Q1 and Q2 : Q1 consists of the monomials which cannot
be written in B as sums of lesser monomials with respect to the lexicographic order,
and Q2 consists of the monomials which can. If bibj 2Q2 , then

bibj D

X
.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

and the coefficients ci;j Ii0;j 0 are uniquely determined if we require that ci;j Ii0;j 0 D 0

for bi0bj 0 in Q2 . By [10, Lemma 1.1 of Chapter 4.1], a set of generators for the
quadratic relation ideal I D J \T 2.V / of B is obtained by taking

Ii;j WD bibj �

X
.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

for all .i; j / such that bibj is in Q2 .

4.1.4 Definition [10, Chapter 5.1] The augmented algebra B , with its choice of
generators, is a linear-quadratic algebra if the ideal of relations J �T .V / is generated
multiplicatively by its intersection with T 1.V /˚ T 2.V /. In other words, writing
J2 WD J \ .V ˚ .V ˝R V //, B is linear-quadratic if

J D T .V / �J2 �T .V /;

or equivalently
J � T .V / �J2 �T .V /:

We will furthermore assume that J \V D 0 so that there are no linear redundancies
among the chosen generators. (As always, we assume that V � BC .)

4.1.5 Remark If B is a linear-quadratic algebra, we get a word-length filtration on B
rather than a grading. An element of B has filtration level at most k if it is a sum of
products of word-length at most k in the generators bi .

The following definitions and propositions will be used in Section 4.3 to define quadratic
duality for linear-quadratic algebras. They can all be found in [10, Chapter 5.1].
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4.1.6 Definition Let B be a linear-quadratic algebra, so that B Š T .V /=J with
J � T .V / �J2 �T .V /. The quadratic algebra B.0/ is defined as

B.0/ WD T .V /=.T .V / � I �T .V //;

where I � T 2.V / is defined as the image of J2 � .V ˚T 2.V // under the projection
.V ˚T 2.V //! T 2.V / onto the second summand.

Every generator r of I is the image of some generator v˚ r of J2 , where v 2 V .
Furthermore, if v˚ r and v0˚ r were both in J2 with v¤ v0 , then .v�v0/˚0 would
be a nonzero element of J2\V , contradicting the assumption that J2\V D 0. Thus,
the following definition makes sense.

4.1.7 Definition The function 'W I ! V is defined by sending a generator r 2 I to
the unique element '.r/ of V such that '.r/˚ r is in J2 .

4.1.8 Proposition The map ' respects the left and right R–actions on I and V .

Proof Suppose e is the left idempotent of r (which exists without loss of generality).
Then e.'.r/ ˚ r/ is in J2 , and e.'.r/ ˚ r/ D e'.r/ ˚ er D e'.r/ ˚ r , so by
the uniqueness above, '.r/ D e'.r/. If e0 is any idempotent not equal to e , then
e0.'.r/˚r/ is still in J2 , but now this expression equals e0'.r/˚0. Since J2\V D 0,
we must have e0'.r/D 0 for e0 ¤ e . Thus, ' respects the left R–action on I and V .
The right action is analogous.

Let '12 denote '˝ idV W I˝R V ! V ˝R V and let '23 denote idV ˝'W V ˝R I!

V ˝R V .

4.1.9 Proposition [10, Chapter 5.1, Proposition 1.1] The map

'12
�'23

W .V ˝R I/\ .I ˝R V /! .V ˝R V /

has image contained in I , and

' ı .'12
�'23/D 0:

Proof The definition of ' implies that the image of the map

'˚ �W I ! .V ˚ .V ˝R V //

is contained in J2 , where � denotes the inclusion map of I into V ˝R V . Thus, the
map

.'˚ �/˝ idV W I ˝R V ! .V ˚ .V ˝R V //˝R V D .V ˝R V /˚ .V ˝R V ˝R V /
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has image contained in J . On the other hand, .'˚ �/˝ idV is equal to the map

'12
˚ .�˝ idV /W I ˝R V ! .V ˝R V /˚ .V ˝R V ˝R V /:

Thus, '12˚.�˝idV / has image contained in J . By the same reasoning, '23˚.idV˝�/

has image contained in J as well.

If x is an element of .V ˝R I/\.I˝R V /�V ˝3 , then we can apply '12˚.�˝ idV /

and '23˚ .idV ˝ �/ to x , producing two elements '12.x/˚x and '23.x/˚x of J .
Subtracting, the x terms cancel and '12.x/�'23.x/ is also in J .

Since '12.x/� '23.x/ is an element of both J and V ˝R V , it is also an element
of J2 D J \ .V ˚ .V ˝R V //. The corresponding element of I under the projection
from J2 to I is the same element '12.x/�'23.x/.

Hence we can conclude that '12�'23 has image contained in I , so it makes sense to
postcompose this map with ' . Furthermore, the image of '12�'23 is contained not
just in I but in J2 and so '.'12�'23/D 0.

4.2 Khovanov’s arc algebra as a linear-quadratic algebra

In this section we present a combinatorial result, Lemma 4.2.4, whose proof was found
by Pálvölgyi [9] and independently by Potechin in an email correspondence. Besides
being important for the constructions in Section 5 and Section 6, it will yield an explicit
generators-and-relations description of H n in Corollary 4.2.7. This description is not
necessary, strictly speaking, for Section 5 and Section 6, but it may be of interest
independently.

Let V be the free Z–module spanned by the generators h and h˛ of ˇmult as defined
in Section 3.1. The idempotent ring R D In of H n has both left and right actions
on V . We may write H n as T .V /=J for some ideal J of T .V /.

4.2.1 Theorem (Theorem 1.0.2) With the generators fh ; h˛g and the augmentation
coming from its grading, H n is a linear-quadratic algebra.

This theorem will be proved using Lemma 4.2.4. We begin with some background.

Recall from Remark 3.0.2 that the elementary idempotents of H n are in bijection with
the set NCn of noncrossing partitions of n points. In fact, NCn has a natural partial
ordering: suppose p and q are elements of NCn . Then p� q if p is a refinement of q .
In other words, p � q if each of the subsets comprising p is contained in one of the
subsets comprising q (recall that p and q are collections of subsets of a set of n points).

As a poset, NCn is a lattice: any two noncrossing partitions have a unique least upper
bound and a unique greatest lower bound, although we will not make use of this
property.
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p

q

p < q

�.p/

�.p/ > �.q/

�.q/

Figure 5: The order-reversing automorphism � of NCn (when read from left
to right), or its inverse �0 (when read from right to left)

The dual of a partially ordered set is defined by reversing the order relations. It is a
standard fact that the poset NCn is self-dual.

4.2.2 Proposition NCn is order-isomorphic to the poset obtained by reversing all the
order relations on NCn .

Proof We want to define a bijection �W NCn! NCn such that p < q if and only if
�.p/ > �.q/. Let p be a noncrossing partition. Pick an embedding of acyclic graphs
in the half-plane representing p ; as in Remark 3.0.2, thicken these graphs to get planar
surfaces embedded in the half-plane. Color the interiors of these surfaces black; then
the half-plane is divided into black and white regions. Identify the half-plane with the
disk and rotate the disk counterclockwise through an angle of �=n. Swap the colors
of the regions and identify the disk back with the half plane. The skeleton of the new
black region represents the noncrossing partition �.p/. This procedure is illustrated in
Figure 5.

One may verify that � , defined in this way, reverses the order relations. Finally, � has
an inverse whose definition is the same as for � , except that the rotation is clockwise.

Associated to the partial order on NCn is a Hasse diagram Gn , which is a directed
graph whose vertices are the elements of NCn and which has an edge from p to q

precisely when p < q and there exists no vertex q0 with p < q0 < q .

We will view Gn as an undirected graph, ignoring the orientations on edges. For any
two vertices p; q of Gn connected by an edge, there is a generator h of H n with
left idempotent p and right idempotent q , and all the h generators of H n are of this
form. Note that the existence of such h does not depend on the ordering of p and q .
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If h D .W .p/q; all plus/, where  is a bridge on the crossingless matching p , then
there is also a dual bridge  | on q ; see Roberts [12, Definition 10]. Doing surgery
on q along the bridge  | gives p , and the generator h| D .W .q/p; all plus/ has left
idempotent q and right idempotent p .

Monomials in the generators h either correspond to paths in Gn , or are zero for
idempotent reasons. We will be especially concerned with paths of minimum length.

4.2.3 Definition Let p and q be vertices of Gn . The graph Gp;q has one vertex for
each minimal-length path, or geodesic, ˛ from p to q in Gn . If ˛ and ˇ are two
vertices of Gp;q , they are connected by an edge when ˛ and ˇ differ in exactly one
vertex of Gn (viewing paths in Gn as sequences of vertices of Gn ).

The proof of the following lemma was found by Dömötör Pálvölgyi and posted as an
answer to a question on MathOverflow [9]; independently, another proof was found by
Aaron Potechin and shared with the author privately in an email correspondence.

4.2.4 Lemma (Potechin [9]) Let Gn denote the Hasse diagram of NCn , viewed as
an undirected graph. Let p; q be vertices of Gn and define Gp;q as in Definition 4.2.3.
Then Gp;q is a connected graph.

Proof First, note that as partitions of a set of n points, either q contains a singleton
part or the dual �.q/ of q contains a singleton part. Indeed, out of the n points,
consider a minimal pair of points which are matched in q . (We consider a pair to be
minimal if there is no pair of points, also matched in q , nested inside the first pair.) If
there are any points nested inside the minimal pair, then these points must be singletons
by minimality, so q contains a singleton. On the other hand, if there are no points
nested inside, then one can see from Figure 5 that �.q/ contains a singleton.

In the latter case, we can use Proposition 4.2.2 to reduce to the former case: if G�.p/;�.q/
is connected, then so is Gp;q . Thus, we may assume without loss of generality that q

contains a singleton part, say fmg where m is one of the n points on the line.

We will induct on both n and the distance between p and q ; if this distance is 2 or
less, or if n� 2, there is nothing to prove.

Consider two minimal-length paths ˛ and ˇ from p to q in Gn . Since p is a partition
of the n points on the line, the point m must be contained in one of the partitioning
subsets which comprise p , say S . If S contains only m, then for each vertex along
either ˛ or ˇ , the point m must be in a singleton set; otherwise ˛ or ˇ would not
have minimal length (the length could be reduced by removing the steps that connect
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and disconnect m from the other points on the line). Hence we may ignore m and
view ˛ and ˇ as paths in Gn�1 . By induction, ˛ may be modified one vertex at a
time to produce ˇ , and we may reintroduce the singleton point m without issue.

On the other hand, suppose S contains additional points as well as m. Then we may
modify both ˛ and ˇ , one vertex at a time, to get paths ˛0 and ˇ0 from p to q such
that the first step of both ˛0 and ˇ0 separates m from the other points in S . To do this,
find the first step along ˛ or ˇ after which m is an isolated point and commute this
step to the beginning of ˛ or ˇ by changing the path one vertex at a time.

Now let p0 denote the partition p with the point m isolated from S . Both ˛0 and ˇ0

start by moving from p to p0 and then along a minimal-length path (say ˛00 or ˇ00 )
from p0 to q . Since the distance from p0 to q is one less than the distance from p

to q , we may conclude by induction that ˛00 may be modified one vertex at a time to
obtain ˇ00 . Thus, the same is true for ˛0 and ˇ0 and hence for ˛ and ˇ as well.

4.2.5 Remark If p is the minimal element of NCn with respect to the partial ordering,
and q is the maximal element, then elements of Gp;q are maximal chains in NCn and
Lemma 4.2.4 is a well-known result; see Bessis [2, Proposition 1.6.1], as well as Adin
and Roichman [1] for more properties of Gp;q in this case. Lemma 4.2.4 can be viewed
as a generalization of this result to a setting in which p and q may not necessarily be
comparable in the partial ordering.

Proof of Theorem 4.2.1 We want to show that J � T .V / � J2 �T .V /. We start by
exhibiting elements in the intersection J2 D J \ .V ˚ .V ˝R V //; we will let J 2

denote the ideal generated by these elements. Recall that the notion of a bridge for a
crossingless matching was defined in Roberts [12, Definition 8], and the dual bridge  |

for a bridge  was defined in [12, Definition 10].

(1) Whenever  and � are two bridges which can be drawn without intersection on
the same crossingless matching, the element hh�0 � h�h 0 is in J 2 , for the
natural choices of �0 and  0 .

(2) Whenever  is a bridge and ˛ is an arc such that h and h˛ have the same
left idempotent, and neither of the endpoints of  lies on the arc ˛ , the element
hh˛0 � h˛h is in J 2 for the natural choice of ˛0 . If one of the endpoints of
the bridge  lies on the arc ˛ , then there are two natural choices for ˛0 ; for
each of these choices, hh˛0 � h˛h is an element of J 2 .

(3) Whenever ˛1 and ˛2 are distinct arcs in the same crossingless matching, so
that h˛ and h˛0 have the same left idempotent, the element h˛1

h˛2
�h˛2

h˛1
is

in J 2 . Furthermore, for every arc ˛ , the element h2
˛ is in J 2 .
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(4) Finally, if  is any bridge, such that h has left idempotent eL and right
idempotent eR , the element hh| � h˛1

� h˛2
is in J 2 , where ˛1 and ˛2 are

the arcs containing the endpoints of  .

To show that J � T .V / � J2 � T .V /, it suffices to show that J � T .V / � J 2 � T .V /,
since J 2 � J2 . Actually, J 2 D J2 (see Remark 4.2.6 below), but we will not need
this fact in the current proof.

Let r be an arbitrary element of J . We may assume without loss of generality that r

has a unique left idempotent eL and right idempotent eR . Since J is an ideal of the
tensor algebra T .V /, r may be written as a linear combination of monomials in the
generators h and h˛ . Let

r D
X

i

ni.hi;1 � � � hi;li
/;

where ni 2 Z and each hi;j is one of the generators h or h˛ .

Consider one of the monomial summands miDhi;1 � � � hi;li
of r . After adding elements

of T .V / � J 2 � T .V / to this monomial, we may assume that all the h generators
among the hi;j come before (ie with lower j than) the h˛ generators. The necessary
relation elements come from item (2) above. Let m0i denote the monomial obtained by
modifying mi in this way.

Write m0i as m;i �m˛;i , where m;i is a product of h generators and m˛;i is a
product of h˛ generators. Each m;i has left idempotent eL and right idempotent eR .
We may view eL and eR as vertices of Gn , the undirected Hasse diagram of NCn ,
and to the monomial m;i we may associate a path p.m;i/ in Gn from eL to eR .

We claim that we may further modify m0i by adding elements of T .V / � J 2 � T .V /

until p.m;i/ is a minimal-length path between eL and eR . Indeed, suppose p.m;i/

is a path of nonminimal length. Write m;i D h1
� � � hk

. Then there exists a minimal
index 2� j � k such that h1

� � � hj�1
corresponds to a path of minimal length in Gn

but h1
� � � hj does not.

Let eR.hj / denote the right idempotent of hj . By assumption, the distance be-
tween eL and eR.hj�1

/ in Gn is j � 1, but the distance between eL and eR.hj /

is j � 2 rather than j . Indeed, this distance must be less than j . It cannot be less
than j � 2, or the distance between eL and eR.hj�1

/ would be less than j � 1. The
distance between eL and eR.hj / also cannot be j � 1, because each edge in Gn

connects two noncrossing partitions whose number of parts differs by one modulo two.
Hence this distance must be j � 2.
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Thus, there exists some monomial h 0
1
� � � h 0

j�2
corresponding to a path in Gn from eL

to eR.hj /. Appending h|
j

to this monomial, we get h 0
1
� � � h 0j�2 � h

|
j

, which
corresponds to a path of length j�1 in Gn between eL and eR.hj�1

/. By assumption,
the distance between eL and eR.hj�1

/ is j � 1, so h 0
1
� � � h 0

j�2
�h|

j
corresponds to

a minimal-length path in Gn .

We now have two minimal-length paths in Gn between eL and eR.hj�1
/, namely

˛ D p.h1
� � � hj�1

/ and ˇ D p.h 0
1
� � � h 0

j�2
� h|

j
/. By Lemma 4.2.4, we may

modify ˛ one vertex at a time to obtain ˇ . Such modifications correspond, on the level
of monomials, to adding relation terms obtained from item (1) above.

Thus, we may modify m;i , which equals h1
� � � hj�1 �hj � � � hk

, by adding terms
in T .V / �J 2 �T .V / to obtain h 0

1
� � � h 0

j�2
� h|

j
� hj � � � hk

. Inside this monomial is
h|
j
� hj , which may be replaced with a sum of h˛ terms using the relation terms in

item (4) above. As before, these h˛ terms may be commuted to the right side of m0i
using item (2).

After this modification, we have strictly reduced the length of m;i in the factorization
of m0i as m;i � m˛;i . If the new m;i still does not represent a minimal-length
path p.m;i/ in Gn , we can repeat the same procedure and eventually it will terminate.

At this point, we have shown that we can modify our original r D
P

i ni.mi/ by adding
terms in T .V / � J 2 � T .V /, until each mi is a monomial factorizable as m;i �m˛;i

with m˛;i a monomial in the generators h˛ and m;i a monomial in the generators h
representing a minimal-length path in Gn . The starting and ending points of all these
paths are the same, namely the left and right idempotents of r . Thus, by Lemma 4.2.4
and the relations from item (1), we may do further modifications until all of the mi

are the same monomial m and we have

r Dm

X
i

ni.m˛;i/ modulo T .V / �J 2 �T .V /:

Let r 0 denote the right side of the above equality; r 0 is an element of T .V / and we
want to show that r 0 D 0 modulo T .V / �J 2 �T .V /.

The monomial m represents an element of H n of the form .W .a/b; all plus/, where
a WD eL is the left idempotent of r and b WD eR is the right idempotent. The signs are all
plus because m corresponds to a path of minimal length. Indeed, by Proposition 3.1.1,
.W .a/b; all plus/ can be written as a product of h generators. If m represented a
sum of basis elements .W .a/b; �/ in H n with � not all plus, then the length of m

would be at least two plus the length of the product expansion of .W .a/b; all plus/.
This claim follows because the length of a monomial m in the generators h is
equal to the grading of the corresponding element of H n (assuming this element is
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nonzero). But then the product expansion of .W .a/b; all plus/ would correspond to
a shorter-length path from a to b than p.m /, a contradiction. Finally, if m were
zero in H n , then we could write m D Qm

QQm , where Qm is nonzero in H n but
becomes zero when multiplied on the right by the leftmost factor of QQm . For this to
be true, Qm must represent a sum of basis elements .W .a/ Qb; �/ with � not all plus,
where Qb is the right idempotent of Qm . By the above argument, we can obtain a shorter
path than p. Qm / from a to Qb . Appending p. QQm /, we get a shorter path from a to b

than p.m /, a contradiction.

Now we use the fact that r 2 J , or in other words that r D 0 as an element of H n . The
same holds for r 0 , since T .V / �J 2 �T .V / is a subset of J . The summand a.H

n/b is
a free abelian group with a basis element for every assignment of signs � to the circles
of W .a/b . Saying that r 0 D 0 in H n means that the coefficient of r 0 on each of these
basis elements is zero. In other words, for each assignment of signs � to the circles of
W .a/b , the sum of the terms nimm˛;i of r 0 corresponding to � is zero in H n .

We will show that for a fixed � , the terms nimm˛;i such that mm˛;i equals
.W .a/b; �/ in H n actually sum to zero modulo the relation terms from items (2)
and (3) above. There may also be some terms mm˛;i which are already zero in H n

and thus which represent no basis element .W .a/b; �/ of H n . We will deal with these
terms at the end.

Suppose mh˛ Dmh˛0 D .W .a/b; �/ in H n , where m corresponds to a minimal-
length path; here ˛ and ˛0 are arcs in b which lie on the same circle in W .a/b , and �
assigns � to this circle while assigning C to all other circles of W .a/b . Then we may
use relations from item (2) to write both mh˛ and mh˛0 as h Q̨m , where Q̨ is any
arc in the left idempotent a of m which, in W .a/b , lies in the same circle as ˛ and ˛0 .
This generalization of the item (2) relations is true by induction on the length of  .

Now, for a more general sum of terms mm˛;i all representing .W .a/b; �/ in H n , we
can use the above modifications to replace each of the monomials m˛;i with the same
monomial m˛ . We do this by picking, for example, m˛ Dm˛;i1

, and then for i ¤ i1 ,
we move each factor of m˛;i to the left and back to the right so that it becomes identical
to the factor appearing in m˛;i1

. After doing this for all i , we use relations from
item (3) to replace each m˛;i with m˛ .

For a fixed � , let N� be the sum of the ni such that mm˛;i represents .W .a/b; �/

in H n . By the above paragraph, the sum of the terms nimm˛;i of r 0 with mm˛;i

representing .W .a/b; �/ in H n is equivalent to N�mm˛ modulo T .V / �J 2 �T .V /.
We see that N�mm˛ D 0 in H n . But since mm˛ is the basis element of a.H

n/b
corresponding to � , we can conclude that N� D 0. Thus, the sum of the terms
nimm˛;i of r 0 under consideration is equal to zero modulo T .V / �J 2 �T .V /.
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Finally, some of the terms mm˛;i may not represent any .W .a/b; �/ in H n ; this hap-
pens if and only if mm˛;i is zero in H n . In this case, by the above logic, we can use re-
lations from items (2) and (3) to rearrange mm˛;i until it has h2

˛ somewhere, for some
generator h˛ . Thus, these terms mm˛;i are in T .V / �J 2 �T .V / by item (3) above.

Starting with r 2 J above, we have successively modified r using linear-quadratic
relations until we obtained zero. Hence

J � T .V / �J 2 �T .V /� T .V / �J2 �T .V /

and so H n is a linear-quadratic algebra.

4.2.6 Remark In fact, one can show by analyzing the grading possibilities case-by-
case that the linear-quadratic relations listed above in (1)–(4) are a full set of generators
for J2 . In other words, J 2 D J2 .

We get a description of H n in terms of generators and relations.

4.2.7 Corollary Let V denote the free Z–module spanned by the degree-1 generators
h and the degree-2 generators h˛ of H n , with left and right actions of RD InŠZCn

on V given by multiplication in H n . Then

H n
Š T .V /=.T .V / �J2 �T .V //;

where the tensor products in T .V / are over R, and J2 D J 2 is generated by the
explicit relations given above in items (1)–(4) of the proof of Theorem 4.2.1.

4.2.8 Remark All of the generators of J2 listed in items (1)–(4) of the proof of
Theorem 4.2.1 are homogeneous with respect to the intrinsic grading on H n . Thus,
Corollary 4.2.7 also gives us a description of H n as a graded algebra. This grading
differs from the word-length filtration which H n acquires as a linear-quadratic algebra
by Remark 4.1.5, even on the basic multiplicative generators: h˛ has intrinsic degree 2

and word-length 1, while h has intrinsic degree and word-length both equal to 1.

4.2.9 Remark Braden [3] gives a generators-and-relations description of a ring An;n

which has H n as an idempotent truncation; see also Stroppel [13]. It would be
interesting to compare Braden’s generators and relations with the h and h˛ generators
and relations discussed here; we have not tried to do this in any detail.

4.3 Quadratic duality

Next we discuss quadratic duality for quadratic and linear-quadratic algebras. The dual
of a quadratic algebra B is another quadratic algebra B ! . The dual of a linear-quadratic
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algebra B is a quadratic algebra B ! with a differential. Even if B is finitely generated
over Z, following Convention 2.1.1, the algebra B ! might be infinitely generated
over Z. Accordingly, Convention 2.1.1 will not be taken to hold for dual algebras B ! in
general. However, B ! will still be generated multiplicatively by a finite set of elements.

We review the relevant definitions from Polishchuk and Positselski [10, Chapters 1
and 5]. We start with the case of quadratic algebras and then discuss the modifica-
tion needed for linear-quadratic algebras. Let B , R, bi , V and J be defined as in
Section 4.1.

Let V � denote HomZ.V;Z/. Since V is a free Z–module, V � is free of the same
rank as V . If bi is a generator of V , let b�i denote the corresponding generator of V � .
We define left and right actions of R on V � by declaring that b�i has the same left
and right idempotents as bi .

4.3.1 Definition Let B be a quadratic algebra and write BDT .V /=J as in Section 4.1,
with I WD J \T 2.V /. The quadratic dual B ! of B is defined to be

B !
WD T .V �/=.T .V �/ � I? �T .V �//;

where I? is the submodule of T 2.V �/D V �˝R V � annihilating I via the natural
action of V �˝R V � on V ˝R V .

4.3.2 Remark Let Q1 , Q2 and bi be as defined as in Remark 4.1.3 above. We have
a relation Ii;j in I for every monomial bibj in Q2 . If bibj is in Q1 rather than Q2 ,
consider instead the dual monomial b�i b�j in B ! . We can define a relation in I? by

I !
i;j WD b�i b�j C

X
.i0;j 0/>.i;j/

c!
i;j Ii0;j 0b

�
i0b
�
j 0 ;

where c!
i;j Ii0;j 0 is only nonzero if bi0bj 0 is in Q2 , in which case c!

i;j Ii0;j 0 is defined to
be the coefficient ci0;j 0Ii;j of the .i 00 D i; j 00 D j / term in the relation

Ii0;j 0 D bi0bj 0 �

X
.i00;j 00/<.i0;j 0/

ci0;j 0Ii00;j 00bi00bj 00 :

The ideal I? is spanned by the relations I !
i;j ; like Remark 4.1.3, this follows from

[10, Lemma 1.1 of Section 4.1].

We now extend quadratic duality to linear-quadratic algebras.

4.3.3 Definition [10, Chapter 5.4] Let B be a linear-quadratic algebra; recall that
Definition 4.1.6 associates a quadratic algebra B.0/ to B . The quadratic dual B !
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of B is defined, as an algebra, to be the usual quadratic dual of B.0/ . Since B ! is a
quadratic algebra, it has a grading by word-length. We will interpret this grading as the
homological grading for a differential �1 on B ! .

We will first define �1 on the basis elements of V � and extend to B ! with the Leibniz
rule. We will use the map 'W I ! V from Definition 4.1.7. Dualizing ' , we get
'�W V �! I� , where I� WD HomZ.I;Z/.

We claim that I� is isomorphic to the degree-2 summand of B ! . To see this, write
the degree-2 summand of B ! as T 2.V �/=I? D HomZ.V ˝ V;Z/=I? . There is a
natural map „ from HomZ.V ˝V;Z/ to I� given by precomposing with the inclusion
from I into V ˝ V . The map „ is surjective because any functional from I to Z
may be extended to a functional from V ˝V to Z. Indeed, using the conventions of
Remark 4.1.3, the Z–basis fIi;j j bibj 2Q2g for I may be extended to a Z–basis
fIi;j j bibj 2Q2g[Q1 for V ˝V .

The kernel of „, by definition, consists of those functionals on V ˝V which anni-
hilate I . Thus, the kernel is the same as I? . We can conclude that „ induces an
isomorphism from the degree-2 summand of B ! to I� .

Now, for a degree-1 element of B ! , ie an element v� 2 V � dual to a basis element v
of V , define �1.v

�/ to be '�.v�/. This is an element of I� and thus a degree-2
element of B ! .

We may extend �1 to a map from B ! to B ! , homogeneous of degree C1, using the
Leibniz rule

�1.xy/D .�1/deg x�1.x/yCx�1.y/:

Note that this Leibniz rule differs from the one used in Polishchuk and Positselski [10],
to stay consistent with our earlier sign conventions.

4.3.4 Remark Suppose B is a linear-quadratic algebra with an intrinsic grading,
whose augmentation map is induced from the grading. Suppose further that all the mul-
tiplicative generators bi of B and the explicit generators Ii;j of I from Remark 4.1.3
are homogeneous with respect to the intrinsic grading, and the map 'W I!V preserves
intrinsic degree. For example, H n satisfies these properties: the generators h have
intrinsic degree 1 and the generators h˛ have intrinsic degree 2. Each term of each
relation in items (1) and (4) of the proof of Theorem 4.2.1 has intrinsic degree 2. Those
in item (2) have degree 3 and those in item (3) have degree 4. The map ' is only nonzero
on relations from item (4), and sends elements of degree 2 to elements of degree 2.

With these assumptions, V � has a natural intrinsic grading, namely the negative of
the grading on V (so that the pairing of V � with V is grading-preserving). The
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generators of I? are homogeneous with respect to this grading; this can be seen from
Remark 4.3.2. Thus, B ! acquires an intrinsic grading. Since 'W I ! V preserves
intrinsic grading, so does '�W V �! I� , and hence the differential �1 on B ! preserves
intrinsic grading. The intrinsic grading on B ! is different from the homological grading,
which �1 increases by one. In summary, B ! may be viewed as a differential bigraded
algebra with a .0;C1/ differential.

4.4 The dual of Khovanov’s arc algebra

Theorem 4.2.1, Definition 4.3.3 and Remark 4.3.4 together give us a differential bigraded
algebra .H n/! , which we will call the dual of H n .

4.4.1 Example When nD 1, H n DH 1 is the algebra ZŒx�=x2 over the idempotent
ring I1 D Z. The generator x has intrinsic degree 2. Thus, the dual .H 1/! is ZŒx��,
where x� has bidegree .�2; 1/. The differential on .H 1/! is zero and .H 1/! is not
finitely generated over Z.

In general, .H n/! is never finitely generated over Z, since arbitrary powers of any
generator h�˛ will be nonzero in .H n/! .

4.5 Type DD bimodules

We may relate the duality discussed in Section 4.3 with the type DD bimodules en-
countered in bordered Heegaard Floer homology; see Lipshitz, Ozsváth and Thurston
[6], especially Section 8. First, we give a definition of these bimodules over Z; as in
Section 2, we do not cover the most general possible case.

Let B and B 0 be differential bigraded algebras over an idempotent ring RD…i.Zei/.
The case B 0D B ! will be important, so we will not assume that B 0 is finitely generated
over Z.

Over Z=2Z, the following is equivalent to Definition 2.2.55 of Lipshitz, Ozsváth and
Thurston [7].

4.5.1 Definition A type DD bimodule over B and B 0 is, first of all, a bigraded free
Z–module cDD with left and right actions of R, such that cDD admits a Z–basis
consisting of grading-homogeneous elements with unique left and right idempotents
among the ei . Furthermore, cDD must be equipped with an R–bilinear map

ıW cDD ! B ˝R
cDD ˝R .B 0/op
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of degree .0;C1/, such that the type DD structure relations

.�1˝jidj˝ jidj/ı ıC .id˝jidj˝�1/ı ıC .�2˝ id˝�2/ı� ı .id˝ ı˝ id/ı ıD 0

are satisfied, where �1 and �2 denote the differential and multiplication on B or B 0

as appropriate, and

� W B ˝B ˝ cDD ˝ .B 0/op
˝ .B 0/op

! B ˝B ˝ cDD ˝ .B 0/op
˝ .B 0/op

is a sign flip which multiplies b1˝ b2˝x˝ .b0
3
/op˝ .b0

4
/op by .�1/.degh b2/.degh b0

4
/ .

4.5.2 Remark The odd-seeming sign conventions reflect the fact that, while we
write cDD with B on the left and .B 0/op on the right to make the notation more
manageable, we really want to think of both B and B 0 being on the left of cDD when
fixing sign conventions.

Of particular interest here are type DD bimodules with cDDDR as an R–bimodule. We
will refer to these as rank-one DD bimodules, following the notation of [6, Section 8].
For a rank-one DD bimodule, we have

B ˝R
cDD ˝R .B 0/op

Š B ˝R .B 0/op;

so we may rewrite the type DD structure relations as

.�1˝jidj/ ı ıC .id˝�1/ ı ıC .�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı D 0;

where � is now a map from B ˝B ˝ .B 0/op˝ .B 0/op to itself.

When B is a linear-quadratic algebra with an intrinsic grading as in Remark 4.3.4, we
can construct an associated rank-one DD bimodule over B and B ! . Setting cDD DR,
we define ıW R! B ˝R .B !/op by

ı.e/ WD
X

i

bi ˝ .b
�
i /

op;

where e is one of the elementary idempotents and the sum runs over those multiplicative
generators bi of R which have left idempotent e . (These idempotent conditions will
be implicit in what follows.) Note that ı has degree .0;C1/; it preserves the intrinsic
grading, since the grading on B ! was defined to be the negative of that on B , and it
increases the homological grading by 1, since bi has homological degree 0 while b�i
has homological degree 1.

4.5.3 Proposition The map ı , as defined above, satisfies the type DD structure
relations.
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Proof First, let e 2 R be one of the elementary idempotents. Applying the term
.�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı to e , we get

.�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı.e/D
X
i;j

bibj ˝ .b
�
j /

op.b�i /
op;

where the sum runs over all pairs of multiplicative generators bi ; bj of B with com-
patible idempotents, such that the left idempotent of bi is e . Note that � D id here,
because the generators bj all have homological degree zero.

In the notation of Remark 4.1.3, we may split the above sum as

(4-1)
X

bi bj2Q1

bibj ˝ .b
�
j /

op.b�i /
op
C

X
bi bj2Q2

bibj ˝ .b
�
j /

op.b�i /
op:

If bibj is in Q1 , then in B ! , we may write b�i b�j as

�

X
bi0bj 02Q2

.i0;j 0/>.i;j/

ci0;j 0Ii;j b�i0b
�
j 0 :

Thus,

(4-2)
X

bi bj2Q1

bibj ˝ .b
�
j /

op.b�i /
op
D�

X
bi bj2Q1

bibj ˝

X
bi0bj 02Q2

.i0;j 0/>.i;j/

ci0;j 0Ii;j .b
�
j 0/

op.b�i0/
op:

On the other hand, if bibj is in Q2 , then we may write bibj as

bibj D

� X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

�
�'

�
bibj �

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

�
:

The expression '
�
bibj �

P
bi0bj 02Q1;.i

0;j 0/<.i;j/ ci;j Ii0;j 0bi0bj 0
�
, or '.Ii;j /, denotes

some linear combination of the multiplicative generators bk of B . Define integers Ci;j Ik

by

(4-3) '

�
bibj �

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

�
D

X
k

Ci;j Ikbk :

We haveX
bi bj2Q2

bibj˝.b
�
j /

op.b�i /
op

D

X
bi bj2Q2

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0˝.b
�
j /

op.b�i /
op
�

X
bi bj2Q2

�X
k

Ci;j Ikbk

�
˝.b�j /

op.b�i /
op:
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On the right side of this equation, the first term cancels with the first termX
bi bj2Q1

bibj ˝ .b
�
j /

op.b�i /
op

of expression (4-1), by (4-2). Thus, we see that

.�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı.e/D�
X

bi bj2Q2

�X
k

Ci;j Ikbk

�
˝ .b�j /

op.b�i /
op:

Now we consider the terms .�1˝jidj/ ı ı.e/ and .id˝�1/ ı ı.e/. The first of these
is zero, because B has no differential. The second may be written as

.id˝�1/ ı ı.e/D
X

k

bk ˝ .'
�.b�k //

op:

To compute '�.b�
k
/ as an element of I� , ie a homomorphism from I to Z, use (4-3)

above: this homomorphism sends the generator

Ii;j D bibj �

X
bi0bj 02Q1

.i0;j 0/<.i;j/

ci;j Ii0;j 0bi0bj 0

of I to the coefficient Ci;j Ik 2 Z.

We want to view '�.b�
k
/ as an element of B ! of homological degree 2. To do this,

following Definition 4.3.3, we pick any extension of '�.b�
k
/ to a functional from

V ˝R V to Z, or in other words an element of V �˝R V � , and then consider this
element modulo the ideal I? . Since fIi;j j bibj 2Q2g[Q1 is a Z–basis for V ˝R V ,
we may extend '�.b�

k
/ to V ˝R V by defining it to be zero on any bi0bj 0 in Q1 .

This extended '�.b�
k
/ sends bibj 2 Q2 to Ci;j Ik , since it sends Ii;j to Ci;j Ik and

sends every bi0bj 0 2Q1 to zero. Thus,

'�.b�k /D
X

bi bj2Q2

Ci;j Ikb�i b�j :

We conclude that

.id˝�1/ ı ı.e/D
X

k

bk ˝

X
bi bj2Q2

Ci;j Ik.b
�
j /

op.b�i /
op;

canceling the remaining term of .�2˝�2/ı� ı .id˝ ı˝ id/ı ı.e/. This computation
verifies that the type DD structure relations for ı are satisfied.

Algebraic & Geometric Topology, Volume 17 (2017)



1596 Andrew Manion

We can also reverse the roles of B and B ! : define ı0W R! B !˝R .B/op by

ı0.e/ WD
X

i

b�i ˝ .bi/
op;

where again the sum is over all multiplicative generators bi with left idempotent e .

4.5.4 Proposition The map ı0 satisfies the type DD structure relations.

Proof The proof is similar enough to the proof of Proposition 4.5.3 that we will omit
it to save space.

4.5.5 Definition The rank-one type DD bimodules constructed in Proposition 4.5.3
and Proposition 4.5.4 will be denoted BK.B!/op

and B!

KBop
respectively.

4.5.6 Remark In [6, Section 8], Lipshitz, Ozsváth and Thurston define a notion
of Koszul duality in the language of DD bimodules: two algebras B and B 0 are
Koszul dual if there exists a rank-one DD bimodule over B and B 0 which is quasi-
invertible (and such that the algebra outputs of the DD operation ı lie in the kernel
of the augmentation maps on B and B 0 ; this technical condition is satisfied for all the
bimodules we consider). We will not define the notion of quasi-invertibility precisely
here; see [6], although they use Z=2Z coefficients.

By Proposition 4.5.3, we get a type DD bimodule over H n and .H n/! ; Proposition
4.5.4 gives us a type DD bimodule over .H n/! and H n . It would be interesting to
know whether these bimodules are quasi-invertible; if they were, then .H n/! could be
regarded as the Koszul dual of H n in this generalized sense.

However, bordered Floer homology has even stronger duality properties: Theorem 13
of [6] asserts that the bordered surface algebra A.Z; i/ is Koszul dual to both A.Z;�i/

and A.Z�; i/, where Z is a pointed matched circle and Z� is another pointed matched
circle constructed from Z . This situation contrasts with that of H n , where the quadratic
dual algebra is infinitely generated and thus much larger than H n itself. Below, we
will see that Roberts’ construction is able to avoid this issue.

5 Khovanov’s algebra and Roberts’ algebra

In this section we begin to discuss Roberts’ bordered theory for Khovanov homology
from [11; 12]. Roberts’ bordered theory uses a differential bigraded algebra which
is denoted B�n . This algebra is generated by some right-pointing generators �!e and
left-pointing generators  �e , modulo some explicitly given relations. The differential
on B�n is zero on all the right-pointing generators �!e .
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We start by defining an algebra BR.H
n/ using the structure of H n , with its additive

basis ˇ D f.W .a/b; �/g and set of multiplicative generators ˇmult D fh ; h˛g. In
Proposition 5.1.9, we show that BR.H

n/ is isomorphic to the subalgebra BR�n of B�n

generated by the right-pointing elements.

The subalgebra BR�n is a linear-quadratic algebra. Its quadratic dual, as defined in
Section 4.3, is closely related to the subalgebra BL�n of B�n generated by the left-
pointing elements. More precisely, in Definition 5.2.6 we define a mirroring operation
on algebras over Iˇ , and in Proposition 5.2.8, we show that BL�n is a quotient
of m.BR.H

n/!/, the mirroring of the quadratic dual of BR.H
n/Š BR�n , by a few

explicitly given extra relations.

Finally, in Section 5.3, we take a suitably defined product of m.BR.H
n//! and BR.Hn/,

obtaining an algebra whose quotient by the same extra relations as above is B�n .

5.1 Right side of Roberts’ algebra

As in Section 3.1, let ˇ denote the Z–basis f.W .a/b; �/g of H n . As at the beginning
of Section 3, let In denote the idempotent ring of H n . The space HomIn

.H n;H n/

of left In –module maps from H n to itself is a free Z–module. A Z–basis for
HomIn

.H n;H n/ has generators e.h1; h2/ for each pair h1 2 ˇ; h2 2 ˇ such that h1

and h2 have the same left idempotent. Here, e.h1; h2/ is the homomorphism that
sends h1 to h2 and sends all other basis elements in ˇ to zero.

Note that HomIn
.H n;H n/ has the structure of a ring, with multiplication given by

composition. We will define a grading on HomIn
.H n;H n/ which differs from the

usual one by a factor of �1
2

.

5.1.1 Definition Let e.h1; h2/ be a generator of HomIn
.H n;H n/. The degree of

e.h1; h2/ is defined to be 1
2
.deg h1� deg h2/.

5.1.2 Remark This choice of grading has the advantage that it agrees with Roberts’
choice, but it can also be justified on its own grounds. The factor of �1 comes
from the fact that Khovanov, in [4], replaces the usual q–grading by its negative, to
make H n positively rather than negatively graded. We will see below (in the proof
of Proposition 6.4.1 in particular) why the factor of 1

2
is reasonable. Note that while

this grading is now a 1
2
Z–grading rather than a Z–grading, it will always function as

an intrinsic grading rather than a homological grading. Thus, it will have no effect on
signs and we are free to use a 1

2
Z–grading if desired.

The elements e.h; h/ 2 HomIn
.H n;H n/, for h 2 ˇ , generate a subring which is

isomorphic to a direct product of copies of Z. We will denote this subring by Iˇ ; note
that Iˇ is isomorphic to the idempotent ring of B�n , and hence of BR�n as well.
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5.1.3 Definition Let BR.H
n/ denote the smallest subring of HomIn

.H n;H n/ con-
taining Iˇ and containing every e.h1; h2/ such that h2 occurs as a nonzero term in
the ˇ–expansion of h1 �h, for some h in the set of multiplicative generators ˇmult . We
may view BR.H

n/ as an algebra over Iˇ .

The algebra BR.H
n/ inherits an intrinsic grading from the grading on HomIn

.H n;H n/

defined in Definition 5.1.1. The degree-0 summand of BR.H
n/ is its idempotent

ring Iˇ . The multiplicative generators e.h1; h2/ such that h2 occurs as a nonzero
term in the basis expansion of h1 � h , for some  , have degree �1

2
, since h has

intrinsic degree 1. Those such that h2 occurs as a nonzero term in the expansion of
some h1 � h˛ have degree �1, since h˛ has degree 2.

A natural set of multiplicative generators for BR.H
n/ as an algebra over Iˇ is given in

its definition, namely the elements e.h1; h2/ such that h2 occurs as a nonzero term in
the ˇ–expansion of h1 �h, for some h in the set of multiplicative generators ˇmult . If
hDh , the corresponding element of BR.H

n/ will be denoted b Ih1;h2
. If hDh˛ , the

corresponding element of BR.H
n/ will be denoted bC Ih1;h2

, where if h1D .W .a/b; �/,
then C is the circle in W .a/b containing ˛ . Note that for a fixed h1 , all arcs ˛0 which
lie on the same circle C as ˛ in W .a/b yield the same generator bC Ih1;h2

of BR.H
n/.

5.1.4 Remark We use notation with subscripts, such as b Ih1;h2
or bC Ih1;h2

, to
refer to elements of BR.H

n/. We also use b , without any subscripts, to refer to a
crossingless matching. Below, if  is a bridge on b , we will let b. / denote the
crossingless matching obtained by surgery on b along  .

There are no linear relations among the generators b Ih1;h2
and bC Ih1;h2

. The genera-
tors are homogeneous with intrinsic degree �1

2
or �1, so they are in the kernel of the

augmentation map on BR.H
n/ (which is the projection onto the degree-0 summand).

The left idempotent of each generator of the form b Ih1;h2
and bC Ih1;h2

is e.h1; h1/;
the right idempotent is e.h2; h2/. For compactness of notation, we will identify each
elementary idempotent e.h; h/ 2 Iˇ with the corresponding element h 2 ˇ . Thus, we
say that the left idempotent of b Ih1;h2

and bC Ih1;h2
is h1 and the right idempotent

is h2 .

We will show that BR.H
n/, with the set of generators b Ih1;h2

and bC Ih1;h2
, is a

linear-quadratic algebra. The proof will closely follow that of Theorem 4.2.1.

Let V be the free Z–module spanned by the generators of BR.H
n/; as discussed above,

the idempotent ring Iˇ has left and right actions on V . We may write BR.H
n/ D

T .V /=J for some ideal J of T .V /. Let J2 WD J \ .T 1.V /˚T 2.V //. We identify
a set of generators for J2 .
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5.1.5 Proposition The ideal J2 of linear-quadratic relations of BR.H
n/ is generated

by the following relations:

(1) Suppose  and � are two bridges which can be drawn without intersection on the
same crossingless matching b ; let �0 denote the bridge on b. / corresponding
to �, where b. / is the crossingless matching resulting from surgery on  .
Define  0 similarly. For any choice of .a; �/, let h1 D .W .a/b; �/ 2 ˇ . If the
generators b Ih1;h2

and b�0Ih2;h3
exist in BR.H

n/ for some h2; h3 in ˇ , we get
a relation

b Ih1;h2
b�0Ih2;h3

� b�Ih1; Qh2
b 0I Qh2;h3

2 J2;

where Qh2 is any element of ˇ such that b�Ih1; Qh2
and b 0I Qh2;h3

exist in BR.H
n/.

(2) Suppose  is a bridge on a crossingless matching b . For any choice of .a; �/,
let h1 D .W .a/b; �/ 2 ˇ . Let C be any circle in W .a/b . Let C 0 be any circle
in W .a/.b. // which corresponds to C under surgery on  ; if the endpoints
of  do not both lie on C , then C 0 is unique, and otherwise there are two
choices for C 0 . If the generators b Ih1;h2

and bC 0Ih2;h3
exist in BR.H

n/ for
some h2; h3 in ˇ , we get a relation

b Ih1;h2
bC 0Ih2;h3

� bC Ih1; Qh2
b I Qh2;h3

2 J2;

where Qh2 is any element of ˇ such that bC Ih1; Qh2
and b I Qh2;h3

exist; note that
Qh2 is uniquely determined by C and h1 .

(3) For any choice of .a; b; �/, let h1 D .W .a/b; �/ 2 ˇ . Let C1 and C2 be two
circles in W .a/b . If the generators bC1Ih1;h2

and bC2;h2;h3
exist in BR.H

n/ for
some h2; h3 in ˇ , we get a relation

bC1Ih1;h2
bC2Ih2;h3

� bC2Ih1I
Qh2

bC1I
Qh2;h3

2 J2;

where Qh2 is any element of ˇ such that bC2Ih1I
Qh2

and bC1I
Qh2;h3

exist. As above,
Qh2 is uniquely determined by C2 and h1 .

(4) Finally, suppose  is any bridge on a crossingless matching b . Recall from
Section 4.2 or Roberts [12, Definition 10] that  has a dual bridge  | . For
any choice of .a; �/, let h1 D .W .a/b; �/ 2 ˇ . If the generators b Ih1;h2

and b|Ih2;h3
exist in BR.H

n/ for some h2; h3 in ˇ , then h3 differs from h1

by switching the sign of one circle of W .a/b from plus to minus. Let C denote
this circle. We get a relation

b Ih1;h2
b|Ih2;h3

� bC Ih1;h3
2 J2:

Proof Since BR.H
n/ is an intrinsically graded algebra, if we have a relation in J2 ,

then each of its grading-homogeneous parts must also be in J2 . Thus, we may analyze
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J2 one degree at a time. Since the generators of BR.H
n/ have intrinsic degree �1

2

or �1, and we are trying to identify the linear-quadratic relations among them, we
may assume these relations have intrinsic degree �1, �3

2
or �2. The case of intrinsic

degree �1
2

is excluded since any such relation would be a linear dependency among
the generators of BR.H

n/.

The relations of intrinsic degree �1 may be sums of quadratic monomials in the
degree �1

2
generators b Ih1;h2

of BR.H
n/ and linear monomials in the degree �1

generators bC Ih1;h2
. Analyzing the possible cases, we get the relations of items (1)

and (4) above.

The relations of intrinsic degree �3
2

are sums of quadratic monomials, each involving
one degree �1

2
generator b Ih1;h2

and one degree �1 generator bC Ih1;h2
. These

relations are generated by the relations of item (2) above.

Finally, the relations of degree �2 are sums of quadratic monomials in the degree �2

generators bC Ih1;h2
. They are generated by the relations of item (3) above.

5.1.6 Remark As in Section 4.2, Proposition 5.1.5 is not actually needed to prove
Proposition 5.1.7. We could instead introduce J 2 , generated by the relations in
Proposition 5.1.5, and show that J � T .V / �J 2 �T .V /.

5.1.7 Proposition With J and J2 defined as above, we have

J D T .V / �J2 �T .V /:

Thus, BR.H
n/ is a linear-quadratic algebra.

Proof We want to show that J � T .V / � J2 �T .V /. As in Theorem 4.2.1 above, it
suffices to show that for a general element r of J , one may successively add to r

elements of the ideal generated by the relation elements listed in items (1)–(4) of
Proposition 5.1.5, until one obtains zero.

Let r be an arbitrary element of J . We may assume without loss of generality
that r has a unique left idempotent and right idempotent. Since J is an ideal of the
tensor algebra T .V /, r may be written as a linear combination of monomials in the
generators b Ih1;h2

and bC Ih1;h2
. Let

r D
X

i

ni.bi;1 � � � bi;li
/;

where ni 2 Z and each bi;j is one of the generators b Ih1;h2
or bC Ih1;h2

.

Consider one of the monomial summands miDbi;1 � � � bi;li
of r . After adding elements

of T .V / �J2 �T .V / to this monomial, we may assume that all the b Ih1;h2
generators
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among the bi;j come before (ie with lower j than) the bC Ih1;h2
generators. The

necessary relations come from item (2) of Proposition 5.1.5. Let m0i denote the
monomial obtained by modifying mi in this way.

Write m0i as m;i �mC;i , where m;i is a product of b Ih1;h2
generators and mC;i is a

product of bC Ih1;h2
generators. Let h2ˇ be the left idempotent of m;i and let h0i 2ˇ

be the right idempotent of m;i . Note that h does not depend on i , since h is the left
idempotent of our original relation term r .

Viewing h and h0i as elements of H n , let e 2 In denote the right idempotent of h.
Let e0 2 In denote the right idempotent of h0i , which does not depend on i since the
monomial mC;i is a product of bC generators. As in Theorem 4.2.1, e and e0 are
vertices of Gn , the undirected Hasse diagram of NCn . To the monomial m;i , we can
associate a path p.m;i/ from e to e0 in Gn .

We claim that we may further modify m0i such that p.m;i/ is a minimal-length path
between e and e0 as vertices of Gn . Indeed, suppose m;i corresponds to a path of
nonminimal length between e and e0 . Write m;i D b1Ih1;h2

� � � bk Ihk ;hkC1
. Then

there exists a minimal index 2� j �k such that b1Ih1;h2
� � � bj�1Ihj�1;hj corresponds

to a path � of minimal length in Gn but b1Ih1;h2
� � � bj Ihj ;hjC1

does not.

Let eR.hj /2 In denote the right idempotent of hj . Then eR.hj / is a vertex of Gn and
the distance in Gn between e and eR.hj / is j � 1. However, the distance between e

and eR.hjC1/ is j � 2 rather than j ; the argument is the same as in the proof of
Theorem 4.2.1. Thus, there exists a path Q in Gn , of length j �2, from e to eR.hjC1/.
Appending eR.hj / to the end of the path Q , we get a path  in Gn , of length j � 1,
between e and eR.hj /. By assumption,  is a minimal-length path.

We now have two minimal-length paths � and  between e and eR.hj /. The path �
corresponds to the monomial b1Ih1;h2

� � � bj�1Ihj�1;hj . The path  corresponds to a
monomial b 0

1
Ih1;h

0
2
� � � b 0

j�2
Ih0
j�2

;h0
j�1
�b|

j
Ih0
j�1

;hj , and we have eR.h
0
j�1

/D eR.hjC1/.

By Lemma 4.2.4, we may modify � one vertex at a time to obtain  . Such modifications
can be mirrored on the level of monomials by adding relation terms obtained from
item (1) of Proposition 5.1.5. Thus, we may modify m;i , which equals

b1Ih1;h2
� � � bj�1Ihj�1;hj � bj Ihj ;hjC1

� � � bk Ihk ;hkC1
;

by adding terms in T .V / �J2 �T .V / to obtain

b 0
1
Ih1;h

0
2
� � � b 0

j�2
Ih0
j�2

;h0
j�1
� b|

j
Ih0
j�1

;hj � bj Ihj ;hjC1
� � � bk Ihk ;hkC1

:

Inside this monomial is b|
j
Ih0
j�1

;hj � bj Ihj ;hjC1
, which may be replaced with a

bC Ih0
j�1

;hjC1
term using the relation terms in item (4) of Proposition 5.1.5. As before,

this bC term may be commuted to the right side of m0i .
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After this modification, we have strictly reduced the length of m;i in the factorization
of m0i as m;i �mC;i . If the new m;i still does not represent a minimal-length path
in Gn , we can repeat the same procedure and eventually it will terminate.

At this point, we have shown that we can modify our original r D
P

i ni.mi/ by adding
terms in T .V / � J2 � T .V /, until each mi is a monomial factorizable as m;i �mC;i

with m;i representing a minimal-length path in Gn . The starting and ending vertices
of all these paths are the same. Thus, by Lemma 4.2.4 and the relations from item (1)
of Proposition 5.1.5, we may do further modifications until all of the m;i are the same
monomial m and we have

r Dm

X
i

ni.mC;i/ modulo T .V / �J2 �T .V /:

Since r was assumed to have unique left and right idempotents in Iˇ , the set of
circles C involved in each term mC;i of the above expression must be the same. Thus,
using relations from item (3) of Proposition 5.1.5, we may rewrite each mC;i as the
same monomial mC . Then

r DN �mmC modulo T .V / �J2 �T .V /;

where N D
P

ni .

Finally, we use the fact that r 2 J , or in other words that r D 0 as an element
of BR.H

n/. This condition implies that N �mmC must also be in J , since it differs
from r by an element of T .V / �J2 �T .V / which is contained in J .

Note that BR.H
n/ is a subring of HomIn

.H n;H n/; the element mmC may be
identified with the left R–linear map from H n to H n which sends e to e0 and sends
all other elements of ˇ to zero, where e and e0 here are the left and right idempotents
of mmC . If N �mmC is zero in BR.H

n/, then it is zero in HomIn
.H n;H n/,

implying that N must be zero.

In other words, starting with r 2 J above, we have shown that r D 0 modulo
T .V / �J2 �T .V /. Hence J � T .V / � J2 � T .V /, so BR.H

n/ is a linear-quadratic
algebra.

Now we can see that BR.H
n/ is isomorphic to BR�n . First, we define the latter

algebra more precisely.

5.1.8 Definition Let B�n be Roberts’ algebra from [11; 12]. Let BR�n be the
subalgebra of B�n spanned over Iˇ by those generators �!e with right pointing arrows
(B�n also has some generators  �e with left pointing arrows). The subalgebra BR�n
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has no differential. It inherits a bigrading from B�n (see [12, Definition 19]); the
homological grading is identically zero on BR�n .

5.1.9 Proposition BR.H
n/Š BR�n as bigraded algebras over Iˇ .

Proof An examination of the subset of Roberts’ algebra relations in [12] which involve
only right-pointing generators shows that they correspond with the relations listed in
Proposition 5.1.5 under the (bigrading-preserving) identification of the generators b

of BR.H
n/ with the generators �!e of BR�n . Thus, this proposition follows from

Proposition 5.1.7.

5.2 Left side of Roberts’ algebra

5.2.1 Definition Let BL�n be the subalgebra of B�n spanned over Iˇ by those
generators  �e with left pointing arrows. The bigrading and differential on B�n give us
a bigrading and differential on BL�n .

We will see that BL�n may be identified, after a mirroring operation defined in
Definition 5.2.6, with a quotient of the quadratic dual .BR.H

n//! of BR.H
n/ by a few

explicitly given extra relations.

First, we analyze the dual algebra .BR.H
n//! . As an algebra, it is the quadratic dual

of .BR.H
n//.0/ . We may write BR.H

n/ as T .V /=J , where if

J2 WD J \ .T 1.V /˚T 2.V //

then we have
J D T .V / �J2 �T .V /:

Let I denote the image of J2 under the projection map T 1.V /˚T 2.V /! T 2.V /

onto the second summand. Then

.BR.H
n//.0/ Š T .V /=I;

.BR.H
n//! Š T .V �/=I?:

The ideal J2 is generated explicitly by the relations listed in Proposition 5.1.5. We
may discard the linear parts of these relations, and keep the quadratic parts, to get a set
of generators for I . These generators have a simple form: if r is a generating relation
in I , then r is either a single quadratic monomial or a difference of two quadratic
monomials.

Define a graph G whose vertices are all quadratic monomials appearing with nonzero
coefficient in some relation r 2 I . Two monomials v and Qv are connected by an edge
in G if v� Qv is in I .

Algebraic & Geometric Topology, Volume 17 (2017)



1604 Andrew Manion

5.2.2 Proposition The graph G is a disjoint union of isolated points, line segments
(two points connected by an edge and disconnected from the rest of G ), triangles (three
points, all connected, and disconnected from the rest of G ), and tetrahedra (four points,
all connected, and disconnected from the rest of G ).

Proof Define a graph G0 with the same vertices as G ; two monomials v and Qv are
connected by an edge in G0 if v� Qv is the quadratic part of one of the explicit relations
(1)–(4) listed in Proposition 5.1.5. We will determine the structure of G0 by looking at
the quadratic parts of the relations (1)–(4); G may be obtained from G0 by replacing
each connected component of G0 with a complete graph on the same number of vertices.

First, the isolated points in G0 are quadratic monomials of the form

b Ih1;h2
b|;h2;h3

I

these are the quadratic parts of relations from item (4) of Proposition 5.1.5.

Next we look at relations from item (1) of Proposition 5.1.5, which have no linear parts
and are already quadratic (the same applies to items (2) and (3); only the relations from
item (4) have linear parts). Some of the line segments in G0 come from relation terms

b Ih1;h2
b�0Ih2;h3

� b�Ih1; Qh2
b 0I Qh2;h3

;

where  and � are two bridges which can be drawn on the same crossingless matching
without intersection, such that � 2 Bd .L;  / in the notation of [12, Proposition 11].
Roberts’ L corresponds to our W .a/b .

Other line segments in G0 come from the same relations when � 2 Bo.L;  /, in every
case except when  splits a plus-labeled circle and �0 joins the two newly formed
circles into a new minus-labeled circle. For notations like Bo.L;  / and Bd .L;  /,
see Roberts [12, Proposition 11].

Line segments in G0 also come from relations b Ih1;h2
bC Ih2;h3

� bC Ih1; Qh2
b I Qh2;h3

of
item (2) of Proposition 5.1.5 when the circle C is disjoint from the support of  and
from relations bC1Ih1;h2

bC2Ih2;h3
�bC2Ih1I

Qh2
bC1I

Qh2;h3
of item (3) of Proposition 5.1.5,

where C1 and C2 are two distinct circles labeled C in h1 .

The remaining relations from item (2) of Proposition 5.1.5 give configurations of three
vertices in G0 connected by two edges. We get triangles in G which connect triples

fb Ih1;h2
bC Ih2;h3

; bC1Ih1; Qh2
b I Qh2;h3

; bC2Ih1;
QQh2

b I QQh2;h3
g;

fbC Ih1;h2
b Ih2;h3

; b Ih1; Qh2
bC1I

Qh2;h3
; b Ih1;

QQh2
bC2I

QQh2;h3
g
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when the circle C is not disjoint from the support of  . The rest of the triangles in G

connect triples

fb1Ih1;h2
b�Ih2;h3

; b2Ih1; Qh2
b�I Qh2;h3

; b3Ih1;
QQh2

b�I QQh2;h3
g

when i 2Bs.L; j / for 1� i; j � 3, using relations from item (1) of Proposition 5.1.5.

We have accounted for the quadratic parts of all relations from items (2)–(4) of
Proposition 5.1.5, as well as most of the relations from item (1). The remaining
relations from item (1) give rise to squares of four vertices in G0 and thus to tetrahedra
in G . These four-vertex components exist whenever we have two bridges  and �,
with � 2 Bo.L;  /, such that  splits a plus-labeled circle and �0 joins the newly
formed circles into a minus-labeled circle. In such cases, we have four quadratic
monomials which are all equal modulo the relation terms in I (and thus are connected
in G ). These can be written as b Ih1;h2

b�0Ih2;h3
, b Ih1; Qh2

b�0I Qh2;h3
, b�Ih1;

QQh2
b 0I QQh2;h3

and b�Ih1;
QQQh2

b 0I
QQQh2;h3

.

Order the set of generators b Ih1;h2
and bC Ih1;h2

of BR.H
n/ such that the b Ih1;h2

come before the bC Ih1;h2
in the ordering. Using G , the generators of I may be

summarized as follows: for every connected component of G , there exists a minimal
vertex v . For all other vertices Qv in the same component of v , there exists a relation Qv�v
in I , and if v is a singleton, then v is also a relation in I . These relations are a set of
generators for I as in Remark 4.1.3.

We may use the reasoning of Remark 4.3.2 to identify a set of generators for I? . For
any quadratic monomial in the generators b which does not appear as a vertex of G ,
the corresponding monomial in the generators b� is an element of I� . Isolated points
of G do not give generators of I� . For every line segment in G between vertices v
and Qv , let v� and . Qv/� denote the corresponding monomials in the generators b� .
Then v�C . Qv/� is an element of I� . For every triangle in G with a minimal vertex v
and two nonminimal vertices Qv and QQv , let v� , . Qv/� and . QQv/� denote the corresponding
monomials in the generators b� . Then

v�C . Qv/�C . QQv/�

is an element of I? . Finally, for every tetrahedron in G with a minimal vertex v
and three nonminimal vertices Qv , QQv and QQQv, let v� , . Qv/� , . QQv/� and . QQQv/� denote the
corresponding monomials in the generators b� . Then

v�C . Qv/�C . QQv/�C . QQQv/�

is an element of I? . The above-listed elements generate I? .
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We may also compute the action of the map ' on the generators of I , using the
relations from item (4) of Proposition 5.1.5. For every generator of I of the form
b Ih1;h2

b|Ih2;h3
� bC Ih1;h3

, we have

'.b Ih1;h2
b|Ih2;h3

/D�bC Ih1;h3
:

The map ' sends all other generators of I to zero. Thus, dualizing ' , we have

'�.b�C Ih1;h3
/D�

X
i

b�i Ih1;h2;i
b�|

i
Ih2;i ;h3

;

where the sum runs over all bridges i on the right crossingless matching of h1 which
have an endpoint on C , as well as all compatible h2;i .

Finally, .BR.H
n//! is bigraded; the generators b� Ih1;h2

have degree
�

1
2
; 1
�

since
b Ih1;h2

has degree
�
�

1
2
; 0
�
, and the generators b�C Ih1;h2

have degree .1; 1/ since
bC Ih1;h2

has degree .�1; 0/. Here, the first index denotes the intrinsic degree, and the
second index denotes the homological degree (this is the reverse of Roberts’ convention).
The generators of BR.H

n/ are all placed in homological degree 0.

5.2.3 Remark While the quadratic dual of an algebra which is finitely generated
over Z (like BR�n ) may in general be infinitely generated over Z, the algebra
.BR.H

n//! is finitely generated over Z. In fact, the relations on the algebra are
irrelevant for this property: T .V �/ is already finitely generated over Z, since the
structure of the idempotents only allows monomials of a certain length in the generators
of V � to be nonzero. The same is true for T .V /.

We can now relate .BR.H
n//! with BL�n . To do this, we need to define a mirroring

operation for modules and bimodules over the idempotent ring Iˇ of .BR.H
n//!

and BL�n .

5.2.4 Definition Let X be any module or bimodule over the idempotent ring Iˇ .
The mirror of X , denoted m.X /, is the module or bimodule whose actions of Iˇ
are the actions on X , precomposed with the map from Iˇ to Iˇ which mirrors each
elementary idempotent across the line f0g �R. Note that m.m.X //DX .

5.2.5 Example Suppose X is a left module over Iˇ . Let x 2X and let m.x/ denote
the corresponding element of m.X /. Let hD .W .a/b; �/ 2 Iˇ ; then

h �m.x/ WDm.m.h/ �x/;

where m.h/ is .W .b/a;m.�// and m.�/ is the same labeling of circles as � , mirrored
across f0g �R. See Figure 6 for an illustration.
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� m.x/ D m � x

Figure 6: The mirror of a left module over Iˇ

We will have definitions related to Definition 5.2.4 for Iˇ–modules and bimodules
with more structure. Here, we are concerned with algebras.

5.2.6 Definition Let B be a differential bigraded algebra over the idempotent ring Iˇ .
The mirror of B , denoted m.B/, is the same differential bigraded ring as B . As an
algebra, the left and right actions of Iˇ are mirrored as in Definition 5.2.4. The map
from B to m.B/ sending b 2B to m.b/2m.B/ is an isomorphism of rings (but not of
algebras); its inverse is the analogously defined map from m.B/ to m.m.B//D B . To
avoid confusion with other uses of the letter m, we will refer to both of these mirroring
maps as mirr: we have

mirrW B!m.B/ and mirrW m.B/!m.m.B//D B :

5.2.7 Remark The mirroring operation for algebras commutes with quadratic duality:
if B is a linear-quadratic algebra over Iˇ , then

m.B !/D .m.B//!:

Thus, we can write either of these algebras as m.B/! . Mirroring also commutes with
taking the opposite algebra: we have m.Bop/D .m.B//op , so we can write either of
these algebras as m.B/op .

5.2.8 Proposition BL�n is isomorphic to the quotient of m.BR.H
n//! by the follow-

ing extra relations. Let the graph G be defined as above; for each tetrahedron in G , the
only relation in m.BR.H

n//! involving the vertices of the tetrahedron is that the sum
of all its vertices is zero. The algebra BL�n imposes extra relations among the vertices
of each tetrahedron. Recall that tetrahedra in G arise when we have two bridges 
and �, with � 2 Bo.L;  /, such that  splits a plus-labeled circle and �0 joins the
newly formed circles into a minus-labeled circle. The vertices of the corresponding
tetrahedron are, following the discussion above:
� a WDm.b� Im.h1/;m.h2/

/m.b��0Im.h2/;m.h3/
/,

� b WDm.b� Im.h1/;m. Qh2/
/m.b��0Im. Qh2/;m.h3/

/,
� c WDm.b��Im.h1/;m.

QQh2/
/m.b� 0Im. QQh2/;m.h3/

/,
� d WDm.b��Im.h1/;m.

QQQh2//
m.b� 0Im.

QQQh2/;m.h3/
/.
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Whereas the algebra m.BR.H
n//! imposes only the relation aC bC cC d D 0, the

algebra BL�n imposes the relations

� aC c D 0,

� aC d D 0,

� bC c D 0,

� bC d D 0 (this relation also follows from the previous three).

From these relations, aC bC cC d D 0 may be deduced, as well as relations for the
two remaining edges of the tetrahedron:

� a� b D 0,

� c � d D 0.

Proof Consider the map from m.BR.H
n//! to BL�n sending m.b� Im.h1/;m.h2/

/ to
 �
e  Ih1;h2

and sending m.b�C Im.h1/;m.h2/
/ to  �e C Ih1;h2

. By examining the subset of
Roberts’ relations from [12] involving only left-pointing generators, and comparing
with the relations for m.BR.H

n//! above, we see that this is a well-defined surjective
bigrading-preserving map whose kernel is generated by the extra relations listed in the
statement of this proposition. These extra anticommutation relations can be found in
Roberts’ algebra as a subset of the relations (21), case (2) [12, page 98].

After mirroring, the formula above for '� agrees with Roberts’ definition [12, Proposi-
tion 25], of the differential on B�n (or equivalently on BL�n , since the differential
of any right-pointing generator �!e of B�n is zero). Since both the differential on
m.BR.H

n//! and the differential on BL�n are defined by the same formula on the
degree-1 generators and extended formally to the full algebras by the Leibniz rule, we
can conclude that the differential on BL�n agrees with the differential on m.BR.H

n//!

after quotienting the latter algebra by the extra relations.

5.3 The full algebra

In the following, B will denote BR.H
n/Š BR�n unless otherwise specified.

The goal of this section is to construct a product algebra m.B/! ˇ B and identify B�n

with a quotient of m.B/! ˇ B . We also want to construct a rank-one DD bimodule for
m.B/! ˇ B using rank-one DD bimodules for m.B/! and B .

By Proposition 4.5.3 and Proposition 4.5.4, we have rank-one type DD bimodules
which we may refer to as BK.B!/op

and B!

KBop
. Like in Definition 5.2.6 above, we can

extend the mirroring operation of Definition 5.2.4 to these bimodules.
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5.3.1 Definition Let B1 and B2 be differential bigraded algebras over the idempotent
ring Iˇ and let .K; ı/ be a type DD bimodule over B1 and B2 . The mirrored DD
bimodule .m.K/; ı0/ is defined as follows: as an .Iˇ; Iˇ/–bimodule, m.K/ is the
mirror of K as defined in Definition 5.2.4. As in Definition 5.2.6, denote the natural
map from K to m.K/ or m.K/ to K by mirr. The DD operation on m.K/ is

ı0 WDm.K/
mirr
�!K

ı
�! B1˝K˝ .B2/

op mirr˝mirr˝mirr
�����������!m.B1/˝m.K/˝m.B2/

op:

Applying Definition 5.3.1 to the bimodules BK.B!/op
and B!

KBop
, we get rank-one DD

bimodules which we will denote m.B/Km.B!/op
and m.B/!Km.B/op

.

We will focus on the DD bimodules BK.B!/op
and m.B/!Km.B/op

. Let ı1 and ı2 denote
the corresponding maps ı1W Iˇ! B ˝Iˇ .B !/op and ı2W Iˇ!m.B/!˝Iˇ m.B/op .

The set of multiplicative generators of m.B/! ˇ B will be the union of the gener-
ator sets of B and m.B/! ; there will be inclusion maps from B and m.B/! into
m.B/! ˇ B . Similarly, there will be inclusion maps from m.B/ and B ! Dm.m.B//!

into m.m.B/! ˇ B/, and thus maps from m.B/op and .B !/op into m.m.B/! ˇ B/op .
The algebra m.B/! ˇ B will be defined such that, when ı1 and ı2 are postcomposed
with these inclusion maps, their sum

ı1C ı2W Iˇ! .m.B/! ˇ B/˝Iˇ .m.m.B/
!
ˇ B//op

satisfies the type DD structure relations.

Let VB (respectively Vm.B/!/ denote the free Z–module spanned by the multiplicative
generators of B (respectively m.B/! ). Then VB and Vm.B/! have left and right actions
of Iˇ , and we may write B D T .VB/=JB and m.B/! as T .Vm.B/!/=Jm.B/! .

Define Vfull , as a bigraded free Z–module, to be VB˚Vm.B/! . The actions of Iˇ on
the summands of Vfull give Vfull an Iˇ–bimodule structure.

We will define m.B/!ˇB to be T .Vfull/=Jfull , for some ideal Jfull of T .Vfull/. We will
define Jfull with an explicit set of linear-quadratic generators, which will agree with
Roberts’ relations involving both left-pointing and right-pointing elements of B�n .

We can start by analyzing T 1.Vfull/˚T 2.Vfull/, which is equal to

.VB˚Vm.B/!/˚..VB˚Vm.B/!/˝.VB˚Vm.B/!//

D VB˚Vm.B/!˚.VB˝VB/˚.VB˝Vm.B/!/˚.Vm.B/!˝VB/˚.Vm.B/!˝Vm.B/!/:

Thus, T 1.Vfull/˚T 2.Vfull/ is the direct sum of

T 1.VB/˚T 2.VB/; T 1.Vm.B/!/˚T 2.Vm.B/!/;
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and two more summands

VB˝Vm.B/! ; Vm.B/! ˝VB:

The ideal Jfull will be generated multiplicatively by

JB \ .T
1.VB/˚T 2.VB//; Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!//;

and some extra relations

Jextra � .VB˝Vm.B/!/˚ .Vm.B/! ˝VB/:

5.3.2 Definition Jextra � .VB˝Vm.B/!/˚ .Vm.B/!˝VB/ is defined additively by the
following relations:

(1) For two bridge generators b Ih1;h2
and m.b��0Im.h2/;m.h3/

/, the “commutation
relation”

b Ih1;h2
m.b��0Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/b 0I Qh2;h3

is in Jextra for any Qh2 2ˇ such that m.b��Im.h1/;m. Qh2/
/ and b 0I Qh2;h3

exist. The bridges
 0 and � are uniquely determined. We will call such relations commutation relations
even though they do not exactly express that two elements commute.

(2) Any generator bC Ih1;h2
of B D BR.H

n/ for n> 1 can be written as a product of
bridge generators bb| . Thus, by the commutation relations above, bC Ih1;h2

must
also commute with bridge generators m.b��Im.h2/;m.h3/

/: the relation

bC Ih1;h2
m.b��Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/bC I Qh2;h3

must be in Jextra for any Qh2 2 ˇ such that m.b��Im.h1/;m. Qh2/
/ and bC I Qh2;h3

exist.

(3) For a bridge generator b Ih1;h2
and a decoration generator m.b�C Im.h2/;m.h3/

/ in
which the circle C is disjoint from the circles involved in surgery on  , we also impose
commutation relations:

b Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C Im.h1/;m. Qh2/
/b I Qh2;h3

must be in Jextra , for the unique Qh2 2 ˇ such that m.b�C Im.h1/;m. Qh2/
/ and b I Qh2;h3

exist.

(4) For two disjoint circles C and C 0 , we again have commutation relations:

bC Ih1;h2
m.b�C 0Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/bC I Qh2;h3
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must be in Jextra , for the unique Qh2 2 ˇ such that m.b�C 0Im.h1/;m. Qh2/
/ and bC I Qh2;h3

exist.

(5) Finally, let  be a bridge and let C be one of the circles involved in surgery on  .
When  joins C 0 and C 00 to form C ,

b Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/b I Qh2;h3

�m.b�C 00Im.h1/;m.
QQh2/
/b I QQh2;h3

is in Jextra for the unique Qh2 2 ˇ and QQh2 2 ˇ such that the relevant generators exist,
and when  splits C to form C 0 and C 00 ,

b Ih1; Qh2
m.b�C 0Im. Qh2/;m.h3/

/Cb Ih1;
QQh2

m.b�C 00Im. QQh2/;m.h3/
/�m.b�C Im.h1/;m.h2/

/b Ih2;h3

is in Jextra for the unique Qh2 2 ˇ and QQh2 2 ˇ such that the relevant generators exist.

5.3.3 Definition The ideal Jfull is defined by

Jfull WD T .Vfull/ �
�
.JB \ .T

1.VB/˚T 2.VB///

˚
�
Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!//
�
˚Jextra

�
�T .Vfull/:

The differential bigraded algebra m.B/! ˇ B is defined by

m.B/! ˇ B WD T .Vfull/=Jfull;

with a differential induced from the differential on m.B/! . The differential of any
generator of B is declared to be zero.

5.3.4 Corollary B�n , as a differential bigraded algebra, is the quotient of the algebra
m.B/! ˇ B by the same additional relations as specified in Proposition 5.2.8. These
relations involve only quadratic monomials with two generators of m.B/! .

Proof The relations in Jextra are modeled on Roberts’ relations for B�n in [12]
involving quadratic monomials with one left-pointing and one right-pointing generator;
see [12, Section 2.3].

5.3.5 Remark The relations in Definition 5.3.2 were chosen to match Roberts’ qua-
dratic relations involving a left-pointing and a right-pointing generator. A more general
formulation of the product operation ˇ would be desirable. The best we can do now
is to say that the relations in Jextra have an additional motivation beyond lining up with
Roberts’ relations: with these relations, ı1C ı2 defines a valid rank-one DD bimodule
over the product algebra, as we see below in Proposition 5.3.6.
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From the definition of the product algebra m.B/!ˇ B , there are natural inclusion maps
of B and m.B/! into the product. Also, by Definition 5.2.6, we have a mirror algebra
m.m.B/! ˇ B/; both m.B/ and B ! D m.m.B/!/ have natural inclusion maps into
m.m.B/! ˇ B/.

We may view the type DD map

ı1W Iˇ! B ˝Iˇ .B
!/op
D B˝Iˇ m.m.B/!/op

as a map from Iˇ to .m.B/! ˇ B/˝Iˇ .m.m.B/! ˇ B//op , using the inclusion maps
from B into m.B/! ˇ B and from m.m.B/!/op into .m.m.B/! ˇ B//op . Similarly, we
may view

ı2W Iˇ!m.B/!˝ .m.B//op

as a map from Iˇ to .m.B/! ˇ B/˝Iˇ .m.m.B/! ˇ B//op using the inclusion maps
from m.B/! into m.B/! ˇ B and from m.B/op into .m.m.B/! ˇ B//op .

5.3.6 Proposition The map ı1 C ı2W Iˇ ! .m.B/! ˇ B/˝Iˇ .m.m.B/! ˇ B//op

satisfies the type DD structure relations.

Proof Many of the type DD structure terms cancel since ı1 and ı2 individually satisfy
the type DD relations. In particular, all terms of type .�1˝jidj/ ı ı and .id˝�1/ ı ı

are accounted for and we are left with terms of type .�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı .

The remaining terms of type .�2˝�2/ ı � ı .id˝ ı˝ id/ ı ı are those in which one
of the applications of ı uses ı1 and the other uses ı2 . These are

(5-1) �bi �m.b
�
j /˝m.bj /

op
� .b�i /

op
D�bi �m.b

�
j /˝m.m.b�i / � bj /

op;

referred to as terms of type (5-1), as well as

(5-2) m.b�j / � bi ˝ .b
�
i /

op
�m.bj /

op
Dm.b�j / � bi ˝m.bj �m.b

�
i //

op;

referred to as terms of type (5-2), where bi and b�j run over all generators of B and B ! ,
respectively, with compatible idempotents. Note that the negative signs in the terms of
type (5-1) come from the sign-flip operator � .

The commutation relations among the relations defining m.B/! ˇ B ensure that all the
above terms cancel, except for potentially two sets of terms.

The first set S1 of terms includes those terms �bi � m.b
�
j / ˝ m.m.b�i / � bj /

op of
type (5-1) in which both bi and bj are among the generators b , and such that the
product bi �m.b

�
j / corresponds to splitting a circle C on the right into two circles C1

and C2 and then joining C1 to C2 again on the left to produce a new circle C3 . It
also includes those terms m.b�j / � bi ˝m.bj �m.b

�
i //

op of type (5-2) with bi and bj
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among the generators b such that m.b�j / � bi corresponds to splitting a circle C on
the left into two circles C1 and C2 and then joining C1 and C2 again on the right to
produce a new circle C3 .

The second set S2 consists of those terms of type (5-1) or (5-2) in which bi is one of
the generators b and bj is one of the generators bC , where C is one of the circles
involved in surgery on  .

For all terms except those in S1 and S2 , commutation relations may be applied to
the type (5-1) term �bi �m.b

�
j /˝m.m.b�i / � bj /

op uniquely to cancel with a unique
corresponding type (5-2) term m.b�j 0/ � bi0 ˝m.bj 0 �m.b

�
i0//

op .

First, we show that the terms in S1 sum to zero. If the type (5-1) term �bi �m.b
�
j /˝

m.m.b�i / � bj /
op is in S1 , then there are two terms m.b�j 0/ � bi0˝m.bj 0 �m.b

�
i0//

op and
m.b�j 00/ �bi00˝m.bj 00 �m.b

�
i00//

op of type (5-2) in S1 which have the same left and right
idempotents as �bi �m.b

�
j /˝m.m.b�i / � bj /

op . By the commutation relations, both
these terms are equal to bi �m.b

�
j /˝m.m.b�i / � bj /

op .

Furthermore, there is one other type (5-1) term �bi000 �m.b
�
j 000/˝m.m.b�i000/ � bj 000/

op

of S1 which is equal to both �m.b�j 0/ � bi0 ˝m.bj 0 �m.b
�
i0//

op and �m.b�j 00/ � bi00 ˝

m.bj 00 �m.b
�
i00//

op by the commutation relations. Hence it is equal to �bi �m.b
�
j /˝

m.m.b�i / � bj /
op as well. These four terms are the only terms in S1 with the same

idempotents as �bi �m.b
�
j /˝m.m.b�i / � bj /

op , and their sum is zero. Thus, the terms
in S1 sum to zero.

Now we show that the terms in S2 sum to zero. If bi is a b generator and bj is
a bC generator with C involved in surgery on  , then suppose first that  joins
two circles C1 and C2 to produce C . By item (5) of Definition 5.3.2, we have
bi � m.b

�
j / D m.b0�j / � b

0
i C m.b00�j / � b00i , where b0j and b00j are the generators bC1

and bC2
, and b0i and b00i are the appropriate b generators.

Thus, if �bi �m.b
�
j /˝m.m.b�i / � bj /

op is the corresponding term of type (5-1), we
have

�bi �m.b
�
j /˝m.m.b�i / � bj /

op

D�m.b0�j / � b
0
i ˝m.m.b�i / � bj /

op
�m.b00�j / � b00i ˝m.m.b�i / � bj /

op

D�m.b0�j / � b
0
i ˝m.b0j �m.b

0�
i //

op
�m.b00�j / � b00i ˝m.b00j �m.b

00�
i //op;

where in the last step we use commutation relations from item (2) of Definition 5.3.2.
The two resulting terms cancel the two relevant terms of type (5-2). The case when 
splits a circle, rather than joining two circles, is analogous, so the terms in S2 sum to
zero.
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Hence all the relation terms cancel and .ı1 C ı2/ satisfies the type DD structure
relations.

A general property of type D structures and type DD bimodules over an algebra B is
they give induced type D or DD structures over any quotient of B .

5.3.7 Proposition Let B be a differential bigraded algebra; let J be a bigrading-
homogeneous ideal of B which is preserved by the differential on B . Let � W B! B=J
denote the quotient projection map. Let . yD; ı/ be a type D structure over B ; then yD
descends to a type D structure over B=J , with structure operation

yD
ı
�! B ˝ yD

�˝id
���! .B=J /˝ yD:

Similarly, if B 0 and J 0 are another algebra and ideal satisfying the same conditions
as B and J , and . cDD ; ı/ is a type DD bimodule over B and B 0 , then cDD descends
to a type DD bimodule over B=J and B 0=J 0 , with structure operation

cDD
ı
�! B ˝ cDD ˝ .B 0/op �˝id˝.� 0/op

���������! .B=J /˝ cDD ˝ .B 0=J 0/op:

Proof This is a simple consequence of the type D and type DD structure relations. It
is also a special case of induction of scalars for type D structures as defined by Lipshitz,
Ozsváth and Thurston [7, Section 2.4.2].

We know that B�n is a quotient of m.B/! ˇ B , and it follows that m.B�n/
op is a

quotient of m.m.B/! ˇ B/op .

5.3.8 Corollary The map Iˇ ! B�n ˝Iˇ m.B�n/
op obtained by postcomposing

ı1 C ı2 with the tensor product of the quotient projections from m.B/! ˇ B and
m.m.B/! ˇ B/op onto B�n and m.B�n/

op satisfies the type DD structure relations.

Thus, we have rank-one type DD bimodules

m.B/!ˇBKm.m.B/!ˇB/op
and B�nKm.B�n/

op
:

5.3.9 Conjecture Either or both of the DD bimodules m.B/!ˇBKm.m.B/!ˇB/op
and

B�nKm.B�n/
op

are quasi-invertible. Hence, either or both of the algebras m.B/! ˇ
B and B�n are Koszul dual to their mirrors, m.m.B/! ˇ B/ and m.B�n/, in the
generalized sense of Lipshitz, Ozsváth and Thurston [6].
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A proof of the above conjecture would provide a nice parallel between Roberts’ theory
and bordered Floer homology. In bordered Floer homology, the rank-one DD bimodule
corresponding to the identity Heegaard diagram of a pointed matched circle has a quasi-
inverse, namely the type AA bimodule associated to this diagram. See [6] for more
on the Koszul duality structure of bordered Floer homology, including an additional
duality relating the algebras of a pointed matched circle Z and a dual pointed matched
circle Z� .

6 Khovanov’s modules and Roberts’ modules

In this section, we relate Roberts’ type D and type A structures from [11; 12] to the
type D and type A structures over H n from Section 3, or equivalently to Khovanov’s
dg modules ŒT �Kh which contain the same information. In Section 6.2, we show that
given a chain complex of projective graded right H n –modules satisfying an algebraic
condition Cmodule defined below in Definition 6.1.1, we may construct a differential
bigraded right module over m.B/! ˇ B . Applied to Khovanov’s tangle complex ŒT �Kh ,
which satisfies Cmodule , this module over m.B/! ˇ B descends to a module over B�n ;
in other words, the relations of Proposition 5.2.8 act as zero on the m.B/!ˇB–module.
The resulting B�n –module agrees with Roberts’ type A structure.

In Section 6.3, given a chain complex of projective graded left H n –modules satisfying
the algebraic condition Cmodule for left modules defined in Definition 6.3.3, we construct
a type D structure over m.B/! ˇ B . We do this by, first, reflecting the chain complex
of left H n –modules to get a complex of right modules (this operation will be defined
in Definition 6.3.1). Then we take the associated type A structure over m.B/! ˇ B ,
tensor with m.B/!ˇBKm.m.B/!ˇB/op

, the DD bimodule from the end of Section 5.3, to
get a type D structure over m.m.B/! ˇ B/, and finally mirror this type D structure
to get a type D structure over m.B/! ˇ B . We may quotient the algebra outputs of
this type D structure by the relations from Proposition 5.2.8 to get a type D structure
over B�n , which agrees with the one constructed by Roberts when one starts with the
complex ŒT �Kh .

Given two chain complexes, one of projective graded left H n –modules and one of pro-
jective graded right H n –modules, their tensor product over H n is a chain complex with
an additional grading, or equivalently a differential bigraded Z–module. In Section 6.4,
we show that this tensor product agrees with the box tensor product of the type D and
type A structures over m.B/! ˇ B associated to the two complexes in Section 6.3 and
Section 6.2, assuming these complexes satisfy Cmodule . The type A structure is always
an ordinary right m.B/! ˇ B–module; if it descends to a B�n –module, then the box
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tensor products of the type A and type D structures over m.B/! ˇ B and B�n agree.
Applying these constructions to Khovanov’s chain complexes ŒT �Kh of H n –modules,
we get an alternate proof that the pairing of Roberts’ type D and type A structures
recovers the original Khovanov complex.

In Section 6.5, we show that chain homotopy equivalences of complexes of H n –
modules, satisfying appropriate algebraic conditions, give A1–homotopy equivalences
of the corresponding type A structures over m.B/!ˇ B . Reidemeister moves on tangle
diagrams yield chain homotopy equivalences of complexes of H n –modules, as shown
by Khovanov in [4]. These Reidemeister-move homotopy equivalences satisfy the
right conditions, and the A1–homotopy equivalences associated to them descend to
A1–homotopy equivalences of type A structures over B�n . This reasoning yields an
alternate proof that Roberts’ type A structures are tangle invariants up to A1–homotopy
equivalence.

In Section 6.6, we do the same for the type D structures over m.B/!ˇB . All homotopy
equivalences of type D structures over m.B/! ˇ B descend to homotopy equivalences
of type D structures over the quotient B�n . Thus, we obtain an alternate proof that
Roberts’ type D structures are tangle invariants up to homotopy equivalence.

6.1 Preliminaries

Let M be a differential bigraded projective right H n –module, or equivalently a chain
complex of projective graded H n –modules by Proposition 2.2.4 or a right type D
structure over H n by the appropriate analogue of Proposition 2.2.5. Recall that in
accordance with Convention 2.1.1, such an M is assumed to be finitely generated
over Z. Let fxi j i 2 Sg be bigrading-homogeneous elements of M , where S is some
finite index set, such that

M Š
M

i

xiH
n

as right H n –modules and each summand xiH
n is isomorphic to eH n for some

elementary idempotent e of H n via an isomorphism sending xi to e . The idempotent e

associated to xi will be denoted e.xi/.

We will use notation from Section 3.1: ˇ will denote the usual Z–basis of H n

and ˇmult will denote the subset of ˇ consisting of the multiplicative generators h
and h˛ of H n . We will further subdivide ˇmult into ˇ , consisting of h generators,
and ˇ˛ , consisting of h˛ generators. Recall that for h 2 ˇ , eL.h/ 2 In is the left
idempotent of h and eR.h/ is the right idempotent of h.

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1617

The module M has a Z–basis given by

fxi � h1 j i 2 S; h1 2 ˇ; eL.h1/D e.xi/g:

We define integer coefficients ci;j and Qci;j Ih0 for i; j 2 S and h0 2 ˇ by expanding
out the differential of each xi :

d.xi/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj C

X
j2S;h02ˇ; deg h0¤0

deg xjCdeg h0Ddeg xiC.0;1/

Qci;j Ih0xj � h
0:

6.1.1 Definition M , together with the set of generators fxig, satisfies the algebraic
condition Cmodule if Qci;j Ih0 D 0 unless h0 2 ˇmult .

This condition is satisfied for Khovanov’s tangle complexes ŒT �Kh ; the natural choice
of fxig was described in Definition 3.1.2. By slight abuse of notation, we will speak
of M satisfying Cmodule , but the choice of fxig was necessary to define the coefficients
ci;j and Qci;j Ih0 .

For any M satisfying Cmodule , we can write d.xi/ as

d.xi/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj C

X
j2S;h02ˇ

deg xjDdeg xiC.�1;1/

Qci;j Ih0xj � h
0

C

X
j2S;h02ˇ˛

deg xjDdeg xiC.�2;1/

Qci;j Ih0xj � h
0:

This is an expansion of d.xi/ in the Z–basis of M .

Thus, if xi � h1 is a basis element of M , we have

d.xi � h1/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj � h1C

X
j2S;h02ˇ

deg xjDdeg xiC.�1;1/

Qci;j Ih0xj � h
0h1

C

X
j2S;h02ˇ˛

deg xjDdeg xiC.�2;1/

Qci;j Ih0xj � h
0h1:

However, this is not necessarily a basis expansion of d.xi � h1/, because the elements
h0h1 2H n are not necessarily elements of the basis ˇ . Instead, we may define integer
coefficients QQc by

h0h1 WD

X
h22ˇ

QQch0h1Ih2
h2
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and thus

d.xi � h1/D
X
j2S

deg xjDdeg xiC.0;1/

ci;j xj � h1C

X
j2S;h02ˇ ;h22ˇ

deg xjDdeg xiC.�1;1/

Qci;j Ih0
QQch0h1Ih2

xj � h2

C

X
j2S;h02ˇ˛;h22ˇ

deg xjDdeg xiC.�2;1/

Qci;j Ih0
QQch0h1Ih2

xj � h2:

This is a basis expansion of d.xi � h1/ in the Z–basis of M .

6.1.2 Proposition Suppose M satisfies Cmodule . The equation d2 D 0 on M gives
rise to the following five sets of equations involving the coefficients ci;j , Qci;j ;h0

and QQch0h1Ih2
:

(1) For all xi and xk with deg xk D deg xi C .0; 2/, we haveX
j

ci;j cj ;k D 0:

(2) For all xi � h1 and xk � h3 with deg xk D deg xi C .�1; 2/, we haveX
j ;h02ˇ

. Qci;j Ih0
QQch0h1Ih3

cj ;k C ci;j Qcj ;kIh0
QQch0h1Ih3

/D 0:

(3) For all xi � h1 and xk � h3 with deg xk D deg xi C .�2; 2/, we haveX
j ;h02ˇ˛

. Qci;j Ih0
QQch0h1Ih3

cj ;k C ci;j Qcj ;kIh0
QQch0h1Ih3

/

C

X
j ;h02ˇ ;

h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0:

(4) For all xi � h1 and xk � h3 with deg xk D deg xi C .�3; 2/, we haveX
j ;h02ˇ ;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

C

X
j ;h02ˇ˛;

h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0:

(5) For all xi � h1 and xk � h3 with deg xk D deg xi C .�4; 2/, we haveX
j ;h02ˇ˛;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0:

Proof This follows from writing out d2.xi � h1/ as a sum of basis elements xk � h3 ,
using the above basis expansion for d.xi �h1/, and then grouping the xk �h3 according
to the intrinsic degree of xk relative to xi .
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6.1.3 Example Suppose M D ŒT �Kh , where T is an oriented tangle diagram in
R�0 �R with an ordering of its crossings. We will analyze the generators xi and
coefficients Qci;j Ih0 and ci;j . To specify a generator xi of ŒT �Kh , we first specify
a resolution �i of all crossings of T ; we can view �i as a function from the set
of crossings to the two-element set f0; 1g. If T�i

denotes the diagram T with the
crossings resolved according to �i , then T�i

consists of a left crossingless matching of
2n points together with some free circles contained in R<0 �R. The remaining data
needed to specify xi are a choice of C (plus) or � (minus) on each free circle; the
crossingless-matching part of T�i

is closed up symmetrically and all resulting circles
are labeled plus. Then ŒT �Kh has a Z–basis consisting of elements xi �h, where the left
crossingless matching of h agrees with the matching obtained from T�i

by discarding
the free circles.

Let S denote the set of xi specified above. The basis expansion defining ci;j and Qci;j Ih0

is
d.xi/D

X
j2S

deg xjDdeg xiC.0;1/

ci;j xj C

X
j2S;h02ˇ

deg xjDdeg xiC.�1;1/

Qci;j Ih0xj � h
0

C

X
j2S;h02ˇ˛

deg xjDdeg xiC.�2;1/

Qci;j Ih0xj � h
0:

The coefficients ci;j and Qci;j Ih0 can only be nonzero when the resolution �j of xj

differs from the resolution �i of xi only at one crossing, to which �i assigns 0 and �j

assigns 1. Let #1.i; j / denote the number of 1–resolutions of crossings in xi among
those crossings that, in the ordering on crossings, occur earlier than the crossing being
changed when going from xi to xj .

Changing the crossing to get from xi to xj has several possible effects:

(1) The crossing change could join two free circles or split a free circle. In this case,
ci;j is .�1/#1.i;j/ and all Qci;j Ih0 are zero.

(2) The crossing change could join a free circle in xi , labeled C, with an arc of xi .
Alternatively, it could split a new free circle, labeled � in xj , off an arc of xi .
In both these cases, ci;j is .�1/#1.i;j/ and all Qci;j Ih0 are zero.

(3) The crossing change could join a free circle in xi , labeled �, with an arc ˛
of xi . Alternatively, it could split a new free circle, labeled C in xj , off an
arc ˛ of xi . In both these cases, ci;j is zero and Qci;j Ih0 is only nonzero for one
value of h0 . If a denotes the crossingless matching of xi (or of xj ), then when
h0 D .W .a/a; minus on ˛/, we have Qci;j Ih0 D .�1/#1.i;j/ ; all other Qci;j Ih0 are
zero.
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(4) Finally, the crossing change could surger two arcs of xi , changing the crossin-
gless matching. Again, ci;j D 0 and Qci;j Ih0 is nonzero for a unique h0 . Let ai

and aj denote the crossingless matchings of xi and xj respectively. Then if
h0D .W .aj /ai ; all plus/, we have Qci;j Ih0 D .�1/#1.i;j/ ; all other Qci;j Ih0 are zero.

Note that ŒT �Kh satisfies Cmodule with the elements xi D xi � 1 as generators.

6.2 Type A structures

As in Section 5.3, let B denote BR.H
n/Š BR�n . Recall that BL�n is the quotient

of m.B/! by the extra relations listed in Proposition 5.2.8.

Let M be a differential bigraded projective right H n module as at the beginning of
Section 6.1; assume that M satisfies the algebraic condition Cmodule of Definition 6.1.1
for a set of generators fxi j i 2 Sg. We first define a type A structure yA.M /m.B/!

over m.B/! . Then we formally extend yA.M / to a type A structure yA.M /m.B/!ˇB
over m.B/! ˇ B .

6.2.1 Definition As a Z–module, yA.M / is defined to be M . A Z–basis for M is
given by fxi �h1 j i 2 S; h1 2 ˇ; eL.h1/D e.xi/g, where fxi j i 2 Sg is the designated
set of generators of M . For yA.M /, we label the same basis elements as

fXxi �h1
j i 2 S; h1 2 ˇ; eL.h1/D e.xi/g:

The idempotent ring of m.B/! is Iˇ ; let h2 2ˇ be an elementary idempotent of m.B/! .
Multiplying Xxi �h1

by h2 gives Xxi �h1
if h2 D h1 and zero otherwise.

Suppose that the generator xi has bigrading .j ; k/ as an element of M , and h has
grading j 0 (or bigrading .j 0; 0/) as an element of H n . Then, as an element of yA.M /,
the bigrading of Xxi �h1

is defined to be

deg yA.M /
.Xxi �h/ WD

�
�j � 1

2
j 0; k

�
:

The algebra m.B/! acts on yA.M / on the right; we will use m2 to denote this action
(not to be confused with m here, which means mirror). Let m.b��Im.h1/;m.h2/

/ denote
either m.b� Im.h1/;m.h2/

/ or m.b�C Im.h1/;m.h2/
/. We define

m2.Xxi �h1
;m.b�

�Im.h1/;m.h2/
// WD

X
j

X
h02ˇmult

Qci;j Ih0
QQch0h1Ih2

Xxj �h2
:

If m.b��Im.h1/;m.h2/
/Dm.b� Im.h1/;m.h2/

/, then QQch0h1Ih2
is only nonzero for one value

of h0 , namely h0D .W .a0/a; all plus/, where h1D .W .a/b; �/ and h2D .W .a0/b; � 0/.
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For this value of h0 , QQch0h1Ih2
is 1. Thus,

(6-1) m2.Xxi �h1
;m.b� Im.h1/;m.h2/

//D
X

j

Qci;j Ih0Xxj �h2
:

If m.b��Im.h1/;m.h2/
/Dm.b�C Im.h1/;m.h2/

/, then QQch0h1Ih2
will be nonzero for any h0˛

which equals .W .a/a; minus on ˛/, where h1 D .W .a/b; �/ and ˛ is any arc of a

which is part of the circle C in W .a/a. For h0 equal to one of the h0˛ , QQch0h1Ih2
is 1,

and for all other h0 , QQch0h1Ih2
is zero. Thus,

(6-2) m2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h2

:

Note that m2 is bigrading-preserving; this follows from the degree conditions on xi

and xj in the basis expansion of d.xi � h1/ given in Section 6.1 above.

We then extend m2 to an action of m.B/! on yA.M / by imposing the associativity
relation

m2 ı .id˝�2/ WDm2 ı .m2˝ id/;

where �2 is the algebra multiplication on m.B/! . Below we will verify that this algebra
action is well-defined. Finally, yA.M / has a differential m1 given by

m1.Xxi �h1
/D

X
j

ci;j Xxj �h1
:

6.2.2 Proposition The action of m.B/! on yA.M / is well-defined and associative.
Thus, yA.M / is a right module over m.B/! .

Proof The action is associative by definition, once we show that it is well-defined.
We may write B ! as T .V �B /=I

? ; thus,

m.B/! D T .m.V �B //=m.I?/;

where the mirrors of the Iˇ–bimodules V �B and I? are defined as in Definition 5.2.4.
Now, Definition 6.2.1, extended by associativity, gives us a map

yA.M /˝Iˇ T .m.V �B //! yA.M /:

We want to show that if m.r�/ is a generator of m.I?/, then multiplying any Xxi �h1

by m.r�/ gives zero.

The generators m.r�/ of m.I?/ are quadratic in the m.b��Im.h1/;m.h2/
/ and they have

intrinsic degree either 1, 3
2

or 2. For those m.r�/ of intrinsic degree 2, the equations
in item (5) of Proposition 6.1.2 above imply that m.r�/ acts as zero on any Xxi �h1

.
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For those m.r�/ of intrinsic degree 3
2

, the equations in item (4) of Proposition 6.1.2
similarly imply that m.r�/ acts as zero on yA.M /.

The generators m.r�/ of m.I?/ which have intrinsic degree 1 are sums of either one,
two, three or four terms m.b� /m.b

�
 0/ with all coefficients C1. For a fixed m.r�/,

let m.h1/2Iˇ denote its left idempotent and let m.h3/2Iˇ denote its right idempotent.
The element h3 of ˇ has degree 2 more than h1 , as elements of H n with its intrinsic
grading, and h3 differs from h1 by two surgeries on its left crossingless matching.
In particular, the left crossingless matchings of h1 and h3 are different; this follows
from inspection of the generators m.r�/ of intrinsic degree 1 which actually appear
in m.I?/. Monomials of the form m.b� /m.b

�

|/ do not appear as terms of these
generators.

For any generators of yA.M / of the form Xxi �h1
and Xxk �h3

, where h1 and h3 are as
above, with deg xk D deg xiC .�2; 2/ as elements of M , the equations from item (3)
of Proposition 6.1.2 becomeX

j ;h02ˇ ;
h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qcj ;kIh00
QQch00h2Ih3

D 0I

the terms involving h0 2 ˇ˛ vanish for these choices of h1 and h3 . These equations
imply that all generators m.r�/ of m.I?/ of intrinsic degree 1 act as zero on yA.M /.
Thus, the algebra action m2 of m.B/! on yA.M / is well-defined.

6.2.3 Proposition The differential m1 on yA.M / satisfies m2
1
D 0, and the Leibniz

rule
m1 ım2 Dm2 ı .m1˝jidj/Cm2 ı .id˝�1/

is satisfied, where �1 is the differential on m.B/! . Thus, yA.M / is a differential
bigraded right module over m.B/! and hence a type A structure over m.B/! .

Proof First, m2
1
D 0 by the equations in item (1) of Proposition 6.1.2.

We want to show that the Leibniz rule is satisfied for yA.M /. Since the action of m.B/!

on yA.M / is associative, and �1 satisfies its own Leibniz rule, it suffices to show that

m1 ım2.Xxi �h1
;m.b� Im.h1/;m.h3/

//D�m2 ı .m1.Xxi �h1
/˝m.b� Im.h1/;m.h3/

//

and

m1 ım2.Xxi �h1
;m.b�C Im.h1/;m.h3/

//

D�m2 ı.m1.Xxi �h1
/˝m.b�C Im.h1/;m.h3/

//Cm2.Xxi �h1
˝�1.m.b

�
C Im.h1/;m.h3/

///:
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Note that in the relation involving m.b� /, the �1 term vanishes.

The first of these two equations follows from item (2) of Proposition 6.1.2. For the
second equation, note that for a fixed h1 2 ˇ , the only h3 such that m.b�C Im.h1/;m.h3/

/

is a generator of m.B/! are those h3 2 ˇ which differ only from h1 by changing the
sign of one circle C from plus to minus. We have

�1.m.b
�
C Im.h1/;m.h3/

//D�
X

h22ˇ

m.b� Im.h1/;m.h2/
/m.b�|Im.h2/;m.h3/

/;

where the sum is implicitly over those h22ˇ such that the generators m.b� Im.h1/;m.h2/
/

and m.b�|Im.h2/;m.h3/
/ exist.

For such h1 and h3 , consider generators Xxi �h1
and Xxk �h3

such that deg xk D

deg xi C .�2; 2/; these are the only Xxk �h3
which may appear in the basis expansion

of the left or right side of the second equation above. Applying the equations in item (3)
of Proposition 6.1.2 to Xxi �h and Xxk �h3

, we see that the second equation above holds.
Thus, the Leibniz rule on yA.M /m.B/! is satisfied.

Now we formally add actions of B to yA.M /, to make it a type A structure over
m.B/! ˇ B rather than just over m.B/! .

6.2.4 Definition The type A operation m2 on yA.M /m.B/
!ˇB is defined as in

Definition 6.2.1 on the generators of m.B/! . On the generators of B , it is defined by

m2.Xxi �h1
; b Ih1;h2

/ WDXxi �h2
and m2.Xxi �h1

; bC Ih1;h2
/ WDXxi �h2

:

Note that these actions are bigrading-preserving. To define the action of an arbitrary
element of m.B/! ˇ B on yA.M /, we impose associativity of the action. Below we
check that this definition respects the relations on m.B/! ˇ B .

6.2.5 Proposition The action m2 of m.B/! ˇ B on yA.M / is well-defined; with this
action and the differential m1W yA.M /! yA.M / from Definition 6.2.1, yA.M / is a
differential bigraded module (hence type A structure) over m.B/! ˇ B .

Proof First we need to check that

m2W yA.M /˝Iˇ .m.B/
!
ˇ B/! yA.M /

is well-defined. Recall that the relation ideal Jfull of m.B/! ˇ B was defined to be

Jfull WD T .Vfull/ �
��

JB \ .T
1.VB/˚T 2.VB//

�
˚
�
Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!//
�
˚Jextra

�
�T .Vfull/:
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By Proposition 6.2.2, the generators of Jm.B/! \ .T
1.Vm.B/!/˚ T 2.Vm.B/!// act as

zero on yA.M /. It is immediate from the definition of the action of B on yA.M / that
the generators of JB \ .T

1.VB/˚T 2.VB// act as zero on yA.M /.

Thus, to show that m2 is well-defined, it remains to show that the generators of Jextra

act as zero on yA.M /. These generators are listed in items (1)–(5) of Definition 5.3.2.

� Consider a relation

b Ih1;h2
m.b��0Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/b 0I Qh2;h3

from item (1) of Definition 5.3.2. Write h1 D .W .a1/b1; �1/ and let Xxi �h1
be a

generator of yA.M /. Multiplying Xxi �h1
by b Ih1;h2

, we get Xxi �h2
where h2 D

.W .a1/b2; �2/. Multiplying Xxi �h2
by m.b��0Im.h2/;m.h3/

/, with h3D .W .a2/b2; �3/,
by (6-1) we get X

j

Qci;j Ih0Xxj �h3
;

where h0 2 ˇmult is .W .a2/a1; all plus/.

On the other hand, if we first multiply Xxi �h1
by m.b��Im.h1/;m. Qh2/

/, by (6-1) we getX
j

Qci;j Ih0Xxj � Qh2
;

where h0 is also .W .a2/a1; all plus/.

If we multiply this result by b
 0I Qh2;h3

, we getX
j

Qci;j Ih0Xxj �h3
:

Thus, generators of Jextra from item (1) of Definition 5.3.2 act as zero on yA.M /.

� For relations

bC Ih1;h2
m.b��Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/bC I Qh2;h3

from item (2) of Definition 5.3.2, the argument is essentially the same. If h1 D

.W .a1/b1; �1/ and Qh2 D .W .a2/b1; �
0
2
/, then h0 is again .W .a2/a1; all plus /. We

still use (6-1).

� Consider a relation

b Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C Im.h1/;m. Qh2/
/b I Qh2;h3
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from item (3) of Definition 5.3.2. Let Xxi �h1
be a generator of yA.M / and write

h1 D .W .a1/b1; �1/. Multiplying Xxi �h1
by b Ih1;h2

, we get Xxi �h2
where h2 D

.W .a1/b2; �2/. Multiplying Xxi �h2
by m.b�

C Im.h2/;m.h3/
/, with h3D .W .a1/b2; �3/,

by (6-2) we get X
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h3

;

where h0˛ is .W .a1/a1; minus on ˛/.

On the other hand, if we first multiply Xxi �h1
by m.b�C Im.h1/;m. Qh2/

/, by (6-2) we getX
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj � Qh2

;

where h0˛ is again .W .a1/a1; minus on ˛/.

If we multiply this result by b
 I Qh2;h3

, we getX
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h3

:

Thus, generators of Jextra from item (3) of Definition 5.3.2 act as zero on yA.M /.

� For relations

bC Ih1;h2
m.b�C 0Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/bC I Qh2;h3

from item (4) of Definition 5.3.2, the argument is the same as for relations from item (3).

� Finally, consider a relation

b Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m.h
0
2
//b Ih02;h3

�m.b�C 00Im.h1/;m.
QQh2/
/b I QQh2;h3

from item (5) of Definition 5.3.2, in the case where  joins two circles C 0 and C 00 to
produce C . Write h1 D .W .a1/b1; �1/ and let Xxi �h1

be a generator of yA.M /. Mul-
tiplying Xxi �h1

by b Ih1;h2
, we get Xxi �h2

where h2 D .W .a1/b2; �2/. Multiplying
Xxi �h2

by m.b�C Im.h2/;m.h3/
/, with h3 D .W .a1/b2; �3/, by (6-2) we getX
j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h3

;

where h0˛ is .W .a1/a1; minus on ˛/.

On the other hand, if we first multiply Xxi �h1
by m.b�C 0Im.h1/;m. Qh2/

/, we getX
j

X
left arcs ˛ of C 0

Qci;j Ih0˛
Xxj � Qh2

;
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where h0˛ is again .W .a1/a1; minus on ˛/. Multiplying by b 0I Qh2;h3
, we getX

j

X
left arcs ˛ of C 0

Qci;j Ih0˛
Xxj �h3

:

Finally, if we multiply Xxi �h1
by m.b�C 00Im.h1/;m.

QQh2/
/, we getX

j

X
left arcs ˛ of C 00

Qci;j Ih0˛
Xxj �

QQh2
:

Multiplying this result by b I QQh2;h3
, we getX

j

X
left arcs ˛ of C 00

Qci;j Ih0˛
Xxj �h3

:

Now, since  was assumed to join the circles C 0 and C 00 to produce C via a bridge
on the right side of f0g�R, the set of left arcs ˛ of C is the disjoint union of the sets
of left arcs of C 0 and C 00 . Thus, the relation

b Ih1;h2
m.b�C Im.h2/;m.h3/

/�m.b�C 0Im.h1/;m. Qh2/
/b I Qh2;h3

�m.b�C 00Im.h1/;m.
QQh2/
/b I QQh2;h3

acts as zero on yA.M /. For relations of the form

b Ih1; Qh2
m.b�C 0Im. Qh2/;m.h3/

/C b Ih1;
QQh2

m.b�C 00Im. QQh2/;m.h3/
/

�m.b�C Im.h1/;m.h2/
/b Ih2;h3

;

where  splits C into C 0 and C 00 , the argument is analogous. Thus, generators of Jextra

from item (5) of Definition 5.3.2 act as zero on yA.M /.

At this point, we have shown that the action m2 of m.B/! ˇ B on yA.M / is well-
defined. It is associative by definition. To show that the Leibniz rule is satisfied, it
suffices by associativity to check it on the generators of B and of m.B/! , and we have
already done this for the generators of m.B/! in Proposition 6.2.2.

Let Xxi �h1
be a generator of yA.M / and let b Ih1;h2

be a generator of B . Then

m1 ım2.Xxi �h1
; b Ih1;h2

/Dm1.Xxi �h2
/D

X
j

ci;j Xxj �h2
;

while

m2.m1˝jidj/.Xxi �h1
; b Ih1;h2

/Dm2

�X
j

ci;j Xxj �h1
; b Ih1;h2

�
D

X
j

ci;j Xxj �h2
;
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and the m2 ı .id˝�1/ term is zero because �1D 0 on B . The argument is unchanged
for generators bC Ih1;h2

. Thus, the Leibniz rule

m1 ım2 Dm2 ı .m1˝jidj/Cm2 ı .id˝�1/

holds and yA.M / is a differential bigraded right module over m.B/! ˇ B .

Now we will consider the case M D ŒT �Kh , where T is a tangle diagram in R�0 �R.
Recall from Section 6.1 that ŒT �Kh satisfies Cmodule , so we get a type A structure
yA.ŒT �Kh/m.B/!ˇB . This type A structure descends to a type A structure over the
quotient algebra B�n .

6.2.6 Proposition The extra relations from Proposition 5.2.8 act as zero on the
m.B/! ˇ B–module yA.ŒT �Kh/ defined above in Definition 6.2.4. Thus, yA.ŒT �Kh/

descends to a differential bigraded right module over the quotient algebra B�n of
m.B/! ˇ B by these relations.

Proof Since the relations from Proposition 5.2.8 involve only quadratic monomials in
the generators m.b� Im.h1/;m.h2/

/ of m.B/! , with no generators from B appearing, it
suffices to show that these relations act as zero on the m.B/! –module yA.ŒT �Kh/ defined
in Definition 6.2.1.

Consider a tetrahedron in the graph G of Proposition 5.2.8, with vertices a; b; c and d

as labeled in that proposition. We will show that the relation term aC c acts as zero
on yA.ŒT �Kh/; the proofs for the remaining extra relation terms are exactly analogous.

We may write out

aDm.b� Im.h1/;m.h2/
/m.b��0Im.h2/;m.h3/

/;

c Dm.b��Im.h1/;m.
QQh2/
/m.b� 0Im. QQh2/;m.h3/

/;

as in Proposition 5.2.8. Suppose we have two generators of yA.ŒT �Kh/ of the form
Xx00�h1

and Xx11�h3
. Here, T may have more than two crossings, but for two desig-

nated crossings, x00 has the zero-resolution at both and x11 has the one-resolution
at both (and x00 and x11 agree at all other crossings). We assume that changing x00

to x10 has the effect of surgery on  , while changing x00 to x01 has the effect of
surgery on �.

To show that aC c acts as zero on yA.ŒT �Kh/, it suffices to show m2.Xx00�h1
; aC c/

has zero coefficient on Xx11�h3
. We can compute the coefficient of m2.Xx00�h1

; a/
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and m2.Xx00�h1
; c/ on Xx11�h3

using associativity and (6-1). We have, ignoring terms
which do not contribute to a coefficient on Xx11�h3

,

m2.Xx00�h1
; a/D Qc00;10Ih0m2.Xx10�h2

;m.b��0Im.h2/;m.h3/
//

D Qc00;10Ih0 Qc10;11Ih00Xx11�h3

for two uniquely determined elements h0 and h00 of ˇ . Similarly, the coefficient
of m2.Xx00�h1

; c/ on Xx11�h3
is Qc00;01Ih000 Qc01;11Ih0000 , for two further uniquely defined

elements h000 and h0000 of ˇ .

By item (4) of Example 6.1.3, we have the following coefficients:

� Qc00;10Ih0 D .�1/#1.00;10/ ,

� Qc10;11Ih00 D .�1/#1.10;11/ ,

� Qc00;01Ih000 D .�1/#1.00;01/ ,

� Qc01;11Ih0000 D .�1/#1.01;11/ .

Recall that #1.i; j / denotes the number of 1–resolutions of crossings in xi among
those crossings which occur earlier than the changed crossing (going from xi to xj )
in the ordering on crossings of T (which is implicitly assumed, as usual, to be part of
the choice of T ).

Since
.�1/#1.00;10/.�1/#1.10;11/

C .�1/#1.00;01/.�1/#1.01;11/
D 0;

we can conclude that the coefficient of m2.Xx00�h1
; aC c/ on Xx11�h3

is zero, for all
possible pairs Xx00�h1

and Xx11�h3
. Thus, the extra relation terms of Proposition 5.2.8

act as zero on yA.ŒT �Kh/.

6.2.7 Proposition Roberts’ type A structure from [11] agrees with yA.ŒT �Kh/, the
module over B�n constructed in Proposition 6.2.6.

Proof First, yA.ŒT �Kh/ has the same Z–basis, with the same bigradings and action
of the idempotent ring Iˇ , as Roberts’ type A structure. We can use the data of
Example 6.1.3 to check that the differentials m1 agree and that the algebra actions m2

agree under the identification of B�n with a quotient of m.B/! ˇ B .

For the differentials, we have m1.Xxi �h/D
P

j .�1/#1.i;j/Xxj �h , where the sum is over
those xj related to xi by crossing changes from items (1) or (2) of Example 6.1.3. This
formula also gives Roberts’ differential m1 D dAPS as specified in [11, Section 3.3].
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It suffices to check that the algebra actions m2 agree when multiplying by the generators
of B and m.B/! . First, for a generator Xxi �h1

of yA.ŒT �Kh/ and a generator b Ih1;h2

of B , we have
m2.Xxi �h1

; b Ih1;h2
/DXxi �h2

;

agreeing with Roberts’ definition of the action of �!e  Ih1;h2
in item 5 of his definition

of m2 [11, Section 4]. Similarly, our action of bC Ih1;h2
is the same as Roberts’ action

of �!e C Ih1;h2
, defined in item 2 of his definition of m2 .

For a generator m.b� Im.h1/;m.h2/
/ of m.B/! , we have

m2.Xxi �h1
;m.b� Im.h1/;m.h2/

//D
X

j

Qci;j Ih0Xxj �h2
;

where if h1D .W .a1/b1; �1/ and h2D .W .a2/b1; �2/, then h0D .W .a2/a1; all plus/,
and the coefficient Qci;j Ih0 equals zero or .�1/#1.i;j/ according to Example 6.1.3(4).
Thus,

m2.Xxi �h1
;m.b� Im.h1/;m.h2/

//D
X

j

.�1/#1.i;j/Xxj �h2
;

where the sum is over the subset of j making Qci;j Ih0 nonzero. This algebra action
agrees with the action of  �e  Ih1;h2

as defined in item 4 of Roberts’ definition of m2 .

Finally, for a generator m.b�
C Im.h1/;m.h2/

/ of m.B/! , we have

m2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

X
left arcs ˛ of C

Qci;j Ih0˛
Xxj �h2

;

where if h1 D .W .a/b; �1/ and h2 D .W .a/b; �2/, then h0˛ D .W .a/a; minus on ˛/,
and the coefficient Qci;j Ih0 equals zero or .�1/#1.i;j/ according to item (3) above. Thus,

m2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

.�1/#1.i;j/Xxj �h2
;

where the sum is over the subset of j making some Qci;j Ih0˛
nonzero (note that, given

such j , the element h0˛ is uniquely determined). This algebra action agrees with the
action of  �e C Ih1;h2

as defined in item 3 of Roberts’ definition of m2 .

6.3 Type D structures

Given a chain complex M of projective graded right H n –modules satisfying Cmodule ,
in Definition 6.2.4 we defined a type A structure yA.M / over m.B/! ˇ B . For a tangle
diagram T , yA.ŒT �Kh/ descends to a type A structure over B�n by Proposition 6.2.6,
which agrees with Roberts’ type A structure by Proposition 6.2.7.
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Now suppose N is a chain complex of graded projective left H n –modules. We want
to define condition Cmodule for left modules, and for N satisfying this condition, we
want to define a type D structure yD.N / over m.B/! ˇ B .

To do this, we will first define an operation called reflection which, when applied to N ,
yields a complex of right modules.

6.3.1 Definition Let N be a chain complex of projective graded left H n –modules.
Viewing N as a differential bigraded projective left H n –module, write

N D
M

i

H n
�yi Œji ; ki �;

with H n acting by left multiplication. Then we may define a differential bigraded
projective right H n –module r.N /, called the reflection of N , as

r.N / WD
M

i

r.yi/Œji ; ki � �H
n;

where the r.yi/ are formal reflections of the yi , with the same idempotents as the yi ,
and H n acts by right multiplication. Let refl denote the map from N to r.N / such
that

refl.h �yi/D r.yi/ �m.h/;

where m.h/ is defined as in Example 5.2.5. The inverse of reflW N ! r.N / is
reflW r.N /! r.r.N // D N (using a simple generalization of the above definition
which reflects right modules to left modules rather than left modules to right modules).
If m1 denotes the differential on N , then the differential on r.N / is refl ım1 ı refl.

6.3.2 Remark Although the geometric content of both Definition 6.3.1 and (variants
of) Definition 5.2.4 is just the reflection across the line f0g �R, the algebraic conse-
quences of this reflection are different in Definition 6.3.1. Whereas in Definition 5.2.4,
left modules remain left modules and right modules remain right modules under
mirroring, in Definition 6.3.1 left modules are sent to right modules and vice-versa.

6.3.3 Definition A chain complex N of projective graded left H n –modules satisfies
the condition Cmodule for a generating set fyig if and only if r.N / satisfies the condition
Cmodule as defined in Definition 6.1.1 for the generating set fr.yi/g.

If N satisfies Cmodule , then we can take the box tensor product of yA.r.N // and
the type DD bimodule m.B/!ˇBKm.m.B/!ˇB/op

to get a (left) type D structure over
m.m.B/!ˇB/. Below we define this tensor product precisely. It is a slight modification
of Definition 2.3.5; we will not give the definition in the fullest possible generality. See
[7, Definition 2.3.9] for a more general definition using Z=2Z coefficients.
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6.3.4 Definition Let B be a differential bigraded algebra over an idempotent ring I .
Let yA be a differential bigraded right module over B . Assume yA is free as a Z–module,
with a Z–basis consisting of elements which are grading-homogeneous and have a
unique right idempotent.

Let B 0 be another differential bigraded algebra over I and let cDD be a rank-one
type DD bimodule over B and B 0 with DD operation ıDD W I ! B ˝I .B 0/op . The
type D structure yA � cDD over B 0 , as a Z–module, is

yA � cDD WD yA˝I cDD D yA˝I I D yA:

The idempotent ring I has a right action on yA, which we will view instead as a
left action (since I is commutative, we may view right actions as left actions and
vice-versa). Since cDD is a rank-one DD bimodule, the left and right actions of I
on cDD are the same. There is a bigrading on yA� cDD inherited from that on yA (recall
that cDD is contained in bigrading .0; 0/).

The type D operation ı�W yA � cDD ! B 0˝I . yA � cDD / is defined by

ı�
WD 1˝m1C � ı .m2˝ id/ ı .id˝ ıDD/W yA! B 0˝I yA;

where m1 and m2 are the type A operations on yA, and �W yA˝I .B 0/op! B 0˝I yA is
defined by

�.X ˝ .b0/op/ WD .�1/.degh X /.degh b0/b0˝X:

More precisely, the second summand is the composition

yA
id˝ıDD
�����! yA˝I B˝I .B 0/op m2˝id

����! yA˝I .B 0/op �
�! B 0˝I yA:

The map ı� has bidegree .0;C1/.

6.3.5 Proposition . yA � cDD ; ı�/ is a well-defined type D structure over B 0 .

Proof First, since yA was assumed to have a Z–basis fXig, with each Xi grading-
homogeneous and having unique idempotents, the same is true for yA � cDD Š yA.

To verify the type D structure relations, we must show that

.�1˝jidj/ ı ı�
C .�2˝ id/ ı .id˝ ı�/ ı ı�

D 0:
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Substituting in the definition of ı� and simplifying some terms, we want to show that

(6-3) .�1˝jidj/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C .�2˝ id/ ı .id˝ �/ ı .id˝m2˝ id/ ı .id˝ id˝ ıDD/ ı .1˝m1/

C .�2˝ id/ ı .id˝ 1˝m1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C .�2˝ id/ ı
�
id˝ .� ı .m2˝ id/ ı .id˝ ıDD//

�
ı .� ı .m2˝ id/ ı .id˝ ıDD//D 0:

We claim that we may rewrite the final term on the left side of (6-3) as

(6-4) � ı .m2˝ id/ ı .id˝�2˝�2/ ı .id˝ �/ ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/;

where
� W B ˝B ˝ .B 0/op

˝ .B 0/op
! B ˝B ˝ .B 0/op

˝ .B 0/op

was defined in Definition 4.5.1.

To verify that term (6-4) is equal to the final term of (6-3), let X be a generator of yA.
Write ıDD.1/D

P
i bi ˝ .b

0
i/

op . We have

.�2˝ id/ ı .id˝ .� ı .m2˝ id/ ı .id˝ ıDD/// ı .� ı .m2˝ id/ ı .id˝ ıDD//.X /

D

X
i;j

.�1/.degh b0
i
/.degh.X bi //C.degh b0

j
/.degh.X bi bj //.b0ib

0
j /˝ .Xbibj /:

On the other hand, we have

� ı .m2˝ id/ ı .id˝�2˝�2/ ı .id˝ �/ ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/.X /

D

X
i;j

.�1/degh bj degh.b
0
i
/Cdegh.X bi bj / degh.b

0
i
b0
j
/.b0ib

0
j /˝ .Xbibj /:

A direct computation, using the additivity of degh under algebra multiplication, verifies
that the signs in these expressions are equal.

Now, we may write term (6-4) as

� ı .m2˝ id/ ı
�
id˝ ..�2˝�2/ ı � ı .id˝ ıDD ˝ id/ ı ıDD/

�
:

Using the type DD bimodule relations for ı , we may replace

.�2˝�2/ ı � ı .id˝ ıDD ˝ id/ ı ıDD

with
�.�1˝jidj/ ı ıDD � .id˝�1/ ı ıDD :
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Then term (6-4) is equal to

�� ı .m2˝ id/ ı
�
id˝ ..�1˝jidj/ ı ıDD/

�
� � ı .m2˝ id/ ı

�
id˝ ..id˝�1/ ı ıDD/

�
D��ı.m2˝id/ı.id˝�1˝jidj/ı.id˝ıDD/��ı.m2˝id/ı.id˝id˝�1/ı.id˝ıDD/:

The term
�� ı .m2˝ id/ ı .id˝ id˝�1/ ı .id˝ ıDD/

above cancels the first term

.�1˝jidj/ ı � ı .m2˝ id/ ı .id˝ ıDD/

of the terms in (6-3), whose sum we are trying to show is zero. The remaining terms
of (6-3) are, after some simplification,

� �� ı .m2˝ id/ ı .id˝�1˝jidj/ ı .id˝ ıDD/,

� � ı .m2˝ id/ ı .id˝ ıDD/ ım1 ,

� .id˝m1/ ı � ı .m2˝ id/ ı .id˝ ıDD/.

The final of these may be written as

� ı .m1˝jidj/ ı .m2˝ id/ ı .id˝ ıDD/D � ı ..m1 ım2/˝jidj/ ı .id˝ ıDD/:

We may use the Leibniz rule on yA to replace m1 ı m2 with m2 ı .m1 ˝ jidj/ C
m2 ı .id˝�1/. Thus, the final of the three remaining terms is equal to

�ı.m2˝id/ı.m1˝jidj˝jidj/ı.id˝ıDD/C�ı.m2˝id/ı.id˝�1˝jidj/ı.id˝ıDD/:

The second of these summands cancels with the first of the other three remaining terms
listed above, so it remains to show that

� ı .m2˝ id/ ı .id˝ ıDD/ ım1C � ı .m2˝ id/ ı .m1˝jidj˝ jidj/ ı .id˝ ıDD/D 0:

This follows from the equation

.m1˝jidj˝ jidj/ ı .id˝ ıDD/D�.id˝ ıDD/ ım1:

Indeed, since all generators of cDD Š I have bigrading .0; 0/, the element ı.1/ has
homological degree 1.

Applying this construction to yA D yA.r.N // with cDD D m.B/!ˇBKm.m.B/!ˇB/op
,

which is a type DD bimodule over m.B/! ˇ B and m.m.B/! ˇ B/, we get a type D
structure A.r.N //� m.B/!ˇBKm.m.B/!ˇB/op over m.m.B/! ˇ B/. We can then ap-
ply another mirroring operation, analogous to Definition 5.3.1 and in the spirit of
Definition 5.2.4, to get a type D structure yD.N / over m.B/! ˇ B .
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6.3.6 Definition Let B be a differential bigraded algebra over the idempotent ring Iˇ
and let . yD; ı/ be a type D structure over B . The mirrored type D structure .m. yD/; ı0/
is defined as follows: as an Iˇ–module, m. yD/ is the mirror of yD as defined in
Definition 5.2.4. As usual, denote the natural map from yD to m. yD/ or m. yD/ to yD
by mirr. The type D operation on m. yD/ is the following:

ı0 Dm. yD/
mirr
�! yD

ı
�! B ˝ yD

mirr˝mirr
������!m.B/˝m. yD/:

6.3.7 Definition Let N be a chain complex of graded projective left H n –modules
satisfying the algebraic condition Cmodule of Definition 6.3.3. The type D structure
yD.N / over m.B/! ˇ B is defined to be

yD.N / WDm
�
yA.r.N //� m.B/!ˇBKm.m.B/!ˇB/op�

:

6.3.8 Definition If N is a chain complex N of graded left projective H n –modules
satisfying Cmodule , the type D structure yD.N / over B�n associated to N is induced
from the type D structure yD.N / over m.B/! ˇ B defined in Definition 6.3.7, using
Proposition 5.3.7.

For convenience, we describe the type D operation ı on yD.N / explicitly from the
differential dN on N . Let fh1 � yi j e.yi/ D eR.h1/g be the Z–basis for N corre-
sponding to the designated generators fyig of N . By the condition Cmodule , we may
expand dN .yi/ in this basis as

dN .yi/D
X

j

c0i;j yj C

X
j ;h02ˇmult

Qc0i;j Ih0h
0
�yj :

Then we have

dN .h1 �yi/D
X

j

c0i;j h1 �yj C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

h2 �yj :

We let

fYh1�yi
j e.yi/D eR.h1/g

denote the Z–basis of yD.N / corresponding to the Z–basis fh1 �yig of N .

6.3.9 Proposition Defining the coefficients c0i;j and Qc0i;j Ih0 as above, and QQch1h0Ih2
as

in Section 6.1, the type D structure operation ı on yD.N / has a basis expansion given
by
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ı.Yh1�yi
/D

X
j

c0i;j Yh1�yj C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

b�Ih1;h2
˝Yh2�yj

C

X
h22ˇ such that

m.b��Im.h/;m.h2// exists

.�1/degh yi m.b�
�Im.h1/;m.h2/

/˝Yh2�yi
;

where b�Ih1;h2
means b Ih1;h2

or bC Ih1;h2
as appropriate.

Proof The operation ı is defined as the mirror of the type D structure operation ı�

on yA.r.N //� m.B/!ˇBKm.m.B/!ˇB/op
, which in turn is defined as

ı�
WD 1˝m1C � ı .m2˝ id/ ı .id˝ ıDD/:

Here, m1 is the differential on yA.r.N // and ıDD is the type DD operation on
m.B/!ˇBKm.m.B/!ˇB/op

. Write an arbitrary generator of yA.r.N // as Xm.yi /�m.h1/ ,
and we have

m1.Xm.yi /�m.h1//D
X

j

c0i;j Xm.yj /�m.h1/;

m2.Xm.yi /�m.h1/;m.b
�
�Ih1;h2

//D
X

j ;h02ˇmult

Qc0i;j Ih
QQch1h0Ih2

Xm.yj /�m.h2/;

m2.Xm.yi /�m.h1/; b�Im.h1/;m.h2//DXm.yi /�m.h2/:

Here, b�Im.h1/;m.h2/ stands for either b Im.h1/;m.h2/ or bC Im.h1/;m.h2/ as appropriate,
and similarly for m.b��Ih1;h2

/. Also note that we have QQch1h0Ih2
D QQcm.h0/m.h1/Im.h2/ .

Thus,

ı�.Xm.yi /�m.h1//D
X

j

c0i;j Xm.yj /�m.h1/

C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

m.b�Ih1;h2
/˝Xm.yj /�m.h2/

C

X
h22ˇ such that

m.b��Im.h1/;m.h2// exists

.�1/degh yi m.m.b��Im.h1/;m.h2/
//˝Xm.yi /�m.h2/:

Taking the mirror of this formula, we get

ı.Yh1�yi
/D

X
j

c0i;j Yh1�yjC

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch1h0Ih2

.b�Ih1;h2
/˝Yh2�yj

C

X
h22ˇ such that

m.b��Im.h1/;m.h2// exists

.�1/deghyi m.b��Im.h1/;m.h2/
/˝Yh2�yi

:
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When N is Khovanov’s complex ŒT �Kh for a tangle diagram T in R�0 � R, the
induced type D structure yD.ŒT �Kh/ over B�n is the same as Roberts’ type D structure
from [12].

6.3.10 Proposition yD.ŒT �Kh/, as defined in Definition 6.3.8, agrees with the type D
structure over B�n which Roberts associates to T .

Proof Roberts’ type D structure is defined as a bigraded Z–module in Definition 32
of [12]. As such, it agrees with yD.ŒT �Kh/, and the action of the idempotent ring Iˇ
is the same on both; Roberts defines the action of the idempotent ring at the end of
Section 3.2 of [12].

Lastly, the type D operation ı on yD.ŒT �Kh/ has an explicit form given in Proposition
6.3.9 above. The coefficients c0i;j and Qc0i;j Ih0 are either .�1/#1.i;j/ or zero, just like
the coefficients ci;j and Qci;j Ih0 described in Example 6.1.3. Recall that the coefficient
QQch1h0Ih2

is either one or zero; this was also pointed out in Definition 6.2.1. By compari-
son, ı agrees with Roberts’ type D operation defined at the beginning of [12, Section 5].

6.4 Pairing

Let M be a complex of graded projective right H n –modules and let N be a complex
of graded projective left H n –modules, satisfying the algebraic conditions Cmodule of
Definition 6.1.1 and Definition 6.3.3. The natural way to pair M and N and get a
chain complex over Z is to take the tensor product M ˝H n N . However, we could
also use Definition 6.2.4 to construct a type A structure yA.M / and use Definition 6.3.7
to construct a type D structure yD.N /, both over m.B/! ˇ B , and then take their box
tensor product. This produces the same chain complex as M ˝H n N , after a reversal
of the intrinsic grading.

6.4.1 Proposition As differential bigraded Z–modules, yA.M / �m.B/!ˇB yD.N /

is isomorphic to the module obtained from M ˝H n N by multiplying all intrinsic
gradings on M ˝H n N by �1.

Proof Let fxi � h1 j e.xi/D eL.h1/g and fh1 �yi j e.yi/D eR.h1/g be the Z–bases
for M and N , respectively, corresponding to the sets of designated generators fxig

of M and fyig of N . Then a Z–basis for M ˝H n N is fxi �h1 �yj g (we will suppress
the idempotent conditions).

Write the differentials on M and N as dM and dN . As an element of M ˝H n N ,
the differential of xi � h1 �yj is

@˝.xi � h1 �yj /D .�1/degh yj .dM .xi/ � h1 �yj /C .xi � h1 � dN .yj //:
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If we expand out dM as in Section 6.1 and dN as in the discussion preceding
Proposition 6.3.9, we may write this as

(6-5) .�1/degh yj

�X
k

ci;k.xk �h1 �yj /C
X

k;h02ˇmult;h22ˇ

Qci;kIh0
QQch0h1Ih2

.xk �h2 �yj /

�
C

X
l

c0j ;l.xi �h1 �yl/C
X

l;h02ˇmult;h22ˇ

Qc0j ;lIh0
QQch1h0Ih2

.xi �h2 �yl/:

Now, as a bigraded Z–module, yA.M /�m.B/!ˇB yD.N / is defined as yA.M /˝Iˇ
yD.N /.

A Z–basis for yA.M / (respectively yD.N /) is given by fXxi �h1
g (respectively fYh1�yi

g).
A generator Xxi �h1

of yA.M / has the same idempotent in Iˇ as a generator Yh2�yi

of yD.N / if and only if h1 D h2 .

Thus, yA.M /˝Iˇ
yD.N / has a Z–basis consisting of all elements Xxi �h1

˝ Yh1�yj ,
which is in bijection with the basis fxi � h1 �yj g for M ˝H n N . The bigradings agree
on these two Z–modules after negating the intrinsic gradings on M ˝H n N : note that
for the intrinsic grading on yA.M /˝Iˇ

yD.N /, the grading of h1 in Xxi �h1
˝Yh1�yj is

counted twice with coefficient �1
2

, while for the intrinsic grading on M ˝H n N , the
grading of h in xi � h1 �yj is counted once with coefficient 1. This explains the factor
of 1

2
in Definition 5.1.1.

It remains to show that the differential @˝ on M˝H n N agrees with the differential @�

on yA.M /�m.B/!ˇB yD.N /. We will use m1 and m2 to denote the differential and
algebra action on yA.M / and ı to denote the type D operation on yD.N /. Applying @�

to a generator Xxi �h1
˝Yh1�yj , we get

.�1/
degh.Yh1�yj

/
.m1.Xxi �h1

//˝Yh1�yj C .m2˝ id/ ı .Xxi �h1
˝ ı.Yh1�yj //:

Because H n is concentrated in homological degree zero,

degh.Yh1�yj /D degh.h1 �yj /D degh.yj /:

Thus, the first term of @�.Xxi �h1
˝Yh1�yj / is

.�1/degh yj
X

k

ci;kXxk �h1
˝Yh1�yj ;

which agrees with the first term of expression (6-5) for @˝.xi � h1 � yj / under the
bijection between basis elements.
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By Proposition 6.3.9, the other term of @�.Xxi �h1
˝Yh1�yj / can be expanded out as

.m2˝id/ı
�

Xxi �h1
˝

�X
l

c0j ;lYh1�yl
C

X
l;h02ˇmult;h22ˇ

Qc0j ;lIh0
QQch1h0Ih2

b�Ih1;h2
˝Yh2�yl

C

X
l;h22ˇ such that

m.b�
�Im.h1/;m.h2/

/ exists

.�1/deghyjm.b�
�Im.h1/;m.h2/

/˝Yh2�yj

��
;

where b�Ih1;h2 denotes either b Ih1;h2 or bC Ih1;h2
and m.b��Im.h1/;m.h2// denotes ei-

ther m.b� Im.h1/;m.h2// or m.b�C Im.h1/;m.h2/
/. This expansion gives us three remaining

terms of @�.Xxi �h1
˝Yh1�yj /. The first of these isX

l

c0j ;lXxi �h1
˝Yh1�yl

;

which agrees with the third term of expression (6-5) under the bijection between basis
elements. The second is X

l;h02ˇmult;h22ˇ

Qc0j ;lIh0
QQch1h0Ih2

Xxi �h2
˝Yh2�yl

;

which agrees with the fourth term of expression (6-5). Finally, the remaining term of
@�.Xxi �h1

˝Yh1�yj / is

.�1/degh yj
X

k;h02ˇmult;h22ˇ

Qci;kIh0
QQch0h1Ih2

Xxk �h2
˝Yh2�yj ;

which agrees with the second term of expression (6-5). Thus, after reversing the
intrinsic gradings on M ˝H n N , we conclude that M ˝H n N is isomorphic to
yA.M /˝m.B/!ˇB yD.N / as differential bigraded Z–modules.

6.4.2 Remark The negation of the intrinsic gradings on M ˝H n N is done for the
same reason as in Remark 3.0.3.

6.4.3 Proposition Let B be a differential bigraded algebra and let J be a bigrading-
homogeneous ideal of B which is preserved by the differential on B . Let yD be a type D
structure over B and let yA be a differential bigraded right B–module which descends
to a module over B=J . By Proposition 5.3.7, yD automatically descends to a type D
structure over B=J , and we have

yA �B yD Š yA �B=J yD:

Proof This follows immediately from Definition 2.3.5.

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1639

6.4.4 Corollary Let T1 and T2 be oriented tangle diagrams in R�0�R and R�0�R
respectively, with orderings chosen of the crossings of T1 and T2 . Assume that T1

and T2 have consistent orientations, so that their horizontal concatenation is an oriented
link diagram L in R2 . Order the crossings of L such that those of T1 come before
those of T2 . Then

CKh.L/Š yA.ŒT2�
Kh/�m.B/!ˇB yD.ŒT1�

Kh/Š yA.ŒT2�
Kh/�B�n

yD.ŒT1�
Kh/:

Proof This is a corollary of Proposition 6.4.1, Proposition 6.4.3 and Khovanov’s
results from [4].

Identifying yA.ŒT2�
Kh/ with Roberts’ type A structure over B�n by Proposition 6.2.7,

and identifying yD.ŒT1�
Kh/ with Roberts’ type D structure over B�n by Proposition

6.3.10, we obtain an alternate proof of Roberts [11, Proposition 36].

6.5 Equivalences of type A structures

We start by defining A1–morphisms. The following definition is general enough for
our purposes, although it is not the most general definition possible. A more general
definition is given in Roberts [11, Definition 26]; our sign conventions are the same as
Roberts’.

6.5.1 Definition Let B be a differential bigraded algebra with idempotent ring I .
Let yA and yA0 be differential bigraded right modules over B with differentials m1;m

0
1

and algebra actions m2 , m0
2

respectively. An A1–morphism F from yA to yA0 is a
collection

FnW yA˝I B˝.n�1/
! yA 0Œ0; n� 1�

of bigrading-preserving I–linear maps satisfying the compatibility condition

m01 ıFnC .�1/nm02 ı .Fn�1˝jidjn/

D Fn�1 ı .m2˝ id˝.n�2//C .�1/nC1Fn ı .m1˝jidj˝.n�1//

C .�1/nC1
n�1X
kD1

Fn ı .id˝k
˝�1˝jidj˝.n�k�1//

C

n�2X
kD1

.�1/kFn�1 ı .id˝k
˝�2˝jidj˝.n�k�2//

for all n� 1. Recall that jidjn and jidj˝n mean different things; see Section 2.1.
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6.5.2 Remark Lipshitz, Ozsváth and Thurston also require all A1–morphisms
to satisfy a unitality condition: all algebra inputs must be in the kernel BC of the
augmentation of B for the corresponding A1–morphism term to be nonzero. See [7,
Remark 2.2.21]. We will not discuss this condition further because it is satisfied for all
A1–morphisms and homotopies that we consider.

6.5.3 Example For an A1–morphism F with only F1 and F2 nonzero, the condition
of Definition 6.5.1 is nontrivial only for nD 1, 2 and 3. The nD 1 condition is

m01 ıF1 D F1 ım1;

the nD 2 condition is

m01 ıF2Cm02 ı .F1˝ id/D F1 ım2�F2 ı .m1˝jidj/�F2 ı .id˝�1/;

and the nD 3 condition is

�m02 ı .F2˝jidj/D F2 ı .m2˝ id/�F2 ı .id˝�2/:

Let .M; dM / and .M 0; dM 0/ be two chain complexes of graded projective right H n –
modules satisfying the algebraic condition Cmodule of Definition 6.1.1 for generating
sets fxig and fx0ig respectively. Let f W M!M 0 be a bigrading-preserving H n –linear
map such that dM 0f DfdM ; as shorthand, we will say “let f be a chain map from M

to M 0”. We first show that certain chain maps f induce A1–morphisms of type A
structures yA.M /! yA.M 0/ over m.B/! ˇ B .

Let fxi � h1 j e.xi/D eL.h1/g be the Z–basis for M corresponding to the generating
set fxig and let fx0i � h1g be the analogous Z–basis for M 0 (we will suppress the
idempotent conditions). We may expand f .xi/ in the basis for M 0 :

f .xi/D
X

j

fi;j x0j C
X

j ;h02ˇ;deg h0¤0

Qfi;j Ih0x
0
j � h
0:

6.5.4 Definition The chain map f satisfies the algebraic condition Cmorphism for
the generating sets fxig and fx0j g if Qfi;j Ih0 is only nonzero when h0 2 ˇmult .

For a chain map f satisfying Cmorphism , we may write

f .xi/D
X

j

fi;j x0j C
X

j ;h02ˇmult

Qfi;j Ih0x
0
j � h
0:
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Thus, a basis expansion for f .xi � h1/ is

f .xi � h1/D
X

j

fi;j x0j � h1C

X
j ;h02ˇmult;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

x0j � h2:

Since M and M 0 satisfy Cmodule , we also have

dM .xi � h1/D
X

j

ci;j .xj � h1/C
X

j ;h02ˇmult;h22ˇ

Qci;j Ih0
QQch0h1Ih2

.xj � h2/;

dM 0.x
0
i � h1/D

X
j

c0i;j .x
0
j � h1/C

X
j ;h02ˇmult;h22ˇ

Qc0i;j Ih0
QQch0h1Ih2

.x0j � h2/:

6.5.5 Proposition Suppose the chain map f satisfies Cmorphism . The equation
dM 0f D fdM gives us the following equations in the coefficients fi;j , Qf i;j Ih0 , ci;j ,
Qci;j Ih0 , c0i;j and Qc0

i;j ;h0
:

.1/ For all generators xi of M and x0k of M 0 ,X
j

fi;j c0j ;k D
X

j

ci;jfj ;k :

.2/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ

Qfi;j Ih0
QQch0h1Ih3

c0j ;k C
X

j ;h02ˇ

fi;j Qc
0
j ;kIh0

QQch0h1Ih3

D

X
j ;h02ˇ

ci;j
Qfj ;kIh0

QQch0h1Ih3
C

X
j ;h02ˇ

Qci;j Ih0
QQch0h1Ih3

fj ;k :

.3/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ˛

Qfi;j Ih0
QQch0h1Ih3

c0j ;k C
X

j ;h02ˇ˛

fi;j Qc
0
j ;kIh0

QQch0h1Ih3

C

X
j ;h02ˇ ;

h002ˇ ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ˛

ci;j
Qfj ;kIh0

QQch0h1IhC3C

X
j ;h02ˇ˛

Qci;j Ih0
QQch0h1Ih3

fj ;k

C

X
j ;h02ˇ ;

h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:
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.4/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ ;

h002ˇ˛;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

C

X
j ;h02ˇ˛;

h002ˇ ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ ;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

C

X
j ;h02ˇ˛;

h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:

.5/ For all generators xi � h1 of M and x0k � h3 of M 0 ,X
j ;h02ˇ˛;

h002ˇ˛;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ˛;

h002ˇ˛;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:

Proof The proof is very similar to that of Proposition 6.1.2 and will be omitted.
Note that explicitly writing the degree conditions in the sums is unnecessary, since
the relevant products of coefficients are always zero unless the degree conditions are
satisfied. In Proposition 6.1.2, we chose to write out the degree conditions for clarity.

6.5.6 Definition Suppose .M; dM / and .M 0; dM 0/ satisfy Cmodule and f W M!M 0

is a chain map satisfying Cmorphism . Define the first component yA.f /1 of an A1–
morphism yA.f /W yA.M /! yA.M 0/ of type A structures over m.B/! ˇ B by

yA.f /1.Xxi �h1
/ WD

X
j

fi;j Xx0
j
�h1
:

The map yA.f /1W yA.M /! yA.M 0/ respects the right actions of the idempotent ring Iˇ ,
and it is bigrading-preserving because f is.

If yA.f /1 were the only nonzero component of yA.f /, then yA.f / would be an ordinary
chain map between differential bigraded m.B/! ˇ B–modules. However, yA.f /2 will
also be nonzero in general; thus, we must deal with genuine higher A1–terms when
working with these morphisms. The component

yA.f /2W yA.M /˝Iˇ m.B/! ˇ B! yA.M 0/Œ0; 1�

of yA.f / is defined on the generators Xxi �h1
of yA.M / and m.b��Im.h1/;m.h2/

/ of
m.B/! ˇ B by

yA.f /2.Xxi �h1
;m.b��Im.h1/;m.h2/

// WD
X

j ;h02ˇmult

Qfi;j Ih0
QQch0h1Ih2

Xx0
j
�h2
;

where m.b��Im.h1/;m.h2/
/ denotes m.b� Im.h1/;m.h2/

/ or m.b�C Im.h1/;m.h2/
/ as appro-

priate. Any action of the form yA.f /2.Xxi �h1
; b�Ih1;h2

/ is defined to be zero.
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Suppose that the algebra input m.b��Im.h1/;m.h2// equals m.b� Im.h1/;m.h2/
/. Let h1D

.W .a/b; �/ and h2 D .W .a0/b; � 0/; then QQch0h1Ih2
is only nonzero for one value of h0 ,

namely h0 D .W .a0/a; all plus/. For this value of h0 , QQch0h1Ih2
is 1. Thus,

(6-6) yA.f /2.Xxi �h1
;m.b� Im.h1/;m.h2/

//D
X

j

Qfi;j Ih0Xx0
j
�h2
:

Now suppose the algebra input is equal to m.b�C Im.h1/;m.h2/
/. As before, write h1

as h1 D .W .a/b; �/. In this case, QQch0h1Ih2
will be nonzero for any h0˛ which equals

.W .a/a; minus on ˛/, where ˛ is any arc of a which is part of the circle C in W .a/a.
For h0 equal to one of the h0˛ , we have QQch0h1Ih2

D 1, and for all other h0 , QQch0h1Ih2
is

zero. Thus,

(6-7) yA.f /2.Xxi �h1
;m.b�C Im.h1/;m.h2/

//D
X

j

X
left arcs ˛ of C

Qfi;j Ih0˛
Xx0

j
�h2
:

Writing m.B/!ˇB as T .Vfull/=Jfull as in Section 5.3, the above formulas define a map

yA.f /2W yA.M /˝Iˇ Vfull! yA.M
0/Œ0; 1�:

We can extend to a map

yA.f /2W yA.M /˝Iˇ T .Vfull/! yA.M
0/Œ0; 1�

which is defined as the sum, over all n� 2, of the maps

n�1X
kD1

m02 ı .m
0
2˝ id/ ı � � � ı .m02˝ id˝.k�2//

ı . yA.f /2˝jidj˝.k�1// ı .m2˝ id˝k/ ı � � � ı .m2˝ id˝.n�2//

from yA.M /˝ .Vfull/
˝.n�1/ to yA.M 0/. In Proposition 6.5.8, we show that yA.f /2

descends to a map

yA.f /2W yA.M /˝Iˇ m.B/! ˇ B! yA.M 0/I

in Proposition 6.5.9 we verify that yA.f /1 and yA.f /2 together satisfy the conditions
to form an A1–morphism yA.f /.

6.5.7 Example The n D 2 summand of yA.f /2W yA.M /˝Iˇ T .Vfull/! yA.M 0/ is
simply yA.f /2 , the map from yA.M /˝Iˇ Vfull to yA.M 0/ defined above. The nD 3

summand of yA.f /2W yA.M /˝Iˇ T .Vfull/! yA.M
0/, or in other words the definition

of yA.f /2 when the algebra input is a quadratic monomial in the generators of Vfull , is

yA.f /2 ı .m2˝ id/Cm02 ı .
yA.f /2˝jidj/;

where in this expression yA.f /2 again denotes the map from yA.M /˝IˇVfull to yA.M 0/.
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6.5.8 Proposition Write m.B/!ˇB as T .Vfull/=Jfull and let r be any element of Jfull .
The map

yA.f /2.�; r/W yA.M /! yA.M 0/

is identically zero. Thus, we get a well-defined map

yA.f /2W yA.M /˝Iˇ m.B/! ˇ B! yA.M 0/

which is linear with respect to the right actions of the idempotent ring Iˇ on yA.M /˝Iˇ
m.B/! ˇ B and yA.M 0/, and which preserves the intrinsic grading and decreases the
homological grading by one.

Proof First, yA.f /2 decreases the homological grading by 1 (and thus preserves
homological grading when accounting for shifts), since m.b��Im.h1/;m.h2/

/ carries
homological grading 1 and f W M !M 0 preserves homological grading. Also, yA.f /2
preserves the intrinsic grading. To see this, note that as elements of M and M 0 ,
xi �h1 and x0j �h2 must have the same intrinsic grading whenever x0j �h2 appears with
nonzero coefficient in the basis expansion of f .xi � h1/, because f preserves intrinsic
grading. As elements of H n , the intrinsic degree of h2 is either one or two greater
than that of h1 . Since, in yA.M / and yA.M 0/, the intrinsic degrees of h1 and h2 are
multiplied by �1

2
whereas the intrinsic degrees of xi and x0j are multiplied by �1,

the element Xx0
j
�h2

of yA.M 0/ should have intrinsic degree which is 1
2

or 1 greater
than the intrinsic degree of Xxi �h1

2 yA.M /. This extra 1
2

or 1 is compensated exactly
by the intrinsic degree of m.b��Im.h1/;m.h2/

/, which is 1
2

for m.b� Im.h1/;m.h2/
/ and 1

for m.b�C Im.h1/;m.h2/
/.

To show that yA.f /2.�; r/ is zero for any r 2Jfull , note first that Definition 6.5.6 implies
that if we have elements r and r 0 of T .Vfull/ such that m2.�; r/D 0, m0

2
.�; r 0/D 0,

yA.f /2.�; r/D 0 and yA.f /2.�; r 0/D 0, then yA.f /2.�; r � r 0/D 0 as well.

Thus, we only need to show that yA.f /2.�; r/ is zero for the multiplicative generators r

of Jfull . These were defined to be the generators of

JB \ .T
1.VB/˚T 2.VB//; Jm.B/! \ .T

1.Vm.B/!/˚T 2.Vm.B/!// and Jextra:

For generators in JB\.T
1.VB/˚T 2.VB//, there is nothing to show, since yA.f /2.�; b/

is zero for any b 2 VB .

For the generators in Jm.B/! \ .T
1.Vm.B/!/˚T 2.Vm.B/!//, the proof closely follows

the proof of Proposition 6.2.2. Write Jm.B/! \ .T
1.Vm.B/!/˚T 2.Vm.B/!// as m.I?/

as in that proof.

The generators m.r�/ of m.I?/ have intrinsic degree either 1, 3
2

or 2, as in Section 5.2.
For those m.r�/ of intrinsic degree 2, the equations in item (5) of Proposition 6.5.5
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above imply that yA.f /2.Xxi �h1
;m.r�// D 0 for any Xxi �h1

. For those m.r�/ of
intrinsic degree 3

2
, the equations in item (4) of Proposition 6.5.5 similarly imply that

yA.f /2.�;m.r
�// is zero.

The generators m.r�/ of m.I?/ which have intrinsic degree 1 are sums of either one,
two, three or four terms m.b� /m.b

�
 0/ with all coefficients C1. For a fixed m.r�/,

let h1 2 Iˇ denote its left idempotent and let h3 2 Iˇ denote its right idempotent. The
element h3 of ˇ has degree 2 more than h1 , as elements of H n with its intrinsic
grading, and h3 differs from h1 by two surgeries on its left crossingless matching. As
in Proposition 6.2.2, the left crossingless matchings of h1 and h3 are different.

For any generators of yA.M / and yA.M 0/ of the form xi � h1 and x0
k
� h3 , where h1

and h3 are as above, the equations from item (3) of Proposition 6.5.5 becomeX
j ;h02ˇ ;

h002ˇ ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

D

X
j ;h02ˇ ;

h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

:

The terms involving h0 2 ˇ˛ vanish for these choices of h1 and h3 . These equations
imply that for all generators m.r�/ of m.I?/ of intrinsic degree 1, yA.f /2.�;m.r�//
is zero.

Finally, the generators of Jextra are listed in items (1)–(5) of Definition 5.3.2. If r is
one of these generators, the proof that the map yA.f /2.�; r/ is zero is similar to the
proof of Proposition 6.2.5.

In more detail, consider a relation

r D b Ih1;h2
m.b��0Im.h2/;m.h3/

/�m.b��Im.h1/;m. Qh2/
/b
 0I Qh2;h3

from item (1) of Definition 5.3.2. Write h1 D .W .a1/b1; �1/ and let Xxi �h1
be a

generator of yA.M /. By Example 6.5.7, we have

(6-8) yA.f /2.Xxi �h1
; r/D yA.f /2

�
m2.Xxi �h1

; b Ih1;h2
/;m.b��0Im.h2/;m.h3/

/
�

�m2

�
yA.f /2.Xxi �h1

;m.b��Im.h1/;m. Qh2/
//; b 0I Qh2;h3

�
Write h2 as .W .a1/b2; �2/ and h3 as .W .a2/b2; �3/. Let h0 D .W .a2/a1; all plus/,
an element of ˇ . For the first term in (6-8) above, we first multiply Xxi �h1

by b Ih1;h2

to get Xxi �h2
. Applying yA.f /2.�;m.b��0Im.h2/;m.h3/

// to the element Xxi �h2
, by (6-6)

we get X
j

Qfi;j Ih0Xxj �h3
:

For the second term on the right side of (6-8), we first compute

yA.f /2.Xxi �h1
;m.b��Im.h1/;m. Qh2/

//:
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This expression equals X
j

Qfi;j Ih0Xxj � Qh2

by (6-6) again, where h0 is still equal to .W .a2/a1; all plus/. If we multiply this result
by b

 0I Qh2;h3
, we get X

j

Qfi;j Ih0Xxj �h3
:

Thus, if a generator r of Jextra comes from item (1) of Definition 5.3.2, then the map
yA.f /2.�; r/W yA.M /! yA.M 0/ is zero.

For generators of Jextra from items (2)–(5) of Definition 5.3.2, the proof is analogous
to that of Proposition 6.2.5 in the same way as above. We will leave the remaining
cases to the reader.

6.5.9 Proposition yA.f / satisfies the A1–morphism compatibility conditions.

Proof Since yA.f /n is zero for n> 2, it suffices to show that the nD 1, nD 2 and
nD 3 conditions listed in Example 6.5.3 hold. For the nD 1 condition, we want to
show that

m01.
yA.f /1.Xxi �h1

//D yA.f /1.m1.Xxi �h1
//

for each generator Xxi �h1
of yA.M /. The left side is

m01

�X
j

fi;j Xxj �h1

�
D

X
j ;k

fi;j c0j ;kXx0
k
�h1
;

while the right side is

yA.f /1

�X
j

ci;j Xxj �h1

�
D

X
j ;k

ci;jfj ;kXx0
k
�h1
:

These are equal by item (1) of Proposition 6.5.5.

We may write the nD 3 condition of Example 6.5.3 as

(6-9) yA.f /2 ı .id˝�2/D yA.f /2 ı .m2˝ id/Cm02 ı .
yA.f /2˝jidj/:

In this form, it is clear from the definition of yA.f /2 in Definition 6.5.6 that this
condition holds, generalizing Example 6.5.7.

For the nD 2 condition, we want to show that

(6-10) m01 ı
yA.f /2Cm02 ı .

yA.f /1˝ id/

D yA.f /1 ım2� yA.f /2 ı .m1˝jidj/� yA.f /2 ı .id˝�1/
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as maps from yA.M /˝Iˇ m.B/! ˇ B to yA.M 0/.

We will first reduce to the case of proving the above equation when applied to elements
of the form Xxi �h1

˝ b�Ih1;h2
or Xxi �h1

˝ m.b��Im.h1/;m.h2//, where b�Ih1;h2
and

m.b��Im.h1/;m.h2/
/ are the multiplicative generators of m.B/! ˇ B .

Claim If b1 and b2 are two elements of m.B/! ˇ B such that the nD 2 condition is
satisfied both when the algebra input is b1 and when it is b2 , then the nD 2 condition
is also satisfied when the algebra input is b1b2 .

Proof of claim We want to show that

(6-11) m01 ı
yA.f /2 ı .id˝�2/Cm02 ı .

yA.f /1˝ id/ ı .id˝�2/

D yA.f /1 ım2 ı .id˝�2/ � yA.f /2 ı .m1˝jidj/ ı .id˝�2/

� yA.f /2 ı .id˝�1/ ı .id˝�2/

when the algebra input to these maps is b1˝ b2 , assuming the usual nD 2 condition
(6-10) holds when the algebra input is b1 or b2 . In the proof of this claim, the algebra
input to all maps will be assumed to be b1˝ b2 .

The left side of (6-11) can be rewritten as

(6-12) m01 ım02 ı .
yA.f /2˝jidj/Cm01 ı

yA.f /2 ı .m2˝ id/

Cm02 ı .m
0
2˝ id/ ı . yA.f /1˝ id˝ id/

using the n D 3 consistency condition (6-9) for yA.f / and the associativity of the
action of m.B/! ˇ B on yA.M 0/. Call these terms LHS1 , LHS2 and LHS3 . Now we
may use the assumption that the nD 2 consistency condition (6-10) holds when the
algebra input is b1 to write the third term LHS3 of expression (6-12) as

m02 ı .
yA.f /1˝ id/ ı .m2˝ id/�m02 ı .m

0
1˝jidj/ ı . yA.f /2˝jidj/

�m02 ı .
yA.f /2˝ id/ ı .m1˝jidj˝ id/

�m02 ı .
yA.f /2˝ id/ ı .id˝�1˝ id/:

Call these four terms LHS3a , LHS3b , LHS3c and LHS3d .

On the other hand, the right side of (6-11) can be rewritten as

(6-13) yA.f /1 ım2 ı .m2˝ id/�m02 ı .
yA.f /2˝ id/ ı .m1˝jidj˝ id/

� yA.f /2 ı .m2˝ id/ ı .m1˝jidj˝ jidj/

� yA.f /2 ı .id˝�2/ ı .id˝�1˝jidj/

� yA.f /2 ı .id˝�2/ ı .id˝ id˝�1/

Algebraic & Geometric Topology, Volume 17 (2017)



1648 Andrew Manion

using the nD 3 consistency equation (6-9) for yA.f /, the associativity of the action of
m.B/! ˇ B on yA.M / and the Leibniz rule for the derivative �1 on m.B/! ˇ B . Call
these five terms RHS1 , RHS2 , RHS3 , RHS4 and RHS5 . Using the nD 3 consistency
equation again, we can rewrite the term RHS4 as

�m02 ı .
yA.f /2˝ id/ ı .id˝�1˝ id/� yA.f /2 ı .m2˝ id/ ı .id˝�1˝jidj/:

Call these two terms RHS4a and RHS4b . Similarly, we can rewrite the term RHS5 as

�m02 ı .
yA.f /2˝jidj/ ı .id˝ id˝�1/� yA.f /2 ı .m2˝ id/ ı .id˝ id˝�1/:

Call these terms RHS5a and RHS5b . Using the assumption that the nD 2 consistency
condition (6-10) holds when the algebra input is b2 , we can write the term RHS1 as

m02 ı .
yA.f /1˝ id/ ı .m2˝ id/Cm01 ı

yA.f /2 ı .m2˝ id/

C yA.f /2 ı .m1˝jidj/ ı .m2˝ id/

C yA.f /2 ı .m2˝ id/ ı .id˝ id˝�1/:

Call these four terms RHS1a , RHS1b , RHS1c and RHS1d .

After rewriting the left and right sides of (6-11) in this way, we want to show that

LHS1CLHS2CLHS3aCLHS3bCLHS3c CLHS3d

D RHS1aCRHS1bCRHS1c CRHS1d CRHS2

CRHS3CRHS4aCRHS4bCRHS5aCRHS5b:

Several terms cancel:

� LHS2 D RHS1b ,

� LHS3a D RHS1a ,

� LHS3c D RHS2 ,

� LHS3d D RHS4a ,

� RHS1d CRHS5b D 0,

� RHS1c CRHS3CRHS4b D 0.

The final equality follows from the Leibniz rule for the differential m1 on yA.M /.
Canceling corresponding terms between the sides, it remains to prove

LHS1CLHS3b D RHS5a:

The Leibniz rule for the differential m0
1

on yA.M 0/ lets us rewrite LHS1CLHS3b as

m02 ı .id˝�1/ ı . yA.f /2˝jidj/:

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1649

This term equals the remaining right-side term RHS5a , because �1 increases homo-
logical grading by one.

Thus, we have reduced to showing that the nD 2 consistency condition (6-10) holds
for yA.f / when the algebra input is either b Ih1;h2

, bC Ih1;h2
, m.b� Im.h1/;m.h2// or

m.b�C Im.h1/;m.h3/
/. If the input b�Ih1;h2

is b Ih1;h2
or bC Ih1;h2

, the yA.f /2 terms in
the nD 2 equation are zero and we must show that

m02 ı .
yA.f /1˝ id/D yA.f /1 ım2

for these algebra inputs. If Xxi �h1
is a generator of yA.M /, then

m02ı.
yA.f /1˝id/.Xxi �h1

; b�Ih1;h2
/Dm02

�X
j

fi;j Xx0
j
�h1
; b�Ih1;h2

�
D

X
j

fi;j Xx0
j
�h2
;

while

yA.f /1 ım2.Xxi �h1
; b�Ih1;h2

/D yA.f /1.Xxi �h2
/D

X
j

fi;j Xx0
j
�h2
;

and these are equal.

Now let the algebra input be a generator m.b� Im.h1/;m.h2/
/. The left side of the nD 2

condition with this algebra input and module input Xxi �h isX
j ;k;h02ˇ

Qfi;j Ih0
QQch0h1Ih2

c0j ;kXx0
k
�h2
C

X
j ;k;h02ˇ

fi;j Qc
0
j ;kIh0

QQch0h1Ih2
Xx0

k
�h2
;

and the right side isX
j ;k;h02ˇ

Qci;j Ih0
QQch0h1Ih2

fj ;kXx0
k
�h2
C

X
j ;k;h02ˇ

ci;j
Qfj ;kIh0

QQch0h1Ih2
Xx0

k
�h2
:

These are equal by item (2) of Proposition 6.5.5.

Finally, let the algebra input be a generator m.b�C Im.h1/;m.h3/
/. The left side of the

nD 2 condition with this algebra input and module input Xxi �h1
isX

j ;k;h02ˇ˛

Qfi;j Ih0
QQch0h1Ih3

c0j ;kXx0
k
�h3
C

X
j ;k;h02ˇ˛

fi;j Qc
0
j ;kIh0

QQch0h1Ih3
Xx0

k
�h3
:

To compare with the right side of the n D 2 condition, note that, as in the proof of
Proposition 6.2.3, we have

�1.m.b
�
C Im.h1/;m.h3/

//D�
X

h22ˇ

m.b� Im.h1/;m.h2/
/m.b�|Im.h2/;m.h3/

/;
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where the sum is implicitly over those h2 such that generators m.b� Im.h1/;m.h2/
/ and

m.b�|Im.h2/;m.h3/
/ exist. Thus,

yA.f /2 ı .id˝�1/.Xxi �h1
;m.b�C Im.h1/;m.h3/

//

D�

X
h2

yA.f /2.Xxi �h1
;m.b� Im.h1/;m.h2/

/m.b�|Im.h2/;m.h3/
//

D

X
h22ˇ

m02 ı .
yA.f /2˝ id/.Xxi �h1

;m.b� Im.h1/;m.h2/
/m.b�|Im.h2/;m.h3/

//

�

X
h22ˇ

yA.f /2 ı .m2˝ id/.Xxi �h1
;m.b� Im.h1/;m.h2/

/m.b�|Im.h2/;m.h3/
//

by the n D 3 consistency condition (6-9); note that degh m.b�|Im.h2/;m.h3/
/ D 1.

Expanding the above expression out, the top line isX
j ;k;h02ˇ ;

h002ˇ ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

Xx0
k
�h3

and the bottom line is

�

X
j ;k;h02ˇ ;

h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

Xx0
k
�h3
:

Thus, the right side of the nD 2 condition (6-10) with algebra input m.b�C Im.h1/;m.h3/
/

and module input Xxi �h1
isX

j ;k;h02ˇ˛

Qci;j Ih0
QQch0h1Ih3

fj ;kXx0
k
�h3
C

X
j ;k;h02ˇ˛

ci;j
Qfj ;kIh0

QQch0h1Ih3
Xx0

k
�h3

�

X
j ;k;h02ˇ ;

h002ˇ ;h22ˇ

Qfi;j Ih0
QQch0h1Ih2

Qc0j ;kIh00
QQch00h2Ih3

Xx0
k
�h3

C

X
j ;k;h02ˇ ;

h002ˇ ;h22ˇ

Qci;j Ih0
QQch0h1Ih2

Qfj ;kIh00
QQch00h2Ih3

Xx0
k
�h3
:

This is equal to the left side of the nD 2 condition with these inputs,X
j ;k;h02ˇ˛

Qfi;j Ih0
QQch0h1Ih3

c0j ;kXx0
k
�h3
C

X
j ;k;h02ˇ˛

fi;j Qc
0
j ;kIh0

QQch0h1Ih3
Xx0

k
�h3
;

by item (3) of Proposition 6.5.5.

We now define the composition of two A1–morphisms as in [11, Definition 27].
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6.5.10 Definition Define the composition of two A1–morphisms F W yA! yA0 and
GW yA0! yA00 to be the A1–morphism G ıF with

.G ıF /n WD
X

iCjDnC1

.�1/.iC1/.jC1/Gi ı .Fj ˝jidj.jC1/˝.i�1//:

For the purposes of this section, we will only need to compose morphisms yA.f /
and yA.g/ such that either f or g satisfies a more restrictive condition than Cmorphism .

6.5.11 Definition A chain map f W M !M 0 of complexes of graded projective right
H n –modules satisfies the algebraic condition zCmorphism for the generating sets fxig

of M and fx0j g of M 0 if it satisfies Cmorphism of Definition 6.5.4 and furthermore
Qfi;j Ih0 D 0 for all h0 2 ˇmult .

6.5.12 Proposition Let f W M !M 0 and gW M 0 !M 00 be chain maps between
complexes of graded projective right H n modules, such that M , M 0 and M 00 satisfy
the algebraic condition Cmodule of Definition 6.1.1, while f and g satisfy the condition
Cmorphism and either f or g satisfies the condition zCmorphism . Then g ı f satisfies
Cmorphism and

yA.g ıf /D yA.g/ ı yA.f /:

Proof By the conditions on f and g , the chain map g ı f satisfies the condition
Cmorphism , so yA.g ıf / is a well-defined A1–morphism. We have

.g ıf /i;k D
X

j

fi;j gj ;k :

If g satisfies zCmorphism , then for h0 2 ˇmult we have

B.g ıf /i;kIh0 D

X
j

Qfi;j Ih0gj ;k ;

while if f satisfies zCmorphism , then

B.g ıf /i;kIh0 D

X
j

fi;j Qgj ;kIh0 :

Let Xxi �h1
be a generator of yA.M /. We have

yA.g ıf /1.Xxi �h1
/D

X
j ;k

fi;j gj ;kXx00
k
�h1
;

and this sum also equals . yA.g/ ı yA.f //1.Xxi �h1
/.
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Let b�Ih1;h2
be a generator of B � m.B/! ˇ B . By the definition of the operation

f 7! yA.f /,

yA.g ıf /2.Xxi �h1
; b�Ih1;h2

/D 0D . yA.f / ı yA.g//2.Xxi �h1
; b�Ih1;h2

/:

Finally, let m.b��Im.h1/;m.h2// be a generator of m.B/! � m.B/! ˇ B . Suppose g

satisfies zCmorphism . Then

yA.g ıf /2.Xxi �h1
;m.b��Im.h1/;m.h2/

//D
X

j ;k;h02ˇmult

Qfi;j Ih0
QQch0h1Ih2

gj ;kXx00
k
�h2
;

while

. yA.g/ ı yA.f //2.Xxi �h1
;m.b��Im.h1/;m.h2/

//

D . yA.g/1 ı yA.f /2/.Xxi �h1
;m.b��Im.h1/;m.h2/

//

D

X
j ;k;h02ˇmult

Qfi;j Ih0
QQch0h1Ih2gj ;kXx00

k
�h2
:

The case when f satisfies zCmorphism is analogous. Thus, yA.gıf /2D . yA.g/ı yA.f //2 .
We have

yA.g ıf /n D . yA.g/ ı yA.f //n D 0

for all n> 2, so yA.g ıf /D yA.g/ ı yA.f /.

Now we will consider homotopies. The following definition is a special case of [11,
Definition 28].

6.5.13 Definition Let B be a differential bigraded algebra with idempotent ring I .
Let yA and yA0 be differential bigraded right modules over B . Let F D fFng and
G D fGng be A1–morphisms from yA to yA0 . An A1–homotopy H between F

and G is a collection
HnW yA˝I B˝.n�1/

! yA0Œ0; n�

of bigrading-preserving I–linear maps satisfying the relation

Fn�Gn Dm01 ıHnC .�1/n�1m02 ı .Hn�1˝jidjn�1/

C .�1/nC1Hn ı .m1˝jidj˝.n�1//CHn�1 ı .m2˝ id˝.n�2//

C .�1/nC1
n�1X
kD1

Hn ı .id˝k
˝�1˝jidj˝.n�k�1//

C

n�2X
kD1

.�1/kHn�1 ı .id˝k
˝�2˝ id˝.n�k�2//

for all n� 1.
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6.5.14 Example Suppose H is an A1–homotopy between F and G with Hn D 0

for n> 1. Then the nD 1 A1–homotopy condition for H becomes

F1�G1 Dm01 ıH1CH1 ım1;

and the nD 2 homotopy condition becomes

F2�G2 D�m02 ı .H1˝jidj/CH1 ım2:

For n> 2, the homotopy condition is Fn�Gn D 0.

We will get homotopies H D yA. / from certain homotopies  between chain maps f
and g from a chain complex M of graded projective right H n modules to another such
complex M 0 ; that is, H n –linear maps  W M !M 0 of bidegree .0;�1/ satisfying

f �g D dM 0 C dM :

We will require that M and M 0 satisfy Cmodule for some generating sets fxig and fx0j g,
and that f and g satisfy Cmorphism for these generating sets. We will only need to
consider homotopies  which satisfy the analogue of the more restrictive condition
zCmorphism on chain maps.

6.5.15 Definition A homotopy  as above satisfies the condition zChomotopy if, for all
generators xi of M ,

 .xi/D
X

j

 i;j x0j

is a basis expansion of  .xi/ in the basis fx0j � h1g for M 0 , for some integer coeffi-
cients  i;j .

If  satisfies the condition zChomotopy (implying, in particular, that M and M 0 satisfy
the condition Cmodule and f and g satisfy the condition Cmorphism ), then the homotopy
relation f �g D dM 0 C dM becomes the two sets of equations

(6-14) fi;k �gi;k D

X
j

 i;j c0j ;k C
X

j

ci;j j ;k

for all generators xi of M and x0
k

of M 0 , and

(6-15) Qfi;kIh0 � Qgi;kIh0 D

X
j

 i;j Qc
0
j ;kIh0 C

X
j

Qci;j Ih0 j ;k

for all generators xi 2M , x0
k
2M 0 and h0 2 ˇmult .
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6.5.16 Definition Suppose M and M 0 are chain complexes of graded projective
right H n –modules, satisfying the condition Cmodule , and f and g are chain maps from
M to M 0 satisfying the condition Cmorphism . Let  be an H n –linear chain homotopy
between f and g satisfying the condition zChomotopy defined above.

Define an A1–homotopy yA. / between yA.f / and yA.g/ by

yA. /1.Xxi �h1
/ WD

X
j

 i;j Xx0
j
�h1

and yA. /n D 0

for n> 1.

6.5.17 Proposition yA. / is a valid A1–homotopy between yA.f / and yA.g/.

Proof First, yA. /1 respects the right action of the idempotent ring Iˇ on yA.M /

and yA.M 0/, and yA. /1 preserves intrinsic grading and decreases homological grading
by one because  has the same properties.

By Example 6.5.14, the nD 1 condition is

yA.f /1� yA.g/1 Dm01 ı
yA. /1C yA. /1 ım1:

If Xxi �h1
is a generator of yA.M /, then

. yA.f /1� yA.g/1/.Xxi �h1
/D

X
k

.fi;k �gi;k/Xx0
k
�h1

D

X
j ;k

. i;j c0j ;k/Xx0
k
�h1
C

X
j ;k

.ci;j j ;k/Xx0
k
�h1

by (6-14), while

m01 ı
yA. /1Xxi �h1

D

X
j ;k

 i;j c0j ;kXx0
k
�h1
;

yA. /1 ım1Xxi �h1
D

X
j ;k

ci;j j ;kXx0
k
�h1
:

Thus, the nD 1 condition is satisfied.

By Example 6.5.14, the nD 2 condition is

(6-16) yA.f /2� yA.g/2 D�m02 ı .
yA. /1˝jidj/C yA. /1 ım2:

As in Proposition 6.5.9, we first reduce to the case where the algebra input is one of
the generators b�Ih1;h2

or m.b��Im.h1/;m.h2/
/ of m.B/! ˇ B .
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Claim If b1 and b2 are two elements of m.B/! ˇ B such that the nD 2 homotopy
condition (6-16) is satisfied both when the algebra input is b1 and when it is b2 , then
the nD 2 homotopy condition is also satisfied when the algebra input is b1b2 .

Proof of claim When the algebra input is b1˝ b2 , we want to show that the maps

yA.f /2 ı .id˝�2/� yA.g/2 ı .id˝�2/

and
�m02 ı .

yA. /1˝jidj/ ı .id˝�2/C yA. /1 ım2 ı .id˝�2/

take the same value. In the proof of this claim, the algebra input to all maps will be
assumed to be b1˝ b2 .

By Example 6.5.7 and the associativity of the algebra actions m2 and m0
2

, we want to
show the following equation (6-17), when the algebra input is b1˝ b2 :

(6-17) m02 ı .
yA.f /2˝jidj/C yA.f /2 ı .m2˝ id/

�m02 ı .
yA.g/2˝jidj/� yA.g/2 ı .m2˝ id/

D�m02 ı .m
0
2˝ id/ ı . yA. /1˝jidj˝ jidj/C yA. /1 ım2 ı .m2˝ id/:

Call the terms on the left side of (6-17) LHS1 , LHS2 , LHS3 and LHS4 ; call the
terms on the right side RHS1 and RHS2 . Using the nD 2 homotopy condition for the
algebra input b1 , the term RHS1 can be written as

m02 ı .
yA.f /2˝jidj/�m02 ı .

yA.g/2˝jidj/�m02 ı .
yA. /1˝jidj/ ı .m2˝ id/:

Call these terms RHS1a , RHS1b and RHS1c . Using the nD 2 homotopy condition
for the algebra input b2 , the term RHS2 can be written as

yA.f /2 ı .m2˝ id/� yA.g/2 ı .m2˝ id/Cm02 ı .
yA. /1˝jidj/ ı .m2˝ id/:

Call these terms RHS2a , RHS2b and RHS2c . Then

� LHS1 D RHS1a ,

� LHS2 D RHS2a ,

� LHS3 D RHS1b ,

� LHS4 D RHS2b ,

� RHS1c CRHS2c D 0,

proving the claim.
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It remains to show that the n D 2 homotopy condition (6-16) is satisfied when the
algebra input is one of the multiplicative generators of m.B/! ˇ B . When the input is
b�Ih1;h2

, the left side of the nD 2 condition is zero, so we want to show that the right
side is also zero. If Xxi �h1

is a generator of yA.M /, then the right side of the nD 2

condition with algebra input b�Ih1;h2
is

�

X
j

 i;j Xx0
j
�h2
C

X
j

 i;j Xx0
j
�h2
;

which is zero as desired.

Finally, suppose the algebra input is m.b��Im.h1/;m.h2/
/ and let Xxi �h1

be a generator
of yA.M /. The left side of the nD 2 condition applied to these inputs isX

k;h02ˇ

. Qfi;kIh0 � Qgi;kIh0/ QQch0h1Ih2
Xx0

k
�h2
;

which equalsX
j ;k;h02ˇ

 i;j Qc
0
j ;kIh0

QQch0h1Ih2
Xx0

k
�h2
C

X
j ;k;h02ˇ

Qci;j Ih0 j ;k
QQch0h1Ih2

Xx0
k
�h2

by (6-15). This expression is also equal to the right side of the n D 2 condition
applied to these inputs, since m.b�m.h1/;m.h2// has homological degree 1. Thus, the
A1–homotopy relations are satisfied for yA. /.

6.5.18 Corollary Let M and M 0 be chain complexes of graded projective right
H n –modules satisfying the algebraic condition Cmodule . Suppose there exist chain
maps f W M !M 0 and gW M 0!M satisfying the condition Cmorphism , with either
f or g satisfying the more restrictive condition zCmorphism , and chain homotopies  
between g ıf and idM and  0 between f ıg and idM 0 , both satisfying the condition
zChomotopy .

Then yA.M/ and yA.M 0/ are A1–homotopy equivalent type A structures over m.B/!ˇB.

Proof By Proposition 6.5.12,

yA.g/ ı yA.f /D yA.g ıf / and yA.f / ı yA.g/D yA.f ıg/:

By Proposition 6.5.17, yA. / provides an A1–homotopy between yA.g/ ı yA.f / and
id yA.M /

D yA.idM /, and yA. 0/ provides an A1–homotopy between yA.f /ı yA.g/ and
id yA.M 0/ D yA.idM 0/.

The case of interest to us is when M D ŒT �Kh and M 0D ŒT 0�Kh for two oriented tangle
diagrams T and T 0 in R�0˝R which are related by a Reidemeister move. In [4],
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Khovanov shows that ŒT �Kh is chain homotopy equivalent to ŒT 0�Kh . In the following
two propositions, we verify that the maps involved in these homotopy equivalences
satisfy the relevant algebraic conditions.

6.5.19 Proposition Let .M; dM / be a chain complex of graded projective right
H n –modules. Assume the following conditions hold:

(1) M satisfies the algebraic condition Cmodule with respect to a set of genera-
tors fxig.

(2) M ŠM1˚M2 as right H n –modules; furthermore, M1 is the submodule of M

spanned over H n by some subset of the xi , while M2 is the submodule spanned
by the rest of the xi .

(3) M2 is a subcomplex of M . Write dM in matrix form with respect to the direct
sum decomposition as

dM D

�
d1 0

d1;2 d2

�
:

Note that d2
M
D 0 is equivalent to the equations d2

1
D 0, d1;2ıd1Cd2ıd1;2D 0

and d2
2
D 0.

(4) There exists an H n –linear map  0W M2!M2 of bidegree .0;�1/ with idM2
D

d2 
0C 0d2 , and such that we may write, with integer coefficients  0i;j ,

 0.xi/D
X

j

 0i;j xj :

Among the equations implied by d2
M
D 0 is d2

1
D 0; thus .M1; d1/ is a chain complex

of graded projective right modules over H n . Since .M; dM / satisfies Cmodule for the
generators fxig, .M1; d1/ satisfies Cmodule for the appropriate subset of fxig. Define
f W .M; dM /! .M1; d1/, gW .M1; d1/! .M; dM / and  W M!M by the following
matrix formulas:

f WD
�
idM1

0
�
; g WD

�
idM1

� 0d1;2

�
;  WD

�
0 0

0 � 0

�
:

Then f and g are chain maps, f ı g D idM1
and g ı f � idM D dM C  dM .

Furthermore, f satisfies the condition zCmorphism , g satisfies the condition Cmorphism

and  satisfies the condition zChomotopy .

Proof Both f and g are bigrading-preserving and H n –linear;  preserves the
intrinsic grading and decreases the homological grading by one, because the same holds
for  0 . The map f is a chain map because it is the projection map onto a quotient
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complex. To show that g is a chain map, we want to show that g.d1.xi//DdM .g.xi//

for all xi in M1 . We have

g.d1.xi//D d1.xi/� 
0d1;2 ı d1.xi/

and

(6-18) dM .g.xi//D dM .xi/� dM . 0d1;2.xi//

D dM .xi/C 
0.d2 ı d1;2/.xi/� d1;2.xi/

D d1.xi/� 
0.d1;2 ı d1/.xi/:

In the second line of (6-18), we use that

d1;2.xi/D idM2
.d1;2.xi//

D d2. 
0d1;2.xi//C 

0.d2 ı d1;2/.xi/

D dM . 0d1;2.xi//C 
0.d2 ı d1;2/.xi/

and in the third line of (6-18) we use the equation d2 ı d1;2 C d1;2 ı d1 D 0 from
item (3) above. Thus, g is a chain map as well, and by definition, f ıg D idM2

. To
verify that  is a homotopy between g ı f and idM , we can write out the terms of
the relevant equation as matrices:

g ıf D

�
idM1

0

� 0d1;2 0

�
; dM D

�
0 0

0 �d2 
0

�
;  dM D

�
0 0

� 0d1;2 � 
0d2

�
:

Thus, the equation g ıf � idM D dM C dM holds.

By definition, f satisfies the condition zCmorphism . By item (4) above and the condition
Cmodule for M , g satisfies Cmorphism . By item (4),  satisfies zChomotopy .

6.5.20 Proposition Let M be a chain complex of graded projective right H n –
modules. Assume the following conditions hold:

(1) M satisfies the algebraic condition Cmodule with respect to a set of genera-
tors fxig.

(2) M ŠM1˚M2 as right H n –modules, and M1 is the submodule of M spanned
over H n by some subset of the xi , say M1Dfxi �h1 j i 2Sg. The submodule M2

has a Z–basis fzi � h1 j i 62 Sg, where

zi D xi C

X
j2S

�i;j xj C

X
j2S;h02ˇmult

Q�i;j Ih0xj � h
0

for some integer coefficients �i;j and Q�i;j Ih0 .
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(3) M2 is a subcomplex of M . Write dM in matrix form with respect to the direct
sum decomposition:

dM D

�
d1 0

d1;2 d2

�
:

(4) There exists an H n –linear map  0W M2!M2 of bidegree .0;�1/ with idM2
D

d2 
0C 0d2 such that we may write

 0.zi/D
X

j

 0i;j zj

for some integer coefficients  0i;j .

(5) Write
dM .xi/D

X
j

ci;j xj C

X
j ;h02ˇmult

Qci;j Ih0xj � h
0:

For all indices i 2 S , j 62 S , k 62 S and elements h0 of ˇmult , we have
Qci;j Ih0 

0
j ;k
D 0.

(6) For all indices i 2 S , j 62 S , k 2 S and elements h0; h00 of ˇmult , we have
Qci;j Ih0�j ;k D 0 and Qci;j Ih0 Q�j ;kIh00 D 0.

(7) For all indices i 62 S , j 62 S , k 2 S and elements h0 of ˇmult ,  0i;j�j ;k D 0 and
 0i;j Q�j ;kIh0 D 0.

As in Proposition 6.5.19, we have d2
1
D 0, so .M1; d1/ is a chain complex. We may

write d1DdM�d1;2 . The right side of this equation has domain restricted to M1�M ,
and it takes values in M1 .

Define f W .M; dM /! .M1; d1/, gW .M1; d1/! .M; dM / and  W M !M by the
following matrix formulas:

f WD
�
idM1

0
�
; g WD

�
idM1

� 0d1;2

�
;  WD

�
0 0

0 � 0

�
:

Then f and g are chain maps, f ı g D idM1
and g ı f � idM D dM C  dM .

Furthermore, .M1; d1/ satisfies the condition Cmodule for the generators fxi j i 2 Sg,
f satisfies Cmorphism , g satisfies zCmorphism and  satisfies zChomotopy . These last three
conditions use the generators fxi j i 2 Sg [ fxj j j 62 Sg for M and fxi j i 2 Sg

for M1 .

Proof The proof that f and g are chain maps, and that  is a homotopy between f
and g , is the same as in Proposition 6.5.19. Note that here, all the matrices are chosen
with respect to the basis fxi � h1 j i 2 Sg [ fzj � h1 j j 62 Sg of M , since this basis
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is compatible with the direct sum decomposition M ŠM1˚M2 . For the algebraic
conditions, we need to use the basis fxi �h1 j i 2Sg[fxj �h1 j j 62Sg instead, which is
not compatible with the direct sum decomposition. Thus, we want to express d1 , f , g

and  in this basis and show they satisfy Cmodule , Cmorphism , zCmorphism and zChomotopy ,
respectively.

For i 2 S , we may write

dM .xi/D
X
k2S

ci;kxk C

X
k2S;h02ˇmult

Qci;kIh0xk � h
0
C

X
j 62S

ci;j zj

�

X
j 62S;k2S

ci;j�j ;kxk �

X
j 62S;k2S;h02ˇmult

ci;j Q�j ;kIh0xk � h
0

C

X
j 62S;h02ˇmult

Qci;j Ih0zj � h
0:

The final two terms which would appear in this expression are zero by item (6) of the
above assumptions. The third and sixth terms of this expression make up d1;2.xi/:

d1;2.xi/D
X
j 62S

ci;j zj C

X
j 62S;h02ˇmult

Qci;j Ih0zj � h
0:

The rest of the terms make up d1.xi/:

d1.xi/D
X
k2S

ci;kxk C

X
k2S;h02ˇmult

Qci;kIh0xk � h
0

�

X
j 62S;k2S

ci;j�j ;kxk �

X
j 62S;k2S;h02ˇmult

ci;j Q�j ;kIh0xk � h
0:

From this formula we can see that .M1; d1/ satisfies the condition Cmodule for the
generators fxi j i 2 Sg.

For xi with i 2 S , we have f .xi/D xi . For zj with j 62 S , we have f .zj /D 0. We
may write this equation as

f

�
xj C

X
k2S

�j ;kxk C

X
k2S;h02ˇmult

Q�j ;kIh0xk � h
0

�
D 0;

or equivalently

f .xj /D�
X
k2S

�j ;kxk �

X
k2S;h02ˇmult

Q�j ;kIh0xk � h
0:

By this formula, we see that f satisfies condition Cmorphism .
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For the map g , we can write

 0 ı d1;2.xi/D  
0

�X
j 62S

ci;j zj C

X
j 62S;h02ˇmult

Qci;j Ih0zj � h
0

�
D

X
j 62S;k 62S

ci;j 
0
j ;kzk

by (5) above. Using (7), we can write this sum asX
j 62S;k 62S

ci;j 
0
j ;kxk :

Thus,
g.xi/D xi �

X
j 62S;k 62S

ci;j 
0
j ;kxk

and g satisfies condition zCmorphism .

Finally, if xi 2 S , then  .xi/D 0 by definition. For xj 62 S , we have

 .xj /D  

�
zj �

X
k2S

�j ;kxk �

X
k2S;h02ˇ

Q�j ;kIh0xk � h
0

�
D  .zj /D�

X
k 62S

 0j ;kzk D�

X
k 62S

 0j ;kxk :

The last equality follows from (7). Thus,  satisfies the condition zChomotopy .

6.5.21 Corollary If T and T 0 are oriented tangle diagrams in R�0˝R which are
related by a Reidemeister move, then A.ŒT �Kh/ and A.ŒT 0�Kh/ are A1–homotopy
equivalent as type A structures over m.B/! ˇ B .

Proof When T and T 0 are related by an R1 move, Khovanov’s homotopy equiva-
lence between ŒT �Kh and ŒT 0�Kh from [4, Section 4.4] is of the type constructed in
Proposition 6.5.19. This is most easily seen by looking at the top diagram of Figure 7.
The map  0 sends a generator xi of the far-right rectangle to the corresponding
generator xj in the top rectangle, which topologically is xi isotoped with a plus-
labeled free circle added, times .�1/#1.i;j/ . One can check that the four conditions of
Proposition 6.5.19 are satisfied.

When T and T 0 are related by an R2 move, Khovanov’s homotopy equivalence from
[4, Section 4.5] is a composition of a homotopy equivalence from Proposition 6.5.19
followed by one from Proposition 6.5.20. The relevant diagrams are the middle diagram
of Figure 7 and the top diagram of Figure 8. The first homotopy equivalence is very
similar to the R1 move, with  0 defined analogously. For the second homotopy
equivalence,  0 isotopes a generator and deletes a minus-labeled free circle; it still
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R1

M1

M2

C

�

 0

R2

M1

M2

C�

 0

R3

M1

M2

C�
 0

Figure 7: First step of R1, R2 and R3 moves
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R2

M1

�

 0
�

R3

M1

�
 0

�

Figure 8: Second step of R2 and R3 moves

carries a coefficient of .�1/#1.i;j/ . The coefficients �i;j and Q�i;j Ih0 may be packaged
into a map � as shown in the diagram. This map is defined as  0 postcomposed with
the differential map from the left rectangle to the bottom rectangle.

For generators xi in the left rectangle, zi is xi . For generators xi in the top rectangle,
zi is xi C �.xi/; then M2 is the subcomplex of ŒT �Kh generated by the zi . One can
see from the diagram in Figure 8 that the conditions of Proposition 6.5.20 are satisfied.
In particular, note that  0.zi/ D  

0.xi/ because  0 is zero on generators from the
bottom rectangle, so condition (4) is satisfied. We have d1;2 D 0, so conditions (5)
and (6) hold automatically. Condition (7) holds because the arrows labeled  0 and �
are not composable in the diagram.
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Finally, when T and T 0 are related by an R3 move, Khovanov’s homotopy equivalence
from [4, Section 4.6] comes from doing a homotopy equivalence from Proposition 6.5.19
and then a homotopy equivalence from Proposition 6.5.20, to both ŒT �Kh and ŒT 0�Kh .
After these homotopy equivalences, the complexes are isomorphic. Thus, the full homo-
topy equivalence from ŒT �Kh to ŒT 0�Kh is a composition of four homotopy equivalences
from Proposition 6.5.19 and Proposition 6.5.20.

The relevant diagrams are the bottom diagram of Figure 7 and the bottom diagram of
Figure 8. The maps  0 and � are defined as in the R2 move. Again, one can check that
the conditions of Proposition 6.5.19 are satisfied using Figure 7 and that the conditions
of Proposition 6.5.20 are satisfied using Figure 8. This time, in the second step, d1;2 is
not zero. However, for one of the two arrows of Figure 8 contributing to d1;2 , all Qci;j Ih0

are zero. The other arrow is not composable with the arrows labeled  0 and � . This
suffices to show that conditions (5) and (6) of Proposition 6.5.20 hold.

6.5.22 Proposition If T and T 0 are oriented tangle diagrams in R�0 ˝R which
are related by a Reidemeister move, then the A1–homotopy equivalence between
yA.ŒT �Kh/ and yA.ŒT 0�Kh/ of Corollary 6.5.21 descends to a A1–homotopy equivalence
of type A structures over the quotient algebra B�n of m.B/! ˇ B .

Proof For homotopy equivalences ff W M!M1;gW M1!M;  W M!M g coming
from Proposition 6.5.19, when doing an R1 move, the first step of an R2 move, or the
first or fourth step of an R3 move, we only need to show that yA.g/2 descends from a
map

yA.M1/˝Iˇ m.B/! ˇ B! yA.M /

to a map
yA.M1/˝Iˇ B�n! yA.M /I

since f satisfies zCmorphism and  satisfies zChomotopy , we have yA.f /2 D 0 and
yA. /2 D 0.

As in Proposition 5.2.8, let a, b , c and d be vertices of a tetrahedron in the graph G . We
want to show that yA.g/2.�; aCc/D 0, yA.g/2.�; aCd/D 0 and yA.g/2.�; bCc/D 0.
We will show only that yA.g/2.�; aC c/D 0; by symmetry, the proof is the same for
the other two extra relations.

Write
aDm.b� Im.h1/;m.h2/

/m.b��0Im.h2/;m.h3/
/;

c Dm.b��Im.h1/;m.
QQh2/
/m.b� 0Im. QQh2/;m.h3/

/:
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Let Xxi �h1
be a generator of yA.M1/; we have i 2 S , in the notation of Proposition

6.5.19. Then

(6-19) yA.g/2.Xxi �h1
; a/

D . yA.g/2 ı .m2˝ id//.Xxi �h1
;m.b� Im.h1/;m.h2/

/˝m.b��0Im.h2/;m.h3/
//

C .m02 ı .
yA.g/2˝jidj//.Xxi �h1

;m.b� Im.h1/;m.h2/
/˝m.b��0Im.h2/;m.h3/

//

using the nD3 consistency condition for the A1–morphism yA.g/2 ; see Example 6.5.3.
The first term on the right side of (6-19) can be expanded out as

(6-20) �

X
i;j2S;k;l 62S

Qci;j Ih0
Qcj ;kIh00

�0
 0k;lXxl �h3

;

where h0 and h00�0 are determined by  and �0 , while the second term on the right side
of (6-19) can be expanded out as

(6-21)
X

i2S;j ;k;l 62S

Qci;j Ih0
 0j ;k Qck;lIh00

�0
Xxl �h3

:

Similarly, we may write yA.g/2.Xxi �h1
; c/ as the sum of the expressions

(6-22) �

X
i;j2S;k;l 62S

Qci;j Ih0�
Qcj ;kIh00

 0
 0k;lXxl �h3

and

(6-23)
X

i2S;j ;k;l 62S

Qci;j Ih0�
 0j ;k Qck;lIh00

 0
Xxl �h3

:

We want to show that the expressions (6-20) and (6-23) sum to zero; the argument that
expressions (6-21) and (6-22) sum to zero is very similar.

Indeed, generators of all complexes .M; dM / and .M1; d1/ under consideration come
from generators of the Khovanov complex ŒT �Kh of a tangle T , and by Remark 3.0.4
we may choose any ordering we like for the crossings of T . We will order the crossings
of T such that the one, two or three crossings local to the Reidemeister move being
performed come first in the ordering.

Now, to each quadruple .i 2 S; j 2 S; k 62 S; l 62 S/ giving rise to a nonzero term
of expression (6-20), we may associate a pair of indices .j 0 62 S; k 0 62 S/, such that
Qci;j 0Ih0�

Qcj 0;k0Ih00
 0
 0

k0;l
¤ 0. In fact, with the above ordering convention, we will have

Qci;j Ih0
Qcj ;kIh00

�0
 0k;l D Qci;j 0Ih0�

 0j 0;k0 Qck0;lIh00
 0
:
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To construct .j 0 62S; k 0 62S/ such that the above equation holds, first note that the only
component of g relevant for yA.g/2 is � 0 ı d1;2 . Recall that the terms Qc , and thus
also the terms  0 , are computed as in Example 6.1.3. A term like Qci;j Ih0 Qcj ;kIh00

�0
 0k;l

corresponds to doing one step of d1 by changing some crossing away from the local
area (and thus higher in the ordering) from 0 to 1, then doing one step of d1;2 by
changing one of the local crossings from 0 to 1, and then finally doing one step
of  0 by changing a different local crossing from 1 to 0. The indices .j 0; k 0/ and the
corresponding term Qci;j 0Ih0� 

0
j 0;k0 Qck0;lIh00

 0
come from doing the d1;2 and � 0 steps

before changing the nonlocal crossing from 0 to 1. But, when changing the local
crossings, the signs are the same for both terms because the local crossings occur at
the beginning of the ordering. When changing the nonlocal crossing, the signs are also
the same for both terms because doing d1;2 and � on the local crossings does not
increase or decrease the number of crossings with a 1–resolution (d1;2 increases this
number by 1 and then � 0 decreases it by 1).

The correspondence between quadruples .i 2 S; j 2 S; k 62 S; l 62 S/ such that
Qci;j Ih0 Qcj ;kIh00�0 

0
k;l is nonzero and quadruples .i 2 S; j 0 62 S; k 0 62 S; l 62 S/ such that

Qci;j 0Ih0� 
0
j 0;k0 Qck0;lIh00

 0
is nonzero is bijective. Thus, expressions (6-20) and (6-23) sum

to zero. Analogously, expressions (6-21) and (6-22) sum to zero.

We conclude that yA.g/2.�; aCc/D0. By symmetry, we also have yA.g/2.�; aCd/D0

and yA.g/2.�; bCc/D 0, so yA.g/ descends to an A1–morphism of type A structures
over B�n .

For homotopy equivalences ff W M !M1;gW M1!M;  W M !M g coming from
Proposition 6.5.20, the argument is similar enough that we will simply outline the
differences with the above proof. Homotopy equivalences from Proposition 6.5.20
arise when doing the second step of an R2 move or the second or third step of an R3
move. For these equivalences, we only need to show that yA.f /2 descends from a map

yA.M /˝Iˇ m.B/! ˇ B! yA.M1/

to a map
yA.M /˝Iˇ B�n! yA.M1/

since we automatically have yA.g/2 D 0 by condition zCmorphism on g and yA. /2 D 0

by condition zChomotopy on  .

The only terms of f in the basis expansion fxi � h1 j i 2 Sg[ fxj � h1 j j 62 Sg of M

which are relevant for yA.f /2 are the terms with coefficients �Q�j ;kIh0 ; see the proof
of Proposition 6.5.20. These � terms play a role analogous to the � 0 ı d1;2 terms
in the proof above for homotopy equivalences from Proposition 6.5.19. Indeed, a �
term corresponds to doing one step of  0 , by changing a local crossing from a 1 to
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a 0, and then doing one step of dM , by changing a local crossing from a 0 to a 1.
Thus, an argument analogous to the one above shows that yA.f /2.�; aC c/D 0, and
by symmetry that yA.f /2.�; aC d/ D 0 and yA.f /2.�; b C c/ D 0. Hence yA.f /
descends to an A1–morphism of type A structures over B�n .

Proposition 6.5.22 gives us an alternate proof of Roberts [11, Corollary 33].

6.6 Equivalences of type D structures

We first define morphisms and homotopies of type D structures with sign conventions
following Roberts [12, Definition 37].

6.6.1 Definition Let B be a differential bigraded algebra with idempotent ring I .
Let . yD; ı/ and . yD0; ı0/ be type D structures over B . A morphism of type D structures
F W yD ! yD0 is a bigrading-preserving I–linear map F W yD ! B ˝I yD

0 satisfying
the type D morphism relation

.�1˝jidj/ ıF D .�2˝ id/ ı .id˝F / ı ı� .�2˝ id/ ı .id˝ ı0/ ıF:

The composition of two morphisms of type D structures F W yD! yD0 and GW yD0! yD00 is

G ıF WD .�2˝ id/ ı .id˝G/˝F;

a bigrading-preserving I–linear map from yD to B ˝I yD
00 which also satisfies the

type D morphism relation.

6.6.2 Definition Let F W yD! yD0 , GW yD! yD0 be morphisms of type D structures
over B . A homotopy of morphisms of type D structures between F and G is a
bigrading-preserving I–linear map H W yD! .B ˝I yD

0/Œ0; 1� satisfying

F �G D .�2˝ id/ ı .id˝H / ı ıC .�2˝ id/ ı .id˝ ı0/ ıH C .�1˝jidj/ ıH:

If a homotopy exists between F and G , then F is said to be homotopic to G .

Two type D structures yD and yD0 are homotopy equivalent if there exist type D structure
morphisms F W yD! yD0 and GW yD0! yD , such that G ıF is homotopic to id yD and
F ıG is homotopic to id yD0 .

6.6.3 Remark Suppose yD and yD0 are homotopy equivalent type D structures over B
and J is a bigrading-homogeneous ideal of B which is closed under the differential
on B . By Proposition 5.3.7, yD and yD0 induce type D structures over B=J . The induced
type D structures are homotopy equivalent. Indeed, one may simply postcompose the
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algebra outputs of F , G and H with the projection map from B onto B=J , and all
the relevant conditions are still satisfied.

Now let N be a chain complex of graded projective left H n –modules. In Section 6.3,
the type D structure yD.N / over m.B/! ˇ B was defined by applying the mirroring op-
eration of Definition 6.3.6 to yA.r.N //� m.B/!ˇBKm.m.B/!ˇB/op . One can check that
the mirroring operation of Definition 6.3.6 respects homotopy equivalences of type D
structures. Thus, to show that yD.ŒT �Kh/ is a tangle invariant up to homotopy equiva-
lence, it would suffice to prove the following general result: if yA and yA0 are type A
structures over a differential bigraded algebra B which are free as Z–modules, cDD

is a type DD bimodule over B and another differential bigraded algebra B 0 , and yA
and yA0 are A1–homotopy equivalent, then yA � cDD and yA0� cDD are homotopy
equivalent as type D structures over B 0 . Over Z=2Z, this is a standard property of the
box tensor product; see [7, Lemma 2.3.13]. Here, we are working over Z, but we will
only need a simpler version of this result.

6.6.4 Definition Let B and B 0 be differential bigraded algebras over an idempotent
ring I . Let yA and yA0 be differential bigraded right modules over B and let . cDD ; ıDD/

be a rank-one type DD bimodule over B and B 0 . Assume that yA and yA0 are free as
Z–modules, with Z–bases consisting of elements which are bigrading-homogeneous
and have a unique right idempotent. Let ı and ı0 denote the type D structure operations
on yA � cDD and yA0� cDD respectively.

Let F W yA! yA0 be an A1–morphism with Fn D 0 for n> 2. Define a morphism of
type D structures F � idDD from yA � cDD to yA0� cDD , or in other words a map

F � idDD W . yA � cDD /! B 0˝I . yA
0� cDD /;

by the formula

F � idDD WD 1˝F1C � ı .F2˝jidj/ ı .id˝ ıDD/;

where we are identifying yA � cDD with yA and yA0� cDD with yA0 . Recall that

�W yA˝I .B 0/op
! B 0˝I yA

was defined in Definition 6.3.4 and

�W yA0˝I .B 0/op
! B 0˝I yA

0

is defined analogously. The map F � idDD is bigrading-preserving and respects the
actions of I on yA � cDD and yA0� cDD .

6.6.5 Proposition The map F � idDD defined in Definition 6.6.4 is a morphism of
type D structures from yA � cDD to yA0� cDD .

Algebraic & Geometric Topology, Volume 17 (2017)



On bordered theories for Khovanov homology 1669

Proof We want to show that

(6-24) .�1˝jidj/ı.F � idDD/

D .�2˝ id/ı.id˝.F � idDD//ıı�.�2˝ id/ı.id˝ı0/ı.F � idDD/:

The left side of (6-24) is

.�1˝jidj/ı� ı.F2˝jidj/ı.id˝ıDD/D�� ı.F2˝jidj/ı.id˝ id˝�1/ı.id˝ıDD/:

Using the DD bimodule relations for ıDD , we may further rewrite this term as

� ı .F2˝ id/ ı .id˝�1˝ id/ ı .id˝ ıDD/

C � ı .F2˝jidj/ ı .id˝�2˝�2/ ı .id˝ �/ ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/:

Using the nD 2 and nD 3 A1 consistency conditions for F from Example 6.5.3,
the sum of these two terms is

� ı .F1˝ id/ ı .m2˝ id/ ı .id˝ ıDD/

� � ı .F2˝ id/ ı .id˝jidj˝ id/ ı .id˝ ıDD/ ım1

� � ı .m01˝ id/ ı .F2˝ id/ ı .id˝ ıDD/

� � ı .m02˝ id/ ı .id˝ ıDD/ ıF1

C � ı .F2˝jidj/ ı .m2˝ id˝ id/

ı .id˝ id˝ id˝�2/ ı � ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/

C .jidj˝ id/ ı � ı .m02˝ id/ ı .F2˝jidj˝ id/

ı .id˝ id˝ id˝�2/ ı � ı .id˝ id˝ ıDD ˝ id/ ı .id˝ ıDD/:

We will refer to these six terms as LHS1 , LHS2 , LHS3 , LHS4 , LHS5 and LHS6 .

The right side of (6-24) is

1˝ .F1 ım1/C � ı .F2˝jidj/ ı .id˝ ıDD/ ım1

C .id˝F1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C .�2˝ id/ ı .id˝ �/ ı .id˝F2˝jidj/ ı .id˝ id˝ ıDD/

ı � ı .m2˝ id/ ı .id˝ ıDD/

� 1˝ .m01 ıF1/

� � ı .m02˝ id/ ı .id˝ ıDD/ ıF1

� .id˝m01/ ı � ı .F2˝jidj/ ı .id˝ ıDD/

� .�2˝ id/ ı .id˝ �/ ı .id˝m02˝ id/ ı .id˝ id˝ ıDD/

ı � ı .F2˝jidj/ ı .id˝ ıDD/:

Algebraic & Geometric Topology, Volume 17 (2017)



1670 Andrew Manion

We will refer to these eight terms as RHS1 through RHS8 . We have the following:

� RHS1CRHS5 D 0 by the nD 1 consistency conditions for F .

� LHS1 D RHS3 because F1 is bigrading-preserving.

� LHS2 D RHS2 since

.id˝jidj/ ı ıDD D�.jidj˝ id/ ı ıDD :

� LHS3 D RHS7 .

� LHS4 D RHS6 .

It remains to show that LHS5 D RHS4 and that LHS6 D RHS8 . These claims follow
from direct computation: let ıDD.1/D

P
i bi˝ .b

0
i/

op . The term LHS5 , when applied
to a generator X of yA, givesX
i;j

.�1/.degh b0
i
/.degh bj /.�1/degh b0

i
Cdegh b0

j .�1/.degh XCdegh biCdegh bj�1/.degh b0
i
Cdegh b0

j
/

� b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh bi /.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:

To see that the second sum is equal to the first, use the fact that degh bi C degh b0i D 1

and degh bj C degh b0j D 1. In particular,

.�1/.degh bi /.degh b0
i
/
D 1 and .�1/.degh bj /.degh b0

j
/
D 1:

Applying the term RHS4 to X givesX
i;j

.�1/.degh XCdegh bi /.degh b0
i
/.�1/degh b0

j .�1/.degh XCdegh biCdegh bj�1/.degh b0
j
/

� b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh bi /.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:

Thus, LHS5 D RHS4 .

Similarly, applying the term LHS6 to X givesX
i;j

.�1/.degh bj /.degh b0
i
/.�1/degh bj .�1/.degh XCdegh biCdegh bj�1/.degh b0

i
Cdegh b0

j
/

� .�1/degh b0
i
Cdegh b0

j b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

�.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh b0

i
/.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:
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Applying the term RHS8 to X gives

�

X
i;j

.�1/degh b0
i .�1/.degh XCdegh bi�1/.degh b0

i
/.�1/.degh XCdegh biCdegh bj�1/.degh b0

j
/

� b0ib
0
j ˝F2.Xbi ; bj /

D

X
i;j

�.�1/.degh X /.degh b0
i
Cdegh b0

j
/C.degh b0

i
/.degh b0

j
/b0ib

0
j ˝F2.Xbi ; bj /:

Thus, LHS6 D RHS8 , so F � idDD is a valid morphism of type D structures from
yA� cDD to yA0� cDD .

6.6.6 Proposition If F and G are A1–morphisms from yA to yA0 as described in
Definition 6.6.4, with Fn;Gn D 0 for n> 2 and either F2 D 0 or G2 D 0, then

.G ıF /� idDD D .G � idDD/ ı .F � idDD/:

Proof First, suppose G2 D 0. Then .G ıF /1 D G1 ıF1 and .G ıF /2 D G1 ıF2 .
We have

.G ıF /� idDD D 1˝ .G ıF /1C � ı ..G ıF /2˝jidj/ ı .id˝ ıDD/

D 1˝ .G1 ıF1/C � ı .G1˝ id/ ı .F2˝jidj/ ı .id˝ ıDD/:

On the other hand,

.G � idDD/ ı .F � idDD/

D .�2˝ id/ ı .id˝ .G � idDD// ı .F � idDD/

D .�2˝ id/ ı .id˝ 1˝G1/ ı .1˝F1C � ı .F2˝jidj/ ı .id˝ ıDD//

D 1˝ .G1 ıF1/C .id˝G1/ ı � ı .F2˝jidj/ ı .id˝ ıDD/:

This expression equals .G ıF /� idDD because G1 is bigrading-preserving.

Now suppose instead that F2 D 0. Then .G ıF /1 is still G1 ıF1 , and .G ıF /2 D

G2 ı .F1˝ id/. We have

.G ıF /� idDD D 1˝ .G ıF /1C � ı ..G ıF /2˝jidj/ ı .id˝ ıDD/

D 1˝ .G1 ıF1/C � ı .G2˝jidj/ ı .F1˝ id˝ id/ ı .id˝ ıDD/:

On the other hand,

.G � idDD/ ı .F � idDD/

D .�2˝ id/ ı .id˝ .G � idDD// ı .F � idDD/

D .�2˝ id/ ı .id˝ .1˝G1C � ı .G2˝jidj/ ı .id˝ ıDD/// ı .1˝F1/

D 1˝ .G1 ıF1/C � ı .G2˝jidj/ ı .id˝ ıDD/ ıF1;
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which equals .G ıF /� idDD because

.F1˝ id˝ id/ ı .id˝ ıDD/D .id˝ ıDD/ ıF1:

6.6.7 Proposition As in Proposition 6.6.6, let F and G be A1–morphisms from yA

to yA0 with Fn;GnD 0 for n> 2 (here we do not require that either F2D 0 or G2D 0).
Let H be an A1–homotopy between F and G with Hn D 0 for n> 1. Define

H � idDD WD 1˝H1I

then H � idDD is a homotopy of type D morphisms between F � idDD and G � idDD .

Proof Let ı and ı0 denote the type D operations on yA� cDD and yA0� cDD respectively.
We want to show that

F � idDD �G � idDD D .id˝H1/ ı ıC ı
0
ıH1I

the other term in the type D homotopy relations of Definition 6.6.2 is zero for this
special type of H . Expanding out the left side, we want to show that

1˝F1� 1˝G1C � ı ..F2�G2/˝jidj/ ı .id˝ ıDD/D .id˝H1/ ı ıC ı
0
ıH1:

By Example 6.5.14, the A1–homotopy relations for H give us the following two
equations:

F1�G1 Dm01 ıH1CH1 ım1;

F2�G2 D�m02 ı .H1˝jidj/CH1 ım2:

Thus, the left side of the type D homotopy relation is

1˝ .m01 ıH1/ C 1˝ .H1 ım1/

C � ı ..�m02 ı .H1˝jidj/CH1 ım2/˝jidj/ ı .id˝ ıDD/

D 1˝ .m01 ıH1/ C 1˝ .H1 ım1/� � ı .m
0
2˝ id/ ı .H1˝jidj˝ jidj/ ı .id˝ ıDD/

C �˝ .H1˝jidj/ ı .m2˝ id/ ı .id˝ ıDD/

D 1˝ .m01 ıH1/ C 1˝ .H1 ım1/C � ı .m
0
2˝ id/ ı .H1˝ id˝ id/ ı .id˝ ıDD/

C .id˝H1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

D 1˝ .m01 ıH1/ C 1˝ .H1 ım1/C � ı .m
0
2˝ id/ ı .id˝ ıDD/ ıH1

C .id˝H1/ ı � ı .m2˝ id/ ı .id˝ ıDD/:

On the other hand, using the definition of ı and ı0 in Definition 6.3.4, the right side of
the type D homotopy relation can be expanded out as

1˝ .H1 ım1/C .id˝H1/ ı � ı .m2˝ id/ ı .id˝ ıDD/

C 1˝ .m01 ıH1/C � ı .m
0
2˝ id/ ı .id˝ ıDD/ ıH1
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which is identical to the previous expression after rearranging terms. Thus, H � idDD

is a valid type D homotopy between F � idDD and G � idDD .

6.6.8 Corollary Let B and B 0 be differential bigraded algebras over an idempotent
ring I . Let yA and yA0 be differential bigraded right modules over B and let . cDD ; ıDD/

be a rank-one type DD bimodule over B and B 0 . Assume that yA and yA0 are free as
Z–modules, with Z–bases consisting of elements which are grading-homogeneous and
have a unique right idempotent.

Suppose there exist A1–morphisms F W yA! yA0 and GW yA0! yA with Fn D 0 and
Gn D 0 for n> 2, and such that either F2 D 0 or G2 D 0. Furthermore, suppose that
G ıF is A1–homotopic to id yA via an A1–homotopy H with HnD 0 for n> 1, and
FıG is A1–homotopic to id yA0 via another A1–homotopy H 0 with H 0nD0 for n>1.

Then the type D structures yA� cDD and yA0� cDD over B 0 , defined in Definition 6.3.4,
are homotopy equivalent.

Proof This follows from Proposition 6.6.5, Proposition 6.6.6 and Proposition 6.6.7,
together with the fact that the box tensor product with idDD on morphisms sends
identity morphisms to identity morphisms.

6.6.9 Corollary If T and T 0 are oriented tangle diagrams in R�0˝R which are
related by a Reidemeister move, then yD.ŒT �Kh/ and yD.ŒT 0�Kh/ are homotopy equivalent
as type D structures over m.B/! ˇ B . Thus, they are also homotopy equivalent as
type D structures over the quotient algebra B�n .

Proof The first claim follows from Corollary 6.6.8 and the proof of Corollary 6.5.18,
in which the A1–morphisms F D yA.f / and G D yA.g/ and the A1–homotopy
H D yA. / used to realize the A1–homotopy equivalences satisfy the conditions of
Corollary 6.6.8. The second claim follows from Remark 6.6.3 above.

Corollary 6.6.9 gives us an alternate proof of Roberts [12, Theorem 46].

References
[1] R M Adin, Y Roichman, On maximal chains in the non-crossing partition lattice, J.

Combin. Theory Ser. A 125 (2014) 18–46 MR

[2] D Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003) 647–683 MR

[3] T Braden, Perverse sheaves on Grassmannians, Canad. J. Math. 54 (2002) 493–532
MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.1016/j.jcta.2014.02.002
http://msp.org/idx/mr/3207465
http://dx.doi.org/10.1016/j.ansens.2003.01.001
http://msp.org/idx/mr/2032983
http://dx.doi.org/10.4153/CJM-2002-017-6
http://msp.org/idx/mr/1900761


1674 Andrew Manion

[4] M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002)
665–741 MR

[5] R Lipshitz, P Ozsvath, D Thurston, Bordered Heegaard Floer homology: invariance
and pairing, preprint (2008) arXiv

[6] R Lipshitz, P S Ozsváth, D P Thurston, Heegaard Floer homology as morphism
spaces, Quantum Topol. 2 (2011) 381–449 MR

[7] R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer
homology, Geom. Topol. 19 (2015) 525–724 MR

[8] A J Manion, Constructions and computations in Khovanov homology, PhD thesis,
Princeton Universty (2015) MR Available at http://search.proquest.com/
docview/1707650065

[9] D Pálvölgyi, For any two noncrossing partitions p; q of n , is the graph of geodesics
from p to q in NC.n/ connected? (version: 2015-01-06) Available at http://
mathoverflow.net/q/192273

[10] A Polishchuk, L Positselski, Quadratic algebras, University Lecture Series 37, Amer.
Math. Soc., Providence, RI (2005) MR

[11] L Roberts, A type A structure in Khovanov homology, Algebr. Geom. Topol. 16 (2016)
3653–3719 MR

[12] L P Roberts, A type D structure in Khovanov homology, Adv. Math. 293 (2016)
81–145 MR

[13] C Stroppel, Parabolic category O , perverse sheaves on Grassmannians, Springer
fibres and Khovanov homology, Compos. Math. 145 (2009) 954–992 MR

Department of Mathematics, UCLA
520 Portola Plaza, Los Angeles, CA 90095, United States

manion@math.ucla.edu

http://math.ucla.edu/~manion/

Received: 12 November 2015 Revised: 13 July 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/agt.2002.2.665
http://msp.org/idx/mr/1928174
http://msp.org/idx/arx/0810.0687
http://dx.doi.org/10.4171/QT/25
http://dx.doi.org/10.4171/QT/25
http://msp.org/idx/mr/2844535
http://dx.doi.org/10.2140/gt.2015.19.525
http://dx.doi.org/10.2140/gt.2015.19.525
http://msp.org/idx/mr/3336273
http://msp.org/idx/mr/3407464
http://search.proquest.com/docview/1707650065
http://search.proquest.com/docview/1707650065
http://mathoverflow.net/q/192273
http://mathoverflow.net/q/192273
http://dx.doi.org/10.1090/ulect/037
http://msp.org/idx/mr/2177131
http://dx.doi.org/10.2140/agt.2016.16.3653
http://msp.org/idx/mr/3584271
http://dx.doi.org/10.1016/j.aim.2016.02.007
http://msp.org/idx/mr/3474320
http://dx.doi.org/10.1112/S0010437X09004035
http://dx.doi.org/10.1112/S0010437X09004035
http://msp.org/idx/mr/2521250
mailto:manion@math.ucla.edu
http://math.ucla.edu/~manion/
http://msp.org
http://msp.org


msp
Algebraic & Geometric Topology 17 (2017) 1675–1700

The intersection graph of an orientable generic surface

DORON BEN HADAR

The intersection graph M.i/ of a generic surface i W F ! S3 is the set of values
which are either singularities or intersections. It is a multigraph whose edges are
transverse intersections of two surfaces and whose vertices are triple intersections and
branch values. M.i/ has an enhanced graph structure which Gui-Song Li referred to
as a “daisy graph”. If F is oriented, then the orientation further refines the structure
of M.i/ into what Li called an “arrowed daisy graph”.

Li left open the question “which arrowed daisy graphs can be realized as the inter-
section graph of an oriented generic surface?” The main theorem of this article will
answer this. I will also provide some generalizations and extensions to this theorem
in Sections 4 and 5.

57N10, 57N12; 57N35, 57N40, 57N75

1 Introduction: the structure of the intersection graph

A (proper) generic surface in a 3–manifold is a generalization of an immersed surface
in a general position. Specifically:

Definition 1.1 A (proper) generic surface in a 3–manifold M is a smooth mapping
i W F !M, where F is a compact surface (called the underlying surface), and each
value of i has a neighborhood U in M such that U \ i.F / looks like one of the
pictures in Figure 1 (The purple part is @M ).

Figure 1 (top left), (top middle) and (top right) are, respectively, a regular value, a
double value and a triple value. Locally they look like the intersection of one, two or
three of the coordinate planes in a neighborhood of the origin in R3. Figure 1 (bottom
left) is a branch value — locally, it looks like the renowned “Whitney’s Umbrella” —
(bottom middle) is a regular boundary (RB) value and (bottom right) is a double
boundary (DB) value — they resemble the intersection of one or two of the Œxz� and
Œyz� planes, with the boundary (the Œxy� plane) in a neighborhood of the origin inside
the upper half space.
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Figure 1: The values of a generic surface

These surfaces are “proper” in the sense that i.@F /D i.F /\@M, and they are “generic”
in the sense that every proper smooth function from a compact surface to M can be
turned into a proper generic surface via an arbitrarily small perturbation. They are
also “stable” in the sense that a small enough perturbation can only change i up to an
isotopy of F and M. If F is closed, I call i a “closed generic surface”.

I am interested in the intersection graph of a generic surface. It is the set M.i/ D

fp 2 i.F / j 1< ji�1.p/jg of all values which are neither regular nor RB. I will regard
the intersection graph in two ways, and each way has its own notations. I will also use
specific conventions when I draw it.

Definition 1.2 (1) First, I will regard the intersection graph as a multigraph whose
vertices are the triple values (degree 6), branch values and DB values (degree 1) of i ,
and whose edges are the segments of a “double line” (a line consisting of double
values, such as the orange line in the top middle of Figure 1) between two vertices.
In addition to this “graph part”, M.i/ may contain several “double circles” — double
lines that close into circles instead of ending at vertices. Having no vertices or edges,
double circles do not comply with the traditional definition of a graph, and need to be
accounted for separately.

Note that M.i/ may have graph-theoretical “loops” — paths whose ends are both at
the same vertex (which must be a triple value, as its degree is not 1). Due to this, it
will be important later on to distinguish between the two “ends of an edge”. I use the
term “half-edge” to describe such an end.

In Figure 1 (top right), I show that three “segments” of double line (marked in orange,
red and green) intersect at each triple value. The intersection cuts each segment into a
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⊃

Figure 2: Some examples of daisy graphs and arrowed daisy graphs

pair of half-edges that seem to be in continuation to one another. I say that such a pair
of half edges is “consecutive”. Each triple value has three disjoint pairs of consecutive
half edges. Notice that these two half-edges may originate in the same edge, in which
case said edge is a loop.

(2) Secondly, I will regard a pair of consecutive half-edges to be parts of a long path
that crosses the triple value. M.i/ is then the union of several of these long lines,
which I call “double arcs”. Three double arcs intersect at each triple value, but this
number includes multiplicity; it may be that a double arc crosses itself at a triple value.
Double arcs are thus immersed 1–manifolds in M, not embedded ones.

A double arc may, as in Figure 1 (bottom left) and (bottom right), end in a branch value
or a DB value on each side of it. Otherwise, it may close up into a circle. I refer to
arcs of the latter kind as “closed” and to the former type as “open”.

According to the “double arc” notation, a double circle is just a closed double arc that
does not pass any triple values. A closed double arc that passes a triple value only once
is simply a loop whose two half-edges are consecutive.

(3) When drawing a diagram of the intersection graph, make sure that each triple
value looks like the intersection of three lines, as in Figure 2 (top left) and (top middle).
In this way, one can see which half-edges are consecutive and what the double arcs are.
A “purple point” at an end of an edge symbolizes that this edge ends in a DB value,
as opposed to a branch value. Double circles are, of course, drawn as circles disjoint
from the graph part.

Many authors have studied the intersection graph from various angels. For instance,
in [6], Izumiya and Marar showed a connection between the Euler characteristic of the
(image of the) closed generic surface, and the Euler characteristic of its underlying
surface. Namely, �.i.F //D �.F /CT .i/C 1

2
B.i/ where T .i/ is the number of triple
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values and B.i/ is the number of branch values of the surface (they called the latter
“branch points”, hence B ). This generalized an earlier result by Carter and Ko [7],
which in turn generalized a result by Banchoff [1].

I am interested in the intersection graph because it encodes several important properties
of the surface. For instance, Giller [5] showed that examining the intersection set
can tell us if a generic surface in R3 can be lifted into an embedded surface in R4 .
Several other authors, including Carter and Saito [3], and Satoh [9], have looked into
the connection between liftings and the intersection graph.

One can, to some extent, classify generic surfaces according to their intersection graph.
An early example of this can be found in [4], where Cromwell and Marar classified the
kind of surface in R3 that can have an intersection graph of a certain form (connected
and with only one vertex which is a triple value).

In this article, I address the case in which both the 3–manifold M and the underlying
surface F are oriented. In this case, one can add more data to a diagram of the
intersection graph. To see this, one must first recall the notion of a co-orientation:

Definition 1.3 A co-orientation on a generic surface i W F ! M is a continuous
choice, for every non-branch-value x , of a normal vector in Ti.x/M that is orthogonal
to Di.TxF /. If M is oriented, then there is a one-to-one correspondence between
orientations on F and co-orientations on i . It matches each orientation on F with
the normal En for which .Di.Ev1/;Di.Ev2/; En/ upholds the orientation of M whenever
.Ev1; Ev2/ upholds that of F .

I use co-orientations to indicate the orientation of a generic surface in illustrations.
In particular, Figure 3 depicts the neighborhood of a triple value. Notice that each
of the three “double arc segments” that pass through a triple value (a) consists of the
intersection of two of the three planes that intersect in the value, and (b) intersects the
remaining plane transversally. The normal arrows on this last plane point toward one
“preferred direction” on this arc or, equivalently, toward one of the two consecutive half-
edges. I refer to the half-edge the arrow points toward as the “preferred” one of the two.

I can encode this information in a diagram of M.i/. I use a small arrow to mark
the preferred direction on each intersecting arc segment at each triple value as in
Figure 2 (top right), (bottom left) and (bottom middle). I can formally define a type of
combinatorial structure that encodes the relevant information about M.i/. This is a
generalization of definitions made by Li in [8, pages 3721, 3723].

Definition 1.4 (1) A daisy graph (DG) .V;E; n;B;C / is a 5–tuple where .V;E/
is multigraph whose vertices are all of degree 1 or 6, n is a nonnegative integer, B
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Figure 3: The preferred directions at a triple value

is a subset of the set of degree-1 vertices, and for each degree-6 vertex v , we have a
division C.v/ of the set of the half-edges of v into three pairs.

For the DG of a generic surface, n will indicate the number of double circles the
surface has, B is the set of DB values (the other degree-1 vertices are branch values),
and for each triple value v , the three pairs in C.v/ are the three pairs of consecutive
half-edges. In the interest of convenience, I call the vertices of any DG triple values,
branch values, and DB values, in accordance with their degrees and belonging to B . I
call a pair of half-edges in C.v/ consecutive. I draw a DG according to the conventions
of Definition 1.2(3).

(2) An arrowed daisy graph (ADG) .V;E;n;B;C;A/ is a 6–tuple where .V;E;n;B;C /
is a DG, and for each triple value v and each pair p 2 c.v/, we let A.v;p/ be one of
the half-edges in p , which I call the “preferred half-edge”. In diagrams I mark each
preferred half-edge with an arrow as in Figure 2 (top right), (bottom left) and (bottom
middle). In the ADG of an oriented generic surface I choose the preferred half-edges
as per the co-orientation, as explained above.

Remark 1.5 (1) Li assumed the surface is an immersion of a closed surface, so he
did not have branch values or DB values.

(2) Despite the similarity to graphs on surfaces, daisy graphs are not planar. One arc
can go “above” another. I mark it as a crossing in a knot (see Figure 2 (top middle),
(bottom left) and (bottom middle)) to avoid confusion, but it is not a real crossing; it
does not matter which arc is higher and which is lower.

In [8], Li found out which DGs can be realized as the intersection graph of an orientable
generic surface in R3. He defined the ADG in order to answer this, but this led to a new
question: which ADGs can be realized as the intersection graph of an oriented generic
surface in a given oriented 3–manifold M ? (Li posted this as an open question; see
[8, page 3725]). The main purpose of this article is to answer this question. It turns
out that there are two inherently different cases: the case where H.M IZ/ is periodic
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(all its elements have a finite order), and the case where it is not. I solve the first case
in Sections 2 and 3 and the second case in Section 4. In Section 5, I will discuss a
refinement of the notion of ADGs.

Remark 1.6 The solution I give in this paper is not fully constructive. Specifically,
when I prove that an ADG is realizable, I only construct a part of the realizing surface.
I then use arguments of homology and surgery to prove that this part can be extended
to a whole surface. I have, by now, found several ways to construct an entire surface,
but they are unneeded here, and will only lengthen the proof.

I explained one of these constructions in my Ph D Thesis [2], where I show that the
problem of determining if a generic surface is liftable into an embedded surface in
4–space (a knotted surface) is NP complete. The purpose of [2] only requires me
to construct a realizing surface for a very specific type of realizable ADGs, but the
construction given therein can be easily generalized to fit all constructible ADGs.

Acknowledgement This article contains some results from my doctoral thesis, con-
ducted under the advisement of Dr. Tahl Nowik, at the Department of Mathematics at
Bar Ilan University. Approved 15 November 2016.

2 Gradings and winding numbers

Definition 2.1 (1) Let G be an ADG. I say that an edge e is “preferred” (resp.
“nonpreferred”) at a vertex v if one of the ends of e is a preferred (resp. nonpreferred)
half-edge at the vertex v .

(2) A grading of an ADG G is a choice of a number g.e/ 2Z (called the grade of e )
for every edge e of G , such that, at each triple value v , all the nonpreferred edges at v
have the same grade a.v/ and all preferred edges have the grade a.v/C 1. An ADG
that has a grading is called “gradable”.

The grading concerns only the “graph part” of the ADG and ignores the double circles.
Since double circles pose no obstruction to gradability, I consider an ADG that consists
solely of double circles to be gradable.

Figure 4 (far left) depicts a graded ADG. The ADG in Figure 4 (far right) is not
gradable. The reason for this is that the red and green edges are both nonpreferred
at the upper triple value, implying that they ought to have the same grade, but at the
bottom triple value one of them is preferred and the other is not, implying that they
ought to have different grades. I will discuss the connection between the gradability
and the realizability of an ADG shortly. However, I will begin by explaining the factors
that make an ADG gradable.
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2

2 1
1

1 0

0 0

Figure 4: The obstructions to gradability of an ADG

Definition 2.2 A “grade obstructing” loop of an ADG is a loop (a path whose ends
both lay on the same vertex v ) with one preferred end and one nonpreferred end at v .
For example, the loop in Figure 4 (middle right) is grade obstructing, while the loop in
Figure 4 (far right) is not.

Remark 2.3 (1) A gradable ADG cannot have grade obstructing loops since the
grade of such a loop would have to be a.v/D g.e/D a.v/C 1.

(2) If an ADG has no grade obstructing loops, then the sets of preferred edges at v and
nonpreferred edges at v are mutually exclusive. This simplifies the following definition.

Definition 2.4 (1) Given a DADG G with no grade obstructing loops, and two
edges e and f that share a vertex v (which must be a triple value since its degree
cannot be 1), define the “grading difference” �g.e; v; f / to be 1 if f is preferred
at v and e is not, �1 if it is the other way around, and 0 if either both f and g are
preferred or if they are both nonpreferred.

(2) The grading difference of a path e0; v0; e1; v1; : : : ; vr�1; er in G is the sum
rX

kD1

�g.ek�1; vk�1; ek/:

Lemma 2.5 (1) If an ADG has a grading g , then the grading difference of a path
e0; v0; e1; v1; : : : ; vr�1; er is equal to g.er /�g.e0/.

(2) An ADG is gradable if and only if it has no grade obstructing loop and, for
every pair of edges e and f , every path between e and f has the same grading
difference.

(3) One can check if an ADG G is gradable, and therefore construct a grading, in
linear O.jEj/ time, where E is the set of the edges of G .

Proof (1) For a short path e; v; f , this follows directly from Definitions 2.1 and 2.4(1).
Induction implies the general case.

(2) (() The first part is Remark 2.3, and the second follows from (1).
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()) For every connected component G0 of G (that is not a double circle), do the
following: Choose one edge e in G0 and give it the grade 0. Next, for every other
edge f in G0 choose a path e D e0; v0; e1; : : : ; er D f and set the grade g.f / of f
to be the relative grade of this path. By assumption, this is independent of the path.
If f shares a vertex v with another edge h, then e D e0; v0; e1; : : : ; er D f; v; h is a
path from e to h, and so

g.h/D

rX
kD1

.�g.ek�1; vk�1; ek//C�g.f; v; h/D g.f /C�g.f; v; h/:

This holds for every adjacent pair of edges. In particular, if v is a vertex and f is
nonpreferred at v , then for the number a.v/D g.f /, every nonpreferred edge h at v
upholds g.h/D g.f /C�g.f; v; h/D a.v/, and every preferred edge h at v upholds
g.h/D g.f /C�g.f; v; h/D a.v/C 1, and so g is a grading.

(3) It takes O.jEj/ time to go over the edges of G and check if any of them is a
grade-obstructing loop. If no such loop exists, I will assign each edge f of G a
number g.f / which, if the graph is gradable, will be a grading. I say that the algorithm
“reached” (resp. “exhausted”) a vertex if it assigned a grading to at least one (resp. all)
of the edges of this vertex. I begin by choosing one edge e and grading it g.e/D 0. For
each vertex of e , I set a.v/D g.e/� 1D�1 or a.v/D g.e/D 0 if e is respectively
preferred or nonpreferred at v .

Next, I choose a vertex v that the algorithm has reached but has not exhausted (currently,
this means that v is one of the vertices of e ) and go over the edges of v . If a preferred or
nonpreferred edge f has yet to be graded, then grade it g.f /Da.v/C1 or g.f /Da.v/,
respectively, then look at the other vertex w of f . If this is the first time the algorithm
reaches w , set a.w/ D g.f /� 1 or a.w/ D g.f / if f is respectively preferred or
nonpreferred at w . If the algorithm reached w before, then a.w/ has already been
set previously. In order for g to be a grading, w must uphold a.w/ D g.f /� 1 or
a.w/D g.f /, depending on if f is preferred at v or not. Check if this equality holds.

If the equality holds, move on to the other edges of v and do the same. Since v has
no more than six edges, this takes O.1/ time. When you have exhausted v , move on
to another vertex G that the algorithm has reached but has yet to exhaust. Continue
like this until either (a) you grade an edge f whose “other vertex” w has already been
reached and for which the appropriate equality, a.w/ D g.f /� 1 or a.w/ D g.f /,
fails, or (b) if you have not reached such an edge but there are no more vertices that
the algorithm reached but has yet to exhaust.

If you stop because of (a), then G is not gradable. In order to see this, notice that if
you reached a vertex v via an edge ev , and then you grade another edge f at v , then
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g.f /D�.ev; v; f /Cg.ev/. This can be proven on a case per case basis. For instance,
if both f and ev are preferred at v , then �.ev; v; f /D 0, and according to the above,

a.v/D g.ev/� 1 and g.f /D a.v/C 1D�.ev; v; f /Cg.ev/;

as required. Similar considerations show that if the other vertex w of f has already
been reached, and the appropriate equality, a.w/D g.f /� 1 or a.w/D g.f /, fails,
then g.f /¤�.ew; w; f /Cg.ew/.

Induction implies that every edge f that the algorithm has already graded has a path
e D e0; v0; e1; : : : ; er D f such that g.f / is equal to the grading difference of this
path. Indeed, it holds for e itself, and if you assume that it holds for every edge you
graded before, in particular for ev , then g.ev/ is equal to the grading difference of the
path e D e0; v0; e1; : : : ; er�1 D ev , and

g.f /D g.ev/C .g.f /�g.ev//D

r�1X
kD1

.�g.ek�1; vk�1; ek//C�.ev; v; f /;

which is the grading difference of the path e D e0; v0; e1; : : : ; er�1 D ev; v; f .

Now, assuming as before that the algorithm already reached w and that the appropriate
equality, a.w/Dg.f /�1 or a.w/Dg.f /, fails, one can realize g.ew/ as the grading
difference of a path e D h0; w0; h1; : : : ; wr�1; hr D ew . There is thus a second path
between e and f , namely e D h0; w0; h1; : : : ; wr�1; hr D ew; w; f , whose grading
difference is

rX
kD1

.�g.hk�1; wk�1; hk//C�.ew; w; f /D g.ew/C�.ew; w; f /¤ g.f /:

As these two paths have different grading differences, (2) implies that G is not gradable.

If the algorithm stopped because of (b), then it provided a grading g.f / for every
edge f in the connected component of G that contains e . Since the equality never
failed, every vertex v and every preferred or nonpreferred edge f at v upholds
a.v/D g.f /� 1 or a.v/D g.f /, respectively. This means that g is indeed a grading
of this connected component. If there are any vertices left that the algorithm hasn’t
reached yet, then they belong to a different connected component. Choose a new
ungraded edge e and grade it g.e/ D 0, and then proceed to grade its connected
component. Eventually, either you will reach stop condition (a), meaning that G is not
gradable, or you will exhaust all the vertices of G , in which case you finished grading
all of G .
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In total, the algorithm went over every edge f of G , determined g.f /, and either
determined a.w/ for one or both of its vertices, or checked if it upheld the equality
a.w/D g.f /� 1 or a.w/D g.f /. This takes O.jEj/ time.

Remark 2.6 If the graph part of an ADG G is a forest, then the algorithm will never
reach the stop condition (a), and so G is gradable.

I can now formulate the main theorem:

Theorem 2.7 Let M be an oriented 3–manifold for which H.M IZ/ is periodic.
(1) If M has no boundary, then an ADG G can be realized as the intersection graph

of an oriented generic surface i W F !M if and only if G is gradable and has
no DB values.

(2) If M has a boundary, then an ADG G can be realized as the intersection graph
of an oriented generic surface i W F !M if and only if G is gradable.

Result 2.8 In [8], Li showed that a DG with no DB values or branch values is realizable
if and only if any arc in it is composed of an even number of edges. Theorem 2.7
implies a generalization of this: a general DG is realizable via an orientable generic
surface if and only if every closed arc is composed of an even number of edges.

Proof of Result 2.8 If a DG is realizable via an orientable generic surface, then any
orientation of the surface gives the DG an ADG structure (arrows), and this ADG is
realizable and therefore gradable. The grading of each subsequent edge on an arc will
have a different parity than the grading of the previous edge and, in particular, closed
arcs must have an even number of edges on them.

On the other hand, given a DG that upholds this condition (every closed arc must have
an even number of edges), it is possible to give the DG a “short grading”: number the
edges with only 0 and 1 in such a way that consecutive edges have different numbers.
Clearly, the only obstruction to this is the existence of closed arcs with an odd number
of edges. Now, one half-edge in every consecutive pair will belong to an edge whose
grade is 1, and the other will belong to an edge whose grade is 0. You can give the
DG an ADG structure that matches this grading by choosing the former half-edges to
be preferred. This graded ADG is realizable, and in particular, the underlying DG is
realizable via an orientable surface.

In the remainder of this section, I will prove the “only if” direction of the articles of
Theorem 2.7. The “if” direction will be proven in the next section. One part of the
“only if direction” is trivial: a generic surface in a boundaryless 3–manifold cannot
have DB values. In order to prove the other part, that the intersection graph of a generic
surface is a gradable ADG, I use 3–dimensional winding numbers:
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Definition 2.9 Let i W F !M be a proper generic surface in a 3–manifold M.

(1) A face (resp. body) of i is a connected component of i.F / nM.i/ (resp.
M n i.F /).

(2) Each face V is an embedded surface in M, and there is a body on each side
of it. I say these two bodies are adjacent (via V ). A priori, it is possible that
these two bodies are in fact two parts of the same body, and even that V is a
one-sided surface. In these cases, this body will be self adjacent, but this does
not happen in any of the cases I am interested in.

(3) If i has a co-orientation, then each face V is two sided, and the arrows on the
face point towards one of its two sides. I say that the body on the side that the
arrows point toward is “greater” (via V ) than the body on the other side of V .

(4) A choice of “winding numbers” for i is a choice of an integer w.U / 2 Z for
every body U of i such that if U1 and U2 are adjacent, and U1 the greater of
the two, then g.U1/D g.U2/C 1.

Lemma 2.10 If M is a connected and orientable 3–manifold, H1.M IZ/ is periodic,
and i W F!M is a co-oriented generic surface, then i has a choice of winding numbers.

Proof Pick one body U0 to be “the exterior” of the surface, and set w.U0/D 0. Next,
define the winding numbers for every other body U like so:

Take a smooth path from U0 to U that is in general position to i (it intersects i.F /

only at faces, and does so transversally), and set w.U / to be the signed number of
times it crosses i.F /, that is, the number of times it intersects i.F / in the direction
of the co-orientation minus the number of times it crosses against the co-orientation.
This is well defined, since any two such paths ˛ and ˇ must give the same number.
Otherwise, the composition ˇ�1 �˛ is a 1–cycle whose intersection number with the
2–cycle represented by i is nonzero. This implies that this 1–cycle is of infinite order
in H1.M IZ/, contradicting the fact that this group is periodic.

It is also clear that if U1 and U2 are adjacent, and U1 is the greater of the pair, then
g.U1/D g.U2/C 1.

Remarks 2.11 (1) It is clear that two different choices of “winding numbers” for i

will differ by a constant, and that the one I created is unique in satisfying w.U0/D 0.

(2) I can do a similar process on a loop  in R2 instead of a surface in a 3–manifold.
If I choose the component U0 of R2 n Im. / to be the actual exterior, then this will
produce the usual winding numbers: w.U / will be the number of times  winds
around a point in U .
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Figure 5: The winding number of bodies around an edge of M.i/ and a triple value

I will use the winding numbers to induce a grading in the following manner: the
neighborhood of a double value includes four bodies, with the possibility that some of
them are, in fact, different parts of the same body. If the surface has a co-orientation
and winding numbers, then there is a number g such that two of these bodies have the
winding number g , one has gC 1 and one has g� 1. Figure 5 (left) depicts this.

Due to continuity, this will be the same value g for all the double values on the same
edge (or double circle). I call this number the grading of the edge, and denote the
grading of an edge e by g.e/. This is indeed a grading in the sense of Definition 2.1.
In order to prove this, I need to show that at every triple value of the surface, all the
preferred half-edges have the same grading, which is greater by 1 than the grading
of all the nonpreferred ones. This can be seen in Figure 5 (right), which depicts the
winding numbers of the bodies around an arbitrary triple value. Indeed, you can see
that the preferred half-edges, the ones going up, left and outwards (toward the reader),
have the grading gC 1, while the other edges have the grading g . This proves the
“only if” direction of Theorem 2.7.

3 Realizing graded arrowed daisy graphs

In order to prove the “if” direction of Theorem 2.7, I will first prove a partial result. I
will limit the discussion to connected ADGs with no DB values.

Lemma 3.1 Every connected, gradable ADG G without DB values has a closed
generic surface i W F ! S3 such that the intersection graph of i is equal, as an ADG,
to G .

Remark 3.2 It may be assumed that i.F / is connected. Otherwise, one of its com-
ponents will contain the connected intersection graph, and the rest will be embedded
connected surfaces in S3. They can be removed by deleting their preimages from F .
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Figure 6: A surface whose intersection graph is a double circle
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Figure 7: The vertices’ neighborhoods and their gluing zones

I begin with the unique case where the ADG is a double circle. The generic surface
from Figure 6 (left) has a single double circle as its intersection graph. It is the surface
of revolution of the curve from Figure 6 (right) around the blue axis. Both figures have
indication for the co-orientation. The intersection graph will be the revolution of the
orange dot where the curve intersects itself, and will thus be a circle. The underlying
surface is clearly a sphere.

Any other connected ADG is a “graph ADG” — it will have no double circles. In
this case, I begin by constructing a part of the matching generic surface, the regular
neighborhood of the intersection graph. Li defined something similar in [8, Figure 2,
page 3723], which he called a “cross-surface”, and I will use the same notation.

Definition 3.3 Given an ADG G that has no DB values and no double circle, a
“cross-surface” XG of G is a shape in S3 that is built via the following two steps:

(1) For every triple value v of G , embed a copy of Figure 7 (left) in S3. This shape is
called the “vertex neighborhood” of v . Similarly, for every cross cap v of G , embed a
vertex neighborhood that looks like Figure 7 (middle) in S3. Make sure that the different
vertex neighborhoods will be pairwise disjoint. These will be the neighborhoods of the
actual triple values and branch values of the surface we are constructing. The vertex
neighborhoods have little arrows on them which indicate the co-orientation on this part
of the surface. It is important to remember which vertex neighborhood corresponds to
which vertex of G .
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Figure 8: The X-bundle of an edge and a cross-section of it

Each vertex v is supposed to have either one or six half-edges enter it. One can see the
ends of these half-edges in Figure 7. Note that each half-edge will cross the boundary
of the vertex neighborhood at one point. Given such an intersection point, I refer to its
regular neighborhood inside the boundary of the vertex neighborhood as its “gluing
zone”. In Figure 7 (left) and (middle), I colored the gluing zones in orange and the rest
of the boundary of the vertex neighborhoods in blue.

The above implies that each such “gluing zone” on the vertex neighborhood of v should
correspond to a unique half-edge of G that ends in v . The reader has some freedom
in choosing which gluing zone corresponds to which half-edge, but in accordance
with Definition 1.4, the following must happen for every triple value, in order for this
association to reflect the ADG structure of G :

(1a) Two gluing zones on opposite sides of the value’s neighborhood, like those
marked red and green in Figure 7 (right), must correspond to a pair of consecutive
half-edges.

(1b) In compliance with the co-orientation (the little arrows) on the vertex neigh-
borhoods, the zones that the arrows point toward — those marked with the number 1

in Figure 7 (right) — must correspond to the preferred half-edges. The other zones,
marked with 0, will correspond to the nonpreferred half-edges.

Again, it is important to remember which gluing zone corresponds to which half-edge.

(2) Step 2 will realize the edges of G . The “ends” of each edge have already been
realized inside the corresponding vertex neighborhoods. Each end is realized by the
double line between the vertex and the corresponding gluing zone. I want to add the
“middle of the edge” to our construction. This should be a double line, the intersection
of two surfaces, as in Figure 8 (left). For each edge e of G , embed a matching copy
of this shape in S3. A closer look reveals that this shape is a bundle over a closed
interval, whose fiber looks like the “X” in Figure 8 (right). I therefore call this shape
“the X-bundle of e”. The embedding of the X-bundles must follow the following rule:
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Figure 9: The gluing must preserve the orientation.

(2a) The boundary of each X-bundle is composed of two parts: the fibers at the ends
of the interval, colored orange, and the (union of the) ends of all the fibers, colored
blue. It is natural to identify the two orange fibers with the two ends (half-edges) of
the matching edge e . Until now, I identified each half-edge of the ADG with both (i) a
“gluing zone” on the boundary of the neighborhood of some vertex, and (ii) a fiber at
the end of some X-bundle. Make sure to embed the X-bundles so that each end fiber
coincides with the matching gluing zone. Additionally, make sure that the rest of the
X-bundle (the X-bundle sans the end fiber) is disjoint from the vertex neighborhoods,
and that X-bundles of different edges do not touch one another.

The resulting shape is the cross-surface. It is similar to a generic surface, but it has a
boundary: the union of all the “blue parts” of the boundaries of the vertex neighborhoods
and the X-bundles. The intersection graph of this “generic surface with a boundary” is
clearly isomorphic (as a multigraph) to G : I already identified each vertex (resp. edge)
of it with a unique vertex (resp. edge) of G and made sure that each edge ends in the
vertices in which it should properly end. Rule (1a) implies that this identification will
preserve the consecutive pairs of half-edges. This means that the intersection graph
is isomorphic to G as a DG, not just as a multigraph. In order for this to be an ADG
isomorphism as well, the embedding of the X-bundles must follow another rule:

(2b) To have an ADG structure, the cross-surface must have a co-orientation. Note
that both the vertex neighborhoods and the X-bundles have arrows on them, which
represent co-orientations. When you embed the X-bundles, these co-orientations on
them must match, as in Figure 9 (left), and unlike Figure 9 (right). This way they will
merge into a continuous co-orientation on the entire cross-surface.

Rule (1b) implies that the preferred half-edges of the intersection graph will correspond
to the preferred half-edges of G . This means that the intersection graph will be
isomorphic to G as an ADG as well.

The boundary of the cross-surface is the union of many embedded intervals in S3 —
the “blue parts” of the boundaries of the vertex neighborhoods and the X-bundles. Since
each end of every interval coincides with an end of one other interval, and the intervals
do not otherwise intersect, their union is an embedded compact 1–manifold in S3. The
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)

Figure 10: Thickening the cross-surface into a handle body, and the handle
body’s meridians

cross-surface induces an orientation on this 1–manifold, the usual orientation that an
oriented manifold induces on its boundary. It is depicted in the far left of Figure 10.

I will show that the boundary of the cross-surface of a connected ADG G is also the
oriented boundary of an embedded surface which is disjoint from the cross-surface.
It follows that the union of the cross-surface and the embedded surface, with the
orientation on the embedded surface reversed, will be a closed and oriented generic
surface whose intersection graph will be isomorphic to G . This will prove Lemma 3.1.

In order to prove that such an embedded surface exists, I begin by “thickening” the
cross-surface as in Figure 10 (middle); this only shows how to do this to an X-bundle,
but you can similarly do this for all the vertex neighborhoods. This results in a handle
body H in S3, and our 1–cycle is on its boundary. It will suffice to prove that the
1–cycle is the boundary of some embedded surface in the complement of H . This
happens if and only if is the cycle is a “boundary” in the homological sense — it is
equal to 0 in H1.S3nH IZ/.

For any loop  in the intersection graph, I define a functional f W H1.S3nH IZ/!Z
such that f .c/ is the linking number of  and a representative of c . It is well-defined,
since cycles in S3nH are disjoint from  , and since the linking number of  with
any boundary in H1.S3nH / is 0, as the boundary bounds a surface in S3nH which
is disjoint from  .

In case the first Betti number of G (and therefore of the intersection graph) is n, then
the genus of H is n, and the intersection graph has n simple cycles C1; : : : ;Cn , such
that each cycle Ci contains an edge ei that is not contained in any of the other cycles.
For every cycle Ci , I take a small meridian mi around the edge Ci (as depicted in
red in Figure 10 (right)). It follows that fci

.Œmj �/D ıij , where ı is the Kronecker
delta function. Additionally, since S3nH is the complement of an n–handle body,
H1.S3nH /� Zn . I will prove that:

Lemma 3.4 These meridians form a base of H1.S3nH /.

Algebraic & Geometric Topology, Volume 17 (2017)



The intersection graph of an orientable generic surface 1691
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Figure 11: Moving the intersection graph away from the cross-surface

Proof First, I show that the meridians are independent. This is because a boundary in
S3nH would have 0 as the linking number with every ci , but the linking number of a
nontrivial combination x D

P
ai Œmi � with any cj will be aj for some j and aj ¤ 0.

Second, notice that this implies that N D SpanZfŒm1�; : : : ; Œmn�g is a maximal lattice
in H1.S3nH /� Zn , and therefore has a finite index.

Third, had N been a strict subgroup of H1.S3nH IZ/, then there would be an element
y 2 H1.S3nH IZ/ nN . Define bi D lk.y; ci/ and y0 D y �

Pn
iD1 bi Œmi �. Then y0

will have 0 as the linking number with every ci , but it will not belong to N . The
finite index of N implies that ky0 2 N for some k , but lk.ky0; ci/ D k P0 D 0 for
all i , and thus ky0 D 0. This means that y0 is a nonzero element of finite order in
H1.S3nH IZ/� Zn , but no such element exists.

Lemma 3.5 Let G be a connected ADG that has no DB values, which is not a double
circle, and is gradable. Then the linking number of the boundary of its cross-surface
with any simple cycle in the intersection graph of this cross-surface is 0.

Proof Let C be a simple cycle in the intersection graph. It is composed of distinct
vertices and edges e0; v1; e1; v2; : : : ; vn; en D e0 . Each vi is a triple value, since it is
not a degree-1 vertex. I will perturb C until it’s in general position to the cross-surface
and calculate the intersection number of the “moved C ” with the cross-surface. This
will be equal to the linking number of C and the boundary of the cross-surface.

I begin by pushing each edge ei away from its matching X-bundle in a direction that
agrees with the co-orientation on both of the surfaces that intersect in this X-bundle, as
in Figure 11.

I need to continue this “pushing” at the vertex neighborhood of each vi . Figures 12, 13
and 14 demonstrate how to push away the half-edges from their original position. The
half-edges I push are colored green, and the arrows on them indicate the direction of
the cycle: the half-edge whose arrow points toward (resp. away from) the triple value
is a part of ei�1 (resp. ei ). Continuity dictates that I must always push in the direction
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Figure 12: Moving the intersection graph away from a triple value when both
sides are preferred

) C1

Figure 13: Moving the intersection graph away from a triple value when only
one side is preferred

indicated by the orientations on the surface as we did in Figure 11, and Figures 12, 13
and 14 indeed comply with this.

Each of the three figures depict a different situation with regards to which of the
two half-edges, if any, is preferred at vi . Figure 12 depicts the case where both the
half-edges are preferred. In this case, after being pushed away from the cross-surface,
C will not intersect the cross-surface at the neighborhood of vi .

Figure 13 depicts the case where the half-edge that is a part of ei�1 , the one entering
the triple value, is not preferred, and the half-edge that is a part of ei , the one exiting the
triple value, is preferred. In this case, after being pushed away from the cross-surface,
C will intersect the cross-surface once, and it will do so agreeing with the direction of
the co-orientation on the surface (that’s why there is a little C1 next to the intersection.)

Figure 13 depicts the case where the two half-edges are not consecutive, but even if
they were, the same thing would happen; C would intersect the cross-surface once, in
agreement with the co-orientation. The only difference would be that the half-edge that
was exiting vi would have continued leftwards instead of turning outwards towards
the reader. Furthermore, had the half-edge coming from ei�1 been preferred and the
one coming from ei hadn’t, then the pushing would still occur as in Figure 13, except
that the arrows on the green line would point the other way. In this case, C would still
intersect the cross-surface once after the pushing, but it would be against the direction
on the co-orientation.
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Figure 14: Moving the intersection graph away from a triple value when both
sides are nonpreferred

Lastly, Figure 14 depicts the case in which both half-edges are not preferred. In this
case, after being pushed away from the cross-surface, C will intersect the cross-surface
twice in the neighborhood of vi . One intersection, marked C1, is in the direction of
the co-orientation, and the other intersection, marked �1, is against it.

Let G be a grading of the intersection graph. Since ei�1 and ei share a vertex, the
difference between their grading is at most 1. If g.ei/�g.ei�1/D1 (resp. �1), then ei

(resp. ei�1 ) is preferred and ei�1 (resp. ei ) is not. I just showed that in this case the
signed number of intersections between the “pushed away” C and the cross-surface is 1

(resp. �1). If g.ei/�g.ei�1/D 0, then either both ei and ei�1 are preferred, in which
case C does not intersect the cross-surface around vi , or they are both nonpreferred,
in which case they intersect once with and once against the co-orientation.

In all cases the signed number of intersections between the pushed C and the cross-
surface around vi is equal to g.ei/�g.ei�1/. The pushed C does not intersect the cross-
surface anywhere else, and so their intersection number is

Pn
iD1.g.ei/�g.ei�1//D

g.en/�g.e0/D 0. Since C did not cross the boundary of the cross-surface during the
pushing, this is equal to the linking number of C and the boundary.

Having proven Lemmas 3.5 and 3.1, I can now prove the “if” direction of the articles
of Theorem 2.7:

Proof (1) Each connected component Gk of G is gradable and lacks DB values, and
thus has a realizing surface ik W Fk ! S3. Simply remove a point from S3 n ik.Fk/

to regard ik as a surface in R3, and embed these copies of R3 as disjoint balls in the
interior of M.

(2) If G has no DB values, the proof of (1) holds. Otherwise, define a new ADG G0

in which each DB value of G is replaced with a branch value. Realize G0, via (1), with
a closed generic surface i W F ! S3 for which F is connected.

Take a small ball around each of the branch values that replaces a DB value of G , as
in Figure 15 (left). Figure 15 (middle) depicts the intersection of the surface with the
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Figure 15: Turning a branch value into a DB value

boundary of the ball. It is an “8–figure” as in Figure 15 (right), and the orange dot (the
intersection in the 8–figure) is the intersection of the boundary with the intersection
graph. If you remove this ball from S3, then instead of ending at the cross cap, the edge
will end at the orange dot in the 8–figure, which will become a DB value. It follows
that after removing all these balls, the intersection graph will be an ADG isomorphic
to G .

The generic surface now lays in S3 minus some number of balls. Choose one spherical
boundary component and connect it via a path to each of the other ones. Make sure that
the path is in general position to the generic surface: it may intersect the generic surface
only at faces and will do so transversally. Thicken these paths into narrow 1–handles
and remove them from the 3–manifold. This may remove some disc from the surface,
but will not effect its intersection graph. You now have a generic surface that realizes G

in D3. Remove a point from the boundary of D3, making it diffeomorphic to the
closed half space f.x;y; z/ 2 R3 j z � 0g, which can be properly embedded in any
3–manifold with a boundary. This finishes the proof.

Remark 3.6 If needed, you can make sure that the underlying surface F is connected.
This involves modifying the surface in two ways.

(a) You can modify the proof of article (1) to produce a surface i W F !M with
a connected image. Begin by assuming that the image of each ik is connected via
Remark 3.2. Pick a face vk in each ik . The co-orientation on vk points towards a
body Uk . When you remove a point from S3, make sure you remove it from Uk . This
way, Uk (minus a point) becomes the exterior body of ik W Fk!R3. When you embed
the copies of R3 in M, the co-orientation on all the vk will point towards the same
connected component of M n

S
ik.Fk/. You may connect each Vk to VkC1 with a

handle going through this component as in Figure 18 (ignore the letters “A” and “B” in
the drawing). This connects the images of all the ik without sacrificing the orientation
or changing the intersection graph.
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)

Figure 16: Turning a disconnected surface into a connected one

In article (2) you take a surface from (1) and modify it. It is clear that none of these
modifications can disconnect the image of the surface, and so (2) may also produce
surfaces with a connected image.

(b) In case i.F / is connected but F has more than one connected component, the
images of some pair of connected components must intersect generically at a double
line. This is depicted in the left part of Figure 16, where the vertical surface comes
from one connected component of F and the horizontal comes from another. Connect
them via a handle in an orientation preserving way, as in the right part of Figure 16,
thereby decreasing the number of connected components of F . Continue in this manner
until F is connected.

4 Infinite homology

In this section, I deal with a 3–manifold whose first homology group contains an
element of infinite order.

Theorem 4.1 If M is an oriented, compact and boundaryless 3–manifold with an
infinite first homology group, then any ADG G with no DB values can be realized as
the intersection graph of an oriented generic surface in M. If M has a boundary, then
any ADG G can be realized in M.

The proof relies on two lemmas:

Lemma 4.2 M has a connected, compact, oriented and properly embedded surface
S �M that is nondividing (M nS is connected).

Proof H2.M IZ/ is generated by 2–cycles of the form ŒS � where S �M is a con-
nected, compact, oriented and properly embedded surface. If the statement of the lemma
is false, then each such surface divides M into two connected components and will there-
fore be a boundary in H2.M IZ/. This implies that H2.M IZ/� f0g. According to
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Figure 17: Giving the surface a face that has the same body on both sides

Poincaré’s duality, f0g�H2.M IZ/=Tor.H2.M IZ//�H1.M IZ/=Tor.H1.M IZ//.
This implies that every element of H1.M IZ/ is of finite order, contradicting the
assumption.

Lemma 4.3 If G is gradable, then there is a generic surface i W F ! M which
realizes G , and for which M n i.F / is connected (equivalently, i has only one body).

Proof Take the generic surface S � M from Lemma 4.2 and a subset M 0 � M

that is disjoint from S and is homomorphic to a half-space (if M has a boundary) or
to R3 (if it does not). According to Theorem 2.7, there is a generic surface i W F!M 0

which realizes G . Connect some face V of the generic surface to S with a handle,
as in Figure 17 (the handle does not intersect i.F / or S ). If needed, reverse the
co-orientation of S so that the resulting surface will be continuously co-oriented.

You now have a new generic surface i 0W F # S !M whose intersection graph is still
isomorphic to G . Since S was nondividing, the connected sum of V and S is a face
of this surface that has the same body A on both sides (as indicated by the green path
which does not intersect the surface in Figure 17). If this is the surface’s only body,
then you are done. If not, you can decrease the number of bodies as follows:

Let B be another body of the surface that is adjacent to A. Connect the face W which
separates A and B to the face V # S with a path that goes through A, and does not
intersect our generic surface except at the ends of the path. Since V # S has A on
both sides, you can approach it from either side. If the arrows on W points toward A

(resp. B ), make sure the path enters V # S from the direction the arrows point towards
(resp. point away from). Next, attach the faces V and W with a handle that runs along
this path. Figure 18 depicts the case where the arrows on W point towards A. Reverse
the direction of all arrows to get the other case.

The resulting generic surface has one body less since A and B have merged. It still
realizes G and has a face with the same body on both sides. Repeat this process until
you get a surface with only one body.
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)

Figure 18: Reducing the number of bodies

)

G G0 G0

Figure 19: Cutting an edge and adding two branch values to an arrowed daisy graph

I will now prove Theorem 4.1:

Proof Let H be the graph part of G , that is, G without the double circles. I use
induction on the genus of H . If the genus is 0, then G is the union of a forest with some
double circles; Remark 2.6 implies that it is gradable, and the theorem follows from
Lemma 4.3. If the genus of H is positive, pick an edge e 2H such that H n feg has a
smaller genus. This means that removing e does not divide the connected component
of H that contains e . Note that both ends of e are on triple values, since branch values
and DB values are of degree 1, and removing their single edge divides the graph.

Define a new ADG G0 in the following manner: Start with a copy of G and cut the
edge e in the middle. Instead of e , you will get two “new edges” e1 and e2 . Each ei

has one end on a new branch value while the other end “replaces” one of the ends of e ;
it enters the triple value that the said end of e was on and retains the ADG data, it is
preferred if and only if the half-edge of e was preferred, and it has the same consecutive
half-edge. Figure 19 depicts two possible ways to construct G0 from a given graph G .

The graph structure of G0, which we denote by H 0, has a lower genus then H . I assume,
by induction, that there is a generic surface in M that realizes G0 and has only one
body. I will modify this surface so that it realizes G . Observe the new branch values
at the ends of e1 and e2 . Change the surface in a small neighborhood of each branch
value as per Figure 20 (left), deleting the branch value and leaving instead a “figure 8

boundary” of the surface.

This figure 8 boundary is depicted in Figure 15 (right). Take a bundle over an interval
whose fibers are “8–figures”, as in Figure 20 (right), and embed it in M in such a way
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Figure 20: Removing two branch values from a generic surface and restoring
the previously cut edge

that its end-fibers coincide with the said “figure 8 boundaries” (in a way that preserves
the arrows of the co-orientation). Since the complement of the original surface was
connected, you can make sure that the bundle does not intersect the surface anywhere
except its ends. This closes e1 and e2 into one edge, reversing the procedure that
created G0 from G , and so this new surface realizes G while still having only one
body. The proof follows by induction.

Remark 4.4 It is possible once more to make sure that the underlying surface F is
connected. First, you may connect the different connected components of i.F / via
handles, similarly to the way you connected faces in the proof of Lemma 4.3. You may
then proceed as in Remark 3.6(b).

5 Ordered daisy graphs

In the last section, I will refine the enhanced graph structure of the intersection graph
of a generic surface from an ADG to a structure I call an ordered daisy graph, or ODG,
which encodes more information regarding the topology of the surface.

For motivation, attempt to construct a cross-surface for an ADG G as per Definition 3.3.
Figure 21 (left) depicts a vertex neighborhood of a triple value v . Its preferred half-
edges are indexed as C1, C2 and C3 (and the corresponding nonpreferred ones
as �1, �2 and �3). While constructing the cross-surface, you glue the end of some
X-bundle to each of these half-edges. Let � 2 S3 be the even permutation .1; 2; 3/. If,
for each k D 1; 2; 3, you take the “end of an X-bundle” that is supposed to be glued to
the half-edge ˙k and instead glue it to the half-edge ˙�.k/, then you would end up
with essentially the same cross-surface.

By “essentially the same cross-surface”, I mean that you could pick neighborhoods
H1 � S3 of one cross-surface and H2 � S3 of the other so that there is an orientation
preserving homeomorphism f W H1 ! H2 that sends the first cross-surface to the
second one in a manner preserving the co-orientation on them. Here f acts as a rotation
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Figure 21: Even and odd permutations of a triple value neighborhood

in the neighborhood of v (the rotation that sends Figure 21 (left) to Figure 21 (middle)),
and as the identity on the rest of the cross-surface.

Using an odd permutation, such as � D .2; 3/, instead of � , might produce a funda-
mentally different cross-surface. While I can define a similar f via a reflection on
the neighborhood of v (such as the reflection that sends Figure 21 (left) to Figure 21
(right)), this f does not preserve the orientation on H1 . Furthermore, the two cross-
surfaces may not even be homeomorphic subsets of S3 . You may complete each of
the fundamentally different cross-surfaces into a generic surface. The intersection
graphs of these two surfaces will be isometric as ADGs, but their neighborhoods, the
cross-surfaces, will be topologically distinct. I refine the enhanced graph structure of
the intersection graph so that it reflects the difference between them.

Definition 5.1 (1) An ordered daisy graph (ODG) .V;E; n;B;C;A;O/ is a 7–tuple
where .V;E; n;B;C;A/ is an ADG (see Definition 1.4), and for each triple value v ,
we let O.v/ be an ordering .v1; v2; v3/ of the three preferred half-edges at v . This
ordering is unique up to an even permutation. In the ODG of an oriented generic
surface, I choose the ordering so that the triple value looks like Figure 21 (left) (and
unlike Figure 21 (right)).

(2) A cross-surface of an ODG G is defined similarly to a cross-surface of an ADG
(Definition 3.3) with the additional requirements that the vertex neighborhood of each
triple value comes with indexed half-edges as per Figure 21 (left) and that, when you
attach the X-bundles to such a vertex neighborhood, you comply with the indexing of
the ODG structure.

The benefit of using ODGs is that all the cross-surfaces one might produce for the
same ODG are essentially the same. All of the results in the previous sections, and in
particular Theorems 2.7 and 4.1, can be rephrased to use ODGs instead of ADGs, and
the same proofs will still apply.
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Embedding calculus knot invariants are of finite type
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DEV SINHA

We show that the map on components from the space of classical long knots to the nth

stage of its Goodwillie–Weiss embedding calculus tower is a map of monoids whose
target is an abelian group and which is invariant under clasper surgery. We deduce
that this map on components is a finite type-.n�1/ knot invariant. We compute the
E2 –page in total degree zero for the spectral sequence converging to the components
of this tower: it consists of Z–modules of primitive chord diagrams, providing
evidence for the conjecture that the tower is a universal finite-type invariant over the
integers. Key to these results is the development of a group structure on the tower
compatible with connected sum of knots, which in contrast with the corresponding
results for the (weaker) homology tower requires novel techniques involving operad
actions, evaluation maps and cosimplicial and subcubical diagrams.

55P65, 57M25

1 Introduction

We connect three current threads in studying knots and the moduli space of all knots:
the Goodwillie–Weiss embedding calculus, Budney’s operad actions and Vassiliev’s
theory of finite-type invariants. This work also connects two fundamental results on
commutativity which are over fifty years old. In 1949, H Schubert [25] established and
applied the fact that connected sum of knots is commutative. In 1947, Steenrod [30]
gave explicit formulae exhibiting commutativity of cup product, in the course of defining
the cohomology operations which bear his name. We establish and use compatibility
of these classical results as we develop a group structure on the components of the
Goodwillie–Weiss tower.

One of our main results is that the Goodwillie–Weiss tower for knots yields additive
invariants of finite type. Such a result is modest compared to the conjecture made by
Budney, Conant, Scannell and Sinha [4] that the tower gives all such invariants. We
provide evidence for this conjecture through calculation of the E2 –term of the spectral
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sequence for the components of this tower. The current results are meaningful first
steps, and establishing them requires new combinations of tools in the areas of operad
actions, clasper surgery, cosimplicial and cubical diagrams, and evaluation maps.

A large part of the work is “getting off the ground”, showing that the Goodwillie–Weiss
tower yields abelian group-valued invariants compatible with connected sum of knots.
Because the knot invariants are defined as an induced map on �0 , such invariants
are a priori only set-valued. A number of authors have already studied multiplicative
structures on the closely related Goodwillie–Weiss tower for the homotopy fiber of the
map from embeddings to immersions, namely Sinha [27], Turchin [31], Dwyer and
Hess [8] and Boavida and Weiss [1], the latter three giving deloopings. The techniques
of Turchin, and Boavida and Weiss, can be adapted to imply that the components of
stages of the tower for classical framed knots is an abelian group (while the result
of Dwyer and Hess applies to the limit and Sinha’s result only implies an abelian
monoid structure in the limit). Thus, including the present results, there are now five
different monoid structures on the components of the inverse limit of the tower for
framed classical knots, four of which are group structures, which are all conjecturally
equivalent. For our present application, we need compatibility with connected sum of
knots, which our approach here provides, as does the approach of Boavida and Weiss,
which appeared after our work. Our techniques involve modeling the totalization tower
of a cosimplicial space using cubical diagrams, which is of independent interest. Once
we establish the group structure and compatibility with connected sum, we use the
Habiro surgery criterion for finite type to establish the main result that the nth stage in
the tower defines a type-.n�1/ invariant.

Our work has many predecessors. The first is [4], in which we establish that the third
stage of the tower is a universal type-2 invariant. Here the group structure and the finite-
type result were straightforward from ad hoc arguments. The more interesting aspect
of this work was the development of geometry to explicitly distinguish components
in the tower, yielding a new interpretation of the type-2 knot invariant by counting
collinearities of points. This geometric approach was continued by Flowers [9].

The second predecessor is Volić’s thesis, which establishes that the Goodwillie–Weiss
tower for the space level rational homology of knots is a universal rational finite-type
invariant. The map to the homology tower factors through the tower we consider (the
“homotopy tower”), which thus encodes such a universal rational invariant as well.
The question of whether the tower gives a universal invariant over the integers is of
considerable interest, since Vassiliev invariants with values in arbitrary Z–modules are
not well understood. A universal invariant is known to exist over the integers (see for
example Habiro’s  n map, used in Theorem 6.1 of this paper), but it is not computable
nor does it directly relate to the combinatorics of weight systems. Identification of the
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tower as a universal invariant would likely resolve questions about the combinatorics
and geometry of finite-type invariants and, in particular, the open question of whether
weight systems “integrate”.

Our techniques are distinct from those of Volić in three ways. In our result the type-n
invariants are potentially realized at the nC1st stage, while in the rational homology
tower they are realized precisely at stage 2n. Volić uses the Vassiliev derivative
approach to establish his finite-type result, while we use Habiro’s clasper surgery.
Finally, Volić’s result proceeds by extending the theory of Bott–Taubes integration
to the homology tower, while our approach through the homotopy tower invites new
techniques from geometric and algebraic topology.

We extend the abelian group structures to the spectral sequence level, which is crucial
for analysis since studying components of an arbitrary tower of spaces can potentially
lead to unending ad hoc calculations. To do so we employ C1 –operad actions, which
necessitates their development throughout our work despite the fact that our main
theorems are at the level of components. With group structure in hand, we immediately
establish convergence at each finite stage and then use results of the second author [5]
to identify the E2 term in degree zero as the Z–modules of primitive chord diagrams.

Based on this, we conjecture that the map from the knot space to the tower sends
linear combinations of knots given by resolving a singular knot to the corresponding
elements of E2 . We also conjecture that the spectral sequence collapses and, together,
these two conjectures would imply that weight systems over the integers all “integrate”
to finite-type invariants. Unlike Vassiliev’s original spectral sequence, this spectral
sequence does not involve a subtle limit process (see Giusti [10]) but instead is simply
the spectral sequence of a tower of fibrations. It thus is more amenable to tools from
algebraic topology such as generalized Hopf invariants.

The paper is organized as follows. Section 2 gives needed general background on
compactified configuration spaces and on cubical and cosimplicial diagrams. Section 3
recalls the resulting mapping space and cosimplicial models we prefer to use, inter-
changeably, for the nth stage of the Taylor tower for Embfr.R;R3/. Some readers may
prefer to only look back at these sections as needed, in particular for the “infinitesimal
transformation” map between the spatial and operadic mapping space models.

In Section 4, we construct homotopy-commutative multiplications on the nth stage of
the Taylor tower for Embfr.R;R3/. This shows that �0 of each stage of the Taylor
tower is an abelian monoid. Section 5 contains two main results, the first being that
the projections in the tower are surjective on �0 . This is then used to show that �0 of
each stage is a group.
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In Section 6, we show that �0 of the map from the space of knots to its nC1st

Goodwillie–Weiss approximation is invariant under clasper surgery and thus of type n.
In Section 7, we show that the homotopy spectral sequence for the tower is a spectral
sequence of abelian groups (in particular in total degrees zero and one), and we identify
the E2 term.

2 Compactification of configuration spaces

2.1 Basic definition

We briefly review the simplicial compactification of configuration space, defined
in [26; 28]. For any manifold M — not necessarily compact, and possibly with
boundary — let Cn.M / denote the configuration space of n points in M . It is the
space of distinct ordered n–tuples of points in M .

Definition 2.1 For an M embedded in some Euclidean space Rd , let CnhM i denote
the closure of the image of

Cn.M / ,!M n
� .Sd�1/.

n
2/; .x1; : : : ;xn/ 7!

�
.x1; : : : ;xn/;

�
xi �xj

jxi �xj j

�
i<j

�
:

As shown in [26], this is independent of embedding and is a quotient of CnŒM �, the
Fulton–MacPherson compactification of Cn.M /. If M is noncompact, then CnhM i

as defined above as well as the Fulton–MacPherson compactification are not compact
but are more accurately described as completions. Informally, we refer to the projection
to M n as the “spatial” information, while information which distinguishes points with
the same projection to M is “infinitesimal”. If M is one-dimensional and connected,
then CnhM i is in general not connected. For such M , by abuse we use CnhM i to
denote the connected component where the n points are in (cyclic) order.

2.2 Framings and tangent data

We need framed configurations. For any manifold M , define C fr
n hM i as the pullback

C fr
n hM i

//

��

.Fr M /n

��

CnhM i // M n

where Fr M !M is the unit frame bundle of the tangent bundle of M . If M is
parallelizable and d –dimensional, then C fr

n hM i is homeomorphic to CnhM i�O.d/n .
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Let C 0nhM i be defined similarly, with the unit tangent bundle STM in place of the unit
frame bundle.

2.3 Distinguished boundary points

Suppose M has two distinguished points y0 and y1 in its boundary. Then, as in [4; 28],
let CnhM; @i denote the subspace of CnC2hM i where the first and last points are
located at y0 and y1 , by abuse omitting dependence on these points from notation.

Further, if there are distinguished tangent vectors v0 2 TMjy0 and v1 2 TMjy1 , let
C 0nhM; @i be the subspace of C 0

nC2
hM i where .p1; v1/ and .pnC2; vnC2/ are .y0; v0/

and .y1; v1/, respectively. By fixing framings at y0 and y1 , define C fr
n hM; @i similarly.

Define CnhI; @i by taking the two endpoints to be the distinguished points. The fact
that CnhI; @i is the n–simplex is the main rationale for calling this compactification
“simplicial”. Define C 0nhI

d i by taking fy0;y1g to be @I � f.0; : : : ; 0/g and v0 D

v1 D .1; 0; : : : ; 0/ (so our knots will “proceed from left to right”) and similarly define
C fr

n hI
d ; @i by using the identity element in O.d/ for framings at those boundary points

(using the standard parallelization of Id �Rd ).

2.4 Quotients by translation and scaling, and insertion maps

There are maps between products of CnhRd i and CnhId ; @i defined by “inserting
an infinitesimal configuration into a point of another configuration”. Let zCn.Rd / WD

Cn.Rd /=.Rd ÌRC/ be the quotient of configuration space by translations and positive
scalings of all n points.

Definition 2.2 Define zCnhRd i as the closure of the image of the map

zCn.R
d /

e
�! .Sd�1/.

n
2/; .x1; : : : ;xn/ 7!

�
xi �xj

jxi �xj j

�
i<j

;

which is injective except on collinear configurations.

We let vij denote the projection of zCnhRd i to the .i; j /th factor of Sd�1 .

The similarly defined zCnhId i is homeomorphic to zCnhRd i, so both CnhRd i and
CnhId i naturally surject onto zCnhRd i.

We proceed directly to the framed setting in defining insertion maps. Let zC fr
n hR

d i WD

zCnhRd i �O.d/n , the framed version of the “infinitesimal configuration space”.

For every m, n, and i 2 f1; : : : ; ng, we define a map ıi which, informally, inserts a
configuration of m points (with framings) into the i th point of a configuration of n
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points (with framings). In the resulting configuration of mCn�1 points, the m points
form an “infinitesimal configuration”. Precisely, in coordinates we define

ıi W C
fr
n hI

d ; @i �C fr
mhI

d
i ! C fr

mCn�1hI
d ; @i

as follows. First, suppressing the dependence on i , we let

Oj D

8<:
j if j � i;

i if i � j � i Cm� 1;

j Cm� 1 if j > i Cm� 1:

Now define ıi as sending

..xj /
n
jD1; .ujk/j<k ; . j̨ /

n
jD1/� ..yj /

m
jD1; .vjk/j<k ; . ǰ /

m
jD1/

7! ..zj /
mCn�1
jD1

; .wjk/j<k ; .j /
mCn�1
jD1

/;

where zj D x Oj ,

wjk D

�
˛iv.j�iC1/.k�iC1/ if i � j ; k � i Cm� 1;

u Oj yk otherwise;
and

j D

�
˛i ǰ�iC1 if i � j � i Cm� 1;

˛ Oj otherwise:

One must check that such maps send subspaces of .Rd /n � .Sd�1/.
n
2/ to each other

appropriately. Here we only cite a similar check, namely [26, Proposition 6.6], using
the description of the CnhRd i as a subspace of .Rd /n � .Sd�1/.

n
2/ given in [26,

Theorem 5.14]. The results are not dependent on the yj coordinates of C fr
mhI

d i, which
means that these insertion maps factor through the projection to zC fr

mhR
d i on that factor.

3 The models

We study the space of framed knots Embfr.R;R3/. A framed knot is a smooth em-
bedding of R into R3 together with a smooth map R!O.3/ whose first (column)
vector is the unit derivative map. Embeddings take I D Œ�1; 1��R into I3 �R3 , and
on R n I are standard, given by t 7! .t; 0; 0/. The framing is required to be constant at
the identity on R n I .

We primarily use a mapping space model for the nth stage of the Goodwillie–Weiss
tower for the space of framed knots Embfr.R;Rd /. But, for both spectral sequence
calculations and for clarity through comparison, we use a cosimplicial model as well.
For each of these, there are a few variants depending on the choice of compactifi-
cations of configuration spaces Cn.M /. The Fulton–MacPherson (Axelrod–Singer)

Algebraic & Geometric Topology, Volume 17 (2017)



Embedding calculus knot invariants are of finite type 1707

compactification CnŒM � is a smooth manifold with corners. In this paper, we use
instead the simplicial compactification CnhM i, developed in the previous section. It is
not a manifold with corners, but it has the advantage that one component of CnhIi is
the n–simplex. This is needed to define a cosimplicial model, and the corresponding
mapping space model is defined in terms of the face poset of the simplex rather than
that of the associahedron.

3.1 Cosimplicial models

A cosimplicial space is a functor to Top from the category � with one object for
each ordered set Œn�D .0; : : : ; n/ and morphisms given by order-preserving maps. We
rely on the standard set of generating morphisms, denoting coface maps by d i and
codegeneracy maps by si . We let �n be the full subcategory of � containing the first
nC 1 objects.

Goodwillie–Weiss embedding calculus leads to forming a cosimplicial space from the
spaces C fr

�
hId ; @i, by using the first vector in the framing as the “doubling direction”.

This was first done in the unframed setting in [28, Corollary 4.22]. In more detail, we
have the following:

Definition 3.1 The spatial cosimplicial model C fr
�
hId ; @i has nth entry C fr

n hI
d ; @i.

The codegeneracy si W C
fr
n hI

d ; @i ! C fr
n�1
hId ; @i is the extension to compactifications

of the projection which forgets the i th point.

The coface d i is given by d i.x/D x ıi �, which “doubles” the i th point by inserting
into its position the infinitesimal two-point configuration � rotated by the i th framing.

So here d0 and dnC1 “double” the “extra” points which are located in the middle of
the left and right faces of Id .

Definition 3.2 The operadic cosimplicial model zC fr
�
hRd i has nth entry zC fr

n hR
d i.

The codegeneracy si W
zC fr

n hR
d i ! zC fr

n�1
hRd i is the extension to compactifications

modulo translation and scaling of the projection which forgets the i th point.

For 1� i � n, the coface d i is given by d i.x/D x ıi�, which “doubles” the i th point
by inserting into its position the infinitesimal two-point configuration � rotated by the
i th framing. The coface d0.x/ equals �ı2 x , while the coface dnC1.x/ equals �ı1 x .

Thus, in the operadic model, the first and last coface maps insert configurations into
two-point configuration, which has the effect of “adding a point at infinity”. Along
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with the obvious passing to quotients by translation and scaling, this is the difference
between the spatial and operadic models. We discuss the relative advantages of these
models as well as why we need both when we discuss their associated mapping space
models below. The operadic model is so-called because it fits into a framework by
which operads with multiplication produce cosimplicial objects, following Gerstenhaber
and Voronov, and McClure and Smith [18].

The fourth author showed [27; 28] that the homotopy-invariant totalizations of similar
cosimplicial spaces for unframed knots, which we will use and denote by C 0

�
hId ; @i

and zC 0
�
hRd i, give models for the Goodwillie–Weiss tower. The framed version of this

construction was studied by Salvatore [23, Section 3].

By needing to use a homotopy-invariant totalization to model the towers, some control
of geometry and combinatorics is lost. A standard approach to cosimplicial spaces
through (sub)cubical diagrams, reviewed in the next section, retains both combinatorics
and geometry by sacrificing some symmetry. In particular the resulting spatial model is
compatible with the evaluation map, also known as a Gauss map, from the knot space.

3.2 Mapping space models

Our mapping space models are defined as homotopy limits of subcubical diagrams of
compactified configuration spaces. A subcubical diagram is a functor from P� Œn�, the
poset of nonempty subsets of Œn�, which is the face poset of the n–simplex. Because
the cosimplicial and subcubical diagram categories both involve ordered sets, there
is an immediate relationship between them. In general � admits a canonical functor
from any category defined through finite ordered sets, as follows:

Definition 3.3 Let C be a category whose objects are given by ordered finite sets and
whose morphisms are subsets of the order-preserving maps between those sets. Define
GC W C ! � to be the functor which sends an ordered finite set S to Œ#S � 1� and
which sends an order-preserving map S ! T to the composite

Œ#S � 1�Š S ! T Š Œ#T � 1�;

where the isomorphisms are order-preserving.

For C D P� Œn�, we abbreviate GP� Œn� to GnW P� Œn�!�n .

The functor Gn was used [28; 22] to use cubical diagrams to model cosimplicial
spaces. The resulting diagrams use all of the coface maps “multiple times”, while the
codegeneracy maps are ignored.
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Definition 3.4 The spatial mapping space model AMfr
n is the homotopy limit of the

composite functor C fr
�
hI3; @i ıGnW P� Œn�! Top.

The operadic mapping space model �AMfr
n is the homotopy limit of the composite

functor zC fr
�
hR3i ıGnW P� Œn�! Top.

We are henceforth focusing on classical knots, in three dimensions, so we are suppress-
ing the ambient dimension from notation. The mapping space model AMn of [4] is
defined similarly to AMfr

n , but pulled back from C 0
�
hI3; @i and so with tangent vectors

instead of frames.

Using the definition of homotopy limit through nerves of under-categories, the homotopy
limit of a subcubical diagram is given by a collection of maps from simplices. Since
the structure maps d i are injective, an element ' of AMfr

n is determined by a map
�n! C fr

n hI
3; @i, so AMfr

n is a subspace of Map.�n;C fr
n hI

3; @i/. Because the faces
of the simplex map to configurations which are degenerate in an “aligned” manner we
sometimes refer to this as the subspace of aligned maps. Explicitly, if some (consecutive)
collection of ti in Et D .t1; : : : ; tn/ 2�n are equal, then the corresponding points in the
configuration '.Et/ have “collided” in I3 , their framings (˛i 2O.3/) are all equal, and
the first column of ˛i is the direction of collision of these points.

To interrelate cosimplicial and mapping space models, a main technical result is [28,
Theorem 6.7], which establishes that Gn is left cofinal. So if X � is a cosimplicial
space then the homotopy limit of the subcubical diagram X � ıGn is equivalent to the
homotopy limit of the restriction of X � to �n . By work of Bousfield and Kan [2], this
is homotopy equivalent to �TotnX � , the nth stage in the homotopy invariant totalization
tower. In [28] this is used to establish the validity of the cosimplicial models, building
from that of the mapping space models.

3.2.1 Evaluation maps Our main results make use of evaluation maps, which natu-
rally connect with the spatial mapping space model. By functoriality for embeddings
of compactified configuration spaces [26, Corollary 4.8], we have that an embedding
f W I ! I3 will extend to a map from �n D CnhI; @i to CnhI3; @i. For a framed
embedding with framing ˛ 2Map.I;O.3// to go along with the embedding f , this
map is given as follows:

Definition 3.5 Define evnW Embfr.R;R3/!AMfr
n �Map.�n;CnhI3; @i�O.3/n/ as

sending an embedding f and framing ˛ to the map which sends

.�1� t1 � � � � � tn � 1/ 7!
�
.f .t1/; : : : ; f .tn//; ˛.t1/; : : : ; ˛.tn/

�
:
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Intuitively, evn samples the knot and its framing at n points in the domain.

One of the main results of [28], namely Theorem 5.4, immediately extends to the framed
setting to establish that evn agrees in the homotopy category with the canonical map
from the embedding space Embfr.R;Rd / to the nth stage of the Taylor tower, Tn Emb.

In dimensions d > 3 it is known that the connectivity of evn increases with n, and
hence the tower converges to the embedding space. Thus, the homotopy theory of
evaluation maps captures the nature of knots in these dimensions. For d D 3, it is not
known if evn is even 0–connected (that is, surjective) much less injective in the limit.
We show below that on components evn defines abelian group-valued invariants of
finite type n� 1.

3.2.2 Translation between mapping space models In addition to the quotienting
by translation and scaling, AMn and �AMn differ by the first and last coface maps,
which in the former case “add a point to the configuration on the left or right face of I3 ”
while in the latter case such points are added “at infinity to the left or right”. This
means that the obvious quotient maps do not define a map between these models. We
require a map between them, as the spatial model is the target of the evaluation map as
we just saw and the operadic model is more convenient for defining multiplications
below.

Observe that the evaluation of a long knot can be extended to include times greater
than 1 or less than �1, in which case the corresponding configuration points are
standard along the x–axis. We achieve something similar for arbitrary elements of
AMn to obtain maps z'W CnhRi ! CnhR3; @i.

Definition 3.6 For t1 � t2 � � � � � tn with all ti 2R, we let

yti D

8<:
�1 if ti � �1;

ti if � 1� ti � 1;

1 if ti � 1:

Then we define z'.t1 � t2 � � � � � tn/ to be the configuration which is the union of the
following:

(1) One point at .ti ; 0; 0/ for each ti � �1 or ti � 1.

(2) The configuration obtained by taking '.yt1� � � ��ytn/ and applying the projection
which forgets points xi for which ti � �1 or ti � 1.

Moreover, after we compose with the quotient CnhR3; @i ! zCnhR3; @i, the map z'
extends to a map from CnhŒ�1;1�i to zCnhR3; @i since the limit as some ti goes to
�1 or 1 will have all vectors vij approaching .1; 0; 0/ or .�1; 0; 0/, as all points
in the resulting configurations not in I3 lie along the x–axis.
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Let h be an order-preserving homeomorphism between Œ�1; 1� and Œ�1;1�. By our
usual abuse of notation, let h also denote the induced map on collections of points.

Definition 3.7 Let �W AMn! �AMn be the map which sends ' to the composite

�n h
�!CnhŒ�1;1�i

z'
�! zCnhR

3; @i:

Proposition 3.8 The map � is a homotopy equivalence.

Proof To compare AMn and �AMn it is simplest to map them both to a third space
which is easily seen to be equivalent. Let �AMhs

n , where “hs” stands for hemispherical,
be the subspace of Map.�n; zCnhI3i/ defined by the same conditions as for �AMn for
all faces except the t1 D�1 and tn D 1 faces. On those faces, instead of the vectors
v1j and vkn being .1; 0; 0/ as in the definition of �AMn , for �AMhs

n those vectors are
simply required to lie in the hemisphere with nonnegative x–coordinate. (We could
also define this as a homotopy limit.)

Consider the diagram
AMn

q

'

��

�

##�AMhs
n

�AMn
i

'
oo

where q is the map induced by composition of �n ! CnhI3; @i with the quotient
map to zCnhI3i and i is the inclusion. Both of these are homotopy equivalences. The
diagram commutes up to homotopy, interpolating between q and i ı � by first extending
z' to Œ�x;x�. Then use a continuous family of homeomorphisms hx of I with Œ�x;x�

to define a map �x which serves as a homotopy. It is then elementary that the composite
of i with the homotopy inverse of q serves as a homotopy inverse to �.

The main idea in the definition of �, and in particular the construction of z' , is “focusing”
on the interval I D Œ�1; 1� by modifying configurations in R with points outside the
interval to have points at the endpoints of the interval instead. Corresponding points in
the configuration are replace by standard points along the x–axis. We will use similar
ideas in the development of multiplicative structures on AMn and �AMn .

4 Multiplicative structures

In this section we first define an action of the little intervals operad C1 on the framed
knot space and AMfr

n , which are compatible via the evaluation map. Then we construct
a multiplication which is homotopy commutative on �AMfr

n . We show that these actions
are all compatible up to homotopy.
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Definition 4.1 The little intervals operad C1 has as its nth entry C1.n/ the space of
n disjoint subintervals of I , which we topologize as a subspace of I2n through the
endpoints of the intervals.

Given an subinterval L� I we by abuse let L also denote the orientation-preserving
affine-linear transformation which sends I to L.

For use with operad actions on knot spaces, we let yL denote the map I3! I3 which
applies L to the first coordinate and then shrinks the second and third coordinates by
the same scaling factor (but doesn’t translate them).

4.1 The little intervals action on the knot space

If L D
S

Li is a union of k disjoint little intervals, its action on a k –tuple of
embeddings fi W R!R3 yields the embedding which at time t has value

L � .f1; : : : ; fk/.t/D

�
yLi ıfi ıLi

�1.t/ if t 2Li for some i;

.t; 0; 0/ otherwise:

That is, the embeddings are “shrunk and placed in succession” according to L. The
action on Embfr.R;R3/ is similar, with the framings unchanged by the shrinking. We
will view this action as a case of “insertion into the trivial embedding, with standard
framing”.

4.2 The spatial little intervals action on aligned maps

Defining a C1 action on AMn is more involved, guided by wanting the evaluation map
evn to be compatible with the action. We want to take a configuration in the interval
and evaluate points in the various Li on different elements of AMn . But typically
fewer than n points will be in each Li , so we adjust accordingly. We first define
restriction of an aligned map to some interval L.

Definition 4.2 For L� I , define L�1 on some Et in the interval by applying to each
ti the piecewise-linear map which is L�1 on the image of L, sends points to the left
of L to �1, and sends points to the right of L to 1.

Define the restriction of ' 2AMn to L, denoted by 'jL , by applying ' to L�1.Et / and
then applying projection maps to forget all of the points in the resulting configurations
whose indices j do not correspond to a tj in the interior of L.

This is not continuous, as the different projection maps depending on the number of ti
in L produce points in different configuration spaces, but it is an essential auxiliary
construction.
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Definition 4.3 Define the action of a union of little intervals LD
S

Li on a collection
of maps 'i 2 AMn as the map in AMn which takes Et 2�n to the union of all of the
yLi ı'i jLi

applied to Et along with a point in the configuration at .tj ; 0; 0/ for each tj
which is not in the interior of any Li . If for such a tj we have, say, tj D tjC1 , then we
set the “direction of collision from .tj ; 0; 0/ to .tjC1; 0; 0/”, denoted by vi;iC1 when
we have used coordinates, to be the positive x–axis direction.

The C1 –action on AMfr
n is defined in the same manner, where the framings are un-

changed because each interval shrinks an aligned map equally in all directions.

This action varies continuously as tj approaches an endpoint e of some Li because
the limit from either side of this endpoint is the configuration with the corresponding
point xj at .e; 0; 0/. Checking continuity elsewhere is immediate, as is checking the
usual conditions required for an action of the operad C1 . The definition was arranged
so that this action is compatible with the C1 action on the knot space via the evaluation
map.

Proposition 4.4 The map evnW Embfr.R;R3/! AMfr
n is a map of C1 –spaces.

For this paper we only need that this is a map of H–spaces. We will also need that the
action is compatible with the structure maps in the Goodwillie–Weiss tower, which will
be a main focus of Section 5.

4.3 A spatial-infinitesimal single little interval action

In his work on operad actions on knot spaces [3], the first author extensively uses the
fact that embeddings of R�D2 into R�D2 can be composed. Our main idea in
establishing homotopy commutativity of the multiplication(s) on AMfr

n is to set up
composition. In order to do so, we produce products where the spatial points are along
the evaluation map of the unknot, and use infinitesimal composition for the essential
part of the multiplication. Given an interval L and ' 2 �AMfr

n , we produce an aligned
map with infinitesimal configuration at the point .L.0/; 0; 0/ together with some points
along I� .0; 0/. For continuity, we need points near the boundary and, say, inside of
L to be pulled towards L.0/.

Let Lı D L
��
�

1
2
; 1

2

��
, which is the “core” of L. Let eLW I ! I be a monotone

continuous map which sends Lı to the point L.0/ and which is the identity outside
of L. By abuse use the same notation eL for the induced map on collections of points
in the interval.

As in previous constructions, we define the map L �' piecewise on �n according to
the partition defined by which indices of ti occur in Et \Lı . Let i and j be the indices
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of the leftmost and rightmost tk in Lı , which we will consider as functions of Lı

and Et . For an element ' 2 �AMfr
n , let 'jL be defined similarly as in Definition 4.2

for the AMn setting, though this now produces equivalence classes of configurations
modulo translation and scaling, with framings.

Definition 4.5 With notation as above, for ' 2 �AMn define L �' 2 AMn by

.L �'/.Et/D
�
eL.t1; : : : ; ti�1;L.0/; tjC1; : : : ; tn/� .0; 0/

�
ıi 'jLı.Et/:

For a fixed L, it is clear that the output varies continuously with ' and with all Et
which have the same indices occurring in Et \Lı . To check that the various pieces fit
together to a continuous function, suppose that some ti is equal to L

�
�

1
2

�
, the left

endpoint of Lı . The formulae on the two pieces of �n that meet at ti DL
�
�

1
2

�
are�

eL.t1; ti�1;L.0/; tjC1; : : : ; tn/� .0; 0/
�
ıi '..L

ı/�1.ti ; tiC1; : : : ; tj //

and, using that eL.ti/D eL

�
L
�
�

1
2

��
D eL.L.0//DL.0/,�

eL.t1; : : : ; ti�1;L.0/;L.0/; tjC1; : : : ; tn/� .0; 0/
�
ıiC1 '..L

ı/�1.tiC1; : : : ; tj //:

The key point is that, by definition of the doubling maps in zC fr
�
hI3; @i, the map ' sends

a point in @I to a point “that looks infinitely far away from the images of the interior
points in I”. Here it is essential that we are starting with elements of the operadic
mapping space model rather than the spatial model.

To elaborate, using our standard coordinates on these compactifications, vik D .1; 0; 0/

for any k 2 fi C 1; : : : ; j g in either of the two configurations above, and every other
vk` for 1� k � `� n is the same in these two configurations as well. Furthermore, the
projections to .I3/n of the two expressions agree, so they are the same configuration
in C fr

n hI
3; @i.

Checking continuity between any other two pieces of �n is similar, as is checking
continuity if we vary both Et and L.

If we compose L � ' with the projection to zCnhR3i, the resulting map satisfies the
conditions of being in �AMn . We need the spatial information in the next section.

4.4 A commutative multiplication on infinitesimal aligned maps

Now we define a multiplication on �AMfr
n determined by a choice of two intervals

L1 , L2 2 C1.1/, one entry in the operad of “overlapping intervals”. Here, when two
intervals overlap, they are also ordered. Informally, this order says which interval is
“on top”. Since C1.1/ is connected, this product will be homotopy-commutative.
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To see that homotopy-commutativity of connected sum holds for knots coherently as
part of an operad action, it is technically necessary to “thicken” the knots, by studying
embeddings of R�D2 in R�D2 . In [3], the first author shows that such embedding
spaces have an action of the overlapping intervals operad and, moreover, uses this
action to determine the homotopy type of the space of classical knots. As we work
with evaluation maps between compactified configuration spaces, our substitute for
R�D2 is the following:

Definition 4.6 Let C it
n hI� .0; 0/; @i, the space of infinitesimally thickened configura-

tions in an interval, be the subspace of C fr
n hI

3; @i whose image under the projection to
.I3/n lies in .I� .0; 0//n .

So far, L � ' is a map CnhI; @i ! C fr
n hI

3; @i whose image lies in the subspace
C it

n hI � .0; 0/; @i. We can view CnhI; @i as a subspace of C it
n hI � .0; 0/; @i in an

obvious way with identity framings at every point. We will now extend the domain of
L �' from CnhI; @i to all of C it

n hI� .0; 0/; @i.

For any c 2 C it
n hI� .0; 0/; @i, let Et.c/D .t1 < � � �< tm/ be the set of distinct points in

p.c/ (so m� n). Then c can be written as

(1) c D
�
� � �
�
.Et.c/� .0; 0// ım1

c1

�
ım2
� � �
�
ımk

ck

for some ci 2
zCni
hI3i. This expression is unique once we require that mi�mi�1Cni�1 ,

so that the underlying points of insertion are distinct.

Definition 4.7 Define the extension of L �' to C it
n hI� .0; 0/; @i as

.L �'/.c/D
�
� � �
�
.L �'/.Et.c// ım1

c1

�
ım2
� � �
�
ımk

ck :

Here the L �' on the right-hand side is as in Definition 4.5, using the identification of
CnhI; @i with �n .

The key point now is checking continuity when points enter or exit the infinitesimal
configurations ci . The argument is just as for continuity in Definition 4.5 but with
.1; 0; 0/ replaced by the tangent vector, which is the first vector in the framing, at '.tmi

/.

Now both the input and output of the map L � ' can be regarded as elements in
C it

n hI�.0; 0/; @i. Thus two such maps can be composed, and we denote the composition
by ı.

Definition 4.8 Given two little intervals L1 , L2 2 C1.1/, define the product of
elements ' ,  2 �AMfr

n as

�L1;L2
.';  /W Et 7! ..L2 � / ı .L1 �'//.Et/;

where we take the equivalence class in zC fr
n hI

3i of the right-hand side.
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Let L�D Œ�1; 0� and LCD Œ0; 1�. Abbreviate �L�;LC as �, and abbreviate �.'; /
as ' � .

Theorem 4.9 ' � is homotopic to  �' .

Proof The map .L; '/ 7! L � ' varies continuously with L. Because C1.1/ is
connected, any two multiplications induced by choices of .L1;L2/ — in particular
.L�;LC/ and .LC;L�/ — are homotopic.

4.5 A compatible little intervals action on infinitesimal aligned maps

We now compare the multiplications on the spatial model AMfr
n and the infinitesimal

model �AMfr
n . We first present a simpler multiplication �0 on �AMfr

n , which is homotopic
to the one defined above. The multiplication �0 avoids the use of the maps eL which pull
points towards L, which are needed homotopy-commutativity. The multiplication �0

also has the advantage of extending to an action of the little intervals operad.

Definition 4.10 Let �0 be the map

�0W C1.2/� . �AMfr
n/

2
! �AMfr

n

defined by

�0L1;L2
.';  /.Et/

WD
��
.t1; : : : ; ti�1;L1.0/; tjC1; : : : ; tk�1;L2.0/; t`C1; : : : ; tn/�.0; 0/

�
ıi'jL1

.Et/
�

ık  jL2
.Et/;

where ti ; : : : ; tj are the points in L1 and tk ; : : : ; t` are the points in L2 . Similarly, for
any k � 1, define a map

(2) C1.k/� . �AMfr
n/

k
! �AMfr

n

which sends ..L1; : : : ;Lk/; .'1; : : : ; 'k// to the result of inserting each 'i jLi
into the

point .Li.0/; 0; 0/.

It is straightforward to verify that the maps (2) define a C1 –action on �AMfr
n , using the

fact that zCnhI3i records only directions of collision, as well as again using the fact that
in the operadic models configuration points which corresponding to times ti which are
equal to ˙1 are “at infinity”.

Proposition 4.11 For disjoint intervals L1 and L2 , the multiplication �L1;L2
.';  /

is homotopic to the multiplication �0
L1;L2

.';  /.
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Proof Since configurations of points along the x–axis are all equivalent in zCnhI3i,
the resulting aligned maps differ only in the subsets of I on which they are constant.
The aligned map resulting from �0 sends all tj between L1 and L2 to the same
configuration point, while the same is true for � and Lı

1
and Lı

2
. These are related by

a homotopy which “reparametrizes the domains” of ' and  from Lı
1

and Lı
2

to L1

and L2 , respectively.

Recall from Definition 3.7 our transformation � from the spatial to the operadic mapping
space models, which is an equivalence.

Proposition 4.12 The C1 –actions on AMfr
n and �AMfr

n are compatible. That is, the
diagram

C1.k/� .AMfr
n/

k //

�k

��

AMfr
n

�

��

C1.k/� . �AMfr
n/

k // �AMfr
n

commutes up to homotopy, where the top horizontal map is the action given in
Definition 4.3 and the bottom horizontal map is the action that generalizes the multipli-
cation �0 given in Definition 4.10.

Proof Recall that the C1 action on AMfr
n is defined by taking the union of the images

of yLi ı'i jLi
, along with points along the x–axis. We will perform a homotopy with

three steps, parametrized by s 2 Œ0; 3�, from the composite through the upper-right
corner to the composite through the lower-left corner.

The first step, as s varies in Œ0; 1�, is a straightforward homotopy from .L1; : : : ;Lk/ �

.'1; : : : ; 'k/ to .Lı
1
; : : : ;Lı

k
/ � .'1; : : : ; 'k/, where as before Lı WDL

��
�

1
2
; 1

2

��
. The

configuration produced by an aligned map in the image at s D 1 is the union of
configurations resulting from all the 'i jLı

i
, together with points along the x–axis.

Roughly, we are ensuring that each aligned map is standard on some interval between
each pair of intervals Li and LiC1 , so that we can push apart and shrink configurations
continuously.

Next define L�i WD Li nLıi . In the second step, as s varies in Œ1; 2�, we scale the
image of each 'i jLı

i
to an infinitesimal configuration at .Li.0/; 0; 0/. In the notation

of Section 4.1, we follow each aligned map by . yLıi /
�1 ı yJs ı

yLıi , where we define
Js WD Œs � 2; 2� s� for s 2 Œ1; 2�. This can be done at the level of representatives in
C fr

n hI
3; @i coming from the top horizontal map. The configurations become infinitesimal

only at sD 2, so continuity requires us to simultaneously pull the images of L�i toward
.Li.0/; 0; 0/, from occupying L�i �f.0; 0/g at s D 1 to occupying all of Li �f.0; 0/g

at s D 2.
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At s D 2, the elements in �AMfr
n produce infinitesimal configurations 'i jLı

i
, together

with points on the x–axis between them (where the distances between them are not
recorded by the operadic compactification zC fr

n hI
3i). This aligned map looks almost

like the composite through the lower-left corner. The only difference is that this
aligned map is constant on each component complementary to the Lıi , rather than
each component complementary to the Li . The last stage of the homotopy thus simply
requires “reparametrizing the domain” of each 'i from Lıi to all of Li , as in the proof
of Proposition 4.11.

Because � is a homotopy equivalence, we have the following:

Corollary 4.13 The C1 action on AMfr
n induces a homotopy-commutative multiplica-

tion.

We have not used that the ambient dimension is three, so these results hold for knots in
higher-dimensional Euclidean spaces as well. Similar results were proven in [27] for
knots modulo immersions (that is, the homotopy fiber of the inclusion of embeddings
into immersions) and would work similarly for framed knots, but only for the limit of
the AMfr

n . Turchin [31], and more recently Boavida and Weiss [1], have established
versions of this theorem, along with a group structure as in Theorem 5.16 below, for the
stages of the tower for knots modulo immersions. Dwyer and Hess have similar results
for the limit [8]. We were not able to show that the structure studied in Turchin’s paper
is compatible with connected sum, which necessitated the present approach.

Remark 4.14 At this point we can explain the connection between Schubert’s elemen-
tary geometric result that connected sum of knots is commutative [25] and Steenrod’s
deep, formal work on commutativity of cup product and operations in cohomology [30].
This connection was implied to us by the work of McClure and Smith [19; 20], as
applied in this setting by Sinha [27], whose product structures on totalizations of
cosimplicial spaces are related to Steenrod’s formulae for higher cup products [19].

In different notation from Definition 4.3, the product of two aligned maps f and g is

.t1; : : : ; tn/ 7!
[

ti�0�tiC1

yf .t1; : : : ; ti/� yg.tiC1; : : : ; tn/:

Here the union refers to a decomposition of the domain, the n–simplex; yf and yg are
obtained from f and g by appending times and rescaling (as we did frequently this
section); and � indicates a “stacking product” of configurations in Rd .

This is formally similar to the standard formula for cup product

' [ .� W Œv1; : : : ; vn�!X /D
X

'.� jŒv1;:::;vi �/ � .� jŒviC1;:::;vn�/:
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Here ' and  are cochains, � is a chain, and brackets Œ ; � around some variables
refers to the simplex given as convex linear combinations of those variables. This sum
is zero except for one term, but, as McClure and Smith show, it is the correct sum to
write down for purposes of generalization.

Recall that Theorem 4.9 gives a homotopy from �.f;g/ to the multiplication defined
by Definition 4.8 with .L1;L2/D .Œ�1; 0�; Œ0; 1�/. By choosing a path in C1.1/ from
.Œ�1; 0�; Œ0; 1�/ to .Œ0; 1�; Œ�1; 0�/ (and applying a homotopy from Proposition 4.11)
we ultimately get a homotopy from �.f;g/ to �.g; f /. We choose the following
path, which in the overlapping intervals setting the first interval always lies above the
second: start with .Œ�1; 0�; Œ0; 1�/; grow the second interval to obtain .Œ�1; 0�; Œ�1; 1�/;
then translate Œ�1; 0� to Œ0; 1�; finally shrink Œ�1; 1� to Œ�1; 0� to obtain the pair
.Œ0; 1�; Œ�1; 0�/.

If we apply the formulae of Definition 4.8 for the products of f and g governed by
this path of 1–disks, we see a formal analogue for Steenrod’s formula for cup-one,
namely

' [1  .�/D
X
i<j

'.� jŒv1;:::;vi ;vj ;:::;vn�/ � .� jŒvi ;:::;vj �/:

The main difference is that the product rather than using an underlying commutative
ring uses operad insertion maps. McClure and Smith show this to be an appropriate
extension of Steenrod’s formula to the operadic setting.

5 Maps and layers in the tower, and abelian group structure

Our goal is to show that each stage of the Goodwillie–Weiss tower for knots has an
abelian group structure compatible with connected sum. This also would follow by
adapting recent work of Boavida and Weiss [1], which appeared after the present work,
where in Theorem 10.2 they exhibit the stages of a closely related tower as the fiber of
a two-fold loop map of spaces whose multiplications are compatible with connected
sum.

Though we are primarily interested in mapping space models, we use the cosimplicial
models and language around them as a starting point and key organizational tool.
Cosimplicial structures are also essential for the study of spectral sequences below. We
need develop a variety of models for the maps in the totalization tower of a cosimplicial
space, which are of independent interest.
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5.1 Maps in the tower through projection and restriction

In the cosimplicial realm the totalization tower is a basic object of study, dual in a
sense to the skeletal filtration of a simplicial complex. When using the functors Gn

to pull back a subcubical diagram from a cosimplicial space, the maps from �Totn to�Totn�1 are induced by inclusions P� Œn� 1�! P� Œn�.

In the mapping space models, this inclusion of indexing categories explicitly gives rise
to the following:

Definition 5.1 The restriction projection pnW AMfr
n!AMfr

n�1 sends a map ' 2AMfr
n

to the composite

�n�1 d
�!�n '

�!C fr
n hI

3; @i
s
�!C fr

n�1hI; @i;

where d and s are the images of a (face, degeneracy) pair whose composite is
the identity. As any two such choices of a pair .d; s/ yield homotopic projections
AMfr

n ! AMfr
n�1 , we take d to be the map dnW .t1; : : : ; tn�1/ 7! .t1; : : : ; tn�1; 1/ and

s to be the map sn that forgets the last configuration point and framing.

The restriction projection map zpnW �AMfr
n!

�AMfr
n�1

and nonframed versions are defined
analogously.

Then pn is our first model for the standard map �TotnC fr
�
hId ; @i to �Totn�1C fr

�
hId ; @i,

and its main use is the following:

Proposition 5.2 The restriction projection pnW AMfr
n ! AMfr

n�1 is a map of C1 –
algebras.

Proof We need to check that the following diagram commutes:

C1.k/� .AMfr
n/

k //

��

AMfr
n

��

C1.k/� .AMfr
n�1/

k // AMfr
n�1

The composite through the upper-right corner is the map

.t1; : : : ; tn�1/ 7! sn

� k[
iD1

yLi ı'i ıL�1
i .t1; : : : ; tn�1; 1/[

[
f.tj ; 0; 0/g

�
;
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t1

t2

t3

Figure 1: A partial illustration of how the projection AMn ! AMn�1

preserves the C1 –action for n D 3 , k D 2 , with intervals .L�;LC/ D
.Œ�1; 0�; Œ0; 1�/ acting on ' ,  2 AMn . The product .L�;LC/ � .';  / is
a map of the whole simplex. The restriction to each light-blue triangular
face is (after rescaling in the domain and range, and after forgetting the last
configuration point) the projection of ' to AM2 ; the blue edge of this triangle
is in turn the restriction to the face t2 D 1 . Similarly the restriction to the
light-red triangular face is the projection of  to AM2 ; the red edge of this
triangle is in turn the restriction to the face t1 D 0 . The map on the top face
of the whole simplex is the projection of .L�;LC/ � .';  / , which is indeed
obtained as a product of the projections of ' and  to AM2 .

while the composite through the lower-left corner is the map

.t1; : : : ; tn�1/ 7!

k[
iD1

yLi ı sn ı .'i jdn�n�1/ ıL�1
i .t1; : : : ; tn�1/[

[
f.tj ; 0; 0/g:

These maps agree. In either expression, each 'i is applied to the same configuration,
in particular with the same number of ti equal to 1. As for the resulting configuration
in R3 , in the first expression one forgets an extra framed point at .1; 0; 0/. In the second
expression, one forgets an extra framed point at .Li.1/; 0; 0/ for each i D 1; : : : ; k ,
yielding the same result.

A similar argument shows that the projection AMn!AMn�1 is a map of C1 –algebras.
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5.2 Maps in the tower through (only) projection

For purposes of connecting our multiplications with those coming from cosimplicial
structure, we need another model for the maps and layers in the totalization tower,
one which is closely related to pn in that it uses projection. While the map pn is
defined through including P� Œn � 1� in P� Œn�, we now proceed by “fibering P� Œn�
over P� Œn� 1�”. Consider the functor in from P� Œn� to P� Œn� 1� which modifies a
subset S by identifying n�1 and n — that is, changing occurrences of n in S to n�1.

Lemma 5.3 The homotopy limit of X �ıGn�1ıin is homotopy equivalent to �Totn�1X �.

The nth degeneracy snW X n!X n�1 extends to a map

ysn
W X � ıGn!X � ıGn�1 ı in:

On homotopy limits, the map induced by ysn agrees with the standard map from�TotnX �! �Totn�1X � .

Proof For the first statement, it suffices to show that the functor in is left cofinal [2,
Theorem XI.9.2], so that the category P� Œn��P� Œn�1� .P� Œn� 1� # S/ has contractible
nerve for every S 2 P� Œn� 1�. But this category has a final object, namely the object
corresponding to S [ n 2 P� Œn�.

It follows from the cosimplicial identities that sn induces a natural transformation of
functors ysnW X � ıGn!X � ıGn�1 ı in , where the map on each object is given by either
its last degeneracy or the identity map.

Again, the standard map �TotnX � ! �Totn�1X � is induced by the inclusion functor
jnW P� Œn� 1�! P� Œn�. Note that the composite in ı jn is the identity. Consider the
following diagram to complete the proof:

holim.X � ıGn/

�ıjn

��

ysn

))

holim.X � ıGn�1/ holim.X ıGn�1 ı in/
�ıjn

'
oo

The left-hand vertical map is the map �TotnX � ! �Totn�1X � , since X � ı Gn ı jn D

X � ıGn�1 . Precomposing X � ıGn�1 ı in with jn induces the horizontal map because
in ı jn D id. This horizontal map is an equivalence because, on these homotopy limits,
“precomposing with jn ” is the right-inverse to the equivalence given by “precomposing
with in ”.
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By abuse, we let ysn also denote the map it induces on homotopy limits. For purposes
of distinction we let AMfr

n�1.�
n/ denote C fr

�
hI3; @i ıGn�1 ı in , which by the above is

a model for AMfr
n�1 . (The notation indicates that we model AMfr

n�1 by maps of �n .)
The fact that ysnW AMfr

n ! AMfr
n�1.�

n/ and pn both model the structure maps in the
totalization tower implies that they are homotopic. We choose ysn for more detailed
study of the fibers of these maps, starting with the observation that ysn is a fibration in
both the �AMfr

n and AMfr
n settings, since the projection or identity maps which define

it entrywise are fibrations. (See [4, Lemma 3.5] for an explicit proof in this case of a
standard result about enriched model structures on diagram categories in general.)

Definition 5.4 Let Ln be the fiber of ysnW AMfr
n!AMfr

n�1.�
n/, based at the evaluation

map of the unknot. That is, Ln is the space of aligned maps where when one forgets
the last point in each configuration in the image one obtains a standard configuration
along the x–axis parametrized by the points in the domain simplex. Let zLn be the fiber
of ysnW �AMfr

n!
�AMfr

n�1
.�n/, which then sits over the constant map at the infinitesimal

configuration where all xij for i < j are equal to .1; 0; 0/.

We will write Ln.�
n/ or zLn.�

n/ if we want to emphasize the model we are using for
this fiber.

We used both the AMn and �AMn models in the previous section since the former
supports an evaluation map and a C1 structure and the latter has a commutative multi-
plication. We use both Ln and zLn in similar fashion here, which means we also need
a comparison.

Proposition 5.5 The map �W AMn! �AMn restricts to a map from Ln to zLn which
is an equivalence and preserves multiplication up to homotopy.

Proposition 5.6 The inclusion of Ln into AMn is a map of C1 –spaces.

The proofs of all of these are straightforward from the definitions, checking that previous
definitions’ arguments, such as Proposition 4.12, are compatible with the condition of
being a standard configuration but for the last coordinate.

We can use the equivalence AMfr
n�1.�

n/! AMfr
n�1 defined by restriction to the last

face of �n to define a C1 –structure on AMfr
n�1.�

n/. Combining Propositions 5.2
and 5.6 and composing with the homotopy inverse AMfr

n�1! AMfr
n�1.�

n/, which is
then also C1 , gives the following:

Corollary 5.7 Ln! AMfr
n ! AMfr

n�1.�
n/ is a fibration sequence of C1 spaces.
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5.3 The layers of a totalization tower via cubical diagrams

Following Goodwillie, we use cubical diagrams to develop loop structures on layers in
the totalization tower of a cosimplicial space. Some of this material is treated in [22].
We have already seen P� Œn� and P� Œn�1� related by inclusion and “fibering”. We next
relate them through a Mayer–Vietoris decomposition.

Just as the standard map �TotnX �! �Totn�1X � can be defined by an inclusion �n�1��n ,
it can also be defined by the canonical inclusion P� Œn� 1�� P� Œn� through the equiva-
lence given by the functor Gn . We will analyze the fibers of these maps — that is, the
layers in the totalization tower — in two different ways in this section. First we use a
sort of Mayer–Vietoris decomposition of the category P� Œn�.

Definition 5.8 � Let P¤n � P� Œn� be the full subcategory given by all nonempty
subsets of Œn� except the singleton fng.

� Let Pn2 be the (cubical) poset of all subsets of Œn� containing n.

� Let PnC be the (subcubical) poset of subsets of Œn� containing n and at least
one other element.

The inclusion �W P� Œn� 1� ,! P¤n is left cofinal, so the map induced on homotopy
limits is an equivalence. We can thus replace holimP� Œn�X

�ıGn!holimP� Œn�1�X
�ıGn

by an alternate model for the maps in the tower, namely

holimP� Œn�X
�
ıGn! holimP¤n

X � ıGn:

The poset P� Œn� can be written as the union of P¤n and Pn2 along PnC , yielding the
following square:

(3)

P� Œn� Pn2
? _oo

P¤n

?�

OO

PnC
? _oo
?�

OO

Applying holim.�/X � ıGn to the diagram above, we get a pullback square of fibrations
[11, Proposition 0.2]. Thus, to study the fiber(s) of the map from �Totn to �Totn�1 ,
which up to homotopy is the left-hand column of the induced map of homotopy limits
of this square, it suffices to study the right-hand column. We say fiber(s) because in
our application we study unbased and sometimes disconnected spaces.

Since PnC is just the cube Pn2 with its initial object removed, the map on homotopy
limits induced by the right vertical arrow is just the map from the initial object, at fng,
to the homotopy limit of the rest of the diagram, which is subcubical. We conclude
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that the fiber(s) are the total fiber(s) of the cube Pn2 over different possible basepoints
in the unbased case. In the based setting the original map is k –connected if and only
if the n–cube X � ıGnjPn2

is k –Cartesian.

5.4 Loop structure on layers via retracts of cubes

Lemma 5.9 Let f W C�!D� be a map of cubical diagrams and let r W D�! C� be a
retraction objectwise. Then the total fiber of the cube C�!D� is the loopspace of the
total fiber of D�! C� .

Proof Consider the square of cubes, which is itself a cubical diagram:

C�
f
//

id
��

D�

r

��

C�
id
// C�

We find the total fiber of these cubes in two ways, first internally to the C� and D�
subcubes followed by taking horizontal then vertical fibers. This yields the total fiber
of C�!D� . If we first take internal fibers, then vertical, then horizontal, we see loops
on the total fiber of D�! C� .

Cosimplicial identities imply that the codegeneracy maps of a cosimplicial space can be
used to define retractions of cubes. For example, at the first two levels of a cosimplicial
space the codegeneracy map is a retract for either coface map. Since the first layer
in the Tot tower is the total fiber of P12 , which is just a coface map X 0!X 1 , this
lemma shows that is loops on the fiber of the codegeneracy X 1!X 0 . More generally
we have the following:

Definition 5.10 � For an inclusion of ordered sets i W S ,!S 0 , we define the dual
surjection i !W S 0! S to be the order-preserving retraction which sends each
element of S 0 to the maximal value of S possible among such retractions.

� Let P !
n2 be the category whose objects are subsets of Œn� containing n and where

morphisms are all the dual surjections.

� For brevity, let G!
nW P !

n2!�n denote the functor GP!
n2

(defined in Definition 3.3).

Proposition 5.11 For a cosimplicial space X � , the homotopy limit of X � ı GnjPn2

and thus the fiber of �TotnX �! �Totn�1X � is homotopy equivalent to �nholimX � ıG!
n .
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The proof of this proposition in [22, Proposition 9.4.10] is essentially correct, though it
makes reference to a diagram which is generally not possible to construct for an arbitrary
cosimplicial space and in particular for those we use. We only use a subdiagram of
that used in [22] which can always be constructed.

Proof We interpolate between GPn2
and GP!

n2
, which share the underlying objects,

namely subsets of Œn� which contain n. But Pn2 has basic morphisms (of which all
others are composites) of S 7! S [ i , while P !

n2 has basic morphisms with some
i , iC1 7! iC1 and identity otherwise. For j D 0, 1; : : : , n, define Pn2.j / as having
this same set of objects but with generating morphisms S � S [ i for i � j and
i , i C 1 7! i C 1 and identity otherwise for i > j .

We view X � ıGPn2.jC1/ as a map of cubes C�!D� , where C� is the restriction to
subsets which do not contain j and D� is the restriction to those which do, and the map
between cubes is defined by all of the S 7!S [j maps. Then X � ıGPn2.j/ is a retract
D�! C� , with morphisms defined by sending j to the next element in the ordering.
We deduce from Lemma 5.9 that the total fiber of X � ı GPn2.jC1/ is the loopspace
of the total fiber of X � ıGPn2.j/ . Thus fib X � ıGPn2.n/ '�

n fib X � ıGPn2.0/ . Since
GnjPn2

is GPn2.n/ while GP!
n2

is GPn2.0/ , we obtain the result.

Remark 5.12 It is a tautology that the nth layer in the totalization tower of a fibrant
cosimplicial space is an n–fold loopspace. But in our setting we could not use standard
fibrant replacement to produce a multiplication on the entries of the tower which is
compatible with connected sum. Cubical diagram models for the entries and the layers
of the totalization tower give a workable alternative to fibrant replacement, which is
broadly applicable.

5.5 Surjectivity on components of maps in the tower

In order to inductively establish a group structure on components of stages in the tower,
we need a surjectivity result.

Theorem 5.13 The restriction-projection map zpnW �AMn! �AMn�1 induces a surjec-
tion on �0 .

We prove this unframed version first and then use it to prove the desired framed version,
as the end of the proof we give here breaks down in the framed setting.

Proof of Theorem 5.13 We extend techniques from the previous subsection. Recall
from Section 3 the cosimplicial space zC 0

�
hI3i, which we abbreviate here as C . This
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functor defines both our cosimplicial model and, through pullback by the functors Gn ,
our operadic mapping space model.

We use the square of posets (3) above. We are led to the map on homotopy limits
induced by PnC ,! Pn2 , which if surjective on components implies the same for the
map �AMn! �AMn�1 , induced by the left-vertical map in the square (3).

The initial object in Pn2 is C.fng/D zC 0
0
hR3i, a point. Thus the map on homotopy

limits induced by PnC ,!Pn2 is surjective on components if and only if the homotopy
limit over PnC is connected. As before we reindex this diagram, using the isomorphism
of PnC with P� Œn�1� which sends a set containing n to the set obtained by removing n.

We prove the connectedness of this homotopy limit by induction on n. The case nD 1

is immediate, as zC 0
1
hR3i D S2 is connected. For the induction step, we exhibit the

homotopy limit P� Œn� 1� as a fibration over a connected space with a connected fiber.
Consider the reindexed pushout square (3), with n replaced by n � 1 everywhere.
The inclusion P� Œn � 2� ,! P¤n�1 is left cofinal, so the left-hand column of the
reindexed (3) gives a fibration whose base, the homotopy limit of D , which we can
take over P� Œn� 2�, is connected by induction.

The square of holims induced by (3) is a pullback, so it suffices to establish connected-
ness of the fiber of the map induced by the right-hand column, taken over the component
to which the connected space holimP¤n�1

D maps. Here we choose basepoints for D

by choosing the basepoint .1; 0; 0/ in S2 D zC 0
1
hI3i.

This induced square of holims is of based spaces, we can describe the fiber of this map
as the total fiber of the based cube D.Pn�1/. Apply Proposition 5.11 to deduce that
this total fiber is �n�1 tfib D! .

To show that �n�1 tfib D! is connected or, equivalently, that D! is .n�1/–Cartesian,
we use a Blakers–Massey theorem. This is an .n�1/–cube of spaces zC 0i hIi for i �n�1

of configurations in I3 up to scaling and translation, with a tangent vector at each
point. The maps forget points and corresponding tangent vectors. We replace this by a
homotopy equivalent cube of spaces C 0i hI

3i or even C 0i .I
3/ of configurations in I3

with a tangent vector at each point. Every map in this cube is a fibration, so we can take
the fiber in one direction. The resulting .n�2/–cube, which we call 'D! , has entries
I3 � f .Œi �/, where the deleted points are images of a fixed embedding f W Œn� ,! I3 .
The maps in the cube are inclusions of open submanifolds and are thus cofibrations.
Moreover, 'D! is a pushout cube, so it is strongly co-Cartesian.

Each inclusion I3 � f .Œi C 1�/ ,! I3 � f .Œi �/ is a 2–connected map. The Blakers–
Massey theorem [11, Theorem 2.3] (see also [22, Theorem 6.2.1]) applies to give that
the total fiber of 'D! is n–connected. Thus its nth loopspace is connected, which
yields the result.
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We will say more about this total fiber — and thus the layers in the tower — both below
in this section and in Section 7 when we make spectral sequence calculations.

In the proof just given, the analogous .n�1/–cube with frames instead of tangent
vectors is not .n�1/–Cartesian, which is why we prove the framed version separately
now.

Theorem 5.14 In the framed setting, the map zpnW �AMfr
n !

�AMfr
n�1

induces a surjec-
tion on �0 .

Proof As �AMfr
n is a subspace of Map.�n; zCnhI3i�O.3/n/, we consider the diagram:

�n //

��

zCnhI3i �O.3/n

��

// zCnhI3i � .S2/n

��

�n�1 // zCn�1hI
3i �O.3/n�1 // zCn�1hI

3i � .S2/n�1

Suppose ˆ 2 �AMfr
n�1

. Let ' be the image of ˆ under �AMfr
n�1
! �AMn�1 , which

essentially composes a map to zCnhI3i�O.3/n with the projection onto zCnhI3i�.S2/n ,
using the first vector in each frame. By Theorem 5.13, there is a  2 �AMn whose image
in �AMn�1 is in the same component as ' . We lift  to a map �n! zCnhI3i�O.3/n�1 ,
using ˆ to define the map to the O.3/n�1 factor.

It remains to lift this map to one additional factor of O.3/. Compatibility with the
cosimplicial structure maps determine the map �n! zCnhI3i �O.3/n on precisely
two faces of �n , where the map to the additional factor of O.3/ must agree with the
map on another factor. Away from these faces, there are no constraints on the map to
the additional factor of O.3/. Thus topologically the problem is to extend this map
from Dn�1 � @Dn to Dn , which is immediate.

5.6 Group structure

Lemma 5.15 The multiplication on zLn obtained by restricting the multiplication
�0 of Definition 4.10 is homotopic to the one coming from the description of zLn

as the n–fold loopspace of the total fiber of an n–cube of configuration spaces in
Proposition 5.11.

This compatibility is key in proving the following. Recall the multiplication � from
Definition 4.8.

Theorem 5.16 �0. �AMfr
n/ is an abelian group with the multiplication � (or �0 )

on �AMfr
n .
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Proof By Theorem 4.9, �0. �AMfr
n/ is an abelian monoid. We prove that this monoid

is a group by induction on n.

The case nD 0 is clear, since �AMfr
0
D�. Suppose n� 1 and �AMfr

n�1
is a group. From

Lemma 5.15, the fiber zLn is a loopspace when n� 1, so that its components form a
group. Moreover, �0. zLn/! �0. �AMn/ is a map of monoids. Thus applying �0 to
the fiber sequence zLn! �AMfr

n !
�AMfr

n�1
gives an exact sequence of monoids. By

Theorem 5.14, �0. �AMfr
n !

�AMfr
n�1

/ is surjective. The lemma now follows from the
elementary fact that, if G!H !K! 0 is an exact sequence of monoids with G

and K groups, then H is a group.

Corollary 5.17 The homotopy fibers of AMfr
n over varying components of AMfr

n�1

are homotopy equivalent.

Proof of Lemma 5.15 Explicitly, zLn.�
n/ is the subspace of maps �n ! zC 0nhI

3i

in �AMn whose projection by forgetting the last point in the configuration yields the
chosen constant map. This implies that such maps are themselves constant on the
tn D tn�1 and tn D tnC1.D 1/ faces of �n . We show that �0 and the multiplication
from the n–fold loopspace structure both agree with another multiplication, which we
now define.

Consider the map �n�1 � I!�n given by

.t1; : : : ; tn�1/� t 7! .t1; : : : ; tn�1; .1� t/tn�1C t/:

By precomposing by this map, we can view an element of zLn.�
n/ as a loop in

Map.�n�1; zC 0nhI
3i/, based at the constant standard map. As we use configuration

spaces modulo translations and scalings, these loops begin and end at the exact same
map. Loop concatenation then defines a multiplication �� on zLn.�

n/, which of
course has homotopy inverses.

We first prove that �� is homotopic to the multiplication �0 of Definition 4.10 by
“homotoping away the mixed terms of �0”. Consider the function r W �n � I! �n

which linearly interpolates between a configuration of times Et D .t1; : : : ; tn/ and the
“constant configuration” at tn , but only until all the ti are contained in Œ�1; 0� or Œ0; 1�.
Let rs denote its restriction to �n� s . This function r is not continuous at points with
tn D 0. But because a product �.'; / of elements ' ,  2 zLn.�

n/ is constant along
tn D 0, the map given by

Et 7!

�
'.rs.Et// if tn � 0;

 .rs.Et// if tn � 0;
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is ultimately continuous. Moreover, for any s the resulting map is again an element of�AMn and in fact zLn.�
n/. More specifically, in the image of the product �0.';  / in

zCnhId i �
Q

i<j .S
d�1/, the vectors labeled by pairs i , j with ti � 0 and tj � 0 are

all of the form .1; 0; 0/, and this will be preserved throughout the homotopy.

Thus the “mixed stacking terms” in the product are not essential and up to homotopy
the product can be “decoupled” to a map which at each fixed time uses only one of '
and  .

The multiplication when s D 1 agrees with �� , as the map �n�1 � I !�n that we
used to define �� sends �n�1 � Œ�1; 0� to ftn � 0g and �n�1 � Œ0; 1� to ftn � 0g.
Thus �0 restricted to zLn.�

n/ is homotopic to �� , which completes the first half of
our proof.

Next, Proposition 5.11 in the case of �AMn implies that zLn.�
n/ is homotopy equivalent

to �n tfib. zC 0
�
hI3i ı G!

n/, where zC 0
�
hI3i ı G!

n is a cube of configuration spaces with
structure maps which forget points. This is established in the proof of Proposition 5.11
through a series of equivalences

tfib. zC 0
�
hI3
i ıGn/'� tfib. zC 0

�
hI3
i ıGPn2.n�1//' � � � '�

i tfib. zC 0
�
hI3
i ıGPn2.n�i//:

The multiplication from the single loopspace structure on � tfib. zC 0
�
hI3i ıGPn2.n�1//

agrees up to homotopy with the others coming from i –fold loopspace structure, includ-
ing i D n. (That is, all the equivalences above, except the first one, are loop maps.) We
will complete the proof by showing that this single loopspace multiplication coincides
with �� .

By definition tfib. zC 0
�
hI3i ı GPn2.n�1// is the total fiber of an .n�1/–cube of fibers,

where each fibration forgets the last point. An element of loops on this total fiber is a
loop of maps ˛W In�1! fib. zC 0nhI

3i ! zC 0
n�1
hI3i/, where

� each map ˛ is constant on the face fti D 1g for every i , and

� on each of the remaining n� 1 faces, the image of ˛ is in the image of the
appropriate doubling map.

On the other hand, an element of zLn.�
n/ is a loop of maps ˛W �n�1! zC 0nhI

3i, where

� the image of each ˛ in zC 0
n�1
hI3i is the standard constant map,

� ˛ is constant on the face ftn�1 D 1g, and

� on each of the remaining n� 1 faces, the image of ˛ is in the image of the
appropriate doubling map.

Algebraic & Geometric Topology, Volume 17 (2017)



Embedding calculus knot invariants are of finite type 1731

Consider a homeomorphism from In�1 to �n�1 which identifies
Sn

iD1ftiD1g�In�1

with ftn�1D 1g ��n�1 . Via this homeomorphism, we get a homeomorphism between
loops on this total fiber and zLn.�

n/ which is compatible with the multiplications on
each.

5.7 Summary

Putting results together the results, the sequences Ln ! AMfr
n ! AMfr

n�1 in the
Goodwillie–Weiss tower approximating classical framed knots satisfy the following:

(1) They are fibration sequences of C1 –spaces (Definition 4.3 and Corollary 5.7).

(2) AMfr
n receives a multiplication-preserving (in fact, C1 –action-preserving) eval-

uation map from the knot space, with connected sum as its multiplication
(Proposition 4.4).

(3) At the level of components, all multiplications are commutative (Corollary 4.13)
and have inverses (Theorem 5.16 and Proposition 4.12). Moreover, AMfr

n !

AMfr
n�1 is surjective on components (Theorem 5.14).

6 The homotopy tower is a finite-type invariant

In this section we show that �0.evn/W �0 Embfr.R;R3/ ! �0 AMfr
n , which we’ve

shown to be an abelian group-valued invariant compatible with connected sum of knots,
is a finite-type invariant of type n� 1. The main tool is a theorem of Habiro [15],
which states that two classical knots share finite-type invariants of degree � n� 1 if
and only if they differ by a series of Cn –moves.

We describe these moves in a way that will facilitate our proof. Let E2 be a copy of
D2� I DD2� Œ�1; 1�, with two properly embedded subarcs which clasp in the center
as in Figure 2. Iteratively form En from En�1 by replacing a regular neighborhood of
the top left arc of En by a copy of E2 . Thus En is D2�I with n properly embedded
arcs. (So technically each En is a pair of spaces.)

Now a basic Cn –move on a knot K is given by finding an embedding e of En into R3

which meets the knot K as the given collection of arcs, and sliding another subarc
of K across the central disk e.D2 � f0g/ of the embedded En as in Figure 3. In this
figure, the almost vertical strand in each left (resp. right) picture is a subarc of the knot
which is isotopic to the front (resp. back) half of the boundary of this central disk.

The basic tool we need is the following theorem, which follows directly from work of
Habiro [15]:
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Figure 2: The basic clasp E2 and the iteratively constructed E4 . The ambient
cylinders are not drawn.

Theorem 6.1 Suppose that � is an additive invariant of (unframed) knots. It is
invariant under Cn –moves if and only if it is a finite-type invariant of degree n� 1.

Proof The Cn moves constructed here are an alternate formulation of clasper surgery,
and in fact are very close to Habiro’s original formulation in his master’s thesis. The fact
that Cn –moves give the same equivalence relation as arbitrary capped clasper surgery is
well known, but we will sketch the argument here. (See eg [21] at the top of page 124.)
The first step is to prove that Cn –moves correspond to “linear claspers”, where all
nodes are directly adjacent to a leaf, while the second step is to show that any capped
tree clasper surgery may be represented by surgery on a sequence of linear claspers.

7!

7!

Figure 3: A C2 –move and a C4 –move
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Step one can be explicitly proven relatively easily by using the duality between claspers
and capped grope cobordism of [7]. One explicitly builds a capped grope cobordism
between the before and after knots in a Cn –move. Moreover every capped grope
cobordism corresponding to a linear tree can be isotoped to a standard picture of a
capped grope embedded in 3–space with a band attached that pierces each cap once.
This standard picture is visibly represents the Cn –move.

Step two follows because the topological IHX relation allows us to reduce to the case of
linear claspers. (See [7, Corollary 31(a)] or [6, Theorem 7].) The point is that surgery
on a capped tree clasper can be replaced by surgery on a sequence of two claspers,
each corresponding to the other two trees in an IHX relation. Any tree type can be
reduced to linear trees by judicious applications of the IHX relation, as illustrated in
the proof of [7, Corollary 31(a)]. So the Cn –moves introduced here are equivalent to
the Cn –moves in [15].

The monoid of knots modulo the equivalence relation of n–equivalence is a finitely
generated abelian group [14; 15]. Theorem 6.17 of [15] states that the natural projection
 n�1 from knots to this abelian group is a universal additive finite-type invariant of
degree n� 1. So if � is an additive invariant of knots which also is invariant under Cn

moves, it induces a homomorphism on the group of knots modulo n–equivalence. It
thus factors as a composition of a degree n� 1 invariant with a group homomorphism.
It is therefore a degree n� 1 invariant itself.

In order to move to the framed case, we need the following lemma. For any integer k ,
let frk be the map from unframed knots to framed knots which adds a k –framing.

Lemma 6.2 Let U1 represent the C1–framed unknot. Let � be an additive framed
knot invariant taking values in an abelian group. Then

� ı frk D k�.U1/C � ı fr0 :

Proof One can push the twisting of the framing onto a standard subarc of the knot to
see that frk.K/D Uk# fr0.K/, where Uk is a k –framed unknot. Then one separates
each of the twists and uses the fact that � is additive.

Corollary 6.3 Suppose that � is an additive invariant of framed knots. If it is invariant
under Cn –moves then it is a finite-type invariant of degree n� 1 for n� 2.

Proof Note that � ı fr0 is an additive invariant of unframed knots, and that it is
invariant under Cn moves, since � is. Therefore � ı fr0 is finite-type of type n� 1 by
Theorem 6.1. On the other hand, by Lemma 6.2, �.K/D fr.K/�.U1/C � ı fr0.K/,
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where fr.K/ is the framing number. The invariant fr is known to be of type 1, so we
have a linear combination of a type-.n�1/ and type-1 invariant, which is therefore of
type n� 1.

This corollary gives us the main tool we need to show that �0.evn/ is of finite type.
We also use deformations of evaluation maps of knots.

Definition 6.4 A � –deformation of a knot K is a map obtained by precomposing the
adjoint of the evaluation map �n�Embfr.R;R3/! CnhI3; @i�O.3/n with a section
� W �n!�n �Embfr.R;R3/ of this trivial bundle which maps into the component of
K in the embedding space.

Theorem 6.5 The map �0.evn/ is invariant under Cn –moves, and therefore is a
type-.n�1/ invariant.

Proof Let K be a framed knot, and let K0 be the knot after the Cn –move has been
applied. Our strategy is to find � –deformations of K and K0 which we can then
show are homotopic. These � –deformations will have the property that none of the
configuration points in evn.�.Et// meet the central disk whenever strictly fewer than n

of those configuration points in evn.�.Et// lie on the subarcs of En . This implies that
the � –deformations are homotopic, since we can just push the arc across the central
disk of En without ever introducing collisions of configuration points. This is by
design for points in �n for which n� 1 points or fewer are inside En . If there are n

points in En , that means there is no point left over to lie in the exterior arc that we are
homotoping.

Both of our � –deformations will isotop only the copies of En in K and K0 . Consider a
nested copy of Ei inside En . It consists of an arc ˛i clasping with a copy of Ei�1 . Let
Di be the (pair of) space(s) given by the intersection of Ei with a small neighborhood
D2 � .�ı; ı/ of the central disk D2 � f0g, where ı is large enough so that there is
a homeomorphism of pairs Ei Š Di . The isotopies of Ei will slide Di along Ei ,
ie they will take Di into D2 � .a; b/ for some .a; b/� Œ�1; 1�. Roughly, .a; b/ will
be a small interval near either �1 or 1 according as which of these endpoints is
closer to the center of mass of the configuration points. More specifically, a set of
configuration points in the arc ˛i will pull Di toward that side of D2 � Œ�1; 1� in a
manner that increases as the minimum distance of these points to the midpoint of the
arc ˛i decreases. Configuration points in the copy of Ei�1 exert a similar tug to their
end of Ei in a manner which increases as they get closer to the midpoints of their arcs.
However the tug of a point is halved in magnitude when you pass to Ei�1 . This has

Algebraic & Geometric Topology, Volume 17 (2017)



Embedding calculus knot invariants are of finite type 1735

Figure 4: An example of the reembedding of E4 resulting from a point
.t1; : : : ; t4/ 2 C4hI; @i , whose image under ev4 is also shown. (The image
of one of the ti is not in E4 .) The two left-hand configuration points drag
their respective arcs toward their ends of their cylinders. The right-hand
configuration point is partially balancing their tug on the central clasp. If the
right-hand point moved toward the middle of its arc, the central clasp of E4

would get tugged close to the right-hand end of the cylinder, although the
other configuration points would still be close to the left-hand end. A point
added to the arc without a point on it would bring E4 closer to the original
embedding as it got closer to the midpoint of the arc.

been set up so that a point at the midpoint of ˛i will always exert a tug that equals or
exceeds the collective tug of Ei�1 .

We also set things up so that if Ei�1 has fewer than i�1 configuration points on it then
configuration points in ˛i can never get more than " away from their end disk D2� 0.
The point is that any configuration points in ˛i will have a greater tug on the clasp
than Ei�1 when one is at the midpoint of ˛i . We just ensure that this tug is strong
enough to pull ˛i "–close to its end disk. (We can come up with a uniform " in this
way since there is a discrete gap between the maximal tug that Ei�1 can exert and the
tug it exerts at less than full occupancy.)

Similarly, arrange that if the arc ˛i has no configuration points then no configuration
points in Ei�1 can get more than " away from D2 � 1 inside Ei .

Ultimately, we have an isotopy of En parametrized by CnhI; @i or, equivalently, a
reembedding of En for each .t1; : : : ; tn/ 2 CnhI; @i. See Figure 4 for an example.

With such a family of reembeddings, we claim that no configuration point ever passes
through the D2�

1
2

disk of En , provided that strictly fewer than n configuration points
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are present inside En . Let the arcs in En be called ˛1 , ˛2; : : : arranged in order of
decreasing depth.

We know that there is some arc ˛i which is not occupied by a configuration point. The
points in Ei�1 stay within " of the end disk and cannot cross the center disk of En .
Thus any points that do cross the center must lie on one of the arcs ˛iC1; : : : ; ˛n .
Now consider such an arc j̨ with j > i . It links with Ej�1 which has less than full
occupancy. Points in j̨ cannot get further than " away from their end disk, and cannot
cross the center disk of En , so we are done!

7 The homotopy spectral sequence for the tower and
finite-type knot theory

In this section we further develop the spectral sequence for the homotopy groups and
in particular the components of the stages in the Goodwillie–Weiss tower for classical
knots and its relationship — both established and conjectural — with finite-type knot
theory. Such analysis for knots in higher-dimensional Euclidean space, which are
connected, has been covered elsewhere, starting in [28]. We see that at the E2 stage
the entries of the spectral sequence are exactly what one would expect if the tower is to
serve as a universal additive finite-type invariant. We in particular see similar structures
to what Goodwillie and Weiss [13, Section 5] originally saw in higher dimensions, but
can also compare that to newer results on the combinatorics of finite-type invariants [5].

A priori the spectral sequence of a totalization tower, or any other tower of fibrations,
is difficult to discern in degree zero. Not only is �0 only a set-valued functor, but
homotopy groups can differ over different components. We saw in Section 5 however
that this tower has additional algebraic structure, which leads to the following:

Theorem 7.1 The spectral sequence for the homotopy groups, and in particular com-
ponents, of AMfr

n as a stage in the Goodwillie–Weiss tower is a spectral sequence of
abelian groups which converges.

Proof By Corollary 5.7 and Theorem 5.16 the fiber sequence

(4) Ln! AMfr
n ! AMfr

n�1

is a fibration sequence of group-like C1 –spaces. It is thus loops on the fibration sequence
defined on their classifying spaces. Its long exact sequence in homotopy groups is
then a degree shift of that for the classifying spaces, starting with �1 of the classifying
spaces being �0 of these spaces. These exact sequences can be spliced in the usual
way to obtain a spectral sequence, which by Theorem 5.16 is one of abelian groups.
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Convergence follows from the fact that this tower is finite when we truncate it at AMfr
n ,

and the groups are finitely generated by Proposition 7.2 below along with the fact that
homotopy groups of spheres are finitely generated.

We can now analyze the spectral sequence in further detail. By Proposition 5.11,
Ln is equivalent to �n of the total fiber of the n–cube C fr

�
hI3; @i ı G!

n . Unraveling
definitions, this is an n–cube whose entries are spaces of configurations of at most n

points, together with at most n frames, where each map in the cube forgets a point and a
frame. We can express this cube as an entrywise product of the cubes S 7!CnnS hI

3; @i

and S 7!O.3/nnS .

The total fiber of the product is the product of the total fibers, and for n� 2 the total
fiber of the cube of powers of O.3/ is a point. Thus it suffices to consider the total
fiber of S 7! CnnS hI

3; @i. Furthermore, we can switch to open configuration spaces,
for which these forgetting maps are well known to be fibrations. We take fibers in one
direction and consider the resulting .n�1/–cube instead. Here we see the entries as I3

with a finite set of points removed, and maps which are inclusions. Up to homotopy,
this is a cube of spaces

W
T S2 indexed by subsets T � n� 1, where each map projects

off a wedge factor. Call this cube P.n� 1/
�W

S2
�
.

By Hilton’s theorem [16], the homotopy groups of a wedge
W

nS2 is a direct sum of
homotopy groups of higher-dimensional spheres. To elaborate, let Ln be the free graded
Lie algebra (working over the integers for the rest of this section) on n odd-graded
generators in degree one. Let Bn;full be a basis for Ln , choosing these consistently as
n varies. For example, we could use a graded version of Hall bases.

Hilton’s theorem states that ��
�W

nS2
�

is a direct sum
L

W 2Bn;full
��S

jW j�1 , where
W is the degree or word length of W . The theorem is functorial if we use bases for free
Lie algebras of different ranks which extend one another, since the Whitehead products
used to define the elements of homotopy are functorial. Because the projection maps
between wedge products of S2 are split, these different bases split off. An immediate
inductive calculation of the homotopy groups of the total fiber (as an iterated fiber of
fibers) shows that what is left for homotopy groups is indexed by a basis Bn of the
submodule of the Ln spanned by brackets in which all generators occur.

Proposition 7.2 The spectral sequence for the homotopy groups (including �0 ) of
AMn has as E1

�p;� the module
L

W 2Bp�1
��S

jW j�1 .

By Lemma 5.15, the abelian group structure in the spectral sequence agrees with the
usual abelian group structure on the homotopy groups of spheres.
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We now focus on total degree zero. Let AI
n be the Z–module of chord diagrams on a

line segment with n chords, modulo the usual four-term relation 4T and the relation SEP,
which sets every separated (ie nonprimitive) diagram to zero. Alternatively, AI

n is the
Z–module of trivalent diagrams, modulo antisymmetry, the IHX relation and SEP. See
[5] for more details.

Theorem 7.3 The group E2
�n;n is isomorphic to AI

n�1
.

Proof By Proposition 7.2 the group E1
�n;n is isomorphic to the submodule of the

free Lie algebra on n� 1 generators generated by .n�1/–fold brackets where each
generator appears exactly once. This module is Lie.n� 1/, the n�1st space in the Lie
operad, which well known to be free of rank .n� 1/!.

Next, we consider the 1-line of the E1 page. Under the identification of Proposition 7.2
these groups decompose into a free summand and two-torsion. The free summands are
indexed by n–fold brackets in the free Lie algebra on n� 1 generators, again in which
all generators occur. The two-torsion summands occur as composites of Sn �

�!Sn�1

with .n�1/–fold Whitehead products from Sn�1! P.n� 1/
�W

S2
�
. This summand

is thus isomorphic to Lie.n� 1/˝Z=2.

The differential d1 must be zero on the torsion summand. We claim that on the free
summand the differential is the integral version of the differential defined in [24]. There,
in Theorem 2.1, through the tower of fibrations

(5) Cn.R
d /! Cn�1.R

d /! � � � ! C0.R
d /

the well-known rational homotopy Lie algebra of the configuration space Cn.Rd / is
calculated as generated by classes bij in degree d � 1. Under the map from the total
fiber of P.n� 1/

�W
S2
�

to Cn.R3/ the basis for the free Lie algebra on generators,
say xi , sends a bracket to a corresponding brackets in the bin . Because the projections
in the tower (5) are split, these brackets are integral generators of free summands as
well. (In fact, one can use the splitting of the tower (5) and the Hilton–Milnor theorem
to express homotopy groups of configuration spaces as a direct sum of homotopy groups
of spheres.) The formulas for the differential given in [24] are given in terms of these
integral generators, so they hold for the spectral sequence over the integers as well.

In [5], the cokernel of the rational d1 is computed to be AI
n�1
˝Q. While the result

is stated rationally (which is where the conjecture was made), all of the calculations
involve only integer coefficients.

At the E2 –level the components of AMn thus look like they should receive a universal
additive finite type-.n�1/ invariant over the integers, which was established for nD 3

as the main result of [4].
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We elaborate our conjecture as follows. Because the map evn from the knot space to
this Goodwillie–Weiss tower, sometimes called the “homotopy tower”, factors the map
to the variant that Volić considers in [32], sometimes called the “rational homology
tower”, we already knew that it encodes every rational finite type- n

2
invariant. By

Theorem 6.5, we now know that any invariant which factors through �0.evn/ is of type
at most n� 1. Standard finite-type theory then gives a map from AI

n�1
to �0.AMn/,

as follows. For a diagram with n� 1 chords, choose a knot K with n� 1 double
points prescribed by the chords; by the well known Vassiliev skein relation, K can be
rewritten as an alternating sum of 2n�1 knots where all the singularities are resolved.
This alternating sum can then be interpreted inside the abelian group �0.AMn/, which
defines the map. Although the choice of K is not determined up to isotopy, any
two choices will have the same type-.n�1/ invariants, and will yield the same image
under �0.evn/. We conjecture that this is an isomorphism at E2 , which collapses
to E1 . This would imply by Theorem 7.3 that all weight systems lift to finite-type
invariants over the integers. That is, it would establish �0.ev1/ as a refinement of the
Kontsevich integral, defined over the integers.

In the framed setting we have some additional low-dimensional calculations. Namely,
AMfr

1 '�SO.3/, implying its components are isomorphic to Z=2. The evaluation map
calculates the parity of the framing, which is indeed the only additive type-1 invariant.
Next, Theorem 3.6 of [4] states that AM2 is contractible. The subcubical diagram
which defines AMfr

2 fibers over that which defines AM2 , with the maps in this fibering
built from the standard fibration of SO.3/ over S2 as the unit tangent bundle. The
fiber is a subcubical model for �S1 ' Z (pulled back from the cosimplicial model
for �S1 via G2 ), and the map from the framed knot space to AMfr

2 classifies framing
number.

More generally, the subcubical diagram which defines AMfr
n fibers over that which

defines AMn with fiber given by a n–subcubical diagram which models �S1 . Because
�0.AMfr

n/ projects surjectively onto �0.AMfr
2/, compatibly with the identification of

this fiber with �S1 , on components this yields a splitting �0.AMfr
n/Š �0.AMn/�Z.

(Note that this would follow immediately from elementary results in Goodwillie–Weiss
calculus if the splitting of spaces of framed knots can be made functorial.) Thus these
Goodwillie–Weiss models reflect the fact that the usual and framed finite-type theories
differ only by the framing number invariant.

One key step towards establishing this conjecture would be the collapse of the spectral
sequence, which is now of a tower of fibrations amenable to tools from algebraic
topology. This is in contrast to Vassiliev’s approach, where the limiting process of
unstable spectral sequences is not well understood. (See [10] for this limiting process in
a piecewise-linear setting.) The Goodwillie–Weiss tower is built from maps of spaces,
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in particular the sequences of (4) and the diagrams which define AMn , which have
been analyzed to great effect for knots in higher dimensions [17].

Another key intermediate step would be the surjectivity on components of evn . This
statement would follow from deep connectivity results of Goodwillie and Klein [12] if
those applied in codimension two, but it may be approachable more directly in this case.

We suspect, however, that direct analysis of the invariants which arise from �0.evn/

will be most fruitful. They have already led to new geometric insight in degrees three
and four [4; 9]. Sinha and Walter’s Hopf invariants [29] can fully be applied by the
calculations of Proposition 7.2. They seem to lead to Goussarov–Polyak–Viro formulae,
which is a promising sign.

Acknowledgments The authors thank the referee for a careful reading of the paper and
useful comments. Budney acknowledges support from NSERC and PIMS. Koytcheff
was supported partially by NSF grant DMS-1004610 and partially by a PIMS post-
doctoral fellowship. He thanks Tom Goodwillie for useful conversations.

References
[1] P Boavida de Brito, M S Weiss, Spaces of smooth embeddings and configuration

categories, preprint (2015) arXiv

[2] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture
Notes in Mathematics 304, Springer, Berlin (1972) MR

[3] R Budney, Little cubes and long knots, Topology 46 (2007) 1–27 MR

[4] R Budney, J Conant, K P Scannell, D Sinha, New perspectives on self-linking, Adv.
Math. 191 (2005) 78–113 MR

[5] J Conant, Homotopy approximations to the space of knots, Feynman diagrams, and a
conjecture of Scannell and Sinha, Amer. J. Math. 130 (2008) 341–357 MR

[6] J Conant, R Schneiderman, P Teichner, Jacobi identities in low-dimensional topol-
ogy, Compos. Math. 143 (2007) 780–810 MR

[7] J Conant, P Teichner, Grope cobordism of classical knots, Topology 43 (2004) 119–
156 MR

[8] W Dwyer, K Hess, Long knots and maps between operads, Geom. Topol. 16 (2012)
919–955 MR

[9] G Flowers, Satanic and Thelemic circles on knots, J. Knot Theory Ramifications 22
(2013) art. id. 1350017 MR

[10] C D Giusti, Plumbers’ knots and unstable Vassiliev theory, PhD thesis, University
of Oregon (2010) MR Available at http://search.proquest.com/docview/
749774372

Algebraic & Geometric Topology, Volume 17 (2017)

http://msp.org/idx/arx/1502.01640
http://dx.doi.org/10.1007/978-3-540-38117-4
http://msp.org/idx/mr/0365573
http://dx.doi.org/10.1016/j.top.2006.09.001
http://msp.org/idx/mr/2288724
http://dx.doi.org/10.1016/j.aim.2004.03.004
http://msp.org/idx/mr/2102844
http://dx.doi.org/10.1353/ajm.2008.0020
http://dx.doi.org/10.1353/ajm.2008.0020
http://msp.org/idx/mr/2405159
http://dx.doi.org/10.1112/S0010437X06002697
http://dx.doi.org/10.1112/S0010437X06002697
http://msp.org/idx/mr/2330447
http://dx.doi.org/10.1016/S0040-9383(03)00031-4
http://msp.org/idx/mr/2030589
http://dx.doi.org/10.2140/gt.2012.16.919
http://msp.org/idx/mr/2928985
http://dx.doi.org/10.1142/S021821651350017X
http://msp.org/idx/mr/3069755
http://msp.org/idx/mr/2941562
http://search.proquest.com/docview/749774372
http://search.proquest.com/docview/749774372


Embedding calculus knot invariants are of finite type 1741

[11] T G Goodwillie, Calculus, II: Analytic functors, K–Theory 5 (1992) 295–332 MR

[12] T G Goodwillie, J R Klein, Multiple disjunction for spaces of Poincaré embeddings, J.
Topol. 1 (2008) 761–803 MR

[13] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory, II,
Geom. Topol. 3 (1999) 103–118 MR

[14] M N Goussarov, Interdependent modifications of links and invariants of finite degree,
Topology 37 (1998) 595–602 MR

[15] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1–83
MR

[16] P J Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30
(1955) 154–172 MR

[17] P Lambrechts, V Turchin, I Volić, The rational homology of spaces of long knots in
codimension > 2 , Geom. Topol. 14 (2010) 2151–2187 MR

[18] J E McClure, J H Smith, A solution of Deligne’s Hochschild cohomology conjecture,
from “Recent progress in homotopy theory” (D M Davis, J Morava, G Nishida, W S
Wilson, N Yagita, editors), Contemp. Math. 293, Amer. Math. Soc., Providence, RI
(2002) 153–193 MR

[19] J E McClure, J H Smith, Multivariable cochain operations and little n–cubes, J. Amer.
Math. Soc. 16 (2003) 681–704 MR

[20] J E McClure, J H Smith, Cosimplicial objects and little n–cubes, I, Amer. J. Math.
126 (2004) 1109–1153 MR

[21] J-B Meilhan, A Yasuhara, On Cn –moves for links, Pacific J. Math. 238 (2008) 119–
143 MR
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Affine Hirsch foliations on 3–manifolds

BIN YU

This paper is devoted to discussing affine Hirsch foliations on 3–manifolds. First,
we prove that up to isotopic leaf-conjugacy, every closed orientable 3–manifold M

admits zero, one or two affine Hirsch foliations. Furthermore, every case is possible.

Then we analyze the 3–manifolds admitting two affine Hirsch foliations (we call
these Hirsch manifolds). On the one hand, we construct Hirsch manifolds by using
exchangeable braided links (we call such Hirsch manifolds DEBL Hirsch manifolds);
on the other hand, we show that every Hirsch manifold virtually is a DEBL Hirsch
manifold.

Finally, we show that for every n 2N , there are only finitely many Hirsch manifolds
with strand number n . Here the strand number of a Hirsch manifold M is a positive
integer defined by using strand numbers of braids.

57M50, 57R32; 37E10, 57M25

1 Introduction

In 1975, Hirsch [8] constructed an analytic 2–foliation on a closed 3–manifold such
that the foliation contains exactly one exceptional minimal set. Let’s briefly recall his
construction here.

The foliation is constructed by starting with a solid torus and removing from the interior
another solid torus which wraps around the original solid torus twice. This gives
us a manifold, foliated by 2–punctured disks, with two transverse tori as boundary
components. We then glue the exterior boundary component to the interior boundary
component to obtain a foliated manifold without boundary. Hirsch chose a gluing map
carefully so that the 2–punctured fibration structure induces a foliation and the induced
foliation is analytic and contains exactly one exceptional minimal set.

There are many variations of Hirsch’s construction in the literature, for instance,
Ghys [7], Biś, Hurder and Shive [4]:

� Ghys [7] considered a variant of Hirsch’s construction: Hirsch’s gluing map is
changed to a map that is “affine” in some sense. In [4], the authors call these foliations
affine Hirsch foliations.

Published: 17 July 2017 DOI: 10.2140/agt.2017.17.1743
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� In [4], the authors generalize Hirsch’s construction in many cases. In the three-
dimensional case, they generalize Hirsch’s construction by starting with a solid torus V

and removing from V a small solid torus V0 so that V0 can be regarded as a tubular
neighborhood of a closed twisted braid in V .

Actually, it is natural to further generalize these foliations by using braids:

� For every n–braid b whose closure is a knot, starting with a solid torus V and
removing from its interior a small solid torus V0 which is a small tubular neighborhood
of the closure of b , we get a compact 3–manifold, foliated by n–punctured disks, with
two boundary components transverse to the n–punctured disk fibration.

� Then we glue the exterior boundary component to the interior boundary component
to obtain a foliated manifold induced by the n–punctured disk fibration.

For simplicity, we still call the new foliations Hirsch foliations, which are the main
objects in this paper. Similarly, if the gluing map is “affine” in some sense, we call the
Hirsch foliation affine. More precise definitions can be found in Section 2.

There are several kinds of discussions about Hirsch foliations in the literature:

� Bis̀, Hurder and Shive [4] generalized Hirsch’s construction to construct analytic
foliations of arbitrary codimension with exotic minimal sets.

� Alvarez and Lessa [1] considered the Teichmüller space of a Hirsch foliation.

� Shive in his thesis [12] considered the following conjugacy question: fixing
two Hirsch foliations .M1;H1/ and .M2;H2/, a Cr leaf-conjugacy diffeomorphism
H W M1!M2 and an integer k 2N , how does one find conditions on the foliations
and the map H which ensure that the map H is CkC�?

In this paper, we also would like to discuss a conjugacy question. In contrast to what
Shive did, we hope to understand the leaf-conjugacy classes of Hirsch foliations. We say
two foliations H1 and H2 on a closed 3–manifold M are isotopically leaf-conjugate
if there exists a homeomorphism hW M !M which maps every leaf of H1 to a leaf
of H2 and is isotopic to the identity map on M . We say that H1 and H2 are the same
up to isotopic leaf-conjugacy if H1 and H2 are isotopically leaf-conjugate. In this
paper, we will restrict ourselves to affine Hirsch foliations. The reasons why we focus
on affine Hirsch foliations are the following:

� A Hirsch foliation always can be easily rebuilt (see Remark 4.4 ) by modifying the
gluing map of an affine Hirsch foliation.

� Affine Hirsch foliations are natural objects in dynamical systems: the projection of
the stable manifolds of a Smale solenoid attractor on the orbit space of the wandering
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set (by a Smale solenoid mapping on a solid torus) is an affine Hirsch foliation. Our
forthcoming paper [16] will focus on this topic.

Now we can naturally ask the following question as the main motivation for this paper.

Question 1.1 For a closed 3–manifold M , can we classify all affine Hirsch foliations
up to isotopic leaf-conjugacy?

Alvarez and Lessa [1, Section 1.3] have discussed this question on the 3–manifolds
constructed by Hirsch. As a first step toward answering Question 1.1, we have:

Theorem 1.2 Let M be a closed orientable 3–manifold. Then M admits 0, 1 or 2

affine Hirsch foliations up to isotopic leaf-conjugacy.

Then one naturally would like to answer:

Question 1.3 (1) Which 3–manifolds admit a Hirsch foliation?

(2) Which 3–manifolds admit two nonisotopically leaf-conjugate affine Hirsch
foliations and what are the relations between these two foliations?

Actually, to the first item of Question 1.3, on the one hand, which manifolds these are
is very clear, ie each one is precisely determined by a braid and a gluing map; on the
other hand, it is not easy to describe all of these manifolds in a straightforward way.
Nevertheless, we would like to give some characterizations of these 3–manifolds.

Proposition 1.4 Let M be a closed orientable 3–manifold which admits an (affine)
Hirsch foliation. Then

(1) M is a toroidal 3–manifold whose JSJ diagram is cyclic;

(2) each JSJ piece is either hyperbolic or a S.0; 2I q=p/–type Seifert manifold where
p and q (0< q < p ) are coprime.

This proposition is a consequence of Lemma 3.7 and Corollary 3.8.

We are more interested in the second item of Question 1.3. We call a 3–manifold M

a Hirsch manifold if M admits two nonisotopically leaf-conjugate Hirsch foliations.
Notice that the 3–manifold constructed by Hirsch in [8] actually is a Hirsch manifold.

Actually, there are many Hirsch manifolds; see Section 4.2 and Proposition 4.3. The
following are the reasons why we are interested in Hirsch manifolds:

� A Hirsch manifold has some nice symmetric structures.

� Hirsch manifolds and their two affine Hirsch foliations will play a central role in a
class of dynamical systems: in [16], the author will use Hirsch manifolds and affine
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Hirsch foliations to discuss a kind of �–stable diffeomorphism on 3–manifolds whose
nonwandering set is the union of a Smale solenoid attractor and a Smale solenoid
repeller.

The exchangeably braided links introduced by Morton [10] will play a crucial role in
describing Hirsch manifolds. An exchangeably braided link is a two-component link
L D K1 [K2 in S3 such that each component is braided relative to the other one.
More details about exchangeably braided links can be found in Section 2.

Motivated by the second item of Question 1.3, we will give two observations to describe
the relationships between exchangeably braided links and Hirsch manifolds. The first
observation is that for every exchangeably braided link LDK1[K2 , one can build
a (unique) Hirsch manifold following a series of standard combinatorial surgeries
(see Section 4). Such a Hirsch manifold is called a Hirsch manifold derived from
an exchangeably braided link (abbreviated as a DEBL Hirsch manifold). The second
observation is that every Hirsch manifold virtually is a DEBL Hirsch manifold. More
precisely:

Theorem 1.5 Let M be a Hirsch manifold. Then there exists a q2 –covering space
of M , denoted by zM , such that zM is a Hirsch manifold derived from an exchangeably
braided link (a DEBL Hirsch manifold). Moreover, q2 can be divided by n2� 1 where
n is the strand number of M .

Here, the strand number of a Hirsch manifold M (see Definition 4.2) is defined to be
the strand number of a braid which can be used to build the Hirsch manifold M .

Hirsch manifolds have the following finiteness property.

Proposition 1.6 For every n 2N , there are only finitely many Hirsch manifolds with
strand number n.

In the final section (Section 5), we will build an example to show:

Proposition 1.7 There exists a 3–manifold which admits a Hirsch foliation but is not
a Hirsch manifold.

Proposition 1.4, Proposition 4.3, the examples in Section 4 and Proposition 1.7 imply
that there exist closed oriented 3–manifolds M0 , M1 and M2 such that

� M0 doesn’t admit any affine Hirsch foliations;
� M1 admits exactly one affine Hirsch foliation;
� M2 is a Hirsch manifold, ie M2 admits two nonisotopically leaf-conjugate

affine Hirsch foliations.

Algebraic & Geometric Topology, Volume 17 (2017)
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fibers in F T in

N

T out
F2

T in

'

N

F1
T out

Figure 1: Constructing a Hirsch foliation

This means that every case in Theorem 1.2 can be realized (in some closed 3–manifold).

We can see that the results in this paper (in particular, Proposition 4.3 and Theorem 1.2)
give a satisfying response to the problem of classifying all Hirsch foliations. They
allow us to reduce classifying all Hirsch foliations to a classical problem in one-
dimensional dynamical systems: classifying degree-n (n� 2) endomorphisms1 on S1

up to conjugacy. More details can be found in Remark 4.4.

2 Preliminaries

Definition 2.1 Let H be a codimension-1 foliation on a closed oriented 3–manifold M.
H is called a Hirsch foliation if there exists a torus T embedded into M such that

(1) the path closure of M �T , denoted by N , is a compact oriented 3–manifold
with two tori T out and T in as its boundary;

(2) HjN is an n–punctured disk fibration on N such that each fiber is transverse
to @N ;

(3) every leaf in H is orientable.

By Definition 2.1, a Hirsch foliation H on a closed oriented 3–manifold M can be
constructed as follows (see Figure 1 for an illustration):

� Choose an n–braid b whose closure is a knot; b also can be used to represent a
diffeomorphism on an n–punctured disk †.

� We denote the mapping torus of .†; b/ by N . Notice that F D f†�f?gg provides
a natural n–punctured disk fibration on N , which provides T in and T out two S1–
fibration structures F1 and F2 , respectively.

1An endomorphism on S1 means a monotonic continuous map on S1 .
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� We suppose that † is oriented. Then † naturally induces an orientation on each
fiber of F1 and F2 . We also give an orientation on N which naturally induces two
orientations on T out and T in , respectively.

� Build an orientation-preserving homeomorphism 'W T out! T in which maps every
fiber of F1 to a fiber of F2 and preserves the corresponding orientations.2 Let M D

N nx � '.x/ (x 2 T outN ). Then the n–punctured disk fibration F on N naturally
induces a Hirsch foliation H on M by ' .

There are some further comments about Hirsch foliations which will be useful:

� N also can be obtained by removing a small solid torus V0 from a solid torus V

where V0 is a small tubular neighborhood of the closure of a braid b .

� There is a natural quotient map P W N ! S1 where S1 is the fiber quotient space
of F .

� ' induces a map '2W S
1! S1 , which is called the projective holonomy map of F

relative to the embedded torus T .

Definition 2.2 Let H be a Hirsch foliation on a closed 3–manifold M . H is called
an affine Hirsch foliation if the projective holonomy map of F relative to an embedded
torus T transverse to H is topologically conjugate to the map zn on S1 for some n2N
satisfying n� 2. Here we can parametrize S1 by S1 D fz 2C W jzj D 1g.

In 1985, Morton [10] introduced exchangeably braided links. An exchangeably braided
link is a two-component link LDK1[K2 which admits a kind of very nice symmetry:
each component is braided relative to the other one, ie K1 is a closed braid zb1 in the
solid torus S3�K2 and K2 is a closed braid zb2 in the solid torus S3�K1 . Such a
braid b1 is called an exchangeable braid. Automatically, every exchangeably braided
link L can be regarded as the union of the closure of an exchangeable braid and an
axis of the closed braid.

Morton [10] showed many nice properties of exchangeably braided links. For instance,
he built some necessary and some sufficient conditions for exchangeability. For in-
stance, he showed that the exchangeable braids belong to a family of braids introduced
by Stallings [13].

Let’s briefly introduce Stallings braids and the relationships between Stallings braids
and exchangeable braids. Certainly, the closure of an exchangeable braid is a trivial

2'W T out ! T in preserves the orientations since the glued manifold M should be orientable. '
preserves the corresponding orientations of the fibers of F1 and F2 since every leaf in the glued foliation H
should be orientable.
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knot. But the converse is not true, ie if the closure of a braid b is a trivial knot, b is
not necessarily an exchangeable braid. Actually, Stallings [13] introduced a family of
braids in which every braid b satisfies the following:

(1) zb is a trivial knot.
(2) There is a disk D spanning zb which intersects the axis at exactly n points.

Morton called these Stallings braids. The set of Stallings braids is a proper subset of the
union of the braids whose closure is a trivial knot. In [10], Morton constructed a braid
! D �3�2�

�1
3
�2�
�1
1
�2�1 2 B4

3 which is a Stallings braid but not an exchangeable
braid. Therefore, the union of the exchangeable braids is a proper subset of the union
of Stallings braids.

Stallings braids have a very nice characterization.4 Under this characterization, it is
easy to obtain the following finiteness property.

Proposition 2.3 For a given n 2N , up to conjugacy, there are finitely many Stallings
braids with strand number n.

The following corollary is an immediate consequence of this proposition (this corollary
exactly is [10, Corollary 1.2]).

Corollary 2.4 (1) Up to conjugacy, there are finitely many exchangeable braids
with strand number n.

(2) Up to isotopy, there are finitely many exchangeably braided links with linking
number n.

3 Proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. We will prove an equivalent form
of the theorem: if a closed 3–manifold M admits a Hirsch foliation F , then up to
isotopic leaf-conjugacy, M admits at most two affine Hirsch foliations.

First, we give more notation and parameters (see Figure 2 as an illustration):

� Assume that i1W T
out!N and i2W T

in!N are the associated embedding maps
and i1;?W H1.T

out/! H1.N / and i2;?W H1.T
in/! H1.N / are the corresponding

induced homomorphisms.

� We denote the oriented simple closed curve †\T out by m1 and denote the oriented
simple closed curves †\ T in by m1

2
; : : : ;mn

2
. Here, the orientations of the simple

closed curves are induced by †. Sometimes we also use m2 to represent m1
2

.

3Here and below, the notation for braids is standard in braid theory (see, for instance, Birman [3]).
4A careful reader can find the characterization in the beginning of [10, Section 2].
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glue together

T out
T in

l1

l2

†

m1
m1

2
m2

2

m3
2

N

Figure 2: Notation used in the proof of Theorem 1.2

� l1 is chosen to be an oriented simple closed curve in T out which intersects m1 at
one point such that .m1; l1/ endows T out with an orientation which is consistent with
the orientation of T out .

� l2 is chosen to be the unique (up to isotopy in T in ) oriented simple closed curve
in T in such that

(1) l2 intersects m2 at one point;

(2) .m2; l2/ endows T in with an orientation which is consistent with the orientation
of T in ;

(3) i2;?.Œl2�/D n � i1;?.Œl1�/.

� If there are two oriented simple closed curves m and l on a torus T 2 which intersect
at one point, we will use pmC ql (p and q are coprime) to represent an oriented
simple closed curve on T 2 which wraps p times around m and q times around l .

The existence and the uniqueness of l2 can be shown by a short computation on homol-
ogy, as follows. If we choose a simple closed curve l 0

2
2 T in so that l 0

2
intersects m2

at one point and the orientation given by .m2; l
0
2
/ is consistent with the orientation

of T in given by N , then i2;?.Œl
0
2
�/ D n � i1;?.Œl1�/C x � i2;?.Œm2�/ for some x 2 Z.

Since i2;?.Œm2�/ is nonzero in H1.N /, there is, up to isotopy, a unique simple closed
curve l2 D l 0

2
� x �m2 in T in such that i2;?.Œl2�/ D n � i1;?.Œl1�/. For simplicity, we

will use Œmj � and Œlj � .j D 1, 2/ to represent the corresponding elements in H1.N /.
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We collect some information about H1.N / as follows, which can be obtained by
Alexander duality.

Lemma 3.1 H1.N / Š Z ˚ Z, and it is generated by Œl1� and Œm2�. Moreover,
Œm1�D nŒm2� and Œl2�D nŒl1�.

The following lemma shows that the set of all punctured disk fibrations on N is quite
limited.

Lemma 3.2 Let F be an s–punctured disk fibration on N . Assume that † is a fiber
of F whose boundary is the union of a simple closed curve c1 2 T out and s pairwise
parallel and pairwise disjoint simple closed curves c1

2
; : : : ; cs

2
in T in (sometimes we

also use c2 to represent c1
2

). Assume that ci DpimiCqili (i D 1, 2) where pi and qi

are coprime. Then there exists an orientation on † which induces an orientation on c1

and an orientation on c2 such that s D n, p1 D p2 D 1 and q1 D n2q2 .

Proof First let us prove that p2 D 1. If we glue a solid torus V to N by a gluing
map  W @V ! T in so that c2 bounds a disk in V , then the glued 3–manifold U is
homeomorphic to a solid torus. On the one hand, it is obvious that H1.U /DhŒl1�iŠZ.
On the other hand, H1.U / D hŒm2�; Œl1� W p2Œm2�C q2Œl2� D p2Œm2�C nq2Œl1� D 0i.
Therefore, p2 D˙1.

Furthermore, we can endow † with an orientation which induces two orientations on
c1 and c2 , respectively, so that p2 D 1. These orientations satisfy the requirements in
the lemma and will be used in the remainder of the proof.

To conclude, we will prove that p1D 1 and sDn. Since the union of c1
2
; : : : ; cs

2
and c1

bound an s–punctured disk †, we have Œc1�D sŒc2�. Equivalently, p1Œm1�C q1Œl1�D

s.Œm2�Cnq2Œl1�/, and so q1D sq2n and p1nD s . We have q1D p1q2n2 . Recall that
p1 and q1 are coprime, and therefore p1 D 1, s D n and q1 D n2q2 .

Remark 3.3 Actually, for every q2 2 Z, there always exists an associated punctured
disk fibration F on N . One can construct it by a standard surgery in low-dimensional
topology (for the surgery, see, for instance, Jaco [9, III.14]).

From now on, c1 , c2 and † are oriented as Lemma 3.2.

Lemma 3.4 Let 'W T out ! T in be a diffeomorphism such that '.m1/ D m2 and
'.l1/D l2Cym2 (y 2Z). If '.c1/ is isotopic to c2 in T in , then c1 is isotopic to m1

in T out and c2 is isotopic to m2 in T in .
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Proof On the one hand,

'?.Œc1�/D '?.Œm1�C q1Œl1�/D '?.Œm1�/C q1'?.Œl1�/

Dm2C q1.l2Cym2/D .1C q1y/m2C q1l2I

on the other hand,
'?.Œc1�/D Œc2�D Œm2�C q2Œl2�:

Therefore, 1C q1y D 1 and q1 D q2 . By Lemma 3.2, q1 D n2q2 and jnj � 2. Then
q1 D q2 D 0. Also notice that p1 D p2 D 1 (Lemma 3.2). The conclusions of the
lemma follow.

Lemma 3.5 If F1 and F2 are two n–punctured disk fibrations on N with two fibers
†1 and †2 , respectively, such that @†1D @†2 is the union of m1 and n simple closed
curves m1

2
; : : : ;mn

2
which are pairwise isotopic, then †1 is isotopic to †2 relative

to @†1 D @†2 in N .

Proof Up to isotopy, we can assume that int.†1/\ int.†2/ is the union of finitely
many pairwise disjoint simple closed curves ˛1; : : : ; ˛m . Here int.†i/ (i D 1, 2) is
defined to be the interior of †i . Moreover, we assume that m� 1 and m is minimal
up to isotopy relative to @†1 D @†2 .

First, we will show that every ˛i (i 2 f1; : : : ;mg) is essential in †2 . Otherwise,
some ˛i bounds a disk D2 in †2 . Notice that †1 is incompressible in N , and the
union of D1 and D2 , denoted by S , is a 2–sphere embedded in N . Since N is an
irreducible 3–manifold, S bounds a 3–ball in N . This means that we can do a surgery
on †2 in a small neighborhood of the 3–ball to obtain †0

2
so that †0

2
is isotopic

to †2 and the number of connected components of †0
2
\†1 is smaller than m. This

contradicts the assumption.

Then there is a nested k–punctured disk Dk
1
�†1 with boundary j̨[.m

s1

2
[� � �[m

sk

2
/

for some j 2 f1; : : : ;mg, where j̨ is an essential simple closed curve in the interior
of †1 . Here the fact that Dk

1
is a nested disk means that the interior of Dk

1
is disjoint

from †2 . We cut N along †1 to obtain a 3–manifold N0 which is homeomorphic
to †1� Œ0; 1�. Because @†1D @†2 and Dk

1
is a nested k–punctured disk, by a simple

argument on N0 , one can obtain that @Dk
1

also bounds a nested k–punctured disk Dk
2

in N0 . We define †3 to be .†1�Dk
1
/[Dk

2
, which is an incompressible k–punctured

disk. Since N0 is homeomorphic to †1 � Œ0; 1�, we have that †3 is isotopic to †1

relative to †1�Dk
1

in N0 . We can push †3 a little into the interior of N0 to †0
3

so that the intersection number of †0
3

and †2 is strictly smaller than the intersection
number of †1 and †2 . This contradicts the minimality.
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Now we deal with the trouble that maybe there are many incompressible tori in a Hirsch
manifold. For this purpose, we should observe more topological information about N .

First, we recall some classical facts about the geometry and topology of surface
bundles. The Nielsen–Thurston theorem (see, for instance, Fathi, Laudenbach and
Poenaru [6]) states that a homeomorphism f on a compact surface † is isotopic to
one of three types according to its dynamics: periodic, reducible and pseudo-Anosov.
The Thurston geometrization theorem for surface bundles (see Thurston [14]) implies
that the Nielsen–Thurston theorem deeply involves the geometric structure of three-
dimensional manifolds as follows: the mapping torus Mf D†� I=.s; 1/� .f .s/; 0/

is an irreducible 3–manifold, and moreover,

(1) Mf is hyperbolic if and only if f is pseudo-Anosov;

(2) Mf is Seifert-fibered if and only if f is periodic;

(3) Mf contains an essential torus (hence we can perform JSJ decomposition) if
and only if f is reducible.

In particular, in the third case, there exists a collection of essential simple closed curves
in † so that the suspension of these curves can be glued up by a map isotopic to f to
give a collection of essential tori and Klein bottles which are the collection of JSJ tori
and Klein bottles. In the following lemma, we formalize some facts about the geometry
and topology of surface bundles which will be very useful.

Lemma 3.6 Let Mf D †� I=.s; 1/ � .f .s/; 0/ be a mapping torus where † is a
compact orientable surface and f is an orientation-preserving homeomorphism on †.
Then

(1) Mf is an irreducible 3–manifold and every JSJ piece of Mf is either hyperbolic
or Seifert;

(2) every JSJ torus T of Mf corresponds to an essential simple closed curve c in †
which is periodic up to isotopy under f .

Now, we come back to observing some topological information about N .

Lemma 3.7 N is an irreducible 3–manifold such that

(1) every JSJ piece of N is either hyperbolic or Seifert;

(2) the JSJ diagram of N is a path;

(3) every Seifert piece is homeomorphic to S.0; 2I q=p/ where p and q (0< q<p )
are coprime and S.0; 2I q=p/ represents the Seifert manifold whose base orbifold
is a 2–punctured sphere with a .q=p/–singularity.
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Proof Recall that N can be defined to be the mapping torus of .†; b/, where † is
an n–punctured compact disk and b is a homeomorphism on †. Then by item (1)
of Lemma 3.6, N is an irreducible 3–manifold such that every JSJ piece is either
hyperbolic or Seifert.

By item (2) of Lemma 3.6, every JSJ torus T of N corresponds to an essential simple
closed curve c in † which is periodic up to isotopy under b . On the one side, notice
that every simple closed curve in † is separating, and so every JSJ torus of N is
separating. This implies that the JSJ diagram of N is a tree. On the other side, @N
is the union of two tori, T out and T in . Combing these two observations, one could
immediately obtain that the JSJ diagram of N is a path.

Let N0 be a Seifert piece of N . Then N0 is homeomorphic to a solid torus minus a
small open tubular neighborhood of a closed braid zb0 . Since N0 is Seifert, b0 should
be a periodic braid. Since every periodic homeomorphism on a disk is conjugate to a
rotation (see Constantin and Kolev [5]), up to conjugacy, b0 should be a twisted braid.
This implies that N0 is homeomorphic to a Seifert manifold S.0; 2I q=p/.

Recall that M DN nx � '.x/ (x 2 T outN ). By Lemma 3.7, the gluing map ' glues
the two JSJ pieces corresponding to the two ends of the JSJ diagram of N (notice that
the two JSJ pieces might be the same), and the two JSJ pieces should belong to one of
the following three cases:

(1) Both of them are hyperbolic.

(2) One of them is hyperbolic and the other one is Seifert.

(3) Both of them are Seifert.

In the first two cases, it is obvious that the glued torus T is a JSJ torus in M . In the
third case, since '.m1/Dm2 , one can easily check that up to isotopy, 'W T out! T in

doesn’t map a regular fiber on T out to a regular fiber on T in induced by the associated
Seifert pieces. Therefore, T is also a JSJ torus in M . Now naturally we have the
following corollary.

Corollary 3.8 Let M be a closed orientable 3–manifold which admits a Hirsch
foliation. Then every incompressible torus T embedded in M is a JSJ torus and the
JSJ diagram of M is cyclic.

Lemma 3.9 Let M be a closed 3–manifold which admits an affine Hirsch foliation.
We have the following conclusions.
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(1) M is the union of n JSJ pieces M1;M2; : : : ;Mn by the gluing maps

'1W @
outM1!@

inM2; : : : ; 'n�1W @
outMn�1!@

inMn and 'nW @
outMn!@

inM1:

Here the union of T out
i and T in

i is the boundary of Mi (i 2 f1; : : : ; ng).

(2) Let fT1; : : : ;Tng be a union of the maximal pairwise disjoint, pairwise nonparallel
JSJ tori of M and H be a Hirsch foliation on M . Then H can be isotopically leaf-
conjugate to H0 so that every Ti (i 2 f1; : : : ; ng) is transverse to H0 .

Proof Item (1) of the lemma is a direct consequence of Corollary 3.8. We only need
to prove item (2).

Without loss of generality, we can suppose that Ti D @outMi (i 2 f1; : : : ; ng) and
H is transverse to Tn . Let N be the union of M1;M2; : : : ;Mn by the gluing maps
'1; : : : ; 'n�1 . The Hirsch foliation H restricted to N is an m–punctured disk fibration,
denoted by F . Since N admits an m–punctured disk fibration F , by Corollary 3.8,
every incompressible torus T in the interior of N is a JSJ torus. Moreover, by
item (2) of Lemma 3.6, T can be isotopic to T 0 relative to @N so that T 0 is transverse
to F . Then by an easy inductive argument, T1; : : : ;Tn�1 in N can be isotopic
to T 0

1
;T 0

2
; : : : ;T 0

n�1
relative to @N , respectively, so that every T 0i is transverse to F .

Equivalently, we can perturb F in N relative to @N to F 0 which is transverse to
every Ti . Then F 0 naturally induces a foliation H0 in M such that

� H0 is isotopically leaf-conjugate to H;
� H0 is transverse to every Ti .

Lemma 3.10 Let M be a closed 3–manifold which admits an affine Hirsch folia-
tion H . Let T1 and T2 be two incompressible tori in M each of which is transverse
to H . We denote the path closure of M �Ti by Ni (i D 1, 2) and denote the restriction
of H to Ni , which is an ni –punctured disk fibration on Ni , by Fi . Then n1 D n2 .

Proof Without loss of generality, we can suppose that T1 and T2 are disjoint and
nonparallel. The path closure of M �T1[T2 is the union of two compact 3–manifolds
W1 and W2 . Actually, N1DW1[T2

W2 and N2DW2[T1
W1 . We denote H restricted

to Wi (i D 1, 2), which is an mi –punctured disk fibration on Wi , by Hi . Notice that
every fiber of F1 is the union of one fiber of H1 and m1 fibers of H2 . Therefore,
every fiber of F1 is an m1 �m2 –punctured disk. Equivalently, n1Dm1 �m2 . Similarly,
n2 Dm2 �m1 . In summary, n1 D n2 .

Definition 3.11 Let M be a closed 3–manifold which admits an affine Hirsch folia-
tion F and T be an incompressible torus which is transverse to F . We denote by N
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the path closure of M �T and denote F restricted to N , which is an n–punctured
disk fibration, by F . We call n the strand number of F .

Remark 3.12 Lemma 3.9 and Lemma 3.10 imply that the strand number of F doesn’t
depend on the choice of T . Furthermore, by Lemma 3.2, the strand number of an
affine Hirsch foliation is invariant under isotopic leaf-conjugacy.

The following lemma explains that the “affine” property of an affine foliation is inde-
pendent of the choices of T and the foliations which are isotopically leaf-conjugate to
the original affine foliation.

Lemma 3.13 Let M be a closed 3–manifold which admits an affine Hirsch folia-
tion H1 . Let H2 be a Hirsch foliation such that

� H2 is isotopically leaf-conjugate to H1 ;

� H2 is transverse to an incompressible torus T in M and N is the path closure
of M �T .

Let F2 be the punctured disk fibration on N and F2 be the circle fibration of H2

restricted to T . Then the projective holonomy map of F relative to an embedded
torus T transverse to H is topologically conjugate to the map zn on S1 where n is
the strand number of H1 and H2 .

To show Lemma 3.13, by item (2) of Lemma 3.9, we only need to prove the following
claim.

Claim 3.14 Let M be a closed 3–manifold which admits an affine Hirsch foliation H .
Let T1 and T2 be two incompressible tori in M . Let Ni (i D 1, 2) be the path closure
of M � Ti , let Fi be the punctured disk fibration on Ni , and let Fi be the circle
fibration of H restricting to Ti . Suppose that '1

2
, the projective holonomy map of F1

relative to T1 , is topologically conjugate to the map zn on S1 . Then '2
2

, the projective
holonomy map of F2 relative to T2 , is also topologically conjugate to the map zn

on S1 .

Proof By Lemma 3.9, we can suppose that T1 and T2 are disjoint and nonparallel. Let
the path closure of M �T1[T2 be the union of two compact 3–manifolds M1 and M2

such that

(1) @Mi D @
outMi [ @

inMi for i D 1, 2;

(2) M is the union of M1 and M2 by the gluing maps '1W @outM1! @inM2 and
'2W @outM2! @inM1 ;

(3) @outM1 and @inM2 correspond to T1 and @outM2 and @inM1 correspond to T2 .
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Under this notation, N1 D M2 ['2
M1 and N2 D M1 ['1

M2 . We denote by
Pi W Ni! S1

i the quotient map of the fiber quotient space of Fi .

We can define an m–covering map � W S1
2
!S1

1
(m2N ) as follows. For every z22S1

2
,

since S1
2

can be regarded as the quotient space of the circle fibration F2 on @outM2 ,
we can regard z2 as a fiber of F2 . Also notice that @outM2 is embedded into N1 , and
so the fiber z2 is in some punctured disk fiber of F1 . Therefore, the quotient map
P1W N1! S1

1
naturally induces a map � W S1

2
! S1

1
. One can easily check that � is

an m–covering map.

We claim that '1
2
ı � D � ı '2

2
, which is the key observation for the proof. Now

let’s check this claim. For every point xi 2Ni (i D 1, 2), we denote by hxiii 2 S1
i

the fiber of Fi where xi lies. Let x2 be a point in @outM2 � N2 and x1 be a
point in @outM1 � N1 such that hx1i1 D �.hx2i2/. Then one can easily show that
P1 ı'

1.x1/D � ıP2 ı'
2.x2/ by following the definitions of Pi and 'i (i D 1, 2)

and � . Note P1ı'
1.x1/D '

1
2
.hx1i1/ and � ıP2ı'

2.x2/D� ı'
2
2
.hx2i2/. By these

equalities, we have '1
2
ı�.hx2i2/D � ı'

2
2
.hx2i2/ for every hx2i2 2 S1

2
.

Since '1
2

is affine, we can endow S1
1

with a suitable metric such that S1
1
D fz 2C W

jzj D 1g and '1
2
D zn for some n 2N (n� 2). Since � W S1

2
! S1

1
is an m–covering

map, we also can endow S1
2

with a metric such that S1
2
D fz 2 C W jzj D 1g and

�.z/D zm for every z 2 S1
2

. Furthermore, by the fact that � ı'2
2
D '1

2
ı� , we have

'2
2
D znW S1

2
! S1

2
.

Proposition 3.15 Let T be an incompressible torus on a closed 3–manifold M . We
denote by N the path closure of M � T , so that @N is the union of T out and T in .
Then up to isotopic leaf-conjugacy, there exists at most one affine Hirsch foliation H
such that H is transverse to T and HjN is a punctured disk fibration such that each
fiber of HjN intersects T out in one connected component.

Proof We assume that H1 and H2 are two affine Hirsch foliations on M which satisfy
the conditions in the proposition. Let F1 and F2 be the punctured disk fibrations
induced on N by H1 and H2 , respectively. Suppose 'W T out! T in is the gluing map
so that M DN nx � '.x/ (x 2 T out ).

F out
i D Fi \T out (i D 1, 2) is an S1–fibration on T out . Similarly, F in

i D Fi \T in is
an S1–fibration on T in . We denote a fiber of F out

1
(resp. F in

1
, F out

2
, F in

2
) by m1 (resp.

m2 , c1 , c2 ). Then, up to isotopy, '.m1/Dm2 and '.c1/D c2 . By Lemma 3.4, c1 is
isotopic to m1 in T out and c2 is isotopic to m2 in T in . Then we can suppose that
H1\T DH2\T , which we denote by F . Here F is a circle fibration on T .

Since each of H1 and H2 is an affine Hirsch foliation, by Lemma 3.13, the projec-
tive holonomy maps '1

2
W S1 ! S1 of H1 and '2

2
W S1 ! S1 of H2 relative to T
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are conjugated by an orientation-preserving homeomorphism gW S1 ! S1 , that is,
'2

2
ıg D g ı'1

2
.

Recall that P W N ! S1 is a natural quotient map where S1 is the fiber quotient space
of F . One can lift g to a homeomorphism GT W T ! T such that

� GT is isotopic to the identity map on T ;
� P ıGT D g ıP .

Since GT is isotopic to the identity map on T , we can extend GT to a homeomorphism
GW M !M which is isotopic to the identity map on M . Assume that H0

1
DG.H1/ is

also an affine Hirsch foliation on N . Let F 0
1

be the punctured disk fibrations induced
by H0

1
on N . By P ıGT D g ıP and '2

2
ıg D g ı '1

2
, one can quickly check that

the boundaries of F 0
1

and F2 are coherent, ie for every fiber †1 � F 0
1

, there exists a
fiber †2 such that @†1D @†2 . Then by Lemma 3.5, one can build a homeomorphism
�W N !N such that

� � is isotopic to the identity map on N relative to @N ;
� �.F 0

1
/D F2 .

� can automatically induce a homeomorphism ˆ on M such that

� ˆ.x/D �.x/ for every x in the interior of N ;
� ˆ is isotopic to the identity map on M ;
� ˆ.H0

1
/DH2 .

In summary, ˆ ıG is a homeomorphism on M such that

� ˆ ıG is isotopic to the identity map on M ;
� ˆ ıG.H1/DH2 .

Now we can finish the proof of Theorem 1.2, ie we can show that up to isotopic leaf-
conjugacy, a closed orientable 3–manifold admits at most two affine Hirsch foliations.

Proof of Theorem 1.2 Let H be an affine Hirsch foliation and T be an incompressible
torus in M . By Lemma 3.9, we can suppose that H is transverse to T . We denote the
path closure of M �T by N and the boundary of N by the union of T out and T in .
Then F DHjN is a punctured disk fibration on N . There are two possibilities for F :

(1) Each leaf of F intersects T out in one connected component.

(2) Each leaf of F intersects T in in one connected component.

In both cases, by Proposition 3.15, up to isotopic leaf-conjugacy, there exists at most
one affine Hirsch foliation. The conclusion of the theorem follows.
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c3
1

glue together

c2
1

†2
c1Dc1

1
Dl1

l2Dc2

†

m1
m1

2
m2

2

m3
2

N

Figure 3: Notation in the case of N associated to the braid �1�
�1
2

4 Hirsch manifolds and exchangeably braided links

In this section, we will focus on the study of Hirsch manifolds, ie the closed 3–manifolds
which admit two nonisotopically leaf-conjugate affine Hirsch foliations. First, we will
introduce or recall some useful notation (see Figure 3 as an illustration5):

H1 an affine Hirsch foliation transverse to T in M

N;T out;T in; ' M DN nx � '.x/, @N D T out[T in, and 'W T out! T in is
the gluing homeomorphism

m1; l1Im2; l2 H1 induces oriented simple closed curves m1, l1 in T out and
m2, l2 in T in which are defined at the beginning of Section 3

c2 p2m2C q2l2 (q2 > 0), an oriented simple closed curve in T in

c1 p1m1C q1l1, an oriented simple closed curve in T out

c1
1
; : : : ; cs

1
s pairwise disjoint oriented simple closed curves which are
parallel to c1 in T out

†2 an oriented punctured disk in N such that @†2 is the union
of c1

1
; : : : ; cs

1
and c2

F2 an oriented punctured disk fibration on N with a fiber †2

'W T out! T in '.m1/Dm2 and '.l1/D l2C km2

5In the case of the figure, c1D c1
1
D l1 . To avoid misunderstanding, we should point out that generally

we can think c1 D c1
1

, but l1 may not be isotopic to c1 .
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4.1 Homology and Hirsch manifolds

In this subsection, for every two nonzero integers m and n, we will use Œm; n� to
represent their greatest positive common divisor.

Lemma 4.1 Suppose F2 also induces an affine Hirsch foliation H2 on M under ' .
Then p1D k=Œn2� 1; k�, q1D .n

2�1/=Œn2�1; k�, p2D n2p1 , q2D q1 , and sD n.

Proof Since @.†2/D c2[c1
1
[� � �[cs

1
, we have Œc2�D sŒc1� in H1.N /. Equivalently,

p2Œm2�C q2Œl2�D sp1Œm1�C sq1Œl1�. Recall that Œm1�D nŒm2� and Œl2�D nŒl1�, and
so .snp1�p2/Œm2�C .nq2� sq1/Œl1�D 0. Recall that H1.N /D hŒm2�; Œl1�i ŠZ˚Z.
Then

(1) p2 D snp1 and nq2 D sq1:

By filling a solid torus to N along T out , we obtain a new compact 3–manifold V so
that c1 bounds a disk in V , and then V is homeomorphic to a solid torus. Following
the gluing surgery, we have

H1.V /D hŒm2�; Œl1� W p1Œm1�C q1Œl1�D 0i

D hŒm2�; Œl1� W np1Œm2�C q1Œl1�D 0i

Š Z:

Then we have

(2) np1 and q1 are coprime.

Define '?W H1.T
out/!H1.T

in/ to be the homomorphism induced by 'W T out!T in .
Notice that F2 also induces an affine Hirsch foliation H2 on M . Then, on the one
hand,

'?.Œc1�/D Œc2�

D p2Œm2�C q2Œl2�;

and on the other hand,

'?.Œc1�/D '?.p1Œm1�C q1Œl1�/

D p1Œm2�C q1.kŒm2�C Œl2�/

D .p1C q1k/Œm2�C q1Œl2�:

Therefore,

(3) p1C q1k D p2 and q1 D q2:

Now, the lemma is a direct consequence of (1), (2), (3) and the fact that pi and qi

(i D 1, 2) are coprime.
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We can use the strand number of a braid which builds an (affine) Hirsch foliation on M

to be an invariant of M . The strand number of M is well defined. Let us explain a
little bit more. Suppose there are two braids which build the same Hirsch manifold M ;
by Lemma 3.10, Definition 3.11 and Lemma 4.1, the strand numbers of the braids are
the same.

Definition 4.2 Let M be a Hirsch manifold. The strand number of a braid b which
builds an (affine) Hirsch foliation on M is called the strand number of M .

Proposition 4.3 Let H1 and H2 be two affine Hirsch foliations defined as above on a
Hirsch manifold M . Then H1 and H2 are not isotopically leaf-conjugate.

Proof Otherwise, we assume that there exists a homeomorphism hW M !M which
maps every leaf of H1 to a leaf of H2 and is isotopic to the identity map on M . One
can check that every leaf on H1 is homeomorphic to either a sphere minus a Cantor
set or a torus minus a Cantor set. We choose a leaf `1 on H1 which is homeomorphic
to a sphere minus a Cantor set. We denote f .`1/, which is a leaf on H2 , by `2 .

Let QW N !M be the natural quotient map. By the construction of H1 , without
loss of generality, we can assume that b1 DQ.m1/DQ.m2/ is an oriented simple
closed curve on `1 . The curve b1 is homotopically nontrivial in M because of the
compressibility of T in M . Since h is isotopic to the identity map on M , we also have
that b2 D h.b1/� `2 is homotopically nontrivial in M . By the construction of H2 ,
b2 is homotopic to �c in `2 for some nonzero integer �. Here c DQ.c1/DQ.c2/

is a simple closed curve in T . We choose an oriented closed curve c� in T which is
homotopic to �c in T . Then b1 and c� are homotopic in M . This means that there
exists an immersion map F W AD S1 � Œ0; 1�!M and an orientation on A such that

� F.S1 � f0g/ D l1 and F.S1 � f1g/ D c� , where S1 � f0g and S1 � f1g are
oriented consistently with the orientation of A;

� F.int.A// is transverse to T , where int.A/ is the interior of A.

Moreover, under some perturbation of F close to @A if necessary, we can assume there
exists a neighborhood of @A, denoted by N.A/, satisfying F�1.T /\N.@A/D @A.
Then F�1.T /\ int.A/ is the union of finitely many pairwise disjoint oriented simple
closed curves s0; s1; : : : ; sm where s0 D S1 � f0g and sm D S1 � f1g. Here the
orientation of si (i 2 f0; 1; : : : ;mg) is consistent with the orientation of s0 in A.
We can assume that m is minimal in the following sense: let F W A ! M be an
immersion which satisfies the conditions above; then F�1.T /\ int.A/ contains at
least m connected components. If some si is inessential in A, then si bounds a
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disk Di in A. This means that F.si/ is homotopically trivial in M . Since F.si/� T

and T is incompressible in M , we have that F.si/ is homotopically trivial in T .
Then by some standard surgery, one can build another F 0W A!M which satisfies the
conditions above and whose intersection circle number is less than m. This contradicts
the assumption for m. Therefore, from now on, we can suppose that each si is essential
in A. Since A is an annulus, s0; s1; : : : ; sm are pairwise parallel in A.

Without loss of generality, we can assume that the union of s0; s1; : : : ; sm cuts A into
m open annuli A1; : : : ;Am such that

� @Ai D si�1[ si for i 2 f1; : : : ;mg;

� Ai \F�1.T /D∅.

Therefore, F.si�1/ and F.si/ are homotopic in N for every i 2 f1; : : : ;mg. We
choose a very small tubular neighborhood of s0 in A. Then F.N.s0// belongs to
one of the two sides of T in M . The two cases for the position of F.N.s0// and the
relations above induce two kinds of “homotopy chain relations”. We denote Q�1.c�/

by c1
�
[ c2

�
where c1

�
� T in and c2

�
� T out . In both cases, we can assume there exist

2m oriented closed curves s1
1
; s1

2
; : : : ; s1

m in T out and s2
0
; s2

1
; : : : ; s2

m�1
in T in such

that

� Q.s1
i /DQ.s2

i /D F.si/ and s2
i D '.s

1
i / for i 2 f1; : : : ;m� 1g;

� s2
i�1

and s1
i are homotopic in N for i 2 f1; : : : ;mg.

In one case, s2
0
D c2

�
and s1

m Dm1 ; in the other case, s2
0
Dm2 and s1

m D c1
�

.

We will get contradictions in both cases by using homology theory. For every oriented
closed curve ˛ in N , we will use Œ˛� to represent the corresponding homological
element in H1.N /. Recall that H1.N /Š Z˚Z, and it is generated by Œl1� and Œm2�

(Lemma 3.1). Moreover, Œl2� D nŒl1� and Œm1� D nŒm2�. These facts will be used
several times in the following.

In the first case, on the one hand, since s2
0
D m2 and s1

1
are homotopic in N , we

have Œm2�D Œs
1
1
� in H1.N /; on the other hand, since s1

1
is an oriented closed curve

in T out , we have Œs1
1
�D r Œm1�C t Œl1� for two integers r and t . These two sides imply

that Œs1
1
�D nr Œm2�C t Œl1�D Œm2� in H1.N /. Notice that n> 1, and so the equality is

impossible. Therefore, we obtain a contradiction.

In the second case, since s2
i�1

and s1
i are homotopic in N (i 2 f1; : : : ;mg), we have

Œs2
i�1
�D Œs1

i �. In particular, Œs2
m�1

�D Œs1
m�D Œm1�. Since s2

m�1
is an oriented closed curve

in T in , we have Œs2
m�1

�D rm�1Œm2�Ctm�1Œl2� for two integers rm�1 and tm�1 . We also
have Œs2

m�1
�D rm�1Œm2�Cntm�1Œl1�DnŒm2�. Therefore, rm�1Dn and tm�1D0. This

implies that s2
m�1

and nm2 are homotopic in T in . Notice that s1
m�1
D'�1.s2

m�1
/ and
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'.m1/Dm2 , and so s1
m�1

and nm1 are homotopic in T out . By some similar arguments,
we have that s1

i and nm�im1 are homotopic in N for every i 2 f1; : : : ;m � 1g.
Also notice that s1

1
, s2

0
and c� are pairwise homotopic, and so nm�1m1 and c� are

homotopic in N . This implies that nm�1Œm1�D Œc��D nm�1C1Œm2�D nmŒm2�. By
Lemma 4.1, Œc��D �Œc2�D �

�
n2.k=Œn2�1; k�/Œm2�C..n

2�1/=Œn2�1; k�/Œl2�
�
. Since

..n2� 1/=Œn2� 1; k�/Œl2�D .n.n
2� 1/=Œn2� 1; k�/Œl1� is nonzero, Œc��¤ nmŒm2�. We

obtain a contradiction. Then the proposition follows.

Remark 4.4 By Definition 2.1 and Definition 2.2, we can see that for a given 3–
manifold M ,

� on the one hand, every Hirsch foliation can be obtained from a unique affine
Hirsch foliation by replacing the projective holonomy map '2 D zn on S1 by
another degree-n endomorphism '0

2
on S1 ;

� on the other hand, for every affine Hirsch foliation and every degree-n endomor-
phism '0

2
on S1 , one can build a Hirsch foliation with the projective holonomy

map '0
2

.

Moreover, by Proposition 4.3 and Theorem 1.2, one can classify all of the affine Hirsch
foliations on a given 3–manifold M .

Therefore, our results reduce the question of classifying all Hirsch foliations to a
classical problem in one-dimensional dynamical systems: classifying degree-n (n� 2)
endomorphisms on S1 up to conjugacy.

4.2 DEBL Hirsch manifolds

To aid understanding of the materials in this subsection, we suggest the reader look
at Figure 4.

Let LDK1[K2 be an exchangeably braided link in S3 . We choose two disjoint small
open tubular neighborhoods V1 and V2 of K1 and K2 , respectively. N is defined
to be S3 � V1 [ V2 . Its boundary @N satisfies @N D T out [ T in with T out D @V1

and T in D @V2 . The linking number of K1 and K2 is denoted by n. K1 is a closed
n–braid zb1 relative to K2 , and K2 is a closed n–braid zb2 relative to K1 .

Up to isotopy, there is a unique way to choose a simple closed curve m1 in T out and
n simple closed curves m1

2
; : : : ;mn

2
in T in such that

� m1
2
; : : : ;mn

2
each bound a disk in V2 and m1 is isotopic to K1 in V1 ;

� m1
2
; : : : ;mn

2
and m1 bound an n–punctured disk †1 in N .
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m1
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in F2

l1
1

l2

l2
1

glue the boundary of N
by 'W T out! T in

N

M

F in
1

F in
2

T in T out

Fout
1

Fout
2

N
N

Figure 4: An example DEBL Hirsch manifold

Similarly, up to isotopy, there is a unique way to choose a simple closed curve l2 in T in

and n simple closed curves l1
1
; : : : ; ln

1
in T out such that

� l1
1
; : : : ; ln

1
each bound a disk in V1 and l2 is isotopic to K2 in V2 ;

� l1
1
; : : : ; ln

1
and l2 bound an n–punctured disk †2 in N .

Moreover, up to isotopy, we can extend †i (i D 1, 2) to an n–punctured disk fibra-
tion Fi on N such that

� Fout
i D Fi \T out and F in

i D Fi \T in are two S1–fibrations on T out and T in ;

� Fout
1

and Fout
2

transversely intersect everywhere on T out ;

� F in
1

and F in
2

transversely intersect everywhere on T in .

We can suppose that the intersection number of m1 and l i
1

is 1 and the intersection
number of mi

2
and l2 , for every i 2 f1; : : : ; ng, is 1. Similar to the beginning of

Section 2 and Section 3, we would like to provide some orientations on these objects:

� We give N an orientation.

� T in and T out are oriented by the orientation of N .
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� We give the leaves of F1 and F2 orientations continuously so that

(1) every fiber of Fout
i and F in

i (iD1, 2) is oriented as induced by the orientation
of F1 and F2 ;

(2) the orientation of T out is consistent with that of .m1; l
1
1
/ and the orientation

of T in is consistent with that of .m1
2
; l2/.

Then one can build an orientation-preserving homeomorphism 'W T out!T in such that

� '.m1/Dm1
2

and '.l1
1
/D l2 ;

� ' maps every fiber of Fout
1

to a fiber of F in
1

;

� ' maps every fiber of Fout
2

to a fiber of F in
2

;

� F1 and F2 induce two affine Hirsch foliations H1 and H2 on M under '
where M DN nx � '.x/ (x 2 T out ).

Notice that to ensure the glued manifold M can admit two Hirsch foliations induced
by F1 and F2 , up to isotopy, we can suppose that '.m1/Dm1

2
and '.l1

1
/D l2 . This

implies that under this restriction, the glued manifold M is unique up to homeomor-
phism. Therefore, we can say that an exchangeably braided link determines a unique
Hirsch manifold. Every Hirsch manifold built in this way is called a Hirsch manifold
derived from an exchangeably braided link (abbreviated as a DEBL Hirsch manifold).

By the second item of Corollary 2.4, we have the following consequence.

Corollary 4.5 For every n 2N , there are only finitely many DEBL Hirsch manifolds
with strand number n.

4.3 A virtual property of Hirsch manifolds

Let M be a Hirsch manifold. By the definition of Hirsch manifold and Lemma 3.9, there
exist two affine Hirsch foliations H1 and H2 on M and a JSJ torus T in M which
satisfy the propositions in Lemma 3.9. Let N be the path closure of M �T . Then:

� N admits two n–punctured disk fibrations F1 and F2 and we can parametrize
some subsets of N as in Section 2.

� The two Hirsch foliations H1 and H2 can be induced, respectively, by F1 and F2

and a gluing map 'W T out! T in .

H1.N /Š Z˚Z, and it is generated by Œm2� and Œl1�. We denote the abelianization
homomorphism from �1.N / to H1.N / by  1 and denote by  2 the quotient ho-
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momorphism from H1.N / to Zq2
such that  2.Œm2�/ D 0 and  2.Œl1�/ D 1. The

kernel of  N D 2 ı 1W �1.N /!Zq2
, which we denote by G , is a normal subgroup

of �1.N /. Here, the definitions and properties of mi and li (i D 1, 2) and q2 can be
found in the beginning of Section 4 and Lemma 4.1.

As a subgroup of �1.N /, the kernel G induces a q2 –covering space of N by a covering
map P W zN !N . We collect some useful properties in the following proposition, which
one can prove by some routine checks. We omit the details here.

Proposition 4.6 The following properties hold for i D 1, 2:

(1) P�1.Fi/D zFi is an n–punctured disk fibration on zN .

(2) Let z†1 be a connected component of P�1.†1/. Then P W z†1 ! †1 is a
homeomorphism satisfying P . zmi/Dmi .

(3) P W zl1! l1 is a q2 –covering map.

(4) Let z†2 be a connected component of P�1.†2/. Then P W z†2 ! †2 is a
homeomorphism satisfying P .zci/D ci .

(5) zci intersects zmi at one point.

Lemma 4.7 There is a homeomorphism z'W zT out! zT in such that

(1) P ı z' D ' ıP W zT out! T in ;

(2) z'. zm1/D zm2 and z'.zc1/D zc2 .

Proof By Proposition 4.6, zmi \ zci (i D 1, 2) is one point, which we will denote
by zxi . Denoting P .zxi/ by xi , we have '.x1/D x2 ,

.' ıP /?.�1. zT
out; zx1//D h'?.Œm1�/; '?.Œc1�/i D hŒm2�; Œc2�iC �1.T

in;x2/;

and
P?.�1. zT

in; zx2//D hŒm2�; Œc2�iC �1.T
in;x2/:

Then, by the classical homotopy lifting theorem, we can construct a unique map
z'W zT out! zT in such that

(1) z'.zx1/D zx2 and z'. zm1/D zm2 ;

(2) P ı z' D ' ıP W zT out! T in .

Now it is routine to check that z' is a homeomorphism.

We denote zN n y � z'.y/ (y 2 zT out ) by zM . The corresponding quotient maps are
QW zN ! zM and qW N !M .
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Lemma 4.8 There is a unique map � W zM !M so that � ıQ.y/ D q ıP .y/ for
every y 2 zN . Furthermore, � W zM !M is a q2 –covering map.

Proof For every zx 2 zM , we can define �.zx/ as follows. Since QW zN ! zM is
surjective, there exists zy 2 zN so that zx DQ.zy/. Define �.zx/D q ıP .zy/. The first
item of Lemma 4.7 ensures that � is well defined. � is unique because it has no
freedom in zM � zT where zT D ��1.T /.

Finally, since P W zN !N is a q2 –covering map, � W zM !M is also a q2 –covering
map.

Lemma 4.9 zM is a Hirsch manifold which admits two affine Hirsch foliations zH1

and zH2 such that zHi (i D 1, 2) is induced by Hi under � , ie � maps each leaf of zHi

to a leaf of Hi .

Proof Assume that Fout
i D Fi \T out and F in

i D Fi \T in are two S1–fibrations on
T out and T in , respectively. Since Fi induces Hi on M under the gluing homeomor-
phism 'W T out! T in , we know ' maps every fiber of Fout

i to a fiber of F in
i .

Suppose zFout
i and zF in

i are the lifted fibrations of Fout
i and F in

i on zT out and zT in under
the covering map P , respectively. z'W zT out! zT in is the lifted map of 'W T out! T in ,
ie P ı z'D ' ıP W zT out!T in . Therefore, z' maps every fiber of zF out

i to a fiber of zF in
i .

Then zFi induces a Hirsch foliation zHi on zM .

To finish the proof, now we only need to check that zHi is an affine Hirsch foliation.
This actually is a consequence of the following facts:
� z' is the lifted map of ' .
� Hi is an affine Hirsch foliation.
� Every expanding map on S1 is topologically conjugate to an affine map on S1

with the same degree.

Lemma 4.10 zM is a DEBL Hirsch manifold.

Proof We glue two solid tori zV1 and zV2 to zN along its boundary zT in[ zT out by the
gluing maps �1W @ zV1!

zT in and �2W @ zV2!
zT out , respectively, so that zm2 bounds a disk

in zV2 and zc1 bounds a disk in zV1 . Then the glued manifold is homeomorphic to S3 .

Let Ki (i D 1, 2) be a simple closed curve in zVi such that zVi is a tubular neighborhood
of Ki .

Since zF2 is a punctured disk fibration structure on zN and zm2 bounds a disk in zV2 , the
union of zV2 and zN , denoted by zU2 , is also homeomorphic to a solid torus. Obviously,
K2 is a closed braid in zU2 . Since S3 D zV2[

zN [ zV2 , automatically, K2 is a closed
braid relative to K1 , ie K2 is a closed braid in S3�K1 .
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Similarly, one can show that K1 is a closed braid relative to K2 . Therefore, L D

K1[K2 is an exchangeably braided link. Now it is routine to build the Hirsch manifold
derived from L and check that the Hirsch manifold is homeomorphic to zM .

Proof of Theorem 1.5 The first part of Theorem 1.5 is a direct consequence of
Lemma 4.8 and Lemma 4.10. Moreover, by Lemma 4.1, q2 can be divided by n2�1.

4.4 Finiteness of Hirsch manifolds with strand number n

We will use the following theorem of Wang [15].

Theorem 4.11 Let M be a closed irreducible 3–manifold which is nonorientable or
Seifert fibered or has a nontrivial torus decomposition (ie there is a JSJ torus). Then M

covers infinitely many nonhomeomorphic 3–manifolds if and only if M is an orientable
Seifert fiber space with nonzero Euler number.

Proof of Proposition 1.6 On the one hand, by Proposition 1.4, an n–strand Hirsch
manifold is an irreducible orientable closed 3–manifold with some JSJ tori. By
Theorem 4.11, for a given DEBL Hirsch manifold zM , there are only finitely many
Hirsch manifolds with zM as a finite covering space.

On the other hand, Corollary 2.4 says that for a positive integer n, up to isotopy, there
are only finitely many exchangeably braided links with strand number n. Recall that
an exchangeably braided link determines a DEBL Hirsch manifold. Therefore, there
are only finitely many DEBL Hirsch manifolds with strand number n.

Let M be a Hirsch manifold with strand number n. Then, by Theorem 1.5, zM ,
a finite covering space of M , is a DEBL Hirsch manifold with strand number n.
Combining the two sides above, up to homeomorphism, there are only finitely many
Hirsch manifolds with strand number n.

5 Proof of Proposition 1.7

In this section, we will construct an example to prove Proposition 1.7, which says
there exists a 3–manifold which admits an affine Hirsch foliation but is not a Hirsch
manifold. We will use the following inequality by Bennequin [2]:

Lemma 5.1 (Bennequin inequality) Let L be a nonseparating link of � components,
presented by a closed braid with l strands and cC (c� ) positive (negative) crossings.
Then g.L/, the genus of L, is bounded as follows:

jcC�c�j�l��

2
C 1� g.L/�

jcCCc�j�l��

2
C 1:
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Proof of Proposition 1.7 Let b D .�1�
�1
2
/2 be a 3–strand braid. Now we can

follow the beginning of Section 2 to build an affine Hirsch foliation H on a closed
3–manifold M . We briefly recall the construction here:

� b also can be used to represent a diffeomorphism on a 3–punctured disk †, and
we denote the mapping torus of .†; b/ by N .

� F D f†� f?gg provides a 3–punctured disk fibration on N , which provides
T in and T out two S1–fibration structures F1 and F2 , respectively.

� After carefully choosing orientations on the objects above, we can build an
orientation-preserving homeomorphism 'W T out! T in which maps every fiber
of F1 to a fiber of F2 and preserves the corresponding orientations.

� Let M D N n x � '.x/ (x 2 T outN ). Then F naturally induces a Hirsch
foliation H on M by ' . If we choose ' suitably, F is an affine Hirsch
foliation.

Now we assume that M is a Hirsch manifold. Following the arguments in Section 4.3,
there exists some integer p so that the braid bq2�p is an exchangeable braid where �
is a 3–strand full-twist braid. This means that the knot K D Abq2�p , the closed braid
of bq2�p , is a trivial knot. In the following, we will show that g.K/, the genus of K ,
is nonzero. Then K isn’t a trivial knot. We obtain a contradiction. Then M isn’t a
Hirsch manifold.

Using the notation of Lemma 5.1 in our case, LDK D Abq2�p , l D 3, �D 1 and
jcC � c�j D 6jpj. By Lemma 5.1, g.K/ � 3jpj � 1. Therefore, if g.K/ D 0, then
pD 0. In the case pD 0, we have K Debq2 . By Lemma 4.1, q2 is nonzero. Actually,
it is well known that in this case, ebq2 is a genus-1 fiber knot (see, for instance, Rolfsen
[11, Chapter 10]). Therefore, K isn’t a trivial knot.
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Equivariant corks

DAVE AUCKLY

HEE JUNG KIM

PAUL MELVIN

DANIEL RUBERMAN

For any finite subgroup G of SO.4/ , we construct a contractible 4–manifold C with
a G –action on its boundary that can be embedded in a closed 4–manifold so that
cutting C out and regluing using distinct elements of G will always yield distinct
smooth 4–manifolds. If we simply require G to be a subgroup of the mapping class
group of the boundary, then such examples exist for groups that cannot act on any
homology sphere.

57M99; 57R55

0 Introduction

A cork is a smooth, compact, contractible 4–manifold with an involution on its boundary
that does not extend to a diffeomorphism of the full manifold. Akbulut [1] discovered
this phenomenon for the classical Mazur manifold W [18] with the boundary invo-
lution � shown in Figure 1, proving that W embeds in a 4–manifold X so that the
result of removing W and regluing it using � is not diffeomorphic to X .

This operation is called cork twisting, and it is now known (see Curtis, Freedman,
Hsiang and Stong [9] and Matveyev [17]) that any two smooth, closed, simply connected
4–manifolds that are homeomorphic differ by a single cork twist. It is not known
whether the same cork can be used in all situations, ie whether there exists a universal
cork; it is indeed conceivable, though unlikely, that the Mazur cork is universal.

The property that the cork twist � is an involution is interesting, indeed inherent in
most constructions of corks to date, but it is not clear that it is fundamental to the

0
0

�

Figure 1: The Mazur cork
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relation between cork twists and other smooth 4–manifold constructions. It is therefore
natural to ask whether cutting and gluing by higher order diffeomorphisms of the
boundary of a contractible submanifold of a 4–manifold can change the underlying
smooth structure. In this note, we give an affirmative answer, producing examples
of embeddings of contractible 4–manifolds with twists of arbitrary finite order that
alter the ambient smooth structure; it follows that none of those twists extend over the
contractible manifold. A different construction of such nonextending twists was given
in a recent preprint of Tange [19].

In fact we show more: for suitable finite groups G , there exist contractible 4–manifolds
with effective G–actions on the boundary that embed in closed 4–manifolds so that
twists corresponding to distinct elements of G yield distinct smooth structures. We
call such a gadget an equivariant cork, or G–cork if we want to specify the group.

Theorem A There exist G–corks for any finite subgroup G of SO.4/.

If the action of G on S3 is free, then the action of G on the boundary of the cork
constructed in the theorem is free; this seems to be a new phenomenon, even for
G DZ2 . The notion of an equivariant cork can be extended to a weak equivariant cork
where the relevant group is a subgroup of the mapping class group of the boundary; see
the end of Section 1 for details. In the final section of the paper, we give an example of
a weak G–cork in this sense, where G is a group that does not act effectively on any
homology 3–sphere.

Theorem B There are groups G that do not act effectively on any homology sphere,
but for which there exist weak equivariant G–corks.

The boundaries of the corks constructed in the proof of Theorem A are reducible. In
a sequel we will prove the following theorem, using rather different techniques from
those in the current paper.

Theorem C Given an oriented 3–manifold Y with an effective, orientation-preserving,
smooth action of a finite group G , there is an equivariant invertible ZŒ�1.Y /�–homology
cobordism from it to a hyperbolic manifold.

As in Akbulut and Ruberman [2], this immediately implies:

Corollary D For any given finite subgroup G of SO.4/, there exists a G–cork with
hyperbolic boundary.

Some experimentation with SnapPy [8] suggests that the simplest corks in Tange’s
paper [19] have hyperbolic boundaries, but a proof in general would require different
techniques.

Algebraic & Geometric Topology, Volume 17 (2017)
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1 Preliminaries and statement of results

In this section, we lay the groundwork for our proof of the existence of equivariant
corks. Most of the ideas discussed here are well known, but since we will use “corks”
in a broader sense than usual, and employ cork twists on multiple copies of boundary
sums of embedded copies of the Mazur cork, we must give careful definitions of the
relevant notions.

Corks and boundary equivalence

Extending the usual terminology, a cork will refer to any pair .C;g/ where C is
a smooth, compact, contractible 4–manifold, and g is an arbitrary diffeomorphism
of @C . In particular, g need not be an involution, nor even of finite order, and C need
not be Stein (as is often assumed; see Akbulut and Yasui [3]). But if g is a special
involution (meaning orientation preserving with nonempty fixed point set, as with the
Mazur twist � ) then we also refer to .C;g/ as a special 2–cork.

In general, we call a cork .C;g/ trivial if g extends to a diffeomorphism of C (it
always extends to a homeomorphism by Freedman [11]) and nontrivial otherwise; with
this convention, .B4;g/ is a trivial cork for any g , whereas the Mazur cork .W ; �/ is
nontrivial. These notions induce an equivalence relation on corks associated with the
same underlying manifold: .C;g/ and .C; h/ are boundary equivalent if and only if
.C;g�1h/ is trivial, ie g�1h extends over C .

Boundary sums of corks

The boundary sum operation \ is well defined on boundary equivalence classes of
corks, as follows: Given corks .C1;g1/ and .C2;g2/, choose (for i D 1; 2) diffeo-
morphisms hi isotopic (and thus boundary equivalent) to gi that are the identity on
3–balls Bi � @Ci . Form C1 \C2 by identifying the Ci along the Bi so that h1 and h2

glue together to form h1 ] h2 . The result

.C1;g1/ \ .C2;g2/ WD .C1 \C2;g1 ]g2/

Algebraic & Geometric Topology, Volume 17 (2017)
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may depend on the choices of hi and Bi , but its boundary equivalence class does not.
Note however that \ is well defined for special 2–corks without imposing boundary
equivalence; just choose the Bi to be gi –invariant 3–balls centered at fixed points, and
then g1 ]g2 is a well-defined involution, independent of the choices up to equivariant
diffeomorphism.

Cork embeddings

A cork embedding of .C;g/ in a 4–manifold X is a smooth embedding eW C ,!X

together with the induced map xg D ege�1 on the boundary of its image xC D e.C /.
The associated cork twist X e

g is obtained by removing xC from X and regluing using xg :

X e
g D .X � int xC /[xg xC :

The embedding is trivial if X e
g is diffeomorphic to X , and it is otherwise nontrivial or

effective; note that this definition depends on both e and g . Thus the nontriviality of
.C;g/ can be verified by producing a nontrivial embedding, rather than trying to show
directly that g does not extend smoothly across C .

Note that the definition of boundary equivalence of cork maps is compatible with the
use of such maps in changing smooth structures, because the result of twisting by g is
the same as the result of twisting by h when g�1h extends across C . Conversely, given
any nontrivial cork .C;g/, Akbulut and Ruberman [2] construct a pair of absolutely
exotic structures on a contractible manifold related by twisting .C;g/. It follows that
for any two boundary inequivalent diffeomorphisms g and h, there is a 4–manifold X

and an embedding eW C ,!X such that X e
g is not diffeomorphic to X e

h
. Akbulut has

made a similar observation.

Boundary sums of cork embeddings

Given any pair of embeddings ei W Ci ,!X (for i D 1; 2) of corks .Ci ;gi/ with disjoint
images xCi D ei.Ci/ and induced boundary maps xgi W @ xCi ! @ xCi , both twists can be
performed simultaneously to produce the 4–manifold

X e1e2
g1g2
D .X � int. xC1 t

xC2//[xg1txg2
. xC1 t

xC2/:

Alternatively, xC1 and xC2 can be joined by an embedded 1–handle in X , the thickening
of an arc ˛ in X � int. xC1 t

xC2/ from xC1 to xC2 . The result is an embedding e1 \ e2

of the single cork .C1;g1/ \ .C2;g2/D .C1 \C2;g1 ]g2/ (where, as noted above, the
map g1 ]g2 is only defined up to boundary equivalence unless the gi are special
involutions) whose cork twist is independent of ˛ . Indeed, it is readily seen that the
single cork twist X

e1 \ e2

g1 ]g2
is diffeomorphic to the pair of cork twists X

e1e2
g1g2

.

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 2: Trivial embedding of the Mazur cork in S4

This process can be iterated to construct the multiple cork twist X
e1���en
g1���gn

of a family
e1; : : : ; en of disjoint embeddings of corks .C1;g1/; : : : ; .Cn;gn/ in X , or a single
cork twist X

e1 \ ��� \ en

g1 ] ��� ]gn
of an embedding of the boundary sum of the .Ci ;gi/. Both

twists produce the same smooth 4–manifold. This construction will play a key role in
what follows.

Trivial cork embeddings

Most explicit corks .C;g/ in the literature can be shown to have trivial embeddings
in the 4–ball, and thus in every 4–manifold. In particular, it suffices to prove that the
double C [id�C and twisted double C [g�C are both diffeomorphic to the 4–sphere,
often accomplished by an elementary Kirby calculus argument; cf Akbulut and Yasui
[5, Section 2.6]. This is illustrated for the Mazur cork .W ; �/ in Figure 2, where the
squiggly and straight arrows represent handle slides and cancellations, respectively,
and as usual, the 3 and 4–handles are not drawn.

Equivariant corks

If G is a subgroup of the diffeomorphism group of @C with .C;g/ nontrivial for all
g ¤ 1 in G , then .C;G/ is called a G–cork. For cyclic G of finite order n, we refer
to the corks .C;g/ for generators g of G as n–corks. All explicit corks that have
appeared in the literature prior to [19] are special 2–corks; recently, Gompf [13; 14]
has shown how to construct Z–corks.

There is a more general notion, which we call a weakly equivariant cork, in which
the group G is a subgroup of the mapping class group of the boundary, ie the group
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of isotopy classes of diffeomorphisms. In this situation, it is more appropriate to use
the relation of isotopy, rather than boundary equivalence, because the subgroup of
diffeomorphisms of the boundary that extend across the cork need not be normal. Hence
the set of boundary equivalent diffeomorphisms does not in general form a group in any
natural way. In the last section, we give a construction of weakly equivariant corks for
many groups G that are not subgroups of SO.4/, and in fact that do not act effectively
on any homology 3–sphere.

In general, if C is a cork with an effective G–action on @C , then an embedding
eW C ,! X will be said to be G–effective if X e

g1
and X e

g2
are smoothly distinct for

any g1 ¤ g2 in G . Thus the existence of such embeddings shows that .C;G/ is a
G–cork. In this case, one has a G–action on the set of 4–manifolds fX e

g j g 2Gg in
the sense that .X e

g1
/xeg2
DX e

g1g2
for any two elements g1;g2 2G , where xeW C !X e

g1

is the obvious embedding induced by e .

For the reader’s convenience, we repeat the statement of our main result:

Theorem A There exist G–corks for any finite subgroup G of SO.4/.

Addenda (1) The proof will show that if jGj D n, then the boundary sum \n2.W ; �/

of n2 copies of the Mazur cork can be given a G–cork structure that has G–effective
embeddings in any blown-up elliptic surface E.2k/ # mCP2 for k;m� n.n� 1/=2.

(2) More generally, if G is any finite group that acts effectively on the boundary of a
compact, contractible submanifold of R4 , then essentially the same proof shows that
there is a G–cork with an effective embedding into a closed manifold; Theorem C can
then be used to construct such corks with hyperbolic boundary.

2 Construction of equivariant corks

Our proof of Theorem A relies on the existence of certain embeddings ei of the Mazur
cork .W ; �/ in the blown-up Kummer surface

E WDE.2/ # CP2:

Here E.2/ is the minimal elliptic surface of Euler characteristic 24 (or Kummer surface;
see for example [15]). The key input from Seiberg–Witten theory is the count of the
number of basic classes in the associated cork twists Eei

� .

Definition 2.1 Let X be a smooth, closed, simply connected 4–manifold. If bC
2
.X /

is odd and greater than 1, then N .X / will denote the number of Seiberg–Witten basic
classes of X , and otherwise N .X /D 0. For example, N .E/D 2 (the basic classes
are ˙CP1 ).
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Akbulut [1] established the nontriviality of .W ; �/ by constructing a nontrivial embed-
ding e0W W ,! E with reducible cork twist Ee0

� Š 3CP2 # 20CP2 , so in particular,
N .Ee0

� /D 0. It was later observed [7] that such an embedding could be chosen with
image in the complement E� of a nucleus in E; see [12].

More recent work of Akbulut and Yasui [4] shows that .W ; �/ has another nontrivial
embedding e2W W ,! E� with N .Ee2

� /¤ 0. The nontriviality of e2 was proved by
showing that Ee2

� results from a rational blow-down of E [10], leaving N unchanged,
followed by an honest blow-up, doubling N , so N .Ee2

� / D 4. (In particular, this
follows from Theorem 4.1 for p D 2, Proposition 5.1 for n D 1 and p1 D 2, and
Lemma 6.6 in [4].)

As noted in the last section, .W ; �/ also embeds trivially into any 4–manifold. Choose
one such embedding e1W W ,!E� . Thus e0 , e1 and e2 are numbered so that N .Eei

� /D

iN .E/. Only e1 and e2 are needed to prove the following key result, which is a
strengthening of an analogous noncompact embedding theorem of Akbulut and Yasui
[5, Theorem 1.5].

Lemma 2.2 For each n> 0, there exists a 2–cork .S; �/ that has n disjoint embed-
dings s1; : : : ; sn in some closed 4–manifold X , with distinct cork twists

X s1
� ŠX;X s2

� ; : : : ;X
sn
� :

For example, the boundary sum .S; �/ D \n.W ; �/ has n such embeddings in the
blown-up elliptic surface X DE.2k/ # mCP2 for any k;m� n.n� 1/=2.

Proof It suffices to prove the last statement. First consider the case k DmD n2 , and
view X DE.2n2/ # n2CP2 as the fiber sum of n2 copies of the blown-up Kummer
surface ED E.2/ # CP2 along regular torus fibers in a chosen nucleus. Denote the
copies of E by Eij for 1 � i; j � n. Choose an embedding eij of .W ; �/ in each
summand E�

ij , with eij D e1 if i � j and eij D e2 if i > j . For 1� i � n, let si be
the boundary sum ei1 \ � � � \ ein of all the embeddings in the “i th row”. Then the si

are distinct embeddings of .S; �/D \n.W ; �/ and can be chosen with disjoint images
by choosing the 1–handles that join the summands to be disjoint. Furthermore, si has
i � 1 nontrivial summands and n� i C 1 trivial ones, and so N .X si

� /D 2i�1N .X /.
Since N .X /¤ 0, the X

si
� are pairwise distinct.

Of course, one can be more efficient by using only the “nontrivial” copies of E, ie Eij

for i > j , and putting all the trivial embeddings of the Mazur cork inside one of these.
This handles the smallest case k DmD n.n� 1/=2, and the fiber sum and blow-up
formulas for Seiberg–Witten invariants show that k and m can be increased at will.
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Proof of Theorem A

Given a finite subgroup G of SO.4/ of order n, apply Lemma 2.2 to produce n disjoint
embeddings sg of a cork .S; �/ in a closed 4–manifold X , indexed by the elements
of G , with distinct cork twists X

sg

� . Using these cork embeddings, we construct a
G–cork .T ;G/ and a G–effective embedding t W T !X , as follows.

The underlying contractible manifold T is the boundary sum \nS of n copies of S .
To define the G action on @T , it is convenient to represent T as a cork twist on a
diffeomorphic copy T of itself that supports a natural G–action, namely the equivariant
boundary sum

T D B4 \ .G �S/

taken along a principal orbit fbg j g 2 Gg of the linear G action on @B4 , where G

acts on G �S by left multiplication on the first factor and trivially on the second. In
other words, T is obtained from a disjoint union of the 4–ball and n copies Sg of S
(indexed by g 2 G ) by adding 1–handles joining bg 2 @B

4 to xg 2 @Sg , where the
xg 2 @Sg correspond to a chosen point x 2 @S . The G action is linear on B4 , and
permutes the copies of Sg by left multiplication on the subscript (since the boundary
sum is along a principal orbit).

Now the embeddings sg of S can be used to define an embedding

xt W T ,!X

by identifying Sg with the image sg.S/ in X , B4 with a small 4–ball B disjoint
from the Sg , and the 1–handles joining B4 to the Sg with embedded 1–handles.

To obtain T , we twist a shrunken copy of the cork 1�S in T . To make this precise,
recall that T contains n copies Sg D g � S of S , the images of the embeddings
egW S ,! T sending x to .g;x/. Consider an embedding sW S ,! S that shrinks S
inside itself; that is, s is the identity off of a boundary collar @S � Œ0; 1/, and maps
.x; t/ to .x; .t C 1/=2/ inside the collar. Then e D e1 ı s embeds S onto a shrunken
copy of S1 . We define T to be the cork twist associated with this embedding:

T D T e
� :

Since the @T D @T , there is still a G–action on @T , and this defines our cork .T ;G/.
Note that T is actually diffeomorphic to T , and thus to \nS , since \ is a well defined
operation, but for our purposes it is most convenient to describe T as a cork twist
of T .

Now observe that the embedding xt W T ,!X above induces an embedding

t W T ,!X s1
�
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since T D T e
� . Furthermore, twisting this embedding of T by an element g 2G just

transfers the cork twist from S1 to Sg ; that is,

.X s1
� /

t
g DX

sg

� :

Since the smooth 4–manifolds X
sg

� are distinct for g 2 G , this shows that t is a
G–effective embedding, and so .T ;G/ is a G–cork. This completes the proof of
Theorem A.

Remark Even in the case G D Z2 this result can give something new. Applying the
construction from Theorem A to the free Z2 action on S3 extended across B4 we get
a 2–cork with free action on the boundary.

Proof of the addenda to Theorem A

The first addendum to the theorem follows from this proof by using .S; �/D \n.W ; �/

and X DE.2k/ # mCP2 , as provided by the lemma. Note that in the proof, X
s1
� is

diffeomorphic to X since s1 is a trivial cork embedding, so t can be viewed as an
embedding of \n2W ,!X .

With regard to the second addendum, if a finite group G acts on a compact contractible
submanifold of R4 , we may repeat the argument replacing B4 by the contractible
submanifold to produce a G–cork T . To build a G–cork with hyperbolic boundary,
let U be an invertible cobordism from @T to a hyperbolic 3–manifold M with
inverse V as given by Theorem C. Then

T[@T U � T[@T U[M V Š T ;

and T [@T U inherits a G action so twisting it via g has the same effect as twisting T
since g extends across V .

Remark From the construction, we see that our G–corks are boundary-connected
sums of Stein manifolds, and hence are Stein. In contrast to the argument in [19], this
fact does not play any role in our verification that our corks are effective.

3 Weakly equivariant corks

In this section, we construct examples of weakly equivariant corks for certain finite
groups that are not subgroups of SO.4/. In fact, these groups cannot act on any
homology sphere, so there are no corresponding equivariant corks. This will prove
Theorem B.
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Figure 3: A weak C 4
2

–cork

Proof of Theorem B

Fix n� 4, and let GDC n
2

, the product of n copies of the cyclic group C2 . It is known
that G does not act effectively on any homology 3–sphere [20, Proposition 3]. In this
proof, we show how to construct a nontrivial weak G–cork V .

Apply Lemma 2.2 to get a 2–cork .S; �/ with 2n inequivalent embeddings sg (for
g 2G ) in some 4–manifold X , meaning their cork twists X

sg
� are 2n distinct smooth

4–manifolds. For convenience, assume that X 1
� Š X . For example, S could be the

boundary sum of 2n Mazur corks, with X D E.22nC1/ # 22nCP2 ; see the proof of
Lemma 2.2.

As in the proof of Theorem A, we will define the cork V to be a suitable cork twist of
a diffeomorphic copy xV of V . To define xV , consider a full binary tree T of height n,
built from the bottom up, as shown in Figure 3 for the case n D 4. Thus T has
one vertex at the root, two at the first level, four at the second level, etc. At the top
there are 2n vertices which can be indexed in a natural way by the elements of G (as
explained below). To get xV , replace the black dots by 4–balls, the white dots by copies
of the cork S (referred to as the leaves of the cork) and the edges by 1–handles. Also
choose an equatorial 3–disk D for each black 4–ball B that separates the 1–handle
attached to B below D (if any) from the two attached above; D splits xV into two
components with closures DC (locally above D ) and D� (locally below D ).

Let �0; : : : ; �n�1 denote the generators of the C2 factors in G D C n
2

, and let �k act
on xV by performing half Dehn twists on all the level k equatorial 3–disks. Here
a half Dehn twist about such a disk D is the diffeomorphism of xV that leaves D�

fixed, sends a collar neighborhood D � Œ0; �� of D in DC to itself by the map
.x; �/ 7! .rot� .x/; �/, and sends the rest of DC to itself in the obvious way, reversing
the order of the leaves above D . Thus, for example, �0 reverses the order of all the
leaves at the top, �1 independently reverses the orders of the first and second halves of
the leaves, and so forth. Note that a full Dehn twist of a 4–manifold X can be defined
in a similar way about any 3–disk D that is either properly embedded or embedded
in @X. In either case one uses a collar D� Œ0; 2�� that restricts to a collar of @D in @X,
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A1

B2

A3

Y

A2

x̨

Figure 4: Ai ;Y � B2 when nD 3 (left) and the map x̨W Y � I ! S1 (right)

lying to the outside of D when D � @X ; the shaded region in Figure 4 (left) illustrates
how the collar meets the boundary in this latter case.

Now observe that �k is of order 2 in the mapping class group of xV . This is clear
for �0 , since �2

0
is a full Dehn twist about the equatorial disk D0 that untwists by

an isotopy over the 4–ball D�
0

below it, and in general we claim that �2
k

is isotopic
to �2

k�1
. Indeed, the portion of xV lying between level k � 1 and level k is a union

of 4–balls, each containing exactly three equatorial 3–disks in its boundary. Thus it
suffices to prove that a full twist about two of these disks is isotopic to a full twist about
the third. Since �1 SO.3/DZ2 , this is a consequence of the following elementary fact
(cf [16, page 190]):

Lemma 3.1 The composition ı of Dehn twists of a 4–ball B about any finite number
of disjoint 3–disks D1; : : : ;Dn in its boundary is isotopic to the identity, leaving
the Di fixed.

Proof of the Lemma View B D B2 �B2 and Di D Ai �B2 , where the Ai are
disjoint arcs in @B2 . Let r W B2!Y be a deformation retraction that collapses each Ai

to its midpoint ai , where Y is the cone 0� fa1; : : : ; ang. Pictures of the arcs Ai and
the graph Y in B2 , and an indication of the retraction r , are shown in Figure 4 (left)
for the case nD 3, with collars corresponding to the shaded regions.

With this parametrization B D B2 �B2 , we can take

ı.x;y/D .x; rot˛.r.x//.y//;

where ˛W Y ! S1 is a map of degree one on each edge ei D 0�ai of Y . Evidently, ˛
extends to a map x̨W Y � I ! S1 that has degree one on each edge ei � 0 and 0� I ,
and is constant on each edge ei � 1 and ai � I ; see Figure 4 (right). This defines
the desired isotopy ıt from ı D ı0 to the identity, rel the Di , given by ıt .x;y/ D

.x; rot x̨.r.x/;t/.y//.

Continuing with the proof of Theorem B, it is clear that the action of the �k extends to
an embedding of G in the mapping class group of xV , and that distinct elements of G
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carry the first leaf to distinct leaves. This gives a natural way to index the leaves of xV
by the elements g 2G , according to where g carries the first leaf. Thus, for example,
the last leaf is indexed by �0 , while the .2n�1/st leaf is indexed by �1 .

Now let V be the cork twist of xV along (a shrunken copy of) the first leaf. Then @V
is naturally identified with @xV , so there is an induced embedding of G in the mapping
class group of @V . To see that this defines a weak G–cork structure on V , just choose
an embedding eW V ,!X that restricts to the embeddings sg (for g 2G ) on the leaves
of V . Then X e

g DX
sg
� , and so X e

g and X e
h

are not diffeomorphic unless gD h.
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A homology-valued invariant for trivalent fatgraph spines

YUSUKE KUNO

We introduce an invariant for trivalent fatgraph spines of a once-bordered surface,
which takes values in the first homology of the surface. This invariant is a secondary
object coming from two 1–cocycles on the dual fatgraph complex, one introduced by
Morita and Penner in 2008, and the other by Penner, Turaev and the author in 2013.
We present an explicit formula for this invariant and investigate its properties. We
also show that the mod 2 reduction of the invariant is the difference of two naturally
defined spin structures on the surface.

20F34, 32G15, 57N05

1 Introduction

Let †g;1 be a once-bordered C1–surface of genus g > 0, and let Mg;1 be the
mapping class group of †g;1 relative to the boundary. It is known that the Teichmüller
space T .†g;1/ of †g;1 has an Mg;1–equivariant ideal simplicial decomposition; see
Penner [21]. Taking its dual, one obtains a contractible CW complex yG.†g;1/ on
which Mg;1 acts freely and properly discontinuously. This CW complex is called the
dual fatgraph complex of †g;1 , since its cells are indexed by fatgraph spines of †g;1 ,
which are graphs embedded in the surface satisfying some conditions. Each 0–cell of
yG.†g;1/ corresponds to a trivalent fatgraph spine, and by contracting nonloop edges
we obtain higher-dimensional cells. In particular, each oriented 1–cell of yG.†g;1/

corresponds to a flip (or a Whitehead move) between trivalent fatgraph spines of †g;1 .

This combinatorial structure of the Teichmüller space has a number of applications to
the cohomology of the mapping class group and the moduli space of Riemann surfaces.
See eg Harer [4; 5], Harer and Zagier [6], Penner [20] and Kontsevich [12].

Recently, mainly motivated by the theory of the Johnson homomorphisms (see John-
son [7; 9] and Morita [16]), several authors considered 1–cocycles on yG.†g;1/ with
coefficients in various Mg;1–modules. In 2008, Morita and Penner [18] first gave
such a 1–cocycle j 2 Z1.yG.†g;1/Iƒ

3H /, where ƒ3H is the third exterior power
of the first homology group H D H1.†g;1IZ/. (In fact, they worked with a once-
punctured surface, but their construction works for †g;1 as well.) Being a 1–cocycle on
yG.†g;1/, the cocycle j associates an element of ƒ3H to each flip. Fixing a trivalent
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fatgraph spine of †g;1 , one obtains from j a twisted 1–cocycle on Mg;1 . Morita and
Penner proved that its cohomology class in H 1.Mg;1Iƒ

3H / is six times the extended
first Johnson homomorphism zk discovered by Morita [17]. Similar constructions
are also considered by Bene, Kawazumi and Penner [1] for the second and higher
Johnson homomorphisms, by Massuyeau [14] for Morita’s refinement [16] of the higher
Johnson homomorphisms, and by Kuno, Penner and Turaev [13] for the Earle class
k 2H 1.Mg;1IH /.

We emphasize that these cocycles on yG.†g;1/ are all explicit and simple. In this
way, the Johnson homomorphisms and related objects extend canonically to the
Ptolemy groupoid, the combinatorial fundamental path groupoid of yG.†g;1/; see
Bene, Kawazumi and Penner [1].

It is interesting that there are many ways of constructing cocycle representatives for
the cohomology classes such as zk and k , and that each construction reflects its own
viewpoint for studying the mapping class group. It can happen that two cocycles
constructed differently give the same cohomology class. In such a case, it is quite
natural to compare these cocycles and to expect a secondary object in the background.

We will compare the Morita–Penner cocycle j and the cocycle m 2Z1.yG.†g;1/IH /

which is related to k and considered in Kuno, Penner and Turaev [13]. Contracting the
coefficients by using the intersection pairing on H , one has a natural homomorphism

C W Z1.yG.†g;1/Iƒ
3H /!Z1.yG.†g;1/IH /:

Let j 0 D C ı j . It turns out that there is an Mg;1–equivariant 0–cochain � 2

C 0.yG.†g;1/IH / such that 2j 0�mD ı� (Proposition 3.1). The 0–cochain � assigns
an element �G 2H to each trivalent fatgraph spine G �†g;1 .

We will study the secondary object �G as an H–valued invariant for trivalent fatgraph
spines G �†g;1 . First of all, Theorem 3.4 gives an explicit formula for �G . Based on
this formula, we show in Theorem 5.2 that �G is nontrivial. At the present moment,
we do not have a full understanding of the topological meaning of the invariant �G . In
Theorem 6.7, we give a partial result in this direction by relating the mod 2 reduction
of �G to two naturally defined spin structures on †g;1 . It would be interesting to seek
for or to find an obstruction to an extension of �G to fatgraph spines which are not
necessarily trivalent. In view of the fact that trivalent fatgraph spines correspond to
maximal-dimensional simplices of the ideal simplicial decomposition of T .†g;1/, this
is related to finding a Mg;1–equivariant function on T .†g;1/ which takes values in
H ˝Z RDH1.†g;1IR/.

This paper is organized as follows. In Section 2, we first review the dual fatgraph
complex and in particular describe its 2–skeleton. Then we recall the 1–cocycles j
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from [18] and m from [13]. Also, we correct an error in [13] about the evaluation of m.
In Section 3, we show the existence and uniqueness of � , and then present an explicit
formula for �G (Theorem 3.4). In Section 4, we show a certain gluing formula for
�G , and then the behavior of �G under a special kind of flip. The latter result makes
it possible to define �G for a trivalent fatgraph spine G of a punctured surface. In
Section 5, we discuss the nontriviality of �G based on its explicit formula. In Section 6,
we construct two spin structures on †g;1 from each trivalent fatgraph spine G �†g;1 .
Then we prove that their difference coincides with the mod 2 reduction of �G . Along
the way we give a combinatorial description of spin structures on †g;1 (Theorem 6.2),
which seems to be new. In the appendix, we consider another spin structure coming
from a naturally defined nonsingular vector field on †g;1 .

Acknowledgements The author would like to thank Robert Penner for helpful remarks
on a description of spin structures on †g;1 in Section 6, Gwénaël Massuyeau for
communicating to him the construction of the vector field XG in the appendix, and
Vladimir Turaev and Nariya Kawazumi for valuable comments to a draft of this paper.
This work is supported by JSPS KAKENHI (no. 26800044).

2 Fatgraph complex and cocycles

We fix some notation about graphs. By a graph we mean a finite CW complex of
dimension one. For a graph G , we denote by V .G/ the set of vertices of G , by
E.G/ the set of edges of G , and by Eori.G/ the set of oriented edges of G . For
v 2 V .G/, we denote by Eori

v .G/ the set of oriented edges pointing toward v . The
number of elements of Eori

v .G/ is called the valency of v . For e 2Eori.G/, we denote
by xe 2Eori.G/ the edge e with reversed orientation. A fatgraph is a graph G endowed
with a cyclic ordering to Eori

v .G/ about each v 2 V .G/.

Let †g;1 be a compact connected oriented C1–surface of genus g > 0 with one
boundary component. We fix two distinct points p and q on the boundary @†g;1 .

Definition 2.1 An embedding �W G ,! †g;1 of a fatgraph G into †g;1 is called a
fatgraph spine of †g;1 if the following conditions are satisfied:

(1) The map � is a homotopy equivalence.

(2) For any v 2 V .G/, the cyclic ordering given to Eori
v .G/ is compatible with the

orientation of †g;1 .

(3) We have �.G/\ @†g;1 D fpg and ��1.p/ is a unique univalent vertex of G .
The other vertices have valencies greater than 2.
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The unique edge connected to ��1.p/ is called the tail of G . We consider fatgraph
spines up to isotopies relative to @†g;1 . If there is no danger of confusion, we identify G

with �.G/, and write G instead of �W G ,! †g;1 . We denote by V int.G/ the set of
nonunivalent vertices of G . We say that G is trivalent if the valency of any nonunivalent
vertex of G is 3.

Fatgraph spines appear naturally in the combinatorial description of the Teichmüller
space of a punctured or bordered surface. This was first shown for punctured surfaces
by Harer and Mumford [5] and Thurston from the holomorphic point of view based
on a work by Strebel [24], and by Penner [19] and Bowditch and Epstein [2] from the
point of view of hyperbolic geometry.

In this paper, we work mainly with the once-bordered surface †g;1 . For definiteness, let
us define the Teichmüller space T .†g;1/ as the space of Riemannian metric on †g;1 of
constant Gaussian curvature �1 with geodesic boundary, modulo pullback of the metric
by self-diffeomorphisms of †g;1 fixing q which are isotopic to the identity relative
to q . Let Mg;1 be the mapping class group of †g;1 relative to @†g;1 . Namely, Mg;1

is the group of self-diffeomorphisms of †g;1 fixing the boundary @†g;1 pointwise,
modulo isotopies fixing @†g;1 pointwise. Note that Mg;1 is identified with the group
of connected components of the group of self-diffeomorphisms of †g;1 fixing q . Then
pullback of the metric induces an action of Mg;1 on T .†g;1/. This action is known
to be free and properly discontinuous.

Theorem 2.2 (Penner [21]) There is an Mg;1–equivariant ideal simplicial decompo-
sition of T .†g;1/ with the following properties:

� Each simplex corresponds to a fatgraph spine of †g;1 .

� The face relation between simplices corresponds to the contraction of a nonloop
edge of a fatgraph spine.

Let yG.†g;1/ be the dual of this ideal simplicial decomposition. This is an honest CW
complex of dimension 4g� 2. We call yG.†g;1/ the dual fatgraph complex of †g;1 .
Note that there is a natural cellular action of the mapping class group Mg;1 on yG.†g;1/.
In fact, there is an Mg;1–equivariant deformation retract of T .†g;1/ onto yG.†g;1/;
see [22].

The 2–skeleton of yG.†g;1/ is described as follows:

� Each 0–cell corresponds to a trivalent fatgraph spine of †g;1 .

� Each 1–cell corresponds to a fatgraph spine G , where G has a unique 4–valent
vertex and the other nonunivalent vertices have valency 3.
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÷

We

a

bc

d

e

a

bc

d

e0

Figure 1: The flip along e applied to G (left) produces G0 (right)

� Each oriented 1–cell corresponds to a flip (or a Whitehead move) between
trivalent fatgraph spines. Here, if e is a nontail edge of a trivalent fatgraph spine,
collapsing e and expanding the resulting 4–valent vertex to the unique distinct
direction, one produces another trivalent fatgraph spine. We call this move a
flip along e , and denote it by We . See Figure 1. If G0 is obtained from G

by a flip W DWe , we write it as G W
�!G0 . There is a natural bijection from

E.G/ to E.G0/ which restricts to an obvious identification of E.G/ n feg with
E.G0/nfe0g. For this reason, we often use the same letter for edges of G and G0

corresponding to each other via this bijection.

� Each 2–cell corresponds to a fatgraph spine G , where either G has a unique
5–valent vertex and the other nonunivalent vertices have valency 3, or G has
two 4–valent vertices and the other nonunivalent vertices have valency 3.

Let G and G0 be trivalent fatgraph spines. Since yG.†g;1/ is connected, there is a finite
sequence of flips

G DG0

W1
��!G1

W2
��!G2

W3
��! � � �

Wm
��!Gm DG0

from G to G0 . This sequence is not uniquely determined, but any two such sequences
are related to each other by the following three types of relations among flips:

(1) Involutivity relation We0 ıWe D 1 in the notation of Figure 1.

(2) Commutativity relation We1
ıWe2

DWe2
ıWe1

if e1 and e2 share no vertices.

(3) Pentagon relation Wf4
ıWg3

ıWf2
ıWg1

ıWf D 1 in the notation of Figure 2.

Here, we read composition of flips from right to left. The relations (2) and (3) come
from the boundaries of 2–cells of yG.†g;1/.

There is a construction of twisted 1–cocycles on the mapping class group using the
fatgraph complex appeared first in [18]. Let M be a (left) Mg;1–module. By definition,
a cellular 1–cochain c on yG.†g;1/ with values in M is an assignment of an element

Algebraic & Geometric Topology, Volume 17 (2017)
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f

g

g1

f1

f2
g2

f3

g3

f4

g4

a

bc

d

e

Figure 2: Pentagon relation

of M to each flip W satisfying c.We0/D�c.We/ for any pair of flips We and We0

as in Figure 1. Such a c is a 1–cocycle if it satisfies both the commutative equation

c.We1
/C c.We2

/D c.We2
/C c.We1

/;

where e1 and e2 are any edges on a trivalent fatgraph spine sharing no vertices, and
the pentagon equation

c.Wf4
/C c.Wg3

/C c.Wf2
/C c.Wg1

/C c.Wf /D 0

for any 5–tuple of flips as in Figure 2.

Now we assume that c is a 1–cocycle and is Mg;1–equivariant in the sense that
' � c.W /D c.'W / for any flip W and ' 2Mg;1 . Fix a trivalent fatgraph spine G .
For ' 2Mg;1 , taking a sequence of flips

G DG0

W1
��!G1

W2
��!G2

W3
��! � � �

Wm
��!Gm D '.G/

from G to '.G/, we set

cG.'/ WD

mX
iD1

c.Wi/ 2M:

Since c is a 1–cocycle, this value does not depend on the choice of the sequence. The
map cG WMg;1!M is a twisted 1–cocycle. In fact, for '; 2Mg;1 , take a sequence
of flips from G to '.G/, and one from G to  .G/. Then the first sequence followed
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by application of ' to the second is a sequence of flips from G to ' .G/. Since c is
Mg;1–equivariant, we obtain the cocycle condition

cG.' /D cG.'/C' � cG. /:

It is easy to see that the cohomology class ŒcG � 2H 1.Mg;1IM / does not depend on
the choice of G .

Here we record an elementary fact which will be used later.

Lemma 2.3 Let M be an Mg;1–module and suppose that c is an Mg;1–equivariant
cellular 1–cocycle on yG.†g;1/ with values in M . Then for any trivalent fatgraph
spine G and any '; 2Mg;1 , we have

cG. /C c .G/.'/D cG.'/C' � cG. /:

Proof Consider a sequence of flips from G to  .G/ and one from  .G/ to ' .G/.
The composition of these sequences is a sequence from G to ' .G/, and thus we
obtain cG.' / D cG. /C c .G/.'/. On the other hand, by the cocycle condition
for cG , we have cG.' /D cG.'/C' � cG. /.

We denote by H DH1.†g;1IZ/ the first integral homology group of †g;1 . Before
giving examples of Mg;1–equivariant cellular 1–cochains on yG.†g;1/, we recall
from [18] homology markings for edges of fatgraph spines. Let G be a (not necessarily
trivalent) fatgraph spine of †g;1 . For e 2Eori.G/, there is an oriented simple loop ye
on †g;1 satisfying the following two conditions:

� The loop ye intersects G once transversely at the middle point of e .

� The ordered pair of the velocity vectors of ye and e at their intersection is
compatible with the orientation of †g;1 .

Since the surface obtained from †g;1 by cutting along G is a disk, the homotopy class
of such an ye is unique. We define �.e/ 2H to be the homology class of ye and call it
the homology marking of e . The map �W Eori.G/!H has the following properties:

(1) For any e 2Eori.G/, we have �.xe/D��.e/.

(2) The set f�.e/ge2Eori.G/ generates H .

(3) For any v 2 V .G/, we have X
e2Eori

v .G/

�.e/D 0:
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For example, in the notation of the left part of Figure 1, where we orient edges a; b; c; d

as indicated, we have �.a/C�.b/C�.c/C�.d/D 0.

In what follows, we consider Mg;1–modules such as H and its third exterior power ƒ3H .
There is a twisted cohomology class zk 2H 1

�
Mg;1I

1
2
ƒ3H

�
called the extended first

Johnson homomorphism [17]. Here, 1
2
ƒ3H D

˚
1
2
u 2ƒ3.H˝Z Q/ j u 2ƒ3H

	
, where

we take the canonical embedding H !H ˝Z Q, x 7! x˝ 1. This cohomology class
has a fundamental importance in the study of the cohomology of the mapping class
group; see [11].

Theorem 2.4 (Morita and Penner [18]) Keep the notation in Figure 1. For the flip We ,
set

j .We/D �.a/^�.b/^�.c/ 2ƒ
3H:

Then j is an Mg;1–equivariant 1–cocycle on yG.†g;1/, and ŒjG �D 6zk .

Using the intersection pairing . � / on the homology, we define an Sp.H /–equivariant
map

C W ƒ3H !H; x ^y ^ z 7! .x �y/zC .y � z/xC .z �x/y

called the contraction. Morita [15] showed that if g� 2, the twisted cohomology group
H 1.Mg;1IH / is infinite cyclic. As is remarked in [17], the element k WD C.2zk/ is a
generator of this cohomology group. Since Earle [3] first gave a cocycle representative
for k , we call k the Earle class; see [10]. The restriction of k to the Torelli subgroup
of Mg;1 is called the Chillingworth homomorphism; see [7, Section 5].

Theorem 2.5 (Kuno, Penner and Turaev [13]) Keep the notation in Figure 1. For the
flip We , set

m.We/D �.a/C�.c/ 2H:

Then m is an Mg;1–equivariant 1–cocycle on yG.†g;1/, and ŒmG �D 6k .

Here we correct an error in [13]. Let 'BP D ' be the torus BP map in [13, Figure 3],
which was first considered in [18]. In [13, Lemma 1], it was asserted that m.'BP/D 4a,
but this is not true. More precisely, in the proof of the lemma, we computed the con-
tribution of the second Dehn twist (5 flips) as �4a, but this should be corrected to 4a.

Lemma 2.6 (correction of [13, Lemma 1]) Let 'BP be the torus BP map as above.
Then m.'BP/D 12�.a/.

In [13, Theorem 6], it is asserted that ŒmG �D�2k , but this should be corrected as in
Theorem 2.5 above.
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3 A secondary invariant

We consider the cocycle j 0DC ıj . For the flip We in the notation of Figure 1, we have

j 0.We/D .a � b/�.c/C .b � c/�.a/C .c � a/�.b/ 2H:

Here and throughout the paper, we write eg .a�b/ instead of .�.a/��.b// for simplicity.
By Theorems 2.4 and 2.5, for any trivalent fatgraph spine G , we have

2Œj 0G �D ŒmG �D 6k:

Therefore, there exists an element �G 2 H such that 2j 0
G
�mG D ı�G . Here the

symbol ı in the right-hand side means the coboundary map in the standard cochain
complex of Mg;1 with coefficients in H . Explicitly, we have .ı�G/.'/D' ��G��G for
any ' 2Mg;1 . Such a �G is unique since only 0 is Mg;1–invariant in H . We regard
the collection � D f�GgG as a cellular 0–cochain of yG.†g;1/ with coefficients in H .

Proposition 3.1 (1) The 0–cochain � is Mg;1–equivariant in the sense that � .G/D
 � �G for any  2Mg;1 and any trivalent fatgraph spine G .

(2) We have 2j 0 �m D ı� . Namely, for any flip G W
�!G0 , we have �G0 � �G D

2j 0.W /�m.W /.

Moreover, these two properties characterize � .

Proof (1) For simplicity we write s D 2j 0 �m. Take ' 2Mg;1 . Using sG.'/D

ı�G.'/D ' � �G � �G , etc, we compute from Lemma 2.3 that

s .G/.'/D sG.'/C' � sG. /� sG. /

D ' � �G � �G C' � . � �G � �G/� . � �G � �G/

D ' � . � �G/� � �G

D ı. � �G/.'/:

This proves s .G/ D ı. � �G/. By the uniqueness of � .G/ , it follows that � .G/ D
 � �G .

(2) This follows from sG.'/C ' � s.W /D s.W /C sG0.'/ analogously, and so we
omit the details.

Finally, suppose that �0 is an Mg;1–equivariant 0–cochain satisfying 2j 0�mD ı�0 .
Then ���0 is an Mg;1–equivariant 0–cocycle. This shows that � WD �.G/��0.G/2H

is independent of G and ' � �D � for any ' 2Mg;1 . Therefore � must be zero and
�0 D � .
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p
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v

e1

e2

e3

DG

Figure 3: A vertex of type 1 (left) and a vertex of type 2 (right)

Let G be a trivalent fatgraph spine of †g;1 . We present an explicit formula for �G .
To begin with, we introduce a total ordering for Eori.G/. Note that if we cut †g;1

along G , we obtain an oriented closed disk DG .

Definition 3.2 (1) For e; e0 2 Eori.G/, we say e � e0 if the edge e occurs first
when we go clockwise along the boundary of DG from p .

(2) Let e 2Eori.G/. We say that e has the preferred orientation (or e is preferably
oriented) if e � xe .

Note that any unoriented edge of G has a unique preferred orientation.

Let v 2 V int.G/. We name the three elements of Eori
v .G/ as e1; e2 and e3 so that

(1) e1 � e2 and e1 � e3 , and

(2) the edge e2 is next to e1 in the cyclic ordering given to Eori
v .G/.

There are two possibilities for the ordering of ei and its inverse xei , namely,

e1 � xe2 � e2 � xe3 � e3 � xe1 and e1 � xe2 � e3 � xe1 � e2 � xe3:

The vertex v is said to be of type 1 if the former case happens, and is said to be of
type 2 otherwise. Figure 3 is an illustration of the situation.

We can count the number of vertices of type 1 and the number of type 2.

Proposition 3.3 For any trivalent fatgraph spine G of †g;1 , the number of trivalent
vertices of type 1 is 2g� 1, and that of type 2 is 2g .
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Figure 4: The case where a� c � b � d

Proof For i D 1; 2, let Vi be the number of trivalent vertices of type i . Since the
number of trivalent vertices of G is 4g� 1, we have V1CV2 D 4g� 1. We observe
that if a trivalent vertex v is of type i (i D 1; 2), the number of preferably oriented
edges toward v is i . Thus V1C 2V2 is equal to the number of edges of G , ie 6g� 1.
Hence we obtain V1 D 2g� 1 and V2 D 2g .

We set �
ev D e2 and fv D e3 if v is of type 1;
ev D e1 and fv D e3 if v is of type 2:

Theorem 3.4 We have
�G D

X
v

.�.ev/��.fv//;

where the sum is taken over all trivalent vertices of G .

Proof We set �0
G
D
P
v.�.ev/� �.fv// and consider the collection �0 D f�0

G
gG .

Clearly, �0 is Mg;1–equivariant. By Proposition 3.1, it is sufficient to prove that
2j 0�mD ı�0 .

Take the notation as in Figure 1. For example, assume that a � c � b � d . For
simplicity, we write e instead of �.e/ for e 2Eori.G/. Then we can see from the left
part of Figure 4 that .a � b/D .c � a/D 0 and .b � c/D 1, and so j 0.We/D a. Thus
2j 0.We/�m.We/D 2a� .aC c/D a� c . On the other hand, we can compute from
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d
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e

a
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d
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I: a � b � c � d II: a � b � d � c

III: a � c � b � d IV: a � c � d � b

V: a � d � b � c VI: a � d � c � b

Figure 5: Situations near e

the right part of Figure 4 that

�0
G0 � �

0
G D .ev0

1
�fv0

1
/C .ev0

2
�fv0

2
/� .ev1

�fv1
/� .ev2

�fv2
/

D .aC d � c/C .bC c � d/� .b� .cC d//� .c � .aC b//

D 2aC bC d D 2aC bC .�a� b� c/D a� c:

We can compute similarly for other cases as well, and we obtain 2j 0.We/�m.We/D

�0
G0 � �

0
G

. (There are essentially six cases to consider; in each case in Figure 5, we may
assume that G corresponds to the left picture.) Hence 2j 0�mD ı�0 , as required.

Example 3.5 Let G be the fatgraph as shown in Figure 6. We name edges as in the
figure and give them the preferred orientation. For 1 � i � g and 1 � j � 3, let
v

j
i 2 V int.G/ be the start point of e

j
i . For 1 � i � g � 1, let v4

i 2 V int.G/ be the
endpoint of e4

i .

Since v1
i is of type 1, its contribution is �.xe1

i /��.xe
4
i /D �.e

4
i /��.e

1
i /. Since v2

i is
of type 2, its contribution is �.e1

i /��.e
3
i /. Since v3

i is of type 2, its contribution is
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Figure 6: The fatgraph in Example 3.5

�.e2
i /��.e

5
i /. Here we understand that e5

gD e4
g . Since v4

i is of type 1, its contribution
is �.xe5

i /��.xe
0
iC1

/D �.e0
iC1

/��.e5
i /.

Moreover, we have �.e0
i /D0, �.e1

i /C�.e
3
i /D�.e

2
i /, and �.e4

i /D�.e
5
i /D��.e

1
i /.

Using these relations, we obtain

�G D �.e
1
g/C

g�1X
iD1

2�.e1
i /:

4 Elementary properties

In this section, we record two elementary properties of �G .

We first show a certain gluing formula. Let g and g0 be positive integers, and suppose
that we have two trivalent fatgraph spines �W G ,! †g;1 and �0W G0 ,! †g0;1 . Fix
e 2Eori.G/. Plugging the tail of G0 in the right side of e , one produces a new fatgraph
spine of †gCg0;1 . A precise construction is as follows. Let ve be the middle point
of e .

(1) Take a small closed disk De in †g;1 such that Int.De/\G D∅, the boundary
@De intersects G once at ve , and the center of De is on the right side of e with
respect to the orientation of e .

(2) Glue †g;1 n Int.De/ with †g0;1 along the boundaries @De and @†g0;1 so that
the univalent vertex of G0 is identified with ve .

(3) Let G00 be the union of the images of G and G0 in the result of gluing.

The glued surface is diffeomorphic to †gCg0;1 . We consider G00 as a trivalent fatgraph
spine of †gCg0;1 by dividing e into two edges sharing the newly created trivalent
vertex ve . These two edges receive their orientation from e . We name them as
e1; e2 2Eori.G00/ so that ve is the endpoint of e1 . The edges e1 and e2 have the same
homology marking as e .

A schematic figure of this construction is Figure 7. We call G00 the gluing of G and G0

at e . Note that the inclusions †g;1nInt.De/ ,!†gCg0;1 and †g0;1 ,!†gCg0;1 induce
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G0

e

e2

e1

ve

G G00

Figure 7: Gluing

a direct sum decomposition

(4-1) H1.†gCg0;1IZ/ŠH1.†g;1IZ/˚H1.†g0;1IZ/:

Proposition 4.1 (gluing formula) Let G00 be the gluing of G and G0 at e , as above.
Then �G00 D �G C�.e/C �G0 .

Proof We have a natural identification V int.G00/ŠV int.G/tfvegtV int.G0/. Observe
that this identification respects the type of vertices. With the direct sum decomposition
(4-1) in mind, we see that V int.G/ and V int.G0/ contribute to �G00 as �G and �G0 ,
respectively.

We compute the contribution from ve . Let t 0 2Eori
ve
.G00/ be an edge coming from the

tail of G0 . The homology marking of t 0 is trivial. Then the contribution from ve is
�.t 0/��.xe2/D �.e/ if e has the preferred orientation, and is �.e1/��.t

0/D �.e/

otherwise. This completes the proof.

We next show a formula describing how �G changes under a special kind of flip. For a
trivalent fatgraph spine G �†g;1 , we use the following notation:

� We denote by t the tail of G , and give it the preferred orientation.

� e1 2Eori.G/ is the oriented edge next to t in the total ordering given to Eori.G/.

� v1 and v2 are the start and end points of e1 , respectively.

� b; c 2Eori
v2
.G/ are the edges such that e1 , b and c are in this order in the cyclic

ordering given to Eori
v2
.G/.

The situation is illustrated in Figure 8. We call the flip along (the unoriented edge
underlying) e1 the tail slide to G .

Proposition 4.2 (tail slide formula) Let G0 be the result of the tail slide to G . Then
�G0 D �G C�.c/.
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e1

c

bb

t

v1

v2 v0

1

v0

2

c

Figure 8: The tail slide applied to G (left) gives G0 (right)

Proof We work with Figure 8. Suppose b � c in Eori.G/. For simplicity, we write e

instead of �.e/ for e 2Eori.G/. Then we compute

�G0 � �G D .ev0
1
�fv0

1
/C .ev0

2
�fv0

2
/� .ev1

�fv1
/� .ev2

�fv2
/

D .b� .�b//C .c � .�b� c//� .bC c � .�b� c//� .b� c/

D c:

The case where c � b can be computed similarly.

As an application of Proposition 4.2, we can extend the definition of our invariant to
trivalent fatgraph spines of a once-punctured surface. Let †1

g be a surface obtained
from †g;1 by gluing a once-punctured disk along the boundaries. We regard †g;1 as
a subset of †1

g . By definition, a fatgraph spine of †1
g is an embedding �W G ,!†1

g of
a fatgraph G into †1

g satisfying the first two conditions in Definition 2.1 (with †g;1

replaced by †1
g ), and the condition that all vertices have valency greater than 2.

Let G be a trivalent fatgraph spine of †1
g . By a suitable isotopy, we arrange that

G �†g;1 . Let e 2Eori.G/. Take a simple arc ` on †g;1 starting from p , reaching ve

from the right, and disjoint from Gnfveg. We say that such an arc ` is admissible for e .
Regarding ve as a newly created trivalent vertex, we can consider the union zG.e; `/D
G [ ` as a trivalent fatgraph spine of †g;1 . The arc ` becomes the tail of zG.e; `/.

Corollary 4.3 Keep the notation as above. Then the element � zG.e;`/��.e/ does not
depend on the choice of e and `. In particular, for a trivalent fatgraph spine G �†1

g ,
we can define �G 2H DH1.†g;1IZ/ŠH1.†

1
gIZ/ as

�G WD � zG.e;`/��.e/:

Proof Let `0 be another admissible arc for e . Then `0 is isotopic to the concatenation
of some power of a simple based loop parallel to @†g;1 and `. This implies that
zG.e; `0/ is obtained from zG.e; `/ by application of some power of the Dehn twist
along @†g;1 . Since the Dehn twist along @†g;1 acts on H trivially, we have � zG.e;`/D
� zG.e;`0/

. Hence � zG.e;`/��.e/ does not depend on the choice of `.

Now, we can give a cyclic ordering to the set Eori.G/ in a way similar to that in the
case where G�†g;1 as in Definition 3.2. Suppose that e; e0 2Eori.G/ are consecutive
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in this cyclic ordering. Fix an admissible arc ` for e . Let v0 be the vertex of G shared
by e and e0 , and let c 2Eori

v0
.G/ be an edge other than e and xe0 . We denote by e0 an

unoriented edge of zG.e; `/ with endpoints ve and v0 .

Let zG0 be the result of flip along e0 . Then zG0 can be identified with zG.e0; `0/, where
`0 corresponds to the tail of zG0 . By Proposition 4.2, we have � zG.e0;`0/

D � zG.e;`/C�.c/.
Since �.c/C �.e/ D �.e0/, we obtain � zG.e0;`0/

� �.e0/ D � zG.e;`/ � �.e/. Hence
� zG.e;`/��.e/ does not depend on the choice of e either.

5 Nontriviality and primitivity

Let us consider the mod 2 reduction of �G :

�2
G WD �G ˝ .1 mod 2/ 2H ˝Z2 ŠH1.†g;1IZ2/:

Hereafter, � stands for an equality in H ˝ Z2 . Since �.xe/ D ��.e/ � �.e/ 2

H ˝Z2 for any e 2Eori.G/, the homology marking � induces a well-defined map
�2W E.G/!H ˝Z2 . We call �2 the mod 2 homology marking.

Proposition 5.1 Let G be a trivalent fatgraph spine of †g;1 . Then we have

�2
G D

X
e2E.G/

�2.e/:

Proof Let v 2 V int.G/. We work with Figure 3 and count preferably oriented edges
toward v . By abuse of notation, we use the same letter for an oriented edge and its
underlying unoriented edge. If v is of type 1, only e1 has the preferred orientation.
Since �.e1/C�.e2/C�.e3/D 0, we have

�.ev/��.fv/D �.e2/��.e3/� �.e1/:

If v is of type 2, e1 and e3 have the preferred orientation and e2 does not. Then we
have

�.ev/��.fv/D �.e1/��.e3/� �.e1/C�.e3/:

Therefore, we have

�2
G D

X
v2V int.G/

�
sum of the mod 2 homology markings
of preferably oriented edges toward v

�
D

X
e2E.G/

�2.e/:

The last equality holds since any preferably oriented edge of G points to some trivalent
vertex of G .

Theorem 5.2 Let G be a trivalent fatgraph spine of †g;1 . Then the mod 2 reduction
�2

G
is nontrivial. In particular, we have �G ¤ 0.

Algebraic & Geometric Topology, Volume 17 (2017)



A homology-valued invariant for trivalent fatgraph spines 1801

To prove this theorem, we need the following lemma.

Lemma 5.3 Let G be a trivalent fatgraph spine of †g;1 . Then G contains an edge
cycle of odd length.

Proof We introduce some terminology: a pair of consecutive oriented edges of G is
called a corner of G . There are 3 #V int.G/D 3.4g� 1/ corners. We number them as
c1; : : : ; c3.4g�1/ , so that c1 contains the preferably oriented tail of G , and for each i ,
ci and ciC1 share an oriented edge in common. There are no WD 6g�1 odd-numbered
corners, and ne WD 6g� 2 even-numbered corners.

Since no and ne are not divisible by 3, there exist distinct indices i and j with
1 � i < j � 3.4g � 1/ such that the corners ci and cj are around the same vertex
and i � j � 1 mod 2. We can write ci and cj as ci D .ei ; e

0
i/ and cj D .ej ; e

0
j / with

ei � e0i and ej � e0j . Consider the edge cycle following consecutive oriented edges
of G from e0i to ej . Since i and j have different parity, the length of this edge cycle
must be odd.

Proof of Theorem 5.2 By Lemma 5.3, G contains an edge cycle  of odd length.
By Proposition 5.1, the mod 2 intersection pairing of �2

G
and  is computed as

.�2
G �  /D

� X
e2E.G/

�2.e/ � 

�
D .length of  /D 1:

Therefore, �2
G
¤ 0.

Remark 5.4 As far as we observed, �G seems to be a primitive element of H for any
trivalent fatgraph spine G �†g;1 . Here, an element x 2H is called primitive if there
do not exist m 2Z and y 2H such that jmj � 2 and x Dmy . This primitivity of �G
holds for g � 2. In fact, there is only one combinatorial isomorphism class of trivalent
fatgraph spines for gD 1, and there are 105 classes for gD 2. By a direct computation,
we can show the primitivity of �G for these cases. The case g � 3 remains open.

In the case of trivalent fatgraph spines of a once-punctured surface †1
g , it can happen

that �G D 0. Two examples for g D 2 are given in Figure 9.

Let G be a trivalent fatgraph spine of †1
g . A corner of G is a pair of consecutive oriented

edges of G in the cyclic ordering given to Eori.G/ (see the proof of Corollary 4.3).
Now we give labels ˛ or ˇ to each corner of G so that any pair of consecutive corners
of G have distinct labels. Since the number of corners of G is even, this labeling is
always possible and is determined once we choose the label of a fixed corner.
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Figure 9: Trivalent fatgraph spines with �G D 0

Figure 10: A balanced trivalent fatgraph spine with �G ¤ 0

We say that G is balanced if for any vertex of G , the three corners around the vertex
have the same label. For example, trivalent fatgraph spines in Figure 9 and Figure 10
are balanced.

Theorem 5.5 Let G be a trivalent fatgraph spine of †1
g . Then the mod 2 reduction

�2
G
D �G ˝ .1 mod 2/ is trivial if and only if G is balanced.

Proof Pick a corner c of G and write it as c D .e; e0/, where e0 is next to e in the
cyclic ordering given to Eori.G/. We give the label ˛ to c and extend this labeling to
all other corners as above. Take an admissible arc ` for e and set zG D zG.e; `/. The
oriented edge e is split at the middle point ve into two oriented edges. We name them
as e1; e2 2Eori. zG/ so that ve is the endpoint of e1 . We extend the labeling of corners
of G to that of corners of zG by giving ˛ to .e1; x̀/ and .xe2; xe1/, and ˇ to .`; e2/.

In view of Corollary 4.3, the condition �2
G
D 0 is equivalent to �2

zG
D �2.e2/. Further-

more, since the mod 2 homology markings f�2.f /g
f 2E. zG/

generate the mod 2 ho-
mology H1.†g;1IZ2/, this condition is equivalent to the condition that .�2

zG
��2.f //D

.�2.e2/ ��
2.f // for any f 2E. zG/.

Assume that G is balanced. For any vertex of zG other than ve , the three corners
about it are labeled by the same symbol. Let f 2E. zG/. Let  .f / be the edge cycle
following consecutive oriented edges of zG from f to xf , where we give the preferred
orientation to f . The mod 2 homology class �2.f / is represented by  .f /. By
the property of the labeling, the length of this edge cycle is odd if f � xe2 �

xf (this
also implies f ¤ e2 ), and is even otherwise. Note that the condition f � xe2 �

xf is
equivalent to .�2.e2/ ��

2.f //D 1. Hence .�2
zG
��2.f //D .the length of  .f //D 1

if and only if .�2.e2/ ��
2.f //D 1. Therefore, �2

G
D 0.
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On the other hand, assume that �2
G
D 0. Then for f 2 E. zG/, the length of  .f / is

odd if and only if f � xe2 �
xf . Now we remove the tail from zG and go back to G .

Then  .f / is reduced to an edge cycle of G . Its length is 1 less than the length of
 .f / if f � xe2 �

xf , and is the same as the length of  .f / otherwise. This implies
that the reduced edge cycle of G has even length. Since f can be arbitrary, this shows
that G is balanced.

6 Mod 2 reduction and spin structures

In this section, we give a topological interpretation of the mod 2 reduction �2
G

. We
start with the following description of the mod 2 homology of †g;1 .

Lemma 6.1 Let G be a fatgraph spine of †g;1 . For v 2 V int.G/, let fevi gi be the set
of unoriented edges of G having v as an endpoint. If there is an edge loop based at v ,
we count it twice. Then the mod 2 homology marking induces an isomorphism

H1.†g;1IZ2/Š
M

e2E.G/

Z2e
. X
v2V int.G/

Z2

�X
i

evi

�
:

Proof Recall from Section 2 that we associate an oriented simple loop ye to each
(oriented) edge e . In the proof of this lemma we forget the orientation of e and ye .
We can arrange that the simple loops fyege2E.G/ share only one point q 2 @†g;1 , and
that if t is the tail of G then yt D @†g;1 with basepoint q . Then we obtain a cell
decomposition of †g;1 whose 1–cells coincide with fyege2E.G/ . Now the right-hand
side of the assertion can be identified with the first mod 2 cellular homology group of
this cell decomposition.

Recall that a spin structure on †g;1 is an element w 2 H 1.UT†g;1IZ2/, where
UT†g;1 is the unit tangent bundle of †g;1 (with respect to some Riemannian metric),
such that the restriction of w to a fiber of the projection UT†g;1!†g;1 is nontrivial.
As Johnson [8] showed, the set of spin structures on †g;1 is naturally identified with
the set of quadratic forms on H1.†g;1IZ2/. Here, a map qW H1.†g;1IZ2/! Z2 is
called a quadratic form on H1.†g;1IZ2/ if it satisfies

q.xCy/D q.x/C q.y/C .x �y/

for any x;y 2 H1.†g;1IZ2/. The set of spin structures on †g;1 is a torsor un-
der the action of H 1.†g;1IZ2/. In other words, the difference between two qua-
dratic forms on H1.†g;1IZ2/ can be written as a uniquely determined element of
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Hom.H1.†g;1IZ2/;Z2/ Š H 1.†g;1IZ2/. Note that, using the mod 2 intersection
pairing, we have a natural isomorphism

(6-1) H1.†g;1IZ2/Š Hom.H1.†g;1IZ2/;Z2/; x 7! Œy 7! .x �y/�:

In what follows, G is a trivalent fatgraph spine of †g;1 . The following result gives an
identification of certain Z2–valued functions on E.G/ with the set of quadratic forms
on H1.†g;1IZ2/, thus with the set of spin structures on †g;1 via Johnson’s result
stated above.

Theorem 6.2 Let G be a trivalent fatgraph spine of †g;1 . Let Q.G/ be the set of
maps qW E.G/!Z2 such that, for any v 2V int.G/, the sum of values of q at the three
edges having v as an endpoint is 0 if v is of type 1, and is 1 if v is of type 2. Then
there is a natural bijection from Q.G/ to the set of quadratic forms on H1.†g;1IZ2/.

Proof Given a map qW E.G/!Z2 , we extend q to a map from the free Z2–module
generated by E.G/ by

(6-2) q

� X
e2E.G/

mee

�
WD

X
e2E.G/

meq.e/C
X
e�e0

meme0.�2.e/ ��2.e0//;

for me 2 Z2 , e 2E.G/. Here . � / is the mod 2 intersection pairing and we give the
preferred orientation to each element of E.G/. By a direct computation, we can check
that, for any x;y 2

L
e2E.G/Z2e ,

(6-3) q.xCy/D q.x/C q.y/C .x �y/:

Here .x �y/ is the mod 2 intersection pairing of the homology class determined by x

and y through the isomorphism in Lemma 6.1.

We claim that if q 2Q.G/, then for any v 2 V int.G/,

q.ev1 C ev2 C ev3/D 0:

By (6-2), this condition is equivalent to the equality

(6-4)
3X

iD1

q.evi /C .�
2.ev1/ ��

2.ev2//C .�
2.ev1/ ��

2.ev3//C .�
2.ev2/ ��

2.ev3//D 0:

If v is of type 1, then .�2.evi / ��
2.evj //D 0 for any 1� i; j � 3. If v is of type 2, then

.�2.evi / ��
2.evj //D 1 for any 1� i; j � 3 with i ¤ j . See Figure 3. Therefore, the

condition (6-4) is exactly equivalent to the condition for q being an element of Q.G/.
This proves the claim.
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By the claim, Lemma 6.1 and (6-3), it follows that the map q induces a quadratic
form on H1.†g;1IZ2/. The above construction gives a map from Q.G/ to the set of
quadratic forms on H1.†g;1IZ2/, and the inverse of this map is given by composing
any quadratic form on H1.†g;1IZ2/ with the mod 2 homology marking �2W E.G/!

H1.†g;1IZ2/.

We record how the set Q.G/ changes under a flip.

Proposition 6.3 Let W D We be a flip from G to G0 . Then the bijection in
Theorem 6.2 induces a bijection from Q.G/ to Q.G0/, which maps a given q 2Q.G/

to the element q0 2Q.G0/ defined as follows:

� For any edge f in E.G0/ n fe0g ŠE.G/ n feg, we have q0.f /D q.f /.

� We adopt the notation in Figure 5, and assume that in each case G and G0

correspond to the left and right pictures, respectively. Then the value q0.e0/ is
given by the following formula:

IW q0.e0/D q.b/C q.c/D q.a/C q.d/;

IIW q0.e0/D q.b/C q.c/D q.a/C q.d/C 1;

IIIW q0.e0/D q.b/C q.c/C 1D q.a/C q.d/;

IVW q0.e0/D q.b/C q.c/C 1D q.a/C q.d/;

VW q0.e0/D q.b/C q.c/D q.a/C q.d/C 1;

VIW q0.e0/D q.b/C q.c/C 1D q.a/C q.d/C 1:

By a suitable replacement of labels of edges, one can similarly obtain a formula for q0

in terms of q for the case where G and G0 correspond to the right and left pictures,
respectively, in each case in Figure 5.

Proof To prove the first condition, note that the mod 2 homology marking of f as
an edge of E.G/ is the same as that of f as an edge of E.G0/. The second condition
follows from the first condition and the defining relation for elements of Q.G0/.
For example, in case VI, two endpoints of e0 are of type 2, and hence we have
q0.b/C q0.c/C q0.e0/D q0.a/C q0.d/C q0.e0/D 1.

Remark 6.4 The description of spin structures on †g;1 given in Theorem 6.2 and
how it changes under a flip as in Proposition 6.3 was pointed out by Robert Penner.
Recently, Penner and Zeitlin [23] gave another natural description of spin structures on
a punctured surface in terms of orientations on a trivalent fatgraph spine of the surface,
and they also showed how it changes under a flip. In other words, Penner and Zeitlin
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gave a lift of the action of the mapping class group on the set of quadratic forms to the
action of the Ptolemy groupoid, and the present construction gives another lift. It should
be remarked that while their description works for any surfaces with multiple punctures,
our description here is for a once (punctured/bordered) surface. It is an interesting
question whether our description generalizes to any (punctured/bordered) surface.

In what follows, we denote by EC.G/ the set of preferably oriented edges of G (see
Definition 3.2), and let E�.G/ WDEori.G/ nEC.G/.

Let e 2E.G/. We give e the preferred orientation and use the same letter e for the
resulting element in EC.G/. We define elements qG.e/; xqG.e/ 2 Z2 by

qG.e/ WD #ff 2EC.G/ j e � f � xeg mod 2;

xqG.e/ WD #ff 2E�.G/ j e � f � xeg mod 2:

Here # means the number of elements of a set.

Proposition 6.5 The maps qG and xqG are elements of Q.G/.

Proof We consider the case of qG only.

We work with Figure 3. Suppose that v is of type 1. Then e1 , xe2 and xe3 have the
preferred orientation, and we have a disjoint union decomposition

ff 2EC.G/ j e1 � f � xe1g

D fxe2; xe3g t ff 2EC.G/ j xe2 � f � e2g t ff 2EC.G/ j xe3 � f � e3g:

This implies that qG.e1/D qG.e2/C qG.e3/.

Suppose that v is of type 2. Then e1 , xe2 , and e3 have the preferred orientation, and
we have a disjoint union decomposition

ff 2EC.G/ j xe2 � f � e2g

D
�
ff 2EC.G/ j e1 � f � xe1g n fxe2g

�
t ff 2EC.G/ j e3 � f � xe3g:

This implies that qG.e2/D qG.e1/C qG.e3/C 1. Therefore, qG 2Q.G/.

By Theorem 6.2, qG and xqG induce quadratic forms on H1.†g;1IZ2/. For simplicity,
we use the same letter qG and xqG for these quadratic forms. This construction of
quadratic forms is Mg;1–equivariant in the following sense.

Proposition 6.6 Let G be a trivalent fatgraph spine of †g;1 , and let ' 2Mg;1 . Then
we have q'.G/ ı '� D qG and xq'.G/ ı '� D xqG , where '� is the automorphism of
H1.†g;1IZ2/ induced by ' .
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Proof We consider the case of qG only. Consider a homomorphism

ˆW
M

e2E.G/

Z2e!
M

e02E.'.G//

Z2e0; ˆ.e/D '.e/:

Since ' gives a combinatorial isomorphism from G to '.G/, we have q'.G/ıˆD qG .
Now ˆ induces the map '� on the level of homology, and we conclude q'.G/ı'�DqG .

Finally, we compute the difference between qG and xqG .

Theorem 6.7 Under the isomorphism (6-1), we have

qG � xqG D �
2
G :

Moreover, we have qG ¤ xqG .

Proof For e 2E.G/, we have

qG.e/� xqG.e/D qG.e/CxqG.e/

D #ff 2Eori.G/ j e � f � xeg mod 2

D

� X
f 2E.G/

�2.f / ��2.e/

�
D .�2

G ��
2.e//;

where the last equality follows from Proposition 5.1. Since f�2.e/ge2E.G/ gener-
ates H1.†g;1IZ2/, we obtain qG � xqG D �

2
G

. The second statement follows from
Theorem 5.2.

Appendix: A nonsingular vector field associated to
a once-bordered trivalent fatgraph spine

Let G be a trivalent fatgraph spine of †g;1 . In this appendix, we define a nonsin-
gular vector field XG on †g;1 , and then consider the induced quadratic form on
H1.†g;1IZ2/. In particular, we discuss a relationship among this quadratic form,
qG and xqG .

The following construction of XG was communicated to the author by Gwénaël Mas-
suyeau.

Let Vect.†g;1/ be the homotopy set of nonsingular vector fields on †g;1 . In other
words, Vect.†g;1/ is the homotopy set of sections of the projection � W UT†g;1!†g;1 .
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Figure 11: XG on Nv . Left: a vertex of type 1. Right: a vertex of type 2.

For X 2 Vect.†g;1/, the winding number

windX W �1.UT†g;1/! Z

is defined as follows. Let z W S1! UT†g;1 be a (based) loop. For any t 2 S1 , there
exists a unique element ˆt Dˆ.X ; z ; t/2S1DU.1/ such that X .� ı z .t//ˆt D z .t/.
Then windX .z / is defined to be the mapping degree of the map S1! S1; t 7!ˆt .
The map windX is a group homomorphism, and its mod 2 reduction

wX 2 Hom.�1.UT†g;1/;Z2/ŠH 1.UT†g;1IZ2/

is a spin structure on †g;1 .

Now we give the preferred orientation to any unoriented edge of G . Let v 2 V int.G/.
According to the type of v , we realize a small neighborhood Nv of v in the xy–plane
as in Figure 11, and then restrict the horizontal vector field @=@x to Nv . We extend the
vector field on

F
v Nv thus obtained to a globally defined nonsingular vector field XG ,

so that outside
F
v Nv , each trajectory of XG is perpendicular to G .

Let qXG
be the quadratic form on H1.†g;1IZ2/ corresponding to wX . Following

Johnson [8], one can compute it as follows. Let  be an oriented simple closed curve
and consider its lift z D .; P / to a loop in UT†g;1 (here P is the velocity vector
of  normalized to have unit length). Then

(A-1) qXG
.Œ �/D windXG

.z /C 1 mod 2:

We apply this formula to  D ye , where e 2Eori.G/. Assume that e has the preferred
orientation. Let L.e/ be the set of corners .f; f 0/ of G (see the proof of Lemma 5.3)
such that
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(1) e � f � f 0 � xe , and
(2) exactly one of f and f 0 have the preferred orientation.

Here, e � f means e � f or e D f . For example, if v is a vertex of type 1 as in
the left part of Figure 11, only .xe2; e3/ is an element of L.e/ among the three corners
around v . Set �.e/D #L.e/.

Lemma A.1 We have windXG
.zye/D .1��.e//=2.

Proof Take a small regular neighborhood N.G/ of G ; we may arrange that ye stays
inside N.G/ throughout. Every time when ye goes through a common vertex of a
member of L.e/, the velocity vector of ye rotates by an angle �� with respect to XG .
Also, when ye goes through the middle point of e , the velocity vector of ye rotates by
an angle � with respect to XG . This proves the lemma.

In particular, using the fact that �.e/ is odd (since e has the preferred orientation and
xe does not), we have from (A-1) that

qXG
.e/D qXG

.Œye�/D 1
2
.1��.e//C 1 mod 2D 1

2
.1C�.e// mod 2:

Proposition A.2 Let G be a trivalent fatgraph spine of †g;1 . Then the quadratic
forms qXG

, qG and xqG are distinct from each other.

Proof By Theorem 6.7, it is sufficient to prove qXG
¤ qG and qXG

¤ xqG .

Let e1 2 Eori.G/ be the “last” preferably oriented edge. Namely, e1 is the unique
element such that e1 has the preferred orientation and if e1 � f then f does not have
the preferred orientation. We have �.e1/D 1 and qXG

.e1/D .1C 1/=2D 1. On the
other hand, since there are no preferably oriented edges f with e1 � f � xe1 , we have
qG.e1/D 0. Hence qXG

¤ qG .

Let e2 2Eori.G/ be the unique element such that e2 has the preferred orientation and
if f � xe2 then f has the preferred orientation. We have �.e2/D 1 and qXG

.e2/D 1.
On the other hand, since any edge f 2Eori.G/ with e2 � f � xe2 has the preferred
orientation, xqG.e2/D 0. Hence qXG

¤ xqG .
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The augmentation category map induced
by exact Lagrangian cobordisms

YU PAN

To a Legendrian knot, one can associate an A1 category, the augmentation category.
An exact Lagrangian cobordism between two Legendrian knots gives a functor of
the augmentation categories of the two knots. We study this functor and establish a
long exact sequence relating the corresponding cohomology of morphisms of the two
ends. As applications, we prove that the functor between augmentation categories is
injective on the level of equivalence classes of objects and find new obstructions to
the existence of exact Lagrangian cobordisms in terms of linearized contact homology
and ruling polynomials.

53D42, 57R17; 53D12, 57M50

1 Introduction

Let ƒ˙ be Legendrian submanifolds in the standard contact manifold .R3 , �D ker˛/,
where ˛ D dz � y dx . An exact Lagrangian cobordism † from ƒ� to ƒC is a
2–dimensional surface in the symplectization of R3 that has cylindrical ends over ƒC
and ƒ� with certain properties. See Figure 1 for a schematic picture and Definition 2.1
for a detailed description.

Lagrangian cobordism is a natural relation between Legendrian submanifolds and is
crucial in the definition of the functorial property of the Legendrian contact homology
differential graded algebra (DGA). For a Legendrian knot ƒ in .R3; � D ker˛/, the
Legendrian contact homology DGA is a powerful invariant of ƒ that was introduced
by Eliashberg [21] and Chekanov [7] in the spirit of symplectic field theory; see
Eliashberg, Givental and Hofer [22]. The underlying algebra A.ƒIF ŒH1.ƒ/�/ is a
unital graded algebra freely generated by Reeb chords of ƒ and a basis of H1.ƒ/
over a field F , where H1.ƒ/ is the singular homology of ƒ with Z coefficients. The
differential @ is defined by a count of rigid holomorphic disks in R�R3 with boundary
on the Lagrangian submanifold R�ƒ. The DGA .A.ƒIF ŒH1.ƒ/�/; @/ is invariant
up to stable tame isomorphism under Legendrian isotopy of ƒ. Ekholm, Honda and
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t
ƒC

†

ƒ�

N

�N

Figure 1: A Lagrangian cobordism † from ƒ� to ƒC lies in the symplec-
tization of R3 , which is .Rt �R3; d.et˛// . The vertical direction is the t
direction and each horizontal plane is R3 . Two Legendrian submanifolds
ƒC and ƒ� sit inside different copies of R3 with t coordinates N and �N ,
respectively.

Kálmán [19] showed that an exact Lagrangian cobordism † from ƒ� to ƒC gives a
DGA map

�†W .A.ƒCIF ŒH1.†/�/; @/! .A.ƒ�IF ŒH1.†/�/; @/;

which is defined by a count of rigid holomorphic disks in R�R3 as well, but with
boundary on †. Here F can be any field if the cobordism † is spin. If the condition
is not satisfied, the field F is assumed to be Z2 .

Remark When † is spin, the boundary Legendrian knots ƒC and ƒ� get induced
spin structure from the spin structure of †. This condition makes the moduli spaces of
the holomorphic disks used in the DGA differentials and the DGA map equipped with a
coherent orientation (following Ekholm, Etnyre and Sullivan [18]). In particular, when
the dimension of a moduli space is 0, one can associate each rigid holomorphic disk
in the moduli space with a sign. Therefore, we can count the disks with sign and get
coefficients in any field F . Otherwise, it is only reasonable to count the disks mod 2,
which means ignoring the orientation. For the rest of the paper, we focus on the
case where † is spin. If one is working on a nonspin cobordism, one can omit our
description of orientation and get the corresponding statements for F D Z2 .

A fundamental question about Lagrangian cobordisms is: given two Legendrian knots
ƒC and ƒ� , does there exist an exact Lagrangian cobordism † between them? In
order to answer this question, we need to investigate the properties of Lagrangian
cobordisms and obtain a relationship between Legendrian knots ƒC and ƒ� . If the
two given Legendrian knots do not satisfy the desired relationship, there does not exist
a cobordism between them. In this way, we can find obstructions to the existence of

Algebraic & Geometric Topology, Volume 17 (2017)



The augmentation category map induced by exact Lagrangian cobordisms 1815

exact Lagrangian cobordisms. Chantraine [4] first gave a relationship between the
Thurston–Bennequin numbers of two Legendrian knots:

(1) tb.ƒC/� tb.ƒ�/D��.†/:

This question was explored further in many works, including Bourgeois, Sabloff and
Traynor [3], Sabloff and Traynor [34], Baldwin and Sivek [1], Cornwell, Ng and Sivek
[11] and Chantraine, Dimitroglou Rizell, Ghiggini and Golovko [6] using generating
families, normal rulings and Floer theory.

We approach the question through studying the relationship between the augmentation
category of the Legendrian knots that are connected by an exact Lagrangian cobordism.
Analogous to the derived Fukaya category of exact Lagrangian compact submanifolds
introduced in Nadler and Zaslow [29], the augmentation category is an A1 category of
Legendrian knots in .R3; ker˛/. Bourgeois and Chantraine first introduced a nonunital
A1 category in [2] and then Ng, Rutherford, Sivek, Shende and Zaslow introduced a
unital version in [33]. We will focus on the latter one.

For a fixed DGA .A.ƒ/; @/ of a Legendrian knot ƒ, the augmentation category
AugC.ƒ/ consists of objects, morphisms and A1 operations. The objects in the
category are augmentations � of the Legendrian contact homology DGA, ie DGA
maps �W .A.ƒ/; @/! .F ; 0/. For any two objects �1 and �2 , the morphism space
HomC.�1; �2/ is a vector space over the field F generated by Reeb chords from ƒ

to ƒ0 , where ƒ0 is a positive Morse perturbation of ƒ. The A1 operations are
composition maps fmn j n � 1g that satisfy certain relations. These relations allow
us to take cohomology of the HomC.�1; �2/ space with respect to m1 , denoted by
H�HomC.�1; �2/. From [33], we know that up to A1 equivalence, the augmentation
category AugC.ƒ/ is an invariant of Legendrian knots under Legendrian isotopy.

We will show that an exact Lagrangian cobordism † from a Legendrian knot ƒ� to
a Legendrian knot ƒC gives a DGA map �† from the DGA A.ƒCIF ŒH1.ƒC/�/
to the DGA A.ƒ�IF ŒH1.ƒ�/�/. By [33], this DGA map induces an A1–category
map f W AugC.ƒ�/! AugC.ƒC/. As a result, the augmentation category AugC
acts functorially under Lagrangian cobordisms as well. For each augmentation ��
of A.ƒ�/, the cobordism † induces an augmentation �C of A.ƒC/ by composing
with the DGA map �† , ie

�C D �� ı�†:

The augmentation category map f sends an object �� of AugC.ƒ�/ to the ob-
ject �C of AugC.ƒC/. For any two objects �1� and �2� in AugC.ƒ�/, the category
map f sends the morphism HomC.�1�; �

2
�/ to the morphism HomC.�1C; �

2
C
/, where

�1
C

and �2
C

are the augmentations induced by †.

Algebraic & Geometric Topology, Volume 17 (2017)
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We investigate properties of this A1–category map through the Floer theory of a pair
of exact Lagrangian cobordisms (see Chantraine, Dimitroglou Rizell, Ghiggini and
Golovko [6]), which is an analog of the construction of Ekholm [15] for a pair of
Lagrangian fillings in the spirit of symplectic field theory (see Eliashberg, Givental and
Hofer [22]). Let † be an exact Lagrangian cobordism from ƒ� to ƒC . Perturb †
using a positive Morse function F and get a new exact Lagrangian cobordism †0 . In [6],
Chantraine, Dimitroglou Rizell, Ghiggini and Golovko constructed a chain complex for
this pair of exact Lagrangian cobordisms †[†0 , called the Cthulhu chain complex.
The generators of this chain complex are the union of double points of †[†0 and Reeb
chords on the cylindrical ends from † to †0 . Indeed, the second part agrees with the
union of HomC spaces in the augmentation category of the Legendrian submanifolds
on two ends. The differential of this chain complex is defined by a count of rigid
holomorphic disks with boundary on †[†0 as well. From [6], the Cthulhu chain
complex is acyclic, which implies the following long exact sequence:

Theorem 1.1 (see Corollary 5.2) Let † be an exact Lagrangian cobordism with
Maslov number 0 from ƒ� to ƒC . If �i� , for i D 1, 2, is an augmentation of A.ƒ�/
and �i

C
is the augmentation of A.ƒC/ induced by †, then we have the following long

exact sequence:

� � � !Hk.†;ƒ�/!Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.†;ƒ�/! � � � :

If �1�D �
2
�D �� , we can identify Hk HomC.�; �/ with the linearized contact homology

LCH�1�k.ƒ/ by Ng, Rutherford, Shende, Sivek and Zaslow [33, Section 5.2]. The long
exact sequence above can be rewritten as

� � � !Hk.†;ƒ�/! LCH�C
1�k

.ƒC/! LCH��
1�k

.ƒ�/!HkC1.†;ƒ�/! � � � :

Computing the Euler characteristics of the exact triangle, we have

tb.ƒC/� tb.ƒ�/D��.†/;

where �.†/ is the Euler characteristic of the surface †. This result was previously
shown by Chantraine in [4].

Combine Theorem 1.1 with the augmentation category map induced by exact Lagrangian
cobordisms and we have the following theorem.

Theorem 1.2 (see Theorem 5.4) Let † be an exact Lagrangian cobordism with
Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC . Assume
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neither ƒC nor ƒ� are empty. For i D 1, 2, if �i� is an augmentation of A.ƒ�/ and
�i
C

is the augmentation of A.ƒC/ induced by †, the map

i0W H 0 HomC.�1C; �
2
C/!H 0 HomC.�1�; �

2
�/

in the long exact sequence in Theorem 1.1 is an isomorphism. Moreover, we have that

H�HomC.�1C; �
2
C/ŠH

�HomC.�1�; �
2
�/˚F��.†/Œ1�;

where F��.†/Œ1� denotes the vector space F��.†/ in degree 1 and �.†/ is the Euler
characteristic of the surface †.

This relation was shown for positive braid closures in Menke [28]. Theorem 1.2 shows
that this is true for general Legendrian knots.

When �1� D �
2
� , we restate Theorem 1.2 in terms of linearized contact homology as

follows:

Corollary 1.3 (see Corollary 5.5) Let † be an exact Lagrangian cobordism with
Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC . Assume
neither ƒC nor ƒ� is empty. If �� is an augmentation of A.ƒ�/ and �C is the
augmentation of A.ƒC/ induced by †, then

LCH�C� .ƒC/Š LCH��� .ƒ�/˚F��.†/Œ0�;

where F��.†/Œ0� denotes the vector space F��.†/ in degree 0.

Therefore, if there exists an exact Lagrangian cobordism † from ƒ� to ƒC , the
Poincaré polynomials of the linearized contact homology of ƒC and ƒ� agree in all
degrees except 0. In degree 0 their coefficients differ by ��.†/. This is a stronger
obstruction to the existence of the exact Lagrangian cobordism than the Thurston–
Bennequin number relation (1).

For instance, Figure 2 shows two Legendrian knots ƒ1 and ƒ2 of smooth knot types
41 and 61 , respectively. There is a topological cobordism between 41 and 61 with
genus 1. The Thurston–Bennequin numbers of ƒ1 and ƒ2 are �3 and �5, respectively,
and thus satisfy the Thurston–Bennequin number relation (1). Therefore, there possibly
exists an exact Lagrangian cobordism from ƒ2 to ƒ1 with genus 1. However, the
Poincaré polynomials of the linearized contact homology for ƒ1 and ƒ2 are t�1C 2t
and 2t�1C 3t , respectively. Thus, we have the following proposition.

Proposition 1.4 (see Proposition 5.6) There does not exist an exact Lagrangian
cobordism with Maslov number 0 from ƒ2 to ƒ1 , where ƒ1 and ƒ2 are as shown
in Figure 2.

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 2: Legendrian knot ƒ1 of knot type 41 (left) and Legendrian knot ƒ2
of knot type 61 (right)

Various long exact sequences similar to that in Theorem 1.1 have been explored. Sabloff
and Traynor [34] gave a long exact sequence using generating families. Chantraine,
Dimitroglou Rizell, Ghiggini and Golovko gave three long exact sequences in [6] in
the same spirit as this paper but use different Morse functions to perturb the cobordism.
The way we construct the pair of cobordisms allows us to have more control over the
behavior of the Morse function. This turns out to be a key point toward proving the
following surprising theorem.

Theorem 1.5 (see Theorems 5.14 and 5.15) Let † be an exact Lagrangian cobordism
with Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC . Then
the A1–category map f W AugC.ƒ�/!AugC.ƒC/ induced by the exact Lagrangian
cobordism † is injective on the level of equivalence classes of objects. In addition,
the corresponding cohomology category map zf W H�AugC.ƒ�/!H�AugC.ƒC/ is
faithful. In particular, when �.†/D 0, the functor zf is fully faithful.

By Ng, Rutherford, Shende, Sivek and Zaslow [33], for a Legendrian knot with a
single basepoint, two augmentations are equivalent if and only if they are isomorphic as
DGA maps. This theorem tells us that the number of augmentations of ƒ� is smaller
than or equal to the number of augmentations of ƒC up to equivalence. However, in
general, it is hard to count the number of augmentations of ƒ up to equivalence. Ng,
Rutherford, Shende and Sivek [32] introduced a new way to count the augmentations,
called the homotopy cardinality, which is related to the ruling polynomial. Recall that
the ruling polynomial is defined by Rƒ.z/D

P
R z
��.R/ , where the sum is over all

normal rulings R of ƒ (see Chekanov [8] for the detailed definition). This invariant is
much easier to compute than the augmentation equivalence class. Using Theorem 1.5,
we have the following corollary.

Corollary 1.6 (see Corollary 5.17) Suppose there exists a spin exact Lagrangian
cobordism with Maslov number 0 from a Legendrian knot ƒ� to a Legendrian knot ƒC .
Then the ruling polynomials Rƒ� and RƒC satisfy

Rƒ�.q
1=2
� q�1=2/� q��.†/=2RƒC.q

1=2
� q�1=2/

for any q that is a power of a prime number.
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This corollary gives a new obstruction to the existence of exact Lagrangian cobordisms.
In particular, we have a new and simpler proof to the fact given by Chantraine [5]
that there does not exist an exact Lagrangian cobordism from the Legendrian m.946/
knot shown in Figure 18 to the Legendrian unknot. This fact is crucial to prove that
Lagrangian concordance is not a symmetric relation.

Another important step toward proving the injectivity and faithfulness in Theorem 1.5
is to understand the differential map of the Cthulhu chain complex better. Analogous
to a result for Legendrian submanifolds in Ekholm, Etnyre and Sabloff [16], we give a
bijective correspondence between rigid holomorphic disks with boundary on a 2–copy
of † and rigid holomorphic disks with boundary on † together with Morse flow lines.
With this in hand, we can decompose the Cthulhu chain complex in various ways and
recover the three long exact sequences in Chantraine, Dimitroglou Rizell, Ghiggini and
Golovko [6].

Outline In Section 2, we review the Chekanov–Eliashberg DGA of a Legendrian
submanifold and the DGA map induced by a Lagrangian cobordism. In Section 3, we
introduce the augmentation category for a Legendrian submanifold and describe the
A1–category map induced by an exact Lagrangian cobordism. In Section 4, we review
the Floer theory of Lagrangian cobordisms. Finally, using the techniques in Section 4,
we prove the main result Theorem 1.1 in Section 5 and discuss its applications.

Acknowledgements The author would like to thank Lenhard Ng for introducing the
problem and many enlightening discussions. The author also thanks Baptiste Chantraine,
John Etnyre and Michael Abel for helpful conversations, the referee for pointing out
Theorem 5.12, Corollary 5.13 and Theorem 5.15, and Caitlin Leverson for comments
on an earlier draft. This work was partially supported by NSF grants DMS-0846346
and DMS-1406371.

2 Legendrian contact homology DGA and exact Lagrangian
cobordisms

2.1 The Legendrian contact homology DGA

In this section, we review the Legendrian contact homology DGA from the geometric
perspective of [19] and the combinatorial perspective of [33, Section 2.2.1]. We refer
readers to [7; 23; 30] for a more detailed introduction.

Let ƒ be a Legendrian submanifold in the standard contact space .R3; � D ker˛/,
where ˛D dz�y dx . For simplicity when defining the degree, we assume throughout
the paper that ƒ has rotation number 0.
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Let .A.ƒIF ŒH1.ƒ/�/; @/ denote the Legendrian contact homology DGA of ƒ, which
is also called the Chekanov–Eliashberg DGA. The underlying algebra A.ƒIF ŒH1.ƒ/�/
is a noncommutative unital graded algebra over a field F generated by

fc1; : : : ; cm; t1; t
�1
1 ; : : : ; tM ; t

�1
M g

with relations ti t�1i D 1 for i D 1; : : : ;M . Here c1; : : : ; cm are Reeb chords of ƒ
and ft1; : : : ; tM g is a basis of the singular homology H1.ƒ/. The grading of a Reeb
chord c is defined as

jcj D CZ.c/� 1;

where c is a capping path for c and CZ is the Conley–Zehnder index introduced
in [17]. See [13, Section 4.1] for the way to choose a capping path c for a Reeb
chord of a Legendrian link. The grading of a Reeb chord depends on the choice of
capping paths, but the difference between two Reeb chords’ gradings is independent
of the choice of capping paths. Furthermore, set the grading of ti to be zero for
i D 1; : : : ;M , and then extend the definition of degree to A.ƒIF ŒH1.ƒ/�/ through
the relation jabj D jajC jbj.

To define the differential @, we need a cylindrical almost complex structure J on
.R�R3; d.et˛//, ie

� J is compatible with the symplectic form d.et˛/;
� J is invariant under the action of Rt ;
� J.@t /D @z and J.�/D � .

For a generic choice of cylindrical almost complex structure J , the differential @ is
defined by counting rigid J–holomorphic disks in .Rt �R3; d.et˛// with boundary
on R �ƒ. See Figure 3 for an example. For Reeb chords a; b1; : : : ; bm of ƒ, let
M.aI b1; : : : ; bm/ denote the moduli space of J–holomorphic disks

uW .DmC1; @DmC1/! .R�R3;R�ƒ/

such that

� DmC1 is a 2–dimensional unit disk with mC 1 boundary points p; q1; : : : ; qm
removed and the points p; q1; : : : ; qm are labeled in a counterclockwise order;

� u is asymptotic to Œ0;1/� a at p ;
� u is asymptotic to .�1; 0�� bi at qi .

Let �M.aI b1; : : : ; bm/ denote the quotient of M.aI b1; : : : ; bm/ by vertical translation
of Rt . When dim �M.aI b1; : : : ; bm/ D 0, the disk u 2M.aI b1; : : : ; bm/ is called
rigid. The gradings of corresponding Reeb chords satisfy

jaj � jb1j � � � � � jbmj D 1:
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ƒ

R�ƒ

ƒ

a

b1
b2

b3

Figure 3: An example of a J–holomorphic disk with boundary on R�ƒ .
The arrows on the Reeb chords indicate the orientations of the Reeb chords,
while the arrows on the disk boundary indicate the orientation inherited from
the unit disk boundary with counterclockwise orientation through u .

For the image of the boundary segment from qi to qiC1 under u, one can close it up
on R�ƒ in a particular way as described in [19, Section 3.2] and take the homology
class of this curve in H1.ƒ/, denoted by �i . Here we use q0 D qmC1 D p . Moreover,
if ƒ is spin, all the relevant moduli spaces of J–holomorphic disks admit a coherent
orientation. Hence, one can associate a sign s.u/ to each rigid J–holomorphic disk u.
In this way, associate the rigid J–holomorphic disk u with a monomial

w.u/D s.u/�0b1�1 � � � bm�m:

We call the homology classes �i , for i D 1; : : : ; m, the coefficients of w.u/. The
differential on Reeb chords is defined by counting rigid J–holomorphic disks:

@aD
X

dim �M.aIb1;:::;bm/D0

X
u2M.aIb1;:::;bm/

w.u/:

Let @ti D @t�1i D 0 for i D 1; : : : ;M and extend the differential to A.ƒIF ŒH1.ƒ/�/
through the Leibniz rule

@.xy/D .@x/yC .�1/jxjx.@y/:

An implicit condition for J–holomorphic disks is the positive energy constraint. For a
Reeb chord c , define the action of c by

a.c/D

Z
c

˛;
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which is the length of the Reeb chord c . The energy E.u/ of a J–holomorphic disk
u 2M.aI b1; : : : ; bm/ satisfies

E.u/D a.a/� a.b1/� � � � � a.bm/:

Therefore, to make each J–holomorphic disk have positive energy, we must have

a.b1/C � � �C a.bm/ < a.a/:

There is an equivalent definition from the combinatorial perspective. Project ƒ onto the
xy–plane to get the Lagrangian projection �xy.ƒ/ of ƒ. After possibly perturbing ƒ,
we can assume that there is a one-to-one correspondence between the double points
of �xy.ƒ/ and the Reeb chords of ƒ. Suppose ƒ is an M–component Legendrian
link. Decorate the diagram with an orientation and a set of minimum basepoints
f�1; : : : ;�M g, ie

� there is exactly one point in f�1; : : : ;�M g on each component of ƒ, and

� the set f�1; : : : ;�M g does not include any end points of Reeb chords of ƒ.

The graded algebra A.ƒ;�1; : : : ;�M / is a noncommutative unital graded algebra over
a field F generated by

fc1; : : : ; cm; t1; t
�1
1 ; : : : ; tM ; t

�1
M g with relations fti t

�1
i D 1 j i D 1; : : : ;M g;

where c1; : : : ; cm are double points of �xy.ƒ/ and t1; : : : ; tM correspond to the
basepoints �1; : : : ;�M . The grading is defined the same as above. For the unit
disk DmC1 as defined above, consider �.aI b1; : : : ; bm/, the space of orientation-
preserving smooth immersions up to parametrization

uW .DmC1; @DmC1/! .R2; �xy.ƒ//

with the following properties:

� u can be extended to the unit disk DmC1 continuously.

� u.p/ D a and the neighborhood of a in the image of u is a single positive
quadrant (see Figure 4).

� u.qi /D bi and the neighborhood of bi in the image of u is a single negative
quadrant for 1� i �m (see Figure 4).

CC

�

�

Figure 4: At each crossing, the quadrants labeled with a C sign are called
positive quadrants while the other two are called negative quadrants.
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If, when traversing @DmC1 counterclockwise from a , one encounters Reeb chords and
basepoints in a sequence s1; : : : ; sl , then we associate u with a monomial w.u/ D
s.u/w.s1/ � � �w.sl/, where:
� s.u/ is the sign associated to the disk u induced from the moduli space coherent

orientation.
� If si is a Reeb chord bj , then w.si /D bj .
� If si is a basepoint �j for some j D 1; : : : ;M , then w.si /D tj if the orientation

of the boundary agrees with the orientation of the link and w.si /D t�1j otherwise.

Define the differential on generators as follows:

@aD
X

jaj�
P
jbi jD1

X
u2�.aIb1;:::;bm/

w.u/ and @tj D@t
�1
j D0 for j D1; : : : ;M:

This can be extended to the whole DGA through the Leibniz rule.

For all the definitions of DGAs .A; @/ above, the differential @ has degree �1 and
satisfies @2D 0 [7; 23]. Up to stable tame isomorphism, the Legendrian contact homol-
ogy DGA is an invariant of ƒ under Legendrian isotopy. In this sense of equivalence,
the combinatorial definition does not depend on the choice of basepoints [31].

However, the homology of the DGA is hard to compute in general. Let us introduce
augmentations of a DGA and use that to deduce linearized contact homology, which is
much easier to compute. Let .A; @/ be a DGA over a field F of a Legendrian link ƒ
with basepoints. A graded augmentation of A is a DGA map

�W .A; @/! .F ; 0/;

where .F ; 0/ is a chain complex that is F in degree 0 and is 0 in other degrees. In
other words, a graded augmentation is an algebra map �W A! F such that �.1/D 1,
� ı @D 0 and �.a/D 0 if jaj ¤ 0.

Given a graded augmentation � , define A� WD A˝ F=.ti D �.ti //. Notice that the
differential @ descends to A� since @.ti / D 0. Elements in A� are summands of
words of Reeb chords. Let C be a free F–module generated by Reeb chords. We can
decompose A� in terms of word length as A� D

L
n�0 C

˝n . Let A�
C

be the part
of A� containing the words with length at least 1, ie A�

C
D
L
n�1 C

˝n . Consider a
new differential @�W A�!A� given by

@� WD �� ı @ ı�
�1
� ;

where ��W A� ! A� is an automorphism defined by ��.a/ D a C �.a/. Observe
that @� preserves A�

C
and does not decrease the minimal length of a word. Thus, it

descends to a differential on A�
C
=.A�
C
/2 Š C . The homology of .C; @�/ is called the
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linearized contact homology of ƒ with respect to � , denoted by LCH��.ƒ/. The chain
complex .C; @�/ is called the linearized contact homology chain complex.

2.2 Exact Lagrangian cobordisms

We now review the DGA map induced by an exact Lagrangian cobordism [19] with
coefficients in general fields (following the orientation convention of [18]). In other
words, an exact Lagrangian cobordism † from ƒ� to ƒC gives a DGA map

�†W A.ƒCIF ŒH1.†/�/!A.ƒ�IF ŒH1.†/�/:

As required in Section 3, we restrict to the case where ƒC and ƒ� are Legendrian
knots with a single basepoint, denoted by �C and �� , respectively. We modify the
DGA map such that the coefficients only depend on the basepoints but not depend on
the cobordism, ie we get a DGA map

�†W A.ƒC;�C/!A.ƒ�;��/:

Definition 2.1 Suppose ƒ˙ are Legendrian submanifolds in .R3; ker˛/, where
˛Ddz�y dx . An exact Lagrangian cobordism † from ƒ� to ƒC is a 2–dimensional
surface in .R�R3; ! D d.et˛// (see Figure 1) such that for some big number N > 0,

� †\ ..N;1/�R3/D .N;1/�ƒC ,
� †\ ..�1;�N/�R3/D .�1;�N/�ƒ� , and
� †\ .Œ�N;N ��R3/ is compact.

Moreover, there exists a smooth function gW †!R such that

et˛ jT†D dg

and g is constant when t ��N and t �N . The function g is called a primitive of †.

For a spin exact Lagrangian cobordism † from ƒ� to ƒC , the Legendrian submani-
folds ƒ˙ inherit induced spin structures. Hence ƒ˙ have F ŒH1.ƒ˙/�–coefficients
DGAs .A.ƒ˙IF ŒH1.ƒ˙/�/; @/, respectively, as described in Section 2.1. Ekholm,
Honda and Kálmán in [19] showed that an exact Lagrangian cobordism † induces
a DGA map from A.ƒC/ to A.ƒ�/ with F ŒH1.†/� coefficients. In order to see
that, first, we need to view the DGAs of ƒ˙ as DGAs with F ŒH1.†/� coefficients.
Notice that the inclusion H1.ƒ˙/ ,! H1.†/ induces a canonical inclusion map
F ŒH1.ƒ˙/� ,! F ŒH1.†/� of the group ring coefficients, which makes it natural to
consider the DGAs of ƒ˙ with F ŒH1.†/� coefficients. Specifically, the new DGA
A.ƒ˙IF ŒH1.†/�/ is generated by Reeb chords of ƒ˙ and elements in H1.†/ over F .
The differential is defined by the original differential in A.ƒ˙IF ŒH1.ƒ˙/�/ composed
with the inclusion map H1.ƒ˙/ ,!H1.†/.
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Second, construct a DGA map with F ŒH1.†/� coefficients. Consider an almost complex
structure J that is compatible with the symplectic form ! and is cylindrical on both
ends. In other words, J matches the cylindrical almost complex structures on both
cylindrical ends. Fix a generic choice of such an almost complex structure J . For Reeb
chords a of ƒC and b1; : : : ; bm of ƒ� , define M.aI b1; : : : ; bm/ to be the moduli
space of the J–holomorphic disks

uW .DmC1; @DmC1/! .R�R3; †/

such that

� DmC1 is a 2–dimensional unit disk with mC 1 boundary points p; q1; : : : ; qm
removed and the points p; q1; : : : ; qm are arranged in a counterclockwise order;

� u is asymptotic to ŒN;1/� a at p ;

� u is asymptotic to .�1;�N�� bi at qi .

When dimM.aI b1; : : : ; bm/D 0, the disk u 2M.aI b1; : : : ; bm/ is called rigid. The
gradings of corresponding Reeb chords satisfy

jaj � jb1j � � � � � jbmj D 0:

For the image of the boundary segment from qi to qiC1 , one can close up in a similar
way as the one in the definition of the DGA differential and take the homology class
in H1.†/, denoted by �i . If † is spin, all the relevant moduli spaces of J–holomorphic
disks admit a coherent orientation. In particular, each rigid J–holomorphic disk obtains
a sign, denoted by s.u/. Associate a monomial w.u/ to the J–holomorphic disk u as

w.u/D s.u/�0b1�1 � � � bm�m:

The homology classes �i , for i D 1; : : : ; m, are called the coefficients of w.u/. The
DGA map is defined by counting rigid J–holomorphic disks with boundary on †:

�.a/D
X

dimM.aIb1;:::;bm/D0

X
u2M.aIb1;:::;bm/

w.u/:

We can extend the morphism to A.ƒCIF ŒH1.†/�/ by setting �.t/D t for any gener-
ator t in H1.†/ and applying the Leibniz rule.

In order to modify the coefficients of the DGA map � , let us consider H1.†/ more
precisely. To simplify the description, we restrict † to Œ�N;N ��R3 and denote it by †
as well. According to Poincaré duality, H 1.†/ŠH1.†;ƒC[ƒ�/. In particular, for
any loop ˛ in † with ends on ƒC[ƒ� which is an element in H1.†;ƒC[ƒ�/ there
is an element �˛ in H 1.†/ such that for any oriented loop  on †, the intersection
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number of ˛ and  is �˛./. Thus, in order to know the homology class of a curve 
in H1.†/, we only need to count the intersection number of each generator curve
of H1.†;ƒC[ƒ�/ with  .

ƒC

ƒ�

†

�C

��

˛

Figure 5: Curve ˛ on a cobordism

Consider a connected exact Lagrangian cobordism † from a Legendrian knot ƒ�
to a Legendrian knot ƒC (see Remark 5.3 for the reason that we assume that † is
connected). Choose basepoints �C and �� for ƒC and ƒ� , respectively. There
exists a curve ˛ on † from �C to �� with exactly one intersection with ƒC and ƒ� ,
respectively. An example is shown in Figure 5. Let V � denote the subgroup of H 1.†/

that is generated by the Poincaré dual of curve ˛ . The dual space V in H1.†/ is
isomorphic to Z.

Now we can modify the DGA map � described above to be a map from A.ƒCIF ŒV �/
to A.ƒ�IF ŒV �/. First, restrict the generators of A.ƒ˙/ to Reeb chords of ƒ˙ and a
basis of V . Second, project the coefficients �i of the monomial w.u/ from H1.†/

to V . Therefore, the DGA map works in F ŒV � coefficients. Indeed, the definitions
of A.ƒ˙IF ŒV �/ match the definition of A.ƒ˙;�˙/, respectively. Hence a connected
exact Lagrangian cobordism † induces a DGA map with F ŒV � coefficients from the
DGA of ƒC with a single basepoint to the DGA of ƒ� with a single basepoint:

�W .A.ƒC;�C/; @/! .A.ƒ�;��/; @/:

This DGA map does depend on the choice of the curve ˛ connecting the two basepoints.

3 The augmentation category

3.1 A1 categories

In this section, we give a lightning review of A1 algebras and A1 categories, follow-
ing [33]. See [26; 25] for a more detailed introduction.
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Definition 3.1 [26, Section 3.1] An A1 algebra over a field F is a Z–graded vector
space A endowed with degree-.2�n/ maps mnW A˝n! A such thatX

rCsCtDn

.�1/rCstmrC1Ct .1
˝r
˝ms˝ 1

˝t /D 0:

The most important things we need among these complicated relations are:
� m1 is a differential on A (ie m21 D 0).
� m2 is associative after passing to the homology with respect to m1 .

An A1 algebra can be achieved nicely through the following construction. Let T .C /DL
n�1 C

˝n be a graded vector space over F equipped with a codifferential b , ie
� b has degree 1,
� b2 D 0,
� b D

L
bn , where bn is a map C˝n! C , and

� b satisfies the co-Leibniz rule

�b D .1˝ bC b˝ 1/�;

where �.a1˝ � � �˝ an/D
Pn
iD1.a1˝ � � �˝ ai /˝ .aiC1˝ � � �˝ an/.

Let C_ WD C Œ�1� and let sW C ! C_ be the canonical degree-1 identification map
a 7! a . Define maps mnW .C_/˝n! C_ such that the following diagram commutes
for all n:

C˝n
bn

//

s˝n

��

C

s

��

.C_/˝n
mn
// C_

Then C_ is an A1 algebra with the mn as A1 operations [36; 37]. One can check
that the degree of mn is 2�n.

Example 3.2 If a Legendrian contact homology DGA .A.ƒ/; @/ has an augmenta-
tion � , the conjugated differential @� is a differential of A�

C
D
L
n�1 C

˝n D T .C /,
where C is the vector space over a field F generated by Reeb chords of ƒ. We
define ı� to be the adjoint of @� on T .C �/D

L
n�1.C

�/˝n , where C � is the dual
of C . More specifically,

ı�.b�m˝ � � �˝ b
�
1 /D

X
a

Coeffb1b2���bm.@
�.a//:

It is not hard to check that ı� is a codifferential of T .C �/. Hence one can use the
construction above to construct an A1 algebra .C �/_ .
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Definition 3.3 [10] An A1 category over a field F is a category where, for any two
objects �1 and �2 , the morphism is a graded vector space Hom.�1; �2/. Moreover, for
any objects �1; �2; : : : ; �nC1 , there exists a degree-.2�n/ map

mnW Hom.�n; �nC1/˝ � � �˝Hom.�1; �2/! Hom.�1; �nC1/
satisfying X

rCsCtDn

.�1/rCstmrC1Ct .1
˝r
˝ms˝ 1

˝t /D 0:

As noted before, the first A1 operation m1 is a differential for Hom.�1; �2/ with
degree 1. Denote its cohomology by H�Hom.�1; �2/. Moreover, we have that m2
descends to an associative map on the cohomology level:

m2W H
�Hom.�2; �3/˝H�Hom.�1; �2/!H�Hom.�1; �3/

for any objects �1 , �2 , �3 .

An A1 morphism between two A1 categories f W A! B maps the object � of A
to f .�/ of B and for any objects �1; �2; : : : ; �nC1 of A, there exists a map

fnW Hom.�n; �nC1/˝ � � �˝Hom.�1; �2/! Hom.f .�1/; f .�nC1//

satisfying the A1 relations [26]. In particular, the first map f1 , called the category
map on the level of morphisms, maps the morphism Hom.�1; �2/ of A to the morphism
Hom.f .�1/; f .�2// of B . From the A1 relations, we know that:

� The functor f1 , the category map on the level of morphisms, commutes with m1
and thus f1 descends to a map on cohomology

f �W H�Hom.�1; �2/!H�Hom.f .�1/; f .�2//:

� For any a 2 Hom.�2; �3/ and b 2 Hom.�1; �2/, we have

f �.m2.Œa�; Œb�//Dm2.f
�Œa�; f �Œb�/;

ie, the composition map m2 commutes with f � when passing to the cohomology
level.

An A1 morphism between two A1 categories f W A! B induces a functor on the
cohomology categories, zf W H�A!H�B . It behaves the same as f on the object
level. On the level of morphisms zf D f � . The functor zf is faithful if f � is injective
and is fully faithful if f � is an isomorphism for any morphism in H�A.

3.2 The augmentation category

In this section, we briefly review the augmentation category AugC.ƒ/, following [33].
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Let ƒ be an oriented Legendrian knot in .R3; ker˛/ endowed with a single basepoint �.
Denote its Legendrian contact homology DGA by .A; @/. Given a field F , the objects
of the augmentation category AugC.ƒ/ are augmentations of .A; @/ to F ,

�W A! F :

In order to describe the morphism HomC.�1; �2/ for any two objects �1 and �2 , we
need to study the DGA of a 2–copy of ƒ, denoted by ƒ.2/ .

By the Weinstein tubular neighborhood theorem, we can identify a neighborhood of ƒ
with a neighborhood of the zero section in the 1–jet space J 1.ƒ/DT �.ƒ/�R through
a contactomorphism. The contact form in J 1.ƒ/ is ˛ D dz �p dq , where q is the
coordinate on ƒ and p is the coordinate in the cotangent direction. For any C 1 small
function f W ƒ! R, the 1–jet j 1f D f.q; f 0.q/; f .q// j q 2 ƒg is a Legendrian
knot in J 1.ƒ/ and thus is a Legendrian knot in R3 . Now choose a particular Morse
function f W ƒ! .0; ı/ such that

� ı is smaller than the minimum length of Reeb chords of ƒ,
� the Morse function f has exactly 1 local maximum point at x and 1 local

minimum point at y , and
� around the basepoint �, the three points �, x , y show up in order when traveling

along the link (see Figure 6).

�
x

y

Figure 6: A neighborhood of the basepoint � on ƒ . The arrow indicates the
orientation of ƒ .

Decorate j 1f with a basepoint in the same location and with the same orientation
as ƒ. Now ƒ[j 1f is a 2–copy of ƒ, denoted by ƒ.2/ . Label ƒ.2/ from top (higher
z coordinate) to bottom (lower z coordinate) by ƒ1 and ƒ2 . An example of the
2–copy of the trefoil with a single basepoint is shown in Figure 7.

The Legendrian contact homology DGA .A.ƒ.2//; @.2// of ƒ.2/ can be recovered
from the data carried by the DGA .A.ƒ/; @/ of ƒ. Recall that A.ƒ/ is generated by
the set R of Reeb chords fa1; : : : ; amg and the set T D ft; t�1g that corresponds to
the basepoint as stated in Section 2.1. Similarly, divide the set of generators of A.ƒ.2//
into two parts R.2/ and T .2/ . It is obvious that ƒ.2/ has two basepoints, and thus we
write T .2/ as f.t1/˙1; .t2/˙1g. As for the set of Reeb chords R.2/ , we divide it into
four parts: R.2/ D

S
i;jD1;2Rij , where Rij is the set of Reeb chords to ƒi from ƒj .
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ƒ1

ƒ2

Figure 7: The Lagrangian projection of a 2–copy of the trefoil with a single basepoint

Observe that Reeb chords of ƒ.2/ come from two sources:

� Each critical point x or y of the Morse function f gives one Reeb chord in R12 ,
denoted by x12 and y12 , respectively. We call these Reeb chords Morse Reeb chords.

� Each Reeb chord al of ƒ gives four Reeb chords of ƒ.2/ , denoted by aij
l
2Rij ,

where i; j D 1; 2 and l D 1; : : : ; m. We call these Reeb chords non-Morse Reeb chords.

It is obvious that ai i and t i , for i D 1, 2, inherit the grading from a and t in A.ƒ/,
respectively. We can choose a family of capping paths such that jaij j D jaj for
any Reeb chord a of ƒ. Under this choice of capping paths  , one can show that
CZ.x12/D Indf .x/ for any Morse Reeb chord x12 through a computation similar to
that in [16]. Hence we have jx12j D 0 and jy12j D �1.

In order to describe the differential @.2/ , we encode the generators in matrices. Let Al ,
for 1� l �m, and X , Y , � be 2� 2 matrices given by

Al D

 
a11
l

a12
l

a21
l

a22
l

!
; X D

�
1 x12

0 1

�
; Y D

�
0 y12

0 0

�
; �D

�
t1 0

0 t2

�
:

The differential @.2/ is defined on generators as follows by applying it entry-by-entry
to these matrices:

@.2/Al Dˆ.@al/CYAl � .�1/
jal jAlY;

@.2/X D��1Y�X �XY;

@.2/Y D Y 2;

@.2/�D 0;

where ˆW A!Mat.2;A.ƒ.2/// is a ring homomorphism given by ˆ.al/D Al and
ˆ.t/D�X .

Given two augmentations �1 and �2 of .A; @/, we get an augmentation � of .ƒ.2/; @.2//
by sending ai i

l
7! �i .al/ and t i i 7! �i .t/ and sending everything else to 0. Therefore
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@
.2/
� D �� ı @

.2/ ı ��1� is a differential of A.2/ D A.ƒ.2//=.t i i D �.t i i //. Both the
morphism HomC.�1; �2/ and the first A1 operation m1 are defined from .A.2/; @.2/� /

through the construction stated in Section 3.1. For i; j D 1; 2, let C ij denote the free
graded F algebra generated by Rij , which is a subalgebra of A.2/ . Notice that C 12

and C 21 are closed under @.2/� since � vanishes on the components in C 11 and C 22 of
the image of @.2/� . Hence C 12 and C 21 are subcomplexes of .A.2/; @.2/� /. Define the
morphism HomC.�1; �2/ between objects �1 and �2 to be .C 12/_ . To simplify the
notation, we write .a12

l
/_ as a_

l
, .x12/_ as x_ and .y12/_ as y_ . Therefore, their

gradings satisfy ja_
l
j D jal jC 1, jx_j D 1 and jy_j D 0. The first A1 operation m1

is defined by the adjoint of @.2/� , ie for any Reeb chord c 2R,

m1.c
_/D

X
a2R

Coeffc.@.2/� a/ a_:

As noted before, m1 is a differential for HomC.�1; �2/. The corresponding cohomology
is denoted by H�HomC.�1; �2/. Similarly, define Hom�.�2; �1/ to be .C 21/_ . Take
the cohomology of Hom�.�2; �1/ with respect to m1 , denoted by H�Hom�.�2; �1/.

Remark One may find the notational convention of Hom�.�2; �1/ unnatural. How-
ever, the notations are consistent in the sense that both HomC.�; �0/ and Hom�.�; �0/
are generated by Reeb chords from the component with the augmentation �0 to the
component with the augmentation � .

The HomC.�1; �2/ space and the Hom�.�1; �2/ space are closely related. Recall that
the generators of HomC.�1; �2/ naturally correspond to the Reeb chords in R12 , which
consist of non-Morse Reeb chords and Morse Reeb chords. Note that the lengths of
Morse Reeb chords are smaller than the lengths of non-Morse Reeb chords. Due to the
positive energy constraint, there does not exist any holomorphic disk that has a positive
puncture at a Morse Reeb chord and a negative puncture at a non-Morse Reeb chord.
Therefore, the graded vector subspace of HomC.�1; �2/ generated by non-Morse Reeb
chords is closed under m1 , and thus is a subcomplex. Indeed, this subcomplex agrees
with .Hom�.�1; �2/;m1/. From [27], for a Legendrian knot ƒ with a single basepoint,
any two augmentations �1 and �2 agree on the generator t that corresponds to the
basepoint. As a result, by [33, Proposition 5.2], the quotient chain complex that is
generated by fx_; y_g is the Morse cochain complex induced by the Morse function f .
Therefore we have the following long exact sequence:

(2) � � � !H i�1.ƒ/!H i Hom�.�1; �2/!H i HomC.�1; �2/!H i .ƒ/! � � � :

Furthermore, given that both HomC.�1; �2/ and Hom�.�1; �2/ are vector spaces over
the field F , combining the universal coefficient theorem with the Sabloff duality in
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[33, Section 5.1.2], we have

(3) Hk Hom�.�1; �2/ŠH�k.Hom�.�1; �2/�/ŠH 2�k HomC.�2; �1/:

For a chain complex C , the chain complex C � is obtained by dualizing the underlying
vector space and differential of C and then negating the gradings.

For the other A1 operators mn , one needs to consider an n–copy of ƒ, denoted
by ƒ.n/ . Construct a DGA .An; @.n/� / of ƒ.n/ that is analogous to .A2; @.2/� /. De-
fine mn to be the adjoint of @n� as in Example 3.2. See [33] for more details.

By [33], the augmentation category described above does not depend on the choice of
the Morse function f . Moreover, up to A1 category equivalence, the augmentation
category is invariant of Legendrian knot under Legendrian isotopy.

A key property of AugC.ƒ/ is that AugC.ƒ/ is a strictly unital A1 category, with
the units given by

e� D�y
_
2 HomC.�; �/;

ie

� m1.e�/D 0;
� for any �1 , �2 and any c 2HomC.�1; �2/, we have m2.c; e�1/Dm2.e�2 ; c/D c ;
� any higher composition involving e� is 0.

As a result, the corresponding cohomology category H�AugC.ƒ/ is a unital category,
which makes it natural to talk about the equivalence relation of objects in AugC.ƒ/.

Definition 3.4 Two objects �1 and �2 are equivalent in AugC.ƒ/ if they are isomor-
phic in the cohomology category H�AugC.ƒ/, ie if there exist Œ˛�2H 0 HomC.�1; �2/
and Œˇ� 2H 0 HomC.�2; �1/ such that m2.Œ˛�; Œˇ�/ D Œe�2 � 2H

0 HomC.�2; �2/ and
m2.Œˇ�; Œ˛�/D Œe�1 � 2H

0 HomC.�1; �1/:

�1
ˇ

22e�1 66
�2

˛
rr e�2hh

By [33], for a Legendrian knot with a single basepoint, two augmentations are equivalent
if and only if they are isomorphic as DGA maps.

Suppose † is a connected exact Lagrangian cobordism from a Legendrian knot ƒ�
to a Legendrian knot ƒC . It induces a DGA map � from the DGA .A.ƒC/; @/
with a single basepoint to a DGA .A.ƒ�/; @/ with a single basepoint. By [33,
Proposition 3.29], this DGA map � induces a unital A1 category morphism f

from AugC.ƒ�/ to AugC.ƒC/. The category map sends an augmentation �� of ƒ�
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to �C D �� ı � , which is an augmentation of ƒC . The family of maps ffng is
constructed through a family of DGA morphisms of n–copies:

f .n/W .A.n/.ƒC/; @.n// 7! .A.n/.ƒ�/; @.n//;

� 7!�;

Y 7! Y;

X 7!��1 �ˆ� ıf .t/;

ˆC.a/ 7!ˆ� ıf .a/ for a 2A.ƒC/:

Let �� be the augmentation of .A.n/.ƒC/; @.n// that sends ai i
l
7! �i�.al/, t

i i 7! �i�.t/

and sends everything else to 0. Define the map fn�1 to be the adjoint of f .n/�� , where

f .n/��
D ��� ıf

.n/
ı��1�� :

In particular, f1 can be written as

(4)

f1W HomC.�1�; �
2
�/! HomC.�1C; �

2
C/;

y_� 7! y_C;

c_ 7!
P

a2A.ƒC/
Coeffc.f .2/��

.a//a_ for c 2A.ƒ�/;

x_� 7! x_CC
P

a2A.ƒC/
Coefft .f .2/��

.a//a_:

When computing Coeffb.f
.2/
�� .a//, where b is either a Reeb chord c 2A.ƒ�/ or t 2T ,

one considers all the terms of f .a/ including b . If a term of f .a/ including b can
be written as pbq , where p and q are words of pure Reeb chords of ƒ� , this term
contributes Coeffpbq.f .a//�

1
�.p/�

2
�.q/ to Coeffb.f

.2/
�� .a//. Therefore we have

Coeffb.f
.2/
��
.a//D

X
p q

Coeffpbq.f .a//�
1
�.p/�

2
�.q/:

Remark According to [33, Proposition 3.29], the condition for a DGA map to induce
a unital A1 category morphism is that the DGA map is compatible with the weak link
gradings in the sense of [33, Definition 3.19]. In our case, where both ƒC and ƒ� are
single component Legendrian knots with a single basepoint, this condition is trivially
satisfied.

4 Floer theory for Lagrangian cobordisms

In this section, we give a brief introduction to the Floer theory of a pair of exact
Lagrangian cobordisms, following [6]. Let †i , for i D 1, 2, be exact Lagrangian
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cobordisms from ƒi� to ƒi
C

in .R�R3; d.et˛//, where ˛D dz�y dx . A schematic
picture is shown in Figure 8. The union of the cobordisms †1[†2 is cylindrical over
ƒ1
C
[ƒ2
C

(resp. ƒ1�[ƒ
2
� ) on the positive end (resp. negative end). Viewing †1[†2 as

a Lagrangian cobordism from the Legendrian link ƒ1�[ƒ
2
� to the Legendrian ƒ1

C
[ƒ2
C

,
we obtain a chain complex generated by Reeb chords of ƒ1�[ƒ

2
� and ƒ1

C
[ƒ2

C
. On

the other hand, if we lift the exact Lagrangian cobordism †1 [†2 to a Legendrian
manifold in R�R3 �R, we have its Legendrian contact homology DGA, which is
generated by double points of †1[†2 . One can construct the Cthulhu chain complex
Cth.†1; †2/ as a mix of the two chain complexes above. It is generated by some Reeb
chords on the cylindrical ends and intersection points of †1 and †2 . Moreover, this
chain complex has trivial cohomology, ie H� Cth.†1; †2/D 0.

ƒ2�

ƒ2C

†2

ƒ1�

ƒ1C

†1

t

N

�N

Figure 8: Pair of Lagrangian cobordisms in .R�R3; d.et˛//

For simplicity in defining gradings, we assume that †i , for i D 1, 2, has trivial Maslov
number throughout this paper.

4.1 The graded vector space

Assume that both †1 and †2 are cylindrical outside Œ�N;N ��R3 , where N is a
positive number. The underlying vector space is a direct sum of three parts:

Cth.†1; †2/D C.ƒ1C; ƒ
2
C/˚CF.†1; †2/˚C.ƒ1�; ƒ

2
�/:

The top level C.ƒ1
C
; ƒ2
C
/ (resp. bottom level C.ƒ1�; ƒ

2
�/) is an F–module generated

by Reeb chords to ƒ1
C

(resp. ƒ1� ) from ƒ2
C

(resp. ƒ2� ) that are lying on the slice
of t DN (resp. t D�N ). The middle level CF.†1; †2/ is an F–module generated
by intersection points of †1 and †2 , which are all contained in .�N;N/�R3 .
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Grading To define the degree, first fix a capping path c for each generator c . For a
Reeb chord a in C.ƒ1

C
; ƒ2
C
/ or C.ƒ1�; ƒ

2
�/, define the degree jaj by

jaj D CZ.a/� 1;

which matches the definition of degree when viewing a as a generator in the Legen-
drian contact homology DGA of ƒ1

C
[ƒ2

C
or ƒ1� [ƒ

2
� . For an intersection point

x 2 CF.†1; †2/, define the degree jxj by

jxj D CZ.x/;

following [35]. One can also see [6, Section 4.2] for details. Note that for a Reeb
chord in C.ƒ1

C
; ƒ2
C
/, its degree in Cth.†1; †2/ will not necessarily coincide with its

degree in C.ƒ1
C
; ƒ2
C
/. It is shifted as we will see later.

Action For i D 1, 2, suppose gi is a primitive of the exact Lagrangian cobordism †i ,
and hence gi is constant when t <�N or t >N . Note that primitive functions are well
defined up to a overall shift by a constant. Thus we may assume that the primitives gi
are both zero on †i [ ..�1;�N/�R3/ for i D 1, 2. The action of generators is
defined under this choice of primitives.

For Reeb chords aC 2 C.ƒ1
C
; ƒ2
C
/ and a� 2 C.ƒ1�; ƒ

2
�/, define the action a by

a.aC/D g2.a
C/�g1.a

C/C

Z
aC
eN˛

and

a.a�/D g2.a
�/�g1.a

�/C

Z
a�
e�N˛ D

Z
a�
e�N˛:

The last part is due to the special choice of primitives. For double points x of †1[†2 ,
the action a.x/ is defined by a.x/D g2.x/�g1.x/.

4.2 The differential

Remark 4.1 Throughout this paper, we restrict ourselves to the case where all inter-
section generators have positive actions since that is the case for the special pair of
cobordisms constructed in Section 5.1. In general, the differential could include one
more map from CF.†1; †2/ to C.ƒ1�; ƒ

2
�/, which is called the Nessie map. However,

by [6, Proposition 9.1], the positive energy condition of the holomorphic disks counted
by the Nessie map requires the corresponding intersections in CF.†1; †2/ to have
negative actions. Therefore, in our special case, we can exclude the Nessie map and
get the differential as an upper triangle as below.
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With the assumption in Remark 4.1, we define the differential under the decomposition

Cth.†1; †2/D C.ƒ1C; ƒ
2
C/˚CF.†1; †2/˚C.ƒ1�; ƒ

2
�/

by a degree-1 map of the form

d D

0@dCC dC0 dC�
0 d00 d0�
0 0 d��

1A :
To describe the differential explicitly, we need to study the holomorphic disks with
boundary on †1[†2 . Fix a generic domain-dependent almost complex structure J
that is compatible with the symplectic form on R�R3 and the cylindrical ends in
the sense of [6, Section 3.1.5]. Suppose that the induced cylindrical almost complex
structure on the positive end .†1[†2/\.ŒN;1/�R3/ is JC and on the negative end
.†1[†2/\..�1;�N��R3/ is J� . The differential d˙˙ of C.ƒ1

˙
; ƒ2
˙
/ counts rigid

J˙–holomorphic disks with boundary on R� .ƒ1
˙
[ƒ2

˙
/, respectively, as described

in Section 2.1. The corresponding moduli space is denoted by MJ˙
.a˙Ip˙; b˙; q˙/,

where a˙ and b˙ are Reeb chords to ƒ1
˙

from ƒ2
˙

while p˙ and q˙ are words of
pure Reeb chords of ƒ1

˙
and ƒ2

˙
, respectively. We also write �MJ˙

.a˙Ip˙; b˙; q˙/

to denote the moduli space MJ˙
.a˙Ip˙; b˙; q˙/ modulo the action of R in the

t direction.

For the remaining maps in the differential, we need to describe J–holomorphic
disks with boundary on †1 [ †2 , where J is the chosen domain-dependent al-
most complex structure. The punctures of these J–holomorphic disks can be either
Reeb chords or intersection points. For generators c0; c1; : : : ; cm in Cth.†1; †2/, let
MJ .c0I c1; : : : ; cm/ denote the moduli space of the J–holomorphic disks

uW .DmC1; @DmC1/! .R�R3; †1[†2/

with the following properties:

� DmC1 is a 2–dimensional unit disk with mC1 boundary points q0; q1; : : : ; qm
removed and the points q0; q1; : : : ; qm are arranged in a counterclockwise order.

� If c0 is a Reeb chord, the image of u is asymptotic to ŒN;1/� c0 near q0 .
If c0 is an intersection point, then limz!q0 u.z/D c0 and u maps the incoming
segment (resp. outgoing segment) of the boundary to †2 (resp. †1 ).

� For i > 0, if ci is a Reeb chord, the image of u is asymptotic to .�1;�N��ci
near qi . If ci is an intersection point, then limz!qi u.z/D ci and u maps the
incoming segment (resp. outgoing segment) of the boundary to †1 (resp. †2 ).
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The four types of moduli spaces used in the differential d of the Cthulhu chain complex
are shown in Figure 9. For any one of these four moduli spaces M, we say a disk
u 2M is rigid if dimMD 0. All the moduli spaces of holomorphic disks introduced
above admit a coherent orientation since both †1 and †2 are spin. Therefore, one
can associate each rigid holomorphic disk u 2M with a sign and thus can count the
number of rigid holomorphic disks in M with sign.

Let each a˙i be a Reeb chord to ƒ1
˙

from ƒ2
˙

and each xi a double point of †1[†2 .
The bold letters p˙ , q˙ are words of pure Reeb chords of ƒ1

˙
and ƒ2

˙
, respectively.

Here we assume, for i D 1, 2, that �i� is an augmentation of A.ƒi�/ and �i
C

is the
augmentation of A.ƒi

C
/ induced by †i . The differential is defined as follows:

dCC.a
C
i /D

X
dim �MJC

.a
C

j
IpC;a

C

i
;qC/D0

j �MJC.a
C
j Ip

C; aCi ; q
C/j�1C.p

C/�2C.q
C/aCj ;

d��.a
�
i /D

X
dim �MJ� .a

�
j
Ip�;a�

i
;q�/D0

j �MJ�.a
�
j Ip

�; a�i ; q
�/j�1�.p

�/�2�.q
�/a�j ;

d00.xi /D
X

dimMJ .xj Ip�;xi ;q�/D0

jMJ .xj Ip
�; xi ; q

�/j�1�.p
�/�2�.q

�/xj ;

d0�.a
�
i /D

X
dimMJ .xj Ip�;a

�
i
;q�/D0

jMJ .xj Ip
�; a�i ; q

�/j�1�.p
�/�2�.q

�/xj ;

dC0.xi /D
X

dimMJ .a
C

j
Ip�;xi ;q�/D0

jMJ .a
C
j Ip

�; xi ; q
�/j�1�.p

�/�2�.q
�/aCj ;

dC�.a
�
i /D

X
dimMJ .a

C

j
Ip�;a�

i
;q�/D0

jMJ .a
C
j Ip

�; a�i ; q
�/j�1�.p

�/�2�.q
�/aCj ;

where jMj denotes the number of rigid holomorphic disks in the moduli space M
counted with sign. Note that the definition of differential depends on the choice of
augmentations ��1 and ��2 , whose existence are essential to the Floer theory.

A holomorphic disk counted by the differential must satisfy the rigidity condition and
the positive energy condition. We will describe these conditions in detail.

The rigidity condition Let us interpret the condition dimMJ .c1Ip; c2; q/ D 0 in
terms of jci j for i D 1, 2, where ci can be either a Reeb chord or an intersection point
while p and q are words of pure Reeb chords in degree 0. Instead of deriving a formula
for the dimension of a moduli space, we use the idea of the wrapped Floer homology
to find the relation between jc1j and jc2j. Recall that both †1 and †2 are cylindrical
outside Œ�N;N ��R3 . Consider a nondecreasing function �.t/W R�0! R�0 such
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aC

a�p�1 q�1 q�2

u 2M.aCIp�; a�; q�/

†1 †1

†1 †1

†2 †2

†2 †2

aC

x

p�1 q�1 q�2

u 2M.aCIp�; x; q�/

x1

x2

p�1 q�1 q�2

u 2M.x1Ip
�; x2; q

�/

x

a�p�1 q�1 q�2

u 2M.xIp�; a�; q�/

Figure 9: A sketch of the J–holomorphic disks in the differential d . Here a˙

are Reeb chords to ƒ1
˙

from ƒ2
˙

, respectively, and x , x1 , x2 are double points
of †1 [†2 . In these examples, p� is a word of one pure Reeb chord p�1
of ƒ1� while q� is a word q�1 q

�
2 of two pure Reeb chords of ƒ2� . The arrows

denote the orientation inherited from the boundary of the unit disk.

that � 0.t/D 0 when t �N and � 0.t/D 1 when t �N 0 , where N 0 is a number bigger
than N . Note that XH D��.jt j/@z is a Hamiltonian vector field with its time-s flow
denoted by ˆsH . Flow †1 through XH and get a new cobordism ˆsH .†

1/, which is
another exact Lagrangian cobordism according to Section 5.1. Observe that ˆsH .†

1/

wraps †1 on both ends in the negative Reed chord direction. Hence for a large enough
number s , each Reeb chord c to ƒ1

C
(resp. ƒ1� ) from ƒ2

C
(resp. ƒ2� ) corresponds to

a transversally double point Lc of ˆsH .†
1/[†2 in N < t <N 0 (resp. �N 0< t <�N ).

Moreover, if c is a Reeb chord in C.ƒ1
C
; ƒ2
C
/, we have

j Lcj D CZ. Lc/D CZ.c/C 1D jcjC 2:

If c is Reeb chord in C.ƒ1�; ƒ
2
�/,

j Lcj D CZ. Lc/D CZ.c/D jcjC 1:

Each double point x of †1 [ †2 naturally corresponds to a double point Lx of
ˆsH .†

1/[†2 in �N < t < N with gradings satisfying j Lxj D jxj.
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Remark The difference in grading correspondence between the Reeb chords in
C.ƒ1

C
; ƒ2
C
/ and the Reeb chords in C.ƒ1�; ƒ

2
�/ can be understood better in a special

case where †1 is a pushoff of †2 through a positive Morse function F W †2!R>0 . In
other words, in a Weinstein neighborhood of †2 , the cobordism †1 is the graph of dF
for some positive Morse function F W †2!R>0 . In this case, the cobordism ˆs

h
.†1/

is a pushoff of †2 through another Morse function zF as well. By the canonical Floer
theory [24], we can choose a family of capping paths so that CZ.x/D Ind zF .x/ for
any intersection point x of ˆs

h
.†1/ and †2 . Similarly, for any Morse Reeb chord c

in ƒ1
C
[ƒ2

C
, we can further require that IndfC.c/ D CZ.c/, where fC D F jƒ2

C
.

Notice that Ind zF . Lc/D IndfC.c/C 1. Therefore

j Lcj D CZ. Lc/D Ind zF . Lc/D IndfC.c/C 1D CZ.c/C 1D jcjC 2:

For a Morse Reeb chord c in ƒ1� [ ƒ
2
� , the indices satisfy Ind zF . Lc/ D Indf�.c/,

where f� D F jƒ2� . Hence j Lcj D CZ. Lc/D Ind zF . Lc/D Indf�.c/D CZ.c/D jcjC 1.
A schematic figure is shown in Figure 10.

†1

ˆs
h
.†1/

†1

ˆs
h
.†1/

†2

†2 †2

†2

aCa� aCa�
LaCLa�

t t

Figure 10: Comparison between †1 and ˆs
h
.†1/ in terms of front projection

(top) and Lagrangian projection (bottom). The indices satisfy j LaCjD jaCjC2
and j La�j D ja�jC 1:

So far, we have shown that generators of Cth.†1; †2/ can be identified with in-
tersection points of ˆsH .†

1/ and †2 , which are generators of Cth.ˆsH .†
1/; †2/.

Moreover, by [6, Proposition 8.2], the Cthulhu chain complexes Cth.†1; †2/ and
Cth.ˆsH .†

1/; †2/ are identified on the level of complexes as well. Note that the
generators of Cth.ˆsH .†

1/; †2/ do not contain any Reeb chords and hence we have
Cth.ˆsH .†

1/; †2/ D
�
CF.ˆsH .†

1/; †2/; d00
�
. Lift ˆsH .†

1/[†2 to a Legendrian
submanifold L in R�R3 �R. Note that

�
CF.ˆsH .†

1/; †2/; d00
�

is the dual of the
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linearized contact homology chain complex of L as introduced in Section 2.1. Hence
if dimM.c1Ip; c2; q/ D 0, there are rigid holomorphic disks that have a positive
puncture at Lc1 and a negative puncture at Lc2 , which implies j Lc1j�j Lc2j D 1. We can get
the corresponding grading relation between c1 and c2 . In particular, let a˙ be Reeb
chords in C.ƒ1

˙
; ƒ2
˙
/ and x1 , x2 be intersection points of †1 and †2 while p and q

are words of pure Reeb chords in degree 0 of ƒ1� and ƒ2� , respectively. We have:

� If dimMJ .x1Ip; x2; q/D 0, then jc1j � jc2j D 1.

� If dimMJ .x1Ip; a
�; q/D 0, then jc1j � ja�j D 2.

� If dimMJ .a
CIp; x1; q/D 0, then jaCj � jx1j D �1.

� If dimMJ .a
CIp; a�; q/D 0, then jaCj � ja�j D 0.

As a result, the Cthulhu chain complex can be written as

Cthk.†1; †2/D C k�2.ƒ1C; ƒ
2
C/˚CFk.†1; †2/˚C k�1.ƒ1�; ƒ

2
�/:

Under this decomposition, the differential

d D

0@dCC dC0 dC�
0 d00 d0�
0 0 d��

1A
has degree 1 as we expected.

The positive energy condition We interpret the positive energy condition of a holo-
morphic disk u 2M.c0I c1; : : : ; cm/ in terms of the action of ci , where i D 0; : : : ; m.
Following [14], we define the energy E.u/ of a holomorphic disk

uW .D2; @D2/! .R�R3; †1[†2/

by E.u/DE!.u/CE˛.u/, where the !–energy is given by

E!.u/

D

Z
u�1.Œ�N;N��R3/

u�.!/C

Z
u�1..�1;�N/�R3/

u�.e�Nd˛/C

Z
u�1..N;1/�R3/

u�.eNd˛/:

Write uD .t; v/, where t W D2!R and vW D2!R3 . Define the ˛–energy E˛.u/ by

sup
��

�Z
u�1..�1;�N/�R3/

��.t/ dt^.v
�˛/

�
Csup
�C

�Z
u�1..N;1/�R3/

�C.t/ dt^.v
�˛/

�
;

where �C and �� range over all compactly supported smooth functions such thatZ �N
�1

��.t/ dt D e
�N and

Z 1
N

�C.t/ dt D e
N ;
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respectively. By Stokes’ theorem, for any holomorphic disk u 2M.c0I c1; : : : ; cm/,
we have

E!.u/D a.c0/�

mX
lD1

a.cl/:

A holomorphic disk has positive !–energy, that is, E!.u/ > 0, which implies that
a.c0/ >

Pm
lD1 a.cl/.

Under the assumption in Remark 4.1, the differential d of the Cthulhu chain complex
is of the form of an upper triangle. By [6, Section 6], we have d2 D 0 and thus
d is a differential map. Moreover, from [6, Section 8], the induced cohomology
H� Cth.†1; †2/ is an invariant under compactly supported Hamiltonian isotopies.
Push †1 along the negative z direction until †1 is far below †2 and then there is no
Reeb chord to †1 from †2 nor intersection point between †1 and †2 . It is obvious
that the cohomology is trivial, ie H� Cth.†1; †2/D 0.

5 Main result

In Section 5.1, we perturb an exact Lagrangian cobordism using a Morse function and
obtain a pair of Lagrangian cobordisms. In Section 5.2, we apply the Floer theory to this
pair of cobordisms and get the long exact sequence in Theorem 1.1. In Section 5.3, we
describe the rigid holomorphic disks counted by dC� , which is a part of the differential
map of the Cthulhu chain complex, in terms of holomorphic disks with boundary on †
and Morse flow lines. This is useful when identifying f1 , ie the category map on the
level of morphisms, with dC� . In Section 5.4, we extend the method in Section 5.3 to
describe the differential d of the Cthulhu chain complex and recover the long exact
sequences in [6]. Finally, we use the identification in Section 5.3 between f1 and dC�
to prove Theorem 1.5 in Section 5.5.

5.1 Construction of the pair of cobordisms

First let us describe the neighborhood of a Lagrangian cobordism. Let † be an exact
Lagrangian cobordism from ƒ� to ƒC in .R � R3; d.et˛//, where ƒ� and ƒC
are Legendrian links. By the Weinstein Lagrangian neighborhood theorem, there is a
symplectomorphism

 W nbhd.†/� .R�R3; d.et˛//! .T �†; d�/;

where � is the negative Liouville form � D �
P
pi dqi of T �† with coordinates

..q1; q2/; .p1; p2//. Specifically, on the .˙1�/boundary R�ƒ˙ , the symplecto-
morphism  is given by a composition  1 ı  0 of two symplectomorphisms. As
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mentioned before, there is a contactomorphism from a tubular neighborhood of ƒ˙
in R3 to a neighborhood of the zero section of J 1.ƒ˙/. Composing with the identity
map on Rt , we get the symplectomorphism  0 from the neighborhood of R�ƒ˙
in R�R3 to R�J 1.ƒ˙/. The second part  1 is given by

 1W nbhd.†/� ..R�J 1.ƒ˙//; d.et˛//! .T �.R>0 �ƒ˙/; d�/;

.t; .q; p; z// 7! ..et ; q/; .z; etp//:

For a Morse function F W †!R�0 such that the determinant of the Hessian matrix
is small enough, the graph of dF is a Lagrangian submanifold in T �†. Pull it back
to R�R3 and denote  �1.graph.dF // by †0 .

Now we show that †0 is an exact Lagrangian submanifold as well. Notice that V.q;p/ WD
dF jq is a Hamiltonian vector field in T �† since �V d� D�d zF , where zF DF ı� and
� is the natural projection � W T �.†/!†. In order to extend  �1� .V / to a Hamiltonian
vector field in R�R3 , we choose a smooth cutoff function  W T �.†/!R such that
.q;p/D 1 in a tubular neighborhood of the zero section containing the graph of dF
and .q;p/ D 0 outside a slightly bigger tubular neighborhood of the zero section.
Pull the Hamiltonian vector field of  � zF back through  and extend to a Hamiltonian
vector field XH in R�R3 . For a suitable neighborhood of † in R�R3 , we have

�XHd.e
t˛/jnbhd.†/ D  

�.�V d�/D  
�.�d zF /D d.� zF ı /jnbhd.†/:

Hence its Hamiltonian H is the same as � zF ı around †. Denote the time-s flow
of XH by �sH and thus †0 D �1H .†/. We can compute the 1–form on †0 :

(5) �1H
�
et˛ D et˛C

Z 1

0

d

ds
�sH
�
.et˛/ ds

D et˛C

Z 1

0

�sH
�
.�XHd.e

t˛/C d.�XH e
t˛// ds

D et˛C

Z 1

0

�sH
�
.dH C d.et˛.XH /// ds

D et˛C d

�Z 1

0

.H C et˛.XH // ı�
s
H ds

�
:

Thus †0 is exact. Moreover, if † has a primitive g , then †0 has a primitive

gC

Z 1

0

.H C et˛.XH // ı�
s
H ds:

We are going to construct a particular Morse function for † such that the image of the
Morse function has cylindrical ends as well and thus is an exact Lagrangian cobordism.
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Suppose † is cylindrical outside Œ�N C ı;N � ı��R3 , where 0 < ı < 1. Choose
Morse functions g˙W ƒ˙!

�
0; 1
2

�
and GW †\ .Œ�N;N ��R3/! .0; 1/ such that

Gj†\ft2Œ�N;�NCı�[ŒN�ı;N �g D e
t :

Define a smooth nondecreasing function �W R>0! Œ0; 1� such that �.s/D 0 for s � 1
and �.s/D 1 for s � eı .

For 0 < � < e�2 , define a Morse function F �W †!R>0 to be

F �.t; q/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�2Ng�.q/s if t < �N;�
�.eN s/.�N � �2Ng�.q//C �

2Ng�.q/
�
s if �N � t � �N C ı;

�NG if �N C ı < t < N � ı;�
�N C �.e�NCıs/�NgC.q/

�
s if N � ı � t �N;�

�N C �NgC.q/
�
s if t > N;

where s D et . One can check that F � has the following properties:

� The Morse function F � is increasing with respect to t when t � �N C ı

or t�N�ı . This implies that the critical points of F � and the critical points of G
are in one-to-one correspondence and are all contained in †\ .Œ�N;N ��R3/.

� The Morse function F � is bounded by 2�N eN on †\ .Œ�N;N ��R3/.
� Write F �jfN g�ƒC as f �

C
eN and F �jf�N g�ƒ� as f �� e

�N , respectively. The
graph of dF � on .�1;�N/�ƒ� is the same as .�1;�N/� graph.df �� /
and the graph of dF � on .N;1/�ƒC is the same as .N;1/� graph.df �

C
/.

Push .†;ƒC; ƒ�/ off through F � and obtain a copy of .†;ƒC; ƒ�/, labeled
by .†1; ƒ1

C
; ƒ1�/. Label the original .†;ƒC; ƒ�/ by .†2; ƒ2

C
; ƒ2�/. Thus †1

is a pushoff of †2 through F � and ƒ1
C

(resp. ƒ1� ) is a pushoff of ƒ2
C

(resp. ƒ2� )
through f �

C
(resp. f �� ).

5.2 The long exact sequence

Now we apply the Floer theory to the pair of cobordisms †1 [†2 constructed in
Section 5.1 and get a long exact sequence. Combining the long exact sequence with
the augmentation category map induced by the exact Lagrangian cobordism, we obtain
an obstruction to the existence of the exact Lagrangian cobordisms.

Recall that the grading for generators in the Cthulhu chain complex depends on the
choice of capping paths. According to the canonical Floer theory [24], we can choose
a family of capping paths such that the Conley–Zehnder index of any double point x
of †1[†2 satisfies CZ.�x/D IndF �.x/ . Now we apply the Floer theory to the pair
of Lagrangian cobordisms †1[†2 and have the following theorem.
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Theorem 5.1 Let †i , for i D 1, 2, be the cobordisms from ƒi� to ƒi
C

as constructed
in Section 5.1. Suppose �i� is an augmentation of A.ƒi�/ and �i

C
is the augmentation

of A.ƒi
C
/ induced by †i . Fix a suitable domain-dependent almost complex structure

on R�R3 that is compatible with the symplectic form and cylindrical ends. For �
small enough, the Cthulhu chain complex is

Cthk.†1; †2/D C k�2.ƒ1C; ƒ
2
C/˚CFk.†1; †2/˚C k�1.ƒ1�; ƒ

2
�/:

Under this decomposition, the differential is

d D

0@dCC dC0 dC�
0 d00 d0�
0 0 d��

1A :
Moreover:

(1) The map d00 is the Morse codifferential induced by F � , ie the chain complex
.CFk.†1; †2/; d00/ is the Morse cochain complex .C kMorseF

�; dF �/ induced
by F � .

(2) The chain complex .C k�2.ƒ1
C
; ƒ2
C
/; dCC/ is equal to .Homk�1C .�1

C
; �2
C
/;m1/

while the chain complex .C k�1.ƒ1�; ƒ
2
�/; d��/ equals .HomkC.�

1
�; �

2
�/;m1/.

Proof First, we need to show that each intersection point x 2 CFk.†1; †2/ has a
positive action, which is the condition for the differential to have the form above
by Remark 4.1.

Let gi be a primitive of †i for i D 1, 2. According to the computation (5), we have

g1 D g2C

Z 1

0

.H C et˛.XH // ı�
s
H ds;

where H D� zF � ı . It is not hard to check that g1 D g2 on †\ ..�1;�N/�R3/.
Therefore we can assume g1 D g2 D 0 on †\ ..�1;�N/�R3/ and use g1 and g2
as primitives to define actions. The action of each intersection point x is given by

a.x/D g2.x/�g1.x/D

Z 1

0

.H C et˛.XH // ı�
s
H ds:

Notice that the vector field XH vanishes at the intersection point x . Hence

a.x/D�

Z 1

0

H ı�sH ds D�H D F
�
ı .x/ > 0:

Next, we are going to show that for � small enough, the rigid holomorphic disks
that contribute to d00 do not include any pure Reeb chords as negative punctures.
Let x and y be two double points of †1 [ †2 . For any rigid holomorphic disk
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u 2M.xIp; y; q/, where p and q are words of pure Reeb chords of ƒ1�[ƒ
2
� , we

have the energy estimate

E!.u/� a.x/� a.y/� a.p/� a.q/:

Since u has positive energy, we have

a.p/C a.q/� F �. .x//�F �. .y//� F �. .x//:

Therefore, for � small enough that the maximum of the Morse function F � is smaller
than the minimum action of pure Reeb chords of ƒ1� and ƒ2� , the moduli space that
contributes to d00 is of the form M.xIy/. By [16, Lemma 6.11], the boundary of
a rigid holomorphic disk with two punctures at intersection points converges to a
rigid Morse flow line, which implies d00 D dF � . Furthermore, the gradings satisfy
jxj D CZ.x/D IndF �.x/ . Therefore .CFk.†1; †2/; d00/D .C kMorseF

�; dF �/.

Recall that there is a natural identity map with degree 1 from C k�1.ƒ1
˙
; ƒ2
˙
/ to

HomkC.�
1
˙
; �2
˙
/, respectively. Moreover, the definitions of d˙˙ and m1 match as well.

Hence we have .C k�1.ƒ1�; ƒ
2
�/; d��/ D .HomkC.�

1
�; �

2
�/;m1/. On the other hand,

we have .C k�2.ƒ1
C
; ƒ2
C
/; dCC/D .Homk�1C .�1

C
; �2
C
/;m1/.

For the remainder of the paper, we fix a small enough � and write F � , f �
C

, f ��
as F , fC , f� , respectively. According to the Floer theory in Section 4, we have
Hk.Cth.†1; †2/; d/D 0, where

Cthk.†1; †2/D Homk�1C .�1C; �
2
C/˚C

k
MorseF ˚HomkC.�

1
�; �

2
�/

and

d D

0@m1 dC0 dC�0 dF d0�
0 0 m1

1A :
Consider the chain map ‰ D dC�C d0� :

‰W .HomkC.�
1
�;�

2
�/;m1/!.HomkC.�

1
C;�

2
C/˚C

kC1
MorseF; d

0/; where d 0D
�
m1 dC0
0 dF

�
:

Notice that the mapping cone of ‰ has trivial homology. Therefore,

Hk.HomC.�1�; �
2
�//ŠH

k Cone.dC0/:

Hence we have the following long exact sequence:

� � � !Hk.CMorseF; dF /!Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.CMorseF; dF /! � � � :
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Moreover, notice that in the construction in Section 5.1, the gradient flows of F flow
in from the bottom and out of the top. Hence we have

Hk.CMorseF; dF /DH
k.†;ƒ�/:

Corollary 5.2 Let † be an exact Lagrangian cobordism with Maslov number 0
from ƒ� to ƒC . For i D 1, 2, if �i� is an augmentation of A.ƒ�/ and �i

C
is the aug-

mentation of A.ƒC/ induced by †, then we have the following long exact sequence:

(6) � � � !Hk.†;ƒ�/!Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.†;ƒ�/! � � � :

Remark When the Maslov number of † is d which is not 0 the method above works
as well. The only difference is that the grading of generators in the Cthulhu chain com-
plex is defined mod d . Thus, the long exact sequence (6) holds with gradings mod d .

If �1� D �
2
� D �� , by [33, Section 5.2], we have the identification

Hk HomC.�; �/Š LCH�1�k.ƒ/;

where LCH�k.ƒ/ is the linearized contact homology of ƒ. The long exact sequence (6)
can be rewritten in terms of linearized contact homology:

� � � !Hk.†;ƒ�/! LCH�C
1�k

.ƒC/! LCH��
1�k

.ƒ�/!HkC1.†;ƒ�/! � � � :

Furthermore, if ƒ� is empty, then † is an exact Lagrangian filling of ƒC and �C is an
augmentation of A.ƒC/ induced by the Lagrangian filling. The long exact sequence (6)
gives

Hk.†/ŠHk HomC.�C; �C/Š LCH�C
1�k

.ƒC/;

which is the Seidel isomorphism (following [33]). This theorem was conjectured by
Seidel [35] and was proved by Dimitroglou Rizell [13].

If ƒC , instead, is empty and A.ƒ�/ has an augmentation �� , the long exact se-
quence (6) tells us that

Hk HomC.��; ��/ŠHkC1.†;ƒ�/D

8<:
F if k D 1;
F1��.†/ if k D 0;
0 otherwise.

However, by Sabloff duality (3),

dimH 0 HomC.��; ��/D dimH 2 Hom�.��; ��/D dimH 2 HomC.��; ��/D 0:

This is a contradiction since the unit e�� D�y
_ is always in H 0 HomC.��; ��/ and

is not 0. Thus if ƒC is empty, then ƒ� does not admit any augmentation. This result
was previously known [6; 12].
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Remark 5.3 For the rest of the paper, we will focus on the case where ƒC and ƒ� are
single component knots. Given the fact that there does not exist a compact Lagrangian
manifold in R�R3 and ƒ� does not admit a cap (since ƒ� has an augmentation),
we know that any cobordism † from ƒ� to ƒC must be connected.

Combining the long exact sequence (6) with the augmentation category map induced
by the exact Lagrangian cobordism †, we have the following theorem.

Theorem 5.4 Let † be an exact Lagrangian cobordism with Maslov number 0 from
a Legendrian knot ƒ� to a Legendrian knot ƒC . For i D 1, 2, assume �i� is an
augmentation of A.ƒ�/ with a single basepoint and �i

C
is the augmentation of A.ƒC/

induced by †. Then the map

i0W H 0 HomC.�1C; �
2
C/!H 0 HomC.�1�; �

2
�/

in the long exact sequence (6) is an isomorphism. Moreover, we have that

(7) H�HomC.�1C; �
2
C/ŠH

�HomC.�1�; �
2
�/˚F��.†/Œ1�;

where F��.†/Œ1� denotes the vector space F��.†/ in degree 1 and �.†/ is the Euler
characteristic of the surface †.

Proof By Remark 5.3, we have

Hk.†;ƒ�/D

�
F��.†/ if k D 1;
0 otherwise.

The long exact sequence (6) shows that for k > 1 or k < 0, the map

ik W Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

in the long exact sequence induces an isomorphism

Hk HomC.�1C; �
2
C/ŠH

k HomC.�1�; �
2
�/:

When k D 0 or 1, we have

0!H 0 HomC.�1C; �
2
C/

i0
�!H 0 HomC.�1�; �

2
�/! F��.†/

!H 1 HomC.�1C; �
2
C/!H 1 HomC.�1�; �

2
�/! 0:

To finish the proof, we need to show

dim.H 0 HomC.�1C; �
2
C//� dim.H 0 HomC.�1�; �

2
�//:
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Once this inequality holds, the fact that i0W H 0 HomC.�1C; �
2
C
/!H 0 HomC.�1�; �

2
�/

is injective implies that it is an isomorphism. Note that the long exact sequence (6) is
over the field F . It follows that

H 1 HomC.�1C; �
2
C/ŠH

1 HomC.�1�; �
2
�/˚F��.†/:

To prove the inequality, we exchange the positions of �1 and �2 in the long exact
sequence (6) and get

� � � !Hk.†;ƒ�/!Hk HomC.�2C; �
1
C/

!Hk HomC.�2�; �
1
�/!HkC1.†;ƒ�/! � � � ;

which implies
H 2 HomC.�2C; �

1
C/ŠH

2 HomC.�2�; �
1
�/:

By Sabloff duality (3), we have

dim.H 0 Hom�.�1˙; �
2
˙//D dim.H 2 HomC.�2˙; �

1
˙//:

Thus dim.H 0 Hom�.�1C; �
2
C
//D dim.H 0 Hom�.�1�; �

2
�//.

Since ƒC and ƒ� are both Legendrian knots with a single basepoint, we have the
long exact sequence (2) for ƒC and ƒ� :

0!H 0 Hom�.�1˙; �
2
˙/!H 0 HomC.�1˙; �

2
˙/

!H 0.ƒ˙/
ı˙
�!H 1 Hom�.�1˙; �

2
˙/! � � � :

From this long exact sequence, we have

dim.H 0 HomC.�1˙; �
2
˙//D dim.H 0 Hom�.�1˙; �

2
˙//C dim.ker ı˙/:

Thus, to prove dim.H 0 HomC.�1C; �
2
C
//� dim.H 0 HomC.�1�; �

2
�//, we only need to

show dim.ker ıC/� dim.ker ı�/.

Recall that the cobordism † from ƒ� and ƒC induces an A1–category map

f W AugC.ƒ�/!AugC.ƒC/

in the way described in Section 3.2. In particular, we get the functor f1 of augmentation
categories on the level of morphisms:

f1W HomC.�1�; �
2
�/! HomC.�1C; �

2
C/:

This map descends to the cohomology level as

f �W H�HomC.�1�; �
2
�/!H�HomC.�1C; �

2
C/:

Notice that f1 sends Hom�.�1�; �
2
�/ to Hom�.�1C; �

2
C
/. Hence f1 induces a map

between the cohomology of the quotient chain complexes, denoted by f � as well.
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The following diagram commutes:

0 // H 0Hom�.�1C;�
2
C/

// H 0HomC.�1C;�
2
C/

// H 0.ƒC/
ıC
// H 1Hom�.�1C;�

2
C/

// � � �

0 // H 0Hom�.�1�;�
2
�/

//

f �

OO

H 0HomC.�1�;�
2
�/

//

f �

OO

H 0.ƒ�/
ı�
//

f �

OO

H 1Hom�.�1�;�
2
�/

//

f �

OO

� � �

Thus f �.ker ı�/� ker ıC . Furthermore, notice that f1 sends the generator .y�/_ 2
C 0Morse.ƒ�/ to the corresponding .yC/_ 2 C 0Morse.ƒC/, and C�1Morse.ƒC/D 0. Hence
f � is injective on H 0.ƒ�/, which implies

dim.ker ıC/� dim.ker ı�/:

If �1� D �
2
� D �� and �� comes from a Lagrangian filling L� , then �C also comes

from the filling LC , which is a concatenation of † and L� . By Seidel’s isomorphism
(following [33]), we have HomkC.�˙; �˙/ŠH

k.L˙/, which implies that

Hk HomC.�C; �C/ŠHk HomC.��; ��/ for k ¤ 1

and when k D 1,

H 1 HomC.�C; �C/ŠH 1 HomC.��; ��/˚F��.†/:

Theorem 5.4 is a generalization of Seidel’s isomorphism. Equation (7) holds even if ��
does not come from a Lagrangian filling or �1� and �2� are not the same.

If the two augmentations are the same, we can identify the cohomology of HomC
space with the linearized contact homology by [33]:

HomkC.�; �/Š LCH�1�k.ƒ/:

Now we restate Theorem 5.4 in terms of linearized contact homology.

Corollary 5.5 Let † be an exact Lagrangian cobordism with Maslov number 0 from
a Legendrian knot ƒ� to a Legendrian knot ƒC . Assume �� is an augmentation
of A.ƒ�/ and �C is the augmentation of A.ƒC/ induced by †. Then

LCH�C� .ƒC/Š LCH��� .ƒ�/˚F��.†/Œ0�;

where F��.†/Œ0� denotes the vector space F��.†/ in degree 0.

Therefore, if there exists an exact Lagrangian cobordism † from ƒ� to ƒC , the
Poincaré polynomial of the linearized contact homology of ƒC agrees with that of ƒ�
in all degrees except 0. In degree 0 their coefficients differ by ��.†/. This gives a
strong and computable obstruction to the existence of exact Lagrangian cobordisms.
One can check the Poincaré polynomials of the linearized contact homology for any
two Legendrian knots with small crossings through the atlas in [9]. If they do not
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61 41

Figure 11: The topological cobordism between 61 and 41 can be achieved
by two saddle moves along the red (straight) lines followed by an isotopy.

satisfy the relation given in Corollary 5.5, there does not exist an exact Lagrangian
cobordism between them.

For example, let ƒ1 and ƒ2 be the Legendrian knots with maximum Thurston–
Bennequin number of smooth knot types 41 and 61 , respectively (as shown in Figure 2).
There is a topological cobordism between 41 and 61 with genus 1 as shown in Figure 11.
Moreover, the Thurston–Bennequin numbers of ƒ1 and ƒ2 are �3 and �5, respec-
tively, which satisfy the Thurston–Bennequin number relation (1). Thus there possibly
exists an exact Lagrangian cobordism from ƒ2 to ƒ1 with genus 1. However, we
have the following proposition:

Proposition 5.6 There does not exist an exact Lagrangian cobordism from ƒ2 to ƒ1
with Maslov number 0.

Proof The Poincaré polynomials of the linearized contact homology for ƒ1 and ƒ2
are t�1C 2t and 2t�1C 3t , respectively. As a result of Corollary 5.5, there does not
exist an exact Lagrangian cobordism from ƒ2 to ƒ1 with Maslov number 0.

5.3 Geometric description of the differential map

Let † be an exact Lagrangian cobordism from a Legendrian knot ƒ� to a Legen-
drian knot ƒC . For i D 1, 2, assume �i� is an augmentation of A.ƒ�/ and �i

C
is

the augmentation induced by †. So far we have two maps from HomC.�1�; �
2
�/ to

HomC.�1C; �
2
C
/. One is the geometric map dC� in the differential of the Cthulhu chain

complex Cth.†1; †2/ defined by counting rigid holomorphic disks with boundary
on †1 [†2 . The other map is the augmentation category map induced by † on
the level of morphisms f1 , defined algebraically in Section 3.2. In this section, we
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will show that, with a choice of Morse function F on the cobordism †, the maps
dC� and f1 are the same. To do that, we describe the two maps separately and then
compare their images on each generator of HomC.�1�; �

2
�/.

In order to describe dC� , we want to interpret rigid holomorphic disks with boundary
on †1 [†2 in terms of rigid holomorphic disks with boundary on † together with
negative gradient flows of a Morse function. This is analogous to a result in [16], which
gives a correspondence between rigid holomorphic disks with boundary on a 2–copy of
a Legendrian submanifold L and rigid holomorphic disks with boundary on L together
with negative gradient flows of a Morse function. Now let us describe the result in [16]
in detail.

Let L be a Legendrian submanifold in the contact manifold .P �R; ker.dz � �//,
where .P; d�/ is an exact symplectic 2n–dimensional manifold. Instead of considering
holomorphic disks in the symplectization of P �R with boundary on R�L, according
to [13], we can consider holomorphic disks in P with boundary on �.L/, where �
is the projection P �R! P . See [16, Section 2.2.3] for the detailed definition of
holomorphic disks with boundary on �.L/. As the points on �.L/ and points on L
are in natural correspondence except that the double points of �.L/ correspond to
the Reeb chords of L, we refer to the holomorphic disks as J–holomorphic disks
with boundary on L as in [16], where J is a generic almost complex structure on P .
Choose a Morse–Smale pair .f; g/, where f is a Morse function L! R and g is
a Riemannian metric on L, such that .f; g; J / is adjusted to L in the sense of [16,
Section 6.3]. Push L off through the Morse function f and get a 2–copy of L, denoted
by 2L. In order to describe rigid holomorphic disks with boundary on 2L, we need
to introduce the generalized disks determined by .f; g; J /. A generalized disk is a
pair .u; /, where

� u 2M is a J–holomorphic disk with boundary on L;

�  is a negative gradient flow of f with one end on the boundary of u and the
other end at a critical point p of the Morse function f ;

� the boundary of u and  intersect transversely.

The point p is called a negative Morse puncture if the flow line  flows toward p , and
is called a positive Morse puncture if  flows away from p . The formal dimension
dim.u; / is defined by

dim.u; /D
�

dimMC 1C Indf .p/�n if p is a positive Morse puncture,
dimMC 1� Indf .p/ if p is a negative Morse puncture.

The generalized disk .u; / is called rigid if dim.u; /D 0.
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The rigid holomorphic disks with boundary on a 2–copy of L can be described as
below in terms of whether their punctures are Morse Reeb chords or non-Morse Reeb
chords (as defined in Section 3.2).

2L L

u

2L L



u

Figure 12: The correspondences in Lemma 5.7. The arrows indicate the
orientations of holomorphic disks and the negative gradient flow line.

Lemma 5.7 [16, Theorem 3.6] Let .f; g; J / be a triple as described above that is
adjusted to the Legendrian submanifold L. Push L off through the Morse function f
and get a 2–copy 2L. There are the following bijective correspondences:

� Rigid holomorphic disks with boundary on 2L that have one positive puncture
and one negative puncture at non-Morse mixed Reeb chords and the other
punctures at pure Reeb chords are in one-to-one correspondence with rigid
holomorphic disks with boundary on L as shown in Figure 12 (top).

� Rigid holomorphic disks with boundary on 2L that have exactly one puncture
at a Morse Reeb chord are in one-to-one correspondence with rigid generalized
disks .u; / determined by .f; g; J / as shown in Figure 12 (bottom).

� Rigid holomorphic disks with boundary on 2L that have two punctures at Morse
Reeb chords are in one-to-one correspondence with rigid negative gradient flows
of the Morse function f .
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In order to get an analogous description for a 2–copy of †, we need a result in [19] to
relate rigid holomorphic disks with boundary on a cobordism † to rigid holomorphic
disks with boundary on some Legendrian submanifold L† .

Let us first construct the Legendrian submanifold L† . Suppose † is an exact La-
grangian submanifold in .R�R3; d.et˛// from ƒ� to ƒC . Assume it is cylindrical
outside Œ�N C ı;N � ı��R3 , where ı is a small positive number. Under the sym-
plectomorphism

 W .R�R3; d.et˛//! .T �.R>0 �R/; d�/; .t; x; y; z/ 7! ..et ; x/; .z; ety//;

the cobordism † can be viewed as a cobordism in .T �.R>0 �R/; d�/, where � is
the negative Liouville form of the cotangent bundle. Let a� D e�N and aC D eN .
There is a small � > 0 such that † is cylindrical outside T �.Œa�C �; aC� ���R/.
Chopping off the ends of †, we get a cobordism in T �.Œa�; aC� � R/ with the
canonical symplectic form. Lift it to a Legendrian submanifold † in the 1–jet space
J 1.Œa�; aC��R/D T �.Œa�; aC��R/�R. The Legendrian † can be parametrized
near the positive boundary J 1..aC� �; aC��R/ as

.s; xC.q/; zC.q/; syC.q/; szC.q/CBC/D j
1.szC.q/CBC/

for some constant BC , where s D et and .t; q/ 2†\
�
.log.aC� �/; log aC��R3

�
D

.log.aC � �/; log aC� � ƒC . Here szC.q/C BC may not be a function of .s; x/.
However, consider f.xC.q/; zC.q// j q 2ƒCg, which is the front projection of ƒ to
the xz–plane. The cusps divide the front diagram of ƒC into pieces. Note that on
each piece zC.p/ is a perfect function of xC.p/ and at each cusp, the two functions
from different pieces match at the cusp. Therefore, we can write the parametrization
as j 1.szC.q/CBC/. Similarly, near the negative boundary J 1.Œa�; a�C �/�R/,
the Legendrian † can be parametrized as

.s; x�.q/; z�.q/; sy�.q/; sz�.q/CB�/D j
1.sz�.q/CB�/;

where .s; q/ 2 Œa�; a�C �/�ƒ� and B� is a constant.

However, notice that † does not have any Reeb chords. Therefore, we consider the
Morse Legendrian †Mo , which is a Legendrian submanifold in J 1.Œa�; aC��R/ that
agrees with † on J 1..a�C �; aC� �/�R/. But near the .˙/–boundary, the Morse
Legendrian can be parametrized as j 1

�
.A˙� .s� a˙/

2/z˙.q/
�
, ie

(8)
�
s; x˙.q/; �2.s�a˙/z˙.q/; .A˙�.s�a˙/

2/y˙.q/; .A˙�.s�a˙/
2/z˙.q/

�
;

where A˙ are positive constants. The key property of the Morse Legendrian is that the
Reeb chords of †Mo on the .˙/–boundary are in bijective correspondence with the
Reeb chords of ƒ˙ , respectively.
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There are isotopies from sz˙.q/CB˙ to .A˙�.s�a˙/2/z˙.q/, respectively, which
each induce a diffeomorphism from † to the Morse Legendrian †Mo . Extend †Mo to
a Legendrian submanifold L† in J 1.R>0 �R/ by adding

j 1
�
.AC� .s� aC/

2/zC.q/
�

with .s; q/ 2 .aC;1/�ƒC to the positive boundary and adding

j 1
�
.A�C .s� a�/

2/z�.q/
�

with .s; q/ 2 .0; a�/�ƒ� to the negative boundary. In other words, when s < a�C �
or s > aC� � , we can parametrize L† as (8). Note that

L†\J
1
�
.a�C �; aC� �/�R

�
D†Mo:

Moreover, according to [20], there is a natural bijective correspondence between rigid
holomorphic disks with boundary on L† and rigid holomorphic disks with boundary
on †Mo . Combining this with a result in [19], we know that rigid holomorphic disks
with boundary on an exact Lagrangian cobordism † are in one-to-one correspondence
with rigid holomorphic disks with boundary on L† that have positive (resp. negative)
punctures at Reeb chords lying in the slice s D aC (resp. s D a� ). The proof of this
result can be applied directly to the case of immersed exact Lagrangian submanifolds
with cylindrical ends, where we only consider the rigid holomorphic disks with punc-
tures on Reeb chords but no double points. Hence we have the following result for
a 2–copy of †, denoted by †[†0 .

Lemma 5.8 Let † and †0 be exact Lagrangian cobordisms from ƒ� to ƒC and
from ƒ0� to ƒ0

C
, respectively. The Morse Legendrian L†[†0 constructed above is a

union of L† and L†0 . Moreover, rigid holomorphic disks with boundary on †[†0 that
have positive (resp. negative) punctures at Reeb chords of ƒC[ƒ0C (resp. ƒ�[ƒ0� ) are
in one-to-one correspondence with rigid holomorphic disks with boundary on L†[L†0
that have positive (resp. negative) punctures at the Reeb chords lying in the slice sD aC
(resp. s D a� ).

Note that the rigid holomorphic disks with boundary on †[†0 considered in Lemma 5.8
are not all the rigid holomorphic disks since we did not talk about holomorphic disks
with punctures at double points. The disks we considered are the ones counted by dC� .

In order to apply Lemma 5.7 to L†[†0 and get the analogous correspondences for
exact Lagrangian cobordisms, we need to view L†0 as the 1–jet of a function

zF W L†!R

in the neighborhood of L† and show that zF is Morse. To describe the function
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easily, pull it back to a function †!R, denoted by zF as well. Note that zF D F on
†\T �.Œa�C �; aC� ���R/.

Now let us focus on the part s 2 .aC � �;1/. Denote L† \ J 1..aC � �;1/�R/
by @C.L†/ and denote †\T �..aC� �;1/�R/ by @C.†/. One can check that the
Reeb chords from @C.L†/ to @C.L†0/ are in bijective correspondence with the Reeb
chords from ƒC to ƒ0

C
by a property of the Morse Legendrian. As a result, the only

critical points of zF on @C.†/ are .s; q/, where s D aC and f 0
C
.q/D 0.

Let �1 and �2 be the natural projections as follows:

J 1.R>0 �Rx/

�1

||

�2

!!

J 1.R>0/ J 1.Rx/

First project @C.L†/ and @C.L†0/ to J 1.Rx/. We have

�2.@C.L†//D
�
xC.q/; .AC� .s� aC/

2/yC.q/; .AC� .s� aC/
2/zC.q/

�
and

�2.@C.L†0//D
�
x0C.q/; .AC� .s� aC/

2/y0C.q/; .AC� .s� aC/
2/z0C.q/

�
:

Thus for fixed s 2 .aC � �;1/, we have zF .s; q/D .AC � .s � aC/2/fC.q/, where
fC D F jfaCg�ƒC . Second, project @C.L†/ and @C.L†0/ to J 1.R>0/. We have

�1.@C.L†//D
�
s; �2.s� aC/zC.q/; .AC� .s� aC/

2/zC.q/
�
;

and
�1.@C.L†0//D

�
s; �2.s� aC/z

0
C.q/; .AC� .s� aC/

2/z0C.q/
�
:

For a fixed q 2ƒC , the only nondegenerate singularity of zF .s; q/ is aC . In particular,
it is a local maximum since z0

C
.q/ > zC.q/, which comes from the fact that fC > 0

by the construction in Section 5.1. Therefore, we have

Ind zF .aC; q/D IndfC.q/C 1:

Similarly, on the negative side, denote F jfa�g�ƒ� as f� . The critical points of zF
on † \ T �..�1; a� C �/ �R/ agree with the critical points of f� that lie in the
slice s D a� . Moreover, the indices satisfy Ind zF .a�; q/D Indf�.q/. Hence zF is a
Morse function.

Choose a Riemannian metric g on † and a generic almost complex structure J
on R�R3 that is adjusted to cylindrical ends such that . zF ; g; J / is adjusted to L† .
Now we can apply Lemma 5.7 to the 2–copy L†[L†0 .
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Define a generalized disk to be a pair .u; / consisting of a J–holomorphic disk u
with boundary on † as defined in Section 2.2 and a negative gradient flow line  of zF
with one end on the boundary of u and one end at a critical point p of zF such that the
boundary of u intersects transversely with the negative gradient flow  . The point p
is called a negative Morse puncture if the flow line  flows toward p , and is called a
positive Morse puncture if  flows away from p . The formal dimension dim.u; / is
defined by

(9) dim.u; /D
�

dimMC 1C Indf .p/� 2 if p is a positive Morse puncture,
dimMC 1� Indf .p/ if p is a negative Morse puncture.

The generalized disk .u; / is called rigid if dim.u; /D 0. We have the following
result, which is analogous to Lemma 5.7.

Theorem 5.9 Let † be an exact Lagrangian cobordism in .R�R3; d.et˛// from ƒ�
to ƒC that is cylindrical outside Œ�NCı;N �ı��R3 . Let F W †!R>0 be a positive
Morse function. Push † off through F and get a new cobordism †0 .

Denote F jfN g�ƒC by fC and F jf�N g�ƒ� by f� . Define a new Morse function
zF W †!R satisfying the following properties:

� The Morse function zF satisfies zF D F on †\ .Œ�N C ı;N � ı��R3/.
� On † \ ..N � ı;1/ � R3/, all the critical points of the Morse function zF

lie in †\ .fN g �R3/ D fN g �ƒC and agree with the critical points of fC .
Moreover, at each critical point c , we have Ind zF c D IndfC cC 1.

� On †\ ..�1;�N C ı/�R3/, all the critical points of the Morse function zF
lie in †\ .f�N g �R3/D f�N g �ƒ� and agree with the critical points of f� .
Moreover, at each critical point c , we have Ind zF c D Indf� c .

The Riemannian metric g and almost complex structure J are chosen as above. Then
we can describe the rigid holomorphic disks with boundary on † [ †0 that have
punctures on Reeb chords of ƒC [ƒ0C and ƒ� [ƒ0� in terms of whether the Reeb
chords are Morse or non-Morse as defined in Section 3.2:

(1) Rigid holomorphic disks with boundary on † [†0 that have two punctures
at non-Morse mixed Reeb chords are in one-to-one correspondence with rigid
holomorphic disks with boundary on †. See Figure 13 (top).

(2) Rigid holomorphic disks with boundary on †[†0 that have exactly one puncture
at a Morse Reeb chord are in one-to-one correspondence with rigid generalized
disks .u; / determined by . zF ; g; J /. See Figure 13 (bottom).

(3) Rigid holomorphic disks with boundary on †[†0 with two punctures at Morse
Reeb chords are in one-to-one correspondence with rigid negative gradient flows
of the Morse function zF from a critical point on ƒC to a critical point on ƒ� .
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u

Figure 13: The correspondences in Theorem 5.9. The arrows denote the
orientations of holomorphic disks and the negative gradient flow line.

Proof According to Lemma 5.8, rigid holomorphic disks with boundary on †[†0

that have two punctures at mixed Reeb chords correspond to rigid holomorphic disks
with boundary on L† [L†0 that have positive (resp. negative) boundary at mixed
Reeb chords lying in the slice sD aC (resp. sD a� ). By Lemma 5.7, these disks with
boundary on L†[L†0 are in one-to-one correspondence with holomorphic disks with
boundary on L† that have positive (resp. negative) boundary at the Reeb chords lying
in the slice s D aC (resp. s D a� ) together with Morse flow lines of zF . If it is a rigid
Morse flow line of zF on L† , it flows from a critical point on ƒC to a critical point
on ƒ� . Pull it back to a flow line † and get the correspondence .3/. If it is a rigid
holomorphic disk with boundary on L† that has positive (resp. negative) boundary
at the Reeb chords lying in the slice s D aC (resp. s D a� ), by [19], it corresponds
to a rigid holomorphic disk with boundary on †, which is the correspondence .1/.
Otherwise, it is a rigid generalized disk .u; / determined by . zF ; g; J /. From the
construction of zF , one can note that all the critical points of zF on †\ .fN g �R3/
are of index 1 or 2 while all the critical points of zF on † \ .f�N g �R3/ are of
index 0 or 1. By the dimension formula (9), the generalized disk .u; / is rigid if and
only if u is a rigid holomorphic disk. Each rigid holomorphic disk u with boundary
on L† that has positive (resp. negative) boundary at the Reeb chords lying in the
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slice s D aC (resp. s D a� ) in turn corresponds to a rigid holomorphic disk with
boundary on †. Pulling  back to †, we get a rigid generalized disk on † determined
by . zF ; g; J /. Hence we get the correspondence .2/.

Recall f1 is defined algebraically as follows. The exact Lagrangian cobordism † from
a Legendrian knot ƒ� to a Legendrian knot ƒC induces a DGA map � between the
DGAs with a single basepoint by counting rigid holomorphic disks with boundary on †:

�W .A.ƒC/; @/! .A.ƒ�/; @/;

as described in Section 2.2. This DGA map � induces an A1–category map

f W AugC.ƒ�/!AugC.ƒC/

in the way described in Section 3.2. Restricting the category map on the level of
morphisms, we have

f1W HomC.�1�; �
2
�/! HomC.�1C; �

2
C/:

See calculation (4) for the explicit formula.

Theorem 5.10 With a choice of Morse function F W †!R, we have dC� D f1 .

Proof We show dC�D f1 by checking their images on generators of HomC.�1�; �
2
�/.

Recall that HomC.�1�; �
2
�/ is generated by the elements in Hom�.�1�; �

2
�/ that corre-

spond to non-Morse Reeb chords and the elements in T D fx_�; y
_
�g that correspond

to Morse Reeb chords, respectively.

First consider the element b_ in Hom�.�1�; �
2
�/. Notice that Morse Reeb chords are

much shorter than non-Morse Reeb chords. The energy restriction ensures that dC�.b_/
does not include any element in T . Therefore dC� sends b_ to a_ 2 Hom�.�1C; �

2
C
/

by counting rigid holomorphic disks u 2M.a12Ip11; b12; q22/ with boundary on
†1[†2 , where p11 and q22 are words of pure Reeb chords of ƒ1� and ƒ2� , respec-
tively. According to the correspondence .1/ in Theorem 5.9, these disks correspond
to rigid holomorphic disks u 2 M.aIp; b; q/ with boundary on † (as shown in
Figure 14), which are the disks counted by f1 . Notice that both dC� and f1 send b_

to jM.aIp; b; q/j�1�.p/�
2
�.q/a

_ , where jM.aIp; b; q/j is the number of rigid disks
in M counted with sign. Hence the definition of dC� matches the definition of f1
on Hom�.�1�; �

2
�/.

In order to simplify the map dC� , we can choose a Morse function F such that the
negative gradient flow of F flows from �C directly to �� without going through any
critical points. We can further require that the negative gradient flow of F behave the
same in a collar neighborhood of the flow line from �C to �� as shown in Figure 15.
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a12 a

p11 pb12 bq22 q

†1 †2 †

Figure 14: The disk on the left is counted by dC� while the disk on the right
is counted by � .

As x˙ and y˙ sit right beside �˙ , the negative gradient flow lines of zF flow from
xC and yC directly to x� and y� , respectively.

For the element c_ 2 T , the map dC� counts the rigid holomorphic disks in †1[†2
that have a negative puncture at the Morse Reeb chord c . For the rigid disk that has a
positive puncture at a Morse Reeb chord as well, according to the correspondence .3/
in Theorem 5.9, it corresponds to a rigid Morse flow line of zF . The indices of zF
on y� , x� , yC and xC are 0, 1, 1 and 2, respectively. Therefore dC�.x_�/ has x_

C

as a term and dC�.y_�/ has y_
C

as a term. If the rigid disk has a positive puncture at a
non-Morse mixed Reeb chord a12 , we denote it by u2M.a12Ip11; c12; q22/. By the
correspondence .2/ in Theorem 5.9, it corresponds to a rigid generalized disk .u; /,
where u 2M.aIp; q/ is a holomorphic disk with boundary on † and  is a Morse
flow of zF that flows toward c (see Figure 16). Due to the dimension formula (9) of
generalized disks, no rigid disk has a negative puncture at y� since Ind zF y� D 0 but
dimM� 0. Hence dC�.y_�/D y

_
C

, which matches the definition of f1 on y�
k

.

ƒC

ƒ�

†

�C xCyC

��

˛

x�y�

Figure 15: An example of Morse flows of F

Algebraic & Geometric Topology, Volume 17 (2017)



1860 Yu Pan

a12 a

p11 c12 q22 p c q

†1 † †



Figure 16: The disk on the left is counted by dC� while the disk on the right
is counted by � .

For the element x_� , we know that f1.x_C/ counts the element a_ if t shows up in
the image of the DGA map �.a/. In other words, there exists a rigid holomorphic
disk u 2M.aIp; q/ with boundary on †, where p and q are words of pure Reeb
chords of ƒ� , such that u has a nontrivial intersection number with ˛ , where ˛ is
the curve from the basepoint �C to �� . Each rigid holomorphic disk u contributes
to f1.x_C/ a term of a_ with coefficient s.u; ˛/�1�.p/�

2
�.q/a

_ , where s.u; ˛/ is the
intersection number of the boundary of u and ˛ . We can make the Morse function F
satisfy the property that the negative gradient flow line  of F from xC to x� is
parallel to ˛ and of the same orientation. For each intersection point pi of the boundary
of u and  , denote the part of  from pi to c by i . By the correspondence .3/ in
Theorem 5.9, the rigid generalized disk .u; i / corresponds to a rigid holomorphic
disk in M.a12Ip11; c12; q22/ with boundary on †1 [ †2 , and hence contributes
to dC�.x_�/ with a term s.u; i /�

1
�.p

11/�2�.q
22/a_ , where s.u; i / is the sign of the

intersection. Summing over all the intersections of the boundary of u and  , the rigid
holomorphic disk u contributes s.u; /�1�.p/�

2
�.q/a

_ to dC�.x_�/, where s.u; / is
the intersection number of the boundary of u and  . Therefore, we have dC� D f1
on x_� .

5.4 Aside

In this section, we describe the differential map of the Cthulhu chain complex in terms
of holomorphic disks with boundary on † and Morse flow lines. This allows us to
recover the long exact sequences in [6]. The theorem in this section is stated without
rigorous proof. But it will not be used elsewhere in the paper.

In Section 5.3, we only need to describe the rigid disks with boundary on †1 [†2

that have punctures at Reeb chords. Hence we only have correspondences for those
types of disks. However, the method should work for all the rigid holomorphic disks

Algebraic & Geometric Topology, Volume 17 (2017)



The augmentation category map induced by exact Lagrangian cobordisms 1861

with boundary on †1[†2 including the disks counted by dC0 and d0� . We state the
following theorem without proof.

Theorem 5.11 Let † be an exact Lagrangian cobordism from ƒ� to ƒC and †1[†2

be a 2–copy of † as constructed in Section 5.1. For i D 1, 2, assume �i� is an
augmentation of A.ƒ�/ and �i

C
is the augmentation of A.ƒC/ induced by †. For �

small enough, the Cthulhu chain complex can be decomposed into five parts:

Cthk.†1;†2/DHomk�1� .�1C; �
2
C/˚C

k�1
MorsefC˚C

k
MorseF˚Homk�.�

1
�; �

2
�/˚C

k
Morsef�:

Under this decomposition, the differential can be written as

d D

0BBBBB@
m1 dCfC dCF dC� dCf�
0 dfC dfCF 0 dfCf�
0 0 dF 0 dFf�
0 0 0 m1 d�f�
0 0 0 0 df�

1CCCCCA :
Moreover:

(1) The holomorphic disks counted by dCF and dCf� are in one-to-one correspon-
dence with rigid generalized disks on † determined by . zF ; g; J /.

(2) The holomorphic disks counted by dC� are in one-to-one correspondence with
rigid holomorphic disks with boundary on †.

(3) The holomorphic disks counted by dfCF , dfCf� and dFf� are in one-to-one
correspondence with the rigid Morse flow lines of zF .

This theorem is similar to the conjectural analytic Lemma 4.11 in [15], which describes
the correspondence in the case of exact Lagrangian fillings.

We next discuss how to recover the three long exact sequences in [6] from this chain
complex.

(1) Decompose the Cthulhu chain complex as

Homk�1� .�1C; �
2
C/˚ .C

k�1
MorsefC˚C

k
MorseF /˚HomkC.�

1
�; �

2
�/:

Notice that the chain complex�
C k�1MorsefC˚C

k
MorseF;

�
dfC dfCF
0 dF

��
can be identified with the Morse cochain complex .C kMorse

xF ; d xF / induced by a Morse
function xF , where xF agrees with zF near ƒC and agrees with F elsewhere. Hence

H�.C kMorse
xF ; d xF /DH

k.†;ƒC[ƒ�/:
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Therefore, we have the following long exact sequence:

� � � !Hk.†;ƒC[ƒ�/!Hk Hom�.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

!HkC1.†;ƒC[ƒ�/! � � � ;

which is Theorem 1.5 of [6].

(2) To obtain another long exact sequence, view the Cthulhu chain complex as a
direct sum of Homk�1� .�1

C
; �2
C
/, C k�1MorsefC˚C

k
MorseF ˚Homk�.�

1
�; �

2
�/ and the Morse

cochain complex C kMorsef� . We have

� � � !Hk�1.ƒ�/!Hk.†;ƒC[ƒ�/˚H
k Hom�.�1�; �

2
�/!Hk Hom�.�1C; �

2
C/

!Hk.ƒ�/! � � � ;

which is Theorem 1.6 in [6].

(3) Rewrite the Cthulhu chain complex as

Cthk.†1;†2/D Homk�1� .�1C; �
2
C/˚Homk�.�

1
�; �

2
�/˚C

k�1
MorsefC˚C

k
MorseF˚C

k
Morsef�

D Homk�1� .�1C; �
2
C/˚Homk�.�

1
�; �

2
�/˚C

k
Morse

zF

with the differential

d D

0@m1 � �

0 m1 �

0 0 d zF

1A :
We have the long exact sequence

� � � !Hk Hom�.�1�; �
2
�/!Hk Hom�.�1C; �

2
C/

!HkC1.†;ƒC/!HkC1 Hom�.�1�; �
2
�/! � � � ;

which is Theorem 1.4 in [6].

One may get other long exact sequences from the Cthulhu chain complex above. One
example is

� � � !Hk Hom�.�1�; �
2
�/!Hk HomC.�1C; �

2
C/

!Hk.†/!HkC1 Hom�.�1�; �
2
�/! � � � ;

which is obtained by decomposing the Cthulhu chain complex as a direct sum of
Homk�1C .�1

C
; �2
C
/, Homk�.�

1
�; �

2
�/ and C kMorseF ˚C

k
Morsef� .
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5.5 Injectivity

Theorem 5.10 implies that dC� is a chain map and hence it gives the Cthulhu chain
complex a stronger algebraic structure. In this section, we use this algebraic informa-
tion to deduce that the augmentation category map induced by the exact Lagrangian
cobordism † is injective on the level of equivalence classes of objects. And its induced
map on the cohomology category H�AugC is faithful.

Notice that dC� D f1 implies that dC� is a chain map and thus induces maps
dk
C�
W Hk HomC.�1�; �

2
�/ ! Hk HomC.�1C; �

2
C
/ for k 2 Z. Then we have the fol-

lowing theorem deduced from the double cone structure of the Cthulhu chain complex.
We would like to thank the referee for pointing out this theorem.

Theorem 5.12 Let † be an exact Lagrangian cobordism from a Legendrian knot ƒ�
to a Legendrian knot ƒC with Maslov number 0. For i D 1, 2, assume �i� is an
augmentation of A.ƒ�/ and �i

C
is the augmentation of A.ƒC/ induced by †. With

the same choice of Morse function as in Theorem 5.10, we have the following statement.

For fixed k 2 Z, the map

ik W Hk HomC.�1C; �
2
C/!Hk HomC.�1�; �

2
�/

in the long exact sequence (6) is injective (resp. surjective) if and only if the map

dkC�W H
k HomC.�1�; �

2
�/!Hk HomC.�1C; �

2
C/

is surjective (resp. injective).

Proof We will first prove that ik is surjective if and only if dk
C�

is injective for
fixed k .

Consider the Cthulhu chain complex as a mapping cone of ˆW HomC.�1�; �
2
�/ !

Cone.dC0/, where ˆ D dC�C d0� . The trivial cohomology of the Cthulhu chain
complex implies that ˆ induces isomorphisms

ˆk W Hk HomC.�1�; �
2
�/!Hk Cone.dC0/ for k 2 Z:

The following diagram commutes:

� � � // Hk HomC.�1C; �
2
C
/

ik
// Hk Cone.dC0/

jk
// HkC1.CMorseF / // � � �

HkHomC.�1�; �
2
�/

ˆk Š

OO

dk0�

66
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Comparing this to the long exact sequence (6), we know that ik D .ˆk/�1 ı ik .
Notice that dC� is a chain map and thus dC0 ı d0� D 0. It is not hard to show that
ˆk D dk

C�
C dk0� . Thus

Hk Cone.dC0/Š dkC�.H
k HomC.�1�; �

2
�//˚ d

k
0�.H

k HomC.�1�; �
2
�//:

Since we are working over the field F , we have the following relation on dimensions:

dim.Hk HomC.�1�; �
2
�//

D dim.Hk Cone.dC0//

D dim.dkC�.H
k HomC.�1�; �

2
�///C dim.dk0�.H

k HomC.�1�; �
2
�///:

Therefore dim.dk
C�
.Hk HomC.�1�; �

2
�///� dim.Hk HomC.�1�; �

2
�// and the equality

holds if and only if dk0� D 0, which is equivalent to the condition that ik is surjective.
Hence dk

C�
is injective if and only if ik is surjective.

The proof of the statement that ik is injective if and only if dk
C�

is surjective is
basically the same if we consider the Cthulhu chain complex as a mapping cone of
‰W Cone.d0�/! HomC.�1C; �

2
C
/, where ‰ D dC0C dC� .

Thanks to Theorem 5.10, we know that dC� agrees with f1 . Theorem 5.4 shows that
i0 is both injective and surjective. Therefore we have the following corollary.

Corollary 5.13 Let f � denote the induced map of f1 on cohomology. Then f �

restricted on degree-0 cohomology,

f �W H 0 HomC.�1�; �
2
�/!H 0 HomC.�1C; �

2
C/;

is an isomorphism.

Theorem 5.14 Let † be an exact Lagrangian cobordism with Maslov number 0
from a Legendrian knot ƒ� to a Legendrian knot ƒC . The A1–category map
f W AugC.ƒ�/!AugC.ƒC/ induced by the exact Lagrangian cobordism † is injec-
tive on the level of equivalence classes of objects.

In other words, for i D 1, 2, assume �i� is an augmentation of A.ƒ�/ with a single
basepoint and �i

C
is the augmentation of A.ƒC/ with a single basepoint induced

by †. If �1
C

and �2
C

are equivalent in AugC.ƒC/, then �1� and �2� are equivalent
in AugC.ƒ�/.

Proof Since �1
C

and �2
C

are equivalent in AugC.ƒC/, there exist

Œ˛C� 2H
0 HomC.�1C; �

2
C/ and ŒˇC� 2H

0 HomC.�2C; �
1
C/
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such that
Œm2.˛C; ˇC/�D Œe�2

C
� 2H 0 HomC.�2C; �

2
C/

and
Œm2.ˇC; ˛C/�D Œe�1

C
� 2H 0 HomC.�1C; �

1
C/:

Corollary 5.13 shows that f �W H 0 HomC.�1�; �
2
�/!H 0 HomC.�1C; �

2
C
/ is an isomor-

phism. Hence there exists Œ˛�� 2H 0 HomC.�1�; �
2
�/ such that

f �.Œ˛��/D Œ˛C� 2H
0 HomC.�1C; �

2
C/:

Similarly, there exists Œˇ�� 2H 0 HomC.�2�; �
1
�/ such that

f �.Œˇ��/D ŒˇC� 2H
0 HomC.�2C; �

1
C/:

Moreover, we have

f �Œm2.˛�; ˇ�/�Dm2.f
�.Œ˛��/; f

�.Œˇ��//

Dm2.Œ˛C�; ŒˇC�/

D Œe�2
C
� 2H 0 HomC.�2C; �

2
C/:

Notice that f sends y_� 2Hom0C.�
2
�; �

2
�/ to y_

C
2Hom0C.�

2
C
; �2
C
/ and hence we have

f �Œe�2� �D Œe�2C
�. By Corollary 5.13, the map

f �W H 0 HomC.�2�; �
2
�/!H 0 HomC.�2C; �

2
C/

is an isomorphism. Hence Œm2.˛�; ˇ�/� D Œe�2� � 2 H
0 HomC.�2�; �

2
�/. Similarly,

Œm2.ˇ�; ˛�/� D Œe�1� � 2 H
0 HomC.�1�; �

1
�/. Therefore �1� and �2� are equivalent

in AugC.ƒ�/.

In addition, the exact Lagrangian cobordism † described above also induces a category
functor on the cohomology category

zf W H�AugC.ƒ�/!H�AugC.ƒC/;

as described in Section 3.1.

We have the following statement.

Theorem 5.15 Let † be an exact Lagrangian cobordism from a Legendrian knot ƒ�
to a Legendrian knot ƒC with Maslov number 0. The corresponding cohomology cate-
gory map zf W H�AugC.ƒ�/!H�AugC.ƒC/ induced by † is faithful. Moreover,
if �.†/D 0, this functor is fully faithful.
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Proof Notice that the category map zf restricted on the level of morphisms is

f �W H�HomC.�1�; �
2
�/!H�HomC.�1C; �

2
C/:

The long exact sequence (6) tells us that the ik are surjective for all k 2 Z. By
Theorem 5.12, we know that f � is injective. Thus zf is faithful.

In particular, if �.†/ D 0, Theorem 5.4 implies that the ik are isomorphisms for
all k 2Z. Therefore, by Theorem 5.12, the map f � is an isomorphism, which implies
that zf is fully faithful.

As a result of Theorem 5.14, there is an induced map from the equivalence classes of
augmentations of ƒ� to the equivalence classes of augmentations of AugC.ƒC/. Thus
the number of equivalence classes of augmentations of A.ƒ�/ is less than or equal to the
number of equivalence classes of augmentations of A.ƒC/. However, the equivalence
classes of augmentations is difficult to count in general. Ng, Rutherford, Shende
and Sivek [32] introduced another way to count objects: the homotopy cardinality
of ��0AugC.ƒIFq/

� , where Fq is a finite field. This can be computed using ruling
polynomials.

The homotopy cardinality is defined by

��0AugC.ƒIFq/
�

D

X
Œ��2AugC.ƒIFq/=�

1

jAut.�/j
�
jH�1 HomC.�; �/j � jH�3 HomC.�; �/j � � �
jH�2 HomC.�; �/j � jH�4 HomC.�; �/j � � �

;

where Œ�� is the equivalence class of � in the augmentation category AugC.ƒ/ and
jAut.�/j is the number of invertible elements in H 0 HomC.�; �/.

Corollary 5.16 Let † be a spin exact Lagrangian cobordism from a Legendrian
knot ƒ� to a Legendrian knot ƒC with Maslov number 0. Then for any finite field Fq ,
we have

��0AugC.ƒ�IFq/
�
� ��0AugC.ƒCIFq/

�:

Proof Assume Œ��� is an equivalence class in AugC.ƒ�IFq/ and Œ�C� is the induced
equivalence class in AugC.ƒCIFq/. Theorem 5.4 implies

Hk HomC.��; ��/ŠHk HomC.�C; �C/ for k < 1:

In particular, we have H 0 HomC.��; ��/ŠH 0 HomC.�C; �C/, which implies that
jAut.��/j D jAut.�C/j.
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Notice that AugC.ƒCIFq/ may have more equivalence classes than AugC.ƒ�IFq/.
Therefore, we have

��0AugC.ƒ�IFq/
�
� ��0AugC.ƒCIFq/

�:

From [32, Corollary 2], this cardinality can be related to the ruling polynomial in the
following way:

��0AugC.ƒIFq/
�
D qtb.ƒ/=2Rƒ.q

1=2
� q�1=2/:

Recall that a normal ruling R is a decomposition of the front projection of ƒ into
embedded disks connected by switches that satisfy certain requirements (see details
in [8]). The ruling polynomial is defined by

Rƒ.z/D
X
R

z#.switches/�#.disks/:

Corollary 5.17 Suppose there is a spin exact Lagrangian cobordism from a Legendrian
knot ƒ� to a Legendrian knot ƒC with Maslov number 0. Then the ruling polynomials
Rƒ� and RƒC satisfy

Rƒ�.q
1=2
� q�1=2/� q��.†/=2RƒC.q

1=2
� q�1=2/

for any q that is a power of a prime number.

"

Figure 17: The relation between rulings of Legendrian submanifolds that are
related by a pinch move (left) or a minimum cobordism (right)

When † is decomposable, ie consists of pinch moves and minimum cobordisms [19],
there is a map from the rulings of ƒ� to rulings of ƒC . For each pinch move or
minimal cobordism, any normal ruling of the bottom knot gives a normal ruling of
the top knot, as shown in Figure 17. Moreover, different rulings of the bottom knot
give different rulings of the top knot. Therefore the ruling polynomials of ƒC and ƒ�
satisfy the relation in Corollary 5.17. This corollary shows that the result is true even if
the cobordism is not decomposable.
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One can check the atlas in [9] for the ruling polynomials of small crossing Legendrian
knots. This corollary gives a new and easily computable obstruction to the existence of
exact Lagrangian cobordisms. We can use Corollary 5.17 to give a new proof of the
follow theorem which is a result in [5] and was reproved in [11].

Theorem 5.18 [5] Lagrangian concordance is not a symmetric relation.

Proof Consider the Legendrian knot ƒ of smooth knot type m.946/ with maximum
Thurston–Bennequin number and the Legendrian unknot ƒ0 as shown in Figure 18.
There is an exact Lagrangian concordance from the ƒ0 to ƒ by doing a pinch move
at the red (straight) line in Figure 18 and Legendrian isotopy. However, there does not
exist an exact Lagrangian concordance from ƒ to ƒ0 since the ruling polynomial of
ƒ is 2 while the ruling polynomial of ƒ0 is 1.

Figure 18: Front projections of the Legendrian knot ƒ of knot type m.946/ (left)
and the Legendrian unknot ƒ0 (right)
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Tethers and homology stability for surfaces

ALLEN HATCHER

KAREN VOGTMANN

Homological stability for sequences Gn!GnC1! � � � of groups is often proved by
studying the spectral sequence associated to the action of Gn on a highly connected
simplicial complex whose stabilizers are related to Gk for k < n . When Gn is the
mapping class group of a manifold, suitable simplicial complexes can be made using
isotopy classes of various geometric objects in the manifold. We focus on the case
of surfaces and show that by using more refined geometric objects consisting of
certain configurations of curves with arcs that tether these curves to the boundary,
the stabilizers can be greatly simplified and consequently also the spectral sequence
argument. We give a careful exposition of this program and its basic tools, then
illustrate the method using braid groups before treating mapping class groups of
orientable surfaces in full detail.

20J06, 57M07

Introduction

Many classical groups occur in sequences Gn with natural inclusions Gn! GnC1 .
Examples include the symmetric groups †n , linear groups such as GLn , the braid
groups Bn , mapping class groups Mn;1 of surfaces with one boundary component,
and automorphism groups of free groups Aut.Fn/. A sequence of groups is said to
be homologically stable if the natural inclusions induce isomorphisms on homology
Hi.Gn/!Hi.GnC1/ for n sufficiently large with respect to i . All of the sequences
of groups mentioned above are homologically stable. This terminology is also slightly
abused when there is no natural inclusion, such as for the mapping class groups Mn of
closed surfaces and outer automorphism groups of free groups Out.Fn/; in this case,
we say the series is homologically stable if the i th homology is independent of n for
n sufficiently large with respect to i .

Homology stability is a very useful property. It sometimes allows one to deduce
properties of the limit group G1 D lim!Gn from properties of the groups Gn ; the
classical example of this is Quillen’s proof that various K–groups are finitely generated.
It is also useful in the opposite direction: it is sometimes possible to compute invariants
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http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=20J06, 57M07
http://dx.doi.org/10.2140/agt.2017.17.1871


1872 Allen Hatcher and Karen Vogtmann

of the limit group G1 , which by stability are invariants of the groups Gn ; an example
of this is the computation by Madsen and Weiss of the stable homology of the mapping
class group. Finally, there is the obvious advantage that homology computations which
are unmanageable for n large can sometimes be done in Gn for n small.

In unpublished work from the 1970s, Quillen introduced a general method of proving
stability theorems, which was used by many authors in subsequent years (the earliest
examples include Wagoner [23], Vogtmann [22], Charney [5], van der Kallen [17] and
Harer [9]). The idea is to find a highly connected complex Xn on which Gn acts such
that stabilizers of simplices are isomorphic to Gm for m < n. One then examines a
slight variant of the equivariant homology spectral sequence for this action; this has

E1
p;q D

�
Hq.Gn;Z/ for p D�1,L
�2†p

Hq.stab.�/IZ� / for p � 0,

where †p is a set of representatives of orbits of p–simplices. The fact that Xn is
highly connected implies that this spectral sequence converges to 0 for pC q small
compared to n, and the fact that simplex stabilizers are smaller groups Gm means
that the map Hi.Gn�1/!Hi.Gn/ induced by inclusion occurs as a d1 map in the
spectral sequence. If one assumes the quotient Xn=Gn is highly connected and one
or two small conditions of a more technical nature are satisfied, then an induction
argument on i can be used to prove that this d1 map is an isomorphism for n and i in
the approximate range n> 2i .

This is the ideal situation, but in practice the original proofs of homology stability were
often more complicated because the complexes Xn chosen had simplex stabilizers that
were not exactly the groups Gm for m< n. For the groups Aut.Fn/ and Out.Fn/, a
way to avoid the extra complications was developed by Hatcher, Vogtmann and Wahl
[14; 15] with further refinements and extensions in Hatcher and Wahl [16]. The idea was
to use variations of the original complexes studied by Hatcher and Vogtmann [12; 13]
that included more data. In [14] this extra data consisted of supplementary 2–spheres
in the ambient 3–manifold that were called “enveloping spheres”, while in [15; 16]
this extra data was reformulated in terms of arcs joining 2–spheres to basepoints in the
boundary of the manifold. These arcs could be interpreted as “tethering” the spheres to
the boundary.

In the present paper we show how this tethering idea can be used in the case of mapping
class groups of surfaces. As above, tethers are arcs to a point in the boundary, while at
their other end they attach either to individual curves in the surface or to ordered pairs
of curves intersecting transversely in one point. We call such an ordered pair .a; b/ a
chain (see Figure 1) and use the term “curve” always to mean a simple closed curve.
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Figure 1: Chain on a closed surface and tethered chain on a surface with boundary

The classical curve complex C.S/ of a compact orientable surface S has vertices
corresponding to isotopy classes of nontrivial curves in S (where nontrivial means
neither bounding a disk nor isotopic to a boundary component of S ) and a set of
vertices spans a simplex if the curves can be chosen to be disjoint. Of particular interest
is the subcomplex C 0.S/ formed by simplices corresponding to coconnected curve
systems, that is, systems with connected complement.

In a similar way we can define a complex Ch.S/ of chains, with simplices corresponding
to isotopy classes of systems of disjoint chains; note that such a system is automatically
coconnected and there are no trivial chains to exclude. When S has nonempty boundary
we can also form complexes TC.S/ and TCh.S/ of systems of disjoint tethered curves
or tethered chains. In the case of TC.S/ we assume the curves without their tethers
form coconnected curve systems, and in the case of TCh.S/ we assume the tether to a
chain attaches to the b–curve. A further variant that is useful for proving homology
stability is a complex DTC.S/ of double-tethered curves, by which we mean curves
with two tethers attached at the same point of the curve but on opposite sides, and
curve systems are again assumed to be coconnected. Note that shrinking the tether
of a tethered chain to the point where it attaches to @S converts the b–curve to a
double tether for the a–curve. More precise definitions for these complexes are given
in Section 5, including extra data specifying where the tethers attach in @S .

Our main new result is:

Theorem If S is a compact orientable surface of genus g then the complexes TC.S/,
DTC.S/, Ch.S/ and TCh.S/ are all 1

2
.g�3/–connected.

Recall that a space X is r –connected if �i.X / D 0 for i � r , which makes sense
even if r is not an integer. Thus r –connected means the same as brc–connected. In
particular, .�1/–connected means nonempty (every map of @D0 D¿ to X extends to
a map of D0 to X ) and r –connected for r < �1 is an empty condition.

The mapping class group of S acts on all these complexes. A nice feature of the action
on TCh.S/ is that the stabilizer of a vertex is exactly the mapping class group for a
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surface with genus one less but the same number of boundary components. This is
because cutting S along a tethered chain reduces the genus by one without changing
the number of boundary components. Similarly, the stabilizer of a k –simplex is the
mapping class group of a surface with genus reduced by kC1 and the same number of
boundary components. This makes TCh.S/ ideal for the spectral sequence argument
proving homology stability with respect to increasing genus with a fixed positive number
of boundary components. Actually it turns out to be slightly more efficient to use the
complex DTC.S/, or a variant of it where the double tethers attach to basepoints in
two different components of @S and the ordering of the tethers at these basepoints
satisfies a compatibility condition. With this complex a single spectral sequence suffices
to prove both that the homology stabilizes with respect to genus (namely, Hi of the
mapping class group is independent of g for g � 2iC2) and that the stable homology
does not depend on the number of boundary components as long as this number is
positive. In order to extend this to closed surfaces we need to work with a complex that
does not involve tethers, and we use a version of Ch.S/ in which chains are oriented
and systems of oriented chains are ordered. (Even if one is interested only in closed
surfaces it is necessary to consider the case of nonempty boundary in order to have a
way to compare mapping class groups in different genus.)

The best stable dimension range that these simple sorts of spectral sequence arguments
can yield has slope 2, as in the inequality g � 2i C 2. This is not the optimal range,
which has slope 3

2
, arising from more involved spectral sequence arguments. See

Boldsen [3], Randal-Williams [20] and Wahl [24] for details.

The complexes of chains and tethered chains that we show are highly connected have
found other recent applications as well in Putman and Sam [18] and Wahl and Randal-
Williams [26]. In higher dimensions the natural analog of a tethered chain is a pair
of k –spheres in a smooth manifold M 2k intersecting transversely in a single point,
together with an arc tethering one of the spheres to a basepoint in @M . These tethered
sphere-pairs play a central role in recent work of Galatius and Randal-Williams [8]
on homology stability for B Diff.M / for certain 2k –dimensional manifolds M with
k > 2, including the base case that M is obtained from a connected sum of copies of
Sk �Sk by deleting the interior of a 2k –ball.

Here is an outline of the paper. In Section 1 we present the basic spectral sequence
argument and in Section 2 we lay out the tools used to prove the key connectivity results.
In Section 3 we give a warm-up example, illustrating the method in a particularly simple
case, proving Arnol’d’s homology stability theorem for braid groups. In Section 4
we give new, simpler proofs of results due to Harer about curve complexes and arc
complexes that will be used in Section 5 to prove the main new connectivity statements.
Finally in Section 6 we deduce homology stability for mapping class groups.
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Remark A draft version of this paper dating from 2006 and treating several other
classes of groups has been informally circulated for a number of years. This current
version focuses only on mapping class groups, significantly simplifies several of the
proofs in the earlier version, and also corrects a couple of errors. We thank Alexander
Jasper for bringing one of these errors to our attention.

1 The basic spectral sequence argument

In this section we give the simplest form of the spectral sequence argument for proving
homology stability of a sequence of group inclusions � � �!Gn!GnC1!GnC2!� � � .
The input for the spectral sequence will be a simplicial action of Gn on a simplicial or
semisimplicial complex Xn for each n. To deduce stability we will make the following
assumptions, which are stronger than necessary for stability but simplify the arguments
and are satisfied in all but one of our applications. The only exception arises in the
proof of Theorem 6.2, where a short extra argument is required.

(1) Xn has dimension n� 1 and the action of Gn is transitive on simplices of each
dimension.

(2) The stabilizer of a vertex is conjugate to Gn�1 , and more generally the stabilizer
of a p–simplex is conjugate to Gn�p�1 . Moreover, the stabilizer of a simplex
fixes the simplex pointwise.

(3) If e is an edge of Xn with vertices v and w , then there is an element of Gn

taking v to w which commutes with all elements of the stabilizer of e .

The dimension range in which homology stability holds will depend on the connectivity
of Xn , which must grow linearly with n. The best result that the method can yield
is that Hi.Gn�1/! Hi.Gn/ is an isomorphism for n > 2i C c and a surjection for
nD 2i C c for some constant c . In the cases which occur in this paper we have the
following stable ranges:

Theorem 1.1 Suppose the action of Gn on Xn satisfies conditions (1)–(3) for each n.
Then:

(a) If Xn is .n�3/–connected for each n then the stabilization Hi.Gn�1/!Hi.Gn/

is an isomorphism for n> 2i C 1 and a surjection for nD 2i C 1.

(b) If Xn is 1
2
.n�3/–connected for each n then the stabilization Hi.Gn�1/!Hi.Gn/

is an isomorphism for n> 2i C 2 and a surjection for nD 2i C 2.

Proof For G DGn let E�G be a free resolution of Z by ZŒG�–modules, and let

� � � ! Cp! Cp�1! � � � ! C0! C�1 D Z! 0
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be the augmented simplicial chain complex of X DXn . The action of G on X makes
C� into a complex of ZŒG�–modules, so we can take the tensor product over ZŒG� to
form a double complex C�˝G E�G . Filtering this double complex horizontally and
then vertically or vice versa gives rise to two spectral sequences, both converging to
the same thing (see eg [4, VII.3]).

Using the horizontal filtration, the E1
p;q term of the associated spectral sequence

is formed by taking the pth homology of C� ˝G EqG . If we assume X is highly
connected, say c.X /–connected, then the complex C� is exact through dimension c.X /.
Since EqG is free, C�˝G EqG is exact in the same range, so E2

p;qD 0 for p� c.X /.
In particular the spectral sequence converges to 0 in the range pC q � c.X /, so the
same will be true for the other spectral sequence as well.

For the second spectral sequence, if we begin by filtering vertically instead of horizon-
tally the associated E1

p;q term becomes Hq.GICp/. By Shapiro’s lemma (see eg [4,
page 73]) this reduces to

E1
p;q D

M
�2†p

Hq.stab.�/IZ� /;

where †p is a set of representatives for orbits of p–simplices (if we consider a “.�1/–
simplex” to be empty, with stabilizer all of G ), and Z� is Z twisted by the orientation
action of stab.�/ on � . In our case we assume the action is transitive on p–simplices
so there is only one term in the direct sum. We also assume stab.�/ is conjugate to
Gn�p�1 and fixes � pointwise, so Z� is an untwisted Z and the E1 terms become
simply E1

p;q DHq.Gn�p�1/ with untwisted Z coefficients understood.

Returning to the general case, the qth row of the E1 page is the augmented chain
complex of the quotient X=G with coefficients in the system fHq.stab.�//g. The
d1 –differentials in this chain complex can be described explicitly as follows. For
a simplex � 2 †p , the restriction of d1 to the summand Hq.stab.�// will be the
alternating sum of partial boundary maps d1

i W Hq.stab.�// ! Hq.stab.�//, where
� 2 †p�1 is the orbit representative of the i th face @i� and d1

i is induced by the
inclusion stab.�/! stab.@i�/ followed by the conjugation that takes this stabilizer
to stab.�/.

Homology stability is proved by induction on the homology dimension i , starting
with the trivial case i D 0. The sort of result we seek is that the stabilization map
Hi.Gn�1/!Hi.Gn/ is an isomorphism for n> '.i/ and a surjection for nD '.i/,
for a linear function ' of positive slope.

The map dDd1W E1
0;i
!E1

�1;i
in the second spectral sequence constructed above is the

map on homology induced by the inclusion of a vertex stabilizer into the whole group;
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by assumption this is the map Hi.Gn�1/!Hi.Gn/ induced by the standard inclusion
Gn�1!Gn , so this is the map we are trying to prove is an isomorphism. In the situation
we are considering the E1 page of the spectral sequence has the following form:

Hi.Gn/ Hi.Gn�1/ Hi.Gn�2/ � � �

� � � Hi�1.Gn�1/ Hi�1.Gn�2/ Hi�1.Gn�3/ � � �

� � � Hi�2.Gn�3/ � � �

H0.Gn/ H0.Gn�1/ H0.Gn�2/ H0.Gn�3/ � � �

p D�1 0 1 2 � � �

d
i

i�1

i�2

q D 0

We first consider the argument for showing that d is surjective. If i is less than the
connectivity c.X / of X , then the terms E1p;q must be zero for pC q � i � 1, and in
particular E1

�1;i
must be zero. We will show that every differential dr with target Er

�1;i

for r > 1 is the zero map because its domain is the zero group, so the only differential
that can do the job of killing E�

�1;i
is d , which must therefore be onto. Thus it will

suffice to show that E2
p;q D 0 for pC q � i and q < i . These groups are the reduced

homology groups of X=G with coefficients in the system of groups fHq.stab.�//g.
We will argue that these coefficient groups can be replaced by Hq.G/, with a suitable
induction hypothesis, so that E2

p;q D
zHp.X=GIHq.G//, still assuming p C q � i

and q < i . Thus the groups E2
p;q with pCq � i and q < i will be zero once we know

that the connectivity c.X=G/ is large enough, namely c.X=G/� p . Since we have
pCq � i and q � 0, the condition c.X=G/� p can be reformulated as c.X=G/� i .

As explained earlier, the d1 differentials are built from maps induced by inclusion
followed by conjugation. These maps fit into commutative diagrams

Hq.stab.�// Hq.stab.�//

Hq.G/ Hq.G/

where the vertical maps are induced by inclusion and the lower map is induced by conju-
gation in G , hence is the identity. If the vertical maps are isomorphisms, we can then re-
place the coefficient groups in the qth row of the E1 page by the constant groups Hq.G/.
In our case with E1 page displayed above, we would like the group Hi�1.Gn�3/ and
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the groups to the left of it to be in the stable range, isomorphic to Hi�1.G/. Actually
we can get by with slightly less, just having Hi�1.Gn�2/ and the terms to the left of it
isomorphic to the stable group and having Hi�1.Gn�3/ mapping onto the stable group,
since this is enough to guarantee that the homology of the chain complex at Hi�1.Gn�2/

will be zero. Thus we want the relation '.i/� '.i�1/C2. The corresponding relation
for smaller values of i will take care of lower rows, by the same argument.

To summarize, we have shown that the stabilization Hi.Gn�1/! Hi.Gn/ will be
surjective if '.i/� '.i � 1/C 2, assuming i � 1� c.Xn/ and i � c.Xn=Gn/.

To prove that d is injective the argument is similar, but with one extra step. If i � c.Xn/

the term E1
0;i

will be zero, and then it will suffice to show that all differentials with target
Er

0;i
are zero, so the only way for E1

0;i
to die is if d is injective. We can argue that the

terms E2
p;q are zero for pC q � i C 1 and q < i just as before, assuming again that

'.i/�'.i�1/C2 but with the inequality i � c.Xn=Gn/ replaced by iC1� c.Xn=Gn/

since we have shifted one unit to the right in the spectral sequence. The extra step we
need for injectivity of d is showing that the differential d1W E1

1;i
!E1

0;i
is zero. This

will follow from the assumption that for each edge e of Xn there is an element g of
Gn taking one of the endpoints v of e to the other endpoint w such that g commutes
with stab.e/. This guarantees that d1 vanishes on the summand of E1

1;i
corresponding

to e by our earlier description of d1 . Namely, conjugation by g fixes stab.e/ and
sends stab.v/ to stab.w/. If v0 is the vertex chosen to represent the vertex orbit and if
hvvD v0 and hwwD v0 , then the identifications of stab.v/ and stab.w/ with stab.v0/

differ by conjugation by hwgh�1
v so we have the following commutative diagram:

stab.v/ stab.v0/

stab.e/

stab.w/ stab.v0/

i

i
cg

chv

chw

chwgh�1
v

Since hwgh�1
v is an element of stab.v0/, conjugation by it induces the identity on

H�.stab.v0// and the previous diagram induces a commutative diagram:

H�.stab.v//

H�.stab.e// H�.stab.v0//

H�.stab.w//

Thus we see that the stabilization Hi.Gn�1/! Hi.Gn/ will be injective whenever
'.i/� '.i � 1/C 2, assuming i � c.Xn/ and i C 1� c.Xn=Gn/.
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The connectivity of the quotient Xn=Gn is not hard to compute. Since we assume the
action of Gn is transitive on simplices of each dimension and the stabilizer of a simplex
fixes it pointwise, Xn=Gn can be identified with the quotient of the standard simplex
�n�1 obtained by identifying all of its k –dimensional faces for each k , where the
identification preserves the ordering of the vertices. Thus Xn=Gn is a semisimplicial
complex (or �–complex) with one k –simplex for each k � n� 1. It is easy to see
that Xn=Gn is simply connected. Its simplicial chain complex has a copy of Z in each
dimension k � n� 1 with boundary maps that are alternately zero and isomorphisms.
Therefore the reduced homology groups of Xn=Gn are trivial below dimension n� 1,
while Hn�1.Xn=Gn/ is trivial when n is odd and Z when n is even. Thus Xn=Gn

is .n�2/–connected

The condition '.i/ � '.i � 1/C 2 is satisfied if we choose '.i/ D 2i C c for any
constant c . It remains to determine c .

To get surjectivity from the spectral sequence argument we need c.Xn=Gn/� i and
c.Xn/ � i � 1. For injectivity we need one more degree of connectivity for each.
Consider first the inequalities involving c.Xn=Gn/. We know c.Xn=Gn/D n� 2 so
we need n� iC2 for surjectivity and n� iC3 for injectivity. We want surjectivity for
n� '.i/D 2iCc for all i � 1 (and injectivity for n� 2iCcC1), so any c � 1 works.

There remain the conditions c.Xn/� i�1 for surjectivity and c.Xn/� i for injectivity.
In case (a) we have c.Xn/ D n� 3 giving the same n � i C 2 for surjectivity and
n� i C 3 for injectivity as before, so '.i/D 2i C 1 still works. For case (b) we have
c.Xn/D

1
2
.n�3/, so we need n� 2iC1 for surjectivity and n� 2iC3 for injectivity;

in particular, taking '.i/D 2i C 2 works for both.

2 Connectivity tools

All of the complexes we will consider are of a certain type, which we shall call,
somewhat informally, geometric complexes. Such a complex X is a simplicial complex
whose vertices correspond to isotopy classes of some type of nontrivial geometric
object (for example arcs or curves in a surface, or combinations thereof), where trivial
has different meanings in different contexts. A collection of vertices v0; : : : ; vk spans a
k –simplex if representatives for the vertices can be chosen which are pairwise disjoint,
and perhaps also satisfy some auxiliary conditions. The corresponding set of isotopy
classes defining the simplex of X is also called a system, and the set of systems forms
a partially ordered set (poset) yX under inclusion, whose geometric realization is the
barycentric subdivision X 0 of X .

In this section we lay out a few general tools we will use for proving that various
geometric complexes are highly connected.
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2.1 Link arguments: rerouting disks to avoid bad simplices

We would like to relate n–connectedness of a simplicial complex X to n–connectedness
of a subcomplex Y . We do this by finding conditions under which the relative homotopy
groups �i.X;Y / are zero in some range i � n, so that the desired connectivity
statements can be deduced from the long exact sequence of homotopy groups for .X;Y /.
Thus we wish to deform a map f W .Di ; @Di/! .X;Y / to have image in Y , staying
fixed on @Di . We may assume f is simplicial with respect to some triangulation of Di ,
and then the idea is to deform f by performing a sequence of local alterations in the
open star of one simplex at a time, until f is finally pushed into Y . This method of
improving the map is called a link argument. We write lk.�/ for the link of a simplex
� and st.�/ for the star; if the ambient complex X needs to be specified we write
lkX .�/ and stX .�/.

We first identify a set of simplices in X �Y as bad simplices, satisfying the following
two conditions:

(1) Any simplex with no bad faces is in Y , where by a “face” of a simplex we mean
a subsimplex spanned by any nonempty subset of its vertices, proper or not.

(2) If two faces of a simplex are both bad, then their join is also bad.

We call simplices with no bad faces good simplices. Bad simplices may have good
faces, or faces which are neither good nor bad. If � is a bad simplex we say a simplex
� in lk.�/ is good for � if any bad face of � � � is contained in � . The simplices
which are good for � form a subcomplex of lk.�/, which we denote by G� .

Proposition 2.1 Let X , Y and G� be as above. Suppose that for some integer n� 0

the subcomplex G� of X is .n� dim.�/�1/–connected for all bad simplices � . Then
the pair .X;Y / is n–connected, ie �i.X;Y /D 0 for all i � n.

Proof We will show how to deform a map f W .Di ; @Di/! .X;Y / to have image
in Y , staying fixed on @Di , provided that i � n. We may assume f is simplicial with
respect to some triangulation of Di . Let � be a maximal simplex of Di such that
� D f .�/ is bad (so in particular � is not contained in @Di ). Then f .lk.�//� lk.�/
is contained in G� , since otherwise there is some � 2 lk.�/ and face �0 of � such that
f .�/��0 is bad, in which case, by property (2), .f .�/��0/�� D f .�/�� D f .���/

is bad, contradicting maximality of �.

We can assume the triangulation of Di gives the standard PL structure on Di , so lk.�/
is homeomorphic to S i�k�1 , where k D dim.�/� dim.�/. Since G� is .n�k�1/–
connected and i � n, the restriction of f to lk.�/ can be extended to gW Di�k!G� ,
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�
f

Y

� D f .�/

f j@� �g

Y

Figure 2: Retriangulation of st.�/ and new definition of f

which we may take to be simplicial for some triangulation of Di�k extending the given
triangulation on S i�k�1 D lk.�/. We retriangulate st.�/ as @��Di�k and redefine
f on this new triangulation to be f j@� �g (see Figure 2).

The new map is homotopic to the old map, and agrees with the old map outside the
interior of st.�/, in particular on @Di . Since simplices in G� are good for � , no
simplices in the interior of st.�/ have bad images. Since the original triangulation of
Di was finite, in this way we can eventually eliminate all k –simplices of Di with bad
images without introducing simplices of higher dimension with bad images. Repeating
the process in the new triangulation of Di for simplices of dimension k�1, then k�2,
etc, we eventually eliminate all bad simplices from the image, so that by property (1)
the image lies in Y .

We give two applications of this proposition which we will use in the rest of the paper.

Corollary 2.2 Let Y be a subcomplex of a simplicial complex X , and suppose X�Y

has a set of bad simplices satisfying (1) and (2) above. Then:

(a) If X is n–connected and G� is .n� dim.�//–connected for all bad simplices � ,
then Y is n–connected.

(b) If Y is n–connected and G� is .n� dim.�/�1/–connected for all bad sim-
plices � , then X is n–connected.

Proof Both statements follow from Proposition 2.1 using the long exact sequence
of homotopy groups for .X;Y /. This is immediate for (b), while for (a) one should
replace the n in the proposition by nC 1.
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Given any simplicial complex X and a set of labels S , we can form a new simplicial
complex X S whose simplices consist of the simplices of X with vertices labeled by
elements of S . Thus there are jS jkC1 k –simplices of X S for each k –simplex of X .

Corollary 2.3 Let X be a simplicial complex and S a set of labels. If X is n–
connected and the link of each k –simplex in X is .n�k�1/–connected, then X S is
n–connected. In the other direction, if X S is n–connected then so is X , without any
condition on the links.

Proof Choosing a label s0 2S , we can regard X as the subcomplex of X S consisting
of simplices with all labels equal to s0 . There is then a retraction r W X S !X which
changes all labels to s0 . This implies the second statement of the corollary. For the
first statement we will apply Corollary 2.2(b). Call a simplex of X S bad if none of
its vertex labels is equal to s0 . It is immediate that the set of bad simplices satisfies
(1) and (2). If � is a bad simplex, then a simplex in lk.�/ is good for � if and only
if all of its labels are s0 , so that G� is isomorphic to lkX .r.�// and Corollary 2.2(b)
applies.

Example 2.4 If X is the p–simplex �p , one might think the lemma could be applied
for all n to conclude that .�p/S was contractible. However, it can only be applied
for n � p � 1, since for n D p the hypothesis would say that the link of the whole
simplex is .�1/–connected, ie nonempty, which is not the case. In fact .�p/S is
the join of p C 1 copies of the discrete set S , so it is p–dimensional and exactly
.p�1/–connected if S has more than one element.

2.2 Homotopy equivalence of posets

The geometric realization of a poset P is the simplicial complex with one k –simplex
for each totally ordered chain p0 < � � � < pk of k C 1 elements pi 2 P . An order-
preserving map (poset map) between posets induces a simplicial map of their geometric
realizations. When we attribute some topological property to a poset or poset map we
mean that the corresponding space or simplicial map has that property.

For a poset map �W P ! Q the fiber ��q over an element q 2 Q is defined to be
the subposet of P consisting of all p 2 P with �.p/ � q . The fiber ��q is defined
analogously. The following statement is known as Quillen’s fiber lemma and is a
special case of his Theorem A [19]. We supply an elementary proof.

Proposition 2.5 A poset map �W P !Q is a homotopy equivalence if all fibers ��q

are contractible, or if all fibers ��q are contractible.
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Proof There is no difference between the two cases, so let us assume the fibers ��q

are contractible. We construct a map  W Q! P inductively over the skeleta of Q as
follows. For a vertex q0 we let  .q0/ be any vertex in ��q0

, which is nonempty since
it is contractible. For an edge q0 < q1 both  .q0/ and  .q1/ then lie in ��q0

and
we let  map this edge to any path in ��q0

from  .q0/ to  .q1/. Extending  over
higher simplices q0 < � � �< qk is done similarly, mapping them to ��q0

extending the
previously constructed map on the boundary of the simplex.

We claim that  is a homotopy inverse to � . The composition � sends each
simplex q0 < � � �< qk to the subcomplex Q�q0

. These subcomplexes are contractible,
having minimum elements, so one can construct a homotopy from � to the identity
inductively over skeleta of Q. Similarly  � is homotopic to the identity since it sends
each simplex p0 < � � �< pk to the contractible subcomplex ���.p0/ .

We will often apply this proposition to the poset yX of simplices in some simplicial
complex X . The geometric realization of this poset is the barycentric subdivision X 0

of the complex. The following lemma characterizes the poset fibers:

Lemma 2.6 Let f W X ! Y be a simplicial map of simplicial complexes, yX the poset
of simplices in X , yY the poset of simplices in Y and yf W yX ! yY the induced poset
map. Then for each simplex � of Y we have the following relationships:

(i) yf�� is homeomorphic to f �1.�/.

(ii) yf�� is homotopy equivalent to yf �1.�/.

(iii) yf �1.�/ is homeomorphic to f �1.y/, where y is the barycenter of � .

Proof Statement (i) is immediate from the definitions: yf�� is the set of all simplices
� such that f .�/ is a face of � .

On the other hand, yf�� is the set of all simplices � such that f .�/ has � as a face.
Since f is a simplicial map, some face of � maps to � ; let �� be the (unique) maximal
such face. The map � 7! �� is a poset map yf�� ! yf �1.�/ whose upper fibers are
contractible, having unique minimal elements. Thus yf�� is homotopy equivalent
to yf �1.�/, giving statement (ii). Part (iii) is clear from the definitions.

The following is an immediate consequence of Proposition 2.5 and Lemma 2.6:

Corollary 2.7 Let f W X!Y be a simplicial map of simplicial complexes. If f �1.�/

is contractible for all simplices � or if f �1.y/ is contractible for all barycenters y ,
then f is a homotopy equivalence.
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Remark For a simplicial map, contractibility of the fibers over barycenters implies
contractibility of all fibers since the fibers over an open simplex are all homeomorphic.
Other types of maps for which contractibility of fibers implies homotopy equivalence
or at least weak homotopy equivalence include fibrations, quasifibrations, and microfi-
brations (see [27] for the last case). The corollary implies that simplicial maps with
contractible fibers are quasifibrations, but they need not be fibrations or microfibrations,
as shown by the simple example of vertical projection of the letter L onto its base
segment.

2.3 Fiber connectivity

Lemma 2.8 Let f W X ! Y be a simplicial map of simplicial complexes. Suppose
that Y is n–connected and the fibers f �1.y/ over the barycenters y of all k –simplices
in Y are .n�k/–connected. Then X is n–connected.

Proof Given a map gW S i ! X , which we can assume is simplicial, we want to
extend this to a map GW DiC1! X if i � n. In order to do this, we first consider
the composition h D fgW S i ! Y . Since Y is n–connected, we can extend h to a
simplicial map H W DiC1 ! Y . We will use H to construct G , which we will do
inductively on the skeleta of the barycentric subdivision D0 of DiC1 .

We begin by replacing all complexes and maps by the associated posets of simplices
and poset maps:

yS i yX

yDiC1 yY

yg

yH

yf

Let � be a vertex of D0 , so � can be viewed as a simplex of DiC1 or as an element
of yDiC1 . Since H is simplicial, � DH.�/ has dimension at most iC1� nC1 in Y .
By the hypothesis and Lemma 2.6, yf�� is at least .�1/–connected, ie it is nonempty,
so choose x 2 yf�� and set G.�/D x . We can assume this agrees with the given g for
� 2 @D0 .

Now assume we have defined G on the .k�1/–skeleton of D0 , and let �0 < � � �< �k

be a k –simplex of D0 . Let �i D H.�i/, and note that yf��j
� yf��0

for all j . By
construction, then, G maps the boundary of the simplex to yf��0

. Since H is a
simplicial map, it can only decrease the dimension of a simplex, so dim.�0/� iC1�k�

nC 1� k , and consequently yf��0
is at least .k�1/–connected. Therefore we can

extend G over the interior of the k –simplex �0 < � � �< �k , agreeing with the given G

on @D0 . This gives the induction step in the construction of G .
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2.4 Flowing into a subcomplex

In this section we abstract the essential features of a surgery technique from [11] for
showing that certain complexes of arcs on a surface are contractible, in order to more
conveniently apply the method to several different situations later in the paper.

Let Y be a subcomplex of a simplicial complex X . If F W X �I!X is a deformation
retraction into Y then each x 2X gives a path F.x; t/ for 0� t � 1 starting at x and
ending in Y . In nice cases these paths fit together to give a flow on the complement
of Y . What we want to do is to work backwards, constructing a deformation retraction
by first constructing a set of flow lines. Our flow lines will intersect each open simplex
of X which is not contained in Y either transversely or in a family of parallel line
segments. To specify these line segments, for each simplex � 2X �Y we choose a
preferred vertex v D v� and a simplex �v in the link of v in X such that � ��v
is a simplex of X ; then � ��v is foliated by line segments parallel to the line from
v� to the barycenter of �v� (see Figure 3). To show that the flow ends up in Y we
measure progress by means of a complexity function assigning a nonnegative integer to
each vertex of X and taking strictly positive values on vertices not in Y . This can be
extended to be defined for all simplices of X , where the complexity of a simplex is
the sum of the complexities of its vertices.

Lemma 2.9 Let Y be a subcomplex of a simplicial complex X with a complexity
function c as above. Suppose that for each vertex v 2 X � Y we have a rule for
associating a simplex �v in the link of v in X , and for each simplex � of X not
contained in Y we have a rule for picking one of its vertices v� 2X �Y so that

(i) the join � ��v� is a simplex of X ,

(ii) c.�v/ < c.v/,

(iii) if � is a face of � which contains v� , then v� D v� .

Then Y is a deformation retract of X .

v�

�

�v�

v�

�

�v�

Figure 3: A simplex � , its preferred vertex v� and flow lines in �v� � �
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Proof For each simplex � not contained in Y we construct flow lines in the simplex
� ��v� as described above, starting at x 2 � and running parallel to the line from v�
to the barycenter of �v� . In terms of barycentric coordinates in the simplex � ��v� ,
viewed as weights on its vertices, we are shifting the weight on v� to equally distributed
weights on the vertices of �v� , keeping the weights of other vertices fixed. When we
follow the resulting flow on � ��v� , all points that actually move end up with smaller
complexity by condition (ii). Thus after a finite number of such flows across simplices,
each point of � follows a polygonal path ending in Y . Condition (iii) guarantees that
the resulting flow is continuous on X , where we fix a standard Euclidean metric on
each simplex and let each point flow at constant speed so as to reach Y at time 1.

Surgery flows In this paper we will use Lemma 2.9 on various complexes of arcs
and curves on surfaces. The complexity function will count the number of nontrivial
intersection points with a fixed arc, curve or set of curves, and the simplex �v will be
obtained using the surgery technique from [11] to decrease the number of intersection
points. The vertex v� will be an “innermost” or “outermost” arc or curve of � ,
depending on the situation. In order for this surgery process to be well-defined we must
first put each arc or curve system ft0; : : : ; tkg into normal form with respect to some
fixed arc, curve, or curve system t , so that each ti has minimal possible intersection
with t in its isotopy class. In all cases we consider these normal forms are easily shown
to exist; furthermore they are unique up to isotopy through normal forms, apart from the
special situation that one ti is isotopic to t , in which case this ti can be isotoped across
t from one side to the other without always being in normal form during the isotopy.

2.5 Ordered complexes

In this subsection we prove a proposition that will be used at the very end of the paper,
when we extend the proof of homology stability for mapping class groups of nonclosed
surfaces to the case of closed surfaces. We remark that this extension can also be proved
without using the proposition, at the expense of complicating the spectral sequence
argument and introducing an infinite-dimensional auxiliary complex. This was the
method used in three earlier papers in analogous situations: [12, page 53; 14, end of
Section 6; 16, proof of Theorem 5.1].

For a simplicial complex X let hX i be the ordered version of X , the semisimplicial
complex whose k –simplices are the k –simplices of X with orderings of their vertices.
Thus there are .kC 1/! k –simplices of hX i for each k –simplex of X . For example
if X is a 1–simplex then hX i has two vertices connected by two distinct edges.

Forgetting orderings gives a natural projection hX i ! X . This has cross-sections
obtained by choosing an ordering of all the vertices of X and using this to order the

Algebraic & Geometric Topology, Volume 17 (2017)



Tethers and homology stability for surfaces 1887

vertices of each simplex of X . Thus X is a retract of hX i, so high connectivity of
hX i implies the same high connectivity for X . We will be interested in the converse
question of when high connectivity of X implies high connectivity of hX i. It is clear
that hX i is connected if X is, but the example of a 1–simplex shows that this does
not extend to 1–connectedness. We therefore need some conditions on X , conditions
that will be satisfied in our application.

Generalizing a property of spheres with PL triangulations, a simplicial complex of
dimension n is called Cohen–Macaulay if it is .n�1/–connected and the link of each
of its k –simplices is .n�k�2/–connected. If we drop the condition that n is the
dimension of the complex and only require it to be .n�1/–connected with the link
of each k –simplex .n�k�2/–connected, then we have the notion of weakly Cohen–
Macaulay (wCM) of level n. In the existing literature (eg [16]), the term “level” is
replaced by “dimension”, although this may be misleading since there is no restriction
on the actual dimension.

A simple observation is that a complex X is wCM of level n if and only its n–skeleton
is wCM of level n. This is because the homotopy groups �i.X / for i � n� 1 depend
only on the n–skeleton, and a similar statement holds also for links in X . Thus X

being wCM of level n is equivalent to its n–skeleton being Cohen–Macaulay (of
dimension n).

Note that a complex which is wCM of level n is automatically wCM of level m for
each m< n. There is no need to require n to be an integer, but if it is not, then wCM
of level n is the same as wCM of level bnc, the greatest integer � n, so allowing n to
be nonintegral is just a matter of convenience.

Another observation is that if X is wCM of level n and � is a k –simplex in X then
the link of � is wCM of level n� k � 1. This is because for � an l –simplex in lk.�/
we have lklk.�/.�/D lkX .� ��/ with � �� having dimension kC lC1, so lkX .� ��/

has connectivity n� .kC l C 1/� 2D .n� k � 1/� l � 2.

Proposition 2.10 If a simplicial complex X is wCM of level n then the ordered
complex hX i is .n�1/–connected.

In addition to the proof given below we give a different proof in the appendix, following
instead the approach in Proposition 2.14 of [26]. We include both proofs since they are
of similar length and each has its own virtues.

Proof As notation, we will use lowercase Greek letters for simplices of X , while
simplices in hX i will be written as the ordered string of their vertices, eg x0x1 : : :xk ,
sometimes abbreviated to x D x0x1 : : :xk .
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By induction on n it suffices to show that �n�1.hX i/D0. Given a map f W @Dn!hX i,
compose it with the projection hX i!X to get a map @Dn!X . Since X is wCM of
level n, this can be extended to a map Dn!X . Composing this extension with a section
gives a map Dn! hX i, whose restriction gW @Dn! hX i has the same projection
as f . Since g is homotopically trivial, it suffices to show f is homotopic to g .

In order to construct a homotopy we cover X by the stars stX .�/ of its simplices
and consider the corresponding cover of hX i by the ordered complexes hstX .�/i. We
first show that each of these is .n�1/–connected, and then use this fact to build the
homotopy between f and g .

Claim For each k –simplex � in X , hstX .�/i is .n�1/–connected.

Proof We may assume X has dimension n since higher-dimensional simplices have
no effect on the relevant connectivities, as noted earlier. Choose a vertex a 2 � . Then
stX .�/ is the cone a � Y on Y D � � lkX .�/, where � is the face of � opposite a.
Since � is wCM of level k�1 and lkX .�/ is wCM of level n�k�1 as noted earlier,
it follows that Y is wCM of level n� 1. By induction the proposition is therefore true
for Y (and all of its links).

Filter hstX .�/i by subcomplexes �i , where �i is the union of all ordered n–simplices
x0 : : :xn in hstX .�/i with aDxj for some j � i . The lower-dimensional simplices of
�i thus have the form x0 : : :xm with either xj D a for some j � i or no xj D a. We
will show that each �i is .n�1/–connected by induction on i . The first subcomplex
�0 is the union of all ordered simplices of the form ay1 : : :yn with y1 : : :yn 2 hY i,
ie it is the cone a�hY i so is contractible. Each �i for i > 0 is obtained from �i�1 by
attaching all n–simplices of hstX .�/i of the form x0 : : :xi�1ayiC1 : : :yn . If we fix
the ordered simplex xDx0 : : :xi�1 and let the yj vary we obtain a subcomplex �i.x/

of �i , ie �i.x/ is the union of the ordered n–simplices of hstX .�/i starting with xa.

The subcomplex �i.x/ decomposes as the join xa � hlkY .�/i, where � is the (un-
ordered) projection of x to X . In particular �i.x/ is contractible since xa is con-
tractible. The intersection of �i.x/ with �i�1 is @.xa/�hlkY .�/i since the only way
a face of a simplex x0 : : :xi�1ayiC1 : : :yn can lie in �i�1 is if at least one of the
vertices x0; : : : ;xi�1; a is deleted. Since @.xa/ is an .i�1/–sphere, @.xa/�hlkY .�/i

is the i –fold suspension of hlkY .�/i (since join with S0 is suspension and join is
associative) so the connectivity of @.xa/ � hlkY .�/i is i more than the connectivity
of hlkY .�/i. By induction hlkY .�/i is ..n�i�1/�1/–connected, so @.xa/� hlkY .�/i

is .n�2/–connected. An application of the Mayer–Vietoris sequence and the van
Kampen theorem then shows that �i.x/[�i�1 is .n�1/–connected.

If we fix an ordered simplex zD z0 : : : zi�1 different from x , then the intersection of
�i.z/ and �i.x/ is contained in �i�1 since simplices in the intersection can only be
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obtained by deleting at least one vertex of x and of z (and possibly other vertices).
We can then apply the above argument inductively to show that attaching finitely many
complexes �i.x/ to �i�1 preserves the connectivity n� 1. Since homotopy groups
commute with direct limits, it follows that the entire subspace �i is .n�1/–connected.
Since �n D hstX .�/i, the claim is established.

We now proceed to build our homotopy f ' g . The semisimplicial complex hX i
has the property that the vertices of each simplex are all distinct, so its barycentric
subdivision hX i0 is a simplicial complex. We view f and g as maps Sn�1! hX i0 ,
which we may take to be simplicial with respect to some triangulation of Sn�1 . We
build the homotopy inductively on the skeleta of Sn�1 .

If v is a vertex of Sn�1 then f .v/ and g.v/ project to the same vertex of X 0 , ie to the
barycenter of some simplex � of X . Since hstX .�/i is .n�1/–connected there is a path
in hstX .�/i connecting f .v/ to g.v/, and we use this to define our homotopy on v�I .

Now let s be any simplex of Sn�1 and assume we have already defined a homotopy
f ' g on @s . The projection of f .s/ (and hence g.s/) to X is a simplex of X 0 , ie a
chain �0 � � � � � �k of simplices of X . The stars of these simplices satisfy the reverse
inclusions stX .�0/ � � � � � stX .�k/, hence the same is true for the ordered versions
of these stars. We may assume by induction that the homotopy from f to g on @s
takes place in hstX .�0/i. Since hstX .�0/i is .n�1/–connected and dim.@s/� n� 2,
we can extend the homotopy over the interior of s so that its image lies in hstX .�0/i.
This finishes the induction step.

3 A simple example: the braid group

As a warm up for our main case of mapping class groups let us first show how the
method described in this paper gives a simple proof of homology stability for the
classical braid groups Bn , where we are viewing Bn as the mapping class group of an
n–punctured disk.

We start by constructing a suitable “tethered” complex with a Bn –action. In fact, in
this case the tethers will be all there is to the complex. Consider a fixed disk D with
d distinguished points b1; : : : ; bd on the boundary and n marked points or punctures
p1; : : : ;pn in the interior. A tether is an arc in D connecting some pi to some bj

and disjoint from the other pk and bk . A system of tethers is a collection of tethers
which are disjoint except at their endpoints, and with no two of the tethers isotopic.
See Figure 4 for an example.
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p1 p2 p3

b1 b2

Figure 4: A system of tethers in a 3–punctured disk with two boundary points

Define the tether complex T DTn;d to be the geometric complex having one k –simplex
for each isotopy class of systems of kC 1 tethers, where the face relation is given by
omitting tethers.

Proposition 3.1 T is contractible.

Proof We choose a single fixed tether t , then use a surgery flow to deform T into
the star of the vertex t . The flow will decrease the complexity of a system � (in
normal form with respect to t ), which we define to be the total number of points in the
intersection of the interiors of � and t .

If s is a tether which intersects t at an interior point, let x be the intersection point
which is closest along t to the end bi of t . Perform surgery on s by cutting it at x

and moving both new endpoints down to bi (see Figure 5). This creates two new arcs
which can be isotoped to be disjoint from s except at their endpoints. One of these arcs
joins bi to a puncture, and one joins bi to some (possibly different) bj . Define �s to
be the arc connecting bi to a puncture. Note that �s has smaller complexity than s .

The conditions of Lemma 2.9 are now met, with X D T and the star of t as the
subcomplex Y , by defining v� to be the tether in � containing the point of int.�/\int.t/
closest to bi along t . Thus T deformation retracts to the star of t , which is contractible,
hence T is contractible.

A system of tethers � D ft1; : : : ; tkg is coconnected if the complement D � � is
connected. Note that a system is coconnected if and only if each arc in the system

t

Figure 5: Surgery on a system of tethers using a fixed tether t
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ends at a different puncture. Let T 0 D T 0
n;d

be the subcomplex of Tn;d consisting of
isotopy classes of coconnected tether systems.

Proposition 3.2 The complex T 0 D T 0
n;1

is contractible.

Proof We prove that T 0 is contractible by induction on the number n of punctures.
If nD 1 then T 0 is a single point. For the induction step we will use a link argument
(Corollary 2.2) to show the inclusion map T 0 ,! T D Tn;1 is a homotopy equivalence,
so we need to specify which simplices of T are bad. We define a simplex of T to be
bad if each tethered puncture has at least two tethers. We check (1) every simplex in T

which is not in T 0 has a bad face, and (2) if � and � are two bad faces of a simplex
of T , the join � � � is also bad.

If � is a bad simplex, we also need to identify the subcomplex G� of lk.�/ consisting
of simplices which are good for � . In our case � 2 lk.�/ is good for � if and only if
� consists of single tethers to punctures which are not used by � . The subcomplex G�
decomposes as a join G� D T 0.P1/�T 0.P2/� � � � �T 0.Pr /, where P1; : : : ;Pr are
the components of the space obtained by cutting D open along � and each T 0.Pi/ is
either empty or isomorphic to T 0

ni ;di
for some ni < n. Two tethers in � going to the

same puncture bound a disk in D . A minimal such disk must be a component Pi with
at least one puncture in its interior (since isotopic tethers are not allowed) and only one
distinguished boundary point. Thus T 0.Pi/Š T 0

ni ;1
is contractible by induction on n,

and the entire join G� is contractible. The hypotheses of Corollary 2.2(a) are satisfied
and we conclude that T 0 is contractible since T is.

Theorem 3.3 The stabilization Hi.Bn�1/!Hi.Bn/ is an isomorphism for n>2iC1

and a surjection for nD 2i C 1.

Proof We use the spectral sequence constructed in Section 1 for the action of Bn on
the contractible complex T 0 D T 0

n;1
. Recall that this action arises from regarding Bn

as the group of isotopy classes of diffeomorphisms of the disk that are the identity
on the boundary and permute the punctures pi . We verify conditions (1)–(3) at the
beginning of Section 1.

(1) T 0 has dimension n�1 and the action of Bn has only one orbit of k –simplices
for each k .

(2) To see that the stabilizer of a k –simplex fixes the simplex pointwise, note that
a set of kC 1 tethers coming out of the basepoint in the boundary of the disk
has a natural ordering determined by an orientation of the disk at the basepoint,
and this ordering is preserved by any diffeomorphism of the disk that is the
identity on the boundary. The stabilizer of a k –simplex is therefore isomorphic
to Bn�k�1 .
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(3) For an edge of T 0 corresponding to a pair of tethers there is a diffeomorphism
of the disk supported in a neighborhood of the two tethers that interchanges the
punctures at the ends of the tethers and takes the first tether to the second or
vice versa. This diffeomorphism gives an element of Bn commuting with the
stabilizer of the edge.

Theorem 1.1(a) now gives the result since T 0 is contractible by Proposition 3.2.

In this simple example we can in fact deduce more from the spectral sequence without
much work:

Theorem 3.4 When n is odd the stabilization Hi.Bn�1/!Hi.Bn/ is an isomorphism
for all i . Also, Hi.Bn/D 0 for i � n (for n of either parity).

Proof We look more closely at the spectral sequence used in the proof of Theorem 3.3
above. The E1 page has the following form:

Hi.Bn/ Hi.Bn�1/ Hi.Bn�2/ � � �

� � � Hi�1.Bn�1/ Hi�1.Bn�2/ Hi�1.Bn�3/ � � �

� � � Hi�2.Bn�3/ � � �

H0.Bn/ H0.Bn�1/ H0.Bn�2/ H0.Bn�3/ � � �

p D –1 0 1 2 � � �

0 Š

0 Š 0

Š 0

0 Š 0

i

i�1

i�2

q D 0

To see that the differentials are alternately zeros and isomorphisms as shown, note
first that the observation we used in the proof of Theorem 3.3 to verify condition (3)
holds more generally to show that for any system � of k C 1 � 2 tethers there is a
diffeomorphism of the disk permuting the punctures and supported in a neighborhood
of the tethers that takes any subset of k of the tethers to any other set of k of the tethers,
preserving their natural order and commuting with stab.�/. This implies that each of
the pC 1 terms of the map d1W E1

p;q DHq.stab.�//! E1
p�1;q

is the same, so, for
p odd, d1 is zero, and for p even, d1 is the map induced by inclusion. If we assume
n is odd then by induction on n starting with the trivial case n D 1 the differential
d1W E1

p;q!E1
p�1;q

is an isomorphism for p even, p > 0. In particular, for the right-
most nonvanishing column, which is the pDn�1 column since T 0 has dimension n�1,
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the d1 differentials originating in this column are isomorphisms since n is odd. (The
only nonzero term in this column is H0.B0/DZ since B0 , like B1 , is the trivial group.)

Thus in the E2 page all the terms to the right of the p D 0 column vanish. Since the
spectral sequence converges to zero and no differentials beyond the E1 page can be
nonzero, it follows that the differentials d1W Hi.Bn�1/! Hi.Bn/ must be isomor-
phisms for all i , which finishes the induction step to prove the first part of the theorem.

For the second statement of the theorem we again look at the E1 page of the spectral
sequence. The groups along the diagonal pC q D n� 1 are the groups Hj .Bj /. By
induction on n all the terms on or above this diagonal are zero except possibly in the
p D �1 column, where the groups on or above the diagonal are Hi.Bn/ for i � n.
Since the spectral sequence converges to zero, all of these terms must vanish as well.

The fact that Hi.Bn/ vanishes for i � n is also a consequence of the well-known
fact that there is an Eilenberg–Mac Lane space K.Bn; 1/ which is a CW complex of
dimension n� 1 (see eg [6]). Arnol’d [2] proved the statements in the two preceding
theorems by methods not involving spectral sequences.

Arnol’d also computed the homology of the pure braid subgroup Pn �Bn in [1] and it
does not stabilize, even at the level of H1 , which is free abelian of rank

�
n
2

�
, as can be

seen already from a presentation for Pn . When the action of Bn on T 0 is restricted to
Pn it is no longer transitive on simplices of each dimension, and in particular not on
vertices. We note that homology stability can sometimes still be proved using an action
which is not transitive on simplices, as long as the number of orbits is independent of
the stabilization parameters. However, the spectral sequence argument becomes more
complicated if there is more than one orbit.

4 Curve and arc complexes

For a compact orientable surface S D Sg;s of genus g with s boundary components
the classical curve complex C.S/ has as its vertices the isotopy classes of embedded
curves (circles) in S which are nontrivial, ie do not bound a disk and are not isotopic
to a component of @S . A set of vertices of C.S/ spans a simplex if the corresponding
curves can be isotoped to be all disjoint, so they form a curve system. We will be
particularly interested in the subcomplex C 0.S/ whose simplices are the isotopy classes
of coconnected curve systems, ie systems with connected complement. We will show
that C 0.S/ is highly connected by showing that C.S/ is highly connected and using
a link argument to deduce the connectivity for C 0.S/. These results are due originally
to Harer [9] and we follow the same overall strategy while simplifying the proofs of
several of the individual steps.
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4.1 Curves on surfaces with nonempty boundary

To prove C.S/ is highly connected when @S is nonempty the idea is to compare C.S/

with three other complexes in a sequence

A.S; @0S/�A1.S; @0S/' S.S; @0S/' C.S/:

The case that S is closed will be deduced from the nonclosed case.

We start by defining A.S; @0S/. An arc system on a bounded surface S is a set of
disjoint embedded arcs with endpoints on the boundary @S , such that no arc is isotopic
to an arc in @S and no two arcs in a system are isotopic to each other, where all isotopies
of arcs are required to keep their endpoints in @S . We choose a component @0S of
@S and define the complex A.S; @0S/ as the geometric complex whose k –simplices
are the isotopy classes of systems of kC 1 arcs whose endpoints all lie in @0S .

Proposition 4.1 The complex A.S; @0S/ is contractible whenever it is nonempty, ie
when S is not a disk or annulus.

Proof This is an application of Lemma 2.9, using surgery to flow into the star of a
fixed “target” arc a. The complexity of a system that intersects a minimally within its
isotopy class is defined as the number of intersection points with a. To do the surgery
we first choose an orientation for a. An arc b crossing a is cut into two arcs at the
point where it meets a nearest the terminal point of a, and the two new endpoints are
moved to this terminal point to produce a new arc system �b meeting a in one fewer
point than b . The function � 7! b� assigns to a system � the arc of � meeting a at
the point closest to the terminal point of a.

We define an arc system in A.S; @0S/ to be at infinity if it has some complementary
component which is neither a disk nor an annular neighborhood of a boundary com-
ponent. (The terminology comes from the fact, observed by Harer, that arc systems
at infinity can be identified with rational points in the boundary of the Teichmüller
space of the surface.) Arc systems at infinity form a subcomplex A1.S; @0S/. A
calculation using Euler characteristics shows that it takes at least .2gC s � 1/ arcs
to cut S into disks and annuli when s D 1, so in this case A1.S; @0S/ contains the
entire .2gCs�3/–skeleton of A.S; @0S/. When s > 1 there are similar statements
with 2gC s� 1 replaced by 2gC s� 2 and 2gC s� 3 replaced by 2gC s� 4. The
inclusion A1.S; @0S/ ,!A.S; @0S/ induces an injection on �i when A1.S; @0S/

contains the .iC1/–skeleton of A.S; @0S/, so we deduce:

Corollary 4.2 A1.S; @0S/ is .2gCs�4/–connected if s D 1 and .2gCs�5/–con-
nected if s > 1.
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@0S @0S

Figure 6: The map yA1.S; @0S/! yS.S; @0S/

Now define the subsurface complex S.S; @0S/ to be the geometric realization of the
poset yS.S; @0S/ of isotopy classes of compact connected subsurfaces F of S such that
one component of @F is @0S and the other components of @F that are not contained
in @S form a nonempty curve system in S , possibly containing parallel copies of the
same curve. In particular, no component of @F � @S bounds a disk in S or is isotopic
to a component of @S .

To each arc system ˛ with @˛� @0S we can associate a subsurface F.˛/ of S by first
taking a regular neighborhood N of ˛[ @0S and then adjoining any components of
S�N that are disks or annuli with one boundary circle contained in @S (see Figure 6).
Thus the simplices of A1.S; @0S/ correspond to systems ˛ for which F.˛/ ¤ S ,
and ˛ 7! F.˛/ is a map f W yA1.S; @0S/! yS.S; @0S/, where yA1.S; @0S/ denotes
the poset of simplices in A1.S; @0S/. This map is a poset map since ˛ � ˇ implies
F.˛/� F.ˇ/.

Proposition 4.3 The map f W yA1.S; @0S/! yS.S; @0S/ is a homotopy equivalence.

Proof We apply Quillen’s fiber lemma, Proposition 2.5. If F is a subsurface of S

then f�F is all arc systems ˛ with F.˛/� F , so this is yA.F; @0S/. Since F is not a
disk or annulus, yA.F; @0S/ is contractible by Proposition 4.1.

Given a curve system  , let the subsurface F. / � S be the component of the
complement of a regular neighborhood of  containing @0S (see Figure 7). Note
that if  �  0 then F. / � F. 0/. Thus if yC .S/ denotes the poset of simplices
of C.S/, then the association  7! F. / defines a poset map gW yC .S/! yS.S; @0S/

with respect to the reverse ordering on yS.S; @0S/ defined by F1 � F2 if F1 � F2 .

@0S @0S

Figure 7: The map yC .S/! yS.S; @0S/
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Proposition 4.4 The map gW yC .S/! yS.S; @0S/ is a homotopy equivalence.

Proof We again apply Proposition 2.5. For a subsurface F in yS.S; @0S/, the fiber
g�F consists of curve systems in S �F , where curves are allowed to be parallel to
curves of the system  .F /D @F � @S . In particular,  .F / is in the fiber, and  .F /
can be added to any curve system in the fiber, so the poset maps  7! [ .F / 7!  .F /

give a deformation retraction of g�F to the point  .F /.

Corollary 4.5 If @S is not empty, then C.S/ is .2gCs�4/–connected if s D 1 and
.2gCs�5/–connected if s > 1.

Corollary 4.6 If S has genus 0, then C.S/ is homotopy equivalent to a wedge of
spheres of dimension s� 4.

Proof If S has genus 0, C.S/ is .s�5/–connected by the preceding corollary,
and it is .s�4/–dimensional, so it is homotopy equivalent to a wedge of spheres of
dimension s� 4.

Remark In fact C.S/ is homotopy equivalent to a wedge of spheres in all cases.
When g > 0 the dimension of the spheres is 2gC s� 3 if s > 0 and 2g� 2 if s D 0.
This was proved by Harer [10, Theorems 3.3 and 3.5]. Thus the connectivity statements
derived above are best possible when s D 1 but one below best possible when s > 1.
However, these stronger results are not needed for the proof of homology stability.

4.2 Curves on closed surfaces

There is a map �W C.Sg;1/! C.Sg;0/ induced by filling in the boundary circle of
Sg;1 with a disk. We remark that the dimension of C.Sg;1/ is one more than that
of C.Sg;0/ when g > 1 since maximal curve systems cut S into pairs of pants. For
g D 1 the map C.S1;1/! C.S1;0/ is an isomorphism.

Proposition 4.7 The map �W C.Sg;1/ ! C.Sg;0/ is a homotopy equivalence for
each g � 1.

The weaker statement that ��W �kC.Sg;1/!�kC.Sg;0/ is surjective for all k suffices
to prove that C.Sg;0/ is .2g�3/–connected, which is all we will need for homology
stability. The surjectivity of �� has a short proof using a little hyperbolic geometry, as
follows: Choose a hyperbolic structure on Sg;0 in the nontrivial cases g � 2. Given
a map f W Sk ! C.Sg;0/ which we may assume is simplicial in some triangulation
of Sk , the images f .v/ of all the vertices v in Sk can be represented by geodesics.
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These are unique in their homotopy classes and are disjoint for sets of vertices spanning
a simplex in f .Sk/. Then a lift of f to C.Sg;1/ is obtained by deleting a disk in
Sg;0 disjoint from this finite set of geodesics.

To obtain the full strength of Proposition 4.7, here is a proof that uses only topological
techniques:

Proof We may assume g � 2. It will suffice to show that for each simplex � of
C.Sg;0/ the subcomplex F� D �

�1.�/ of C.Sg;1/ is contractible, by Proposition 2.5
and Lemma 2.6. To begin, choose a curve system z� in Sg;1 with �.z�/D � . Enlarge
z� to a maximal curve system ı cutting Sg;1 into pairs of pants. Let P be the pair of
pants containing @Sg;1 and let d1 and d2 be the other two boundary circles of P . We
can choose ı so that d1 is a curve of z� .

We may assume that all curve systems  in Sg;1 are in normal form with respect to ı ,
so  intersects ı transversely in the minimum number of points among all systems
isotopic to  . This minimality is equivalent to the “no bigon” condition that S contains
no disk whose boundary consists of an arc in  and an arc in ı . If two systems in
normal form with respect to ı are isotopic, then they are isotopic through systems
transverse to ı , except that curves in  isotopic to curves in ı can be pushed from one
side of ı to the other and such an isotopy cannot be transverse to ı at all times.

If a curve system  is in normal form with respect to ı then each component arc of
 \P either crosses P from d1 to d2 , or it enters P , goes around @Sg;1 , and leaves
by crossing the same di that it crossed when it entered P . An arc of the latter type
we call a return arc. Note that all return arcs of  must have their endpoints on the
same di .

We will use surgery to flow from F� into the subcomplex F nr
� consisting of curve

systems with no return arcs. Let c be a curve in normal form with respect to ı that
contains return arcs. Let b be the innermost of these return arcs, the one closest
to @Sg;1 . Pushing b across @Sg;1 converts c into a new curve �c which can be
isotoped to be disjoint from c . (See Figure 8). Alternatively, we can view �c as the
result of surgering c along an arc of @P to produce two curves, one of which is isotopic
to @Sg;1 and is discarded. The curve �c may not be in normal form with respect to ı ,
but it can be made so by an isotopy eliminating bigons one by one. Note that �c is in
F� if c is since the two curves become isotopic when @S0 is capped off with a disk.

If  is a curve system in F� with at least one return arc, define c to be the curve in
 containing the innermost return arc of  . Pushing c across @Sg;1 as above then
yields the curve �c . If we define the complexity of a curve system to be the number
of intersection points with @P , we then have the ingredients to apply Lemma 2.9,
producing a deformation retraction of F� to F nr

� .
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Figure 8: The flow in the proof of Proposition 4.7

We claim that F nr
� is just a single simplex, the simplex spanned by z� and d2 . To see

this, observe that if  is a simplex in F nr
� in normal form with respect to ı , and with

any of its curves parallel to d1 or d2 pushed outside P , then we can obtain the normal
form for �. / by simply deleting P from Sg;1 and identifying d1 and d2 in such a
way as to match up the endpoints of any arcs of  \P . In fact there can be no such
arcs since �. / is a face of � , hence  is a face of z� �d2 . Thus F nr

� is a simplex and
it follows that F� is contractible.

4.3 Coconnected curve systems

The complex C 0.S/ of coconnected curve systems on a surface of genus g has
dimension g� 1. As we will observe in Remark 4.9 below, the top-dimensional
homology group Hg�1.C

0.S// is nonzero, so the best one could hope is that C 0.S/

is .g�2/–connected, and indeed it is:

Proposition 4.8 The complex C 0.S/ of coconnected curve systems on a surface S

of genus g is .g�2/–connected.

Proof This is a link argument, an application of Corollary 2.2 with X D C.S/ and
Y DC 0.S/. To begin we need to single out the bad simplices of C.S/. To each curve
system we associate a dual graph, with a vertex for each complementary component of
the system and an edge for each curve. Thus a curve system is coconnected if and only
if its dual graph has one vertex and all edges are loops. A bad simplex in C.S/ is a
system of curves for which no edges of the dual graph are loops. This is equivalent to
saying that each curve in the system separates the complement of the other curves. It
is easy to see that conditions (1) and (2) in Section 2.1 are satisfied for this notion of
badness. For a bad simplex � , the complex G� is the join of the complexes C 0.Si/

for the components Si of the surface S� obtained by cutting S open along � . Either
the genus gi of Si is smaller than g or Si has fewer boundary components than S

so we may proceed by induction on the lexicographically ordered pair .g; s/. Since
g� D

P
i gi by definition and the quantity “connectivity plus two” is additive for
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joins, it follows that we may assume inductively that G� is .g��2/–connected. The
induction can start with the obvious cases that the genus is zero or one.

Cutting S along the curves of � can decrease the total genus by at most dim.�/ since
each cut decreases genus by at most one and cutting along the last curve cannot decrease
genus since � is bad. Thus g� � g� dim.�/. (This estimate is best possible in the
case that the dual graph to � consists of two vertices joined by a number of edges.) It
follows that the connectivity of G� , which inductively is at least g� �2, is also at least
g� 2� dim.�/ so the connectivity hypothesis on links in Corollary 2.2(a) is satisfied
with nD g� 2.

The last thing to check to apply the corollary is that the larger complex C.S/ is .g�2/–
connected. We can assume g > 0 since the proposition is trivial when g D 0. Then
Corollary 4.5 and Proposition 4.7 imply that C.S/ is .2g�3/–connected, and we have
g� 2� 2g� 3 when g � 1.

Remark 4.9 There is an easy argument showing that Hg�1.C
0.Sg;s// is nonzero for

all g � 1 and s � 0. Choosing g disjoint copies of S1;1 in Sg;s gives an embedding
of the join of g copies of C 0.S1;1/ into C 0.Sg;s/ as a subcomplex. The complex
C 0.S1;1/D C.S1;1/ is an infinite discrete set, so the join is homotopy equivalent to
the wedge of an infinite number of copies of Sg�1 . The inclusion map of the join into
C 0.Sg;s/ induces an injection on Hg�1 since both complexes have dimension g� 1

so no nontrivial .g�1/–dimensional cycle in the join can bound in C 0.Sg;s/. Thus
Hg�1.C

0.Sg;s// is nontrivial, and in fact is free abelian of infinite rank since it is the
kernel of the boundary map from the free abelian group of simplicial .g�1/–chains to
the simplicial .g�2/–chains, and a subgroup of a free abelian group is free abelian.

There is an oriented version of C 0.S/ whose simplices are isotopy classes of cocon-
nected systems of curves together with choices of orientations for these curves. Call
the resulting complex C 0

˙
.S/.

Corollary 4.10 The complex C 0
˙
.S/ is .g�2/–connected.

Proof Choose an arbitrary orientation for each isotopy class of nonseparating curves
in S . Then the two possible orientations correspond to the labels C and � and the
result is immediate from Corollary 2.3.

Remark 4.11 There are also versions of C 0.S/ and C 0
˙
.S/ in which simplices

correspond to ordered coconnected systems of curves or oriented curves. These too
have the same connectivity as C 0.S/ by Proposition 2.10.
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5 Tethered curves and chains

This section represents the heart of the paper, where we introduce the geometric
complexes that encode more information than is given by curves or arcs alone. The
main work is in showing that the new complexes are roughly half as highly con-
nected as C 0.S/, but this is enough for the spectral sequence arguments. The various
complexes we will consider fit into a commutative diagram:

TCh.S/ DTC.S/ TC.S/

Ch.S/ C 0.S/

The maps are forgetful maps except for the upper left horizontal map which is an
injection. We will start with the known connectivity of the complex C 0.S/ in the
lower right corner, then proceed around the diagram in the counterclockwise direction
to show each complex in turn is highly connected. Except for the one injection, each
step will involve two stages: first enlarge the domain complex to a complex for which
a surgery flow can be used to show that the fibers of the extended forgetful map are
contractible, then use a link argument to shrink back to the original source complex.
For the injection we need only a link argument to show that the image (and hence the
domain) is highly connected.

5.1 Tethered curves

Let P be a nonempty finite collection of disjoint open intervals and circles in @S . A
tether for a simple closed curve c in S is an arc in S with one endpoint in c and the
other in P , the interior of the arc being disjoint from c and from @S . Define a complex
TC.S;P / whose k –simplices are isotopy classes of systems of kC1 disjoint tethered
curves such that the complement of the system of tethered curves is connected. This
last condition is equivalent to the curves by themselves forming a coconnected system
since, after cutting S open along the curves, each newly created boundary circle is
connected to P by at most one tether arc, so cutting along these arcs cannot disconnect
the surface. Note that tethering a curve gives it a normal orientation, pointing away
from curve in the direction of the tether. An orientation of S converts the normal
orientation of the curve to a tangential orientation.

Proposition 5.1 The complex TC.S;P / is 1
2
.g�3/–connected, where g is the genus

of S .

Proof We will include TC.S;P / into a larger complex TC.S;P�/, then project
this larger complex onto C 0

˙
.S/, the oriented version of C 0.S/. We show that the
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projection is a homotopy equivalence using a surgery argument on barycentric fibers.
This shows that TC.S;P�/ is .g�2/–connected, and then a link argument will show
that TC.S;P / is 1

2
.g�3/–connected.

The complex TC.S;P�/ has the same vertices as TC.S;P / but the simplices corre-
spond to coconnected curve systems with at least one but possibly more tethers to each
curve. All the tethers must be disjoint, and all tethers to the same curve must attach on
the same side of the curve (at distinct points), giving the curve the same orientation.

The projection TC.S;P�/!C 0
˙
.S/ forgets the tethers but remembers the orientations

they induce on curves. The fiber of this projection over the barycenter of a simplex �
of C 0

˙
.S/ consists of all tether systems for � attaching on the “positive” sides of the

curves in � . Choose one such system, which for simplicity we take to lie in TC.S;P /
so that it consists of a single tether ti to each curve ci in � . We can deform the
barycentric fiber into the star of this tethered system by a surgery flow. The surgeries
are performed first using the tether t1 , surgering toward P until all tethers are disjoint
from t1 , then using t2 in similar fashion, and so on. Each surgery cuts a tether into two
arcs, one of which has both ends in P and which we discard, while the other is a tether
which we keep. To make the surgery process well-defined on isotopy classes one must
first put the tethers being surgered into normal form with respect to the fixed tethers ti ;
this minimizes the number of intersection points with ti by eliminating bigons and
“half-bigons”.

The surgery flow shows that the barycentric fiber over � is contractible, so the projection
TC.S;P�/! C 0

˙
.S/ is a homotopy equivalence by Lemma 2.8. Thus TC.S;P�/ is

.g�2/–connected by Corollary 4.10.

We now use a link argument to analyze the inclusion of TC.S;P / into TC.S;P�/.
To see how the connectivity number 1

2
.g� 3/ arises, let us try to show the inclusion

is .AgCB/–connected for yet-to-be-determined constants A and B . A bad simplex
in TC.S;P�/ is one that corresponds to a system of tethered curves in which each
curve has at least two tethers; in particular a vertex cannot be bad. If � is a bad
simplex, the surface S� obtained by cutting S open along the system of curves and
tethers corresponding to � may have several components Si , and P is cut into pieces
Pi � @Si . The components Si all have smaller genus than S and the subcomplex G�
is the join of the complexes TC.Si ;Pi/, so we can argue by induction on the genus.

To apply Corollary 2.2(a) we need to arrange that G� is .AgCB � k/–connected
for k D dim.�/. Cutting a surface along a multitethered curve system decreases
genus by at most one for each tether, so if g� denotes the genus of S� (ie the sum
of the genera gi of the components Si ) we have g� � g� k � 1. Suppose we know
by induction on genus that G� is .Ag�CB/–connected. The inequality we need is
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Ag� CB �AgCB � k , ie Ag� �Ag� k . We have observed that g� � g� k � 1,
so it suffices to have A.g�k � 1/�Ag�k , which simplifies to A� k=.kC 1/. We
only need this for k � 1 since vertices cannot be bad, so AD 1

2
works for all k � 1.

We therefore choose AD 1
2

.

To apply Corollary 2.2(a) we also need TC.S;P�/ to be
�

1
2
gCB

�
–connected, which

means 1
2
gCB � g � 2, the connectivity of TC.S;P�/. This inequality reduces to

B � 1
2
g� 2. We can assume g � 1 since the proposition is trivially true when g D 0.

When g D 1 the inequality B � 1
2
g� 2 is B � �3

2
, so we maximize B by choosing

B D�3
2

and then B � 1
2
g� 2 for all g � 1.

Thus our candidate for AgCB is 1
2
.g� 3/. It remains to verify the induction step by

showing that the join of the 1
2
.gi�3/–connected complexes TC.Si ;Pi/ is 1

2
.g��3/–

connected. We know that connectivity plus two is additive for joins, but this assumes
the connectivities are integers and here they could be fractions. This means we need to
use the floor function b�c for connectivities in order to apply the connectivity-plus-two
fact. Thus we let

f .g/D
�

1
2
.g� 3/

˘
C 2

and we wish to verify that f .g� /�
P

i f .gi/.

We have f .g/D 1
2
gC 1

2
if g is odd and 1

2
g if g is even. If g� D

P
i gi is odd then

at least one gi is odd, so
P

i f .gi/�
�P

i
1
2
gi

�
C

1
2
D f .g� /. If g� is even, we only

need to notice that
P

i f .gi/�
P

i
1
2
gi D f .g� /.

5.2 Double-tethered curves

We now consider a complex DTC.S;P;Q/ of double-tethered curve systems. Here Q

is a second nonempty finite collection of disjoint open intervals and circles in @S (we
allow P and Q to overlap or even coincide), and a double tether for a curve c is an
ordered pair of tethers attaching at the same point of c but on opposite sides, with the
first tether going to a point in P and the second to a point in Q. The two tethers must
be disjoint except at their common attaching point in c (see Figure 9). It is often useful
to think of a double tether as a single oriented arc going from P to Q and crossing the
curve at a single point. Note that a Dehn twist along the curve c acts nontrivially on the
isotopy classes of double tethers for c , in contrast with the situation for single tethers.

A k –simplex of DTC.S;P;Q/ is by definition an isotopy class of systems of kC 1

disjoint double-tethered curves such that the complement of the system is connected.
As before, this last condition is equivalent to the curves by themselves forming a
coconnected system, since cutting along the tethers after cutting along the curves
cannot disconnect the surface.
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P

Q

Figure 9: Double-tethered curve

Proposition 5.2 The complex DTC.S;P;Q/ is 1
2
.g�3/–connected, where g is the

genus of S .

Proof The proof follows closely the proof of Proposition 5.1. As before we include
DTC.S;P;Q/ into a larger complex DTC.S;P;Q�/, then project to TC.S;P /. The
complex DTC.S;P;Q�/ has the same vertices as DTC.S;P;Q/; however higher-
dimensional simplices of DTC.S;P;Q�/ correspond to isotopy classes of coconnected
curve systems with one tether from each curve to P and at least one but possibly more
tethers to Q, where all the tethers for a given curve attach at the same point of the
curve and all the Q–tethers attach on the opposite side from the P –tether. All the
tethers to P and Q in the system are disjoint from each other and from the curves
except at the points where they attach to a curve. Faces of simplices in DTC.S;P;Q�/
are obtained by deleting one Q–tether to a curve if there are several, or by deleting
the whole double-tethered curve if there is only one Q–tether to it. The vertices of the
simplex are thus the double-tethered curves contained in the given system of curves
and tethers.

The projection DTC.S;P;Q�/!TC.S;P / forgets the tethers to Q, keeping only the
single tether from each curve to P . As before, the barycentric fiber over a simplex of
TC.S;P / can be contracted by surgery into the star of a fixed system in DTC.S;P;Q/.
Thus DTC.S;P;Q�/ is 1

2
.g�3/–connected.

We now use a link argument exactly as in the proof of Proposition 5.1 to deduce that
DTC.S;P;Q/ is 1

2
.g�3/–connected. The key point is that cutting S along a simplex

of DTC.S;P;Q�/ decreases the genus by at most one for each tether to Q. This is
because cutting along a nonseparating curve decreases genus by one, then cutting along
the single tether to P does not decrease the genus further, nor does cutting along the
first tether to Q, and cutting along each additional tether to Q can decrease genus by
at most one.
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For the spectral sequence proof of homology stability we will use a certain subcomplex
of DTC.S;P;Q/ defined when P and Q are disjoint single intervals. To define this
subcomplex we first choose orientations for P and Q. For a simplex of DTC.S;P;Q/
the orientation of P induces an ordering of the double tethers of this simplex. Likewise
the orientation of Q induces a possibly different ordering of the double tethers. The
simplices for which the two orderings are in fact the same form a subcomplex of
DTC.S;P;Q/, which we denote DTCm.S;P;Q/, with the superscript indicating
matching orderings.

Proposition 5.3 The complex DTCm.S;P;Q/ is 1
2
.g�3/–connected.

Proof This will be a link argument, following the idea of the proof of Theorem 4.9
of [25]. A simplex of DTC.S;P;Q/ has vertices a set of pairs .c0; d0/; : : : ; .ck ; dk/

consisting of curves ci with double tethers di . We may assume these are listed in the
order specified by the orientation of P . The ordering determined by the orientation of
Q differs from this ordering by a permutation � of f0; 1; : : : ; kg, with � the identity
exactly when the simplex is in DTCm.S;P;Q/. If � is not the identity let i be the
smallest index such that �.i/¤ i . We call the given simplex bad if i D 0. We can
write the simplex uniquely as the join of a simplex h.c0; d0/; : : : ; .ci�1; di�1/i which
is good, ie in DTCm.S;P;Q/, and a simplex h.ci ; di/; : : : ; .ck ; dk/i which is bad,
where either of these two subsimplices could be empty. This notion of badness satisfies
the two conditions in Section 2.1.

For a bad simplex � D h.c0; d0/; : : : ; .ck ; dk/i the subcomplex G� of simplices that
are good for � can be identified with DTCm.S� ;P� ;Q� /, where S� is the (connected)
surface obtained by cutting S along � and P� and Q� are the subintervals of P

and Q up to the point where the first (with respect to the orientations of P and Q)
tethers of � attach. Cutting S open along each double tethered curve decreases
genus by one, so by induction on genus we may assume that DTCm.S� ;P� ;Q� /

is 1
2
.g�.kC1/�3/–connected. Since there are no bad 0–simplices we have k � 1

and 1
2
.g�.kC1/�3/� 1

2
.g�3/�k . The result now follows from Corollary 2.2(a).

5.3 Chains and tethered chains

The connectivity results obtained so far are enough to prove homology stability for
mapping class groups of surfaces with nonempty boundary. However if a surface is
closed there is no natural place for tethers to go, and we instead consider complexes
of chains, where a chain is an ordered pair .a; b/ of simple closed curves intersecting
transversely in a single point, together with an orientation on b . The geometric complex
of chains is denoted Ch.S/.
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a

bt

t 0

Figure 10: Double tether associated to a tethered chain

Remark 5.4 Forgetting the orientation on b gives a retraction of Ch.S/ to a complex
of unoriented chains, which has the same connectivity by an application of Corollary 2.3.

We will prove that Ch.S/ is highly connected for all surfaces S , with or without
boundary, but we start with a complex of tethered chains TCh.Sg;s;P / for a surface
with nonempty boundary. Here each chain has one tether connecting the positive side
of the (oriented) b–curve of the chain to a point in some finite collection P of disjoint
open intervals (but no circles) in @S . Since the tether is only allowed to attach to the
positive side of the b–curve, specifying the tether determines the orientation of b .

Proposition 5.5 The complex TCh.Sg;s;P / is 1
2
.g�3/–connected.

Proof Let ..a; b/; t/ be a vertex of TCh.Sg;s;P /. A small neighborhood N of b[ t

is homeomorphic to an annulus, one of whose boundary components intersects @S in
an arc. Deleting the interior of this arc from this component of @N leaves a double
tether t 0 for the a–curve (see Figure 10).

Thus the double tether t 0 and the a–curve give a vertex of the complex DTC.Sg;s;P /

of double-tethered coconnected curve systems where the double tethers have both ends
in P . In DTC.Sg;s;P / we do not orient the double tethers, in contrast with the double
tethers in DTC.Sg;s;P;P /, which do have specified orientations. This map on vertices
..a; b/; t/ 7! .a; t 0/ extends to a simplicial embedding

TCh.Sg;s;P / ,! DTC.Sg;s;P /:

The image consists of simplices with the special property that the two ends of each
double tether used in the simplex are adjacent in P . We denote this image by
DTCa.Sg;s;P /, with the superscript indicating the adjacency of the two ends of
a double tether. Thus it suffices to prove that DTCa.Sg;s;P / is 1

2
.g�3/–connected.

We will do this by a link argument similar to the one for Proposition 5.3. This will use
the fact that the larger complex DTC.Sg;s;P / is 1

2
.g�3/–connected, which follows
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by embedding it in DTC.Sg;s;P;P / as a retract by arbitrarily choosing orientations
for all the double tethers of vertices of DTC.Sg;s;P /; the retraction is obtained by
replacing all orientations by these arbitrarily chosen ones, and DTC.Sg;s;P;P / is
1
2
.g�3/–connected by Proposition 5.2.

For the link argument assume first that P is a single interval and choose an orientation
for P . This allows us to order the ends of the double tethers in each simplex of
DTC.Sg;s;P /. Define a simplex of DTC.Sg;s;P / to be bad if its first double-tether
end in P is not immediately followed by the other end of this double tether. (Note that
vertices cannot be bad.) Each simplex in DTC.Sg;s;P / is then the join of two of its
faces, the first face consisting of a string (possibly empty) of adjacently double-tethered
curves whose tether ends form an initial segment of the sequence of all the tether ends,
and the second face a bad simplex whose tether ends form the rest of the sequence.
The two conditions for badness in Section 2.1 are easily checked.

For a bad k –simplex � of DTC.Sg;s;P / the subcomplex G� of simplices that are
good for � can be identified with DTCa.S� ;P� / where S� is the surface obtained by
cutting S along � and P� is the part of P up to the first attaching point for the tethers
of � . By induction on genus we may assume G� is 1

2
.g�.kC1/�3/–connected, hence�

1
2
.g�3/�k

�
–connected since k � 1. The result for the case that P is a single interval

then follows from Corollary 2.2(a).

Now we treat the case of a more general P consisting of several disjoint intervals.
Let P0 be one of these intervals. We will apply a link argument for TCh.Sg;s;P /

and its subcomplex TCh.Sg;s;P0/. Define a k –simplex � of TCh.Sg;s;P / to be
bad if all of its tethers attach to points in P � P0 . Clearly the two conditions for
badness are satisfied, and G� is TCh.S� ;P0/ for S� the surface obtained by cutting
Sg;s along � . We have shown that TCh.S� ;P0/ is 1

2
.g�k�1�3/–connected, hence�

1
2
.g�3/�k�1

�
–connected. By Corollary 2.2(b), since TCh.Sg;s;P0/ is

�
1
2
.g�3/

�
–

connected, so is TCh.Sg;s;P /.

Finally we consider the complex Ch.Sg;s/ of oriented chains.

Proposition 5.6 Ch.Sg;s/ is 1
2
.g�3/–connected.

Proof We first treat the cases s > 0. Consider the complex TCh.Sg;s;P / with P a
collection of disjoint open intervals in @Sg;s . We enlarge TCh.Sg;s;P / to a complex
TCh.Sg;s;P

�/ by allowing multiple tethers to each chain, all attaching at the same
point of the b–curve of the chain and on the same side of the curve, each tether being
otherwise disjoint from all other tethers and chains. There is a projection

TCh.Sg;s;P
�/! Ch.Sg;s/;
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obtained by forgetting the tethers and orienting chains according to which side of the
b–curves the tethers attach to. The fibers of this projection are contractible by the usual
surgery argument, so it suffices to show that TCh.Sg;s;P

�/ is 1
2
.g�3/–connected.

We do this by a link argument. The bad k –simplices � in TCh.Sg;s;P
�/ are those

whose chains all have at least two tethers. The complex G� is the join of the com-
plexes TCh.Si ;Pi/ where cutting .Sg;s;P / along � produces a pair .S� ;P� / with
components .Si ;Pi/. Cutting along a chain reduces genus by one and creates a new
boundary circle, and then cutting along the first tether to the chain does not reduce the
genus further, while cutting along each subsequent tether to the chain reduces genus by
at most one more. Thus the total genus of S� is at least g�k � 1. It follows as in the
last paragraph of the proof of Proposition 5.1 that G� is 1

2
.g�k�1�3/–connected,

hence
�

1
2
.g�3/�k�1

�
–connected. Since TCh.Sg;s;P / is

�
1
2
.g�3/

�
–connected by

Proposition 5.5, we can apply Corollary 2.2(b) to deduce that TCh.Sg;s;P
�/ has this

connectivity as well. This proves the proposition when s > 0.

For the case s D 0 we use hyperbolic geometry. The cases g � 1 are trivial, so we
can assume g � 2 and fix a hyperbolic structure on Sg;0 . Each nontrivial isotopy
class of curves in Sg;0 contains a unique geodesic representative, and the geodesic
representatives of two isotopy classes intersect the minimum number of times within
the isotopy classes. Furthermore, if two curves intersect minimally, then one can choose
isotopies to geodesics such that the number of intersections remains minimal throughout
the isotopies. Thus each simplex in Ch.Sg;0/ has a unique geodesic representative.

There is a simplicial map Ch.Sg;1/! Ch.Sg;0/ induced by filling in @Sg;1 with a
disk. Given a simplicial map f W S i ! Ch.Ss;0/ we can choose a disk D in Sg;0

disjoint from the finitely many geodesic representatives for the chains that are images
of vertices of S i . Deleting the interior of D , we then have a lift of f to Ch.Sg;1/.
This lift is nullhomotopic if i � 1

2
.g� 3/. Composing with the projection to Ch.Sg;0/

then gives a nullhomotopy of f , so Ch.Sg;0/ is 1
2
.g�3/–connected.

Remark 5.7 One may ask whether the case s D 0 can be proved by a purely
topological argument. In Proposition 4.7 this was done for the analogous projection
C.Sg;1/!C.Sg;0/ by showing (in essence) that its fibers, which are one-dimensional
when g � 2, are contractible. However, the fibers of Ch.Sg;1/! Ch.Sg;0/ are zero-
dimensional and infinite when g � 2, so we cannot expect the same approach to work
here.

Example 5.8 Consider the case that S is closed of genus 2, so Ch.S/ is one-
dimensional. A chain .a; b/ in S has neighborhood bounded by a separating curve
cD c.a; b/. The link of .a; b/ in Ch.S/ consists of all chains .a0; b0/ in the genus one
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surface on the other side of c . These chains also have c.a0; b0/D c , so it follows that all
chains .a; b/ in this connected component of Ch.S/ have the same curve c.a; b/. The
connected components of Ch.S/ thus correspond to nontrivial separating curves on S .
Each connected component is the join of two copies of the infinite zero-dimensional
complex Ch.S1;1/. Thus Ch.S/ is not homotopy equivalent to a wedge of spheres
of a single dimension, in contrast with the situation for the curve complexes C.S/

and C 0.S/. Note also that the connectivity bound 1
2
.g � 3/ is best possible in this

case, where it asserts only that Ch.S/ is nonempty.

Remark 5.9 As a partial generalization of this example one can say that for S a
surface of arbitrary genus g � 1 the group Hg�1.Ch.S// is free abelian of infinite
rank. This follows as in Remark 4.9 by embedding g disjoint copies of S1;1 in S ,
which gives an embedding of the join of g copies of the infinite discrete set Ch.S1;1/

in Ch.S/. This join has dimension g � 1, the same dimension as Ch.S/, so the
embedding of the join is injective on Hg�1 .

6 The stability theorems

In the first part of this section we apply the spectral sequence for the action of the
mapping class group of S on a double-tethered curve complex to prove homology
stability with respect to genus when the number of boundary components is fixed and
nonzero. As a bonus, the proof also shows that the stable homology groups do not
depend on the number of boundary components of S when this number is nonzero.

After this we show that the homology in the case of closed surfaces is isomorphic to
that for nonclosed surfaces, in the stable dimension range. This uses a second spectral
sequence, this one for the action of the mapping class group on the complex hCh.S/i
of ordered chains in S .

6.1 Surfaces with nonempty boundary

Let S be a surface of genus g with s � 1 boundary components, and let Mg;s be the
mapping class group of S , where diffeomorphisms and isotopies between them are
required to restrict to the identity on each boundary circle. There are two stabilization
maps Mg;s!MgC1;s induced by inclusions ˛; ˇW Sg;s!SgC1;s , shown in Figure 11.
For ˛ one attaches S1;2 to Sg:s along one boundary circle, assuming s � 1, while
for ˇ one attaches S0;4 to Sg;s along two boundary circles, assuming s � 2. The
inclusions ˛ and ˇ induce homomorphisms of the corresponding mapping class groups
by extending diffeomorphisms via the identity on the attached surface. It is a standard
fact that these induced homomorphisms are injective; see for example Theorem 3.18
in [7].
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� � � �

Figure 11: ˛ (left) and ˇ (right) stabilizations

We can factor both ˛ and ˇ as compositions of two inclusions � and �, each attaching
a pair of pants S0;3 , with the � attachment being along one boundary circle of S0;3

and � along two boundary circles. The difference between ˛ and ˇ is the order of the
attachments: For ˛ it is � followed by � while for ˇ it is the reverse.

For the associated mapping class groups we can stabilize with respect to g for fixed s

by iterating ˛ arbitrarily often, or we can do the same using ˇ . The ˛ stabilization
is the one usually considered rather than ˇ , probably because it is the more obvious
stabilization and only requires s � 1. We can also iterate � arbitrarily often to stabilize
with respect to s for fixed g , but � can only be iterated finitely often so it is not exactly
a stabilization.

Theorem 6.1 The stabilizations

˛�W Hi.Mg;s/!Hi.MgC1;s/; ��W Hi.Mg;s/!Hi.Mg;sC1/

are isomorphisms for g � 2i C 2 and s � 1.

Proof We first give an easy argument that reduces both cases in the theorem to the
statement that the stabilization ˇ�W Hi.Mg;s/!Hi.MgC1;s/ is an isomorphism for
g > 2i C 1 and a surjection for g D 2i C 1. Consider the three maps

Hi.Mg;s/
��
�!Hi.Mg;sC1/

��
�!Hi.MgC1;s/

��
�!Hi.MgC1;sC1/:

The composition of the first two maps is ˛� and the composition of the second two
is ˇ� . If ˇ� is surjective for g � 2i C 1 then so is the second �� in that range. On
the other hand �� is always injective since it has a left inverse obtained by attaching a
disk to one of the free boundary circles of the attached S0;3 , so that the net result of
the two attachments is attaching an annulus along one boundary circle, and this induces
the identity map on Mg;s . Thus the second �� is an isomorphism for g � 2i C 1. It
follows that �� is surjective for g � 2i C 1. The first �� is now an isomorphism for
g � 2i C 2, so ˛� is surjective in that range. For injectivity of ˛� , if ˇ� is injective
for g � 2i C 2 then so is �� , hence also ˛� since �� is always injective.
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To prove stability for ˇ� we will apply part (b) of Theorem 1.1 for the action of
Mg;s on the complex DTCm.Sg;s;P;Q/ of systems of double-tethered curves with
matching orderings along P and Q, where P and Q are single intervals in different
components of @Sg;s . Here we assume s � 2 in order for ˇ to be defined. Since
P and Q are single intervals we can use a slightly different, equivalent definition of
DTCm.Sg;s;P;Q/ in which basepoints x1 2 P and x2 2Q are chosen in advance
and all tethers are required to have their P –endpoints at x1 and their Q–endpoints
at x2 , but otherwise satisfy the same conditions as before. Note that orderings of the
tethers at x1 and x2 are still well-defined, specified by orientations of P and Q.

We need to check that the conditions (1)–(3) at the beginning of Section 1 hold for
this action. First we check that the action is transitive on simplices of each dimension.
The mapping class group clearly acts transitively on ordered coconnected systems of k

oriented curves. To see that this holds also when matched systems of double tethers
are added, we use the orientation on a curve determined by its tethers which specify a
P –side of the curve and a Q–side, and we use the ordering of the curves specified by
the ordering of the tethers at P and Q, which agree since we assume tethers satisfy
the matching condition. Then transitivity on the double tethers for a fixed coconnected
ordered oriented curve system can be seen by first cutting S along the curves in the
system to get a surface F , and then observing that the mapping class group of F

acts transitively on systems of k arcs in F joining x1 to basepoints p1; : : : ;pk in
the k ordered P –circles of @F � @S together with k arcs joining x2 to basepoints
q1; : : : ; qk in the k ordered Q–circles of @F � @S , where in both cases the orderings
of the arcs at x1 and x2 agree with the specified orderings of the circles at their other
endpoints. This can be seen inductively by first making any two arcs from x1 to p1

agree after a diffeomorphism, then making any two arcs from x1 to p2 starting on the
same side of the first arc at x1 agree after a diffeomorphism fixing the first arc, etc.

To see that the inclusion of the stabilizer of a vertex � into Mg;s is the map induced
by ˇ , note first that a diffeomorphism in the stabilizer can be isotoped to fix the
double-tethered curve pointwise, not just setwise, since it fixes x1 and x2 . Then it can
be isotoped to be the identity in a closed neighborhood N� of the union of � and the
components of @S containing x1 and x2 (see Figure 12). This N� is diffeomorphic
to S0;4 since it has Euler characteristic �2 and four boundary circles. Furthermore,
N� attaches to the complementary surface S� along two circles of @N� . Thus the
inclusion of the stabilizer of � is the ˇ stabilization. (If x1 and x2 were in the same
component of @S , the neighborhood N� would be a copy of S1;2 and the inclusion of
the vertex stabilizer would be the ˛ stabilization.)

More generally the inclusion of the stabilizer of a k –simplex � is a .kC1/–fold iterate
of ˇ stabilizations since cutting S along each double-tethered curve of � in succession
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x1 x2

Figure 12: The neighborhood N� for a vertex � of DTC.S/

gives k C 1 ˇ stabilizations. All such inclusions of stabilizers of k –simplices into
Mg;s are conjugate since the action is transitive on k –simplices.

For condition (2), the stabilizer of a simplex fixes the simplex pointwise since the
order of tethers at a basepoint cannot be permuted by an orientation-preserving dif-
feomorphism of the surface. To check condition (3) note that a neighborhood of two
double-tethered curves defining an edge of DTCm.Sg;s/, with the double tethers going
from x1 to x2 , is a copy of S1;2 (this is not the same as the neighborhood N� in the
preceding paragraph since we do not include neighborhoods of the boundary circles
containing x1 and x2 ). The mapping class group M1;2 acts transitively on vertices of
DTCm.S1;2/, so there is a diffeomorphism of S supported in a neighborhood of the
two given double-tethered curves that sends the first to the second, or vice versa.

Remark If we choose P and Q to be disjoint intervals in the same component of @S ,
the same proof as above shows that the stabilization ˛�W Hi.Mg;s/!Hi.MgC1;s/ is
an isomorphism for g � 2i C 2 and a surjection for g D 2i C 1, a slight improvement
over the preceding theorem. The advantage of using the ˇ stabilization is that one also
gets � stability for free.

6.2 Closed surfaces

It remains to deal with the projection Mg;1!Mg;0 induced by filling in the boundary
circle of Sg;1 with a disk. More generally we will consider the map �W Mg;sC1!Mg;s

induced by capping off a boundary circle with a disk.

Theorem 6.2 For each s � 0, the map ��W Hi.Mg;sC1/! Hi.Mg;s/ is an isomor-
phism for g > 2i C 3 and a surjection for g D 2i C 3.

Proof We will apply Theorem 1.1(b) to the action of Mg;s on hCh.Sg;s/i, the complex
of ordered systems of oriented chains. The orderings and orientations guarantee that the
stabilizer of a k –simplex is exactly Mg�k�1;sCkC1 . The inclusion of this stabilizer is
the .kC1/–fold iterate of the composition �D �˛ . We already know that ˛ induces
an isomorphism on homology in a stable range, so proving this for � is equivalent to
proving it for � (and surjectivity of �� implies surjectivity of �� ).
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Conditions (1) and (2) for Theorem 1.1 are obviously satisfied. Unfortunately con-
dition (3) fails for 1–simplices of hCh.Sg;s/i since there is no diffeomorphism of
Sg;s moving one chain onto another disjoint chain and supported in a neighborhood
of the two chains. However there is a weakening of condition (3) that is satis-
fied and is strong enough to make the argument for injectivity of the differential
d W Hi.Mg�1;sC1/ ! Hi.Mg;s/ still work. (The argument for surjectivity did not
use (3).) If we enlarge the neighborhood of the two chains by adding a neighborhood
of an arc joining them, producing a surface T � S diffeomorphic to S2;1 , then there
is a diffeomorphism supported in T interchanging the two chains and preserving their
orientations. If we denote the two vertices of hCh.Sg;s/i corresponding to the two
chains by v and w , with e either of the two edges joining them, then we have the
following diagram:

Hi.stab.v//

Hi.stab.T // Hi.stab.e// Hi.stab.v0//

Hi.stab.w//

The four triangles in the diagram commute, except possibly the one just to the left of
the vertical arrow. Also, the large triangle formed by the two curved arrows and the
vertical map commutes. The horizontal map is the �� stabilization in Theorem 6.1 so
it is an isomorphism provided that g�2� 2iC2, ie g � 2iC4. This implies that the
whole diagram is in fact commutative in this range. This suffices to deduce injectivity
of the differential d D �W Hi.Mg�1;sC1/!Hi.Mg;s/ when g > '.i/D 2i C c for
c D 3, recalling that c � 2 was sufficient in the original argument for Theorem 1.1(b).

It remains only to check that hCh.Sg;s/i is 1
2
.g�3/–connected, which will follow

from Proposition 2.10 if Ch.Sg;s/ is wCM of level 1
2
.g� 1/. We know that Ch.Sg;s/

is 1
2
.g�3/–connected by Proposition 5.6, and likewise the link of a k –simplex of

Ch.Sg;s/ is 1
2
.g�.kC1/�3/–connected. We have 1

2
.g�.kC1/�3/� 1

2
.g�1/�k�2,

so the result follows.

Appendix

Here we give a different proof of Proposition 2.10 using the argument from Proposi-
tion 2.14 in [26]. The main step is a version of Theorem 2.4 of [8] which we give as a
lemma below that is of interest in its own right. This gives conditions under which a
simplicial map f W Y !X can be homotoped to be injective on individual simplices of
some subdivision of Y . We in fact need a relative version of this in which f and the
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triangulation are kept fixed on a subcomplex Z � Y . In this case the best one could
hope for is that f is simplexwise injective relative to Z , meaning that either of the
following two equivalent conditions is satisfied:

� If an edge Œv; w� has f .v/D f .w/, then Œv; w� 2Z .

� For each vertex v of Y �Z we have f .lk.v//� lk.f .v//.

Lemma A.1 Let X be a wCM complex of level n, Y a finite simplicial complex
of dimension at most n, f0W Y ! X a simplicial map and Z a subcomplex of Y .
Then f0 is homotopic fixing Z to a new map f1 that is simplicial with respect to a
new triangulation of Y subdividing the old one and unchanged on Z such that f1 is
simplexwise injective relative to Z in the new triangulation of Y .

Proof The proof is by induction on n using a link argument, where the induction starts
with the trivial case nD 0. Define a simplex � of Y to be bad if for each vertex v of
� there is another vertex w of � with f0.v/D f0.w/. Our goal is to eliminate all bad
simplices that are not contained in Z , and in particular all bad edges not contained in Z .

If there are any bad simplices not contained in Z , let � be one of maximal dimen-
sion k (note that k > 0 since vertices cannot be bad). Since f0 is simplicial we have
f0.lk.�//� st.f0.�//, but by maximality of � we actually have f0.lk.�//� lk.f0.�//.
(If v 2 lk.�/ maps to f0.v/2 f0.�/, then � �v is bad, contradicting maximality of � .)

Since � is bad, f0.�/ is a simplex of dimension at most k � 1, hence lk.f0.�// is
wCM of level n� k since we assumed X is wCM of level n. We assumed also that
Y has dimension at most n, so lk.�/ has dimension at most n� k � 1. Therefore
the map f0W lk.�/ ! lk.f0.�// is nullhomotopic and we can extend it to a map
g0W b � lk.�/! lk.f0.�//, where b is the barycenter of � . Since k > 0 we have
n�k<n and we can apply induction to deform g0 to a map g1 which agrees with g0 on
lk � and is simplexwise injective relative to lk.�/ in some subdivision of b� lk.�/ that
is unchanged on lk.�/. This homotopy extends over st.�/D � � lk.�/D @� �b� lk.�/
by taking the join with the constant homotopy of f0W @� ! f0.�/. The resulting
map f1W st.�/! f0.�/ � lk.f0.�//D st.f0.�// is simplexwise injective relative to
@� � lk.�/. We now have two maps f0 and f1 from st.�/ to st.f0.�// which agree
on @� � lk.�/. Since st.f0.�// is contractible, these two maps are homotopic by a
homotopy which fixes @� � lk.�/. Extend this homotopy by the constant homotopy
outside st.�/. The resulting map f1W Y ! X now has no bad simplices in the
(subdivided) st.�/ except those in @� � lk.�/ that were present before the modification.
The process can now be repeated for other bad simplices of dimension k not contained
in Z until they are all eliminated. Then we proceed to .k�1/–simplices, etc.
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Remark The proof used the connectivity assumptions on links of simplices in X but
not that X itself is .n�1/–connected. Thus we really only need local conditions on X ,
as one might expect.

We now give the alternative proof of Proposition 2.10. Recall that this states that if
a simplicial complex X is wCM of level n then its ordered version hX i is .n�1/–
connected. (It follows that hX i is wCM of level n as well, using the natural extension
of this notion to semisimplicial complexes.)

By induction on n it suffices to show that a map @Dn!hX i can be extended over Dn .
We first show that any map @Dn ! hX i is homotopic to a simplicial map. We
cannot directly appeal to the simplicial approximation theorem here because hX i is
only semisimplicial. (The simplicial approximation theorem does generalize to the
semisimplicial setting as shown in Theorem 5.1 of [21], but we do not need the full
strength of this.)

Given hf iW @Dn!hX i, let f W @Dn!X be the composition of hf i with the projec-
tion pW hX i ! X . Since X is .n�1/–connected we can extend f to F W Dn! X .
Since X is a simplicial complex we can use the simplicial approximation theorem to
get a homotopy from F to a map G that is simplicial in a PL triangulation of Dn

subdividing any given triangulation. We assume that this homotopy is constructed as
in the standard proof of simplicial approximation, in which case the restriction of the
homotopy to @Dn lifts to a homotopy of hf i. This is because the homotopy from F

to G has the property that if F.x/ lies in the interior of a simplex � of X , then G.x/

also lies in � (possibly in @� ) and the homotopy just moves F.x/ along the linear
path to G.x/ in � . If x lies in @Dn then � lifts to an ordered simplex containing
hf i.x/ and the path from F.x/ to G.x/ also lifts to this ordered simplex.

Since we are free to deform the original map hf iW @Dn ! hX i by any homotopy
before extending it over Dn , we may therefore assume that hf i is simplicial from the
start and that we have a simplicial extension F W Dn!X of f D phf i.

We now apply the preceding lemma with .Y;Z/D .Dn; @Dn/ to obtain a new map
F W Dn!X that is simplexwise injective on a subdivided triangulation of Dn , relative
to @Dn . This F can be lifted to hX i in the following way. Choose a total ordering
for the interior vertices of Dn . This total ordering gives an ordering on the vertices of
each simplex � which has no vertices in @Dn , and these orderings are compatible with
passing to faces. Since F is injective on each such simplex � the ordering on � carries
over to an ordering of F.�/ compatible with passing to faces. This gives a continuous
lift hFi of F on interior simplices of Dn .

We already have a lift hf i of F on @Dn . It remains to lift F on the simplices of
Dn that meet @Dn but are not contained in it. If every such simplex is the join of a
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boundary simplex � with an interior simplex � then the ordering on f .�/ given by
hf i extends to an ordering on F.� � �/ by orienting each edge with one end in f .�/
and the other in F.�/ towards F.�/, ie ordering all vertices of f .�/ before all vertices
of F.�/. This works since the lemma guarantees that no such edge is collapsed by F

to a single vertex.

It is possible that simplices meeting @Dn are not joins of boundary and interior simplices,
for example an edge passing through the interior of Dn might have both vertices in @Dn .
To avoid this situation, note first that the join property is preserved under subdivision.
If we start at the very beginning with a triangulation of Dn that has this property, for
example by coning off a triangulation of @Dn , then the initial simplicial approximation
step in the proof gives a subdivision of this triangulation, and applying the lemma
produces a further subdivision.
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