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Positive factorizations of mapping classes

R İNANÇ BAYKUR

NAOYUKI MONDEN

JEREMY VAN HORN-MORRIS

In this article, we study the maximal length of positive Dehn twist factorizations of sur-
face mapping classes. In connection to fundamental questions regarding the uniform
topology of symplectic 4–manifolds and Stein fillings of contact 3–manifolds coming
from the topology of supporting Lefschetz pencils and open books, we completely
determine which boundary multitwists admit arbitrarily long positive Dehn twist
factorizations along nonseparating curves, and which mapping class groups contain
elements admitting such factorizations. Moreover, for every pair of positive integers
g and n , we tell whether or not there exist genus-g Lefschetz pencils with n base
points, and if there are, what the maximal Euler characteristic is whenever it is
bounded above. We observe that only symplectic 4–manifolds of general type can
attain arbitrarily large topology regardless of the genus and the number of base points
of Lefschetz pencils on them.

20F65, 53D35, 57R17

1 Introduction

Let †n
g be a compact orientable genus-g surface with n boundary components, and �n

g

denote the mapping class group composed of orientation-preserving homeomorphisms
of †n

g which restrict to identity along @†n
g , modulo isotopies fixing the same data. We

denote by tc 2 �
n
g the positive (right-handed) Dehn twist along the simple closed curve

c � †n
g . If ˆD tcl

� � � tc1
in �n

g , where ci are nonseparating curves on †n
g , we call

the product of Dehn twists a positive factorization of ˆ in �n
g of length l .

Our motivation to study positive factorizations comes from their significance in the
study of Stein fillings of contact 3–manifolds, as in Giroux [10] or Loi and Pier-
gallini [17], and that of symplectic 4–manifolds via Lefschetz fibrations and pencils,
as in Donaldson [9]. Provided all the twists are along homologically essential curves, a
positive factorization of a mapping class in �n

g , n�1, prescribes an allowable Lefschetz
fibration which supports a Stein structure filling the contact structure compatible with
the induced genus-g open book on the boundary with n binding components; see Loi
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and Piergallini [17] and Akbulut and Ozbagci [1]. Similarly, a positive factorization
of a boundary multitwist �, ie the mapping class tı1

� � � tın
for ıi boundary parallel

curves, describes a genus-g Lefschetz pencil with n base points. Conversely, given any
allowable Lefschetz fibration or a Lefschetz pencil, one obtains such a factorization.

The main questions we will take on in this article are the following.

Question 1 When does the page F Š†n
g of an open book impose an a priori bound on

the Euler characteristics of allowable Lefschetz fibrations with regular fiber F filling it?

Question 2 When does the fiber F Š†g and a positive integer n imply an a priori
bound on the Euler characteristics of allowable Lefschetz pencils with regular fiber F

and n base points? When it does, what is the largest possible Euler characteristic?
More specifically, for which g; n do there exist genus-g Lefschetz pencils with n base
points?

By Giroux, contact structures on 3–manifolds up to isotopies are in one-to-one corre-
spondence with supporting open books up to positive stabilizations [10]. Moreover, a
contact 3–manifold .Y; �/ admits a Stein filling .X;J / if and only if .Y; �/ admits
a positive open book, ie an open book whose monodromy can be factorized into
positive Dehn twists along homologically essential curves on the page [17]. Since
b1.X /� b1.Y / for any Stein filling X , Question 1 above, up to stabilizations, amounts
to asking when the page of an open book (ie its genus g and number of binding
components n) on a contact 3–manifold implies a uniform bound on the topology of
its Stein fillings. On the other hand, Question 2 can be seen as a special version of
Question 1 with page †n

g and the particular monodromy �.

Related to our focus is the following natural function defined on mapping class groups.
The positive factorization length, or length (as the length, in this paper) of a mapping
class ˆ, which we denote by L.ˆ/, is defined to be the supremum taken over the
lengths of all possible positive factorizations of ˆ along nonseparating curves, and it
is �1 if ˆ does not admit any positive factorization. L is a superadditive function on
�n

g taking values in N [ f˙1g. It is easy to see that L <C1 translates to having
the uniform bound in the above questions.

We will investigate the length of various mapping classes, leading to a surprisingly
diverse picture, where our results will in particular provide complete solutions to the
above problems. Below, the ıi always denote boundary parallel curves along distinct
boundary components of †n

g for i D 1; : : : ; n.
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Theorem A Let �D tı1
� � � tın

on †n
g , where n� 1.1 Then

L.�/D

8<:
�1 if g D 1 and n> 9; or g � 2 and n> 4gC 4;

C1 if n� 2g� 4;

finite otherwise.

When finite, the exact value of L.�/ is

L.�/D

8̂̂̂<̂
ˆ̂:

12 if g D 1;

40 if g D 2;

6gC 18 if 3� g � 6;

8gC 4 if g � 7:

In particular, when L.�/ is finite, its value depends solely on g , and not n.

Translating this to Lefschetz pencils, for every pair of fixed positive integers g; n,
Theorem A allows us to tell (i) if there are any symplectic 4–manifolds admitting a
genus-g Lefschetz pencil with n base points (and with only irreducible singular fibers),
(ii) when the Euler characteristic of these 4–manifolds can get arbitrarily large, and (iii)
if bounded, what the largest Euler characteristic exactly is. Parts (i) and (ii) completely
answer [8, Question 5.1]. In the course of the proof, we will note that only symplectic
4–manifolds of general type, ie of Kodaira dimension 2, realize arbitrarily large Euler
characteristic. In contrast, when there is a uniform bound, we will see that the largest
Euler characteristic can be realized by a symplectic 4–manifold of Kodaira dimension
�1, 0 or 2.

Our second theorem, inspired by partial observations in Dalyan, Korkmaz and Pa-
muk [8], shows that when Question 1 is formulated for higher powers of the boundary
multitwist � (ie for Lefschetz fibrations with sections of self-intersection less than �1

instead of pencils) or for the product of � with a single Dehn twist along a nonseparating
curve, the uniform bounds in Theorem A disappear for all g � 2.

Theorem B Let � D tı1
� � � tın

on †n
g , where n � 1 is any integer, and a be any

nonseparating curve on †. Then

(1) L.�k/D 12k if g D 1, k � 1, and n� 9,

(2) L.�k/DC1 if g � 2, k � 2,

(3) L.� ta/DC1 if g � 2.

1As we will review while proving the above theorem, it is well-known that for �D tı1
� � � tın

on †n0
g

with n< n0 , we have L.�/D�1 . We have therefore expressed our results only for the nontrivial case
nD n0 .
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A simple variation of L is obtained by allowing separating Dehn twists along homo-
logically essential curves on †n

g in the factorizations, which we denote by zL. Clearly
L.ˆ/ � zL.ˆ/ for all ˆ, and L.�n

g/ �
zL.�n

g/. Our last theorem determines the full
image of L and zL on mapping class groups �n

g .

Theorem C For n� 1, the image of �n
g under zL and L is

(1) zL.�n
g/D L.�n

g/DN [f�1g if g D 0 and n� 2, or if g D 1,

(2) zL.�n
g/D L.�n

g/DN [f˙1g if g � 2.

Theorem C, along with parts of Theorems A and B, records the existence of mapping
classes with arbitrarily long positive factorizations. In the course of its proof we will in
fact spell out mapping classes (as multitwists along nonseparating curves) with positive
factorizations of unique lengths.

Any ˆ with L.ˆ/DC1 provides an example of a contact 3–manifold with arbitrarily
large Stein fillings. The mapping class ˆ prescribes an open book, which in turn
determines a contact 3–manifold by the work of Thurston and Winkelnkemper, whose
Stein fillings are obtained from the allowable Lefschetz fibrations corresponding to
respective positive factorizations. We therefore extend our earlier results in [6; 7], and
obtain many more counter-examples to Stipsicz’s conjecture [29], which predicted an
a priori bound on the Euler characteristics of Stein fillings. Clearly, any contact 3–
manifold Stein cobordant to one of these examples also bears the same property. Since
having a supporting open book with infinite length monodromy is a contact invariant,
our detailed analysis summarized in the results above can be used to distinguish contact
structures on 3–manifolds.

The novelty in the proofs of the above theorems is the engagement of essentially four
different methods:

(1) Underlying symplectic geometry and Seiberg–Witten theory The bounds and
calculations of the maximal length in the finite cases in Theorem A will follow from
our analysis of the underlying Kodaira dimension of the symplectic Lefschetz pencils
corresponding to these factorizations. Here the symplectic Kodaira dimension will
provide a useful way to organize the essential information. Indeed, we will observe
that the only classes of 4–manifolds yielding pencils or fibrations with unbounded
Euler characteristic are symplectic 4–manifolds of general type, ie of Kodaira dimen-
sion 2. Both our Kodaira dimension calculations following Sato [23] and Baykur and
Hayano [3] — even the very fact that the Kodaira dimension is a well-defined invariant
(see Li [13]) — and the sharp inequalities we obtain heavily depend on Taubes’ seminal
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work on pseudoholomorphic curves and Seiberg–Witten equations on symplectic 4–
manifolds.

(2) Dehn monoid and right-veering Realizing the finite lengths in Theorem B (the
content of Proposition 4), as well as our recap of previous results which establishes
the lack of any positive factorizations for certain mapping classes in Theorems A and
C (Proposition 5) will be obtained using Thurston type right-veering arguments as in
Short and Wiest [24] and Honda, Kazez and Matić [11], and will rely on the structure
of the positive Dehn twist monoid of �n

g .

(3) Homology of mapping class groups of small genus surfaces The precise cal-
culation for the genus-1 case in Theorem B, and the bounds in Theorem C for low
genus cases (Proposition 1), will follow from our complete understanding of the first
homology group of the corresponding mapping class groups.

(4) Constructions of new monodromy factorizations We will show that an artful
application of braid, chain and lantern substitutions applied to carefully tailored mapping
class group factorizations allows one to obtain arbitrarily long positive factorizations in
Theorems A and B (Theorems 9, 16 and 17). This greatly extends the earlier array of
partial results of Baykur, Korkmaz and Monden [5], Baykur and Van Horn-Morris [6;
7] and Dalyan, Korkmaz and Pamuk [8] to the possible limits of these constructions as
dictated by our results above.

The outline of our paper is as follows. In Section 2, we discuss mapping classes with
bounded lengths, and in Section 3 we construct those with infinite lengths. These
results will be assembled to complete the proofs of our main theorems in Section 4,
where we will also present a couple more results on lengths of mapping classes and
special subgroups of mapping class groups, and discuss some related questions.

Acknowledgements The first author was partially supported by the NSF Grant DMS-
1510395 and the Simons Foundation Grant 317732. The second author was supported
by the Grant-in-Aid for Young Scientists (B) (No. 13276356), Japan Society for
the Promotion of Science. The third author was partially supported by the Simons
Foundation Grant 279342.

2 Mapping classes with finite lengths

Here we investigate various examples of mapping classes with no positive factorizations
or with only factorizations of bounded length. We first probe mapping classes on small
genus surfaces, as well as those with small compact support in the interior, who have
unique lengths. We then move on to showing that boundary multitwists involving too
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many boundary components have an a priori bound on the length of their positive
factorizations.

2.1 Simple mapping classes with prescribed lengths

There are two tools that we will use to bound the number of Dehn twists in a given
factorization. The first uses the fact that the mapping class group �n

g for g D 0; 1

surjects to Z, based on H1.�
n
g IZ/ having a Z component. Secondly, we will use

right-veering methods of Thurston [24] and Honda, Kazez and Matić [11].

We begin with analyzing the g D 0; 1 case, for any n � 1. When g D 0, equivalent
arguments were given by Kaloti in [12] and Plamenevskaya in [19].

Proposition 1 For g � 1 any positive factorization of ˆ 2 �n
g along homologically

essential curves has bounded length. So zL.ˆ/ is bounded above for any ˆ. Further,
when g D 1, the length of any factorization into nonseparating Dehn twists is fixed.

Proof While a careful look at H1.�
n
g/ will yield more information, a bound on the

number of nontrivial Dehn twists in a positive factorization of a mapping class ˆ can
be obtained by capping off to the base cases of g D 0, nD 2 or g D 1, nD 1.

(Genus 0) For genus 0, the base case is n D 2. The mapping class group of the
annulus �2

0
is isomorphic to Z, where the right-handed Dehn twist about the core

of the annulus is mapped to 1. In this case, zL.ˆ/D Œˆ�, the image of ˆ under this
isomorphism, and moreover, a positive factorization, if it exists, is unique.

When n> 2, one can fix an outer boundary component, and identify † with a disk with
holes. The homomorphism induced by capping off all but a single interior boundary
component @i counts the number of Dehn twists (in any factorization) that enclose @i .
Every essential curve must enclose at least one interior boundary component and so
shows up in at least one of these counts. Adding up the images of ˆ for all of these
homomorphisms then gives a bound on the number of Dehn twists in any positive
factorization of ˆ.

(Genus 1) For genus 1, the base case is nD 1. The first homology of the mapping
class group H1.�

1
1
/ isomorphic to Z, where the right-handed Dehn twist about any

nonseparating curve is mapped to 1. The boundary Dehn twist has Œt@�D 12. In this
case, L.ˆ/D Œˆ�, the image of ˆ under this isomorphism, and zL� Œˆ�.

When n> 1, then just as above, one can cap off all but one boundary component and
calculate the value of ˆ there. Any essential curve will remain essential for at least
one of these maps, and so adding up the values of all of the images of ˆ will give a
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bound on the length of any factorization of ˆ into Dehn twists along homologically
essential curves and an upper bound on zL.ˆ/.

Even better, though, any nonseparating curve will remain nonseparating after every
capping, so the length of any positive factorization into nonseparating Dehn twists can
be found by capping off all but one boundary component of † and calculating Œˆ�
there. This determines L.ˆ/ on the nose.

Remark 2 Notice that combining the above with a theorem of Wendl [31] we recover
the following theorem of [19; 12]:

If the open book prescribed by ˆ 2 �n
g , n � 1, is stably equivalent to a

planar open book, then zL.ˆ/ is finite.

Equivalently, a mapping class ˆ2�n
g , n� 1 with zLDC1 cannot be stably equivalent

to a mapping class ‰ 2 �m
0

, for any m� 1.

We now move on to producing particular mapping classes with prescribed finite lengths
in �n

g for any g; n� 1, for which we first review the notion of right-veering [11]. Let
˛ and ˇ two properly embedded oriented arcs in an oriented surface † with @†¤∅,
having the same endpoints ˛.0/ D ˇ.0/ D x0 and ˛.1/ D ˇ.1/ on @†. Choose a
lifted base point zx0 of x0 and lifts to the universal cover z̨ and ž of the arcs ˛ and ˇ
starting at zx0 . We say ˇ is to the right of ˛ at x0 if the boundary component of z†
containing ž.1/ is to the right of that containing z̨.1/ when viewed from zx0 .

When † is an annulus, we can simply define a mapping class to be right-veering if
it is a nonnegative power of the right-handed Dehn twist. For surfaces other than the
annulus, think of z† as sitting in the Poincaré disk model of the hyperbolic plane, lift
the arcs to geodesics, and consider the endpoints z̨.1/ and ž.1/ radially from the
boundary of z† to the boundary of the disk. If the oriented path from ž.1/ to z̨.1/,
avoiding zx0 , has the same orientation as the boundary orientation induced by the disk,
then ˇ is to the right of ˛ . (More generally, one can take homotopic representatives of
˛ and ˇ which intersect minimally and are transverse at x0 , and ask whether in the
neighborhood of x0 , ˇ lies on the right or left of ˛ .) A diffeomorphism ˆ is called
right-veering if for every base point x0 and every properly embedded arc ˛ starting
at x0 , either ˆ.˛/ is to the right of ˛ at x0 or ˆ.˛/ is homotopic to ˛ , fixing the end
points. It is straightforward to see that this property is well-defined for an isotopy class
of ˆ rel boundary, and is independent of the choice of the base point. Hence we call
a mapping class ˆ right-veering if any representative of it is. It turns out that Veern

g ,
generated by right-veering mapping classes in �n

g is a monoid of �n
g , and contains

Dehnn
g , generated by all positive Dehn twists in �n

g as a submonoid [11].
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Proposition 3 Let
Qn

iD1 tci
be a positive Dehn twist factorization of a mapping class

element ˆ. If ˆ preserves an arc ˛ , then every curve ci is disjoint from the arc ˛ .

Proof If ˆ is a mapping class which preserves the homotopy class of an arc ˛ , then
for any factorization of ˆ as a product of right-veering maps ˆDˆr ı � � � ıˆ1 , we
can see that each of the ˆi also preserve ˛ . For if any ˆi moves ˛ , then it has to send
it to the right, after which every ĵ , for i < j � r , either fixes it, or sends it further to
the right. Since Dehn twists are right-veering, the proposition follows.

A multicurve C on †, which is a collection of disjoint simple closed curves, is said to
be nonisolating if every connected component of †nC contains a boundary component
of †. Next, we observe that Dehn twists along such C can realize any finite length l .

Proposition 4 Let C Dc1[� � �[cr be a nonisolating multicurve on † and m1; : : : ;mr

nonnegative integers. Then the multitwist
Qr

iD1 t
mi
ci

has a unique factorization in �n
g

into positive Dehn twists and hence zL
�Qr

iD1 t
mi
ci

�
Dm1C � � �Cmr .

Proof Let ˆ D
Qr

iD1 t
mi
ci

with m1; : : : ;mr nonnegative integers as above. By
Proposition 3, for any positive factorization of ˆ, each factor fixes every arc which is
disjoint from C . Since C is nonisolating, we can find arcs disjoint from C which cut
† into disjoint annuli that respectively deformation retract onto

S
ci . Thus all factors

are supported on these annuli, must be Dehn twists along these annuli, and give the
obvious factorization

Qn
iD1 t

mi
ci

.

Lastly, we note a general source of mapping classes in �n
g , n � 1, with no positive

factorizations.

Proposition 5 If ˆ is a nontrivial element in Veern
g , where n � 1, then ˆ�1 is not.

Thus if ˆ admits a nontrivial positive factorization, then ˆ�1 is not right-veering. In
particular, L.�k/D zL.�k/D�1 for k < 0 and L.1/D zL.1/D 0.

Proof If ˆ is nontrivial and right-veering, then it moves at least one arc ˛ to the right.
Then ˆ�1 sends ˆ.˛/ to ˛ ; that is, to the left.

The particular case we noted above, that �k for k � 0 does not admit any nontrivial
positive factorizations, was first observed by Smith [25] (whose arguments are similar
to ours) and also by Stipsicz [27] (who used Seiberg–Witten theory).
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2.2 Boundary multitwists with finite lengths

We are going to prove:

Theorem 6 Let � D tı1
� tı2
� � � tın

be the boundary multitwist on †n
g , with n �

2g� 3� 0. If n> 4gC 4, then L.�/D�1. If n� 4gC 4, we have

L.�/D

8<:
40 if g D 2;

6gC 18 if 3� g � 6;

8gC 4 if g � 7:

In particular, when L.�/ is finite, its value depends solely on g , and not n.

Let us briefly review here the notion of symplectic Kodaira dimension we will repeatedly
refer to in our proof of this theorem. The reader can turn to [13] for more details.
First, we recall that a symplectic 4–manifold .X; !/ is called minimal if it does not
contain any embedded symplectic sphere of square �1, and also that it can always
be blown-down to a minimal symplectic 4–manifold .Xmin; !

0/. Let �Xmin be the
canonical class of a minimal model .Xmin; !min/. We define the symplectic Kodaira
dimension of .X; !/, denoted by � D �.X; !/, as follows:

�.X; !/D

8̂̂̂<̂
ˆ̂:
�1 if �Xmin � Œ!min� < 0 or �2

Xmin
< 0;

0 if �Xmin � Œ!min�D �
2
Xmin
D 0;

1 if �Xmin � Œ!min� > 0 and �2
Xmin
D 0;

2 if �Xmin � Œ!min� > 0 and �2
Xmin

> 0:

Here � is independent of the minimal model .Xmin; !min/ and is a smooth invariant of
the 4–manifold X .

Proof of Theorem 6 Assume that � admits a positive Dehn twist factorization
W D tcl

� � � tc1
along nonseparating curves ci in �n

g . Let .X; f / be the genus-g
Lefschetz fibration with n disjoint .�1/–sphere sections, S1; : : : ;Sn , associated to
this factorization. We can support .X; f / with a symplectic form ! , with respect to
which all Sj are symplectic as well. Note that by the hypothesis, g � 2 and n� 1, the
latter implying that X is not minimal.

For fixed g , the length l is maximized if and only if the Euler characteristic of X is,
where e.X /D 4�4gC l ; whereas fixing n, along with g , will play a role in narrowing
down the possible values of the symplectic Kodaira dimension �.X /. We will read
off �.X / based on the number of .�1/–sphere sections of f . In principle, we need
to know that there are no other disjoint .�1/–sphere sections than S1; : : : ;Sn , that
is, there are no lifts of the positive factorization to a boundary multitwist in �n0

g with
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n0 > n. We will overcome this issue by simply presenting our arguments starting with
�D�1 and going up to nonnegative �D 0 cases. (Meanwhile, it will become evident
that the � D 1 and 2 cases cannot occur, so the proof will boil down to realizing and
comparing the bounds we obtain in the � D�1 and 0 cases.)

If n > 2g� 2, we can blow-down the n .�1/–sphere sections S1; : : : ;Sn to derive
a symplectic surface F 0 from a regular fiber F of f , which has genus g and self-
intersection n. Since the Seiberg–Witten adjunction inequality

2g� 2D�e.F 0/� ŒF 0�2Cjˇ �F 0j � ŒF 0�2 D n

is violated by F 0 , we conclude that X 0 (and thus X ) should be a rational or ruled
surface [16]. These are precisely the symplectic 4–manifolds with Kodaira dimension
� D�1.

If n D 2g � 2, and X is not rational or ruled, it follows from Sato’s work on the
canonical class of genus g � 2 Lefschetz fibrations on nonminimal symplectic 4–
manifolds that the canonical class KX can be represented by the sum

Pn
jD1 Sj of

the exceptional sphere sections in H2.X IQ/ (see [23] and also [3]).2 Blowing down
all Sj we get KX 0 D 0 in H2.X IQ/. In particular, the canonical class is torsion, and
so X is a blow-up of a symplectic Calabi–Yau surface, �.X /D 0. The minimal model
of X should then have the rational homology type of a torus bundle over a torus, the
Enrique surface, or the K3 surface by the work of Li and independently of Bauer [2;
14; 15].

Now if nD 2g�3, and X is not rational or ruled or a (blow-up of a) symplectic Calabi–
Yau surface, then the collection

Pn
jD1 Sj realizes the maximal disjoint collection of

representatives of its exceptional classes intersecting the fiber. It therefore follows
from Sato’s work in [23] that, provided g � 3 for the genus-g Lefschetz fibration
on X , the canonical class of X is represented by 2S1C

Pn
jD2 Sj CR, where S1 is

a distinguished Sj we get by relabeling if necessary, and more importantly, R is a
genus 1 irreducible component of a reducible fiber with ŒR�2D�1. The latter condition
however is not realized by any Lefschetz fibration with only nonseparating vanishing
cycles, which allows us to rule out this case. Finally, in the remaining gD 2 and nD 1

case, it follows from Smith’s analysis of genus-2 pencils in [26, Theorem 5.5] that the
maximal number of irreducible singular fibers is l D 40.

We have thus seen that for n� 2g�3, the �D 2 and �D 1 cases are already ruled out.
It therefore suffices to discuss the � D�1 and 0 cases, and compare the largest l we

2As the author’s argument in [23] is based on positive intersections of holomorphic curves, it essentially
captures the homology class of KX only in Q coefficients, which otherwise would lead to a contradiction
for pencils on the Enriques surface. Hence we quote here the result with this small correction [3].
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get in these cases to determine the winner, all while remembering we have an additional
candidate in the g D 2 case as noted above.

Let �.X /D�1. As X is not minimal, and because CP2# CP2 does not admit any
genus g> 0 Lefschetz fibration with a .�1/–section,3 we have X ŠS2�†h #mCP2

for some h� 0, m� 1. We have e.X /D 2.2� 2h/CmD 4� 4gC l , so

(1) l D 4.g� h/Cm� 4gCm:

On the other hand, it was shown in [28] that 4.b1.X /�g/C b�
2
.X /� 5bC

2
.X /. For

X with b1.X /D 2h, bC
2
.X /D 1, and b�

2
.X /DmC 1, we get

(2) m� 4� 4.2h�g/� 4C 4g:

Combining the inequalities (1) and (2), we conclude that l � 8gC 4.

The first conclusion, namely that L.�/D�1 when n> 4gC 4, is rather immediate.
Here X Š S2 �†h # mCP2 , and either h > 0 and we have m � n or h D 0 and
we only have mC 1 � n. The inequality (2) above, combined with our assumption
n> 4gC 4, implies that the former is impossible, whereas the latter can hold only if
mD 4gC 4.

We claim that there is no genus-g Lefschetz pencil on CP2 with 4gC 5 base points.
Let H represent the generator of H2.CP2/, and F D aH represent the potential
fiber class of the pencil. Since there exists a symplectic form for which the fiber is
symplectic, and since CP2 has a unique symplectic structure up to deformations and
symplectomorphisms, we can invoke the adjunction equality as

2g� 2D F2
� 3H �F D 4gC 5� 3a;

so 3a D 2g C 7. As F is a fiber class, a2 D F2 D 4g C 5 should be satisfied as
well. The only possible solution is when aD 3, which is the case of a g D 1 pencil
(indeed, the well-known case of an elliptic pencil on CP2 ) we have excluded from our
discussion (recall our hypothesis n� 2g� 3� 0).

Moreover, note that the equality l D 8gC 4 holds only if m D 4gC 4 and h D 0.
There exist such genus-g Lefschetz fibrations with l D 8gC 4 irreducible fibers and
mD 4gC4 sections of square �1 on CP2 # .4gC5/CP2Š S2�S2 # .4gC4/CP2 ;
see [30; 22].

Now, let �.X /D 0. Recall that l is maximal when e.X / is. Rational cohomology K3
has the largest Euler characteristics among all minimal candidates, and as discussed

3If it did, one would get a homology class F D aH with F2 D 1 , where H is the generator of
H2.CP2/ . This is only possible when aD 1 , which implies that the fiber genus is zero.
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above, one can hope to have a genus-g Lefschetz fibration on at most 2g�2 blow-ups of
a symplectic Calabi–Yau surface. It follows that the maximal l is realized when X is a
rational cohomology K3 surface blown up 2g�2 times. So 2.2�2g/ClD24C2g�2,
implying lD6gC18. Such Lefschetz fibrations on symplectic Calabi–Yau K3 surfaces
are constructed in [4]; also see [26, Proof of Theorem 3.10].

Hence all remaining conclusions of the theorem follow from a comparison of the
maximal l we get in the � D�1 and � D 0 cases, along with the additional (� D 2)
case when g D 2.

Remark 7 As seen in our proof, there is an a priori upper bound, determined by the
genus g and the number of base points n, on the number of critical points of Lefschetz
pencils when � < 1, and for pencils with only irreducible fibers when � � 1. So
arbitrarily large topology is specific to pencils on symplectic 4–manifolds of general
type, ie when � D 2. In contrast, when the uniform topology is bounded, the maximal
Euler characteristic for a genus-g Lefschetz pencil with n base points can be realized
by an .X; f / with � D 2 when g D 2, � D 0 when 3 � g � 7, and � D �1 when
g � 7.

3 Mapping classes with infinite lengths

Here we will construct arbitrarily long positive factorizations of various mapping classes
involving boundary multitwists in �n

g , for g � 2, n� 1.

3.1 Preliminary results

We begin with a brief exposition of various recent results on arbitrarily long positive
factorizations in [5; 6; 7; 8], which creates leverage for many of our results to follow. We
hope that the proofs given below will help with making the current article self-contained
in this aspect.

First examples of arbitrarily long positive factorizations were produced in [5] by Kork-
maz and the first two authors of this article, for a varying family of single commutators
in �2

g , for any g � 2. The proof of this result is based on the following well-known
relations. Let c1; c2; : : : ; c2hC1 be simple closed curves on †n

g such that ci and cj

are disjoint if ji � j j � 2 and that ci and ciC1 intersect at one point. Then, a regular
neighborhood of c1[ c2[ � � � [ c2hC1 is a subsurface of genus h with two boundary
components, b1 and b2 . We then have the chain relations,

tb1
tb2
D .tc1

tc2
� � � tc2hC1

/2hC2
D .tc2hC1

� � � tc2
tc1
/2hC2:
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Now for a chain of length 3, we get td te D .tc1
tc2

tc3
/4 and by applying the relation (6)

below to .tc1
tc2

tc3
/2 , we obtain

td te D .tc1
tc2

tc3
/2tc2

tc3
tc1

tc2
tc3

tc3
:

Since d; e; c1 and c3 are disjoint, we have

.tc1
tc2

tc3
/2tc2

tc1
tc3

tc2
D td t�1

c3
tet�1

c3
:

Taking the mth power of both sides, we obtain T10m D tm
d

t�m
c3

tm
e t�m

c3
for any positive

integer m, where T10m D f.tc1
tc2

tc3
/2tc2

tc1
tc3

tc2
gm . Now let

�12 D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc4
td tc3

tc4
:

Since �12.c3/D e and �12.d/D c3 , we get

�12 D �12t�m
d tm

c3
t�m
e tm

c3
T10m

D �12t�m
d tm

c3
��1

12 �12t�m
e tm

c3
T10m

D t�m
�12.d/

tm
�12.c3/

�12t�m
e tm

c3
T10m

D t�m
c3

tm
e �12t�m

e tm
c3

T10m:

We thus obtain the commutator relation in [5],

Cm D Œ�12; t
m
c3

tm
e �D T10m;

the right-hand side of which contains arbitrarily long positive factorizations as m

increases.

These commutator relations prescribe a family of genus-2 Lefschetz fibrations over T 2

with sections of self-intersection zero. Taking the complement of the regular fiber and
the section, the first and the third authors of this article produced allowable Lefschetz
fibrations filling a fixed spinal open book, leading to the first examples of contact
3–manifolds with arbitrarily large Stein fillings and arbitrarily negative signatures [6].
Guided by these examples, in a subsequent work [7], the same authors produced the
first examples of mapping classes with arbitrarily long positive factorizations. They
showed that any family of commutators Cm D ŒAm;Bm� with arbitrarily long positive
factorizations can be crafted into arbitrarily long positive factorizations of the boundary
multitwist tı1

tı2
in �2

g , for g � 8.

The arguments of [7] were taken further in an elegant article by Dalyan, Korkmaz and
Pamuk in [8], who observed that for special commutators Cm D ŒA;Bm�, where one
entry is a fixed mapping class, as in the commutator relation we reproduced above, one
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can manipulate the relations so as to produce arbitrarily long positive factorizations
in �2

2
. Namely, by repeating the relation (6), we have

.tc1
tc2

tc3
tc4

tc5
/6 D .tc1

tc2
tc3

tc4
/5tc5

tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc5

D tc1
tc2

tc3
tc4
.tc1

tc2
tc3

tc4
/4tc5

tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc5

D tc1
tc2

tc3
tc4
.tc1

tc2
tc3
/4tc4

tc3
tc2

tc1
tc5

tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc5
:

As tı and tı0 are center elements of �2
2

, by the chain relations tıtı0 D .tc1
tc2

tc3
tc4

tc5
/6

and td te D .tc1
tc2

tc3
/4 we obtain

tıtı0 D tc1
tc2

tc3
tc4

td tetc4
tc3

tc2
tc1

tc5
� tc4

tc3
tc2

tc1
tc1

tc2
tc3

tc4
� tc5

D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4
� tc5
� tc1

tc2
tc3

tc4
td tetc4

tc3
tc2

tc1
tc5

D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4
� tc4

td tc3
�D9

DD9 � tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4
� tc4

td tc3
;

where D9 D t.tc4
td tc3

/�1.c5/
tc1

tt�1
c3
.c2/

t.tc4
td tc3

/�1.c3/
tett�1

c3
.c4/

tc2
tc1

tc5
. By multiply-

ing both sides of this relation by tc4
, we obtain

tıtı0 tc4
DD9 ��12;m �T10m:

We sum these up in the following theorem.

Theorem 8 [5; 8] Let d , e and ci , i D 1; 2; 3; 4; 5, be the simple closed curves on
†2

2
as in Figure 1, and let

�12 D tc4
tc3

tc2
tc1

tc1
tc2

tc3
tc4

tc4
td tc3

tc4
;

�12;m D t�m
c3

tm
e �12t�m

e tm
c3
;

T10m D f.tc1
tc2

tc3
/2tc2

tc1
tc3

tc2
g
m;

D9 D t.tc4
td tc3

/�1.c5/
tc1

tt�1
c3
.c2/

t.tc4
td tc3

/�1.c3/
tett�1

c3
.c4/

tc2
tc1

tc5
:

Then, for all positive integers m, the following relations hold in �2
2

:

�12 D �12;m �T10m; (Baykur, Korkmaz and Monden)(3)

tıtı0 tc4
DD9 ��12;m �T10m: (Dalyan, Korkmaz and Pamuk)(4)

Finally, let us recall the following generalization of the lantern relation, now often
called the daisy relation [20; 5] (also see [18; 21]). This relation will be key for
inflating number of boundary components, and extending Theorem 8 to �n

g for any
1� n� 2g� 4,

t
p�1

ı0
tı1

tı2
� � � tıpC1

D tx1
tx2
� � � txpC1

;
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c1
c2

c3
c4

c5

c2g

c2gC1

a

b

d

e

d 0

e0

ı

ı0

Figure 1: The curves c1; c2; : : : ; c2gC1 and a; b; d; d 0; e; e0 and the boundary
curves ı; ı0 on †2

g

in �pC2
0

, the mapping class group of a 2–sphere with pC 2 � 4 boundary compo-
nents. Here ı0; ı1; ı2; : : : ; ıpC1 denote the p C 2 boundary curves of †pC2

0
, and

x1;x2; : : : ;xpC1 are the interior curves as shown in Figure 2. The p D 2 case is the
usual lantern relation.

x3

x2

x1

xpC1

ı3

ı2

ı1

ıpC1

ı0

Figure 2: The curves ı0; ı1; : : : ; ıpC1 and x1;x2; : : : ;xpC1

3.2 Boundary multitwist of infinite length

Theorem 9 Let g � 3. Then, in �2g�4
g , the multitwist

tı1
tı2
� � � tı2g�4

can be written as a product of arbitrarily large number of right-handed Dehn twists
about nonseparating curves.

Let a; b; d; d 0; e; e0 and ci .i D 1; 2; : : : ; 2gC 1/ be the simple closed curves on †2
g ,

and let ı and ı0 be the two boundary curves of †2
g as in Figure 1.
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We will now introduce the key lemma for the proofs of Theorems 9 and 16, namely
Lemma 10.

Let l be a positive integer such that l � n. Let ˇ and ˛; ˛0 be the separating curve
and the nonseparating curves on †n

g in Figure 3, respectively. Note that ˇ separates
†n

g into a surface of genus g with one boundary ˇ and a sphere with lC1 boundaries
d; ı1; ı2; : : : ; ıl and that ˛ and ˛0 separate †n

g into a surface of genus g � 1 with
2 boundaries ˛ and ˛0 and a sphere with l C 2 boundaries ˛; ˛0; ı1; ı2; : : : ; ıl . Let
x1;x2; : : : ;xl be the nonseparating curves on †n

g in Figure 3.

˛

˛0

ˇ
xl

xi

x1

ıl

ıl�1

ıi

ı2

ı1

Figure 3: The curves ˛; ˛0; ˇ and x1;x2; : : : ;xl

Lemma 10 Suppose that the following relation holds in �n
g :

U � tˇ D T � t l�1
˛ t˛0 ;

where U and T are elements in �n
g . Then, the following relation holds in �n

g :

U � tı1
tı2
� � � tıl

D T � tx1
� � � txl

:

This is a generalization of a technical lemma from [4], which we provide a different
proof of below.

Proof Multiplying both sides of the relation U � tˇ D T � t l�1
˛ t˛0 by ı1ı2 � � � ıl , we

obtain the following relation:

U � tˇtı1
tı2
� � � tıl

D T � t l�1
˛ t˛0 tı1

tı2
� � � tıl

:

Since tı1
; tı2

; : : : ; tıl
are elements in the center of �n

g , we can rewrite this relation as
follows:

U � tı1
tı2
� � � tıl

tˇ D T � t l�1
˛ tı1

tı2
� � � tıl

t˛0 :
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Here, by the daisy relation t l�1
˛ tı1

tı2
� � � tıl

t˛0 D tx1
tx2
� � � txl

tˇ , we have

U � tı1
tı2
� � � tıl

tˇ D T � tx1
tx2
� � � txl

tˇ:

Removing tˇ from both sides of this relation we get the desired relation.

d4 d5 f6 f7 d2gC1

e4 e5 e2gC1

ı

ı0

ı

ı0

Figure 4: The curves dj ; ej .j D 4; 5; : : : ; 2gC 1/ and fh .hD 6; 7; 8; 9/ on †2
g

Let dj , ej .j D 4; 5; : : : ; 2gC 1/, fh .hD 6; 7; 8; 9/ be the simple closed curves on
†2

g as in Figure 4 which are defined by

dj D t�1
cj�3

t�1
cj�2

t�1
cj�1

.cj /; ejD tcj�3
tcj�2

tcj�1
.cj /;

fh D tch�5
tch�4

tch�3
tch�2

tch�1
.ch/:

Letting i; l;m be positive integers such that lC 1� i �m� 1, the following relations
hold from the braid relations:

tci�1
� tcm

tcm�1
� � � tcl

D tcm
tcm�1

� � � tcl
� tci
;(5)

tcl
tclC1

� � � tcm
� tci�1

D tci
� tcl

tclC1
� � � tcm

:(6)

Next is a lemma from [4], whose proof we include here for completeness.

Lemma 11 [4] For k D 1; 2; : : : ; 2g� 2, the following relations hold in †2
g :

2g�2Y
iDk

tciC3
tciC2

tciC1
tci
D .tckC2

tckC1
tck
/2g�1�k tdkC3

tdkC4
� � � td2gC1

(7)

kY
iD2g�2

tci
tciC1

tciC2
tciC3

D te2gC1
� � � tekC4

tekC3
.tck

tckC1
tckC2

/2g�1�k(8)

1Y
iD4

tci
tciC1

tciC2
tciC3

tciC4
tciC5

D tf9
tf8

tf7
tf6
.tc1

tc2
tc3

tc4
tc5
/4(9)
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Proof First, we prove the relation (7) by induction on 2g � 1 � k . Suppose that
k D 2g� 2. Then, we have

tc2gC1
� tc2g

tc2g�1
tc2g�2

D tc2g
tc2g�1

tc2g�2
� td2gC1

:

Therefore, the conclusion of the relation holds for k D 1. Let us assume, inductively,
that the relation holds for kC 1< 2g� 2. By (5), we have

2g�2Y
iDk

tciC3
tciC2

tciC1
tci

D tckC3
tckC2

tckC1
tck
�

2g�2Y
iDkC1

tciC3
tciC2

tciC1
tci

D tckC3
tckC2

tckC1
tck
� .tckC3

tckC2
tckC1

/2g�1�.kC1/tdkC4
tdkC5

� � � td2gC1

D .tckC2
tckC1

tck
/2g�1�.kC1/

� tckC3
tckC2

tckC1
tck
� tdkC4

tdkC5
� � � td2gC1

D .tckC2
tckC1

tck
/2g�1�.kC1/

� tckC2
tckC1

tck
� tdkC3

� tdkC4
tdkC5

� � � td2gC1
:

Hence, the relation (7) is proved.

Next, we prove the relation (8) by induction on 2g� 1� k . Suppose that k D 2g� 2.
Then, we have

tc2g�2
tc2g�1

tc2g
� tc2gC1

D te2gC1
� tc2g�2

tc2g�1
tc2g

:

Therefore, the conclusion of the relation holds for kD2g�2. Let us assume, inductively,
that the relation holds for kC 1< 2g� 2. By (6), we have

kY
iD2g�2

tci
tciC1

tciC2
tciC3

D

� kC1Y
iD2g�2

tci
tciC1

tciC2
tciC3

�
� tck

tckC1
tckC2

tckC3

D te2gC1
� � � tekC5

tekC4
.tckC1

tckC2
tckC3

/2g�2�k
� tck

tckC1
tckC2

tckC3

D te2gC1
� � � tekC5

tekC4
� tck

tckC1
tckC2

tckC3
� .tck

tckC1
tckC2

/2g�2�k

D te2gC1
� � � tekC5

tekC4
� tekC3

� tck
tckC1

tckC2
� .tck

tckC1
tckC2

/2g�2�k :

Hence we obtain the relation (8). The proof for the relation (9) is very similar, and we
leave it to the reader.
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Let

Hi WD tc1
tc2
� � � tci

; H i WD tci
� � � tc2

tc1
; I2g�8 WD td10

td11
� � � td2gC1

;

J2g�6 WD te2gC1
� � � te9

te8
; K4 WD tf9

tf8
tf7

tf6
; L16 WD

4Y
iD1

tciC3
tciC2

tciC1
tci
:

Lemma 12 For g � 4, the following relation holds in †2
g :

.tc1
tc2
� � � tc2gC1

/4 D .H3/
4.H 3/

2g�8K4.H5/
4I2g�8

Proof It is easy to check that from the braid relations we have

.tc1
tc2
� � � tc2gC1

/4 D .tc1
tc2

tc3
/4

1Y
iD4

tci
� � � tciC2g�3

D .H3/
4

2g�2Y
iD1

tciC3
tciC2

tciC1
tci
:

By the relation (7) for k D 7 repeating (5), we obtain

.tc1
tc2
� � � tc2gC1

/4 D .H3/
4

� 6Y
iD1

tciC3
tciC2

tciC1
tci

�
.tc9

tc8
tc7
/2g�8I2g�8

D .H3/
4.tc3

tc2
tc1
/2g�8

� 6Y
iD1

tciC3
tciC2

tciC1
tci

�
I2g�8:

It is easy to check that from the braid relations we have

6Y
iD1

tciC3
tciC2

tciC1
tci
D

1Y
iD4

tci
tciC1

tciC2
tciC3

tciC4
tciC5

:

Hence, by (9), we obtain the desired relation.

Lemma 13 For g � 4, the following relation holds in †2
g :

.tc1
tc2
� � � tc2gC1

/2g�2
D J2g�6L16.H3/

2g�6td 0 te0

Proof From the braid relations we have

.tc1
tc2
� � � tc2gC1

/2g�2
D

� 1Y
iD2g�2

tci
tciC1

tciC2
tciC3

�
.tc5

tc6
� � � tc2gC1

/2g�2:
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By the chain relation td 0 te0 D .tc5
tc6
� � � tc2gC1

/2g�2 , the relation (8) for k D 5 and
repeating (6),

.tc1
tc2
� � � tc2gC1

/2g�2
D J2g�6.tc5

tc6
tc7
/2g�6

� 1Y
iD4

tci
tciC1

tciC2
tciC3

�
td 0 te0

D J2g�6

� 1Y
iD4

tci
tciC1

tciC2
tciC3

�
.tc1

tc2
tc3
/2g�6td 0 te0 :

Since it is easy to check that from the braid relations we have

1Y
iD4

tci
tciC1

tciC2
tciC3

D

4Y
iD1

tciC3
tciC2

tciC1
tci
;

we obtain the relation in the statement.

Proposition 14 Let g � 4. Then the following relation holds in †2
g . If g is even,

then we have

tıtı0 DK4.H5/
4I2g�8J2g�6L16.H3/

2t
g�3

d
td 0 t

g�3
e te0 :

If g is odd, then we have

tıtı0 DK4.H5/
4I2g�8J2g�6L16.H 3/

2t
g�3

d
td 0 t

g�3
e te0 :

Proof By Lemmas 12, 13 and the chain relation

tıtı0 D .tc1
tc2
� � � tc2gC1

/2gC2
D .tc1

tc2
� � � tc2gC1

/4 � .tc1
tc2
� � � tc2gC1

/2g�2;

we have

tıtı0 D .H3/
4.H 3/

2g�8K4.H5/
4I2g�8J2g�6L16.H3/

2g�6td 0 te0 :

Since c1; c2; c3 are disjoint from d 0 and e0 , by conjugation by .H3/
4.H 3/

2g�8 we
obtain

tıtı0 DK4.H5/
4I2g�8J2g�6L16.H3/

2g�2.H 3/
2g�8td 0 te0 :

The claim follows from this relation and the chain relations td te D .H3/
4D .H 3/

4 .

Lemma 15 Let g � 4. For any positive integer m, we have

L16.H5/
4
D �12;mT10mM9 � tc5

tc3
tc4

tc2
tc3
;

where M9 D t.tc4
td tc3

tc4
/�1.c5/

tc2
t.tc5

tc4
/�1.c6/

td tt�1
c4
.c3/

tc7
t.tc5

tc4
/�1.c6/

td tt�1
c4
.e/ .
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Proof By (6) and the braid relations, we have

L16.H5/
4
D tc4

tc3
tc2

tc1
H5tc4

tc3
tc2

tc1
tt�1

c5
.c6/

tc4
tc3

tc2
tc7

tt�1
c5
.c6/

tc4
tc3
.H5/

3

D tc4
tc3

tc2
tc1

H5tc4
tc3

tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
� tc1

tc2
tc3
.H5/

3

D tc4
tc3

tc2
tc1

H5tc4
tc3

tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
.H3/

4tc4
tc5

tc3
tc4

tc2
tc3
:

Here, by the chain relation td te D .H3/
4 ,

tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
.H3/

4tc4
D tc2

tt�1
c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
td tetc4

D tc2
tt�1

c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
td tc4

tt�1
c4
.e/

D td tc4
�N7 � tc4

tt�1
c4
.e/;

where N7 D .td tc4
/�1.tc2

tt�1
c5
.c6/

tc4
tc3

tc7
tt�1

c5
.c6/

tc4
/.td tc4

/. Note that it is easy to
check that N7 D tc2

t.tc5
tc4
/�1.c6/

td tt�1
c4
.c3/

tc7
t.tc5

tc4
/�1.c6/

td . Therefore, we have

L16.H5/
4
D tc4

tc3
tc2

tc1
H5tc4

tc3
� td tc4

�N7 � tc4
tt�1

c4
.e/ � tc5

tc3
tc4

tc2
tc3

D tc4
tc3

tc2
tc1
� tc1

tc2
tc3

tc4
tc5
� tc4

td tc3
tc4
�N7 � tc4

tt�1
c4
.e/ � tc5

tc3
tc4

tc2
tc3

D tc4
tc3

tc2
tc1
� tc1

tc2
tc3

tc4
� tc4

td tc3
tc4
�M9 � tc5

tc3
tc4

tc2
tc3

D �12 �M9 � tc5
tc3

tc4
tc2

tc3
:

The lemma follows from the relation (3).

Proof of Theorem 9 Suppose that g � 4. Let S and S 0 be two spheres with g� 1

boundary components, and let ı; ı1; ı2; : : : ; ıg�2 and ı0; ıg�1; ıg; : : : ; ı2g�4 denote
the boundary curves of S and S 0 , respectively. We attach S and S 0 to †2

g along ı
and ı0 . Then we obtain a compact oriented surface of genus g with 2g� 4 boundary
components ı1; ı2; : : : ; ı2g�4 , denoted by †2g�4

g . By Proposition 14 and Lemma 10,
there are simple close curves x1;x2; : : : ;x2g�4 such that the following relations hold
in �2g�4

g . Let

Zg�2 WD tx1
tx2
� � � txg�2

; Wg�2 WD txg�1
txg
� � � tx2g�4

:

If g is even, then we have

tı1
tı2
� � � tı2g�4

DK4.H5/
4I2g�8J2g�6L16.H3/

2Zg�2Wg�2:

If g is odd, then we have

tı1
tı2
� � � tı2g�4

DK4.H5/
4I2g�8J2g�6L16.H 3/

2Zg�2Wg�2:
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By conjugation by L16 and Lemma 15, we have the following relation. If g is even,
then we have

tı1
tı2
� � � tı2g�4

DK04�12;mT10mM9 � tc5
tc3

tc4
tc2

tc3
� I2g�8J2g�6.H

0
3/

2Z0g�2W 0g�2;

where K0
4
D L16K4L�1

16
, H 0

3
D L16H3L�1

16
Z0

g�2
D L16Zg�2L�1

16
and W 0

g�2
D

L16Wg�2L�1
16

. If g is odd, then we have

tı1
tı2
� � � tı2g�4

DK04�12;mT10mM9 � tc5
tc3

tc4
tc2

tc3
� I2g�8J2g�6.H 03/

2Z0g�2W 0g�2;

where H 03 DL16H 3L�1
16

.

Note that K0
4

, H 0
3

, H 03 , Z0
g�2

and W 0
g�2

are also products of 4, 3, 3, g � 2 and
g� 2 right-handed Dehn twists about nonseparating curves, respectively. Therefore,
for any positive integer m, the mapping class tı1

tı2
� � � tı2g�4

may can be written as a
product of 6gC 2C 10m right-handed Dehn twists about nonseparating curves. This
completes the proof.

3.3 Factorizations of boundary multitwist and a single Dehn twist

Theorem 16 Let g� 2. Let a be a nonseparating curve on †n
g . Then, for any positive

integer n, in the mapping class group �n
g , the multitwist

tı1
tı2
� � � tın

ta

can be written as a product of an arbitrarily large number of right-handed Dehn twists
about nonseparating curves.

The proof of Theorem 16 is a direct application of Lemma 10 (and Theorem 8).

Proof of Theorem 16 By the relation (4) and Theorem 9 we may assume that n� 3.
Let k be a positive integer, and recall that T10m D f.tc1

tc2
tc3
/2tc2

tc1
tc3

tc2
gm . By the

chain relation td te D .tc1
tc2

tc3
/4 , we may write

T10�2.n�2/ D T � .tc1
tc2

tc3
/4.n�2/

D T � tn�2
d tn�2

e D T � tn�2
e tn�2

d ;

where T is a product of 8.n�2/ right-handed Dehn twists about nonseparating curves.
Therefore, if m> 2.n� 2/, then we can rewrite T10m in �2

2
as

(10) T10m D T10fm�2.n�2/g �T10�f2.n�2/g DO10m�11.n�2/ � t
n�2
d ;

where O10m�11.n�2/D T10fm�2.n�2/g �T � t
n�2
e , so it is a product of 10m�11.n�2/

right-handed Dehn twists about nonseparating curves.
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Let S be a sphere with n boundary components ı; ı1; ı2; : : : ; ın�1 . We attach S to
†2

g along ı . Set ı0 D ın . Then we obtain a compact oriented surface of genus g

with n boundary components ı1; ı2; : : : ; ın , denoted by †n
g . Note that we obtain a

separating curve on †n
g from ı . We continue to write ı for the resulting separating

curve on †n
g .

Suppose that g D 2. Let D8 DD9t�1
c5

. By the relations (4) and (10), we have

tıtın
tc4
DD8 � tc5

��12;m �O10m�11.n�2/ � t
n�2
d

DD8 ��
0
12;m �O10m�11.n�2/ � t

n�2
d tc5

;

where �0
12;m
D tc5

�12;mt�1
c5

. Note that O10m�11.n�2/D tc5
O10m�11.n�2/t

�1
c5

since c5

is disjoint from c1; c2; c3 . By Lemma 10, there are nonseparating curves x1; : : : ;xn�1

on †n
2

such that the following relation holds in �n
2

:

(11) tı1
� � � tın�1

tın
tc4
DD8 ��

0
12;m �O10m�11.n�2/ � tx1

tx2
� � � txn�1

Therefore, if g D 2, then the element tı1
� � � tın�1

tın
tc4

can be written as a product of
10m� 10nC 41 right-handed Dehn twists about nonseparating simple closed curves
for any m> 2.n� 2/.

Suppose that g � 3. Let a, b and d 0 be the simple closed curves on †2
g as in Figure 1.

We obtain three nonseparating simple closed curves on †n
g from a; b; d 0 by attaching

S to †2
g along ı . We use the same letter a; b; d 0 for the three resulting curves on †n

g .
By the chain relation, the relation

tıtın
td 0 D .tc1

tc2
� � � tc2gC1

/2gC2
� td 0

holds in �n
g . By the chain relation tatb D .tc1

tc2
� � � tc5

/6 we may write

tıtın
td 0 D .tc1

tc2
� � � tc5

/6tc4
�P4g2C6g�29td 0 D tatbtc4

�P4g2C6g�29 � td 0 ;

where P4g2C6g�29 is a product of 8.n� 2/ right-handed Dehn twists about nonsepa-
rating curves. Therefore, by relations (4) and (10), we have

(12) tıtın
td 0 DD9 ��12;m �O10m�11.n�2/ � t

n�2
d �P4g2C6g�29 � td 0

DD9 ��12;m �O10m�11.n�2/ �P
0

4g2C6g�29
� tn�2

d td 0 ;

where P 0
4g2C6g�29

D tn�2
d

P4g2C6g�29t�nC2
d

. By Lemma 10, there are nonseparating
curves x1; : : : ;xn�1 on †n

g such that the following relation holds in �n
g :

(13) tı1
� � � tın

td 0 DD9 ��12;m �O10m�11.n�2/ �P
0

4g2C6g�29
� tx1
� � � txn�1
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Therefore, if g � 3, then the element tı1
� � � tın�1

tın
td 0 can be written as a product of

4g2C 6gC 13C 10m� 10n right-handed Dehn twists about nonseparating simple
closed curves for any m> 2.n� 2/.

3.4 Powers of boundary multitwists have infinite length

Theorem 17 Let g � 2, and let k � 2 be a positive integer. Then, for any k and n, in
the mapping class group �n

g the element

.tı1
tı2
� � � tın

/k

can be written as a product of an arbitrarily large number of right-handed Dehn twists
about nonseparating curves.

Proof of Theorem 17 Suppose that k 2 f2; 3g and n� 3.

Suppose that g D 2. Since O10m�11.n�2/ contains at least two tc1
, we may write the

relation (11) as
tı1
� � � tın�1

tın
tc4
DQ10m�10nC39 � t

2
c1
;

where Q10m�10nC39 is a product of 10m� 10nC 39 right-handed Dehn twists about
nonseparating curves. Since c1 and c4 are nonseparating curves and disjoint from
each other, there is an element ‰1 in �n

2
such that ‰1.c4/ D c1 and ‰1.c1/ D c4 .

Therefore, by the relation t‰1.c/ D‰1tc‰
�1
1

, we obtain the relation

tı1
� � � tın�1

tın
tc1
DQ010m�10nC39 � t

2
c4
;

where Q0
10m�10nC39

D‰1Q10m�10nC39‰
�1
1

. From the above relations, we have

.tı1
� � � tın�1

tın
/k tk�1

c4
tc1
D .tı1

� � � tın�1
tın

tc4
/k�1.tı1

� � � tın�1
tın

tc1
/

D .Q10m�10nC39 � t
2
c1
/k�1.Q010m�10nC39 � t

2
c4
/:

Since k D 2; 3, we can remove tk�1
c4

tc1
from both sides of this relation. Hence,

.tı1
� � � tın�1

tın
/k can be written as a product of k.10m� 10nC 39/Ck right-handed

Dehn twists about nonseparating curves. The proof for g� 3 is similar. In this case, we
use the relation (13) and an element ‰2 in �n

g such that ‰2.d
0/D c1 and ‰2.c1/D d 0 .

The existence of ˆ2 follows from the fact that c1 and d 0 are disjoint simple closed
curves.

Suppose that k � 4. Since k D 2q C 3� for q � 1 and � D 0; 1, the element
.tı1
� � � tın

/k D f.tı1
� � � tın

/2gq.tı1
� � � tın

/3� in �n
g .g � 2/ can be written as a product

of an arbitrarily large number of right-handed Dehn twists about nonseparating curves.
The case of nD 1; 2 follows from gluing disks along boundary components of †n

g .
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Remark 18 A close look at the proof of Theorem 6 makes it evident that whenever
we have arbitrarily long positive factorizations of any multitwist along boundary curves
t
k1

ı1
t
k2

ı2
� � � t

kn

ın
, all but finitely many of the corresponding Lefschetz fibrations will be on

symplectic 4–manifolds of general type. In particular, the total spaces of the positive
factorizations of the multitwists .tı1

tı2
� � � tın

/k , k � 2, in the above proof should have
symplectic Kodaira dimension � D 2, no matter what n is, which is very different than
the case of k D 1 corresponding to Lefschetz pencils.

4 Completing the proofs of main theorems and further re-
marks

We now bring together various results we have obtained to complete the proofs of
Theorems A, B and C. We will also discuss the length function for further mapping
classes, as well as for its restrictions to subgroups of mapping classes, and list a few
interesting questions.

4.1 Proofs of Theorems A, B and C

To prove our main theorems, we will simply provide navigational guides to the relevant
results one needs to assemble, many of which we have obtained in the previous sections.

Proof of Theorem A It is well-known that there is a unique genus-1 Lefschetz
fibration with .�1/–sphere sections, whose total space is X DE.1/DCP2 # 9CP2 .
Since b�.X / D 9, there are no more than 9 disjoint .�1/–sphere sections in this
fibration. It follows that L.�/D�1 if n> 9 and 12 if 1� n� 9.

All the remaining values of L.�/ are given by Theorem 6 and by Theorem 9.

Proof of Theorem B The mapping class group �1
1

is isomorphic to the braid group
on three strands, and it is generated by ta; tb for any two nonseparating simple closed
curves intersecting at one point. Here H1.�

1
1
IZ/Š Z, generated by any Dehn twist

along a nonseparating curve. By the 1–boundary chain relation, we have tı D .tatb/
6

in �1
g . So for Œta�D 1 in H1.�

1
1
IZ/, we have Œtı �D 12 in H1.�

1
1
IZ/.

If n > 1, we can cap off all boundary components of †n
1

but one, which induces a
homomorphism from �n

g onto �1
g . Thus, any positive product of �k in �n

1
, if it exists,

yields a positive product of tk
ı

in �1
1

, which by the above calculation is equal to 12k .
It follows that �k has a positive factorization of length 12k C l in �n

g , where l is
the number of Dehn twists along curves that separate some of the n� 1 boundary
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components we capped off. Since L is calculated only for nonseparating curves, the
latter contribution does not occur, completing the proof of our claim that �k is precisely
12k , part (1) of the theorem. It is a standard fact that any elliptic surface E.k/ admits
n� 9 sections of self-intersection �k , so �k admits a positive factorization provided
n� 9.

Part (2) is covered by Theorem 17 and part (3) by Theorem 16.

Proof of Theorem C In both parts, the value �1 of zL or L is realized by 1 2 �n
g

by Proposition 5, whereas any positive k is realized by tk
c along any homologically

essential curve c by Proposition 4. Note that for g D 0 and n D 1, there are no
homologically essential curves, and thus no positive factorizations to consider.

The fact that zL.�n
g/ does not contain C1 under the assumptions in part (1) follows

from Proposition 1. However for g � 2, either by Theorem 16 or Theorem 17, we
have mapping classes in �n

g with infinite length, completing the proof of part (2) of
the theorem.

4.2 Further observations and questions

As our results demonstrate, knowing that a mapping class admits a positive factorization
in the mapping class group of a surface (say the page of an open book) does not in general
mean that there is an upper bound on the length of all its positive factorizations. The
exceptions occur in low genus cases which is essentially due to positive factorizations
being lifts of quasipositive braid factorizations, where for the latter, it is known that the
degree of a factorization determines the length of all possible factorizations. We can
thus ask for which subgroups N < �n

g , the restriction of L to N , which we denote
by LN , has bounded image.

Consider the subgroup H1
g of �1

g , which consists of mapping classes that commute
with a fixed hyperelliptic involution on †1

g . This group has a nontrivial abelianization,
namely Z, which in a similar fashion to our arguments above provides a bound on
the length of any factorization into hyperelliptic Dehn twists in H1

g : the length of
any factorization into hyperelliptic Dehn twists along nonseparating curves is fixed.
The quotient of †1

g under the hyperelliptic involution gives the disk with 2g C 1

marked points. Since any ˆ 2H1
g commutes with the hyperelliptic involution, it gives

a mapping class of the disk with 2gC 1 marked points. Projecting the branch locus to
the quotient then gives a braid in S3 , and the class Œf � in the abelianization is exactly
the writhe of this braid under the obvious identification of Ab.z�1

g/ with Z.
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Now for g � 3, let ˆD tı in H1
g . By the above observation, ˆ has finite length in

this subgroup. On the other hand, we have the 1–boundary component chain relation

tı D .tc1
tc2
� � � tc2g

/4gC2:

It is easy to see that by applying braid relators successively, we get

ˆD .tc1
tc2
� � � tc2g�1

/4gC2
�W;

where W is a positive word that consists of products of conjugates of tc2g
. By the

2–boundary chain relation, we get .tc1
tc2
� � � tc2g

/2gC2 D tb1
tb2

, which is a mapping
class with infinite length. It follows that ˆ has infinite length in �1

g , even though it
has finite length in the subgroup H1

g . We have thus seen:

Proposition 19 The image of the positive factorization length function on the subgroup
N D LH1

g
is strictly smaller than its image on the mapping class group �1

g . Namely,
LH1

g
.H1

g/DN [f�1g, whereas L.�1
g/DN [f˙1g.

We therefore see that if the related geometric problem is restrained by positive factor-
izations in a subgroup of the mapping class group, one can achieve uniform bounds
on the topology of the fillings, which are in addition asked to come from branched
coverings of the 4–ball in the above case. This raises a question that is interesting in
its own right:

Question 20 For which subgroups N < �n
g does LN have finite, positive image?

What is the geometric significance of such N ?
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