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Embedding calculus knot invariants are of finite type
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We show that the map on components from the space of classical long knots to the nth

stage of its Goodwillie–Weiss embedding calculus tower is a map of monoids whose
target is an abelian group and which is invariant under clasper surgery. We deduce
that this map on components is a finite type-.n�1/ knot invariant. We compute the
E2 –page in total degree zero for the spectral sequence converging to the components
of this tower: it consists of Z–modules of primitive chord diagrams, providing
evidence for the conjecture that the tower is a universal finite-type invariant over the
integers. Key to these results is the development of a group structure on the tower
compatible with connected sum of knots, which in contrast with the corresponding
results for the (weaker) homology tower requires novel techniques involving operad
actions, evaluation maps and cosimplicial and subcubical diagrams.

55P65, 57M25

1 Introduction

We connect three current threads in studying knots and the moduli space of all knots:
the Goodwillie–Weiss embedding calculus, Budney’s operad actions and Vassiliev’s
theory of finite-type invariants. This work also connects two fundamental results on
commutativity which are over fifty years old. In 1949, H Schubert [25] established and
applied the fact that connected sum of knots is commutative. In 1947, Steenrod [30]
gave explicit formulae exhibiting commutativity of cup product, in the course of defining
the cohomology operations which bear his name. We establish and use compatibility
of these classical results as we develop a group structure on the components of the
Goodwillie–Weiss tower.

One of our main results is that the Goodwillie–Weiss tower for knots yields additive
invariants of finite type. Such a result is modest compared to the conjecture made by
Budney, Conant, Scannell and Sinha [4] that the tower gives all such invariants. We
provide evidence for this conjecture through calculation of the E2 –term of the spectral
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sequence for the components of this tower. The current results are meaningful first
steps, and establishing them requires new combinations of tools in the areas of operad
actions, clasper surgery, cosimplicial and cubical diagrams, and evaluation maps.

A large part of the work is “getting off the ground”, showing that the Goodwillie–Weiss
tower yields abelian group-valued invariants compatible with connected sum of knots.
Because the knot invariants are defined as an induced map on �0 , such invariants
are a priori only set-valued. A number of authors have already studied multiplicative
structures on the closely related Goodwillie–Weiss tower for the homotopy fiber of the
map from embeddings to immersions, namely Sinha [27], Turchin [31], Dwyer and
Hess [8] and Boavida and Weiss [1], the latter three giving deloopings. The techniques
of Turchin, and Boavida and Weiss, can be adapted to imply that the components of
stages of the tower for classical framed knots is an abelian group (while the result
of Dwyer and Hess applies to the limit and Sinha’s result only implies an abelian
monoid structure in the limit). Thus, including the present results, there are now five
different monoid structures on the components of the inverse limit of the tower for
framed classical knots, four of which are group structures, which are all conjecturally
equivalent. For our present application, we need compatibility with connected sum of
knots, which our approach here provides, as does the approach of Boavida and Weiss,
which appeared after our work. Our techniques involve modeling the totalization tower
of a cosimplicial space using cubical diagrams, which is of independent interest. Once
we establish the group structure and compatibility with connected sum, we use the
Habiro surgery criterion for finite type to establish the main result that the nth stage in
the tower defines a type-.n�1/ invariant.

Our work has many predecessors. The first is [4], in which we establish that the third
stage of the tower is a universal type-2 invariant. Here the group structure and the finite-
type result were straightforward from ad hoc arguments. The more interesting aspect
of this work was the development of geometry to explicitly distinguish components
in the tower, yielding a new interpretation of the type-2 knot invariant by counting
collinearities of points. This geometric approach was continued by Flowers [9].

The second predecessor is Volić’s thesis, which establishes that the Goodwillie–Weiss
tower for the space level rational homology of knots is a universal rational finite-type
invariant. The map to the homology tower factors through the tower we consider (the
“homotopy tower”), which thus encodes such a universal rational invariant as well.
The question of whether the tower gives a universal invariant over the integers is of
considerable interest, since Vassiliev invariants with values in arbitrary Z–modules are
not well understood. A universal invariant is known to exist over the integers (see for
example Habiro’s  n map, used in Theorem 6.1 of this paper), but it is not computable
nor does it directly relate to the combinatorics of weight systems. Identification of the
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tower as a universal invariant would likely resolve questions about the combinatorics
and geometry of finite-type invariants and, in particular, the open question of whether
weight systems “integrate”.

Our techniques are distinct from those of Volić in three ways. In our result the type-n
invariants are potentially realized at the nC1st stage, while in the rational homology
tower they are realized precisely at stage 2n. Volić uses the Vassiliev derivative
approach to establish his finite-type result, while we use Habiro’s clasper surgery.
Finally, Volić’s result proceeds by extending the theory of Bott–Taubes integration
to the homology tower, while our approach through the homotopy tower invites new
techniques from geometric and algebraic topology.

We extend the abelian group structures to the spectral sequence level, which is crucial
for analysis since studying components of an arbitrary tower of spaces can potentially
lead to unending ad hoc calculations. To do so we employ C1 –operad actions, which
necessitates their development throughout our work despite the fact that our main
theorems are at the level of components. With group structure in hand, we immediately
establish convergence at each finite stage and then use results of the second author [5]
to identify the E2 term in degree zero as the Z–modules of primitive chord diagrams.

Based on this, we conjecture that the map from the knot space to the tower sends
linear combinations of knots given by resolving a singular knot to the corresponding
elements of E2 . We also conjecture that the spectral sequence collapses and, together,
these two conjectures would imply that weight systems over the integers all “integrate”
to finite-type invariants. Unlike Vassiliev’s original spectral sequence, this spectral
sequence does not involve a subtle limit process (see Giusti [10]) but instead is simply
the spectral sequence of a tower of fibrations. It thus is more amenable to tools from
algebraic topology such as generalized Hopf invariants.

The paper is organized as follows. Section 2 gives needed general background on
compactified configuration spaces and on cubical and cosimplicial diagrams. Section 3
recalls the resulting mapping space and cosimplicial models we prefer to use, inter-
changeably, for the nth stage of the Taylor tower for Embfr.R;R3/. Some readers may
prefer to only look back at these sections as needed, in particular for the “infinitesimal
transformation” map between the spatial and operadic mapping space models.

In Section 4, we construct homotopy-commutative multiplications on the nth stage of
the Taylor tower for Embfr.R;R3/. This shows that �0 of each stage of the Taylor
tower is an abelian monoid. Section 5 contains two main results, the first being that
the projections in the tower are surjective on �0 . This is then used to show that �0 of
each stage is a group.
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In Section 6, we show that �0 of the map from the space of knots to its nC1st

Goodwillie–Weiss approximation is invariant under clasper surgery and thus of type n.
In Section 7, we show that the homotopy spectral sequence for the tower is a spectral
sequence of abelian groups (in particular in total degrees zero and one), and we identify
the E2 term.

2 Compactification of configuration spaces

2.1 Basic definition

We briefly review the simplicial compactification of configuration space, defined
in [26; 28]. For any manifold M — not necessarily compact, and possibly with
boundary — let Cn.M / denote the configuration space of n points in M . It is the
space of distinct ordered n–tuples of points in M .

Definition 2.1 For an M embedded in some Euclidean space Rd , let CnhM i denote
the closure of the image of

Cn.M / ,!M n
� .Sd�1/.

n
2/; .x1; : : : ;xn/ 7!

�
.x1; : : : ;xn/;

�
xi �xj

jxi �xj j

�
i<j

�
:

As shown in [26], this is independent of embedding and is a quotient of CnŒM �, the
Fulton–MacPherson compactification of Cn.M /. If M is noncompact, then CnhM i

as defined above as well as the Fulton–MacPherson compactification are not compact
but are more accurately described as completions. Informally, we refer to the projection
to M n as the “spatial” information, while information which distinguishes points with
the same projection to M is “infinitesimal”. If M is one-dimensional and connected,
then CnhM i is in general not connected. For such M , by abuse we use CnhM i to
denote the connected component where the n points are in (cyclic) order.

2.2 Framings and tangent data

We need framed configurations. For any manifold M , define C fr
n hM i as the pullback

C fr
n hM i

//

��

.Fr M /n

��

CnhM i // M n

where Fr M !M is the unit frame bundle of the tangent bundle of M . If M is
parallelizable and d –dimensional, then C fr

n hM i is homeomorphic to CnhM i�O.d/n .
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Let C 0nhM i be defined similarly, with the unit tangent bundle STM in place of the unit
frame bundle.

2.3 Distinguished boundary points

Suppose M has two distinguished points y0 and y1 in its boundary. Then, as in [4; 28],
let CnhM; @i denote the subspace of CnC2hM i where the first and last points are
located at y0 and y1 , by abuse omitting dependence on these points from notation.

Further, if there are distinguished tangent vectors v0 2 TMjy0 and v1 2 TMjy1 , let
C 0nhM; @i be the subspace of C 0

nC2
hM i where .p1; v1/ and .pnC2; vnC2/ are .y0; v0/

and .y1; v1/, respectively. By fixing framings at y0 and y1 , define C fr
n hM; @i similarly.

Define CnhI; @i by taking the two endpoints to be the distinguished points. The fact
that CnhI; @i is the n–simplex is the main rationale for calling this compactification
“simplicial”. Define C 0nhI

d i by taking fy0;y1g to be @I � f.0; : : : ; 0/g and v0 D

v1 D .1; 0; : : : ; 0/ (so our knots will “proceed from left to right”) and similarly define
C fr

n hI
d ; @i by using the identity element in O.d/ for framings at those boundary points

(using the standard parallelization of Id �Rd ).

2.4 Quotients by translation and scaling, and insertion maps

There are maps between products of CnhRd i and CnhId ; @i defined by “inserting
an infinitesimal configuration into a point of another configuration”. Let zCn.Rd / WD

Cn.Rd /=.Rd ÌRC/ be the quotient of configuration space by translations and positive
scalings of all n points.

Definition 2.2 Define zCnhRd i as the closure of the image of the map

zCn.R
d /

e
�! .Sd�1/.

n
2/; .x1; : : : ;xn/ 7!

�
xi �xj

jxi �xj j

�
i<j

;

which is injective except on collinear configurations.

We let vij denote the projection of zCnhRd i to the .i; j /th factor of Sd�1 .

The similarly defined zCnhId i is homeomorphic to zCnhRd i, so both CnhRd i and
CnhId i naturally surject onto zCnhRd i.

We proceed directly to the framed setting in defining insertion maps. Let zC fr
n hR

d i WD

zCnhRd i �O.d/n , the framed version of the “infinitesimal configuration space”.

For every m, n, and i 2 f1; : : : ; ng, we define a map ıi which, informally, inserts a
configuration of m points (with framings) into the i th point of a configuration of n
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points (with framings). In the resulting configuration of mCn�1 points, the m points
form an “infinitesimal configuration”. Precisely, in coordinates we define

ıi W C
fr
n hI

d ; @i �C fr
mhI

d
i ! C fr

mCn�1hI
d ; @i

as follows. First, suppressing the dependence on i , we let

Oj D

8<:
j if j � i;

i if i � j � i Cm� 1;

j Cm� 1 if j > i Cm� 1:

Now define ıi as sending

..xj /
n
jD1; .ujk/j<k ; . j̨ /

n
jD1/� ..yj /

m
jD1; .vjk/j<k ; . ǰ /

m
jD1/

7! ..zj /
mCn�1
jD1

; .wjk/j<k ; .
j /
mCn�1
jD1

/;

where zj D x Oj ,

wjk D

�
˛iv.j�iC1/.k�iC1/ if i � j ; k � i Cm� 1;

u Oj yk otherwise;
and


j D

�
˛i ǰ�iC1 if i � j � i Cm� 1;

˛ Oj otherwise:

One must check that such maps send subspaces of .Rd /n � .Sd�1/.
n
2/ to each other

appropriately. Here we only cite a similar check, namely [26, Proposition 6.6], using
the description of the CnhRd i as a subspace of .Rd /n � .Sd�1/.

n
2/ given in [26,

Theorem 5.14]. The results are not dependent on the yj coordinates of C fr
mhI

d i, which
means that these insertion maps factor through the projection to zC fr

mhR
d i on that factor.

3 The models

We study the space of framed knots Embfr.R;R3/. A framed knot is a smooth em-
bedding of R into R3 together with a smooth map R!O.3/ whose first (column)
vector is the unit derivative map. Embeddings take I D Œ�1; 1��R into I3 �R3 , and
on R n I are standard, given by t 7! .t; 0; 0/. The framing is required to be constant at
the identity on R n I .

We primarily use a mapping space model for the nth stage of the Goodwillie–Weiss
tower for the space of framed knots Embfr.R;Rd /. But, for both spectral sequence
calculations and for clarity through comparison, we use a cosimplicial model as well.
For each of these, there are a few variants depending on the choice of compactifi-
cations of configuration spaces Cn.M /. The Fulton–MacPherson (Axelrod–Singer)
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compactification CnŒM � is a smooth manifold with corners. In this paper, we use
instead the simplicial compactification CnhM i, developed in the previous section. It is
not a manifold with corners, but it has the advantage that one component of CnhIi is
the n–simplex. This is needed to define a cosimplicial model, and the corresponding
mapping space model is defined in terms of the face poset of the simplex rather than
that of the associahedron.

3.1 Cosimplicial models

A cosimplicial space is a functor to Top from the category � with one object for
each ordered set Œn�D .0; : : : ; n/ and morphisms given by order-preserving maps. We
rely on the standard set of generating morphisms, denoting coface maps by d i and
codegeneracy maps by si . We let �n be the full subcategory of � containing the first
nC 1 objects.

Goodwillie–Weiss embedding calculus leads to forming a cosimplicial space from the
spaces C fr

�
hId ; @i, by using the first vector in the framing as the “doubling direction”.

This was first done in the unframed setting in [28, Corollary 4.22]. In more detail, we
have the following:

Definition 3.1 The spatial cosimplicial model C fr
�
hId ; @i has nth entry C fr

n hI
d ; @i.

The codegeneracy si W C
fr
n hI

d ; @i ! C fr
n�1
hId ; @i is the extension to compactifications

of the projection which forgets the i th point.

The coface d i is given by d i.x/D x ıi �, which “doubles” the i th point by inserting
into its position the infinitesimal two-point configuration � rotated by the i th framing.

So here d0 and dnC1 “double” the “extra” points which are located in the middle of
the left and right faces of Id .

Definition 3.2 The operadic cosimplicial model zC fr
�
hRd i has nth entry zC fr

n hR
d i.

The codegeneracy si W
zC fr

n hR
d i ! zC fr

n�1
hRd i is the extension to compactifications

modulo translation and scaling of the projection which forgets the i th point.

For 1� i � n, the coface d i is given by d i.x/D x ıi�, which “doubles” the i th point
by inserting into its position the infinitesimal two-point configuration � rotated by the
i th framing. The coface d0.x/ equals �ı2 x , while the coface dnC1.x/ equals �ı1 x .

Thus, in the operadic model, the first and last coface maps insert configurations into
two-point configuration, which has the effect of “adding a point at infinity”. Along
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with the obvious passing to quotients by translation and scaling, this is the difference
between the spatial and operadic models. We discuss the relative advantages of these
models as well as why we need both when we discuss their associated mapping space
models below. The operadic model is so-called because it fits into a framework by
which operads with multiplication produce cosimplicial objects, following Gerstenhaber
and Voronov, and McClure and Smith [18].

The fourth author showed [27; 28] that the homotopy-invariant totalizations of similar
cosimplicial spaces for unframed knots, which we will use and denote by C 0

�
hId ; @i

and zC 0
�
hRd i, give models for the Goodwillie–Weiss tower. The framed version of this

construction was studied by Salvatore [23, Section 3].

By needing to use a homotopy-invariant totalization to model the towers, some control
of geometry and combinatorics is lost. A standard approach to cosimplicial spaces
through (sub)cubical diagrams, reviewed in the next section, retains both combinatorics
and geometry by sacrificing some symmetry. In particular the resulting spatial model is
compatible with the evaluation map, also known as a Gauss map, from the knot space.

3.2 Mapping space models

Our mapping space models are defined as homotopy limits of subcubical diagrams of
compactified configuration spaces. A subcubical diagram is a functor from P� Œn�, the
poset of nonempty subsets of Œn�, which is the face poset of the n–simplex. Because
the cosimplicial and subcubical diagram categories both involve ordered sets, there
is an immediate relationship between them. In general � admits a canonical functor
from any category defined through finite ordered sets, as follows:

Definition 3.3 Let C be a category whose objects are given by ordered finite sets and
whose morphisms are subsets of the order-preserving maps between those sets. Define
GC W C ! � to be the functor which sends an ordered finite set S to Œ#S � 1� and
which sends an order-preserving map S ! T to the composite

Œ#S � 1�Š S ! T Š Œ#T � 1�;

where the isomorphisms are order-preserving.

For C D P� Œn�, we abbreviate GP� Œn� to GnW P� Œn�!�n .

The functor Gn was used [28; 22] to use cubical diagrams to model cosimplicial
spaces. The resulting diagrams use all of the coface maps “multiple times”, while the
codegeneracy maps are ignored.
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Definition 3.4 The spatial mapping space model AMfr
n is the homotopy limit of the

composite functor C fr
�
hI3; @i ıGnW P� Œn�! Top.

The operadic mapping space model �AMfr
n is the homotopy limit of the composite

functor zC fr
�
hR3i ıGnW P� Œn�! Top.

We are henceforth focusing on classical knots, in three dimensions, so we are suppress-
ing the ambient dimension from notation. The mapping space model AMn of [4] is
defined similarly to AMfr

n , but pulled back from C 0
�
hI3; @i and so with tangent vectors

instead of frames.

Using the definition of homotopy limit through nerves of under-categories, the homotopy
limit of a subcubical diagram is given by a collection of maps from simplices. Since
the structure maps d i are injective, an element ' of AMfr

n is determined by a map
�n! C fr

n hI
3; @i, so AMfr

n is a subspace of Map.�n;C fr
n hI

3; @i/. Because the faces
of the simplex map to configurations which are degenerate in an “aligned” manner we
sometimes refer to this as the subspace of aligned maps. Explicitly, if some (consecutive)
collection of ti in Et D .t1; : : : ; tn/ 2�n are equal, then the corresponding points in the
configuration '.Et/ have “collided” in I3 , their framings (˛i 2O.3/) are all equal, and
the first column of ˛i is the direction of collision of these points.

To interrelate cosimplicial and mapping space models, a main technical result is [28,
Theorem 6.7], which establishes that Gn is left cofinal. So if X � is a cosimplicial
space then the homotopy limit of the subcubical diagram X � ıGn is equivalent to the
homotopy limit of the restriction of X � to �n . By work of Bousfield and Kan [2], this
is homotopy equivalent to �TotnX � , the nth stage in the homotopy invariant totalization
tower. In [28] this is used to establish the validity of the cosimplicial models, building
from that of the mapping space models.

3.2.1 Evaluation maps Our main results make use of evaluation maps, which natu-
rally connect with the spatial mapping space model. By functoriality for embeddings
of compactified configuration spaces [26, Corollary 4.8], we have that an embedding
f W I ! I3 will extend to a map from �n D CnhI; @i to CnhI3; @i. For a framed
embedding with framing ˛ 2Map.I;O.3// to go along with the embedding f , this
map is given as follows:

Definition 3.5 Define evnW Embfr.R;R3/!AMfr
n �Map.�n;CnhI3; @i�O.3/n/ as

sending an embedding f and framing ˛ to the map which sends

.�1� t1 � � � � � tn � 1/ 7!
�
.f .t1/; : : : ; f .tn//; ˛.t1/; : : : ; ˛.tn/

�
:
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Intuitively, evn samples the knot and its framing at n points in the domain.

One of the main results of [28], namely Theorem 5.4, immediately extends to the framed
setting to establish that evn agrees in the homotopy category with the canonical map
from the embedding space Embfr.R;Rd / to the nth stage of the Taylor tower, Tn Emb.

In dimensions d > 3 it is known that the connectivity of evn increases with n, and
hence the tower converges to the embedding space. Thus, the homotopy theory of
evaluation maps captures the nature of knots in these dimensions. For d D 3, it is not
known if evn is even 0–connected (that is, surjective) much less injective in the limit.
We show below that on components evn defines abelian group-valued invariants of
finite type n� 1.

3.2.2 Translation between mapping space models In addition to the quotienting
by translation and scaling, AMn and �AMn differ by the first and last coface maps,
which in the former case “add a point to the configuration on the left or right face of I3 ”
while in the latter case such points are added “at infinity to the left or right”. This
means that the obvious quotient maps do not define a map between these models. We
require a map between them, as the spatial model is the target of the evaluation map as
we just saw and the operadic model is more convenient for defining multiplications
below.

Observe that the evaluation of a long knot can be extended to include times greater
than 1 or less than �1, in which case the corresponding configuration points are
standard along the x–axis. We achieve something similar for arbitrary elements of
AMn to obtain maps z'W CnhRi ! CnhR3; @i.

Definition 3.6 For t1 � t2 � � � � � tn with all ti 2R, we let

yti D

8<:
�1 if ti � �1;

ti if � 1� ti � 1;

1 if ti � 1:

Then we define z'.t1 � t2 � � � � � tn/ to be the configuration which is the union of the
following:

(1) One point at .ti ; 0; 0/ for each ti � �1 or ti � 1.

(2) The configuration obtained by taking '.yt1� � � ��ytn/ and applying the projection
which forgets points xi for which ti � �1 or ti � 1.

Moreover, after we compose with the quotient CnhR3; @i ! zCnhR3; @i, the map z'
extends to a map from CnhŒ�1;1�i to zCnhR3; @i since the limit as some ti goes to
�1 or 1 will have all vectors vij approaching .1; 0; 0/ or .�1; 0; 0/, as all points
in the resulting configurations not in I3 lie along the x–axis.
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Let h be an order-preserving homeomorphism between Œ�1; 1� and Œ�1;1�. By our
usual abuse of notation, let h also denote the induced map on collections of points.

Definition 3.7 Let �W AMn! �AMn be the map which sends ' to the composite

�n h
�!CnhŒ�1;1�i

z'
�! zCnhR

3; @i:

Proposition 3.8 The map � is a homotopy equivalence.

Proof To compare AMn and �AMn it is simplest to map them both to a third space
which is easily seen to be equivalent. Let �AMhs

n , where “hs” stands for hemispherical,
be the subspace of Map.�n; zCnhI3i/ defined by the same conditions as for �AMn for
all faces except the t1 D�1 and tn D 1 faces. On those faces, instead of the vectors
v1j and vkn being .1; 0; 0/ as in the definition of �AMn , for �AMhs

n those vectors are
simply required to lie in the hemisphere with nonnegative x–coordinate. (We could
also define this as a homotopy limit.)

Consider the diagram
AMn

q

'

��

�

##�AMhs
n

�AMn
i

'
oo

where q is the map induced by composition of �n ! CnhI3; @i with the quotient
map to zCnhI3i and i is the inclusion. Both of these are homotopy equivalences. The
diagram commutes up to homotopy, interpolating between q and i ı � by first extending
z' to Œ�x;x�. Then use a continuous family of homeomorphisms hx of I with Œ�x;x�

to define a map �x which serves as a homotopy. It is then elementary that the composite
of i with the homotopy inverse of q serves as a homotopy inverse to �.

The main idea in the definition of �, and in particular the construction of z' , is “focusing”
on the interval I D Œ�1; 1� by modifying configurations in R with points outside the
interval to have points at the endpoints of the interval instead. Corresponding points in
the configuration are replace by standard points along the x–axis. We will use similar
ideas in the development of multiplicative structures on AMn and �AMn .

4 Multiplicative structures

In this section we first define an action of the little intervals operad C1 on the framed
knot space and AMfr

n , which are compatible via the evaluation map. Then we construct
a multiplication which is homotopy commutative on �AMfr

n . We show that these actions
are all compatible up to homotopy.
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Definition 4.1 The little intervals operad C1 has as its nth entry C1.n/ the space of
n disjoint subintervals of I , which we topologize as a subspace of I2n through the
endpoints of the intervals.

Given an subinterval L� I we by abuse let L also denote the orientation-preserving
affine-linear transformation which sends I to L.

For use with operad actions on knot spaces, we let yL denote the map I3! I3 which
applies L to the first coordinate and then shrinks the second and third coordinates by
the same scaling factor (but doesn’t translate them).

4.1 The little intervals action on the knot space

If L D
S

Li is a union of k disjoint little intervals, its action on a k –tuple of
embeddings fi W R!R3 yields the embedding which at time t has value

L � .f1; : : : ; fk/.t/D

�
yLi ıfi ıLi

�1.t/ if t 2Li for some i;

.t; 0; 0/ otherwise:

That is, the embeddings are “shrunk and placed in succession” according to L. The
action on Embfr.R;R3/ is similar, with the framings unchanged by the shrinking. We
will view this action as a case of “insertion into the trivial embedding, with standard
framing”.

4.2 The spatial little intervals action on aligned maps

Defining a C1 action on AMn is more involved, guided by wanting the evaluation map
evn to be compatible with the action. We want to take a configuration in the interval
and evaluate points in the various Li on different elements of AMn . But typically
fewer than n points will be in each Li , so we adjust accordingly. We first define
restriction of an aligned map to some interval L.

Definition 4.2 For L� I , define L�1 on some Et in the interval by applying to each
ti the piecewise-linear map which is L�1 on the image of L, sends points to the left
of L to �1, and sends points to the right of L to 1.

Define the restriction of ' 2AMn to L, denoted by 'jL , by applying ' to L�1.Et / and
then applying projection maps to forget all of the points in the resulting configurations
whose indices j do not correspond to a tj in the interior of L.

This is not continuous, as the different projection maps depending on the number of ti
in L produce points in different configuration spaces, but it is an essential auxiliary
construction.
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Definition 4.3 Define the action of a union of little intervals LD
S

Li on a collection
of maps 'i 2 AMn as the map in AMn which takes Et 2�n to the union of all of the
yLi ı'i jLi

applied to Et along with a point in the configuration at .tj ; 0; 0/ for each tj
which is not in the interior of any Li . If for such a tj we have, say, tj D tjC1 , then we
set the “direction of collision from .tj ; 0; 0/ to .tjC1; 0; 0/”, denoted by vi;iC1 when
we have used coordinates, to be the positive x–axis direction.

The C1 –action on AMfr
n is defined in the same manner, where the framings are un-

changed because each interval shrinks an aligned map equally in all directions.

This action varies continuously as tj approaches an endpoint e of some Li because
the limit from either side of this endpoint is the configuration with the corresponding
point xj at .e; 0; 0/. Checking continuity elsewhere is immediate, as is checking the
usual conditions required for an action of the operad C1 . The definition was arranged
so that this action is compatible with the C1 action on the knot space via the evaluation
map.

Proposition 4.4 The map evnW Embfr.R;R3/! AMfr
n is a map of C1 –spaces.

For this paper we only need that this is a map of H–spaces. We will also need that the
action is compatible with the structure maps in the Goodwillie–Weiss tower, which will
be a main focus of Section 5.

4.3 A spatial-infinitesimal single little interval action

In his work on operad actions on knot spaces [3], the first author extensively uses the
fact that embeddings of R�D2 into R�D2 can be composed. Our main idea in
establishing homotopy commutativity of the multiplication(s) on AMfr

n is to set up
composition. In order to do so, we produce products where the spatial points are along
the evaluation map of the unknot, and use infinitesimal composition for the essential
part of the multiplication. Given an interval L and ' 2 �AMfr

n , we produce an aligned
map with infinitesimal configuration at the point .L.0/; 0; 0/ together with some points
along I� .0; 0/. For continuity, we need points near the boundary and, say, inside of
L to be pulled towards L.0/.

Let Lı D L
��
�

1
2
; 1

2

��
, which is the “core” of L. Let eLW I ! I be a monotone

continuous map which sends Lı to the point L.0/ and which is the identity outside
of L. By abuse use the same notation eL for the induced map on collections of points
in the interval.

As in previous constructions, we define the map L �' piecewise on �n according to
the partition defined by which indices of ti occur in Et \Lı . Let i and j be the indices
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of the leftmost and rightmost tk in Lı , which we will consider as functions of Lı

and Et . For an element ' 2 �AMfr
n , let 'jL be defined similarly as in Definition 4.2

for the AMn setting, though this now produces equivalence classes of configurations
modulo translation and scaling, with framings.

Definition 4.5 With notation as above, for ' 2 �AMn define L �' 2 AMn by

.L �'/.Et/D
�
eL.t1; : : : ; ti�1;L.0/; tjC1; : : : ; tn/� .0; 0/

�
ıi 'jLı.Et/:

For a fixed L, it is clear that the output varies continuously with ' and with all Et
which have the same indices occurring in Et \Lı . To check that the various pieces fit
together to a continuous function, suppose that some ti is equal to L

�
�

1
2

�
, the left

endpoint of Lı . The formulae on the two pieces of �n that meet at ti DL
�
�

1
2

�
are�

eL.t1; ti�1;L.0/; tjC1; : : : ; tn/� .0; 0/
�
ıi '..L

ı/�1.ti ; tiC1; : : : ; tj //

and, using that eL.ti/D eL

�
L
�
�

1
2

��
D eL.L.0//DL.0/,�

eL.t1; : : : ; ti�1;L.0/;L.0/; tjC1; : : : ; tn/� .0; 0/
�
ıiC1 '..L

ı/�1.tiC1; : : : ; tj //:

The key point is that, by definition of the doubling maps in zC fr
�
hI3; @i, the map ' sends

a point in @I to a point “that looks infinitely far away from the images of the interior
points in I”. Here it is essential that we are starting with elements of the operadic
mapping space model rather than the spatial model.

To elaborate, using our standard coordinates on these compactifications, vik D .1; 0; 0/

for any k 2 fi C 1; : : : ; j g in either of the two configurations above, and every other
vk` for 1� k � `� n is the same in these two configurations as well. Furthermore, the
projections to .I3/n of the two expressions agree, so they are the same configuration
in C fr

n hI
3; @i.

Checking continuity between any other two pieces of �n is similar, as is checking
continuity if we vary both Et and L.

If we compose L � ' with the projection to zCnhR3i, the resulting map satisfies the
conditions of being in �AMn . We need the spatial information in the next section.

4.4 A commutative multiplication on infinitesimal aligned maps

Now we define a multiplication on �AMfr
n determined by a choice of two intervals

L1 , L2 2 C1.1/, one entry in the operad of “overlapping intervals”. Here, when two
intervals overlap, they are also ordered. Informally, this order says which interval is
“on top”. Since C1.1/ is connected, this product will be homotopy-commutative.

Algebraic & Geometric Topology, Volume 17 (2017)



Embedding calculus knot invariants are of finite type 1715

To see that homotopy-commutativity of connected sum holds for knots coherently as
part of an operad action, it is technically necessary to “thicken” the knots, by studying
embeddings of R�D2 in R�D2 . In [3], the first author shows that such embedding
spaces have an action of the overlapping intervals operad and, moreover, uses this
action to determine the homotopy type of the space of classical knots. As we work
with evaluation maps between compactified configuration spaces, our substitute for
R�D2 is the following:

Definition 4.6 Let C it
n hI� .0; 0/; @i, the space of infinitesimally thickened configura-

tions in an interval, be the subspace of C fr
n hI

3; @i whose image under the projection to
.I3/n lies in .I� .0; 0//n .

So far, L � ' is a map CnhI; @i ! C fr
n hI

3; @i whose image lies in the subspace
C it

n hI � .0; 0/; @i. We can view CnhI; @i as a subspace of C it
n hI � .0; 0/; @i in an

obvious way with identity framings at every point. We will now extend the domain of
L �' from CnhI; @i to all of C it

n hI� .0; 0/; @i.

For any c 2 C it
n hI� .0; 0/; @i, let Et.c/D .t1 < � � �< tm/ be the set of distinct points in

p.c/ (so m� n). Then c can be written as

(1) c D
�
� � �
�
.Et.c/� .0; 0// ım1

c1

�
ım2
� � �
�
ımk

ck

for some ci 2
zCni
hI3i. This expression is unique once we require that mi�mi�1Cni�1 ,

so that the underlying points of insertion are distinct.

Definition 4.7 Define the extension of L �' to C it
n hI� .0; 0/; @i as

.L �'/.c/D
�
� � �
�
.L �'/.Et.c// ım1

c1

�
ım2
� � �
�
ımk

ck :

Here the L �' on the right-hand side is as in Definition 4.5, using the identification of
CnhI; @i with �n .

The key point now is checking continuity when points enter or exit the infinitesimal
configurations ci . The argument is just as for continuity in Definition 4.5 but with
.1; 0; 0/ replaced by the tangent vector, which is the first vector in the framing, at '.tmi

/.

Now both the input and output of the map L � ' can be regarded as elements in
C it

n hI�.0; 0/; @i. Thus two such maps can be composed, and we denote the composition
by ı.

Definition 4.8 Given two little intervals L1 , L2 2 C1.1/, define the product of
elements ' ,  2 �AMfr

n as

�L1;L2
.';  /W Et 7! ..L2 � / ı .L1 �'//.Et/;

where we take the equivalence class in zC fr
n hI

3i of the right-hand side.
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Let L�D Œ�1; 0� and LCD Œ0; 1�. Abbreviate �L�;LC as �, and abbreviate �.'; /
as ' � .

Theorem 4.9 ' � is homotopic to  �' .

Proof The map .L; '/ 7! L � ' varies continuously with L. Because C1.1/ is
connected, any two multiplications induced by choices of .L1;L2/— in particular
.L�;LC/ and .LC;L�/ — are homotopic.

4.5 A compatible little intervals action on infinitesimal aligned maps

We now compare the multiplications on the spatial model AMfr
n and the infinitesimal

model �AMfr
n . We first present a simpler multiplication �0 on �AMfr

n , which is homotopic
to the one defined above. The multiplication �0 avoids the use of the maps eL which pull
points towards L, which are needed homotopy-commutativity. The multiplication �0

also has the advantage of extending to an action of the little intervals operad.

Definition 4.10 Let �0 be the map

�0W C1.2/� . �AMfr
n/

2
! �AMfr

n

defined by

�0L1;L2
.';  /.Et/

WD
��
.t1; : : : ; ti�1;L1.0/; tjC1; : : : ; tk�1;L2.0/; t`C1; : : : ; tn/�.0; 0/

�
ıi'jL1

.Et/
�

ık  jL2
.Et/;

where ti ; : : : ; tj are the points in L1 and tk ; : : : ; t` are the points in L2 . Similarly, for
any k � 1, define a map

(2) C1.k/� . �AMfr
n/

k
! �AMfr

n

which sends ..L1; : : : ;Lk/; .'1; : : : ; 'k// to the result of inserting each 'i jLi
into the

point .Li.0/; 0; 0/.

It is straightforward to verify that the maps (2) define a C1 –action on �AMfr
n , using the

fact that zCnhI3i records only directions of collision, as well as again using the fact that
in the operadic models configuration points which corresponding to times ti which are
equal to ˙1 are “at infinity”.

Proposition 4.11 For disjoint intervals L1 and L2 , the multiplication �L1;L2
.';  /

is homotopic to the multiplication �0
L1;L2

.';  /.
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Proof Since configurations of points along the x–axis are all equivalent in zCnhI3i,
the resulting aligned maps differ only in the subsets of I on which they are constant.
The aligned map resulting from �0 sends all tj between L1 and L2 to the same
configuration point, while the same is true for � and Lı

1
and Lı

2
. These are related by

a homotopy which “reparametrizes the domains” of ' and  from Lı
1

and Lı
2

to L1

and L2 , respectively.

Recall from Definition 3.7 our transformation � from the spatial to the operadic mapping
space models, which is an equivalence.

Proposition 4.12 The C1 –actions on AMfr
n and �AMfr

n are compatible. That is, the
diagram

C1.k/� .AMfr
n/

k //

�k

��

AMfr
n

�

��

C1.k/� . �AMfr
n/

k // �AMfr
n

commutes up to homotopy, where the top horizontal map is the action given in
Definition 4.3 and the bottom horizontal map is the action that generalizes the multipli-
cation �0 given in Definition 4.10.

Proof Recall that the C1 action on AMfr
n is defined by taking the union of the images

of yLi ı'i jLi
, along with points along the x–axis. We will perform a homotopy with

three steps, parametrized by s 2 Œ0; 3�, from the composite through the upper-right
corner to the composite through the lower-left corner.

The first step, as s varies in Œ0; 1�, is a straightforward homotopy from .L1; : : : ;Lk/ �

.'1; : : : ; 'k/ to .Lı
1
; : : : ;Lı

k
/ � .'1; : : : ; 'k/, where as before Lı WDL

��
�

1
2
; 1

2

��
. The

configuration produced by an aligned map in the image at s D 1 is the union of
configurations resulting from all the 'i jLı

i
, together with points along the x–axis.

Roughly, we are ensuring that each aligned map is standard on some interval between
each pair of intervals Li and LiC1 , so that we can push apart and shrink configurations
continuously.

Next define L�i WD Li nLıi . In the second step, as s varies in Œ1; 2�, we scale the
image of each 'i jLı

i
to an infinitesimal configuration at .Li.0/; 0; 0/. In the notation

of Section 4.1, we follow each aligned map by . yLıi /
�1 ı yJs ı

yLıi , where we define
Js WD Œs � 2; 2� s� for s 2 Œ1; 2�. This can be done at the level of representatives in
C fr

n hI
3; @i coming from the top horizontal map. The configurations become infinitesimal

only at sD 2, so continuity requires us to simultaneously pull the images of L�i toward
.Li.0/; 0; 0/, from occupying L�i �f.0; 0/g at s D 1 to occupying all of Li �f.0; 0/g

at s D 2.
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At s D 2, the elements in �AMfr
n produce infinitesimal configurations 'i jLı

i
, together

with points on the x–axis between them (where the distances between them are not
recorded by the operadic compactification zC fr

n hI
3i). This aligned map looks almost

like the composite through the lower-left corner. The only difference is that this
aligned map is constant on each component complementary to the Lıi , rather than
each component complementary to the Li . The last stage of the homotopy thus simply
requires “reparametrizing the domain” of each 'i from Lıi to all of Li , as in the proof
of Proposition 4.11.

Because � is a homotopy equivalence, we have the following:

Corollary 4.13 The C1 action on AMfr
n induces a homotopy-commutative multiplica-

tion.

We have not used that the ambient dimension is three, so these results hold for knots in
higher-dimensional Euclidean spaces as well. Similar results were proven in [27] for
knots modulo immersions (that is, the homotopy fiber of the inclusion of embeddings
into immersions) and would work similarly for framed knots, but only for the limit of
the AMfr

n . Turchin [31], and more recently Boavida and Weiss [1], have established
versions of this theorem, along with a group structure as in Theorem 5.16 below, for the
stages of the tower for knots modulo immersions. Dwyer and Hess have similar results
for the limit [8]. We were not able to show that the structure studied in Turchin’s paper
is compatible with connected sum, which necessitated the present approach.

Remark 4.14 At this point we can explain the connection between Schubert’s elemen-
tary geometric result that connected sum of knots is commutative [25] and Steenrod’s
deep, formal work on commutativity of cup product and operations in cohomology [30].
This connection was implied to us by the work of McClure and Smith [19; 20], as
applied in this setting by Sinha [27], whose product structures on totalizations of
cosimplicial spaces are related to Steenrod’s formulae for higher cup products [19].

In different notation from Definition 4.3, the product of two aligned maps f and g is

.t1; : : : ; tn/ 7!
[

ti�0�tiC1

yf .t1; : : : ; ti/� yg.tiC1; : : : ; tn/:

Here the union refers to a decomposition of the domain, the n–simplex; yf and yg are
obtained from f and g by appending times and rescaling (as we did frequently this
section); and � indicates a “stacking product” of configurations in Rd .

This is formally similar to the standard formula for cup product

' [ .� W Œv1; : : : ; vn�!X /D
X

'.� jŒv1;:::;vi �/ � .� jŒviC1;:::;vn�/:
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Here ' and  are cochains, � is a chain, and brackets Œ ; � around some variables
refers to the simplex given as convex linear combinations of those variables. This sum
is zero except for one term, but, as McClure and Smith show, it is the correct sum to
write down for purposes of generalization.

Recall that Theorem 4.9 gives a homotopy from �.f;g/ to the multiplication defined
by Definition 4.8 with .L1;L2/D .Œ�1; 0�; Œ0; 1�/. By choosing a path in C1.1/ from
.Œ�1; 0�; Œ0; 1�/ to .Œ0; 1�; Œ�1; 0�/ (and applying a homotopy from Proposition 4.11)
we ultimately get a homotopy from �.f;g/ to �.g; f /. We choose the following
path, which in the overlapping intervals setting the first interval always lies above the
second: start with .Œ�1; 0�; Œ0; 1�/; grow the second interval to obtain .Œ�1; 0�; Œ�1; 1�/;
then translate Œ�1; 0� to Œ0; 1�; finally shrink Œ�1; 1� to Œ�1; 0� to obtain the pair
.Œ0; 1�; Œ�1; 0�/.

If we apply the formulae of Definition 4.8 for the products of f and g governed by
this path of 1–disks, we see a formal analogue for Steenrod’s formula for cup-one,
namely

' [1  .�/D
X
i<j

'.� jŒv1;:::;vi ;vj ;:::;vn�/ � .� jŒvi ;:::;vj �/:

The main difference is that the product rather than using an underlying commutative
ring uses operad insertion maps. McClure and Smith show this to be an appropriate
extension of Steenrod’s formula to the operadic setting.

5 Maps and layers in the tower, and abelian group structure

Our goal is to show that each stage of the Goodwillie–Weiss tower for knots has an
abelian group structure compatible with connected sum. This also would follow by
adapting recent work of Boavida and Weiss [1], which appeared after the present work,
where in Theorem 10.2 they exhibit the stages of a closely related tower as the fiber of
a two-fold loop map of spaces whose multiplications are compatible with connected
sum.

Though we are primarily interested in mapping space models, we use the cosimplicial
models and language around them as a starting point and key organizational tool.
Cosimplicial structures are also essential for the study of spectral sequences below. We
need develop a variety of models for the maps in the totalization tower of a cosimplicial
space, which are of independent interest.
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5.1 Maps in the tower through projection and restriction

In the cosimplicial realm the totalization tower is a basic object of study, dual in a
sense to the skeletal filtration of a simplicial complex. When using the functors Gn

to pull back a subcubical diagram from a cosimplicial space, the maps from �Totn to�Totn�1 are induced by inclusions P� Œn� 1�! P� Œn�.

In the mapping space models, this inclusion of indexing categories explicitly gives rise
to the following:

Definition 5.1 The restriction projection pnW AMfr
n!AMfr

n�1 sends a map ' 2AMfr
n

to the composite

�n�1 d
�!�n '

�!C fr
n hI

3; @i
s
�!C fr

n�1hI; @i;

where d and s are the images of a (face, degeneracy) pair whose composite is
the identity. As any two such choices of a pair .d; s/ yield homotopic projections
AMfr

n ! AMfr
n�1 , we take d to be the map dnW .t1; : : : ; tn�1/ 7! .t1; : : : ; tn�1; 1/ and

s to be the map sn that forgets the last configuration point and framing.

The restriction projection map zpnW �AMfr
n!

�AMfr
n�1

and nonframed versions are defined
analogously.

Then pn is our first model for the standard map �TotnC fr
�
hId ; @i to �Totn�1C fr

�
hId ; @i,

and its main use is the following:

Proposition 5.2 The restriction projection pnW AMfr
n ! AMfr

n�1 is a map of C1 –
algebras.

Proof We need to check that the following diagram commutes:

C1.k/� .AMfr
n/

k //

��

AMfr
n

��

C1.k/� .AMfr
n�1/

k // AMfr
n�1

The composite through the upper-right corner is the map

.t1; : : : ; tn�1/ 7! sn

� k[
iD1

yLi ı'i ıL�1
i .t1; : : : ; tn�1; 1/[

[
f.tj ; 0; 0/g

�
;
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t1

t2

t3

Figure 1: A partial illustration of how the projection AMn ! AMn�1

preserves the C1 –action for n D 3 , k D 2 , with intervals .L�;LC/ D
.Œ�1; 0�; Œ0; 1�/ acting on ' ,  2 AMn . The product .L�;LC/ � .';  / is
a map of the whole simplex. The restriction to each light-blue triangular
face is (after rescaling in the domain and range, and after forgetting the last
configuration point) the projection of ' to AM2 ; the blue edge of this triangle
is in turn the restriction to the face t2 D 1 . Similarly the restriction to the
light-red triangular face is the projection of  to AM2 ; the red edge of this
triangle is in turn the restriction to the face t1 D 0 . The map on the top face
of the whole simplex is the projection of .L�;LC/ � .';  / , which is indeed
obtained as a product of the projections of ' and  to AM2 .

while the composite through the lower-left corner is the map

.t1; : : : ; tn�1/ 7!

k[
iD1

yLi ı sn ı .'i jdn�n�1/ ıL�1
i .t1; : : : ; tn�1/[

[
f.tj ; 0; 0/g:

These maps agree. In either expression, each 'i is applied to the same configuration,
in particular with the same number of ti equal to 1. As for the resulting configuration
in R3 , in the first expression one forgets an extra framed point at .1; 0; 0/. In the second
expression, one forgets an extra framed point at .Li.1/; 0; 0/ for each i D 1; : : : ; k ,
yielding the same result.

A similar argument shows that the projection AMn!AMn�1 is a map of C1 –algebras.
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5.2 Maps in the tower through (only) projection

For purposes of connecting our multiplications with those coming from cosimplicial
structure, we need another model for the maps and layers in the totalization tower,
one which is closely related to pn in that it uses projection. While the map pn is
defined through including P� Œn � 1� in P� Œn�, we now proceed by “fibering P� Œn�
over P� Œn� 1�”. Consider the functor in from P� Œn� to P� Œn� 1� which modifies a
subset S by identifying n�1 and n — that is, changing occurrences of n in S to n�1.

Lemma 5.3 The homotopy limit of X �ıGn�1ıin is homotopy equivalent to �Totn�1X �.

The nth degeneracy snW X n!X n�1 extends to a map

ysn
W X � ıGn!X � ıGn�1 ı in:

On homotopy limits, the map induced by ysn agrees with the standard map from�TotnX �! �Totn�1X � .

Proof For the first statement, it suffices to show that the functor in is left cofinal [2,
Theorem XI.9.2], so that the category P� Œn��P� Œn�1� .P� Œn� 1� # S/ has contractible
nerve for every S 2 P� Œn� 1�. But this category has a final object, namely the object
corresponding to S [ n 2 P� Œn�.

It follows from the cosimplicial identities that sn induces a natural transformation of
functors ysnW X � ıGn!X � ıGn�1 ı in , where the map on each object is given by either
its last degeneracy or the identity map.

Again, the standard map �TotnX � ! �Totn�1X � is induced by the inclusion functor
jnW P� Œn� 1�! P� Œn�. Note that the composite in ı jn is the identity. Consider the
following diagram to complete the proof:

holim.X � ıGn/

�ıjn

��

ysn

))

holim.X � ıGn�1/ holim.X ıGn�1 ı in/
�ıjn

'
oo

The left-hand vertical map is the map �TotnX � ! �Totn�1X � , since X � ı Gn ı jn D

X � ıGn�1 . Precomposing X � ıGn�1 ı in with jn induces the horizontal map because
in ı jn D id. This horizontal map is an equivalence because, on these homotopy limits,
“precomposing with jn ” is the right-inverse to the equivalence given by “precomposing
with in ”.
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By abuse, we let ysn also denote the map it induces on homotopy limits. For purposes
of distinction we let AMfr

n�1.�
n/ denote C fr

�
hI3; @i ıGn�1 ı in , which by the above is

a model for AMfr
n�1 . (The notation indicates that we model AMfr

n�1 by maps of �n .)
The fact that ysnW AMfr

n ! AMfr
n�1.�

n/ and pn both model the structure maps in the
totalization tower implies that they are homotopic. We choose ysn for more detailed
study of the fibers of these maps, starting with the observation that ysn is a fibration in
both the �AMfr

n and AMfr
n settings, since the projection or identity maps which define

it entrywise are fibrations. (See [4, Lemma 3.5] for an explicit proof in this case of a
standard result about enriched model structures on diagram categories in general.)

Definition 5.4 Let Ln be the fiber of ysnW AMfr
n!AMfr

n�1.�
n/, based at the evaluation

map of the unknot. That is, Ln is the space of aligned maps where when one forgets
the last point in each configuration in the image one obtains a standard configuration
along the x–axis parametrized by the points in the domain simplex. Let zLn be the fiber
of ysnW �AMfr

n!
�AMfr

n�1
.�n/, which then sits over the constant map at the infinitesimal

configuration where all xij for i < j are equal to .1; 0; 0/.

We will write Ln.�
n/ or zLn.�

n/ if we want to emphasize the model we are using for
this fiber.

We used both the AMn and �AMn models in the previous section since the former
supports an evaluation map and a C1 structure and the latter has a commutative multi-
plication. We use both Ln and zLn in similar fashion here, which means we also need
a comparison.

Proposition 5.5 The map �W AMn! �AMn restricts to a map from Ln to zLn which
is an equivalence and preserves multiplication up to homotopy.

Proposition 5.6 The inclusion of Ln into AMn is a map of C1 –spaces.

The proofs of all of these are straightforward from the definitions, checking that previous
definitions’ arguments, such as Proposition 4.12, are compatible with the condition of
being a standard configuration but for the last coordinate.

We can use the equivalence AMfr
n�1.�

n/! AMfr
n�1 defined by restriction to the last

face of �n to define a C1 –structure on AMfr
n�1.�

n/. Combining Propositions 5.2
and 5.6 and composing with the homotopy inverse AMfr

n�1! AMfr
n�1.�

n/, which is
then also C1 , gives the following:

Corollary 5.7 Ln! AMfr
n ! AMfr

n�1.�
n/ is a fibration sequence of C1 spaces.
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5.3 The layers of a totalization tower via cubical diagrams

Following Goodwillie, we use cubical diagrams to develop loop structures on layers in
the totalization tower of a cosimplicial space. Some of this material is treated in [22].
We have already seen P� Œn� and P� Œn�1� related by inclusion and “fibering”. We next
relate them through a Mayer–Vietoris decomposition.

Just as the standard map �TotnX �! �Totn�1X � can be defined by an inclusion �n�1��n ,
it can also be defined by the canonical inclusion P� Œn� 1�� P� Œn� through the equiva-
lence given by the functor Gn . We will analyze the fibers of these maps — that is, the
layers in the totalization tower — in two different ways in this section. First we use a
sort of Mayer–Vietoris decomposition of the category P� Œn�.

Definition 5.8 � Let P¤n � P� Œn� be the full subcategory given by all nonempty
subsets of Œn� except the singleton fng.

� Let Pn2 be the (cubical) poset of all subsets of Œn� containing n.

� Let PnC be the (subcubical) poset of subsets of Œn� containing n and at least
one other element.

The inclusion �W P� Œn� 1� ,! P¤n is left cofinal, so the map induced on homotopy
limits is an equivalence. We can thus replace holimP� Œn�X

�ıGn!holimP� Œn�1�X
�ıGn

by an alternate model for the maps in the tower, namely

holimP� Œn�X
�
ıGn! holimP¤n

X � ıGn:

The poset P� Œn� can be written as the union of P¤n and Pn2 along PnC , yielding the
following square:

(3)

P� Œn� Pn2
? _oo

P¤n

?�

OO

PnC
? _oo
?�

OO

Applying holim.�/X � ıGn to the diagram above, we get a pullback square of fibrations
[11, Proposition 0.2]. Thus, to study the fiber(s) of the map from �Totn to �Totn�1 ,
which up to homotopy is the left-hand column of the induced map of homotopy limits
of this square, it suffices to study the right-hand column. We say fiber(s) because in
our application we study unbased and sometimes disconnected spaces.

Since PnC is just the cube Pn2 with its initial object removed, the map on homotopy
limits induced by the right vertical arrow is just the map from the initial object, at fng,
to the homotopy limit of the rest of the diagram, which is subcubical. We conclude
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that the fiber(s) are the total fiber(s) of the cube Pn2 over different possible basepoints
in the unbased case. In the based setting the original map is k –connected if and only
if the n–cube X � ıGnjPn2

is k –Cartesian.

5.4 Loop structure on layers via retracts of cubes

Lemma 5.9 Let f W C�!D� be a map of cubical diagrams and let r W D�! C� be a
retraction objectwise. Then the total fiber of the cube C�!D� is the loopspace of the
total fiber of D�! C� .

Proof Consider the square of cubes, which is itself a cubical diagram:

C�
f
//

id
��

D�

r

��

C�
id
// C�

We find the total fiber of these cubes in two ways, first internally to the C� and D�
subcubes followed by taking horizontal then vertical fibers. This yields the total fiber
of C�!D� . If we first take internal fibers, then vertical, then horizontal, we see loops
on the total fiber of D�! C� .

Cosimplicial identities imply that the codegeneracy maps of a cosimplicial space can be
used to define retractions of cubes. For example, at the first two levels of a cosimplicial
space the codegeneracy map is a retract for either coface map. Since the first layer
in the Tot tower is the total fiber of P12 , which is just a coface map X 0!X 1 , this
lemma shows that is loops on the fiber of the codegeneracy X 1!X 0 . More generally
we have the following:

Definition 5.10 � For an inclusion of ordered sets i W S ,!S 0 , we define the dual
surjection i !W S 0! S to be the order-preserving retraction which sends each
element of S 0 to the maximal value of S possible among such retractions.

� Let P !
n2 be the category whose objects are subsets of Œn� containing n and where

morphisms are all the dual surjections.

� For brevity, let G!
nW P !

n2!�n denote the functor GP!
n2

(defined in Definition 3.3).

Proposition 5.11 For a cosimplicial space X � , the homotopy limit of X � ı GnjPn2

and thus the fiber of �TotnX �! �Totn�1X � is homotopy equivalent to �nholimX � ıG!
n .
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The proof of this proposition in [22, Proposition 9.4.10] is essentially correct, though it
makes reference to a diagram which is generally not possible to construct for an arbitrary
cosimplicial space and in particular for those we use. We only use a subdiagram of
that used in [22] which can always be constructed.

Proof We interpolate between GPn2
and GP!

n2
, which share the underlying objects,

namely subsets of Œn� which contain n. But Pn2 has basic morphisms (of which all
others are composites) of S 7! S [ i , while P !

n2 has basic morphisms with some
i , iC1 7! iC1 and identity otherwise. For j D 0, 1; : : : , n, define Pn2.j / as having
this same set of objects but with generating morphisms S � S [ i for i � j and
i , i C 1 7! i C 1 and identity otherwise for i > j .

We view X � ıGPn2.jC1/ as a map of cubes C�!D� , where C� is the restriction to
subsets which do not contain j and D� is the restriction to those which do, and the map
between cubes is defined by all of the S 7!S [j maps. Then X � ıGPn2.j/ is a retract
D�! C� , with morphisms defined by sending j to the next element in the ordering.
We deduce from Lemma 5.9 that the total fiber of X � ı GPn2.jC1/ is the loopspace
of the total fiber of X � ıGPn2.j/ . Thus fib X � ıGPn2.n/ '�

n fib X � ıGPn2.0/ . Since
GnjPn2

is GPn2.n/ while GP!
n2

is GPn2.0/ , we obtain the result.

Remark 5.12 It is a tautology that the nth layer in the totalization tower of a fibrant
cosimplicial space is an n–fold loopspace. But in our setting we could not use standard
fibrant replacement to produce a multiplication on the entries of the tower which is
compatible with connected sum. Cubical diagram models for the entries and the layers
of the totalization tower give a workable alternative to fibrant replacement, which is
broadly applicable.

5.5 Surjectivity on components of maps in the tower

In order to inductively establish a group structure on components of stages in the tower,
we need a surjectivity result.

Theorem 5.13 The restriction-projection map zpnW �AMn! �AMn�1 induces a surjec-
tion on �0 .

We prove this unframed version first and then use it to prove the desired framed version,
as the end of the proof we give here breaks down in the framed setting.

Proof of Theorem 5.13 We extend techniques from the previous subsection. Recall
from Section 3 the cosimplicial space zC 0

�
hI3i, which we abbreviate here as C . This
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functor defines both our cosimplicial model and, through pullback by the functors Gn ,
our operadic mapping space model.

We use the square of posets (3) above. We are led to the map on homotopy limits
induced by PnC ,! Pn2 , which if surjective on components implies the same for the
map �AMn! �AMn�1 , induced by the left-vertical map in the square (3).

The initial object in Pn2 is C.fng/D zC 0
0
hR3i, a point. Thus the map on homotopy

limits induced by PnC ,!Pn2 is surjective on components if and only if the homotopy
limit over PnC is connected. As before we reindex this diagram, using the isomorphism
of PnC with P� Œn�1� which sends a set containing n to the set obtained by removing n.

We prove the connectedness of this homotopy limit by induction on n. The case nD 1

is immediate, as zC 0
1
hR3i D S2 is connected. For the induction step, we exhibit the

homotopy limit P� Œn� 1� as a fibration over a connected space with a connected fiber.
Consider the reindexed pushout square (3), with n replaced by n � 1 everywhere.
The inclusion P� Œn � 2� ,! P¤n�1 is left cofinal, so the left-hand column of the
reindexed (3) gives a fibration whose base, the homotopy limit of D , which we can
take over P� Œn� 2�, is connected by induction.

The square of holims induced by (3) is a pullback, so it suffices to establish connected-
ness of the fiber of the map induced by the right-hand column, taken over the component
to which the connected space holimP¤n�1

D maps. Here we choose basepoints for D

by choosing the basepoint .1; 0; 0/ in S2 D zC 0
1
hI3i.

This induced square of holims is of based spaces, we can describe the fiber of this map
as the total fiber of the based cube D.Pn�1/. Apply Proposition 5.11 to deduce that
this total fiber is �n�1 tfib D! .

To show that �n�1 tfib D! is connected or, equivalently, that D! is .n�1/–Cartesian,
we use a Blakers–Massey theorem. This is an .n�1/–cube of spaces zC 0i hIi for i �n�1

of configurations in I3 up to scaling and translation, with a tangent vector at each
point. The maps forget points and corresponding tangent vectors. We replace this by a
homotopy equivalent cube of spaces C 0i hI

3i or even C 0i .I
3/ of configurations in I3

with a tangent vector at each point. Every map in this cube is a fibration, so we can take
the fiber in one direction. The resulting .n�2/–cube, which we call 'D! , has entries
I3 � f .Œi �/, where the deleted points are images of a fixed embedding f W Œn� ,! I3 .
The maps in the cube are inclusions of open submanifolds and are thus cofibrations.
Moreover, 'D! is a pushout cube, so it is strongly co-Cartesian.

Each inclusion I3 � f .Œi C 1�/ ,! I3 � f .Œi �/ is a 2–connected map. The Blakers–
Massey theorem [11, Theorem 2.3] (see also [22, Theorem 6.2.1]) applies to give that
the total fiber of 'D! is n–connected. Thus its nth loopspace is connected, which
yields the result.
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We will say more about this total fiber — and thus the layers in the tower — both below
in this section and in Section 7 when we make spectral sequence calculations.

In the proof just given, the analogous .n�1/–cube with frames instead of tangent
vectors is not .n�1/–Cartesian, which is why we prove the framed version separately
now.

Theorem 5.14 In the framed setting, the map zpnW �AMfr
n !

�AMfr
n�1

induces a surjec-
tion on �0 .

Proof As �AMfr
n is a subspace of Map.�n; zCnhI3i�O.3/n/, we consider the diagram:

�n //

��

zCnhI3i �O.3/n

��

// zCnhI3i � .S2/n

��

�n�1 // zCn�1hI
3i �O.3/n�1 // zCn�1hI

3i � .S2/n�1

Suppose ˆ 2 �AMfr
n�1

. Let ' be the image of ˆ under �AMfr
n�1
! �AMn�1 , which

essentially composes a map to zCnhI3i�O.3/n with the projection onto zCnhI3i�.S2/n ,
using the first vector in each frame. By Theorem 5.13, there is a  2 �AMn whose image
in �AMn�1 is in the same component as ' . We lift  to a map �n! zCnhI3i�O.3/n�1 ,
using ˆ to define the map to the O.3/n�1 factor.

It remains to lift this map to one additional factor of O.3/. Compatibility with the
cosimplicial structure maps determine the map �n! zCnhI3i �O.3/n on precisely
two faces of �n , where the map to the additional factor of O.3/ must agree with the
map on another factor. Away from these faces, there are no constraints on the map to
the additional factor of O.3/. Thus topologically the problem is to extend this map
from Dn�1 � @Dn to Dn , which is immediate.

5.6 Group structure

Lemma 5.15 The multiplication on zLn obtained by restricting the multiplication
�0 of Definition 4.10 is homotopic to the one coming from the description of zLn

as the n–fold loopspace of the total fiber of an n–cube of configuration spaces in
Proposition 5.11.

This compatibility is key in proving the following. Recall the multiplication � from
Definition 4.8.

Theorem 5.16 �0. �AMfr
n/ is an abelian group with the multiplication � (or �0 )

on �AMfr
n .
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Proof By Theorem 4.9, �0. �AMfr
n/ is an abelian monoid. We prove that this monoid

is a group by induction on n.

The case nD 0 is clear, since �AMfr
0
D�. Suppose n� 1 and �AMfr

n�1
is a group. From

Lemma 5.15, the fiber zLn is a loopspace when n� 1, so that its components form a
group. Moreover, �0. zLn/! �0. �AMn/ is a map of monoids. Thus applying �0 to
the fiber sequence zLn! �AMfr

n !
�AMfr

n�1
gives an exact sequence of monoids. By

Theorem 5.14, �0. �AMfr
n !

�AMfr
n�1

/ is surjective. The lemma now follows from the
elementary fact that, if G!H !K! 0 is an exact sequence of monoids with G

and K groups, then H is a group.

Corollary 5.17 The homotopy fibers of AMfr
n over varying components of AMfr

n�1

are homotopy equivalent.

Proof of Lemma 5.15 Explicitly, zLn.�
n/ is the subspace of maps �n ! zC 0nhI

3i

in �AMn whose projection by forgetting the last point in the configuration yields the
chosen constant map. This implies that such maps are themselves constant on the
tn D tn�1 and tn D tnC1.D 1/ faces of �n . We show that �0 and the multiplication
from the n–fold loopspace structure both agree with another multiplication, which we
now define.

Consider the map �n�1 � I!�n given by

.t1; : : : ; tn�1/� t 7! .t1; : : : ; tn�1; .1� t/tn�1C t/:

By precomposing by this map, we can view an element of zLn.�
n/ as a loop in

Map.�n�1; zC 0nhI
3i/, based at the constant standard map. As we use configuration

spaces modulo translations and scalings, these loops begin and end at the exact same
map. Loop concatenation then defines a multiplication �� on zLn.�

n/, which of
course has homotopy inverses.

We first prove that �� is homotopic to the multiplication �0 of Definition 4.10 by
“homotoping away the mixed terms of �0”. Consider the function r W �n � I! �n

which linearly interpolates between a configuration of times Et D .t1; : : : ; tn/ and the
“constant configuration” at tn , but only until all the ti are contained in Œ�1; 0� or Œ0; 1�.
Let rs denote its restriction to �n� s . This function r is not continuous at points with
tn D 0. But because a product �.'; / of elements ' ,  2 zLn.�

n/ is constant along
tn D 0, the map given by

Et 7!

�
'.rs.Et// if tn � 0;

 .rs.Et// if tn � 0;
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is ultimately continuous. Moreover, for any s the resulting map is again an element of�AMn and in fact zLn.�
n/. More specifically, in the image of the product �0.';  / in

zCnhId i �
Q

i<j .S
d�1/, the vectors labeled by pairs i , j with ti � 0 and tj � 0 are

all of the form .1; 0; 0/, and this will be preserved throughout the homotopy.

Thus the “mixed stacking terms” in the product are not essential and up to homotopy
the product can be “decoupled” to a map which at each fixed time uses only one of '
and  .

The multiplication when s D 1 agrees with �� , as the map �n�1 � I !�n that we
used to define �� sends �n�1 � Œ�1; 0� to ftn � 0g and �n�1 � Œ0; 1� to ftn � 0g.
Thus �0 restricted to zLn.�

n/ is homotopic to �� , which completes the first half of
our proof.

Next, Proposition 5.11 in the case of �AMn implies that zLn.�
n/ is homotopy equivalent

to �n tfib. zC 0
�
hI3i ı G!

n/, where zC 0
�
hI3i ı G!

n is a cube of configuration spaces with
structure maps which forget points. This is established in the proof of Proposition 5.11
through a series of equivalences

tfib. zC 0
�
hI3
i ıGn/'� tfib. zC 0

�
hI3
i ıGPn2.n�1//' � � � '�

i tfib. zC 0
�
hI3
i ıGPn2.n�i//:

The multiplication from the single loopspace structure on � tfib. zC 0
�
hI3i ıGPn2.n�1//

agrees up to homotopy with the others coming from i –fold loopspace structure, includ-
ing i D n. (That is, all the equivalences above, except the first one, are loop maps.) We
will complete the proof by showing that this single loopspace multiplication coincides
with �� .

By definition tfib. zC 0
�
hI3i ı GPn2.n�1// is the total fiber of an .n�1/–cube of fibers,

where each fibration forgets the last point. An element of loops on this total fiber is a
loop of maps ˛W In�1! fib. zC 0nhI

3i ! zC 0
n�1
hI3i/, where

� each map ˛ is constant on the face fti D 1g for every i , and

� on each of the remaining n� 1 faces, the image of ˛ is in the image of the
appropriate doubling map.

On the other hand, an element of zLn.�
n/ is a loop of maps ˛W �n�1! zC 0nhI

3i, where

� the image of each ˛ in zC 0
n�1
hI3i is the standard constant map,

� ˛ is constant on the face ftn�1 D 1g, and

� on each of the remaining n� 1 faces, the image of ˛ is in the image of the
appropriate doubling map.
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Consider a homeomorphism from In�1 to �n�1 which identifies
Sn

iD1ftiD1g�In�1

with ftn�1D 1g ��n�1 . Via this homeomorphism, we get a homeomorphism between
loops on this total fiber and zLn.�

n/ which is compatible with the multiplications on
each.

5.7 Summary

Putting results together the results, the sequences Ln ! AMfr
n ! AMfr

n�1 in the
Goodwillie–Weiss tower approximating classical framed knots satisfy the following:

(1) They are fibration sequences of C1 –spaces (Definition 4.3 and Corollary 5.7).

(2) AMfr
n receives a multiplication-preserving (in fact, C1 –action-preserving) eval-

uation map from the knot space, with connected sum as its multiplication
(Proposition 4.4).

(3) At the level of components, all multiplications are commutative (Corollary 4.13)
and have inverses (Theorem 5.16 and Proposition 4.12). Moreover, AMfr

n !

AMfr
n�1 is surjective on components (Theorem 5.14).

6 The homotopy tower is a finite-type invariant

In this section we show that �0.evn/W �0 Embfr.R;R3/ ! �0 AMfr
n , which we’ve

shown to be an abelian group-valued invariant compatible with connected sum of knots,
is a finite-type invariant of type n� 1. The main tool is a theorem of Habiro [15],
which states that two classical knots share finite-type invariants of degree � n� 1 if
and only if they differ by a series of Cn –moves.

We describe these moves in a way that will facilitate our proof. Let E2 be a copy of
D2� I DD2� Œ�1; 1�, with two properly embedded subarcs which clasp in the center
as in Figure 2. Iteratively form En from En�1 by replacing a regular neighborhood of
the top left arc of En by a copy of E2 . Thus En is D2�I with n properly embedded
arcs. (So technically each En is a pair of spaces.)

Now a basic Cn –move on a knot K is given by finding an embedding e of En into R3

which meets the knot K as the given collection of arcs, and sliding another subarc
of K across the central disk e.D2 � f0g/ of the embedded En as in Figure 3. In this
figure, the almost vertical strand in each left (resp. right) picture is a subarc of the knot
which is isotopic to the front (resp. back) half of the boundary of this central disk.

The basic tool we need is the following theorem, which follows directly from work of
Habiro [15]:
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Figure 2: The basic clasp E2 and the iteratively constructed E4 . The ambient
cylinders are not drawn.

Theorem 6.1 Suppose that � is an additive invariant of (unframed) knots. It is
invariant under Cn –moves if and only if it is a finite-type invariant of degree n� 1.

Proof The Cn moves constructed here are an alternate formulation of clasper surgery,
and in fact are very close to Habiro’s original formulation in his master’s thesis. The fact
that Cn –moves give the same equivalence relation as arbitrary capped clasper surgery is
well known, but we will sketch the argument here. (See eg [21] at the top of page 124.)
The first step is to prove that Cn –moves correspond to “linear claspers”, where all
nodes are directly adjacent to a leaf, while the second step is to show that any capped
tree clasper surgery may be represented by surgery on a sequence of linear claspers.

7!

7!

Figure 3: A C2 –move and a C4 –move
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Step one can be explicitly proven relatively easily by using the duality between claspers
and capped grope cobordism of [7]. One explicitly builds a capped grope cobordism
between the before and after knots in a Cn –move. Moreover every capped grope
cobordism corresponding to a linear tree can be isotoped to a standard picture of a
capped grope embedded in 3–space with a band attached that pierces each cap once.
This standard picture is visibly represents the Cn –move.

Step two follows because the topological IHX relation allows us to reduce to the case of
linear claspers. (See [7, Corollary 31(a)] or [6, Theorem 7].) The point is that surgery
on a capped tree clasper can be replaced by surgery on a sequence of two claspers,
each corresponding to the other two trees in an IHX relation. Any tree type can be
reduced to linear trees by judicious applications of the IHX relation, as illustrated in
the proof of [7, Corollary 31(a)]. So the Cn –moves introduced here are equivalent to
the Cn –moves in [15].

The monoid of knots modulo the equivalence relation of n–equivalence is a finitely
generated abelian group [14; 15]. Theorem 6.17 of [15] states that the natural projection
 n�1 from knots to this abelian group is a universal additive finite-type invariant of
degree n� 1. So if � is an additive invariant of knots which also is invariant under Cn

moves, it induces a homomorphism on the group of knots modulo n–equivalence. It
thus factors as a composition of a degree n� 1 invariant with a group homomorphism.
It is therefore a degree n� 1 invariant itself.

In order to move to the framed case, we need the following lemma. For any integer k ,
let frk be the map from unframed knots to framed knots which adds a k –framing.

Lemma 6.2 Let U1 represent the C1–framed unknot. Let � be an additive framed
knot invariant taking values in an abelian group. Then

� ı frk D k�.U1/C � ı fr0 :

Proof One can push the twisting of the framing onto a standard subarc of the knot to
see that frk.K/D Uk# fr0.K/, where Uk is a k –framed unknot. Then one separates
each of the twists and uses the fact that � is additive.

Corollary 6.3 Suppose that � is an additive invariant of framed knots. If it is invariant
under Cn –moves then it is a finite-type invariant of degree n� 1 for n� 2.

Proof Note that � ı fr0 is an additive invariant of unframed knots, and that it is
invariant under Cn moves, since � is. Therefore � ı fr0 is finite-type of type n� 1 by
Theorem 6.1. On the other hand, by Lemma 6.2, �.K/D fr.K/�.U1/C � ı fr0.K/,
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where fr.K/ is the framing number. The invariant fr is known to be of type 1, so we
have a linear combination of a type-.n�1/ and type-1 invariant, which is therefore of
type n� 1.

This corollary gives us the main tool we need to show that �0.evn/ is of finite type.
We also use deformations of evaluation maps of knots.

Definition 6.4 A � –deformation of a knot K is a map obtained by precomposing the
adjoint of the evaluation map �n�Embfr.R;R3/! CnhI3; @i�O.3/n with a section
� W �n!�n �Embfr.R;R3/ of this trivial bundle which maps into the component of
K in the embedding space.

Theorem 6.5 The map �0.evn/ is invariant under Cn –moves, and therefore is a
type-.n�1/ invariant.

Proof Let K be a framed knot, and let K0 be the knot after the Cn –move has been
applied. Our strategy is to find � –deformations of K and K0 which we can then
show are homotopic. These � –deformations will have the property that none of the
configuration points in evn.�.Et// meet the central disk whenever strictly fewer than n

of those configuration points in evn.�.Et// lie on the subarcs of En . This implies that
the � –deformations are homotopic, since we can just push the arc across the central
disk of En without ever introducing collisions of configuration points. This is by
design for points in �n for which n� 1 points or fewer are inside En . If there are n

points in En , that means there is no point left over to lie in the exterior arc that we are
homotoping.

Both of our � –deformations will isotop only the copies of En in K and K0 . Consider a
nested copy of Ei inside En . It consists of an arc ˛i clasping with a copy of Ei�1 . Let
Di be the (pair of) space(s) given by the intersection of Ei with a small neighborhood
D2 � .�ı; ı/ of the central disk D2 � f0g, where ı is large enough so that there is
a homeomorphism of pairs Ei Š Di . The isotopies of Ei will slide Di along Ei ,
ie they will take Di into D2 � .a; b/ for some .a; b/� Œ�1; 1�. Roughly, .a; b/ will
be a small interval near either �1 or 1 according as which of these endpoints is
closer to the center of mass of the configuration points. More specifically, a set of
configuration points in the arc ˛i will pull Di toward that side of D2 � Œ�1; 1� in a
manner that increases as the minimum distance of these points to the midpoint of the
arc ˛i decreases. Configuration points in the copy of Ei�1 exert a similar tug to their
end of Ei in a manner which increases as they get closer to the midpoints of their arcs.
However the tug of a point is halved in magnitude when you pass to Ei�1 . This has
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Figure 4: An example of the reembedding of E4 resulting from a point
.t1; : : : ; t4/ 2 C4hI; @i , whose image under ev4 is also shown. (The image
of one of the ti is not in E4 .) The two left-hand configuration points drag
their respective arcs toward their ends of their cylinders. The right-hand
configuration point is partially balancing their tug on the central clasp. If the
right-hand point moved toward the middle of its arc, the central clasp of E4

would get tugged close to the right-hand end of the cylinder, although the
other configuration points would still be close to the left-hand end. A point
added to the arc without a point on it would bring E4 closer to the original
embedding as it got closer to the midpoint of the arc.

been set up so that a point at the midpoint of ˛i will always exert a tug that equals or
exceeds the collective tug of Ei�1 .

We also set things up so that if Ei�1 has fewer than i�1 configuration points on it then
configuration points in ˛i can never get more than " away from their end disk D2� 0.
The point is that any configuration points in ˛i will have a greater tug on the clasp
than Ei�1 when one is at the midpoint of ˛i . We just ensure that this tug is strong
enough to pull ˛i "–close to its end disk. (We can come up with a uniform " in this
way since there is a discrete gap between the maximal tug that Ei�1 can exert and the
tug it exerts at less than full occupancy.)

Similarly, arrange that if the arc ˛i has no configuration points then no configuration
points in Ei�1 can get more than " away from D2 � 1 inside Ei .

Ultimately, we have an isotopy of En parametrized by CnhI; @i or, equivalently, a
reembedding of En for each .t1; : : : ; tn/ 2 CnhI; @i. See Figure 4 for an example.

With such a family of reembeddings, we claim that no configuration point ever passes
through the D2�

1
2

disk of En , provided that strictly fewer than n configuration points
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are present inside En . Let the arcs in En be called ˛1 , ˛2; : : : arranged in order of
decreasing depth.

We know that there is some arc ˛i which is not occupied by a configuration point. The
points in Ei�1 stay within " of the end disk and cannot cross the center disk of En .
Thus any points that do cross the center must lie on one of the arcs ˛iC1; : : : ; ˛n .
Now consider such an arc j̨ with j > i . It links with Ej�1 which has less than full
occupancy. Points in j̨ cannot get further than " away from their end disk, and cannot
cross the center disk of En , so we are done!

7 The homotopy spectral sequence for the tower and
finite-type knot theory

In this section we further develop the spectral sequence for the homotopy groups and
in particular the components of the stages in the Goodwillie–Weiss tower for classical
knots and its relationship — both established and conjectural — with finite-type knot
theory. Such analysis for knots in higher-dimensional Euclidean space, which are
connected, has been covered elsewhere, starting in [28]. We see that at the E2 stage
the entries of the spectral sequence are exactly what one would expect if the tower is to
serve as a universal additive finite-type invariant. We in particular see similar structures
to what Goodwillie and Weiss [13, Section 5] originally saw in higher dimensions, but
can also compare that to newer results on the combinatorics of finite-type invariants [5].

A priori the spectral sequence of a totalization tower, or any other tower of fibrations,
is difficult to discern in degree zero. Not only is �0 only a set-valued functor, but
homotopy groups can differ over different components. We saw in Section 5 however
that this tower has additional algebraic structure, which leads to the following:

Theorem 7.1 The spectral sequence for the homotopy groups, and in particular com-
ponents, of AMfr

n as a stage in the Goodwillie–Weiss tower is a spectral sequence of
abelian groups which converges.

Proof By Corollary 5.7 and Theorem 5.16 the fiber sequence

(4) Ln! AMfr
n ! AMfr

n�1

is a fibration sequence of group-like C1 –spaces. It is thus loops on the fibration sequence
defined on their classifying spaces. Its long exact sequence in homotopy groups is
then a degree shift of that for the classifying spaces, starting with �1 of the classifying
spaces being �0 of these spaces. These exact sequences can be spliced in the usual
way to obtain a spectral sequence, which by Theorem 5.16 is one of abelian groups.
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Convergence follows from the fact that this tower is finite when we truncate it at AMfr
n ,

and the groups are finitely generated by Proposition 7.2 below along with the fact that
homotopy groups of spheres are finitely generated.

We can now analyze the spectral sequence in further detail. By Proposition 5.11,
Ln is equivalent to �n of the total fiber of the n–cube C fr

�
hI3; @i ı G!

n . Unraveling
definitions, this is an n–cube whose entries are spaces of configurations of at most n

points, together with at most n frames, where each map in the cube forgets a point and a
frame. We can express this cube as an entrywise product of the cubes S 7!CnnS hI

3; @i

and S 7!O.3/nnS .

The total fiber of the product is the product of the total fibers, and for n� 2 the total
fiber of the cube of powers of O.3/ is a point. Thus it suffices to consider the total
fiber of S 7! CnnS hI

3; @i. Furthermore, we can switch to open configuration spaces,
for which these forgetting maps are well known to be fibrations. We take fibers in one
direction and consider the resulting .n�1/–cube instead. Here we see the entries as I3

with a finite set of points removed, and maps which are inclusions. Up to homotopy,
this is a cube of spaces

W
T S2 indexed by subsets T � n� 1, where each map projects

off a wedge factor. Call this cube P.n� 1/
�W

S2
�
.

By Hilton’s theorem [16], the homotopy groups of a wedge
W

nS2 is a direct sum of
homotopy groups of higher-dimensional spheres. To elaborate, let Ln be the free graded
Lie algebra (working over the integers for the rest of this section) on n odd-graded
generators in degree one. Let Bn;full be a basis for Ln , choosing these consistently as
n varies. For example, we could use a graded version of Hall bases.

Hilton’s theorem states that ��
�W

nS2
�

is a direct sum
L

W 2Bn;full
��S

jW j�1 , where
W is the degree or word length of W . The theorem is functorial if we use bases for free
Lie algebras of different ranks which extend one another, since the Whitehead products
used to define the elements of homotopy are functorial. Because the projection maps
between wedge products of S2 are split, these different bases split off. An immediate
inductive calculation of the homotopy groups of the total fiber (as an iterated fiber of
fibers) shows that what is left for homotopy groups is indexed by a basis Bn of the
submodule of the Ln spanned by brackets in which all generators occur.

Proposition 7.2 The spectral sequence for the homotopy groups (including �0 ) of
AMn has as E1

�p;� the module
L

W 2Bp�1
��S

jW j�1 .

By Lemma 5.15, the abelian group structure in the spectral sequence agrees with the
usual abelian group structure on the homotopy groups of spheres.
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We now focus on total degree zero. Let AI
n be the Z–module of chord diagrams on a

line segment with n chords, modulo the usual four-term relation 4T and the relation SEP,
which sets every separated (ie nonprimitive) diagram to zero. Alternatively, AI

n is the
Z–module of trivalent diagrams, modulo antisymmetry, the IHX relation and SEP. See
[5] for more details.

Theorem 7.3 The group E2
�n;n is isomorphic to AI

n�1
.

Proof By Proposition 7.2 the group E1
�n;n is isomorphic to the submodule of the

free Lie algebra on n� 1 generators generated by .n�1/–fold brackets where each
generator appears exactly once. This module is Lie.n� 1/, the n�1st space in the Lie
operad, which well known to be free of rank .n� 1/!.

Next, we consider the 1-line of the E1 page. Under the identification of Proposition 7.2
these groups decompose into a free summand and two-torsion. The free summands are
indexed by n–fold brackets in the free Lie algebra on n� 1 generators, again in which
all generators occur. The two-torsion summands occur as composites of Sn �

�!Sn�1

with .n�1/–fold Whitehead products from Sn�1! P.n� 1/
�W

S2
�
. This summand

is thus isomorphic to Lie.n� 1/˝Z=2.

The differential d1 must be zero on the torsion summand. We claim that on the free
summand the differential is the integral version of the differential defined in [24]. There,
in Theorem 2.1, through the tower of fibrations

(5) Cn.R
d /! Cn�1.R

d /! � � � ! C0.R
d /

the well-known rational homotopy Lie algebra of the configuration space Cn.Rd / is
calculated as generated by classes bij in degree d � 1. Under the map from the total
fiber of P.n� 1/

�W
S2
�

to Cn.R3/ the basis for the free Lie algebra on generators,
say xi , sends a bracket to a corresponding brackets in the bin . Because the projections
in the tower (5) are split, these brackets are integral generators of free summands as
well. (In fact, one can use the splitting of the tower (5) and the Hilton–Milnor theorem
to express homotopy groups of configuration spaces as a direct sum of homotopy groups
of spheres.) The formulas for the differential given in [24] are given in terms of these
integral generators, so they hold for the spectral sequence over the integers as well.

In [5], the cokernel of the rational d1 is computed to be AI
n�1
˝Q. While the result

is stated rationally (which is where the conjecture was made), all of the calculations
involve only integer coefficients.

At the E2 –level the components of AMn thus look like they should receive a universal
additive finite type-.n�1/ invariant over the integers, which was established for nD 3

as the main result of [4].
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We elaborate our conjecture as follows. Because the map evn from the knot space to
this Goodwillie–Weiss tower, sometimes called the “homotopy tower”, factors the map
to the variant that Volić considers in [32], sometimes called the “rational homology
tower”, we already knew that it encodes every rational finite type- n

2
invariant. By

Theorem 6.5, we now know that any invariant which factors through �0.evn/ is of type
at most n� 1. Standard finite-type theory then gives a map from AI

n�1
to �0.AMn/,

as follows. For a diagram with n� 1 chords, choose a knot K with n� 1 double
points prescribed by the chords; by the well known Vassiliev skein relation, K can be
rewritten as an alternating sum of 2n�1 knots where all the singularities are resolved.
This alternating sum can then be interpreted inside the abelian group �0.AMn/, which
defines the map. Although the choice of K is not determined up to isotopy, any
two choices will have the same type-.n�1/ invariants, and will yield the same image
under �0.evn/. We conjecture that this is an isomorphism at E2 , which collapses
to E1 . This would imply by Theorem 7.3 that all weight systems lift to finite-type
invariants over the integers. That is, it would establish �0.ev1/ as a refinement of the
Kontsevich integral, defined over the integers.

In the framed setting we have some additional low-dimensional calculations. Namely,
AMfr

1 '�SO.3/, implying its components are isomorphic to Z=2. The evaluation map
calculates the parity of the framing, which is indeed the only additive type-1 invariant.
Next, Theorem 3.6 of [4] states that AM2 is contractible. The subcubical diagram
which defines AMfr

2 fibers over that which defines AM2 , with the maps in this fibering
built from the standard fibration of SO.3/ over S2 as the unit tangent bundle. The
fiber is a subcubical model for �S1 ' Z (pulled back from the cosimplicial model
for �S1 via G2 ), and the map from the framed knot space to AMfr

2 classifies framing
number.

More generally, the subcubical diagram which defines AMfr
n fibers over that which

defines AMn with fiber given by a n–subcubical diagram which models �S1 . Because
�0.AMfr

n/ projects surjectively onto �0.AMfr
2/, compatibly with the identification of

this fiber with �S1 , on components this yields a splitting �0.AMfr
n/Š �0.AMn/�Z.

(Note that this would follow immediately from elementary results in Goodwillie–Weiss
calculus if the splitting of spaces of framed knots can be made functorial.) Thus these
Goodwillie–Weiss models reflect the fact that the usual and framed finite-type theories
differ only by the framing number invariant.

One key step towards establishing this conjecture would be the collapse of the spectral
sequence, which is now of a tower of fibrations amenable to tools from algebraic
topology. This is in contrast to Vassiliev’s approach, where the limiting process of
unstable spectral sequences is not well understood. (See [10] for this limiting process in
a piecewise-linear setting.) The Goodwillie–Weiss tower is built from maps of spaces,
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in particular the sequences of (4) and the diagrams which define AMn , which have
been analyzed to great effect for knots in higher dimensions [17].

Another key intermediate step would be the surjectivity on components of evn . This
statement would follow from deep connectivity results of Goodwillie and Klein [12] if
those applied in codimension two, but it may be approachable more directly in this case.

We suspect, however, that direct analysis of the invariants which arise from �0.evn/

will be most fruitful. They have already led to new geometric insight in degrees three
and four [4; 9]. Sinha and Walter’s Hopf invariants [29] can fully be applied by the
calculations of Proposition 7.2. They seem to lead to Goussarov–Polyak–Viro formulae,
which is a promising sign.
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[22] B A Munson, I Volić, Cubical homotopy theory, New Mathematical Monographs 25,
Cambridge University Press (2015) MR

[23] P Salvatore, Knots, operads, and double loop spaces, Int. Math. Res. Not. 2006 (2006)
art. id. 13628 MR

[24] K P Scannell, D P Sinha, A one-dimensional embedding complex, J. Pure Appl. Alge-
bra 170 (2002) 93–107 MR

[25] H Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S.-B. Heidel-
berger Akad. Wiss. Math.-Nat. Kl. 1949 (1949) 57–104 MR

[26] D P Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math.
10 (2004) 391–428 MR

[27] D P Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006) 461–486 MR

[28] D P Sinha, The topology of spaces of knots: cosimplicial models, Amer. J. Math. 131
(2009) 945–980 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.1007/BF00535644
http://msp.org/idx/mr/1162445
http://dx.doi.org/10.1112/jtopol/jtn022
http://msp.org/idx/mr/2461855
http://dx.doi.org/10.2140/gt.1999.3.103
http://msp.org/idx/mr/1694808
http://dx.doi.org/10.1016/S0040-9383(97)00026-8
http://msp.org/idx/mr/1604891
http://dx.doi.org/10.2140/gt.2000.4.1
http://msp.org/idx/mr/1735632
http://dx.doi.org/10.1112/jlms/s1-30.2.154
http://msp.org/idx/mr/0068218
http://dx.doi.org/10.2140/gt.2010.14.2151
http://dx.doi.org/10.2140/gt.2010.14.2151
http://msp.org/idx/mr/2740644
http://dx.doi.org/10.1090/conm/293/04948
http://msp.org/idx/mr/1890736
http://dx.doi.org/10.1090/S0894-0347-03-00419-3
http://msp.org/idx/mr/1969208
http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.5mcclure.pdf
http://msp.org/idx/mr/2089084
http://dx.doi.org/10.2140/pjm.2008.238.119
http://msp.org/idx/mr/2443510
http://dx.doi.org/10.1017/CBO9781139343329
http://msp.org/idx/mr/3559153
http://dx.doi.org/10.1155/IMRN/2006/13628
http://msp.org/idx/mr/2276349
http://dx.doi.org/10.1016/S0022-4049(01)00078-0
http://msp.org/idx/mr/1896343
http://msp.org/idx/mr/0031733
http://dx.doi.org/10.1007/s00029-004-0381-7
http://msp.org/idx/mr/2099074
http://dx.doi.org/10.1090/S0894-0347-05-00510-2
http://msp.org/idx/mr/2188133
http://dx.doi.org/10.1353/ajm.0.0061
http://msp.org/idx/mr/2543919


1742 Ryan Budney, James Conant, Robin Koytcheff and Dev Sinha

[29] D Sinha, B Walter, Lie coalgebras and rational homotopy theory, II: Hopf invariants,
Trans. Amer. Math. Soc. 365 (2013) 861–883 MR

[30] N E Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. 48
(1947) 290–320 MR

[31] V Turchin, Delooping totalization of a multiplicative operad, J. Homotopy Relat.
Struct. 9 (2014) 349–418 MR
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