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Affine Hirsch foliations on 3–manifolds

BIN YU

This paper is devoted to discussing affine Hirsch foliations on 3–manifolds. First,
we prove that up to isotopic leaf-conjugacy, every closed orientable 3–manifold M

admits zero, one or two affine Hirsch foliations. Furthermore, every case is possible.

Then we analyze the 3–manifolds admitting two affine Hirsch foliations (we call
these Hirsch manifolds). On the one hand, we construct Hirsch manifolds by using
exchangeable braided links (we call such Hirsch manifolds DEBL Hirsch manifolds);
on the other hand, we show that every Hirsch manifold virtually is a DEBL Hirsch
manifold.

Finally, we show that for every n 2N , there are only finitely many Hirsch manifolds
with strand number n . Here the strand number of a Hirsch manifold M is a positive
integer defined by using strand numbers of braids.

57M50, 57R32; 37E10, 57M25

1 Introduction

In 1975, Hirsch [8] constructed an analytic 2–foliation on a closed 3–manifold such
that the foliation contains exactly one exceptional minimal set. Let’s briefly recall his
construction here.

The foliation is constructed by starting with a solid torus and removing from the interior
another solid torus which wraps around the original solid torus twice. This gives
us a manifold, foliated by 2–punctured disks, with two transverse tori as boundary
components. We then glue the exterior boundary component to the interior boundary
component to obtain a foliated manifold without boundary. Hirsch chose a gluing map
carefully so that the 2–punctured fibration structure induces a foliation and the induced
foliation is analytic and contains exactly one exceptional minimal set.

There are many variations of Hirsch’s construction in the literature, for instance,
Ghys [7], Biś, Hurder and Shive [4]:

� Ghys [7] considered a variant of Hirsch’s construction: Hirsch’s gluing map is
changed to a map that is “affine” in some sense. In [4], the authors call these foliations
affine Hirsch foliations.
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� In [4], the authors generalize Hirsch’s construction in many cases. In the three-
dimensional case, they generalize Hirsch’s construction by starting with a solid torus V

and removing from V a small solid torus V0 so that V0 can be regarded as a tubular
neighborhood of a closed twisted braid in V .

Actually, it is natural to further generalize these foliations by using braids:

� For every n–braid b whose closure is a knot, starting with a solid torus V and
removing from its interior a small solid torus V0 which is a small tubular neighborhood
of the closure of b , we get a compact 3–manifold, foliated by n–punctured disks, with
two boundary components transverse to the n–punctured disk fibration.

� Then we glue the exterior boundary component to the interior boundary component
to obtain a foliated manifold induced by the n–punctured disk fibration.

For simplicity, we still call the new foliations Hirsch foliations, which are the main
objects in this paper. Similarly, if the gluing map is “affine” in some sense, we call the
Hirsch foliation affine. More precise definitions can be found in Section 2.

There are several kinds of discussions about Hirsch foliations in the literature:

� Bis̀, Hurder and Shive [4] generalized Hirsch’s construction to construct analytic
foliations of arbitrary codimension with exotic minimal sets.

� Alvarez and Lessa [1] considered the Teichmüller space of a Hirsch foliation.

� Shive in his thesis [12] considered the following conjugacy question: fixing
two Hirsch foliations .M1;H1/ and .M2;H2/, a Cr leaf-conjugacy diffeomorphism
H W M1!M2 and an integer k 2N , how does one find conditions on the foliations
and the map H which ensure that the map H is CkC�?

In this paper, we also would like to discuss a conjugacy question. In contrast to what
Shive did, we hope to understand the leaf-conjugacy classes of Hirsch foliations. We say
two foliations H1 and H2 on a closed 3–manifold M are isotopically leaf-conjugate
if there exists a homeomorphism hW M !M which maps every leaf of H1 to a leaf
of H2 and is isotopic to the identity map on M . We say that H1 and H2 are the same
up to isotopic leaf-conjugacy if H1 and H2 are isotopically leaf-conjugate. In this
paper, we will restrict ourselves to affine Hirsch foliations. The reasons why we focus
on affine Hirsch foliations are the following:

� A Hirsch foliation always can be easily rebuilt (see Remark 4.4 ) by modifying the
gluing map of an affine Hirsch foliation.

� Affine Hirsch foliations are natural objects in dynamical systems: the projection of
the stable manifolds of a Smale solenoid attractor on the orbit space of the wandering
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set (by a Smale solenoid mapping on a solid torus) is an affine Hirsch foliation. Our
forthcoming paper [16] will focus on this topic.

Now we can naturally ask the following question as the main motivation for this paper.

Question 1.1 For a closed 3–manifold M , can we classify all affine Hirsch foliations
up to isotopic leaf-conjugacy?

Alvarez and Lessa [1, Section 1.3] have discussed this question on the 3–manifolds
constructed by Hirsch. As a first step toward answering Question 1.1, we have:

Theorem 1.2 Let M be a closed orientable 3–manifold. Then M admits 0, 1 or 2

affine Hirsch foliations up to isotopic leaf-conjugacy.

Then one naturally would like to answer:

Question 1.3 (1) Which 3–manifolds admit a Hirsch foliation?

(2) Which 3–manifolds admit two nonisotopically leaf-conjugate affine Hirsch
foliations and what are the relations between these two foliations?

Actually, to the first item of Question 1.3, on the one hand, which manifolds these are
is very clear, ie each one is precisely determined by a braid and a gluing map; on the
other hand, it is not easy to describe all of these manifolds in a straightforward way.
Nevertheless, we would like to give some characterizations of these 3–manifolds.

Proposition 1.4 Let M be a closed orientable 3–manifold which admits an (affine)
Hirsch foliation. Then

(1) M is a toroidal 3–manifold whose JSJ diagram is cyclic;

(2) each JSJ piece is either hyperbolic or a S.0; 2I q=p/–type Seifert manifold where
p and q (0< q < p ) are coprime.

This proposition is a consequence of Lemma 3.7 and Corollary 3.8.

We are more interested in the second item of Question 1.3. We call a 3–manifold M

a Hirsch manifold if M admits two nonisotopically leaf-conjugate Hirsch foliations.
Notice that the 3–manifold constructed by Hirsch in [8] actually is a Hirsch manifold.

Actually, there are many Hirsch manifolds; see Section 4.2 and Proposition 4.3. The
following are the reasons why we are interested in Hirsch manifolds:

� A Hirsch manifold has some nice symmetric structures.

� Hirsch manifolds and their two affine Hirsch foliations will play a central role in a
class of dynamical systems: in [16], the author will use Hirsch manifolds and affine
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Hirsch foliations to discuss a kind of �–stable diffeomorphism on 3–manifolds whose
nonwandering set is the union of a Smale solenoid attractor and a Smale solenoid
repeller.

The exchangeably braided links introduced by Morton [10] will play a crucial role in
describing Hirsch manifolds. An exchangeably braided link is a two-component link
L D K1 [K2 in S3 such that each component is braided relative to the other one.
More details about exchangeably braided links can be found in Section 2.

Motivated by the second item of Question 1.3, we will give two observations to describe
the relationships between exchangeably braided links and Hirsch manifolds. The first
observation is that for every exchangeably braided link LDK1[K2 , one can build
a (unique) Hirsch manifold following a series of standard combinatorial surgeries
(see Section 4). Such a Hirsch manifold is called a Hirsch manifold derived from
an exchangeably braided link (abbreviated as a DEBL Hirsch manifold). The second
observation is that every Hirsch manifold virtually is a DEBL Hirsch manifold. More
precisely:

Theorem 1.5 Let M be a Hirsch manifold. Then there exists a q2 –covering space
of M , denoted by zM , such that zM is a Hirsch manifold derived from an exchangeably
braided link (a DEBL Hirsch manifold). Moreover, q2 can be divided by n2� 1 where
n is the strand number of M .

Here, the strand number of a Hirsch manifold M (see Definition 4.2) is defined to be
the strand number of a braid which can be used to build the Hirsch manifold M .

Hirsch manifolds have the following finiteness property.

Proposition 1.6 For every n 2N , there are only finitely many Hirsch manifolds with
strand number n.

In the final section (Section 5), we will build an example to show:

Proposition 1.7 There exists a 3–manifold which admits a Hirsch foliation but is not
a Hirsch manifold.

Proposition 1.4, Proposition 4.3, the examples in Section 4 and Proposition 1.7 imply
that there exist closed oriented 3–manifolds M0 , M1 and M2 such that

� M0 doesn’t admit any affine Hirsch foliations;
� M1 admits exactly one affine Hirsch foliation;
� M2 is a Hirsch manifold, ie M2 admits two nonisotopically leaf-conjugate

affine Hirsch foliations.
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Figure 1: Constructing a Hirsch foliation

This means that every case in Theorem 1.2 can be realized (in some closed 3–manifold).

We can see that the results in this paper (in particular, Proposition 4.3 and Theorem 1.2)
give a satisfying response to the problem of classifying all Hirsch foliations. They
allow us to reduce classifying all Hirsch foliations to a classical problem in one-
dimensional dynamical systems: classifying degree-n (n� 2) endomorphisms1 on S1

up to conjugacy. More details can be found in Remark 4.4.

2 Preliminaries

Definition 2.1 Let H be a codimension-1 foliation on a closed oriented 3–manifold M.
H is called a Hirsch foliation if there exists a torus T embedded into M such that

(1) the path closure of M �T , denoted by N , is a compact oriented 3–manifold
with two tori T out and T in as its boundary;

(2) HjN is an n–punctured disk fibration on N such that each fiber is transverse
to @N ;

(3) every leaf in H is orientable.

By Definition 2.1, a Hirsch foliation H on a closed oriented 3–manifold M can be
constructed as follows (see Figure 1 for an illustration):

� Choose an n–braid b whose closure is a knot; b also can be used to represent a
diffeomorphism on an n–punctured disk †.

� We denote the mapping torus of .†; b/ by N . Notice that F D f†�f?gg provides
a natural n–punctured disk fibration on N , which provides T in and T out two S1–
fibration structures F1 and F2 , respectively.

1An endomorphism on S1 means a monotonic continuous map on S1 .
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� We suppose that † is oriented. Then † naturally induces an orientation on each
fiber of F1 and F2 . We also give an orientation on N which naturally induces two
orientations on T out and T in , respectively.

� Build an orientation-preserving homeomorphism 'W T out! T in which maps every
fiber of F1 to a fiber of F2 and preserves the corresponding orientations.2 Let M D

N nx � '.x/ (x 2 T outN ). Then the n–punctured disk fibration F on N naturally
induces a Hirsch foliation H on M by ' .

There are some further comments about Hirsch foliations which will be useful:

� N also can be obtained by removing a small solid torus V0 from a solid torus V

where V0 is a small tubular neighborhood of the closure of a braid b .

� There is a natural quotient map P W N ! S1 where S1 is the fiber quotient space
of F .

� ' induces a map '2W S
1! S1 , which is called the projective holonomy map of F

relative to the embedded torus T .

Definition 2.2 Let H be a Hirsch foliation on a closed 3–manifold M . H is called
an affine Hirsch foliation if the projective holonomy map of F relative to an embedded
torus T transverse to H is topologically conjugate to the map zn on S1 for some n2N
satisfying n� 2. Here we can parametrize S1 by S1 D fz 2C W jzj D 1g.

In 1985, Morton [10] introduced exchangeably braided links. An exchangeably braided
link is a two-component link LDK1[K2 which admits a kind of very nice symmetry:
each component is braided relative to the other one, ie K1 is a closed braid zb1 in the
solid torus S3�K2 and K2 is a closed braid zb2 in the solid torus S3�K1 . Such a
braid b1 is called an exchangeable braid. Automatically, every exchangeably braided
link L can be regarded as the union of the closure of an exchangeable braid and an
axis of the closed braid.

Morton [10] showed many nice properties of exchangeably braided links. For instance,
he built some necessary and some sufficient conditions for exchangeability. For in-
stance, he showed that the exchangeable braids belong to a family of braids introduced
by Stallings [13].

Let’s briefly introduce Stallings braids and the relationships between Stallings braids
and exchangeable braids. Certainly, the closure of an exchangeable braid is a trivial

2'W T out ! T in preserves the orientations since the glued manifold M should be orientable. '
preserves the corresponding orientations of the fibers of F1 and F2 since every leaf in the glued foliation H
should be orientable.
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knot. But the converse is not true, ie if the closure of a braid b is a trivial knot, b is
not necessarily an exchangeable braid. Actually, Stallings [13] introduced a family of
braids in which every braid b satisfies the following:

(1) zb is a trivial knot.
(2) There is a disk D spanning zb which intersects the axis at exactly n points.

Morton called these Stallings braids. The set of Stallings braids is a proper subset of the
union of the braids whose closure is a trivial knot. In [10], Morton constructed a braid
! D �3�2�

�1
3
�2�
�1
1
�2�1 2 B4

3 which is a Stallings braid but not an exchangeable
braid. Therefore, the union of the exchangeable braids is a proper subset of the union
of Stallings braids.

Stallings braids have a very nice characterization.4 Under this characterization, it is
easy to obtain the following finiteness property.

Proposition 2.3 For a given n 2N , up to conjugacy, there are finitely many Stallings
braids with strand number n.

The following corollary is an immediate consequence of this proposition (this corollary
exactly is [10, Corollary 1.2]).

Corollary 2.4 (1) Up to conjugacy, there are finitely many exchangeable braids
with strand number n.

(2) Up to isotopy, there are finitely many exchangeably braided links with linking
number n.

3 Proof of Theorem 1.2

This section is devoted to proving Theorem 1.2. We will prove an equivalent form
of the theorem: if a closed 3–manifold M admits a Hirsch foliation F , then up to
isotopic leaf-conjugacy, M admits at most two affine Hirsch foliations.

First, we give more notation and parameters (see Figure 2 as an illustration):

� Assume that i1W T
out!N and i2W T

in!N are the associated embedding maps
and i1;?W H1.T

out/! H1.N / and i2;?W H1.T
in/! H1.N / are the corresponding

induced homomorphisms.

� We denote the oriented simple closed curve †\T out by m1 and denote the oriented
simple closed curves †\ T in by m1

2
; : : : ;mn

2
. Here, the orientations of the simple

closed curves are induced by †. Sometimes we also use m2 to represent m1
2

.

3Here and below, the notation for braids is standard in braid theory (see, for instance, Birman [3]).
4A careful reader can find the characterization in the beginning of [10, Section 2].
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Figure 2: Notation used in the proof of Theorem 1.2

� l1 is chosen to be an oriented simple closed curve in T out which intersects m1 at
one point such that .m1; l1/ endows T out with an orientation which is consistent with
the orientation of T out .

� l2 is chosen to be the unique (up to isotopy in T in ) oriented simple closed curve
in T in such that

(1) l2 intersects m2 at one point;

(2) .m2; l2/ endows T in with an orientation which is consistent with the orientation
of T in ;

(3) i2;?.Œl2�/D n � i1;?.Œl1�/.

� If there are two oriented simple closed curves m and l on a torus T 2 which intersect
at one point, we will use pmC ql (p and q are coprime) to represent an oriented
simple closed curve on T 2 which wraps p times around m and q times around l .

The existence and the uniqueness of l2 can be shown by a short computation on homol-
ogy, as follows. If we choose a simple closed curve l 0

2
2 T in so that l 0

2
intersects m2

at one point and the orientation given by .m2; l
0
2
/ is consistent with the orientation

of T in given by N , then i2;?.Œl
0
2
�/ D n � i1;?.Œl1�/C x � i2;?.Œm2�/ for some x 2 Z.

Since i2;?.Œm2�/ is nonzero in H1.N /, there is, up to isotopy, a unique simple closed
curve l2 D l 0

2
� x �m2 in T in such that i2;?.Œl2�/ D n � i1;?.Œl1�/. For simplicity, we

will use Œmj � and Œlj � .j D 1, 2/ to represent the corresponding elements in H1.N /.
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We collect some information about H1.N / as follows, which can be obtained by
Alexander duality.

Lemma 3.1 H1.N / Š Z ˚ Z, and it is generated by Œl1� and Œm2�. Moreover,
Œm1�D nŒm2� and Œl2�D nŒl1�.

The following lemma shows that the set of all punctured disk fibrations on N is quite
limited.

Lemma 3.2 Let F be an s–punctured disk fibration on N . Assume that † is a fiber
of F whose boundary is the union of a simple closed curve c1 2 T out and s pairwise
parallel and pairwise disjoint simple closed curves c1

2
; : : : ; cs

2
in T in (sometimes we

also use c2 to represent c1
2

). Assume that ci DpimiCqili (i D 1, 2) where pi and qi

are coprime. Then there exists an orientation on † which induces an orientation on c1

and an orientation on c2 such that s D n, p1 D p2 D 1 and q1 D n2q2 .

Proof First let us prove that p2 D 1. If we glue a solid torus V to N by a gluing
map  W @V ! T in so that c2 bounds a disk in V , then the glued 3–manifold U is
homeomorphic to a solid torus. On the one hand, it is obvious that H1.U /DhŒl1�iŠZ.
On the other hand, H1.U / D hŒm2�; Œl1� W p2Œm2�C q2Œl2� D p2Œm2�C nq2Œl1� D 0i.
Therefore, p2 D˙1.

Furthermore, we can endow † with an orientation which induces two orientations on
c1 and c2 , respectively, so that p2 D 1. These orientations satisfy the requirements in
the lemma and will be used in the remainder of the proof.

To conclude, we will prove that p1D 1 and sDn. Since the union of c1
2
; : : : ; cs

2
and c1

bound an s–punctured disk †, we have Œc1�D sŒc2�. Equivalently, p1Œm1�C q1Œl1�D

s.Œm2�Cnq2Œl1�/, and so q1D sq2n and p1nD s . We have q1D p1q2n2 . Recall that
p1 and q1 are coprime, and therefore p1 D 1, s D n and q1 D n2q2 .

Remark 3.3 Actually, for every q2 2 Z, there always exists an associated punctured
disk fibration F on N . One can construct it by a standard surgery in low-dimensional
topology (for the surgery, see, for instance, Jaco [9, III.14]).

From now on, c1 , c2 and † are oriented as Lemma 3.2.

Lemma 3.4 Let 'W T out ! T in be a diffeomorphism such that '.m1/ D m2 and
'.l1/D l2Cym2 (y 2Z). If '.c1/ is isotopic to c2 in T in , then c1 is isotopic to m1

in T out and c2 is isotopic to m2 in T in .
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Proof On the one hand,

'?.Œc1�/D '?.Œm1�C q1Œl1�/D '?.Œm1�/C q1'?.Œl1�/

Dm2C q1.l2Cym2/D .1C q1y/m2C q1l2I

on the other hand,
'?.Œc1�/D Œc2�D Œm2�C q2Œl2�:

Therefore, 1C q1y D 1 and q1 D q2 . By Lemma 3.2, q1 D n2q2 and jnj � 2. Then
q1 D q2 D 0. Also notice that p1 D p2 D 1 (Lemma 3.2). The conclusions of the
lemma follow.

Lemma 3.5 If F1 and F2 are two n–punctured disk fibrations on N with two fibers
†1 and †2 , respectively, such that @†1D @†2 is the union of m1 and n simple closed
curves m1

2
; : : : ;mn

2
which are pairwise isotopic, then †1 is isotopic to †2 relative

to @†1 D @†2 in N .

Proof Up to isotopy, we can assume that int.†1/\ int.†2/ is the union of finitely
many pairwise disjoint simple closed curves ˛1; : : : ; ˛m . Here int.†i/ (i D 1, 2) is
defined to be the interior of †i . Moreover, we assume that m� 1 and m is minimal
up to isotopy relative to @†1 D @†2 .

First, we will show that every ˛i (i 2 f1; : : : ;mg) is essential in †2 . Otherwise,
some ˛i bounds a disk D2 in †2 . Notice that †1 is incompressible in N , and the
union of D1 and D2 , denoted by S , is a 2–sphere embedded in N . Since N is an
irreducible 3–manifold, S bounds a 3–ball in N . This means that we can do a surgery
on †2 in a small neighborhood of the 3–ball to obtain †0

2
so that †0

2
is isotopic

to †2 and the number of connected components of †0
2
\†1 is smaller than m. This

contradicts the assumption.

Then there is a nested k–punctured disk Dk
1
�†1 with boundary j̨[.m

s1

2
[� � �[m

sk

2
/

for some j 2 f1; : : : ;mg, where j̨ is an essential simple closed curve in the interior
of †1 . Here the fact that Dk

1
is a nested disk means that the interior of Dk

1
is disjoint

from †2 . We cut N along †1 to obtain a 3–manifold N0 which is homeomorphic
to †1� Œ0; 1�. Because @†1D @†2 and Dk

1
is a nested k–punctured disk, by a simple

argument on N0 , one can obtain that @Dk
1

also bounds a nested k–punctured disk Dk
2

in N0 . We define †3 to be .†1�Dk
1
/[Dk

2
, which is an incompressible k–punctured

disk. Since N0 is homeomorphic to †1 � Œ0; 1�, we have that †3 is isotopic to †1

relative to †1�Dk
1

in N0 . We can push †3 a little into the interior of N0 to †0
3

so that the intersection number of †0
3

and †2 is strictly smaller than the intersection
number of †1 and †2 . This contradicts the minimality.

Algebraic & Geometric Topology, Volume 17 (2017)



Affine Hirsch foliations on 3–manifolds 1753

Now we deal with the trouble that maybe there are many incompressible tori in a Hirsch
manifold. For this purpose, we should observe more topological information about N .

First, we recall some classical facts about the geometry and topology of surface
bundles. The Nielsen–Thurston theorem (see, for instance, Fathi, Laudenbach and
Poenaru [6]) states that a homeomorphism f on a compact surface † is isotopic to
one of three types according to its dynamics: periodic, reducible and pseudo-Anosov.
The Thurston geometrization theorem for surface bundles (see Thurston [14]) implies
that the Nielsen–Thurston theorem deeply involves the geometric structure of three-
dimensional manifolds as follows: the mapping torus Mf D†� I=.s; 1/� .f .s/; 0/

is an irreducible 3–manifold, and moreover,

(1) Mf is hyperbolic if and only if f is pseudo-Anosov;

(2) Mf is Seifert-fibered if and only if f is periodic;

(3) Mf contains an essential torus (hence we can perform JSJ decomposition) if
and only if f is reducible.

In particular, in the third case, there exists a collection of essential simple closed curves
in † so that the suspension of these curves can be glued up by a map isotopic to f to
give a collection of essential tori and Klein bottles which are the collection of JSJ tori
and Klein bottles. In the following lemma, we formalize some facts about the geometry
and topology of surface bundles which will be very useful.

Lemma 3.6 Let Mf D †� I=.s; 1/ � .f .s/; 0/ be a mapping torus where † is a
compact orientable surface and f is an orientation-preserving homeomorphism on †.
Then

(1) Mf is an irreducible 3–manifold and every JSJ piece of Mf is either hyperbolic
or Seifert;

(2) every JSJ torus T of Mf corresponds to an essential simple closed curve c in †
which is periodic up to isotopy under f .

Now, we come back to observing some topological information about N .

Lemma 3.7 N is an irreducible 3–manifold such that

(1) every JSJ piece of N is either hyperbolic or Seifert;

(2) the JSJ diagram of N is a path;

(3) every Seifert piece is homeomorphic to S.0; 2I q=p/ where p and q (0< q<p )
are coprime and S.0; 2I q=p/ represents the Seifert manifold whose base orbifold
is a 2–punctured sphere with a .q=p/–singularity.
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Proof Recall that N can be defined to be the mapping torus of .†; b/, where † is
an n–punctured compact disk and b is a homeomorphism on †. Then by item (1)
of Lemma 3.6, N is an irreducible 3–manifold such that every JSJ piece is either
hyperbolic or Seifert.

By item (2) of Lemma 3.6, every JSJ torus T of N corresponds to an essential simple
closed curve c in † which is periodic up to isotopy under b . On the one side, notice
that every simple closed curve in † is separating, and so every JSJ torus of N is
separating. This implies that the JSJ diagram of N is a tree. On the other side, @N
is the union of two tori, T out and T in . Combing these two observations, one could
immediately obtain that the JSJ diagram of N is a path.

Let N0 be a Seifert piece of N . Then N0 is homeomorphic to a solid torus minus a
small open tubular neighborhood of a closed braid zb0 . Since N0 is Seifert, b0 should
be a periodic braid. Since every periodic homeomorphism on a disk is conjugate to a
rotation (see Constantin and Kolev [5]), up to conjugacy, b0 should be a twisted braid.
This implies that N0 is homeomorphic to a Seifert manifold S.0; 2I q=p/.

Recall that M DN nx � '.x/ (x 2 T outN ). By Lemma 3.7, the gluing map ' glues
the two JSJ pieces corresponding to the two ends of the JSJ diagram of N (notice that
the two JSJ pieces might be the same), and the two JSJ pieces should belong to one of
the following three cases:

(1) Both of them are hyperbolic.

(2) One of them is hyperbolic and the other one is Seifert.

(3) Both of them are Seifert.

In the first two cases, it is obvious that the glued torus T is a JSJ torus in M . In the
third case, since '.m1/Dm2 , one can easily check that up to isotopy, 'W T out! T in

doesn’t map a regular fiber on T out to a regular fiber on T in induced by the associated
Seifert pieces. Therefore, T is also a JSJ torus in M . Now naturally we have the
following corollary.

Corollary 3.8 Let M be a closed orientable 3–manifold which admits a Hirsch
foliation. Then every incompressible torus T embedded in M is a JSJ torus and the
JSJ diagram of M is cyclic.

Lemma 3.9 Let M be a closed 3–manifold which admits an affine Hirsch foliation.
We have the following conclusions.
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(1) M is the union of n JSJ pieces M1;M2; : : : ;Mn by the gluing maps

'1W @
outM1!@

inM2; : : : ; 'n�1W @
outMn�1!@

inMn and 'nW @
outMn!@

inM1:

Here the union of T out
i and T in

i is the boundary of Mi (i 2 f1; : : : ; ng).

(2) Let fT1; : : : ;Tng be a union of the maximal pairwise disjoint, pairwise nonparallel
JSJ tori of M and H be a Hirsch foliation on M . Then H can be isotopically leaf-
conjugate to H0 so that every Ti (i 2 f1; : : : ; ng) is transverse to H0 .

Proof Item (1) of the lemma is a direct consequence of Corollary 3.8. We only need
to prove item (2).

Without loss of generality, we can suppose that Ti D @outMi (i 2 f1; : : : ; ng) and
H is transverse to Tn . Let N be the union of M1;M2; : : : ;Mn by the gluing maps
'1; : : : ; 'n�1 . The Hirsch foliation H restricted to N is an m–punctured disk fibration,
denoted by F . Since N admits an m–punctured disk fibration F , by Corollary 3.8,
every incompressible torus T in the interior of N is a JSJ torus. Moreover, by
item (2) of Lemma 3.6, T can be isotopic to T 0 relative to @N so that T 0 is transverse
to F . Then by an easy inductive argument, T1; : : : ;Tn�1 in N can be isotopic
to T 0

1
;T 0

2
; : : : ;T 0

n�1
relative to @N , respectively, so that every T 0i is transverse to F .

Equivalently, we can perturb F in N relative to @N to F 0 which is transverse to
every Ti . Then F 0 naturally induces a foliation H0 in M such that

� H0 is isotopically leaf-conjugate to H;
� H0 is transverse to every Ti .

Lemma 3.10 Let M be a closed 3–manifold which admits an affine Hirsch folia-
tion H . Let T1 and T2 be two incompressible tori in M each of which is transverse
to H . We denote the path closure of M �Ti by Ni (i D 1, 2) and denote the restriction
of H to Ni , which is an ni –punctured disk fibration on Ni , by Fi . Then n1 D n2 .

Proof Without loss of generality, we can suppose that T1 and T2 are disjoint and
nonparallel. The path closure of M �T1[T2 is the union of two compact 3–manifolds
W1 and W2 . Actually, N1DW1[T2

W2 and N2DW2[T1
W1 . We denote H restricted

to Wi (i D 1, 2), which is an mi –punctured disk fibration on Wi , by Hi . Notice that
every fiber of F1 is the union of one fiber of H1 and m1 fibers of H2 . Therefore,
every fiber of F1 is an m1 �m2 –punctured disk. Equivalently, n1Dm1 �m2 . Similarly,
n2 Dm2 �m1 . In summary, n1 D n2 .

Definition 3.11 Let M be a closed 3–manifold which admits an affine Hirsch folia-
tion F and T be an incompressible torus which is transverse to F . We denote by N
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the path closure of M �T and denote F restricted to N , which is an n–punctured
disk fibration, by F . We call n the strand number of F .

Remark 3.12 Lemma 3.9 and Lemma 3.10 imply that the strand number of F doesn’t
depend on the choice of T . Furthermore, by Lemma 3.2, the strand number of an
affine Hirsch foliation is invariant under isotopic leaf-conjugacy.

The following lemma explains that the “affine” property of an affine foliation is inde-
pendent of the choices of T and the foliations which are isotopically leaf-conjugate to
the original affine foliation.

Lemma 3.13 Let M be a closed 3–manifold which admits an affine Hirsch folia-
tion H1 . Let H2 be a Hirsch foliation such that

� H2 is isotopically leaf-conjugate to H1 ;

� H2 is transverse to an incompressible torus T in M and N is the path closure
of M �T .

Let F2 be the punctured disk fibration on N and F2 be the circle fibration of H2

restricted to T . Then the projective holonomy map of F relative to an embedded
torus T transverse to H is topologically conjugate to the map zn on S1 where n is
the strand number of H1 and H2 .

To show Lemma 3.13, by item (2) of Lemma 3.9, we only need to prove the following
claim.

Claim 3.14 Let M be a closed 3–manifold which admits an affine Hirsch foliation H .
Let T1 and T2 be two incompressible tori in M . Let Ni (i D 1, 2) be the path closure
of M � Ti , let Fi be the punctured disk fibration on Ni , and let Fi be the circle
fibration of H restricting to Ti . Suppose that '1

2
, the projective holonomy map of F1

relative to T1 , is topologically conjugate to the map zn on S1 . Then '2
2

, the projective
holonomy map of F2 relative to T2 , is also topologically conjugate to the map zn

on S1 .

Proof By Lemma 3.9, we can suppose that T1 and T2 are disjoint and nonparallel. Let
the path closure of M �T1[T2 be the union of two compact 3–manifolds M1 and M2

such that

(1) @Mi D @
outMi [ @

inMi for i D 1, 2;

(2) M is the union of M1 and M2 by the gluing maps '1W @outM1! @inM2 and
'2W @outM2! @inM1 ;

(3) @outM1 and @inM2 correspond to T1 and @outM2 and @inM1 correspond to T2 .
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Under this notation, N1 D M2 ['2
M1 and N2 D M1 ['1

M2 . We denote by
Pi W Ni! S1

i the quotient map of the fiber quotient space of Fi .

We can define an m–covering map � W S1
2
!S1

1
(m2N ) as follows. For every z22S1

2
,

since S1
2

can be regarded as the quotient space of the circle fibration F2 on @outM2 ,
we can regard z2 as a fiber of F2 . Also notice that @outM2 is embedded into N1 , and
so the fiber z2 is in some punctured disk fiber of F1 . Therefore, the quotient map
P1W N1! S1

1
naturally induces a map � W S1

2
! S1

1
. One can easily check that � is

an m–covering map.

We claim that '1
2
ı � D � ı '2

2
, which is the key observation for the proof. Now

let’s check this claim. For every point xi 2Ni (i D 1, 2), we denote by hxiii 2 S1
i

the fiber of Fi where xi lies. Let x2 be a point in @outM2 � N2 and x1 be a
point in @outM1 � N1 such that hx1i1 D �.hx2i2/. Then one can easily show that
P1 ı'

1.x1/D � ıP2 ı'
2.x2/ by following the definitions of Pi and 'i (i D 1, 2)

and � . Note P1ı'
1.x1/D '

1
2
.hx1i1/ and � ıP2ı'

2.x2/D� ı'
2
2
.hx2i2/. By these

equalities, we have '1
2
ı�.hx2i2/D � ı'

2
2
.hx2i2/ for every hx2i2 2 S1

2
.

Since '1
2

is affine, we can endow S1
1

with a suitable metric such that S1
1
D fz 2C W

jzj D 1g and '1
2
D zn for some n 2N (n� 2). Since � W S1

2
! S1

1
is an m–covering

map, we also can endow S1
2

with a metric such that S1
2
D fz 2 C W jzj D 1g and

�.z/D zm for every z 2 S1
2

. Furthermore, by the fact that � ı'2
2
D '1

2
ı� , we have

'2
2
D znW S1

2
! S1

2
.

Proposition 3.15 Let T be an incompressible torus on a closed 3–manifold M . We
denote by N the path closure of M � T , so that @N is the union of T out and T in .
Then up to isotopic leaf-conjugacy, there exists at most one affine Hirsch foliation H
such that H is transverse to T and HjN is a punctured disk fibration such that each
fiber of HjN intersects T out in one connected component.

Proof We assume that H1 and H2 are two affine Hirsch foliations on M which satisfy
the conditions in the proposition. Let F1 and F2 be the punctured disk fibrations
induced on N by H1 and H2 , respectively. Suppose 'W T out! T in is the gluing map
so that M DN nx � '.x/ (x 2 T out ).

F out
i D Fi \T out (i D 1, 2) is an S1–fibration on T out . Similarly, F in

i D Fi \T in is
an S1–fibration on T in . We denote a fiber of F out

1
(resp. F in

1
, F out

2
, F in

2
) by m1 (resp.

m2 , c1 , c2 ). Then, up to isotopy, '.m1/Dm2 and '.c1/D c2 . By Lemma 3.4, c1 is
isotopic to m1 in T out and c2 is isotopic to m2 in T in . Then we can suppose that
H1\T DH2\T , which we denote by F . Here F is a circle fibration on T .

Since each of H1 and H2 is an affine Hirsch foliation, by Lemma 3.13, the projec-
tive holonomy maps '1

2
W S1 ! S1 of H1 and '2

2
W S1 ! S1 of H2 relative to T
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are conjugated by an orientation-preserving homeomorphism gW S1 ! S1 , that is,
'2

2
ıg D g ı'1

2
.

Recall that P W N ! S1 is a natural quotient map where S1 is the fiber quotient space
of F . One can lift g to a homeomorphism GT W T ! T such that

� GT is isotopic to the identity map on T ;
� P ıGT D g ıP .

Since GT is isotopic to the identity map on T , we can extend GT to a homeomorphism
GW M !M which is isotopic to the identity map on M . Assume that H0

1
DG.H1/ is

also an affine Hirsch foliation on N . Let F 0
1

be the punctured disk fibrations induced
by H0

1
on N . By P ıGT D g ıP and '2

2
ıg D g ı '1

2
, one can quickly check that

the boundaries of F 0
1

and F2 are coherent, ie for every fiber †1 � F 0
1

, there exists a
fiber †2 such that @†1D @†2 . Then by Lemma 3.5, one can build a homeomorphism
�W N !N such that

� � is isotopic to the identity map on N relative to @N ;
� �.F 0

1
/D F2 .

� can automatically induce a homeomorphism ˆ on M such that

� ˆ.x/D �.x/ for every x in the interior of N ;
� ˆ is isotopic to the identity map on M ;
� ˆ.H0

1
/DH2 .

In summary, ˆ ıG is a homeomorphism on M such that

� ˆ ıG is isotopic to the identity map on M ;
� ˆ ıG.H1/DH2 .

Now we can finish the proof of Theorem 1.2, ie we can show that up to isotopic leaf-
conjugacy, a closed orientable 3–manifold admits at most two affine Hirsch foliations.

Proof of Theorem 1.2 Let H be an affine Hirsch foliation and T be an incompressible
torus in M . By Lemma 3.9, we can suppose that H is transverse to T . We denote the
path closure of M �T by N and the boundary of N by the union of T out and T in .
Then F DHjN is a punctured disk fibration on N . There are two possibilities for F :

(1) Each leaf of F intersects T out in one connected component.

(2) Each leaf of F intersects T in in one connected component.

In both cases, by Proposition 3.15, up to isotopic leaf-conjugacy, there exists at most
one affine Hirsch foliation. The conclusion of the theorem follows.
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c3
1

glue together

c2
1

†2
c1Dc1

1
Dl1

l2Dc2

†

m1
m1

2
m2

2

m3
2

N

Figure 3: Notation in the case of N associated to the braid �1�
�1
2

4 Hirsch manifolds and exchangeably braided links

In this section, we will focus on the study of Hirsch manifolds, ie the closed 3–manifolds
which admit two nonisotopically leaf-conjugate affine Hirsch foliations. First, we will
introduce or recall some useful notation (see Figure 3 as an illustration5):

H1 an affine Hirsch foliation transverse to T in M

N;T out;T in; ' M DN nx � '.x/, @N D T out[T in, and 'W T out! T in is
the gluing homeomorphism

m1; l1Im2; l2 H1 induces oriented simple closed curves m1, l1 in T out and
m2, l2 in T in which are defined at the beginning of Section 3

c2 p2m2C q2l2 (q2 > 0), an oriented simple closed curve in T in

c1 p1m1C q1l1, an oriented simple closed curve in T out

c1
1
; : : : ; cs

1
s pairwise disjoint oriented simple closed curves which are
parallel to c1 in T out

†2 an oriented punctured disk in N such that @†2 is the union
of c1

1
; : : : ; cs

1
and c2

F2 an oriented punctured disk fibration on N with a fiber †2

'W T out! T in '.m1/Dm2 and '.l1/D l2C km2

5In the case of the figure, c1D c1
1
D l1 . To avoid misunderstanding, we should point out that generally

we can think c1 D c1
1

, but l1 may not be isotopic to c1 .
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4.1 Homology and Hirsch manifolds

In this subsection, for every two nonzero integers m and n, we will use Œm; n� to
represent their greatest positive common divisor.

Lemma 4.1 Suppose F2 also induces an affine Hirsch foliation H2 on M under ' .
Then p1D k=Œn2� 1; k�, q1D .n

2�1/=Œn2�1; k�, p2D n2p1 , q2D q1 , and sD n.

Proof Since @.†2/D c2[c1
1
[� � �[cs

1
, we have Œc2�D sŒc1� in H1.N /. Equivalently,

p2Œm2�C q2Œl2�D sp1Œm1�C sq1Œl1�. Recall that Œm1�D nŒm2� and Œl2�D nŒl1�, and
so .snp1�p2/Œm2�C .nq2� sq1/Œl1�D 0. Recall that H1.N /D hŒm2�; Œl1�i ŠZ˚Z.
Then

(1) p2 D snp1 and nq2 D sq1:

By filling a solid torus to N along T out , we obtain a new compact 3–manifold V so
that c1 bounds a disk in V , and then V is homeomorphic to a solid torus. Following
the gluing surgery, we have

H1.V /D hŒm2�; Œl1� W p1Œm1�C q1Œl1�D 0i

D hŒm2�; Œl1� W np1Œm2�C q1Œl1�D 0i

Š Z:

Then we have

(2) np1 and q1 are coprime.

Define '?W H1.T
out/!H1.T

in/ to be the homomorphism induced by 'W T out!T in .
Notice that F2 also induces an affine Hirsch foliation H2 on M . Then, on the one
hand,

'?.Œc1�/D Œc2�

D p2Œm2�C q2Œl2�;

and on the other hand,

'?.Œc1�/D '?.p1Œm1�C q1Œl1�/

D p1Œm2�C q1.kŒm2�C Œl2�/

D .p1C q1k/Œm2�C q1Œl2�:

Therefore,

(3) p1C q1k D p2 and q1 D q2:

Now, the lemma is a direct consequence of (1), (2), (3) and the fact that pi and qi

(i D 1, 2) are coprime.
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We can use the strand number of a braid which builds an (affine) Hirsch foliation on M

to be an invariant of M . The strand number of M is well defined. Let us explain a
little bit more. Suppose there are two braids which build the same Hirsch manifold M ;
by Lemma 3.10, Definition 3.11 and Lemma 4.1, the strand numbers of the braids are
the same.

Definition 4.2 Let M be a Hirsch manifold. The strand number of a braid b which
builds an (affine) Hirsch foliation on M is called the strand number of M .

Proposition 4.3 Let H1 and H2 be two affine Hirsch foliations defined as above on a
Hirsch manifold M . Then H1 and H2 are not isotopically leaf-conjugate.

Proof Otherwise, we assume that there exists a homeomorphism hW M !M which
maps every leaf of H1 to a leaf of H2 and is isotopic to the identity map on M . One
can check that every leaf on H1 is homeomorphic to either a sphere minus a Cantor
set or a torus minus a Cantor set. We choose a leaf `1 on H1 which is homeomorphic
to a sphere minus a Cantor set. We denote f .`1/, which is a leaf on H2 , by `2 .

Let QW N !M be the natural quotient map. By the construction of H1 , without
loss of generality, we can assume that b1 DQ.m1/DQ.m2/ is an oriented simple
closed curve on `1 . The curve b1 is homotopically nontrivial in M because of the
compressibility of T in M . Since h is isotopic to the identity map on M , we also have
that b2 D h.b1/� `2 is homotopically nontrivial in M . By the construction of H2 ,
b2 is homotopic to �c in `2 for some nonzero integer �. Here c DQ.c1/DQ.c2/

is a simple closed curve in T . We choose an oriented closed curve c� in T which is
homotopic to �c in T . Then b1 and c� are homotopic in M . This means that there
exists an immersion map F W AD S1 � Œ0; 1�!M and an orientation on A such that

� F.S1 � f0g/ D l1 and F.S1 � f1g/ D c� , where S1 � f0g and S1 � f1g are
oriented consistently with the orientation of A;

� F.int.A// is transverse to T , where int.A/ is the interior of A.

Moreover, under some perturbation of F close to @A if necessary, we can assume there
exists a neighborhood of @A, denoted by N.A/, satisfying F�1.T /\N.@A/D @A.
Then F�1.T /\ int.A/ is the union of finitely many pairwise disjoint oriented simple
closed curves s0; s1; : : : ; sm where s0 D S1 � f0g and sm D S1 � f1g. Here the
orientation of si (i 2 f0; 1; : : : ;mg) is consistent with the orientation of s0 in A.
We can assume that m is minimal in the following sense: let F W A ! M be an
immersion which satisfies the conditions above; then F�1.T /\ int.A/ contains at
least m connected components. If some si is inessential in A, then si bounds a
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disk Di in A. This means that F.si/ is homotopically trivial in M . Since F.si/� T

and T is incompressible in M , we have that F.si/ is homotopically trivial in T .
Then by some standard surgery, one can build another F 0W A!M which satisfies the
conditions above and whose intersection circle number is less than m. This contradicts
the assumption for m. Therefore, from now on, we can suppose that each si is essential
in A. Since A is an annulus, s0; s1; : : : ; sm are pairwise parallel in A.

Without loss of generality, we can assume that the union of s0; s1; : : : ; sm cuts A into
m open annuli A1; : : : ;Am such that

� @Ai D si�1[ si for i 2 f1; : : : ;mg;

� Ai \F�1.T /D∅.

Therefore, F.si�1/ and F.si/ are homotopic in N for every i 2 f1; : : : ;mg. We
choose a very small tubular neighborhood of s0 in A. Then F.N.s0// belongs to
one of the two sides of T in M . The two cases for the position of F.N.s0// and the
relations above induce two kinds of “homotopy chain relations”. We denote Q�1.c�/

by c1
�
[ c2

�
where c1

�
� T in and c2

�
� T out . In both cases, we can assume there exist

2m oriented closed curves s1
1
; s1

2
; : : : ; s1

m in T out and s2
0
; s2

1
; : : : ; s2

m�1
in T in such

that

� Q.s1
i /DQ.s2

i /D F.si/ and s2
i D '.s

1
i / for i 2 f1; : : : ;m� 1g;

� s2
i�1

and s1
i are homotopic in N for i 2 f1; : : : ;mg.

In one case, s2
0
D c2

�
and s1

m Dm1 ; in the other case, s2
0
Dm2 and s1

m D c1
�

.

We will get contradictions in both cases by using homology theory. For every oriented
closed curve ˛ in N , we will use Œ˛� to represent the corresponding homological
element in H1.N /. Recall that H1.N /Š Z˚Z, and it is generated by Œl1� and Œm2�

(Lemma 3.1). Moreover, Œl2� D nŒl1� and Œm1� D nŒm2�. These facts will be used
several times in the following.

In the first case, on the one hand, since s2
0
D m2 and s1

1
are homotopic in N , we

have Œm2�D Œs
1
1
� in H1.N /; on the other hand, since s1

1
is an oriented closed curve

in T out , we have Œs1
1
�D r Œm1�C t Œl1� for two integers r and t . These two sides imply

that Œs1
1
�D nr Œm2�C t Œl1�D Œm2� in H1.N /. Notice that n> 1, and so the equality is

impossible. Therefore, we obtain a contradiction.

In the second case, since s2
i�1

and s1
i are homotopic in N (i 2 f1; : : : ;mg), we have

Œs2
i�1
�D Œs1

i �. In particular, Œs2
m�1

�D Œs1
m�D Œm1�. Since s2

m�1
is an oriented closed curve

in T in , we have Œs2
m�1

�D rm�1Œm2�Ctm�1Œl2� for two integers rm�1 and tm�1 . We also
have Œs2

m�1
�D rm�1Œm2�Cntm�1Œl1�DnŒm2�. Therefore, rm�1Dn and tm�1D0. This

implies that s2
m�1

and nm2 are homotopic in T in . Notice that s1
m�1
D'�1.s2

m�1
/ and
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'.m1/Dm2 , and so s1
m�1

and nm1 are homotopic in T out . By some similar arguments,
we have that s1

i and nm�im1 are homotopic in N for every i 2 f1; : : : ;m � 1g.
Also notice that s1

1
, s2

0
and c� are pairwise homotopic, and so nm�1m1 and c� are

homotopic in N . This implies that nm�1Œm1�D Œc��D nm�1C1Œm2�D nmŒm2�. By
Lemma 4.1, Œc��D �Œc2�D �

�
n2.k=Œn2�1; k�/Œm2�C..n

2�1/=Œn2�1; k�/Œl2�
�
. Since

..n2� 1/=Œn2� 1; k�/Œl2�D .n.n
2� 1/=Œn2� 1; k�/Œl1� is nonzero, Œc��¤ nmŒm2�. We

obtain a contradiction. Then the proposition follows.

Remark 4.4 By Definition 2.1 and Definition 2.2, we can see that for a given 3–
manifold M ,

� on the one hand, every Hirsch foliation can be obtained from a unique affine
Hirsch foliation by replacing the projective holonomy map '2 D zn on S1 by
another degree-n endomorphism '0

2
on S1 ;

� on the other hand, for every affine Hirsch foliation and every degree-n endomor-
phism '0

2
on S1 , one can build a Hirsch foliation with the projective holonomy

map '0
2

.

Moreover, by Proposition 4.3 and Theorem 1.2, one can classify all of the affine Hirsch
foliations on a given 3–manifold M .

Therefore, our results reduce the question of classifying all Hirsch foliations to a
classical problem in one-dimensional dynamical systems: classifying degree-n (n� 2)
endomorphisms on S1 up to conjugacy.

4.2 DEBL Hirsch manifolds

To aid understanding of the materials in this subsection, we suggest the reader look
at Figure 4.

Let LDK1[K2 be an exchangeably braided link in S3 . We choose two disjoint small
open tubular neighborhoods V1 and V2 of K1 and K2 , respectively. N is defined
to be S3 � V1 [ V2 . Its boundary @N satisfies @N D T out [ T in with T out D @V1

and T in D @V2 . The linking number of K1 and K2 is denoted by n. K1 is a closed
n–braid zb1 relative to K2 , and K2 is a closed n–braid zb2 relative to K1 .

Up to isotopy, there is a unique way to choose a simple closed curve m1 in T out and
n simple closed curves m1

2
; : : : ;mn

2
in T in such that

� m1
2
; : : : ;mn

2
each bound a disk in V2 and m1 is isotopic to K1 in V1 ;

� m1
2
; : : : ;mn

2
and m1 bound an n–punctured disk †1 in N .
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K2
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cut small tubular
neighborhoods
of K1 and K2

m1

m1
2

a fiber †1 in F1

m2
2

glue together
a fiber †2

in F2

l1
1

l2

l2
1

glue the boundary of N
by 'W T out! T in

N

M

F in
1

F in
2

T in T out

Fout
1

Fout
2

N
N

Figure 4: An example DEBL Hirsch manifold

Similarly, up to isotopy, there is a unique way to choose a simple closed curve l2 in T in

and n simple closed curves l1
1
; : : : ; ln

1
in T out such that

� l1
1
; : : : ; ln

1
each bound a disk in V1 and l2 is isotopic to K2 in V2 ;

� l1
1
; : : : ; ln

1
and l2 bound an n–punctured disk †2 in N .

Moreover, up to isotopy, we can extend †i (i D 1, 2) to an n–punctured disk fibra-
tion Fi on N such that

� Fout
i D Fi \T out and F in

i D Fi \T in are two S1–fibrations on T out and T in ;

� Fout
1

and Fout
2

transversely intersect everywhere on T out ;

� F in
1

and F in
2

transversely intersect everywhere on T in .

We can suppose that the intersection number of m1 and l i
1

is 1 and the intersection
number of mi

2
and l2 , for every i 2 f1; : : : ; ng, is 1. Similar to the beginning of

Section 2 and Section 3, we would like to provide some orientations on these objects:

� We give N an orientation.

� T in and T out are oriented by the orientation of N .

Algebraic & Geometric Topology, Volume 17 (2017)



Affine Hirsch foliations on 3–manifolds 1765

� We give the leaves of F1 and F2 orientations continuously so that

(1) every fiber of Fout
i and F in

i (iD1, 2) is oriented as induced by the orientation
of F1 and F2 ;

(2) the orientation of T out is consistent with that of .m1; l
1
1
/ and the orientation

of T in is consistent with that of .m1
2
; l2/.

Then one can build an orientation-preserving homeomorphism 'W T out!T in such that

� '.m1/Dm1
2

and '.l1
1
/D l2 ;

� ' maps every fiber of Fout
1

to a fiber of F in
1

;

� ' maps every fiber of Fout
2

to a fiber of F in
2

;

� F1 and F2 induce two affine Hirsch foliations H1 and H2 on M under '
where M DN nx � '.x/ (x 2 T out ).

Notice that to ensure the glued manifold M can admit two Hirsch foliations induced
by F1 and F2 , up to isotopy, we can suppose that '.m1/Dm1

2
and '.l1

1
/D l2 . This

implies that under this restriction, the glued manifold M is unique up to homeomor-
phism. Therefore, we can say that an exchangeably braided link determines a unique
Hirsch manifold. Every Hirsch manifold built in this way is called a Hirsch manifold
derived from an exchangeably braided link (abbreviated as a DEBL Hirsch manifold).

By the second item of Corollary 2.4, we have the following consequence.

Corollary 4.5 For every n 2N , there are only finitely many DEBL Hirsch manifolds
with strand number n.

4.3 A virtual property of Hirsch manifolds

Let M be a Hirsch manifold. By the definition of Hirsch manifold and Lemma 3.9, there
exist two affine Hirsch foliations H1 and H2 on M and a JSJ torus T in M which
satisfy the propositions in Lemma 3.9. Let N be the path closure of M �T . Then:

� N admits two n–punctured disk fibrations F1 and F2 and we can parametrize
some subsets of N as in Section 2.

� The two Hirsch foliations H1 and H2 can be induced, respectively, by F1 and F2

and a gluing map 'W T out! T in .

H1.N /Š Z˚Z, and it is generated by Œm2� and Œl1�. We denote the abelianization
homomorphism from �1.N / to H1.N / by  1 and denote by  2 the quotient ho-
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momorphism from H1.N / to Zq2
such that  2.Œm2�/ D 0 and  2.Œl1�/ D 1. The

kernel of  N D 2 ı 1W �1.N /!Zq2
, which we denote by G , is a normal subgroup

of �1.N /. Here, the definitions and properties of mi and li (i D 1, 2) and q2 can be
found in the beginning of Section 4 and Lemma 4.1.

As a subgroup of �1.N /, the kernel G induces a q2 –covering space of N by a covering
map P W zN !N . We collect some useful properties in the following proposition, which
one can prove by some routine checks. We omit the details here.

Proposition 4.6 The following properties hold for i D 1, 2:

(1) P�1.Fi/D zFi is an n–punctured disk fibration on zN .

(2) Let z†1 be a connected component of P�1.†1/. Then P W z†1 ! †1 is a
homeomorphism satisfying P . zmi/Dmi .

(3) P W zl1! l1 is a q2 –covering map.

(4) Let z†2 be a connected component of P�1.†2/. Then P W z†2 ! †2 is a
homeomorphism satisfying P .zci/D ci .

(5) zci intersects zmi at one point.

Lemma 4.7 There is a homeomorphism z'W zT out! zT in such that

(1) P ı z' D ' ıP W zT out! T in ;

(2) z'. zm1/D zm2 and z'.zc1/D zc2 .

Proof By Proposition 4.6, zmi \ zci (i D 1, 2) is one point, which we will denote
by zxi . Denoting P .zxi/ by xi , we have '.x1/D x2 ,

.' ıP /?.�1. zT
out; zx1//D h'?.Œm1�/; '?.Œc1�/i D hŒm2�; Œc2�iC �1.T

in;x2/;

and
P?.�1. zT

in; zx2//D hŒm2�; Œc2�iC �1.T
in;x2/:

Then, by the classical homotopy lifting theorem, we can construct a unique map
z'W zT out! zT in such that

(1) z'.zx1/D zx2 and z'. zm1/D zm2 ;

(2) P ı z' D ' ıP W zT out! T in .

Now it is routine to check that z' is a homeomorphism.

We denote zN n y � z'.y/ (y 2 zT out ) by zM . The corresponding quotient maps are
QW zN ! zM and qW N !M .
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Lemma 4.8 There is a unique map � W zM !M so that � ıQ.y/ D q ıP .y/ for
every y 2 zN . Furthermore, � W zM !M is a q2 –covering map.

Proof For every zx 2 zM , we can define �.zx/ as follows. Since QW zN ! zM is
surjective, there exists zy 2 zN so that zx DQ.zy/. Define �.zx/D q ıP .zy/. The first
item of Lemma 4.7 ensures that � is well defined. � is unique because it has no
freedom in zM � zT where zT D ��1.T /.

Finally, since P W zN !N is a q2 –covering map, � W zM !M is also a q2 –covering
map.

Lemma 4.9 zM is a Hirsch manifold which admits two affine Hirsch foliations zH1

and zH2 such that zHi (i D 1, 2) is induced by Hi under � , ie � maps each leaf of zHi

to a leaf of Hi .

Proof Assume that Fout
i D Fi \T out and F in

i D Fi \T in are two S1–fibrations on
T out and T in , respectively. Since Fi induces Hi on M under the gluing homeomor-
phism 'W T out! T in , we know ' maps every fiber of Fout

i to a fiber of F in
i .

Suppose zFout
i and zF in

i are the lifted fibrations of Fout
i and F in

i on zT out and zT in under
the covering map P , respectively. z'W zT out! zT in is the lifted map of 'W T out! T in ,
ie P ı z'D ' ıP W zT out!T in . Therefore, z' maps every fiber of zF out

i to a fiber of zF in
i .

Then zFi induces a Hirsch foliation zHi on zM .

To finish the proof, now we only need to check that zHi is an affine Hirsch foliation.
This actually is a consequence of the following facts:
� z' is the lifted map of ' .
� Hi is an affine Hirsch foliation.
� Every expanding map on S1 is topologically conjugate to an affine map on S1

with the same degree.

Lemma 4.10 zM is a DEBL Hirsch manifold.

Proof We glue two solid tori zV1 and zV2 to zN along its boundary zT in[ zT out by the
gluing maps �1W @ zV1!

zT in and �2W @ zV2!
zT out , respectively, so that zm2 bounds a disk

in zV2 and zc1 bounds a disk in zV1 . Then the glued manifold is homeomorphic to S3 .

Let Ki (i D 1, 2) be a simple closed curve in zVi such that zVi is a tubular neighborhood
of Ki .

Since zF2 is a punctured disk fibration structure on zN and zm2 bounds a disk in zV2 , the
union of zV2 and zN , denoted by zU2 , is also homeomorphic to a solid torus. Obviously,
K2 is a closed braid in zU2 . Since S3 D zV2[

zN [ zV2 , automatically, K2 is a closed
braid relative to K1 , ie K2 is a closed braid in S3�K1 .
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Similarly, one can show that K1 is a closed braid relative to K2 . Therefore, L D

K1[K2 is an exchangeably braided link. Now it is routine to build the Hirsch manifold
derived from L and check that the Hirsch manifold is homeomorphic to zM .

Proof of Theorem 1.5 The first part of Theorem 1.5 is a direct consequence of
Lemma 4.8 and Lemma 4.10. Moreover, by Lemma 4.1, q2 can be divided by n2�1.

4.4 Finiteness of Hirsch manifolds with strand number n

We will use the following theorem of Wang [15].

Theorem 4.11 Let M be a closed irreducible 3–manifold which is nonorientable or
Seifert fibered or has a nontrivial torus decomposition (ie there is a JSJ torus). Then M

covers infinitely many nonhomeomorphic 3–manifolds if and only if M is an orientable
Seifert fiber space with nonzero Euler number.

Proof of Proposition 1.6 On the one hand, by Proposition 1.4, an n–strand Hirsch
manifold is an irreducible orientable closed 3–manifold with some JSJ tori. By
Theorem 4.11, for a given DEBL Hirsch manifold zM , there are only finitely many
Hirsch manifolds with zM as a finite covering space.

On the other hand, Corollary 2.4 says that for a positive integer n, up to isotopy, there
are only finitely many exchangeably braided links with strand number n. Recall that
an exchangeably braided link determines a DEBL Hirsch manifold. Therefore, there
are only finitely many DEBL Hirsch manifolds with strand number n.

Let M be a Hirsch manifold with strand number n. Then, by Theorem 1.5, zM ,
a finite covering space of M , is a DEBL Hirsch manifold with strand number n.
Combining the two sides above, up to homeomorphism, there are only finitely many
Hirsch manifolds with strand number n.

5 Proof of Proposition 1.7

In this section, we will construct an example to prove Proposition 1.7, which says
there exists a 3–manifold which admits an affine Hirsch foliation but is not a Hirsch
manifold. We will use the following inequality by Bennequin [2]:

Lemma 5.1 (Bennequin inequality) Let L be a nonseparating link of � components,
presented by a closed braid with l strands and cC (c� ) positive (negative) crossings.
Then g.L/, the genus of L, is bounded as follows:

jcC�c�j�l��

2
C 1� g.L/�

jcCCc�j�l��

2
C 1:
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Proof of Proposition 1.7 Let b D .�1�
�1
2
/2 be a 3–strand braid. Now we can

follow the beginning of Section 2 to build an affine Hirsch foliation H on a closed
3–manifold M . We briefly recall the construction here:

� b also can be used to represent a diffeomorphism on a 3–punctured disk †, and
we denote the mapping torus of .†; b/ by N .

� F D f†� f?gg provides a 3–punctured disk fibration on N , which provides
T in and T out two S1–fibration structures F1 and F2 , respectively.

� After carefully choosing orientations on the objects above, we can build an
orientation-preserving homeomorphism 'W T out! T in which maps every fiber
of F1 to a fiber of F2 and preserves the corresponding orientations.

� Let M D N n x � '.x/ (x 2 T outN ). Then F naturally induces a Hirsch
foliation H on M by ' . If we choose ' suitably, F is an affine Hirsch
foliation.

Now we assume that M is a Hirsch manifold. Following the arguments in Section 4.3,
there exists some integer p so that the braid bq2�p is an exchangeable braid where �
is a 3–strand full-twist braid. This means that the knot K D Abq2�p , the closed braid
of bq2�p , is a trivial knot. In the following, we will show that g.K/, the genus of K ,
is nonzero. Then K isn’t a trivial knot. We obtain a contradiction. Then M isn’t a
Hirsch manifold.

Using the notation of Lemma 5.1 in our case, LDK D Abq2�p , l D 3, �D 1 and
jcC � c�j D 6jpj. By Lemma 5.1, g.K/ � 3jpj � 1. Therefore, if g.K/ D 0, then
pD 0. In the case pD 0, we have K Debq2 . By Lemma 4.1, q2 is nonzero. Actually,
it is well known that in this case, ebq2 is a genus-1 fiber knot (see, for instance, Rolfsen
[11, Chapter 10]). Therefore, K isn’t a trivial knot.
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