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Equivariant corks
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For any finite subgroup G of SO.4/ , we construct a contractible 4–manifold C with
a G –action on its boundary that can be embedded in a closed 4–manifold so that
cutting C out and regluing using distinct elements of G will always yield distinct
smooth 4–manifolds. If we simply require G to be a subgroup of the mapping class
group of the boundary, then such examples exist for groups that cannot act on any
homology sphere.

57M99; 57R55

0 Introduction

A cork is a smooth, compact, contractible 4–manifold with an involution on its boundary
that does not extend to a diffeomorphism of the full manifold. Akbulut [1] discovered
this phenomenon for the classical Mazur manifold W [18] with the boundary invo-
lution � shown in Figure 1, proving that W embeds in a 4–manifold X so that the
result of removing W and regluing it using � is not diffeomorphic to X .

This operation is called cork twisting, and it is now known (see Curtis, Freedman,
Hsiang and Stong [9] and Matveyev [17]) that any two smooth, closed, simply connected
4–manifolds that are homeomorphic differ by a single cork twist. It is not known
whether the same cork can be used in all situations, ie whether there exists a universal
cork; it is indeed conceivable, though unlikely, that the Mazur cork is universal.

The property that the cork twist � is an involution is interesting, indeed inherent in
most constructions of corks to date, but it is not clear that it is fundamental to the
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Figure 1: The Mazur cork
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relation between cork twists and other smooth 4–manifold constructions. It is therefore
natural to ask whether cutting and gluing by higher order diffeomorphisms of the
boundary of a contractible submanifold of a 4–manifold can change the underlying
smooth structure. In this note, we give an affirmative answer, producing examples
of embeddings of contractible 4–manifolds with twists of arbitrary finite order that
alter the ambient smooth structure; it follows that none of those twists extend over the
contractible manifold. A different construction of such nonextending twists was given
in a recent preprint of Tange [19].

In fact we show more: for suitable finite groups G , there exist contractible 4–manifolds
with effective G–actions on the boundary that embed in closed 4–manifolds so that
twists corresponding to distinct elements of G yield distinct smooth structures. We
call such a gadget an equivariant cork, or G–cork if we want to specify the group.

Theorem A There exist G–corks for any finite subgroup G of SO.4/.

If the action of G on S3 is free, then the action of G on the boundary of the cork
constructed in the theorem is free; this seems to be a new phenomenon, even for
G DZ2 . The notion of an equivariant cork can be extended to a weak equivariant cork
where the relevant group is a subgroup of the mapping class group of the boundary; see
the end of Section 1 for details. In the final section of the paper, we give an example of
a weak G–cork in this sense, where G is a group that does not act effectively on any
homology 3–sphere.

Theorem B There are groups G that do not act effectively on any homology sphere,
but for which there exist weak equivariant G–corks.

The boundaries of the corks constructed in the proof of Theorem A are reducible. In
a sequel we will prove the following theorem, using rather different techniques from
those in the current paper.

Theorem C Given an oriented 3–manifold Y with an effective, orientation-preserving,
smooth action of a finite group G , there is an equivariant invertible ZŒ�1.Y /�–homology
cobordism from it to a hyperbolic manifold.

As in Akbulut and Ruberman [2], this immediately implies:

Corollary D For any given finite subgroup G of SO.4/, there exists a G–cork with
hyperbolic boundary.

Some experimentation with SnapPy [8] suggests that the simplest corks in Tange’s
paper [19] have hyperbolic boundaries, but a proof in general would require different
techniques.
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1 Preliminaries and statement of results

In this section, we lay the groundwork for our proof of the existence of equivariant
corks. Most of the ideas discussed here are well known, but since we will use “corks”
in a broader sense than usual, and employ cork twists on multiple copies of boundary
sums of embedded copies of the Mazur cork, we must give careful definitions of the
relevant notions.

Corks and boundary equivalence

Extending the usual terminology, a cork will refer to any pair .C;g/ where C is
a smooth, compact, contractible 4–manifold, and g is an arbitrary diffeomorphism
of @C . In particular, g need not be an involution, nor even of finite order, and C need
not be Stein (as is often assumed; see Akbulut and Yasui [3]). But if g is a special
involution (meaning orientation preserving with nonempty fixed point set, as with the
Mazur twist � ) then we also refer to .C;g/ as a special 2–cork.

In general, we call a cork .C;g/ trivial if g extends to a diffeomorphism of C (it
always extends to a homeomorphism by Freedman [11]) and nontrivial otherwise; with
this convention, .B4;g/ is a trivial cork for any g , whereas the Mazur cork .W ; �/ is
nontrivial. These notions induce an equivalence relation on corks associated with the
same underlying manifold: .C;g/ and .C; h/ are boundary equivalent if and only if
.C;g�1h/ is trivial, ie g�1h extends over C .

Boundary sums of corks

The boundary sum operation \ is well defined on boundary equivalence classes of
corks, as follows: Given corks .C1;g1/ and .C2;g2/, choose (for i D 1; 2) diffeo-
morphisms hi isotopic (and thus boundary equivalent) to gi that are the identity on
3–balls Bi � @Ci . Form C1 \C2 by identifying the Ci along the Bi so that h1 and h2

glue together to form h1 ] h2 . The result

.C1;g1/ \ .C2;g2/ WD .C1 \C2;g1 ]g2/

Algebraic & Geometric Topology, Volume 17 (2017)
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may depend on the choices of hi and Bi , but its boundary equivalence class does not.
Note however that \ is well defined for special 2–corks without imposing boundary
equivalence; just choose the Bi to be gi –invariant 3–balls centered at fixed points, and
then g1 ]g2 is a well-defined involution, independent of the choices up to equivariant
diffeomorphism.

Cork embeddings

A cork embedding of .C;g/ in a 4–manifold X is a smooth embedding eW C ,!X

together with the induced map xg D ege�1 on the boundary of its image xC D e.C /.
The associated cork twist X e

g is obtained by removing xC from X and regluing using xg :

X e
g D .X � int xC /[xg xC :

The embedding is trivial if X e
g is diffeomorphic to X , and it is otherwise nontrivial or

effective; note that this definition depends on both e and g . Thus the nontriviality of
.C;g/ can be verified by producing a nontrivial embedding, rather than trying to show
directly that g does not extend smoothly across C .

Note that the definition of boundary equivalence of cork maps is compatible with the
use of such maps in changing smooth structures, because the result of twisting by g is
the same as the result of twisting by h when g�1h extends across C . Conversely, given
any nontrivial cork .C;g/, Akbulut and Ruberman [2] construct a pair of absolutely
exotic structures on a contractible manifold related by twisting .C;g/. It follows that
for any two boundary inequivalent diffeomorphisms g and h, there is a 4–manifold X

and an embedding eW C ,!X such that X e
g is not diffeomorphic to X e

h
. Akbulut has

made a similar observation.

Boundary sums of cork embeddings

Given any pair of embeddings ei W Ci ,!X (for i D 1; 2) of corks .Ci ;gi/ with disjoint
images xCi D ei.Ci/ and induced boundary maps xgi W @ xCi ! @ xCi , both twists can be
performed simultaneously to produce the 4–manifold

X e1e2
g1g2
D .X � int. xC1 t

xC2//[xg1txg2
. xC1 t

xC2/:

Alternatively, xC1 and xC2 can be joined by an embedded 1–handle in X , the thickening
of an arc ˛ in X � int. xC1 t

xC2/ from xC1 to xC2 . The result is an embedding e1 \ e2

of the single cork .C1;g1/ \ .C2;g2/D .C1 \C2;g1 ]g2/ (where, as noted above, the
map g1 ]g2 is only defined up to boundary equivalence unless the gi are special
involutions) whose cork twist is independent of ˛ . Indeed, it is readily seen that the
single cork twist X

e1 \ e2

g1 ]g2
is diffeomorphic to the pair of cork twists X

e1e2
g1g2

.
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Figure 2: Trivial embedding of the Mazur cork in S4

This process can be iterated to construct the multiple cork twist X
e1���en
g1���gn

of a family
e1; : : : ; en of disjoint embeddings of corks .C1;g1/; : : : ; .Cn;gn/ in X , or a single
cork twist X

e1 \ ��� \ en

g1 ] ��� ]gn
of an embedding of the boundary sum of the .Ci ;gi/. Both

twists produce the same smooth 4–manifold. This construction will play a key role in
what follows.

Trivial cork embeddings

Most explicit corks .C;g/ in the literature can be shown to have trivial embeddings
in the 4–ball, and thus in every 4–manifold. In particular, it suffices to prove that the
double C [id�C and twisted double C [g�C are both diffeomorphic to the 4–sphere,
often accomplished by an elementary Kirby calculus argument; cf Akbulut and Yasui
[5, Section 2.6]. This is illustrated for the Mazur cork .W ; �/ in Figure 2, where the
squiggly and straight arrows represent handle slides and cancellations, respectively,
and as usual, the 3 and 4–handles are not drawn.

Equivariant corks

If G is a subgroup of the diffeomorphism group of @C with .C;g/ nontrivial for all
g ¤ 1 in G , then .C;G/ is called a G–cork. For cyclic G of finite order n, we refer
to the corks .C;g/ for generators g of G as n–corks. All explicit corks that have
appeared in the literature prior to [19] are special 2–corks; recently, Gompf [13; 14]
has shown how to construct Z–corks.

There is a more general notion, which we call a weakly equivariant cork, in which
the group G is a subgroup of the mapping class group of the boundary, ie the group
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of isotopy classes of diffeomorphisms. In this situation, it is more appropriate to use
the relation of isotopy, rather than boundary equivalence, because the subgroup of
diffeomorphisms of the boundary that extend across the cork need not be normal. Hence
the set of boundary equivalent diffeomorphisms does not in general form a group in any
natural way. In the last section, we give a construction of weakly equivariant corks for
many groups G that are not subgroups of SO.4/, and in fact that do not act effectively
on any homology 3–sphere.

In general, if C is a cork with an effective G–action on @C , then an embedding
eW C ,! X will be said to be G–effective if X e

g1
and X e

g2
are smoothly distinct for

any g1 ¤ g2 in G . Thus the existence of such embeddings shows that .C;G/ is a
G–cork. In this case, one has a G–action on the set of 4–manifolds fX e

g j g 2Gg in
the sense that .X e

g1
/xeg2
DX e

g1g2
for any two elements g1;g2 2G , where xeW C !X e

g1

is the obvious embedding induced by e .

For the reader’s convenience, we repeat the statement of our main result:

Theorem A There exist G–corks for any finite subgroup G of SO.4/.

Addenda (1) The proof will show that if jGj D n, then the boundary sum \n2.W ; �/

of n2 copies of the Mazur cork can be given a G–cork structure that has G–effective
embeddings in any blown-up elliptic surface E.2k/ # mCP2 for k;m� n.n� 1/=2.

(2) More generally, if G is any finite group that acts effectively on the boundary of a
compact, contractible submanifold of R4 , then essentially the same proof shows that
there is a G–cork with an effective embedding into a closed manifold; Theorem C can
then be used to construct such corks with hyperbolic boundary.

2 Construction of equivariant corks

Our proof of Theorem A relies on the existence of certain embeddings ei of the Mazur
cork .W ; �/ in the blown-up Kummer surface

E WDE.2/ # CP2:

Here E.2/ is the minimal elliptic surface of Euler characteristic 24 (or Kummer surface;
see for example [15]). The key input from Seiberg–Witten theory is the count of the
number of basic classes in the associated cork twists Eei

� .

Definition 2.1 Let X be a smooth, closed, simply connected 4–manifold. If bC
2
.X /

is odd and greater than 1, then N .X / will denote the number of Seiberg–Witten basic
classes of X , and otherwise N .X /D 0. For example, N .E/D 2 (the basic classes
are ˙CP1 ).
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Akbulut [1] established the nontriviality of .W ; �/ by constructing a nontrivial embed-
ding e0W W ,! E with reducible cork twist Ee0

� Š 3CP2 # 20CP2 , so in particular,
N .Ee0

� /D 0. It was later observed [7] that such an embedding could be chosen with
image in the complement E� of a nucleus in E; see [12].

More recent work of Akbulut and Yasui [4] shows that .W ; �/ has another nontrivial
embedding e2W W ,! E� with N .Ee2

� /¤ 0. The nontriviality of e2 was proved by
showing that Ee2

� results from a rational blow-down of E [10], leaving N unchanged,
followed by an honest blow-up, doubling N , so N .Ee2

� / D 4. (In particular, this
follows from Theorem 4.1 for p D 2, Proposition 5.1 for n D 1 and p1 D 2, and
Lemma 6.6 in [4].)

As noted in the last section, .W ; �/ also embeds trivially into any 4–manifold. Choose
one such embedding e1W W ,!E� . Thus e0 , e1 and e2 are numbered so that N .Eei

� /D

iN .E/. Only e1 and e2 are needed to prove the following key result, which is a
strengthening of an analogous noncompact embedding theorem of Akbulut and Yasui
[5, Theorem 1.5].

Lemma 2.2 For each n> 0, there exists a 2–cork .S; �/ that has n disjoint embed-
dings s1; : : : ; sn in some closed 4–manifold X , with distinct cork twists

X s1
� ŠX;X s2

� ; : : : ;X
sn
� :

For example, the boundary sum .S; �/ D \n.W ; �/ has n such embeddings in the
blown-up elliptic surface X DE.2k/ # mCP2 for any k;m� n.n� 1/=2.

Proof It suffices to prove the last statement. First consider the case k DmD n2 , and
view X DE.2n2/ # n2CP2 as the fiber sum of n2 copies of the blown-up Kummer
surface ED E.2/ # CP2 along regular torus fibers in a chosen nucleus. Denote the
copies of E by Eij for 1 � i; j � n. Choose an embedding eij of .W ; �/ in each
summand E�

ij , with eij D e1 if i � j and eij D e2 if i > j . For 1� i � n, let si be
the boundary sum ei1 \ � � � \ ein of all the embeddings in the “i th row”. Then the si

are distinct embeddings of .S; �/D \n.W ; �/ and can be chosen with disjoint images
by choosing the 1–handles that join the summands to be disjoint. Furthermore, si has
i � 1 nontrivial summands and n� i C 1 trivial ones, and so N .X si

� /D 2i�1N .X /.
Since N .X /¤ 0, the X

si
� are pairwise distinct.

Of course, one can be more efficient by using only the “nontrivial” copies of E, ie Eij

for i > j , and putting all the trivial embeddings of the Mazur cork inside one of these.
This handles the smallest case k DmD n.n� 1/=2, and the fiber sum and blow-up
formulas for Seiberg–Witten invariants show that k and m can be increased at will.
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Proof of Theorem A

Given a finite subgroup G of SO.4/ of order n, apply Lemma 2.2 to produce n disjoint
embeddings sg of a cork .S; �/ in a closed 4–manifold X , indexed by the elements
of G , with distinct cork twists X

sg

� . Using these cork embeddings, we construct a
G–cork .T ;G/ and a G–effective embedding t W T !X , as follows.

The underlying contractible manifold T is the boundary sum \nS of n copies of S .
To define the G action on @T , it is convenient to represent T as a cork twist on a
diffeomorphic copy T of itself that supports a natural G–action, namely the equivariant
boundary sum

T D B4 \ .G �S/

taken along a principal orbit fbg j g 2 Gg of the linear G action on @B4 , where G

acts on G �S by left multiplication on the first factor and trivially on the second. In
other words, T is obtained from a disjoint union of the 4–ball and n copies Sg of S
(indexed by g 2 G ) by adding 1–handles joining bg 2 @B

4 to xg 2 @Sg , where the
xg 2 @Sg correspond to a chosen point x 2 @S . The G action is linear on B4 , and
permutes the copies of Sg by left multiplication on the subscript (since the boundary
sum is along a principal orbit).

Now the embeddings sg of S can be used to define an embedding

xt W T ,!X

by identifying Sg with the image sg.S/ in X , B4 with a small 4–ball B disjoint
from the Sg , and the 1–handles joining B4 to the Sg with embedded 1–handles.

To obtain T , we twist a shrunken copy of the cork 1�S in T . To make this precise,
recall that T contains n copies Sg D g � S of S , the images of the embeddings
egW S ,! T sending x to .g;x/. Consider an embedding sW S ,! S that shrinks S
inside itself; that is, s is the identity off of a boundary collar @S � Œ0; 1/, and maps
.x; t/ to .x; .t C 1/=2/ inside the collar. Then e D e1 ı s embeds S onto a shrunken
copy of S1 . We define T to be the cork twist associated with this embedding:

T D T e
� :

Since the @T D @T , there is still a G–action on @T , and this defines our cork .T ;G/.
Note that T is actually diffeomorphic to T , and thus to \nS , since \ is a well defined
operation, but for our purposes it is most convenient to describe T as a cork twist
of T .

Now observe that the embedding xt W T ,!X above induces an embedding

t W T ,!X s1
�
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since T D T e
� . Furthermore, twisting this embedding of T by an element g 2G just

transfers the cork twist from S1 to Sg ; that is,

.X s1
� /

t
g DX

sg

� :

Since the smooth 4–manifolds X
sg

� are distinct for g 2 G , this shows that t is a
G–effective embedding, and so .T ;G/ is a G–cork. This completes the proof of
Theorem A.

Remark Even in the case G D Z2 this result can give something new. Applying the
construction from Theorem A to the free Z2 action on S3 extended across B4 we get
a 2–cork with free action on the boundary.

Proof of the addenda to Theorem A

The first addendum to the theorem follows from this proof by using .S; �/D \n.W ; �/

and X DE.2k/ # mCP2 , as provided by the lemma. Note that in the proof, X
s1
� is

diffeomorphic to X since s1 is a trivial cork embedding, so t can be viewed as an
embedding of \n2W ,!X .

With regard to the second addendum, if a finite group G acts on a compact contractible
submanifold of R4 , we may repeat the argument replacing B4 by the contractible
submanifold to produce a G–cork T . To build a G–cork with hyperbolic boundary,
let U be an invertible cobordism from @T to a hyperbolic 3–manifold M with
inverse V as given by Theorem C. Then

T[@T U � T[@T U[M V Š T ;

and T [@T U inherits a G action so twisting it via g has the same effect as twisting T
since g extends across V .

Remark From the construction, we see that our G–corks are boundary-connected
sums of Stein manifolds, and hence are Stein. In contrast to the argument in [19], this
fact does not play any role in our verification that our corks are effective.

3 Weakly equivariant corks

In this section, we construct examples of weakly equivariant corks for certain finite
groups that are not subgroups of SO.4/. In fact, these groups cannot act on any
homology sphere, so there are no corresponding equivariant corks. This will prove
Theorem B.
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Figure 3: A weak C 4
2 –cork

Proof of Theorem B

Fix n� 4, and let GDC n
2

, the product of n copies of the cyclic group C2 . It is known
that G does not act effectively on any homology 3–sphere [20, Proposition 3]. In this
proof, we show how to construct a nontrivial weak G–cork V .

Apply Lemma 2.2 to get a 2–cork .S; �/ with 2n inequivalent embeddings sg (for
g 2G ) in some 4–manifold X , meaning their cork twists X

sg
� are 2n distinct smooth

4–manifolds. For convenience, assume that X 1
� Š X . For example, S could be the

boundary sum of 2n Mazur corks, with X D E.22nC1/ # 22nCP2 ; see the proof of
Lemma 2.2.

As in the proof of Theorem A, we will define the cork V to be a suitable cork twist of
a diffeomorphic copy xV of V . To define xV , consider a full binary tree T of height n,
built from the bottom up, as shown in Figure 3 for the case n D 4. Thus T has
one vertex at the root, two at the first level, four at the second level, etc. At the top
there are 2n vertices which can be indexed in a natural way by the elements of G (as
explained below). To get xV , replace the black dots by 4–balls, the white dots by copies
of the cork S (referred to as the leaves of the cork) and the edges by 1–handles. Also
choose an equatorial 3–disk D for each black 4–ball B that separates the 1–handle
attached to B below D (if any) from the two attached above; D splits xV into two
components with closures DC (locally above D ) and D� (locally below D ).

Let �0; : : : ; �n�1 denote the generators of the C2 factors in G D C n
2

, and let �k act
on xV by performing half Dehn twists on all the level k equatorial 3–disks. Here
a half Dehn twist about such a disk D is the diffeomorphism of xV that leaves D�

fixed, sends a collar neighborhood D � Œ0; �� of D in DC to itself by the map
.x; �/ 7! .rot� .x/; �/, and sends the rest of DC to itself in the obvious way, reversing
the order of the leaves above D . Thus, for example, �0 reverses the order of all the
leaves at the top, �1 independently reverses the orders of the first and second halves of
the leaves, and so forth. Note that a full Dehn twist of a 4–manifold X can be defined
in a similar way about any 3–disk D that is either properly embedded or embedded
in @X. In either case one uses a collar D� Œ0; 2�� that restricts to a collar of @D in @X,

Algebraic & Geometric Topology, Volume 17 (2017)
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A1
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A3

Y

A2

x̨

Figure 4: Ai ;Y � B2 when nD 3 (left) and the map x̨W Y � I ! S1 (right)

lying to the outside of D when D � @X ; the shaded region in Figure 4 (left) illustrates
how the collar meets the boundary in this latter case.

Now observe that �k is of order 2 in the mapping class group of xV . This is clear
for �0 , since �2

0
is a full Dehn twist about the equatorial disk D0 that untwists by

an isotopy over the 4–ball D�
0

below it, and in general we claim that �2
k

is isotopic
to �2

k�1
. Indeed, the portion of xV lying between level k � 1 and level k is a union

of 4–balls, each containing exactly three equatorial 3–disks in its boundary. Thus it
suffices to prove that a full twist about two of these disks is isotopic to a full twist about
the third. Since �1 SO.3/DZ2 , this is a consequence of the following elementary fact
(cf [16, page 190]):

Lemma 3.1 The composition ı of Dehn twists of a 4–ball B about any finite number
of disjoint 3–disks D1; : : : ;Dn in its boundary is isotopic to the identity, leaving
the Di fixed.

Proof of the Lemma View B D B2 �B2 and Di D Ai �B2 , where the Ai are
disjoint arcs in @B2 . Let r W B2!Y be a deformation retraction that collapses each Ai

to its midpoint ai , where Y is the cone 0� fa1; : : : ; ang. Pictures of the arcs Ai and
the graph Y in B2 , and an indication of the retraction r , are shown in Figure 4 (left)
for the case nD 3, with collars corresponding to the shaded regions.

With this parametrization B D B2 �B2 , we can take

ı.x;y/D .x; rot˛.r.x//.y//;

where ˛W Y ! S1 is a map of degree one on each edge ei D 0�ai of Y . Evidently, ˛
extends to a map x̨W Y � I ! S1 that has degree one on each edge ei � 0 and 0� I ,
and is constant on each edge ei � 1 and ai � I ; see Figure 4 (right). This defines
the desired isotopy ıt from ı D ı0 to the identity, rel the Di , given by ıt .x;y/ D

.x; rot x̨.r.x/;t/.y//.

Continuing with the proof of Theorem B, it is clear that the action of the �k extends to
an embedding of G in the mapping class group of xV , and that distinct elements of G
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carry the first leaf to distinct leaves. This gives a natural way to index the leaves of xV
by the elements g 2G , according to where g carries the first leaf. Thus, for example,
the last leaf is indexed by �0 , while the .2n�1/st leaf is indexed by �1 .

Now let V be the cork twist of xV along (a shrunken copy of) the first leaf. Then @V
is naturally identified with @xV , so there is an induced embedding of G in the mapping
class group of @V . To see that this defines a weak G–cork structure on V , just choose
an embedding eW V ,!X that restricts to the embeddings sg (for g 2G ) on the leaves
of V . Then X e

g DX
sg
� , and so X e

g and X e
h

are not diffeomorphic unless gD h.
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