Volume 17, issue 3 (2017)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 9, 4731–5219
Issue 8, 4139–4730
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On bordered theories for Khovanov homology

Andrew Manion

Algebraic & Geometric Topology 17 (2017) 1557–1674
Bibliography
1 R M Adin, Y Roichman, On maximal chains in the non-crossing partition lattice, J. Combin. Theory Ser. A 125 (2014) 18 MR3207465
2 D Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003) 647 MR2032983
3 T Braden, Perverse sheaves on Grassmannians, Canad. J. Math. 54 (2002) 493 MR1900761
4 M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665 MR1928174
5 R Lipshitz, P Ozsvath, D Thurston, Bordered Heegaard Floer homology: invariance and pairing, preprint (2008) arXiv:0810.0687
6 R Lipshitz, P S Ozsváth, D P Thurston, Heegaard Floer homology as morphism spaces, Quantum Topol. 2 (2011) 381 MR2844535
7 R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015) 525 MR3336273
8 A J Manion, Constructions and computations in Khovanov homology, PhD thesis, Princeton Universty (2015) MR3407464
9 D Pálvölgyi, For any two noncrossing partitions p,q of n, is the graph of geodesics from p to q in NC(n) connected ?,
10 A Polishchuk, L Positselski, Quadratic algebras, 37, Amer. Math. Soc. (2005) MR2177131
11 L Roberts, A type A structure in Khovanov homology, Algebr. Geom. Topol. 16 (2016) 3653 MR3584271
12 L P Roberts, A type D structure in Khovanov homology, Adv. Math. 293 (2016) 81 MR3474320
13 C Stroppel, Parabolic category 𝒪, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compos. Math. 145 (2009) 954 MR2521250