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The mapping cone formula in Heegaard Floer homology
and Dehn surgery on knots in S 3

FYODOR GAINULLIN

We write down an explicit formula for the C version of the Heegaard Floer homology
(as an absolutely graded vector space over an arbitrary field) of the results of Dehn
surgery on a knot K in S3 in terms of homological data derived from CFK1.K/ .
This allows us to prove some results about Dehn surgery on knots in S3 . In particular,
we show that for a fixed manifold there are only finitely many alternating knots that
can produce it by surgery. This is an improvement on a recent result by Lackenby
and Purcell. We also derive a lower bound on the genus of knots depending on the
manifold they give by surgery. Some new restrictions on Seifert fibred surgery are
also presented.

57M27, 57M25

1 Introduction

Dehn surgery is a fundamental technique in 3–manifold topology. Indeed, we can
construct any 3–manifold1 beginning with any other 3–manifold and performing Dehn
surgery enough times. However, it is a highly nontrivial and widely open problem to
understand what manifolds can be obtained by doing Dehn surgery once (even starting
from the “simplest” 3–manifold, namely S3 ) and what knots yield a fixed manifold by
surgery.

Heegaard Floer theory is a relatively recent collection of powerful tools in low-
dimensional topology. It has many aspects and provides invariants in many different
contexts. In this paper, we are only concerned with the 3–manifold and knot invariants
(defined in Ozsváth and Szabó [18; 17] and Rasmussen [24]). The collections of
3–manifold invariants and knot invariants are connected via the surgery formula that
expresses the Heegaard Floer homology of a 3–manifold obtained by surgery on a
given knot in terms of the Heegaard Floer homology data of the knot (see Ozsváth
and Szabó [23]). This makes Heegaard Floer homology an especially suitable tool for
investigating questions about Dehn surgery.

1In this paper, whenever we say “3–manifold” we mean “closed connected orientable 3–manifold”.
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A natural question about Dehn surgery is whether there are manifolds that can be
obtained by surgery on infinitely many distinct knots in S3 . The answer is “yes”; see
Osoinach [13] or Teragaito [27]. There is still hope, however, that perhaps this does
not happen for some nice classes of knots.

One interesting and well-studied class of knots is that of alternating knots. At first sight,
their diagrammatic definition seems to have little to do with the geometric-topological
properties of these knots. However, this is not so; see, for example, Lackenby and
Purcell [7]. In particular, they prove the following:

Theorem 1 [7, Theorem 1.3] For any closed 3–manifold M with sufficiently large
Gromov norm, there are at most finitely many prime alternating knots K and fractions
p=q such that M is obtained by p=q surgery along K .

In fact, the statement about fractions p=q can be deduced, for example, from Ni and
Wu [11, Theorem 1.2]. We will also show in this paper that given any manifold Y

there is a universal bound on q for such fractions, which also implies that they are
finite in number. Using techniques that are very different from those used in [7] we are
able to establish the following improvement of this theorem.

Theorem 2 Let Y be a 3–manifold. There are at most finitely many alternating knots
K � S3 such that Y D S3

p=q
.K/.

Heegaard Floer homology is also very useful in bounding genera of various surfaces.
In particular, knot Floer homology determines the genus of a knot; see Ozsváth and
Szabó [16]. Combining this with information about surgery often allows one to put
restrictions on genera of knots admitting certain surgeries. For example, if surgery on
a knot K produces an L–space Y (a generalisation of lens spaces; see below for the
definition), then 2g.K/�1� jH1.Y /j, where by g.K/ we mean the genus of K (see
eg [23, Corollary 1.4]).

We derive a bound which is in some respects “opposite” to the bound for L–spaces. It
is a lower bound which can be nontrivial only for non-L–spaces. For the statement
of the theorem below and the rest of the paper note that we work over an arbitrary
field F . Heegaard Floer homology is then an F ŒU �–module and we denote the action
of U simply by multiplication. For a rational homology sphere Y , HFred.Y / denotes
its reduced Floer homology.

Theorem 3 For any knot K � S3 and any p=q 2Q we have

U g.K /Cdg4.K /=2e �HFred.S
3
p=q.K//D 0:
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We remark that if K is an L–space knot, then U dg4.K /=2e � HFred.S
3
p=q

.K// D 0.
Moreover, for any N > 0 and p > 0 there is a 3–manifold Y which can be obtained
by a surgery on a knot in S3 such that U N �HFred.Y /¤ 0 and jH1.Y /j D p .

Here g4.K/ is the slice genus of K . We obviously have
˙

1
2
g4.K/

�
�
˙

1
2
g.K/

�
, so

the theorem does give a lower bound for g.K/.

A different lower bound for the knot genus producing non-L–spaces has been found by
Jabuka [3, Theorem 1.3], but unlike our bound, it also depends on the denominator of
the slope. Note also that there exists a manifold for which the genus of knots producing
it is not bounded above [27].

More recently, Jabuka [4, Corollary 1.5] has produced a new lower bound on the genus
that does not involve the denominator of the slope. He also obtained the ranks of �HF
for the result of surgery on a knot in S3 . His genus bound appears to be quite different
from ours.

Using the genus bound of Theorem 3 and some other considerations we are able to
prove results about Seifert fibred surgery on knots in S3 . Wu (improving on the
results of Ozsváth and Szabó [20]) has proven the following (the definitions of Seifert
orientation and torsion coefficients will be provided later):

Theorem 4 [29, Theorems 1.2 and 1.3] Let K � S3 be a knot. Suppose there is a
rational number p=q > 0 such that Y D S3

p=q
.K/ is Seifert fibred.

If Y is a positively oriented Seifert fibred space, then all the torsion coefficients
ti.K/ are nonnegative and bHFK.K;g.K// is supported in even degrees. In particular,
deg�K D g.K/.

If Y is a negatively oriented Seifert fibred space and 0< p=q < 3, then for all i > 0

the torsion coefficients ti.K/ are nonpositive. If Y is a negatively oriented Seifert
fibred space, g.K/ > 1 and 2g.K/� 1> p=q , then bHFK.K;g.K// is supported in
odd degrees. In particular, deg�K D g.K/.

We are able to prove the following.

Theorem 5 Let K � S3 be a knot. Suppose there is a rational number p=q > 0 such
that Y D S3

p=q
.K/ is a negatively oriented Seifert fibred space. Then

� U g.K / �HFred.Y /D 0;

� if 0< p=q � 3, then all the torsion coefficients ti.K/ are nonpositive (includ-
ing t0.K/) and deg�K D g.K/;
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� more generally, if i �
�

1
2
.dp=qe�

p
dp=qe/

˘
, then ti is nonpositive;

� if g.K/ >
�

1
2
.dp=qe�

p
dp=qe/

˘
, then deg�K D g.K/;

� if U bjH1.Y /j=2c �HFred.Y /¤ 0 then deg�K D g.K/.

In all statements where deg�K D g.K/ we have that bHFK.K;g.K// is supported in
odd degrees.

After the proof of Theorem 3 in Section 5, we describe negatively oriented Seifert fibred
spaces Y for which the power of U needed to annihilate HFred.Y / gets arbitrarily
large compared to the order of the first homology group.

Theorem 5 combined with the result of Wu has the following straightforward corollary.

Corollary 6 Suppose Y D S3
p=q

.K/ is a Seifert fibred rational homology sphere. If
jH1.Y /j � 3, then all the torsion coefficients of K have the same sign and deg�K D

g.K/.

To prove Theorems 2 and 3 we need to study the mapping cone formula, which connects
the Heegaard Floer data of the knot with the Heegaard Floer homology of the manifolds
obtained by surgery on it. Given a knot K in S3 there is a doubly filtered complex
C D CFK1.K/ associated to it. The doubly filtered homotopy type of this complex is
a knot invariant, from which all the flavours of knot Floer homology are derived.

In fact, the mapping cone formula states that given C and a certain chain homotopy
equivalence which identifies C fi�0g with C fj �0g we can determine HFC.S3

p=q
.K//

completely for any rational p=q .

In Section 3 we explicitly describe HFC.S3
p=q

.K// as an absolutely graded vector
space in terms of homological data from CFK1.K/, with no reference to the chain
homotopy equivalence mentioned above. For a large part this has already been done
(see Ni and Zhang [12], Ni and Wu [11] and Ozsváth and Szabó [23]), but the results
are scattered across multiple papers, sometimes not in explicit form, and we consider
it useful to have them collected in one place. While all the results of this section
concerning positive surgeries have been shown before, as far as we are aware, the
results for negative and zero surgeries (contained in Sections 3.2 and 3.3, respectively)
are new.

This allows us to derive some other applications as well, a few of which we mention
here.

Theorem 7 Suppose K is a nontrivial knot and Y D S3
p=q

.K/. Then

jqj � jH1.Y /jC dim HFred.Y /:
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The existence of such a bound for the denominator seems to be known to some experts
in Heegaard Floer homology (it could be deduced from [23, Proposition 9.6]) but we
have not seen it explicitly stated. We will use this fact in the proof of Theorem 2.

A bound on the number of slopes that produce a given manifold has also been obtained
by Lackenby [6, Theorem 2.9] in quite a general but somewhat different setting (in
particular, due to homological conditions, it does not deal with surgeries in S3 ).

Theorem 8 Let K be an L–space knot and p=q�1 a rational number. Then S3
p=q

.K/

and p=q determine the Alexander polynomial of K .

We remark that the Alexander polynomial determines the knot Floer homology of an
L–space knot; see Ozsváth and Szabó [21]. Conversely, the Alexander polynomial of
an L–space knot determines the HFC of all surgeries on it. In particular, if for two
L–space knots K and K0 we have that HFC.S3

p=q
.K//Š HFC.S3

p=q
.K0// for some

p=q � 1, then we also have HFC.S3
p0=q0

.K//Š HFC.S3
p0=q0

.K0// for all other p0=q0 .

This theorem also implies that if two torus knots Tr;s , Tr 0;s0 with r; s; r 0; s0 > 0 have
the same surgery with the same slope � 1, then they are the same. Presumably, this
can also be obtained by more elementary methods. Note, however, that there do exist
positive integral slopes for which there are two distinct torus knots with the same
surgeries at these slopes; see Ni and Zhang [12, Example 1.1].

Teragaito [27] constructs a small Seifert fibred space Y and a sequence of knots
Kn�S3 such that Kn.�4/D Y .2 Moreover, the genus of the knots Kn is unbounded.
Incidentally, this shows that we cannot hope for an upper bound on knot genus for
knots giving some arbitrary manifold by surgery. In Section 7 we show that Y can only
be obtained by .�4/–surgery and we find the Alexander polynomial of the knots Kn .
It is, in fact, possible to find the Heegaard Floer homology of all manifolds obtained
by surgery on each Kn .

The organisation of this paper is as follows. In Section 2 we review some definitions,
notation and the mapping cone formula. In Section 3 we derive the expression for the
Heegaard Floer homology of surgeries on a knot. In Section 4 we prove Theorem 2,
in Section 5 we prove Theorem 3 and in Section 6 we prove Theorem 5. Finally, in
Section 7 we present some other applications of the mapping cone formula to questions
in Dehn surgery.

Acknowledgements I would like to thank Tye Lidman, Jake Rasmussen, András
Juhász, Marc Lackenby and Duncan McCoy for their very valuable suggestions and
comments on the earlier drafts of this paper (Tye Lidman, in particular, suggested that

2In fact, Teragaito constructs �Y , his knots are the mirror images of Kn and the slope he uses is 4 . It
is more convenient for us to work with this orientation.
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Theorem 2 could be proven using techniques of this paper). I am also very grateful to
Marco Marengon, Tom Hockenhull and V S Pyasetkii for many important comments on
the structure and presentation of this paper. This paper greatly benefited from a visit to
the University of Texas at Austin, and many interesting and enlightening conversations
that I had there. For this opportunity, I am very thankful to the Doris Chen Award, and
the help of my supervisor Dorothy Buck. I am particularly grateful to Dorothy for her
continued encouragement and support over the course of my PhD studies. Finally, I
would like to thank the referee for helpful comments on the drafts of this paper.

2 The mapping cone formula

In this section, we set up notation and review the rational surgery formula of Ozsváth
and Szabó [23]. We largely follow the exposition and notation of Ni and Wu in [11].

Given a knot K in S3 we can associate to it a doubly filtered complex C DCFK1.K/.
We denote generators of this complex by Œx; i; j �, where this generator has filtration
.i; j / 2 Z �Z. By [24, Lemma 4.5] the complex C is homotopy equivalent (as a
filtered complex) to a complex for which all filtration-preserving differentials are trivial.
In other words, at each filtration level we replace the group, viewed as a chain complex
with the filtration preserving differential, by its homology. From now on we work with
this reduced complex.

The complex C is invariant under the shift by the vector .�1;�1/. There is an action
of a formal variable U on C which is simply the translation by the vector .�1;�1/.
In other words, the group at the filtration level .i; j / is the same as the one at the
filtration level .i �1; j �1/ and U is the identity map from the first one to the second.
Of course, U is a chain map. In C the map U is invertible (but note that it will not be
in various subcomplexes and quotients), so C is an F ŒU;U�1�–module.

This means that as an F ŒU;U�1�–module C is generated by the elements with the
first filtration level i D 0. In the reduced complex the group at filtration level .0; j / is
denoted bHFK.K; j / and is known as the knot Floer homology of K (at Alexander
grading j ).

The complex C is absolutely Z–graded. In fact, the complex C is the complex used
to compute the (1–flavour of the) Heegaard Floer homology of S3 , and the knot
provides an additional filtration for it. By grading the Heegaard Floer homology of S3

we obtain the grading on C . The map U decreases this grading by 2.

Using the filtration on C we can define the following quotients of it:

AC
k
.K/D C fi � 0 or j � kg; k 2 Z;

BC D C fi � 0g Š CFC.S3/:
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We also define two chain maps vk ; hk W A
C

k
.K/ ! BC . The first one is just the

projection (ie it sends to zero all generators with i < 0 and acts as the identity map for
everything else). The second one is the composition of three maps: firstly we project to
C fj � kg, then we multiply by U k (this shifts everything by the vector .�k;�k/) and
finally we apply a chain homotopy equivalence that identifies C fj � 0g with C fi � 0g.
Such a chain homotopy equivalence exists because the two complexes both represent
CFC.S3/ and by general theory [17] there is a chain homotopy equivalence between
them, induced by the moves between the Heegaard diagrams. We usually do not know
the explicit form of this chain homotopy equivalence.

Genus detection, alluded to before, has the following form:

Theorem 9 (Ozsváth and Szabó [16, Theorem 1.2]) Let K � S3 be a knot.

Then g.K/Dmaxfj 2 Z j bHFK.K; j /¤ 0g.

From this (together with symmetries of C ) we can see that the maps vk (resp. hk ) are
isomorphisms if k � g (resp. k � �g ).

We define chain complexes

AC
i;p=q

.K/D
M
n2Z

.n;AC
b.iCpn/=qc

.K//; BC D
M
n2Z

.n;BC/:

The first entry in the brackets here is simply a label used to distinguish different copies
of the same group. There is a chain map DC

i;p=q
from AC

i;p=q
.K/ to BC defined by

taking sums of all maps vk ; hk with appropriate domains and requiring that the map vk

goes to the group with the same label n and hk increases the label by 1. Explicitly,
DC

i;p=q
.f.k; ak/gk2Z/D f.k; bk/gk2Z , where

bk D v
C

b.iCpk/=qc
.ak/C hC

b.iCp.k�1//=qc
.ak�1/:

Each of AC
k
.K/ and BC inherits a relative Z–grading from the one on C . Let XC

i;p=q

denote the mapping cone of DC
i;p=q

. We fix a relative Z–grading on the whole of it
by requiring that the maps vk ; hk (and so DC

i;p=q
) decrease it by 1. The following is

proven in [23].

Theorem 10 (Ozsváth and Szabó [23, Theorem 1.1]) There is a relatively graded
isomorphism of F ŒU �–modules

H�.X
C

i;p=q
/Š HFC.S3

p=q.K/; i/:
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.�3; A
C

�2
.K // .�2; A

C

�2
.K // .�2; A

C

�1
.K // .�1; A

C

�1
.K // .�1; A

C

�1
.K // .0; A

C

0
.K // .0; A

C

0
.K // .1; A

C

0
.K // .1; A

C

1
.K // .2; A

C

1
.K // .2; A

C

1
.K //

.�3; BC/ .�2; BC/ .�2; BC/ .�1; BC/ .�1; BC/ .0; BC/ .0; BC/ .1; BC/ .1; BC/ .2; BC/ .2; BC/ .3; BC/ .3; BC/ .4; BC/

v�1
h�1 v�1

h�1 v�1
h�1 v0

h0 v0
h0 v0

h0 v1
h1 v1

h1 v1
h1

Figure 1: Schematic representation of the portion of the complex whose map-
ping cone gives the Heegaard Floer homology of the surgery on a knot. This
case illustrates 2

3
–surgery; the blue (solid) and green (dashed) subcomplexes

represent two different Spinc–structures on the resulting space.

The index i in HFC.S3
p=q

.K/; i/ stands for the Spinc–structure. The numbering of
Spinc–structures we refer to is defined in [23], but we do not need precise details of
how to obtain this numbering for our purposes.

We can also determine the absolute grading on the mapping cone. The group BC is
independent of the knot. Now if we insist that the absolute grading on the mapping
cone for the unknot should coincide with the grading of HFC of the surgery on it
(ie d.L.p; q/; i/), this fixes the grading on BC . We then use this grading to fix the
grading on XC

i;p=q
for arbitrary knots; this grading then is the correct grading, ie it

coincides with the one HFC should have.

The mental picture we have of the mapping cone theorem is illustrated in Figure 1. We
have two rows of groups. The bottom row is just the row of identical groups BC . The
upper row consists of the various “hook” groups AC

k
.K/. Specifically, if the surgery

slope is p=q , in the upper row we repeat each group q times. We then have vertical
arrows pointing down for the maps vk , and the arrows for the maps hk are slanted.
More precisely, they go p groups to the right (if p is negative, this means �p to the
left). This creates jpj subcomplexes, connected by a zig-zag set of arrows. Each such
zig-zag subcomplex corresponds to a Spinc–structure on the manifold that is the result
of the surgery. To obtain the Heegaard Floer homology of this manifold we need to
take the mapping cone of this chain map.

For our purposes, it suffices to pass to the homology of the mapping cone under
consideration. Let

AC
k
.K/DH�.A

C

k
.K//; BC DH�.B

C/;

AC
i;p=q

.K/DH�.ACi;p=q.K//; BC DH�.BC/

and let vk ;hk ;D
C

i;p=q
denote the maps induced by vk ; hk ;D

C

i;p=q
, respectively, in

homology.

When we talk about AC
i;p=q

.K/ as an absolutely graded group, we mean the grading
that it inherits from the absolute grading of the mapping cone that we described above.
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Since BCŠCFC.S3/, we have BCŠT C
d

, where T C
d
ŠF ŒU�1�DF ŒU;U�1�=U F ŒU �,

d signifies the grading of 1 and multiplication by U decreases the grading by 2. We
sometimes call this module the tower. When we are not interested in the absolute
grading we omit the subscript.

Recall that the short exact sequence

0 BC XC
i;p=q

AC
i;p=q

.K/ 0
i j

induces the exact triangle

(1)

AC
i;p=q

.K/ BC

H�.X
C

i;p=q
/Š HFC.S3

p=q
.K/; i/

D
C

i;p=q

j�
i�

All maps in these sequences are U –equivariant. This triangle is the main tool in the
calculations of the next section. In particular, if the surgery slope is positive, then the
map DC

i;p=q
will be surjective, so the triangle above implies that HFC.S3

p=q
.K/; i/Š

ker DC
i;p=q

.

3 Calculations

In this section we want to use the mapping cone formula to calculate the Heegaard
Floer homology for the results of surgery on a knot in S3 . Given a rational homology
sphere Y and a Spinc–structure s, we have HFC.Y; s/ D T C

d
˚HFred.Y; s/, where

d D d.Y; s/ is called the correction term and HFred.Y; s/ is a finite-dimensional F ŒU �–
module annihilated by a big enough power of U , called the reduced Floer homology
of Y in Spinc–structure s. The sum of these groups over all Spinc–structures is called
the reduced Floer homology of Y and is denoted by HFred.Y /.

We state a weaker version of [22, Theorem 2.3].

Theorem 11 (Ozsváth and Szabó) There is an integer N such that for all m � N

and all i 2 Z=mZ there is an isomorphism of relatively graded F ŒU �–modules

AC
k
.K/Š HFC.Km; i/;

where k � i .mod m/ and jkj � 1
2
m.
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In particular, each AC
k
.K/ is an HFC of a rational homology sphere in a certain

Spinc–structure, hence by the previous paragraph we can decompose it as AC
k
.K/Š

AT
k
.K/˚Ared

k
.K/, where Ared

k
.K/ is a finite-dimensional vector space in the kernel

of some power of U and AT
k
.K/Š T C .

We will need to talk about the Euler characteristic of the groups Ared
k
.K/, so we need

to fix an absolute Z=2Z–grading for them. We do so by requiring that for the purposes
of this grading each group AT

k
.K/ lies entirely in grading 0 and then using the relative

Z=2Z–grading (induced by the parity of the relative Z–grading) on AC
k
.K/.

A rational homology sphere Y is called an L–space if HFred.Y; s/D 0 for all Spinc–
structures s. A knot K � S3 is called an L–space knot if some positive surgery on
it is an L–space. In fact, it is known that a p=q surgery on an L–space knot is an
L–space if and only if p=q � 2g.K/� 1 (here g.K/ is, as usual, the genus of K ). In
particular, all large surgeries on L–space knots are L–spaces, hence for any L–space
knot K we have Ared

k
.K/D 0 for all k .

In the same way we can decompose the complexes of the exact triangle (1):

AT
i;p=q.K/D

M
n2Z

.n;AT
b.iCpn/=qc.K//; Ared

i;p=q.K/D
M
n2Z

.n;Ared
b.iCpn/=qc.K//:

We can also decompose the map DC
i;p=q

DDT
i;p=q
˚Dred

i;p=q
, where the first map is the

restriction of DC
i;p=q

to AT
i;p=q

.K/ and the second one is the restriction to Ared
i;p=q

.K/.
Note that DC

i;p=q
DDT

i;p=q
for L–space knots.

Now the restrictions of vk and hk to AT
k
.K/ are multiplications by some powers

of U , which we denote by Vk and Hk , respectively. (This is because at large gradings
these maps are isomorphisms.) The following are some useful properties of Vk and
Hk (see [11]):
� Vk � VkC1 for any k 2 Z;
� Hk �HkC1 for any k 2 Z;
� Vk DH�k for any k 2 Z;
� Vk !C1 as k!�1;
� Hk !C1 as k!C1;
� Vk D 0 for k � g.K/;
� Hk D 0 for k � �g.K/.

In other words, the Vk form a nonincreasing unbounded sequence of nonnegative
numbers which become zero at g.K/, and Hk D V�k .

We now separate into three different cases. Firstly, we cover the case of positive surgery
slope. Secondly, we treat negative surgeries. The third case is the zero surgery.
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3.1 Positive surgeries

The next lemma is used to establish that DT
i;p=q

is surjective when p=q > 0. We state
it in a slightly more general form because in this form it also applies to other manifolds.

Lemma 12 Let X D Y D
L

i2Z.i; T C/, X 0 D
L

i¤0.i; T C/ and let the maps

˛i W .i; T C/! .i; T C/; ˇi W .i; T C/! .i C 1; T C/

be multiplications by U ai and U bi , respectively. Suppose further that

� there is a number N such that ai D 0 for i �N and bi D 0 for i � �N , and

� ai!C1 as i !�1 and bi!C1 as i !C1.

Define D to be the sum of the maps ˛i and ˇi . Then the restriction of D to X 0 is
surjective.

The setting here is very similar to the one described by Figure 1, only we choose one
of the zig-zag complexes and all the groups in both the top and the bottom row are the
towers; see Figure 2.

Proof This is essentially what Ni and Wu prove in [11, Lemma 2.8]. We will show
that, for any n� 0 and i � 0, .i;U�n/ is in the image of the restriction of D to X 0 .
The conclusion will then follow by symmetry and linearity.

We clearly have .i;U�n/ D ˇi�1.i � 1;U�n�bi�1/. Define � D f.i; �i/gi2Z 2 X 0

recursively by

�s D

8<:
0 if s � i ;

U�n�bi�1 if s D i � 1;

.�1/s�iC1U asC1�bs � �sC1 otherwise:

In a way, after we set that �s D 0 for s � i , this is the only possible definition (up
to the kernel of D ). This is because the arrow “slanted to the right” has to be used
to cancel the rightmost element in the lower row, hence we know what element in its
codomain we have to choose so that it indeed cancels. This tells us what the image of
the “vertical” arrow is and hence what the next “slanted” arrow has to cancel, etc.

Since we have asC1� bs!C1 as s!�1, � only has a finite number of nonzero
coordinates and hence is a well-defined element of X 0 . It is also easy to see that
D.�/D .i;U�n/.

Algebraic & Geometric Topology, Volume 17 (2017)



1928 Fyodor Gainullin

.�2;T C/ .�1;T C/ .0;T C/ .1;T C/ .2;T C/

.�2;T C/ .�1;T C/ .0;T C/ .1;T C/ .2;T C/ .3;T C/

�U b�2 �U a�1 �U b�1 �U a0 �U b0 �U a1 �U b1 �U a2

Figure 2: Maps and groups of Lemmas 12 and 13

Let �d .N / be a submodule of T C
d

generated by fU�ng0�n�N�1 . As before, we omit
the subscript in the absence of the absolute grading.

The setting of the next lemma is less general; indeed, we use more information about
the numbers Vk and Hk .

Lemma 13 To the assumptions of Lemma 12 add the following:

� .ai/ is a nonincreasing sequence;
� .bi/ is a nondecreasing sequence;
� ai � bi for i � 0;
� ai � bi for i < 0.

Put absolute gradings on X and Y by the rule that the maps ˛i and ˇi decrease it by 1,
the multiplication by U decreases it by 2 and 1 2 .0; T C/ � Y has grading d � 1,
where d is some rational number.

Then if a0 � b�1 we have

ker D Š T C
d�2a0

˚

M
n�1

�d�n .b�n/˚
M
n�1

�
d
C
n
.an/:

Otherwise
ker D Š T C

d�2b�1
˚

M
n�2

�d�n .b�n/˚
M
n�0

�
d
C
n
.an/:

The isomorphisms are as absolutely graded F ŒU �–modules. The numbers d˙n are
defined by

d˙0 D d � 2 maxfa0; b�1g;

d�nC1 D d�n C 2.a�n� b�.nC1//;

dC
nC1
D dCn C 2.bn� anC1/:

Proof The two cases are completely analogous, so we will assume a0 � b�1 . First,
following [11, proof of Proposition 1.6] we define �T W T C

d�2a0
! ker D as follows. If

we write �T .�/D f.s; �s/gs2Z , we set �0 D � and determine the other components by

�s D

�
�U bs�1�as�s�1 if s > 0;

�U asC1�bs�sC1 if s < 0:
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In effect, we want to simply send the tower to the tower in the 0-component of the
upper group. But it is not in the kernel of D , so we need to correct for that. In fact,
we also want the map to be an F ŒU �–module homomorphism, which is the reason for
considering the cases a0 � b�1 and a0 < b�1 separately.

Notice that we always multiply by a nonnegative power of U : if s > 0, then bs�1 �

as�1�as ; if sD�1, this is the assumption a0�b�1 ; if s<�1, then asC1�bsC1�bs .
Thus the map is indeed an F ŒU �–module homomorphism.

As before, �s D 0 if jsj is very big, so the map is well-defined. The map �T is
one-to-one because its 0-component is (ie �0 D �). It is also graded correctly (ie the
map �T sends homogeneous elements of absolute grading d to homogeneous elements
of grading d ) because .0;U�a0/ 2X is sent to .0; 1/ 2 Y by ˛0 , which has grading
d �1. Thus .0; 1/ 2X has grading d �2a0 , since to descend from .0;U�a0/ 2X to
.0; 1/ 2X we need to multiply by U a0 and multiplication by U has grading �2.

We have identified the tower in the kernel. Now we need to deal with the rest of it.
Below we prove that the rest of the kernel consist of the kernels of the maps ˛i Cˇi

for each i , except the one at which the tower is situated (ie i D 0). It is easy to see
that the kernel of ˛i Cˇi is isomorphic to �.min.ai ; bi//.

If � D f.s; �s/gs2Z 2 ker D , by subtracting elements in the image of �T we may
assume that � 2X 0 , ie �0 D 0. Without loss of generality, there exists s < 0 such that
�s ¤ 0. To finish the proof we need to show that U bs � �s D 0 (recall that in this range
bs � as ). Suppose this is not so and 0¤ U bs � �s . Since � is in the kernel, it has to be
cancelled by something. It follows that we must have ˇs.�s/C˛sC1.�sC1/D 0. Thus
0¤U bs ��s D�U asC1�sC1 implies that 0¤U bsC1�sC1 , as asC1 � bsC1 if s <�1.
By proceeding in this way it follows that �0 ¤ 0, ie � 62X 0 , a contradiction.

The two lemmas above can be readily translated into results about surgery. The d–
invariant formula (2) from the corollary below is [11, Proposition 1.6].

Corollary 14 If p=q > 0 the map DT
i;p=q

is surjective. It follows that so is DC
i;p=q

,
and we conclude that HFC.S3

p=q
.K/; i/Š ker DC

i;p=q
.

If bi=qc � �b.i �p/=qc, then

ker DT
i;p=q Š T C

d
˚

M
n�1

�d�n .Hb.i�np/=qc/˚
M
n�1

�
d
C
n
.Vb.iCnp/=qc/:

Otherwise

ker DT
i;p=q Š T C

d
˚

M
n�2

�d�n .Hb.i�np/=qc/˚
M
n�0

�
d
C
n
.Vb.iCnp/=qc/:
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Here

(2) d D d.S3
p=q.K/; i/D d.L.p; q/; i/� 2 maxfVbi=qc;Hb.i�p/=qcg;

and

d�n D d C 2

n�1X
kD0

.Vb.i�kp/=qc�Hb.i�.kC1/p/=qc/;

dCn D d C 2

n�1X
kD0

.Hb.iCkp/=qc�Vb.iC.kC1/p/=qc/:

Proof This is a straightforward application of Theorem 10 and Lemmas 12 and 13 after
renumbering of the groups and maps; objects numbered with b.i C np/=qc correspond
to the ones numbered with n in Lemmas 12 and 13.

To fix the grading, note that the grading of BC does not depend on the knot, but only on
the surgery slope. Thus to grade it we can take the unknot U . For the unknot we have
Vi D 0 for i � 0 and Vi D i for i < 0. Hence 0DVbi=qc �Hb.i�p/=qcD 0, and by the
same argument as we used for an arbitrary knot, the grading of 1 in .0;AC

bi=qc
.U // is

the d–invariant of the surgery, which we know to be d.L.p; q/; i/ in this case. Since
Vbi=qc D 0, we find that the grading of 1 in .0;BC/ is d.L.p; q/; i/� 1. This allows
us to fix the d–invariants for all other knots.

We can fix d˙n by the fact that the maps vk and hk reduce it by 1 and the multiplication
by U reduces it by 2.

As we noted before, for L–space knots, DC
i;p=q

D DT
i;p=q

. Let K be a knot and
�K .T / D a0 C

P
i ai.T

i C T �i/ be its symmetrised Alexander polynomial, with
normalisation convention �K .1/D 1. Define its torsion coefficients ti.K/ for i � 0

by
ti.K/D

X
j�1

jaiCj :

Clearly, if we know all the torsion coefficients, we know the Alexander polynomial. For
L–space knots, Vk D tk for k � 0 (this follows, for example, from [23, Theorem 1.2]),
so Corollary 14 determines the Heegaard Floer homology of positive surgeries on an
L–space knot in terms of its Alexander polynomial.

The next proposition expresses the Heegaard Floer homology of positive surgeries
for arbitrary knots in terms of data from CFK1 . This proposition is essentially [12,
Proposition 3.5].
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Proposition 15 As absolutely graded vector spaces,

ker DC
i;p=q

Š ker DT
i;p=q˚Ared

i;p=q.K/:

Moreover, ker DT
i;p=q

is actually a submodule of ker DC
i;p=q

.

Proof This is a straightforward exercise in linear algebra.

Given vector spaces U;V;W and linear maps �U W U !W and �V W V !W such
that �U is surjective, ker.�U ˚ �V /Š ker �U ˚V .

There exists a map ��
U
W W ! V such that �U ı�

�
U
D idW . In the graded situation we

can make ��
U

send homogeneous elements to homogeneous elements. Then we can
define T W ker �U ˚V ! ker.�U ˚�V / by T .x˚y/D .x���

U
ı�V .y//˚y . Since

in our case �U ˚ �V is graded, T is an isomorphism of graded vector spaces.

Let
As.K/D

M
k2Z

Ared
k .K/:

This is a finite-dimensional vector space, as each Ared
k
.K/ is and Ared

k
.K/ D 0 for

jkj � g.K/. We define ı.K/D dim As.K/. Note that ı.K/D 0 if and only if K is
an L–space knot. The following proposition generalises [11, Proposition 5.3]:

Proposition 16 [12, Corollary 3.6] Let K � S3 be a knot and p=q > 0. Then

(3) dim HFred.S
3
p=q.K//D qı.K/CqV0C2q

g�1X
iD1

Vi�

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/:

Proof Since

dim HFred.S
3
p=q.K//D

p�1X
iD0

dim HFred.S
3
p=q.K/; i/;

combining Proposition 15 and Corollary 14 we see that

dim HFred.S
3
p=q.K//

D

X
i2Z

dim Ared
bi=qc.K/C

X
i�0

Vbi=qcC
X
i�1

Hb�i=qc�

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

D q
X
k2Z

dim Ared
k .K/C q

g�1X
iD0

Vi C q

�1X
iD�.g�1/

Hi �

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

D qı.K/C qV0C 2q

g�1X
iD1

Vi �

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/:

Algebraic & Geometric Topology, Volume 17 (2017)



1932 Fyodor Gainullin

Now we are ready to prove Theorem 7.

Theorem 7 Suppose K is a nontrivial knot and Y D S3
p=q

.K/. Then

jqj � jH1.Y /jC dim HFred.Y /:

Proof This is an easy consequence of Ni and Zhang’s formula of Proposition 16 (by
taking the mirror image we may assume p=q > 0). We have

dim HFred.S
3
p=q.K//C

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

D qı.K/C qV0C 2q

g�1X
iD1

Vi � q.ı.K/CV0/:

Recall that ı.K/D dim As.K/, so it is nonnegative and ı.K/D 0 if and only if K

is an L–space knot, in which case Vk D 0 if and only if k � g.K/, so for nontrivial
L–space knots V0 ¤ 0. If V0 D 0 then all V ’s (and H ’s) are zero and as ı.K/¤ 0

by the previous sentence, we clearly get q � dim HFred.S
3
p=q

.K//.

So suppose V0 ¤ 0. Then

dim HFred.S
3
p=q.K//CpV0 � dim HFred.S

3
p=q.K//C

p�1X
iD0

max.Vbi=qc;Hb.i�p/=qc/

� q.ı.K/CV0/:

Finally, we have

q �
dim HFred.S

3
p=q

.K//CpV0

ı.K/CV0

D
dim HFred.S

3
p=q

.K//

ı.K/CV0

C
pV0

ı.K/CV0

� dim HFred.S
3
p=q.K//Cp:

3.2 Negative surgeries

In the case when p=q < 0 the map DC
i;p=q

is no longer surjective. However, we can
show that the cokernel consists of exactly the tower part and the kernel is the reduced
Floer homology HFred.S

3
p=q

.K/; i/. We start with a general lemma, which is similar
to Lemmas 12 and 13. The main difference is in that the ˇi maps go to the groups
labelled with a smaller index.
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Lemma 17 Let X D Y D
L

i2Z.i; T C/ and let the maps

˛i W .i; T C/! .i; T C/; ˇi W .i; T C/! .i � 1; T C/

be multiplications by U ai and U bi, respectively. Suppose further that ai and bi have
the following properties:

� There is a number N such that ai D 0 for i �N and bi D 0 for i � �N ;

� ai!C1 as i !�1 and bi!C1 as i !C1;

� ai � bi for i < 0 and ai � bi for i � 0.

Then no element of .�1; T C/� Y is in the image of D and .�1; T C/� Y generates
the cokernel of D . The kernel of D has the form

ker D Š
M
i2Z

�.min.ai ; bi//:

Proof As all of the maps ˛i , ˇi are surjective, it is easy to see that the cokernel
of D is generated by the (equivalence classes of) elements in any one of .i; T C/� Y .
Suppose �D f.s; �s/gs2Z DD.�/ with �s D 0 for s ¤�1. Let � D f.s; �s/gs2Z .

Without loss of generality (by symmetry) we may assume that ˛�1.��1/¤ 0. Since
a�1 � b�1 it follows that ˇ�1.��1/¤ 0. Since ��2D 0D ˇ�1.��1/C˛�2.��2/, we
have ˛�2.��2/ ¤ 0, and hence ��2 ¤ 0. Continuing in the same way we conclude
that � is not supported on a finite set and hence no such � can exist.

Similarly to the proof of Lemma 13, we want to show that the kernel of D separates
into the kernels of maps ˛i Cˇi . This will finish the proof.

Now let � D f.s; �s/gs2Z 2 ker D . As before, without loss of generality we assume
there is n < 0 such that ˇn.�n/ ¤ 0. Then ˛n�1.�n�1/ ¤ 0, so ˇn�1.�n�1/ ¤ 0.
Proceeding inductively we again reach a contradiction to � being finitely supported.

The previous lemma describes the action of DT
i;p=q

when p=q < 0. We make this
explicit in the next lemma.

Lemma 18 Let p < 0, q > 0. Then

coker DT
i;p=q Š T C

d
;

where d D d.L.p; q/; i/, and

ker DT
i;p=q Š

M
n�1

�d�n .Hb.i�np/=qc/
M
n�0

�
d
C
n
.Vb.iCnp/=qc/:
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Here
dC

0
D d C 1� 2Hbi=qc;

d�n D dC
0
C 2

n�1X
kD0

.Vb.i�kp/=qc�Hb.i�.kC1/p/=qc/;

dCn D dC
0
C 2

n�1X
kD0

.Hb.iCkp/=qc�Vb.iC.kC1/p/=qc/:

Proof This is a straightforward application of Lemma 17. Objects that are labelled
with b.i C np/=qc in the mapping cone correspond to the ones labelled with �n in
Lemma 17. In particular, take an D Vb.i�np/=qc and bn DHb.i�np/=qc . The grading
comes from the fact that this works in the same way for the unknot (the towers in the cok-
ernel coincide for all knots). Just as in Corollary 14, we get the values of d˙n by the fact
that the maps vk , hk have grading �1 and the multiplication by U has grading �2.

Just as Corollary 14 is sufficient for positive surgeries on L–space knots, so is Lemma 18
for negative surgeries on L–space knots. We observe that in this case the Alexander
polynomial also determines the Heegaard Floer homology of the surgeries. Lemma 18
also implies that negative p=q surgeries on L–space knots have the same d–invariants
as the lens spaces L.p; q/, so do not depend on the particular L–space knot. The next
proposition extends our analysis to arbitrary knots.

Proposition 19 Let p < 0, q > 0. As absolutely graded F ŒU �–modules, we have

coker DC
i;p=q

Š T C
d
:

As absolutely graded vector spaces, we have

HFred.S
3
p=q.K/; i/Š ker DC

i;p=q
Š ker DT

i;p=q˚A;

where Ared
i;p=q

.K/ŠA˚�ı.Ni;p=q/, ıDd.L.p; q/; i/C1, and Ni;p=q is characterised
by

d D d.S3
p=q.K/; i/D d.L.p; q/; i/C 2Ni;p=q:

In fact, Ni;p=q D maxf xVbi=qc; xHb.iCp/=qcg, where xVk , xHk are for the mirror image
of K the same as Vk , Hk are for K .

Proof Recall that no element in .�1;BC/ is in the image of the map DT
i;p=q

. Since
Ared

i;p=q
.K/ lies in the kernel of the multiplication by a big enough power of U , so does

its image under DC
i;p=q

. Hence DC
i;p=q

only “chops off” a finite piece of the tower.
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More precisely, let N be the largest integer such that U�NC1 2 .�1;BC/ appears as
a term of some element � in the image of DC

i;p=q
.

We claim that then U�NCk is also in the image for all k � 1. This is easily seen by
an inductive argument: 1 is in the image, as 1D U N�1�; U�1 is, because 1 is and
U N�2� is. Proceeding in the same way, we establish the claim.

Thus the cokernel of DC
i;p=q

is generated by U�N�k for k � 0, none of which are
in its image. Thus the map i� from the exact triangle (1) injects hfU�N�kgk�0iF

into HFC.S3
p=q

.K/; i/. Since U�NC1 2 .�1;BC/ is in the image of DC
i;p=q

, it is
in the kernel of i� and we have U � i�.U

�N /D 0. Hence the image of i� is exactly
the tower T C

d
with d D d.S3

p=q
.K/; i/. By Lemma 18, 1 2 .�1;BC/ has grading

d.L.p; q/; i/, so d.S3
p=q

.K/; i/D d.L.p; q/; i/C 2N .

By the first isomorphism theorem and exactness of (1), we have

ker DC
i;p=q

D im j� Š HFC.S3
p=q.K/; i/= ker j� D HFC.S3

p=q.K/; i/= im i�:

Since im i� is the tower, we have

ker DC
i;p=q

Š HFC.S3
p=q.K/; i/= im i� Š HFred.S

3
p=q.K/; i/:

The rest is just linear algebra again. We can split Ared
i;p=q

.K/ into the part that goes
isomorphically to the base of the tower, which is not in the image of DT

i;p=q
(ie

.�1;BC/ \ im DC
i;p=q

) and the part that goes into the image of DT
i;p=q

. We then
proceed as in the proof of Proposition 15.

The fact that Ni;p=q Dmaxf xVbi=qc; xHb.i�p/=qcg follows from taking the mirror image
of K and comparing with the formula already obtained for the correction terms from
Corollary 14. We have

2Ni;p=q D d.S3
p=q.K/; i/� d.L.p; q/; i/

D�d.S3
�p=q.m.K//; i/C d.L.�p; q/; i/

Dmaxf xVbi=qc; xHb.iCp/=qcg;

where m.K/ is the mirror image of K .

We can also express the total rank of HFred.S
3
p=q

.K/; i/ as follows.

Proposition 20 We have

dim HFred.S
3
p=q.K//D qı.K/C qV0C 2q

g�1X
iD1

Vi �

p�1X
iD0

Ni;p=q:

Proof The proof is virtually the same as for Proposition 16.
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3.3 Zero surgeries

We now treat the case of zero surgeries. For the case of L–space knots the formula for
the Heegaard Floer homology of the zero surgery was derived in [14, Theorem 7.2].
The main tool we use is due to Ozsváth and Szabó:

Theorem 21 [19, Theorem 9.19] There is a U –equivariant exact triangle

(4)

HFC.S3/
L

j�i .mod m/

HFC.S3
0
.K/; j /

HFC.S3
m.K/; i/

F
C

Ii

F
C

mIi

F
C

0Ii

Moreover, the map FCmIi is equal to the one induced by the surgery cobordism.

Given i , we can make m in (4) so big thatM
j�i .mod m/

HFC.S3
0 .K/; j /D HFC.S3

0 .K/; i/:

From now on we assume that m is at least that large.

The group AC
0
.K/ŠAT

0
.K/˚Ared

0
.K/ is relatively Z–graded. If we fix an absolute

Q–grading for any element of AC
0
.K/, the relative grading will fix the absolute grading

for all the elements. In particular, it will absolutely grade Ared
0
.K/.

In the statement of the next proposition (but not necessarily in the proof), we use
the grading of Ared

0
.K/ induced by grading the tower AT

0
.K/ in such a way that the

grading of 1 is 1
2
� 2V0 .

Proposition 22 Let k ¤ 0. Then, as Z=2Z–graded vector spaces, we have

(5) HFC.S3
0 .K/; k/Š �.Vjkj/˚Ared

k .K/:

As absolutely Q–graded vector spaces, we have

(6) HFC.S3
0 .K/; 0/Š T C

�1=2C2 xV0

˚ T C
1=2�2V0

˚A:

Here A˚ �1=2. xV0/ŠAred
0
.K/ as absolutely graded vector spaces, where the absolute

grading of Ared
0
.K/ is as described above.

Proof The first part is immediate from [14, proof of Theorem 7.2]. Note that
HFC.S3

m.K/; k/Š T ˚Ared
k
.K/ (recall that we are assuming that m is large). In the
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proof of [14, Theorem 7.2] Ozsváth and Szabó show that the restriction of FCmIi to the
tower part is surjective and its kernel is F ŒU�1�=U�Vjkj . So we are done by the same
elementary linear algebra as in the proof of Proposition 15.

For the second part, note that we can assign absolute gradings, as we are dealing with a
torsion Spinc–structure. As shown in [19, Theorem 10.4], HF1.S3

0
.K/; 0/ is a direct

sum of two copies of ZŒU;U�1� that lie in different relative Z=2Z–gradings. This is
equivalent to saying that the difference of the absolute gradings between the elements
from the different summands is always odd. As in the case of rational homology
spheres, the exact sequence

� � � ! HF�.Y; s/! HF1.Y; s/! HFC.Y; s/! � � �

establishes that
HFC.S3

0 .K/; 0/Š Td1
˚ Td2

˚A;

where ADHFred.S
3
0
.K/; 0/ is a finitely generated F ŒU �–module in the kernel of some

large enough power of U .

In fact, combining [14, Proposition 4.12] with the d–invariant formula of Ni and Wu
stated in Corollary 14, we obtain d1 D�

1
2
C 2 xV0 and d2 D

1
2
� 2V0 .

The last step in the proof is determining A. The maps FC
I0

and FC
0I0

from the exact
triangle (4) have gradings �1

2
and 1

4
.m� 3/, respectively, by [14, Lemma 7.11]. The

map FC
mI0

is not graded but is a sum of graded maps, and the set of grading shifts of
these maps is

˚
1
4
.1�m.2k � 1/2/

	
k2Z .

Since HFC.S3/Š T C
0

and the grading of the map FC
I0

is �1
2

, T C
1=2�2V0

is not in the
image of FC

I0
, hence the map FC

0I0
is an isomorphism between T C

1=2�2V0
and the tower

part of HFC.S3
m.K/; 0/, which is equal to T C

.m�1/=4�2V0
by Proposition 15. Hence

the restriction of the map FC
mI0

to the tower part of HFC.S3
m.K/; 0/ is zero. As in the

proof of Proposition 19, the restriction of FC
mI0

to HFred.S
3
m.K/; 0/ maps a subgroup

of the form �.N / isomorphically to the base of the tower HFC.S3/Š T C
0

. By the
grading considerations again we see that N D xV0 .

Recall from Proposition 15 that HFC.S3
m.K/; 0/ Š T C

.m�1/=4�2V0
˚ Ared

0
.K/ (the

grading here is such that the relative grading is as it should be). Let the maximal
grading of a nontrivial element in Ared

0
.K/ be 1

4
.m� 1/� 2V0CC .

Consider one homogeneous summand of FC
mI0

with grading 1
4
.1�m.2k � 1/2/. It

maps the element of Ared
0
.K/ of maximal grading to an element with grading

1
4
.m� 1/� 2V0CC C 1

4
.1�m.2k � 1/2/D 1

4

�
m.1� .2k � 1/2/� 8V0C 4C

�
:
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If k ¤ 0; 1 we have 1� .2k � 1/2 < 0 and so by making m sufficiently large we can
make sure that 1

4
.m.1� .2k � 1/2/� 8V0C 4C / < 0, and, as all nontrivial elements

in the image have grading � 0, this means that all components with k ¤ 0; 1 are zero.

Thus we can assume that the map FC
mI0

has grading 1
4
.1�m/. As discussed above the

map FC
mI0

maps a subgroup of Ared
0
.K/ of the form �. xV0/ isomorphically to such a

subgroup at the lower end of the tower HFC.S3/Š T C
0

. Therefore 1 in �. xV0/ must
have grading 1

4
.m� 1/.

The rest of Ared
0
.K/ will be in the kernel of FC

mI0
and thus in the image of A by FC

0I0
.

Now noting that the grading of the map FC
0I0

is 1
4
.m� 3/ finishes the proof.

Torsion coefficients of the Alexander polynomial of a knot describe the Euler charac-
teristics of the groups Ared

k
.K/, which we can see for example by combining Theo-

rems 10.14 and 10.17 of [19] (though a more direct proof is also possible). This has
also been shown in [12, Lemma 3.2].

Lemma 23 For k � 0 we have

(7) tk.K/D Vk C�.A
red
k .K//:

Recall that the absolute Z=2Z grading used to calculate the Euler characteristics here
is fixed by the requirement that the tower AT

k
.K/ lies entirely in grading 0.

4 Proof of Theorem 2

In this section we prove:

Theorem 2 Let Y be a 3–manifold. There are at most finitely many alternating knots
K � S3 such that Y D S3

p=q
.K/.

The strategy of our proof is as follows. We first want to restrict the possible Alexander
polynomials of knots that yield a given 3–manifold Y by surgery. We then want to
show that, out of this restricted set, only finitely many can be Alexander polynomials
of alternating knots. This will finish the proof, due to the next proposition, which was
proved by Moore and Starkston. We provide the proof for the reader’s convenience
(and since it is nice and short).

Proposition 24 [9, Proposition 5.1] There is only a finite number of alternating knots
with a given Alexander polynomial.
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Proof By the Bankwitz theorem [1, Theorem 5.5] the determinant det.K/ of an
alternating knot K is greater than or equal to the minimal crossing number of K . Thus
there are only finitely many alternating knots with a given determinant. The classical
result [26, page 213] (or definition) det.K/D j�K .�1/j finishes the proof.

For a knot K � S3 , let m.K/ be its mirror image. Clearly, K is alternating if and
only if m.K/ is. Since S3

p=q
.K/D�S3

�p=q
.m.K// we can assume that the surgery

slope is positive (if nonzero).

For Y a rational homology sphere and q > 0 a natural number, define

M.Y; q/D
1

2

� X
0�i�p�1

d.L.p; q/; i/�
X

s2Spinc.Y /

d.Y; s/

�
;

where p D jH1.Y /j.

Theorem 7 shows that for any rational homology sphere Y there is some number n.Y /

such that Y ¤ S3
p=q

.K/ for any K and jqj> n.Y /.

If Y is obtained by p=q > 0 surgery on K , then by (2) the numbers Vk for K satisfy

M.Y; q/D

p�1X
iD0

maxfVbi=qc;V�b.i�p/=qcg:

Combining this with Proposition 16 we get

dim HFred.S
3
p=q.K//CM.S3

p=q.K/; q/D q

�
ı.K/CV0C 2

X
i�1

Vi

�
:

This formula implies the inequality

dim HFred.S
3
p=q

.K//CM.S3
p=q

.K/; q/

q
�

X
k�0

.Vk C dim AC
k
.K//:

Now let

c.Y /D max
1�q�n.Y /

�
dim HFred.Y /CM.Y; q/

q

�
:

The inequality above implies that if a rational homology sphere Y is obtained by
surgery on a knot K with associated sequence fVkgk�0 , then

(8) c.Y /�
X
k�0

.Vk C dim AC
k
.K//:
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Lemma 25 Suppose Y is a rational homology sphere obtained by a p=q > 0 surgery
on a knot K � S3 . Then

(9)
X
i�0

jti.K/j � c.Y /:

Proof It follows from Lemma 23 that for each k � 0 we have

jtk.K/j D jVk C�.A
C

k
.K//j � Vk Cj�.A

C

k
.K//j � Vk C dim AC

k
.K/:

Combining with (8) yields the result.

Let SY be some set of knots in S3 that give a rational homology sphere Y by surgery
(not necessarily all such knots and not necessarily alternating). Denote by g.SY / and
�.SY / the sets of genera and of Alexander polynomials, respectively, of knots in SY .

Lemma 26 If g.SY / is finite, then so is �.SY /.

Proof We clearly have ti.K/ D 0 for all K 2 SY and all i � max.g.SY //. By
Lemma 25,

P
i�0 jti.K/j is bounded above, so we clearly have finitely many sequences

fti.K/g for K 2SY . Now observe that the torsion coefficients determine the Alexander
polynomial, so this results in at most finitely many possible Alexander polynomials.

A theorem of Murasugi is crucial for our proof:

Theorem 27 [10, Theorem 1.1] Let K � S3 be an alternating knot and

�K .T /D a0C

g.K /X
iD1

ai.T
i
CT �i/

be its Alexander polynomial. Then ai ¤ 0 for 0� i � g.K/.

The next lemma is the last step before we can prove Theorem 2.

Lemma 28 Let K�S3 be an alternating knot that gives a rational homology sphere Y

by surgery. Then
g.K/� 3c.Y /:

Proof Suppose g.K/ � 3c.Y /C 1. Note that ag D tg�1.K/ ¤ 0. We claim that
there are three consecutive indices i , i C 1 and i C 2 � g with ti.K/D tiC1.K/D

tiC2.K/D 0. It then follows that aiC1 D 0, which is a contradiction to Theorem 27.
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To prove the claim, suppose there is no such consecutive triple of zero torsion coeffi-
cients. ThenX
i�0

jti.K/jD
X
k�0

.jt3k.K/jCjt3kC1.K/jCjt3kC2.K/j/�
�

1
3
.g� 1/

˘
C1� c.Y /C1;

which contradicts Lemma 25.

We have thus established that g � 3c.Y /.

Proof of Theorem 2 Suppose Y is a rational homology sphere. Then by Lemma 28
there is a genus bound for alternating knots that give Y by surgery, so by Lemma 26
the set of Alexander polynomials of such alternating knots is finite.

If Y is obtained by 0–surgery on K , then Propositions 10.14 and 10.17 of [19] show
that the Alexander polynomial of K can be deduced directly from the Heegaard Floer
homology of Y .

Proposition 24 now finishes the proof.

5 The genus bound

We now turn to the proof of Theorem 3, which we restate here.

Theorem 3 For any knot K � S3 and any p=q 2Q we have

U g.K /Cdg4.K /=2e �HFred.S
3
p=q.K//D 0:

Lemma 29 Let K be a knot in S3 with genus g . Then for any k 2 Z we have

U g
�Ared

k .K/D 0:

Proof By the conjugation symmetry we may assume that k � 0. Let C DCFK1.K/,
�k DC fi < 0 and j � kg. This is a subquotient of C (ie a subcomplex of a quotient).
Note that U g ��k D 0, as this is the maximal possible “height” of this complex. We
illustrate the complexes �k ;A

C

k
.K/;BC in Figure 3.

We have an exact sequence

0!�k !AC
k
.K/! BC! 0

which leads to an exact U –equivariant triangle

(10)
H�.�k/ AC

k
.K/

BC

i�

vk
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Since vk is surjective, we in fact have a short exact sequence

0!H�.�k/!AC
k
.K/!BC! 0;

so H�.�k/Š ker vk and hence U g � ker vk D 0.

Recall that
AC

k
.K/DAT

k .K/˚Ared
k .K/;

and similarly we can decompose the map vkDvT
k
˚vred

k
into components. The map vT

k

is surjective. We claim that Ared
k
.K/Š ker vk= ker vT

k
. From this the conclusion of

the lemma follows immediately.

To prove the claim we construct an isomorphism from ker vk= ker vT
k

to Ared
k
.K/. Let

x 2 ker vk n ker vT
k

. Then send an equivalence class of x to Ared
k
.K/ by projection.

This map is well defined, because two different elements with the same projection are
in ker vT

k
. Clearly this is also a surjective F ŒU �–module homomorphism.

AC
k
.K/

�k

BC

Figure 3: Complexes �k , AC
k
.K/ and BC inside CFK1

The previous lemma clearly implies:

Corollary 30 The following relation holds:

U g
�Ared

i;p=q.K/D 0:

Proof of Theorem 3 Note that by [25, Theorem 2.3] we have V0 �
˙

1
2
g4.K/

�
.

If the slope is negative the reduced part is exactly equal to the kernel of DC
i;p=q

. So
suppose x 2 ker DC

i;p=q
. By Corollary 30, U g �x 2 ker DT

i;p=q
. But by Lemma 18 the
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kernel of DT
i;p=q

consist of the summands of the type �.N / with N �V0�
˙

1
2
g4.K/

�
,

so
U dg4.K /=2e � ker DT

i;p=q D 0:

Now suppose the slope is positive. If we assume that x 2 ker DC
i;p=q

then we still
have U g � x 2 ker DT

i;p=q
, and U dg4.K /=2e � ker DT

i;p=q
is contained in the tower part

by Corollary 14.

Similarly, the case of zero surgery follows immediately from Proposition 22. This
finishes the proof.

Since by Corollary 14 and Lemma 18 the reduced Floer homology of surgeries on
L–space knots consists only of a direct sum of F ŒU �–modules of the form �.Vk/, we
see that if K is an L–space knot, then U dg4.K /=2e �HFred.S

3
p=q

.K//D 0.

In order to construct examples for which this genus bound gets arbitrarily large, note
that every negative surgery on a knot contains a summand of the form �.V0/. So if V0

is large, the genus bound will also be large, independent of the absolute value of the neg-
ative slope we use. In particular, we can choose any order of the first homology we like.

For L–space knots, V0 D t0 can be read from the Alexander polynomial; in particular,
this is true for torus knots Tp;q with p; q > 0.

Suppose we have an L–space knot K with Alexander polynomial

�K .T /D a0C

gX
iD1

ai.T
i
CT �i/:

Then the coefficients alternate between 1 and �1, with the first nontrivial coefficient
being 1 [21, Theorem 1.2]. So we clearly have

t0 � #fai D 1; i > 0g � 1
4
.#fai ¤ 0g� 1/� 1

4
.�K .�1/� 1/:

Consider the torus knots Tp;2 for p positive odd. They have Alexander polynomials
of the form

.T 2p � 1/.T � 1/

.T p
� 1/.T 2

� 1/
D T p�1

�T p�2
C � � �C 1;

which evaluates to p at �1.

Moreover, these examples are actually negatively oriented (see next section) small
Seifert fibred spaces, which is interesting in light of the next section.

We note that a result similar to Theorem 3 can be obtained for a knot in any L-space
rational homology sphere, the bound being in terms of the width of the knot Floer
homology rather than the genus.
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6 Seifert fibred surgery

The aim of this section is to prove:

Theorem 5 Let K � S3 be a knot. Suppose there is a rational number p=q > 0 such
that Y D S3

p=q
.K/ is a negatively oriented Seifert fibred space. Then

� U g.K / �HFred.Y /D 0;
� if 0< p=q � 3, then all the torsion coefficients ti.K/ are nonpositive (includ-

ing t0.K/) and deg�K D g.K/;
� more generally, if i �

�
1
2
.dp=qe�

p
dp=qe/

˘
, then ti is nonpositive;

� if g.K/ >
�

1
2
.dp=qe�

p
dp=qe/

˘
, then deg�K D g.K/;

� if U bjH1.Y /j=2c �HFred.Y /¤ 0, then deg�K D g.K/.

In all statements where deg�K D g.K/ we have that bHFK.K;g.K// is supported in
odd degrees.

Proof First we need to define the Seifert orientation for Seifert fibred spaces. Following
[20] we say that Y has positive Seifert orientation if �Y bounds W .�/, where � is a
weighted tree which has either negative definite or negative semidefinite intersection
form. For the construction of the 4–manifold W .�/ from the weighted tree � , see [15].
We say that Y has negative Seifert orientation if �Y has positive Seifert orientation.

Using [15, Corollary 1.4] (together with the inversion of the absolute Z=2Z–grading
on the reduced homology upon reversing the orientation) we can see that if Y has a
negative Seifert orientation, then its reduced Floer homology is concentrated in the odd
Z=2Z–grading and that it bounds a negative definite 4–manifold with torsion-free first
homology group.

Lemma 31 Let K � S3 be a knot. Suppose there is a rational number p=q > 0

such that Y D S3
p=q

.K/ is a negatively oriented Seifert fibred space. Then Ared
k
.K/ is

supported in odd Z=2Z–grading for every k .

Proof of Lemma 31 As an absolutely Z=2Z–graded group, each Ared
k
.K/ is a sub-

group of HFred.S
3
p=q

.K// by Proposition 15. Since HFred.S
3
p=q

.K// is supported in
odd grading, so must be each Ared

k
.K/.

Denote by zg the minimal index i for which Vi D 0. As above, denote by ai the
coefficient of the Alexander polynomial of K corresponding to T i . If zg < g.K/, then
by Lemma 23 we have

(11) ag.K / D tg.K /�1 D �.A
red
g.K /�1/;
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so, in particular, ag.K / ¤ 0 if all Ared
k
.K/ are supported in the same Z=2Z–grading,

since in this case

Ared
g.K /�1 Š HFC.S3

0 .K/;g� 1/Š bHFK.K;g.K//¤ 0:

It follows that in this case deg.�K /D g.K/ and bHFK.K;g.K// is supported in odd
degrees.

Moreover, if zg D 0, then Vk D 0 for all k � 0, so that

tk D �.A
red
k .K//� 0:

We now need to establish conditions which ensure that zg D 0 or zg < g.K/.

McCoy [8, Lemma 2.3] slightly modified the proof of [2, Theorem 1.1] by Greene
to show that if S3

p=q
.K/ bounds a negative-definite 4–manifold with torsion-free first

homology, then
2zg � n�

p
n;

where nD dp=qe.

It follows that if p=q � 3 then zg D 0.

More generally, if i � b.n�
p

n/=2c, where n D dp=qe, then i � zg and hence
Vi D 0. It follows that ti D �.A

red
i .K//� 0. If g.K/ >

�
1
2
.dp=qe�

p
dp=qe/

˘
, then

g.K/ > zg as well.

For the improvement of the genus bound, note that all the summands of HFred.S
3
p=q

.K//

coming from the Vi (ie of the form �.Vi/) are situated in the even grading and therefore
must vanish. Now the proof of Theorem 3 shows that U g.K / �HFred.S

3
p=q

.K//D 0.

Now if
U bjH1.Y /j=2c �HFred.S

3
p=q.K//¤ 0;

then
�

1
2
jH1.Y /j

˘
� g.K/� 1, so 1

2
.jH1.Y /jC 1/� g.K/. On the other hand,

zg � 1
2
.dp=qe�

p
dp=qe/ < 1

2
.p=qC 1/� 1

2
.pC 1/D 1

2
.jH1.Y /jC 1/� g.K/:

It follows from (11) that deg.�K /D g.K/.

We end this section with the following question:

Question 32 Does there exist a knot K � S3 with deg.�K / ¤ g.K/ and with a
Seifert fibred surgery?
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7 Some other applications of the mapping cone formula

In this section, we demonstrate some other applications of the results obtained in
Section 3.

Theorem 8 Let K be an L–space knot and p=q�1 a rational number. Then S3
p=q

.K/

and p=q determine the Alexander polynomial of K .

Proof If the slope is zero this is immediate from Proposition 22. If the slope is
negative this also easily follows from Lemma 18; by looking at HFred.S

3
p=q

.K// we
can work out a sequence of numbers that represents all the torsion coefficients with
some repetitions (they are orders of cyclic F ŒU �–modules). But we know the number of
repetitions because we know the slope. From this we deduce all the torsion coefficients
(in the correct order, as they form a monotone sequence), and hence the Alexander
polynomial.

If the slope is in the interval .0; 1� the reasoning is the same; Corollary 14 allows us to
work out the torsion coefficients, since we know how many times each occurs. The
only torsion coefficient we might not be able to work out from the module structure of
HFred.S

3
p=q

.K// is t0 if the slope is 1. But in this case, it can be worked out from the
d–invariant formula of Ni and Wu from Corollary 14.

Sometimes we can work out a lot about the Heegaard Floer homology associated to a
knot from a surgery on it even if it is not an L-space knot.

Proposition 33 The small Seifert fibred space Y D S2..2; 1/; .6;�1/; .7;�2// can
only be obtained by .�4/–surgery. All knots producing it are non-L–space knots.

Proof We find the HFC of this space using the computer program HFNem2 by Çağrı
Karakurt [5]. There are four Spinc–structures fsig

3
iD0

, and HFC in them have the
form

HFC.Y; s0/Š T�3=4;

HFC.Y; s1/Š T0˚ �0.1/;

HFC.Y; s2/Š T1=4;

HFC.Y; s3/Š T0˚ �0.1/:

Using Theorem 7 we can restrict the possible slopes to
˚
˙4;˙4

3
;˙4

5

	
. Calculating the

correction terms of L.4; 1/DL.4;�3/DL.4; 5/ and L.4;�1/DL.4; 3/DL.4;�5/

we notice that only L.4;�1/ has correction terms such that the difference of each of
them with some correction term of Y is an integer. This means that the slope has to be
in
˚
�4; 4

3
;�4

5

	
.
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We also notice that the d–invariants of Y coincide exactly with the d–invariants of
the lens space L.4;�1/. By the d–invariant formula (2) we conclude that V0 D 0. A
similar argument using the d–invariant formula for negative surgeries in Proposition 19
establishes that xV0 D 0.

Now using the total dimension formulas of Propositions 16 and 20 we conclude

2D dim HFred.S
3
p=q.K//D qı.K/;

which is impossible for q D 3 or q D�5.

Comparing the labelling of Spinc–structures we see that the order in which we listed
HFC.Y; si/ above corresponds to i D 0; 1; 2 and 3.

If Y could be obtained by .�4/–surgery on an L–space knot, then the fact that V0D 0

would imply that its genus is zero, ie it is the unknot. However, Y is not a lens space.

It seems worth noticing that in fact there are infinitely many knots Kn that produce Y

from the proposition above; see [27]. In fact, K0 D 942 . The spaces resulting from
p=q–surgeries on these knots have rather similar Floer homologies; in particular, all
the correction terms are the same (and coincide with the correction terms of the lens
space L.p; q/) and the total rank of reduced Floer homology is 2q .

Moreover, we can work out the Heegaard Floer homology of all surgeries on these
knots and their Alexander polynomials. Teragaito [27, Remark 6.1] mentions that Kn

has genus 2nC 2. In [17, Corollary 4.5] it is shown that

bHFK.K;g.K//Š HFC.S3
0 .K/;g� 1/;

so it is nontrivial by Theorem 9, and thus by Proposition 22 and the fact that V0 D 0

for the present examples, we get that Ared
˙.g.K /�1/

have to be nontrivial. By description
of the Heegaard Floer homology of Y in the proof of Proposition 33 we conclude that
Ared

2nC1
.Kn/DAred

�.2nC1/
.Kn/D �.1/ and Ared

k
.Kn/D 0 for any k¤˙2nC1. Using

Proposition 19 we can also fix the gradings, and then using results from Section 3
deduce the Heegaard Floer homology of all surgeries on these knots.

Proposition 34 The Alexander polynomial of K0 is �1C2.T CT �1/�.T 2CT �2/.
For n¤ 0 the Alexander polynomial is given by

�Kn
.T /D 1� .T 2n

CT �2n/C 2.T 2nC1
CT �.2nC1//� .T 2nC2

CT �.2nC2//:

Proof From the discussion above, V0 D 0 and the only nontrivial Ared
k
.K/ are

Ared
2nC1

.Kn/ D Ared
�.2nC1/

.Kn/ D �.1/. Moreover, since the reduced parts of the
Heegaard Floer homology of .�4/–surgery are in absolute Z=2Z–grading 0, it means
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that Ared
˙.2nC1/

are in grading 1. (We can see from the description of the absolute
grading on the mapping cone and Lemma 18 that for negative surgeries the Z=2Z–
grading of AC

i;p=q
.K/ switches from what we have defined it to be in the mapping

cone.) Now Lemma 23 implies that t2nC1 D�1 and ti D 0 for all other i � 0.

By a straightforward argument involving Z=2Z–grading considerations and dimension
count it is not difficult to establish that in fact for n> 0 we have

bHFK.Kn; 2nC 2/Š bHFK.Kn; 2n/Š F and bHFK.Kn; 2nC 1/Š F2:

7.1 Property S

Heegaard Floer homology has been very successful in restricting cosmetic surgeries on
knots in S3 (see [11; 23; 28]). In this subsection, we define a class of knots that do
not admit purely cosmetic surgeries.

Definition 35 Let r1; r2 2 Q and let K � S3 be a knot. The surgeries on K with
slopes r1 and r2 are called cosmetic if S3

r1
.K/ is homeomorphic to S3

r2
.K/. They are

called purely cosmetic if S3
r1
.K/Š S3

r2
.K/, by which we mean that there exists an

orientation-preserving homeomorphism between them.

We now begin defining the property that will imply the nonexistence of purely cosmetic
surgeries.

Definition 36 We say that a rational homology sphere Y has property S if HFred.Y /

is all concentrated in the same absolute Z=2Z–grading.

Definition 37 We say that a knot K � S3 has property S if S3
p=q

.K/ has property S
for some p=q ¤ 0.

Proposition 38 A knot K has property S if and only if S3
p=q

.K/ has property S for
any p=q � 2g.K/� 1.

Proof Suppose S3
p=q

.K/ has property S. By taking the mirror of the knot, we may
assume p=q > 0.

Then by looking at Corollary 14 and Proposition 15 we see that for all k all ele-
ments of Ared

k
.K/ are in the same Z=2Z–grading. This is enough for all elements of

HFC.S3
p=q

.K// for p=q � 2g.K/� 1 to be concentrated in the same Z=2Z–grading.

Corollary 39 A nontrivial knot with property S admits no purely cosmetic surgeries.

Proof The proof is completely analogous to the proof of [11, Corollary 3.12]. In fact,
Ni and Wu show that if Y can be obtained by a purely cosmetic surgery, then the Euler
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characteristic of HFred.S
3
p=q

.K// has to be 0. They also show that V0 and xV0 have
to be zero for a knot that admits cosmetic surgeries. This implies that Vi DHi D 0

for i � 0, so we do not have any �.Vi/ groups in the reduced Floer homology. A knot
with property S has all the AC

k
.K/ groups concentrated in the same Z=2Z–grading,

and in the case at hand these are the groups that constitute the reduced Floer homology.
Therefore, in this case, the Euler characteristic of HFred.S

3
p=q

.K// is equal to (plus or
minus) its rank, so it is an L–space. However, if an L–space knot has V0 D 0, then it
is trivial.

Ni and Wu [11, Corollary 3.12] show that Seifert fibred spaces cannot be obtained by
purely cosmetic surgeries. We can extend this result as follows.

Corollary 40 There are no purely cosmetic surgeries on knots with nonzero Seifert
fibred surgeries.

Proof By [15] Seifert fibred rational homology spheres have property S.

We remark that there are knots which do not have this property, for example 944 . Indeed,
C1 and �1–surgeries on this knot have the same HFC , but are not homeomorphic [23,
Section 9].
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