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A refinement of Betti numbers and homology
in the presence of a continuous function, I

DAN BURGHELEA

We propose a refinement of the Betti numbers and the homology with coefficients in
a field of a compact ANR X , in the presence of a continuous real-valued function
on X . The refinement of Betti numbers consists of finite configurations of points with
multiplicities in the complex plane whose total cardinalities are the Betti numbers,
and the refinement of homology consists of configurations of vector spaces indexed
by points in the complex plane, with the same support as the first, whose direct sum is
isomorphic to the homology. When the homology is equipped with a scalar product,
these vector spaces are canonically realized as mutually orthogonal subspaces of the
homology.

The assignments above are in analogy with the collections of eigenvalues and gener-
alized eigenspaces of a linear map in a finite-dimensional complex vector space. A
number of remarkable properties of the above configurations are discussed.

55N35; 46M20, 57R19

1 Introduction

The results of this paper and its subsequent part II, mostly obtained in collaboration with
Stefan Haller, provide a shorter version of some results in [3], still unpublished, extend
their generality based on the involvement of the topology of Hilbert cube manifolds
and refine them as configurations of complex numbers and of vector spaces.

Precisely, for a fixed field � and r � 0, one proposes a refinement of the Betti
numbers br .X / of a compact ANR X 1 and a refinement of the homology Hr .X /

with coefficients in the field � in the presence of a continuous function f W X !R.

The refinements consists of finite configurations of points with multiplicity located in
the plane R2 DC , denoted by ıfr , equivalently of monic polynomials with complex
coefficients P

f
r .z/, of degree the Betti numbers br .X /, and finite configurations of

�–vector spaces denoted by Oıfr with the same support and direct sum of all vector
spaces isomorphic to Hr .X /; see Theorem 4.1. The points of the configurations ıfr ,

1See the definition of an ANR in Section 2.2.
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equivalently the zeros of the polynomials P
f
r .z/, are complex numbers zD aC ib 2C

with both a; b critical values;2 see Theorem 4.1. The two configurations are related by
dim Oıfr D ı

f
r .

We show the following:

(1) The assignment f  P
f
r .z/ is continuous when f varies in the space of

continuous maps equipped with the compact open topology; see Theorem 4.2.

(2) For an open and dense subset of continuous maps (defined on X , an ANR
satisfying some mild properties) the points of the configurations ıfr or the zeros
of the polynomials P

f
r .z/ have multiplicity one; see Theorem 4.1.

(3) When X is a closed topological n–manifold, the Poincaré duality between the
Betti numbers ˇr and ˇn�r gets refined to a Poincaré duality between configu-
rations ıfr and ıfn�r , and the Poincaré duality between Hr .X / and Hn�r .X /

�

to a Poincaré duality between configurations Oıfr and . Oıfn�r /
� ; see Theorem 4.3.

(4) For each point of the configuration ıfr , equivalently zero z of the polynomial
P
f
r .z/, the assigned vector space Oıfr .z/ has dimension the multiplicity of z and

is a quotient of vector subspaces Oıfr .z/DFr .z/=F 0r .z/, F 0r .z/�Fr .z/�Hr .X /.
When � DR or C and Hr .X / is equipped with a Hilbert space structure Oıfr .z/
identifies canonically to a subspace Hr .z/ of Hr .X / such that Hr .z/?Hr .z

0 /

for z ¤ z0 and
L

z Hr .z/ D Hr .X /; see Theorem 4.1. This provides an
additional structure (direct sum decomposition of Hr .X /, which in view of
Theorem 4.1, for a generic f , has all components of dimension 1).

We refer to the system .Hr .X /;P
f
r .z/; Oı

f
r / as the r –homology spectral package

of .X; f /, in analogy with the spectral package of .V;T /, where V is a vector
space and T a linear endomorphism, which consists of the characteristic polynomial
PT .z/ with its roots zi , the eigenvalues of T and with their corresponding generalized
eigenspaces Vzi

.

In case X is the underlying space of a closed oriented Riemannian manifold .M n;g/

and � DR or C , the vector space Hr .M
n/, via the identification with the harmonic

r –forms, has a structure of a Hilbert space. The configuration Oıfr , for f generic,
provides a base in the space of harmonic forms.

All these results are collected in the main theorems below, Theorems 4.1–4.3, which
were partially established in [3], not yet in print, but under more restrictive hypotheses
like “X homeomorphic to a simplicial complex” or “f a tame map”. In this paper,
we removed these hypotheses using results on Hilbert cube manifolds reviewed in
Section 2.3, and complete them with additional results.

2See Section 2.2 below for the definition of regular and critical value.
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It is worth noting that the points of the configurations ıfr located above and on the
diagonal in the plane R2 determine and are determined by the closed r –bar codes
in the level persistence of f , while those below the diagonal are determined by and
determine the open .r�1/–bar codes in the level persistence as observed in [3]. The
algorithms proposed by Carlsson, de Silva and Morozov [4] and the author and Dey [2]
can be used for their calculation.

Similar refinements hold for angle-valued maps and will be discussed in part II. In this
case, the homology has to be replaced by either the Novikov homology of .X; �f / which
in our work is a finitely generated free module over the ring of Laurent polynomials
�Œt�1; t � or, in case � is R or C , by the L2 –homology of the infinite cyclic cover
defined by �f 2 H 1.X W Z/, determined by f . In this case, the L2 –homology is
regarded as a Hilbert module over the von Neumann algebra associated to the group Z,
Hr .z/ are Hilbert submodules and ıfr .x/ is the von Neumann dimension of Hr .z/.
Note that the L2 –Betti numbers are actually the Novikov–Betti numbers of .X; �f /
(which agree with the rank of the corresponding free module).

Acknowledgements The author thanks S Ferry for help in clarifying a number of
aspects about Hilbert cube manifolds and ANRs. The author is equally grateful to
the referee for many suggestions, requests for clarifications and sometimes alternative
arguments.

2 Preliminary definitions

2.1 Configurations

Let X be a topological space. A finite configuration of points in X is a map

ıW X ! Z�0

with finite support.

A finite configuration of vector spaces indexed by points in X is a map with finite
support

NıW X ! Vect

(ie Oı.x/D 0 for all but finitely many x 2 X ), where Vect denotes the collection of
�–vector spaces.

For N a positive integer, denote by CN .X / the set of configurations of points in X

with total cardinality N :

CN .X / WD
˚
ıW X ! Z�0 j

P
x2X

ı.x/DN
	
:

Algebraic & Geometric Topology, Volume 17 (2017)
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For V a finite-dimensional �–vector space, denote by P.V / the set of subspaces of V

and by CV .X / the set

CV .X / WD
˚
NıW X!P.V /

ˇ̌
]fx2X j Nı.x/¤0g<1; Nı.x/\

P
y¤x

Nı.y/D0;
P

x2X

Nı.x/DV
	
:

Here ] denotes cardinality of the set in braces.

Consider the map
eW CV .X /! Cdim V .X /

defined by
e. Nı/.x/D dim Nı.x/;

and call the configuration e. Nı/ the dimension of Nı .

Both sets CN .X / and CV .X / can be equipped with natural topology (the collision
topology). One way to describe these topologies is to specify for each ı or Oı a system of
fundamental neighborhoods. If ı has as support the set of points fx1;x2; : : : ;xkg, a fun-
damental neighborhood U of ı is specified by a collection of k disjoint open neighbor-
hoods U1; : : : ;Uk of x1; : : : ;xk , and consists of

˚
ı0 2 CN .X / j

P
x2Ui

ı0.x/D ı.xi/
	

.
Similarly if Nı has as support the set of points fx1;x2; : : : ;xkg with Nı.xi/D Vi � V ,
a fundamental neighborhood U of Nı is specified by a collection of k disjoint open
neighborhoods U1;U2; : : : ;Uk of x1; : : : ;xk , and consists of˚

Nı0 2 CV .X / j x 2 Ui)
Nı0.x/� Vi ;

L
x2Ui

Nı0.x/D Vi

	
:

Clearly e is continuous.

When � is an infinite field, the topology of CV .X / has too many connected components
to be useful unless the geometry forces the possible values of the configurations to be
at most countable.

When � D R or C and V is a Hilbert space, it is natural to consider the subset of
CO

V
.X /� CV .X / consisting of configurations whose vector spaces Nı.x/ are mutually

orthogonal. In this case for Nı with support the set of points fx1;x2; : : : ;xkg and
Nı.xi/D Vi � V , one can consider a fundamental neighborhood U of Nı that is specified
by a collection of k disjoint open neighborhoods U1;U2; : : : ;Uk of x1; : : : ;xk and
open neighborhoods O1;O2; : : : ;Ok of Vi in Gdim Vi

.V /, and consists of˚
Nı0 2 CO

V .X / j
L

x2Ui

Oı0.x/ 2Oi

	
:

Here Gk.V / denotes the Grassmannian of k –dimensional subspaces of V .
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With respect to this topology e is continuous, surjective and proper, with fiber above ı ,
the subset of Gn1

.V /�Gn2
.V /� � � � �Gnk

.V / consisting of .V 0
1
;V 0

2
; : : : ;V 0

k
/;V 0i 2

Gni
.V / mutually orthogonal, where ni D dim Vi . This set is compact and is actually

an algebraic variety.

Remark (1) CN .X /DX N =†N is the so-called N –symmetric product, and if X

is a metric space with distance D then the collision topology is the topology
defined by the distance D on X N =†N induced from the distance on X N given
by D.x1;x2; : : : ;xN Iy1;y2; : : : ;yN / WD supiD1;:::;N fD.xi ;yi/g.

(2) If X D R2 D C then CN .X / identifies to the set of monic polynomials with
complex coefficients. To the configuration ı whose support consists of the
points z1; z2; : : : ; zk with ı.zi/ D ni , one associates the monic polynomial
Pf .z/D

Q
i.z� zi/

ni . Then CN .X / and CN are identified as metric spaces.

(3) The space CV .X / and thus CV .R
2/ can be equipped with a complete metric

which induces the collision topology but this will not be used here.

2.2 Tame maps

Recall that a metrizable space X is an ANR if any closed subset A of a metrizable
space B with A homeomorphic to X has a neighborhood U which retracts to A; see
[7, Chapter 3]. Recall also that any space homeomorphic to a locally finite simplicial
complex, a finite-dimensional topological manifold or an infinite-dimensional manifold
(ie a paracompact Hausdorff space locally homeomorphic to the Hilbert space l2 or
the Hilbert cube I1 ) is an ANR; see [7].

Convention All maps f W X !R in this paper are continuous proper maps defined
on an ANR X , hence if such maps exists, X is locally compact. From now on the
words “proper continuous” should always be assumed to precede the word “map” even
if not specified.

The following concepts are consistent with the familiar terminology in topology:

� A map f W X ! R is weakly tame if for any t 2 R, the level f �1.t/ is an
ANR. Therefore, for any bounded or unbounded closed interval I D Œa; b�, a; b 2

Rtf1;�1g, f �1.I/ is an ANR. Indeed if I D Œa; b�, in view of the hypothesis that
f �1.a/ and f �1.b/ are ANRs and of the definition of ANR, there exists an open set
U � X n f �1.a; b/ which retracts to f �1.a/t f �1.b/. Then U [ f �1Œa; b� is an
open set in X which retracts to f �1.I/. Since X is an ANR this suffices to conclude
that f �1.I/is an ANR; see [7]. A similar argument can be used for I D .�1; a�

or I D Œb;1/.

Algebraic & Geometric Topology, Volume 17 (2017)



2056 Dan Burghelea

� The number t 2 R is a regular value if there exists � > 0 such that for any
t 0 2 .t ��; tC�/, the open set f �1.t ��; tC�/ retracts by deformation to f �1.t 0/. A
number t which is not a regular value is a critical value. In view of the hypothesis on
f a map (ie X locally compact and f proper), the requirement on t in the definition
of weakly tame is satisfied for any regular value t . Informally, the critical values are
the values t for which the topology of the level (D homotopy type) changes. One
denotes by Cr.f / the collection of critical values of f .

� The map f is called tame if it is weakly tame and, in addition,

(a) the set of critical values Cr.f /�R is discrete, and

(b) �.f / WD inffjc � c0j W c; c0 2 Cr.f /; c ¤ c0g satisfies �.f / > 0.

If X is compact then (a) implies (b).

� An ANR which has the tame maps dense in the set of all maps with respect to the
fine C0 –topology is called a good ANR.

There exist compact ANRs (actually compact homological n–manifolds; see [6])
with no codimension-one subsets which are ANRs, hence compact ANRs which are
not good.

The reader should be aware of the following rather obvious facts.

Observation 2.1 (1) If f is a weakly tame map then f �1.Œa; b�/ is a compact
ANR and has the homotopy type of a finite simplicial complex (see [8]) and
therefore has finite-dimensional homology with respect to any field � .

(2) If X is a locally finite simplicial complex and f is a simplicial map, then f is
weakly tame with the set of critical values discrete. Critical values are among
the values of f on vertices. If in addition X is compact then f is tame.

(3) If X is homeomorphic to a finite simplicial complex then the set of tame maps
is dense in the set of all continuous maps with the C0 –topology (ie compact
open topology). The same remains true if X is a compact Hilbert cube manifold,
defined in the next section. In particular all these spaces are good ANRs.

For the needs of this paper, weaker than usual concepts of regular or critical values
and tameness, relative to homology with coefficients in the field � , suffice. They are
introduced in Section 3.

Algebraic & Geometric Topology, Volume 17 (2017)
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2.3 Compact Hilbert cube manifolds

Recall the following:

� The Hilbert cube Q is the infinite product QDI1D
Q

i2Z�1
Ii with IiD Œ0; 1�.

The topology of Q is given by the distance d. Nu; Nv/ D
P

i jui � vi j=2
i with

NuD fui 2 I; i 2 Z�1g and Nv D fvi 2 I; i 2 Z�1g.

� The space Q is a compact ANR and so is any X �Q for any compact ANR X .

� A compact Hilbert cube manifold is a compact Hausdorff space locally homeo-
morphic to the Hilbert cube Q.

For f W X !R and F W X �Q!R, denote by NfQW X �Q!R and Fk W X �Q!R
the maps defined by

NfQ.x; Nu/D f .x/ and Fk.x; Nu/D F.x;u1;u2; : : : ;uk ; 0; 0; : : :/:

Observation 2.2 In view of the definition of NfQ and of the metric on Q, observe the
following:

(1) If f W X !R is a tame map, so is NfQ .

(2) If X is compact then the sequence of maps Fn is uniformly convergent to the
map F when n!1.

The following are basic results about compact Hilbert cube manifolds whose proof can
be found in [5].

Theorem 2.3 (1) (R Edwards) If X is a compact ANR then X �Q is a compact
Hilbert cube manifold.

(2) (T Chapman) Any compact Hilbert cube manifolds is homeomorphic to K�Q

for some finite simplicial complex K .

(3) (T Chapman) If !W X ! Y is a homotopy equivalence between two finite
simplicial complexes with Whitehead torsion �.!/D 0 then the there exists a
homeomorphism !0W X �Q! Y �Q such that !0 and !� idQ are homotopic.
As a consequence of Observation 2.4 below, two compact Hilbert cube manifolds
which are homotopy equivalent become homeomorphic after product with S1 .

Observation 2.4 (folklore) If ! is a homotopy equivalence between two finite
simplicial complexes then ! � idS1 has the Whitehead torsion �.! � idS1/D 0.

As a consequence of the above statements we have the following proposition.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proposition 2.5 Any compact Hilbert cube manifold M is a good ANR.

Proof A map f W M !R, M a compact Hilbert cube manifold, is called special if
there exists a finite simplicial complex K , a map gW K!R and a homeomorphism
� W M !K �Q such that Ng � � D f , and a special map is PL3 if in addition g is PL.
By Observation 2.2 any map f W M ! R is �=2–close to a special map. Since any
continuous real-valued map defined on a simplicial complex K is �=2–close to a PL
map then any special map on M is �=2–close to a special PL map. Consequently f is
�–close to a special PL map which is tame in view of Observations 2.1 and 2.2. This
implies that the set of tame maps is dense in the set of all continuous maps.

3 The configurations ıfr and Oı
f
r

In this paper we fix a field � , and for a space X denote by Hr .X / the homology of X

with coefficients in the field � . Let f W X !R be a map. As in the previous section,
f is proper continuous and X is a locally compact ANR. One defines

(1) the sublevel Xa WD f
�1.�1; a�/,

(2) the superlevel X b WD f �1.Œb;1//,

(3) Ifa .r/ WD img.Hr .Xa/!Hr .X //�Hr .X /,

(4) Ib
f
.r/ WD img.Hr .X

b/!Hr .X //�Hr .X /,

(5) Ffr .a; b/D Ifa .r/\ Ib
f
.r/�Hr .X /.

Clearly one has the following observation.

Observation 3.1 (1) For a0 � a and b � b0 , one has Ffr .a
0; b0/� Ffr .a; b/.

(2) For a0 � a and b � b0 , one has Ffr .a
0; b/\Ffr .a; b

0/D Ffr .a
0; b0/.

(3) supx2X jf .x/�g.x/j< � implies Fg.a� �; bC �/� Ffr .a; b/.

Note that we also have the following proposition.

Proposition 3.2 If f is a map as above then dim Ffr .a; b/ <1.

Proof If X is compact, there is nothing to prove since Hr .X / has finite dimension.
Suppose X is not compact. In view of Observation 3.1(1), it suffices to check the
statement for a > b . If f is weakly tame, in view of Observation 2.1 Xa , X b and

3PL stands for piecewise linear.
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Xa \X b are ANRs, with Xa \X b compact and X D Xa [X b , hence the Mayer–
Vietoris long exact sequence in homology is valid. Denote by ia.r/W Hr .Xa/!Hr .X /

and ib.r/W Hr .X
b/! Hr .X / the inclusion-induced linear maps and observe that

Fr .a; b/ WD Ia\Ib
� ia.r/.ker.ia.r/�ib.r///. In view of the Mayer–Vietoris sequence

in homology, ker.ia.r/ � ib.r// is isomorphic to a quotient of the vector space of
Hr .Xa\X b/, hence of finite dimension, and the result holds.

If f is not weakly tame, one argue as follows. It is known that any X a locally
compact ANR is proper homotopy dominated with respect to any open cover by some
locally finite simplicial complex K ; see [1].4 Choose such a cover, for example
f �1.n � 1; nC 1/n2Z and such a homotopy domination X

i
�! K

�
�! X for this

cover. Choose gW K! R a proper simplicial approximation of f � � (hence tame)
and a0 > a and b0 < b such that i.X

f
a /�K

g
a0 and i.X b

f
/�Kb0

g . Then Ffr .a; b/ is
isomorphic to a subspace of Fg

r .a
0; b0/. Since the dimension of Fg

r .a
0; b0/ is finite, so

is the dimension of Ffr .a; b/.

Definition 3.3 We say a real number t is a homologically regular value if there exists
�.t/ > 0 such that for any 0< � < �.t/ the inclusions Ift��.r/� Ift .r/� IftC�.r/ and
It��
f

.r/� It
f
.r/� ItC�

f
.r/ are equalities, and a homologically critical value if it is not

a homologically regular value.

Denote by CR.f / the set of all homologically critical values. If f is weakly tame
then CR.f /� Cr.f /.

Proposition 3.4 If f W X ! R is a map (hence X is ANR and f is proper) then
CR.f / is discrete.

Proof As pointed out above in the proof of Proposition 3.2, one can find a proper
simplicial map gW K!R and a proper homotopy domination ˛W K!X such that
jf � ˛ � gj < M . If so, for any a < b with a; b 2 R, one has dim.If

b
.r/=Ifa .r// �

dim.Ig
bCM

.r/=Ig
a�M

.r//� dim.Hr .g
�1.Œa�M; bCM �/;g�1.a�M //<1, which

implies that there are only finitely many changes in Ift .r/ for t with a� t � b , Similar
arguments show that there are only finitely many changes of It

f .r/ for t with a� t � b .
This suffices to have CR.f /\Œa; b� a finite set for any a< b , hence CR.f / discrete.

Definition 3.5 Define Q�.f / WD inf jc0 � c00j where c0; c00 2 CR.f / and c0 ¤ c00 , and
call f homologically tame (with respect to � ) if Q�.f / > 0.

Clearly tame maps are homologically tame with respect to any field � , and Q�.f />�.f / .

4As a replacement for an argument based on an incorrect reference, the above argument and reference
were proposed by the referee.
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y –axis

x–axis
.a0; b/ .a; b/

.a; b0/.a0; b0/

Figure 1: The box B WD .a0; a�� Œb; b0/�R2

Consider the sets of the form B D .a0; a�� Œb; b0/ with a0 < a; b < b0 and refer to B

as a box; see Figure 1.

To a box B we assign the quotient of subspaces

Ffr .B/ WD Ffr .a; b/=.F
f
r .a
0; b/CFfr .a; b

0//;

and define
Ffr .a; b/ WD dim Ffr .a; b/; Ffr .B/ WD dim Ffr .B/:

In view of Observation 3.1(2), one has

Ffr .B/ WD Ffr .a; b/CFf .a0; b0/�Ffr .a
0; b/�Ff .a; b0/:

It will also be convenient to define

.Ffr /
0.B/ WD Ffr .a

0; b/CFfr .a; b
0/� Ffr .a; b/;

in which case
Ffr .B/D Ffr .a; b/=.F

f
r /
0.B/:

We denote by �B
ab;r

the obvious projection

(1) �B
ab;r W F

f
r .a; b/! Ffr .B/:

To ease the writing, when no risk of ambiguity, one drops f from the notation.

If � DR or C and Hr .X / is equipped with an inner product (nondegenerate positive
definite hermitian scalar product), one denotes by Hr .B/ the orthogonal complement
of F 0r .B/D .Fr .a

0; b/CF.a; b0// inside Fr .a; b/, which is a finite-dimensional Hilbert
space, and one has

Hr .B/� Fr .a; b/�Hr .X /:

Proposition 3.6 Let a00 < a0 < a, b < b0 and B1 , B2 and B the boxes B1 D

.a00; a0�� Œb; b00/, B2 D .a
0; a�� Œb; b0/ and B D .a00; a�� Œb; b0/; see Figure 2 (left).
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B1 B2

B1

B2

Figure 2

(a) The inclusions B1 � B and B2 � B induce the linear maps

iB
B1;r
W Fr .B1/! Fr .B/;(2)

�
B2

B;r
W Fr .B /! Fr .B2/(3)

such that the following sequence is exact:

0! Fr .B1/
iB
B1;r

�! Fr .B/
�

B2
B;r

�! Fr .B2/! 0:

(b) If Hr .X / is equipped with a scalar product then

Hr .B1/?Hr .B2/ and Hr .B/DHr .B1/˚Hr .B2/:

Proposition 3.7 Let a0 < a, b < b0 < b00 and B1 , B2 and B the boxes B1 D

.a0; a�� Œb0; b00/, B2 D .a
0; a�� Œb; b0/ and B D .a0; a�� Œb; b00/; see Figure 2 (right).

(a) The inclusions B1 � B and B2 � B induce the linear maps

iB
B1;r
W Fr .B1/! Fr .B/;(4)

�
B2

B;r
W Fr .B /! Fr .B2/(5)

such that the following sequence is exact:

0! Fr .B1/
iB
B1;r

�! Fr .B/
�

B2
B;r

�! Fr .B2/! 0:

(b) If � DR or C and Hr .X / is equipped with a scalar product then

Hr .B1/?Hr .B2/ and Hr .B/DHr .B1/˚Hr .B2/:

Proof Item (a) in both Propositions 3.6 and 3.7 follows from Observation 3.1(1) and (2).
To conclude item (b) note that Hr .B2/ as a subspace of Fr .a

00; b/ in Proposition 3.6
and as a subspace of Fr .a; b

00/ in Proposition 3.7 is orthogonal to a subspace which
contains Hr .B1/.
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B0

B00

B00

B0

Figure 3

In view of Propositions 3.6 and 3.7, one has the following observation.

Observation 3.8 (1) If B0 and B00 are two boxes with B0 �B00 and B0 is located
in the upper left corner of B00 (see Figure 3 (left)) then the inclusion induces the
canonical injective linear maps iB00

B0;r
W Fr .B

0/! Fr .B
00/.

(2) If B0 and B00 are two boxes with B0 � B00 and B0 is located in the lower right
corner of B00 (see Figure 3 (right)) then the inclusion induces the canonical
surjective linear maps �B0

B00;r
W Fr .B

00/! Fr .B
0/.

(3) If B is a finite disjoint union of boxes B D
F

Bi then Fr .B/ is isomorphic toL
i Fr .Bi/; the isomorphism is not canonical.

(4) If in addition � D R or C and Hr .X / is a Hilbert space then Hr .B/ DL
i Hr .Bi/.

In view of this observation, define B.a; b W �/D .a� �; a�� Œb; bC �/ and

Oıfr .a; b/ WD lim
��!
�!0

Fr .B.a; bI �//:

The limit refers to the direct system Fr .B.a; bI �
0//! Fr .B.a; bI �

00// whose arrows
are the surjective linear maps induced by the inclusion of B.a; bI �0/ as the lower right
corner of B.a; bI �00/ for �0 < �00 .

Define also
ıfr .a; b/ WD lim

�!0
Fr .B.a; bI �//:

Clearly one has dim Oıfr .a; b/D ı
f
r .a; b/. Denote by supp ıfr the set

supp ıfr WD f.a; b/ 2R2
j ıfr .a; b/¤ 0g:

Observation 3.9 For any .a; b/, a; b 2R, the direct system stabilizes and Oıfr .a; b/D
Ff .B.a; bI �// for some � small enough. Moreover ıfr .a; b/¤ 0 implies that a; b 2

CR.f /. In particular supp ıfr is a discrete subset of R2 . If f is homologically tame
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then for any .a; b/ with a; b 2 CR.f /, we have Oıfr .a; b/D Ff .B.a; bI �// for any � ,
0< � < Q�.f /.

Recall that for a box B D .a0; a�� Œb; b0/, we have denoted the canonical projection on
Fr .B/D F.a; b/=F 0.B/ by �B

ab;r
W Fr .a; b/! Fr .B/, and for B0 D .a00; a�� Œb; b00/,

a00 � a0 < a, b00 � b0 > b , we have denoted by �B
B0;r
W Fr .B

0/! Fr .B/ the canonical
surjective linear map between quotient spaces induced by F 0.B0/� F 0.B/� F.a; b/.
Clearly

�B
ab;r D �

B
B0;r ��

B0

ab;r :

Consider the surjective linear map

�r .a; b/W F.a; b/! lim
��!
�!0

F.B.a; bI �//D Oıfr .a; b/;

�r .a; b/ WD lim
��!
�!0

�
B.a;bI�/

ab;r
:

Definition 3.10 A special splitting is a linear map

sr .a; b/W Oı
f
r .a; b/! Fr .a; b/

which satisfies �r .a; b/ � sr .a; b/D id. In particular, in view of Observation 3.1, for
any ˛ > a and ˇ < b , we have img.sr .a; b//� Fr .˛; ˇ/.

We denote by ir .a; b/ the composition of sr .a; b/ with the inclusion Fr .a; b/�Hr .X /.

The diagram

(6)
Hr .X / Fr .a; b/

�B
ab;r

��

�

oo

�r .a;b/

// Oı
Qf

r .a; b/

sr .a;b/
uu

ir .a;b/

xx

iB
r .a;b/yy

Fr .B1/
iB
B0;r

// Fr .B/
�

B2
B;r

// Fr .B2/

reviews for the reader the linear maps considered so far. In this diagram suppose
BD .˛0; ˛��Œˇ; ˇ0/ with a2 .˛0; ˛� and b2 Œˇ; ˇ0/ and BDB1tB2 as in Figure 2 (left).
In view of Observations 3.8 and 3.9, one has the following.

Observation 3.11 (1) If .a; b/ 2 B2 then �B2

B;r
� iB

r .a; b/ is injective.

(2) If .a; b/ 2 B1 then �B2

B;r
� iB

r .a; b/ is zero.
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Choose special splittings fsr .a; b/ j .a; b/ 2 supp.ı
Qf

r /g, and consider the sum

Ir D

X
.a;b/2supp.ı

Qf
r /

ir .a; b/ W
M

.a;b/2supp.ı
Qf

r /

Oıfr .a; b/!Hr .X /;

and for a finite or infinite box B the sum

IB
r D

X
.a;b/2supp.ı

Qf
r /\B

iB
r .a; b/ W

M
.a;b/2supp.ı

Qf
r /\B

Oıfr .a; b/! Fr .B/:

For † � supp.ıfr / denote by Ir .†/ the restriction of Ir to
L
.a;b/2†

Oı
f
r .a; b/ and

for †� supp.ıfr /\B denote by IB
r .†/ the restriction of IB

r to
L
.a;b/2†

Oı
f
r .a; b/.

Note the following.

Observation 3.12 For BDB1tB2 as in Figure 2 and †�supp ı
Qf

r with †D†1t†2 ,
†1 � B1 and †2 � B2 , the diagram

Fr .B1/ // Fr .B/ // Fr .B2/

L
.a;b/2†1

Oı
Qf

r .a; b/

I
B1
r .†1/

OO

//
L
.a;b/2†

Oı
Qf

r .a; b/

IB
r .†/

OO

//
L
.a;b/2†2

Oı
Qf

r .a; b/

I
B2
r .†2/

OO

is commutative. In particular if I
B1
r .†1/ and I

B2
r .†2/ are injective then so is IB

r .†/.

If � DR or C and Hr .X / is equipped with a Hilbert space structure, then the inverse
of the restriction of �r .a; b/ to the orthogonal complement of ker.�r .a; b// provides a
canonical special splitting sr .a; b/. For these canonical special splittings, one denotes
by OOıfr the assignment

OOıfr .a; b/DHr .a; b/ WD img sr .a; b/:

Then if X is compact in view of Observation 3.8(4) the assignment OOıfr is a configuration
CO

Hr .X /
.R2/. The configuration OOıfr .a; b/ has the configuration ıfr 2Cdim Hr .X / as its

dimension.

Let f be a map, and for any .a; b/2R2 choose a special splitting sr .a; b/W Oı
f
r .a; b/!

Hr .X /.

Observation 3.13 (1) For any †� supp.ıfr / (resp. †� supp.ıfr /\B ), the linear
maps Ir .†/ (resp. IB

r .†/) are injective.

(2) For any box B D .a0; a�� Œb; b0/ the set ıfr \B is finite.

(3) For any box B , the linear map IB
r is an isomorphism.
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(4) If X compact, m< inff and M > supf then Hr .X /DFr ..m;M �� Œm;M //

and Ir is an isomorphism. Therefore, for any special splittings, the collection of
subspaces img.ir .a; b// provide a configuration of subspaces of Hr .X / hence
and element in CHr .X /.R

2/.

Proof (1) If † � B then in view of Observations 3.11 and 3.12, the injectivity
of IB

r .†/ implies the ineffectiveness of IB0

r .†/ for any box B0 � B , as well as the
injectivity of Ir .†/. To check the injectivity of IB

r .†/, one proceeds as follows:

� If the cardinality of † is one, then the statement follows from Observation 3.11.
� If all elements .˛i ; ˇi/, iD1; : : : ; k , of † have the same first component ˛iDa,

the statement follows by induction on k . One writes the box B D B1 tB2

as in Figure 2 (left) such that B2 contains one element of †, say .˛1; ˇ1/,
and B1 contains the remaining k�1 elements. The injectivity follows from
Observation 3.12 in view of the injectivity of I

B2
r .†\B2/ and of I

B1
r .†\B1/,

assumed by the induction hypothesis.
� In general, one writes † as the disjoint union † D †1 t†2 t � � � t†k such

that each †i contains all points of † with the same first component ai , and
ak > ak�1 > � � � > a2 > a1 . One proceeds again by induction on k . One
decomposes the box B as in Figure 2 (right), B DB1 tB2 such that †1 �B2

and .†n†1/�B1 . The injectivity of IB
r .†/ follows then using Observation 3.12

from the injectivity of IB2
r .†1/ and the induction hypothesis which assumes

the injectivity of I
B1
r .†\B1/.

(2) In view of (1), any subset of supp.ıfr /\B with BD .a0; a��Œb; b0/ has cardinality
smaller than dim Fr .a; b/, which by Proposition 3.2 is finite. Hence † is finite.

(3) The injectivity of IB
r is ensured by (1). The surjectivity follows from the equality

of the dimension of the source and of the target implied by Observations 3.8 and 3.9.

(4) This follows from definitions and from (3).

In case X is not compact, for the needs of part II of this paper it is useful to extend
Observation 3.13(3) to the situation of an infinite box B.a; bI1/ WD .�1; a�� Œb;1/,
and evaluate the image of Ir , which might not be a finite-dimensional space. For this
purpose we introduce the following:

(1) If�1.r/D
T

a2R Ifa .r/ and I1
f
.r/D

T
b2R Ib

f
.r/,

(2) Ffr .�1; b/ WD If�1.r/\ Ib
f
.r/ and Ffr .a;1/ WD Ifa .r/\ I1

f
.r/,

(3) .Ff /0r .B.a; bI1// WD Ffr .�1; b/CFfr .a;1/,

(4) Ffr .B.a; bI1// WD Ffr .a; b/=.F
f /0r .B.a; bI1//.
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Observation 3.14 (1) In view of the finite-dimensionality of Fr .a; b/, one has the
following:

(i) For any a, there exists b.a/ such that

Fr .a; b.a//D Fr .a; b
0/D Fr .a;1/

provided that b0 � b.a/.

(ii) For any b , there exists a.b// such that

Fr .�1; b/D Fr .a
0; b/D Fr .a.b/; b/

provided that a0 � a.b/.

(2) In view of (1), for a0 < a.b/ and b0 > b.a/, the canonical projections

Fr .B.a; bI1//! Fr ..a
0; a�� Œb; b0//! Fr ..a.b/; a�� Œb; b.a///

are isomorphisms.

Observation 3.15 (addendum to Observation 3.13(3)) The mapsM
.a0;b0/2supp.ıf

r /\B.a;bI1/

iB.a;bI1/
r .a0; b0/W

M
.a0;b0/2supp ıf

r \B.a;bI1/

Oıfr .a
0; b0/!Fr .B.a; bI1//;

M
.a;b/2supp.ıf

r /

ir .a; b/W
M

.a;b/2supp.ıf
r /

Oıfr .a; b/!Hr .X /=.I
f
�1.r/C I1f .r//

are isomorphisms.

Proof The first isomorphism follows from Observations 3.13 and 3.14.

For the second, note that for k < k 0 (for simplicity in writing we drop f and r from
the notation)

.I�1\ I�k0
C Ik0 \ I1/\ I�k

\ Ik D I�1\ I�k
C Ik \ I1

and that
Hr .X /D lim

��!
k!1

Fr .k;�k/D lim
��!

k!1

I�k
D lim
��!

k!1

Ik :

Then in view of stabilization properties,

lim
��!

F.k;�k/

I�1\ I�k
C Ik \ I1

D
Hr .X /

I�1C I1
:

Let D.a; bI �/ WD .a� �; aC ��� Œb� �; bC �/. If x D .a; b/, one also writes D.xI �/

for D.a; bI �/.
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Proposition 3.16 (see [3, Proposition 5.6]) Let f W X ! R be a tame map and
� < �.f /=3. For any map gW X !R which satisfies kf �gk1 < � and a; b 2 Cr.f /
critical values, one has X

x2D.a;bI2�/

ıg
r .x/D ı

f
r .a; b/;(7)

supp ıg
r �

[
.a;b/2supp ıf

r

D.a; bI 2�/:(8)

If in addition Hr .X / is equipped with a Hilbert space structure (� D R or C ), the
above statement can be strengthened to

(9) x 2D.a; bI 2�/ ) Oıg
r .x/�

Oıfr .a; b/;
M

x2D.a;bI2�/

Oıg
r .x/D

Oıfr .a; b/:

Proposition 3.16 implies that in an �–neighborhood of a tame map f (with respect
to the k � k1 norm) any other map g has the support of ıg

r in a 2�–neighborhood of
the support of ıfr and in case X compact is of cardinality counted with multiplicities
equal to dim Hr .X /.

Proof of Proposition 3.16 See [3]. Consider a collection of real numbers

C WD f � � �< ci < ciC1 < ciC2 < � � � j i 2 Zg

which satisfies the following properties:

(1) Cr.f /� C ,

(2) ciC1� ci > �.f /,

(3) limi!1 ci D1,

(4) limi!�1 ci D�1.

Next, one establishes two intermediate results.

Lemma 3.17 For f as in Proposition 3.16 and ci ; cj 2 C , one has

(10) Oıfr .ci ; cj /D Ffr ..ci�1; ci �� Œcj ; cjC1//

D Ffr .ci ; cj /=F
f
r .ci�1; cj /CFfr .ci ; cjC1/;

and therefore

(11) ıfr .ci ; cj /D Ffr ..ci�1; ci �� Œcj ; cjC1//

D Ffr .ci�1; cjC1/CFfr .ci ; cj /�Ffr .ci�1; cj /�Ffr .ci ; cjC1/:

Algebraic & Geometric Topology, Volume 17 (2017)



2068 Dan Burghelea

Proof It is known (see [7], for example) that X a closed subset of Y and X;Y ANRs
implies that X is a neighborhood deformation retract [7]. Then in view of the tameness
of f , for any �0; �00 2 .0; �.f // one has

(12)
Ffr .ci ; cj /D Ffr .ci C �

0; cj /D Ffr .ciC1� �
00; cj / D Ffr .ciC1� �

00; cj�1C �
00/;

Ffr .ci ; cj /D Ffr .ci ; cj � �
0/ D Ffr .ci ; cj�1C �

00/D Ffr .ciC1� �
0; cj�1C �

00/:

Since � < �.f /, in view of the definition of Oıfr one has

(13) Oıfr .ci ; cj /D Ffr ..ci � �; ci �� Œcj ; cj C �//

D Ffr .ci ; cj /=F
f
r .ci � �; cj /CFfr .ci ; cj C �/:

Combining (13) with (12) one obtains the equality (10):

Oıfr .ci ; cj /D Ffr .ci ; cj /=F
f
r .ci�1; cj /CFfr .ci ; cjC1/:

Since Ff .ci�1; cj /\Ff .ci ; cjC1/D Ff .ci�1; cjC1/ one has

dim.Ffr .ci�1; cj /CFfr .ci ; cjC1//

D dim Ffr .ci�1; cj /C dim Ffr .ci ; cjC1� dim Ff .ci�1; cjC1/

and the equality (11) follows.

To simplify the notation, the index r in the following lemma will be dropped.

Lemma 3.18 Suppose f is tame. Let a D ci , b D cj , ci ; cj 2 C and � < �.f /=3.
If g is a continuous map with kf �gk1 < � , then

(14)

Fg
r .a� 2�; bC 2�/D Ffr .ci�1; cjC1/;

Fg
r .aC 2�; b� 2�/D Ffr .ci ; cj /;

Fg
r .aC 2�; bC 2�/D Ffr .ci ; cjC1/;

Fg
r .a� 2�; b� 2�/D Ffr .ci�1; cj /:

Proof Since kf �gk1 < � , in view of Observation 3.1(3) one has

(15)

Ffr .a� 3�; bC 3�/� Fg
r .a� 2�; bC 2�/ � Ffr .a� �; bC �/;

Ffr .aC �; b� �/� Fg
r .aC 2�; b� 2�/ � Ffr .aC 3�; b� 3�/;

Ffr .aC �; bC 3�/� Fg
r .aC 2�; bC 2�/� Ffr .aC 3�; bC �/;

Ffr .a� 3�; b� �/� Fg
r .a� 2�; b� 2�/ � Ffr .a� �; b� 3�/:
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Since 3� < �.f /, one has

(16)

Ff .a� 3�; bC 3�/D Ff .a� �; bC �/;

Ff .aC �; b� �/D Ff .aC 3�; b� 3�/;

Ff .aC �; bC 3�/D Ff .aC 3�; bC �/;

Ff .a� 3�; b� �/D Ff .a� �; b� 3�/;

which imply that in (15) the inclusion � is actually equality.

Note that in view of the equalities (12), for �0; �00 < �.f / one has

(17)

Ff .ci�1; cjC1/D Ff .a� �0; bC �00/;

Ff .ci ; cj /D Ff .aC �0; b� �00/;

Ff .ci ; cjC1/D Ff .aC �0; bC �00/;

Ff .ci�1; cj /D Ff .a� �0; b� �00/:

Then (15) and (17) imply (14) and hence the statement of Lemma 3.18.

Next observe that Lemma 3.18 gives (for aD ci , b D cj with ci ; cj 2 C ) the equality

Fg..a� 2�; aC 2��� Œb� 2�; bC 2�//D Ff ..ci�1; ci �� Œcj ; cjC1//:

This combined with Lemma 3.17 implies Fg..a�2�;aC2���Œb�2�;bC2�//D Oıf.a;b/,
which combined with Observation 3.13 implies the inclusion (7) and the equality (9),
not only for critical values but for any a; b 2 C .

To check inclusion (8) observe the following:

(a) kf � gk1 < � implies X
f
a � X

g
aC� � X

f
aC2�

and X b
f
� X b��

g � X b�2�
f

, and
when a; b 2 C ,

(18) Ff .a; b/� Fg.aC �; b� �/� Ff .aC 2�; b� 2�/:

(b) When � < �.f /=3, the inclusions (18) imply

Ff .a; b/D Fg.aC �; b� �/D Ff .aC 2�; b� 2�/

which in view of Observation 3.15 implies

(19)
X

x2.�1;a��.b;1/\supp ıf
r

ıfr .x/D
X

y2.�1;aC���.b��;1/\supp ıg
r

ıg
r .y/

D

X
x2.�1;aC2���.b�2�;1/\supp ıf

r

ıfr .x/:

Algebraic & Geometric Topology, Volume 17 (2017)



2070 Dan Burghelea

Since R2D
S

i2Z B.ci ; c�i I1/, (19) and (7) rule out the existence of an x 2 supp.ıg
r /

away from
S

x2supp.ıf
r /

D.xI 2�/, finishing the proof of Proposition 3.16.

Let K be a compact ANR and f W X !R be a map. Denote by

NfK IX �K!R

the composition f � �K with �K W X �K ! X the first factor projection. If f is
weakly tame then so is NfK and the set of critical values of f and of NfK are the same.
Moreover in view of the Künneth theorem about the homology of the cartesian product
of two spaces one can make the following observation.

Observation 3.19 (1) F
NfK

r .a; b/D
L

0�k�r Ff
k
.a; b/˝Hr�k.K/, and therefore

(2) Oı
NfK

r .a; b/D
L

0�k�r
Oı
f

k
.a; b/˝Hr�k.K/, and

(3) Oı
NfK

r .a; b/D Oı
f

k
.a; b/ when K is acyclic.

Note that the embedding I W C.X IR/! C.X �KIR/ defined by I.f /D NfK is an
isometry when both spaces are equipped with the distance k � k1 . Note also that when
K is acyclic one has ıfr D ıI.f /

r and Oıfr D OıI.f /
r provided that Hr .X / is identified

with Hr .X �K/.

4 The main results

Theorem 4.1 (topological results) Suppose X is compact and f W X !R a map.5

(1) ı
f
r .x/¤ 0 with x D .a; b/ implies that both a; b 2 CR.f /.

(2)
P

x2R2 ı
f
r .x/ D dim Hr .X / and

L
x2R2

Oı
f
r .x/ D Hr .X /. In particular, we

have ıfr 2 Cdim Hr .X /.R
2/.

(3) If Hr .X / is equipped with a Hilbert space structure then OOıf 2 CO
Hr .X /

.R2/.

(4) If X is homeomorphic to a finite simplicial complex or a compact Hilbert cube
manifold then for an open and dense set of maps f in the space of continuous
maps with compact open topology, ıfr .x/D 0 or 1.

Statements (1) and (3) formulated in terms of bar codes (see [2]) were verified first
in [3] under the hypothesis that f is a tame map.

5This means X is also ANR and f continuous.
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Theorem 4.2 (stability) Suppose X is a compact ANR.

(1) The assignment f  ı
f
r provides a continuous map from the space of real-

valued maps C.X IR/ equipped with the compact open topology to the space
of configurations Cbr

.R2/ D Cbr and br D dim Hr .X /, equipped with the
collision topology (also regarded as the space of monic polynomials of degree br).
Moreover, with respect to the canonical metric D on the space of configurations,
which induces the collision topology, one has

D.ıf ; ıg/ < 2D.f;g/:

Recall that D.f;g/ WD kf �gk1 D supx2X jf .x/�g.x/j.

(2) If � DR or C then the assignment f  OOıfr is continuous with respect to both
collision topologies. (The continuity with respect to the first implies that with
respect to the second.)

Theorem 4.2(1) was first established in [3] under the hypothesis X homeomorphic to a
finite simplicial complex.

Theorem 4.3 (Poincaré duality) (1) Suppose X is a closed smooth �–orientable
manifold 6 of dimension n, and f a continuous map. Then ıfr .a; b/Dı

f
n�r .b; a/.

(2) In addition any collection of isomorphisms Hr .X / ! Hr .X /
� induce the

isomorphisms of the configuration Oıfr and Oıfn�r � � with �.a; b/D .b; a/.

Item (1) of the above theorem was established in [3] for f a tame map.

4.1 Proof of Theorem 4.1

Items (1)–(3) are contained in Observation 3.13 and Observation 3.9.

We first prove item (4). In view of Theorem 4.2, whose proof does not involve
Theorem 4.1, it suffices to establish only the density in the space of all continuous
functions of tame maps f with ıfr taking values only 0 and 1.

We say that a tame map f W X !R satisfies Property G if the following holds.

Property G There exists a finite sequence of real numbers

aD a0 < a1 < � � �< an < anC1 D b

6The results probably remain true as stated for topological manifolds based essentially on the same
arguments, but being unable to find appropriate references we formulate them under the hypothesis of
smoothness.
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such that

(1) Ifa .r/D 0 and If
b
.r/DHr .X /,

(2) for any i � 1, dim.Ifai
=Ifai�1

/� 1.

The verification of Theorem 4.1(4) is based on the Observations 4.4 and 4.5.

Observation 4.4 For any tame map f which satisfies Property G, the configuration ıfr
takes only the values 0 and 1.

If f has Property G then it satisfies dim.Ifai
=Ifai�1

/� 1 for ai D ci ; i D 1; : : : ; n; since
for ˛ < ˇ with no critical value in the open interval .˛; ˇ/ and ˇ a regular value, the
inclusion X

f
˛ �X

f

ˇ
induces isomorphism in homology and for any a0 � a� b � b0 ,

dim.If
b
.r/=Ifa .r//� dim.If

b0
.r/=Ifa0.r//.

If so, then for any two consecutive critical values ci�1 < ci and any other critical
value cj , the inclusion Fr .ci�1; cj /�Fr .ci ; cj / has cokernel of dimension at most one,
which by (10) in Lemma 3.17 implies that ıfr takes only the values 0 and 1. Based on
this observation, if X is a compact smooth manifold (possibly with boundary), any
Morse function f W X !R which takes different values of different critical points has
Property G.

Indeed if f � � � < ci < ciC1 < � � � g is the collection of all critical values, X
f
ciC1

is
homotopy equivalent to a space obtained from X

f
ci

by adding a closed disk Dk along
@Dk D Sk�1 or @Dk

C DDk�1 , which insures that Property G is satisfied. Since the
set of such Morse functions is dense in the space of all continuous functions equipped
with the C0 –topology, item (4) is verified (once Theorem 4.2 is established).

If X is a compact Hilbert cube manifold, then is homeomorphic to M �Q with
M a compact smooth manifold (possible with boundary), and any continuous map
f W X ! R is arbitrarily closed to NfQ , with f W M ! R a Morse function. This
observation establishes item (4) for compact Hilbert cube manifolds.

If X is a finite simplicial complex, one needs the following observation.

Observation 4.5 If X is a finite simplicial complex and a < b , one can construct
a map hW X !R simplicial on the barycentric subdivision of X with the following
properties:

(1) a< h.x/ < b ;

(2) h takes different values on the barycenters of different simplices;

(3) the value of h on the barycenter of a simplex � is strictly larger than the values
of h on the barycenter of any of its faces.
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Proof The construction is straightforward. Such a map satisfies Property G, since
adding a simplex to a finite simplicial complex might change the dimension of the
homology with at most one unit, and for any ˛ , X h

˛ retracts by deformation to the
simplicial complex generated by the barycenters on which h takes value smaller or
equal to ˛ .

For f W X ! R a simplicial map, X a finite simplicial complex with critical values
f � � � < ci�1 < ci < � � � g, if for some i we have dim.Ifci

=Ifci�1
/ � 2, one chooses

� < �.f /=2 and a subdivision of X which makes f �1.ci ˙ �=2/ and f �1.ci//, and
thus f �1.Œci � �=2; ci C �=2�/ and f �1.Œci ; ci C ��/, subcomplexes. One takes the
barycentric subdivision of this subdivision and replaces f by g , the simplicial map
for the new triangulation. We define the map g to take the same value as f on
the barycenters of simplices not contained in f �1.ci/, and as h constructed using
Observation 4.5 for a D cI � �=2, b D ci C �=2 on the barycenters of simplices
contained in f �1.ci/. The map g gets as possible critical values, in addition to the
critical values of f the critical values of hD gjf �1.ci /

. We leave the reader to check
that g satisfies Property G in view of the fact that h does and � < �.f /. Clearly g

differs from f by less than � as it follows from construction.

Since simplicial maps (for some subdivision) are dense in the space of continuous maps
and any simplicial map is arbitrarily close to one that satisfies Property G, item (4)
follows.

4.2 Stability: proof of Theorem 4.2

The stability theorem is a consequence of Proposition 3.16. In order to explain this we
begin with a few observations:

(1) Consider the space of maps C.X;R/, X a compact ANR, equipped with the
compact open topology which is induced from the metric

D.f;g/ WD sup
x2X

jf .x/�g.x/j D kf �gk1:

This metric is complete.

(2) Observe that if f;g 2 C.X;R/, then for any t 2 Œ0; 1�,

ht WD tf .x/C .1� t/g.x/ 2 C.X IR/

is continuous, and for any 0D t0 < t1 < � � �< tN�1 < tN D 1 one has the equality

(20) D.f;g/D
X

0�i<N

D.htiC1
; hti

/:
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(3) If X is a simplicial complex let U �C.X;R/ denote the subset of PL maps. Then

(i) U is a dense subset in C.X;R/;

(ii) if f;g 2 U then ht 2 U , hence �.ht / > 0, hence for any t 2 Œ0; 1� there exists
ı.t/ > 0 such that t 0; t 00 2 .t � ı.t/; t C ı.t// implies D.ht 0 ; ht / < �.ht /=3.

These two statements are not hard to check. Recall the following:

� f is PL on X if with respect to some subdivision of X f is simplicial (ie the
restriction of f to each simplex is linear), and

� for any two PL maps f;g , there exists a common subdivision of X which makes
f and g simultaneously simplicial, hence ht is a simplicial map for any t .

Item (i) follows from the fact that continuous maps can be approximated with arbitrary
accuracy by PL maps and item (ii) follows from the continuity in t of the family ht

and from the compactness of X .

(4) Consider Cbr
.R2/DCbr , br D dim.Hr .X /, with the canonical metric D which

is complete. Since any map in U is tame, in view of Proposition 3.16, f;g 2 U with
D.f;g/ < �.f /=3 implies

(21) D.ıfr ; ı
g
r /� 2D.f;g/:

To prove Theorem 4.2, first check that inequality (21) extends to all f;g 2 U . To do
that we start with f;g 2 U and consider the homotopy ht , t 2 Œ0; 1� defined above.

Choose a sequence 0< t1 < t3 < � � �< t2N�1 < 1 such that for i D 1; : : : ; .2N � 1/,
the intervals .t2i�1� ı.t2i�1/; t2i�1C ı.t2i�1// cover Œ0; 1� and

.t2i�1; t2i�1C ı.t2i�1//\ .t2iC1� ı.t2iC1/; t2iC1/¤∅:

This is possible in view of the compactness of Œ0; 1�.

Take t0D0; t2N D1 and t2i 2 .t2i�1; t2i�1Cı.t2i�1//\.t2iC1�ı.t2iC1/. To simplify
the notation, abbreviate hti

to hi .

In view of item (3)(ii) and item (4) (inequality (21)), one has

jt2i�1� t2i j< ı.t2i�1/ implies D.ıh2i�1 ; ıh2i / < 2D.h2i�1; h2i/;

jt2i � t2iC1j< ı.t2iC1/ implies D.ıh2i ; ıh2iC1/ < 2D.h2i ; h2iC1/:

Then we have

D.ıf ; ıg/�
X

0�i<2N�1

D.ıhi ; ıhiC1/� 2
X

0�i<2N�1

D.hi ; hiC1/DD.f;g/:
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In view of the density of U and the completeness of the metrics on C.X IR/ and
Cbr
.R2/, inequality (21) extends to the entire C.X IR/ when X is a simplicial complex.

Indeed, the assignment U 3 f  ı
f
r 2 Cbr

.R2/ preserves the Cauchy sequences.

Next we verify (21) for X DK �Q, K a simplicial complex and Q the Hilbert cube.
For this purpose we write Q WD Ik �Q1�k and say that f W K �Q ! R is an
.1�k/–PL map if f D NgQ1�k (see Section 2.3 for the definition of NgQ1�k ) with
gW K � Ik ! R a PL map. Clearly an .1�k/–PL map is an .1�k 0/–PL map for
k 0 � k .

Denote by CPL.K�QIR/ the set of maps in C.K�QIR/ which are .1�k/–PL for
some k .

In view of Observation 2.2, CPL.K �QIR/ is dense in C.K �QIR/. To conclude
that (21) holds for K�Q, it suffices to check the inequality for f1D . Ng1/Q1�k ; f2D

. Ng2/Q1�k 2 CPL.K �QIR/. The inequality holds since, in view of Observation 3.19,
we have ıfi D ıgi .

Since by Theorem 2.3 any compact Hilbert cube manifold is homeomorphic to K �Q

for some finite simplicial complex K , inequality (21) holds for X any compact Hilbert
cube manifold. Since for any X a compact ANR, by Theorem 2.3, X �Q is a Hilbert
cube manifold, I W C.X IR/! C.X �QIR/ defined by I.f /D NfQ is an isometric
embedding and ıf D ı NfQ , (21) holds for any X a compact ANR.

Both parts of Theorem 4.2 follow from inequality (21) and Proposition 3.16(9).

4.3 Poincaré duality: proof of Theorem 4.3

Before we proceed to the proof of Theorem 4.3, the following elementary observation
on linear algebra, used also in part II, will be useful.

For the commutative diagram

E WD

C
2
//

1

��

A2

˛2

��

A1

˛1
// B

define
ker.E/ WD ker.C


�!A1 �B A2/;

coker.E/ WD coker.A1˚C A2
˛
�! B/
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with

A1�BA2 D f.a1;a2/ 2A1�A2 j ˛1.a1/D ˛2.a2/g;

A1˚C A2 DA1˚A2

ı
.̊a1;a2/ 2A1�A2 j a1 D ˇ1.c/;a2 D�ˇ2.c/ for some c 2 C

	
and with  .c/D .1.c/; 2.c// and ˛.a1; a2/D ˛1.a1/C˛2.a2/.

If one denotes by E� the dual diagram

E� WD

C � A�
2

 �2
oo

A�
1

 �1

OO

B�
˛�

1

oo

˛�
2

OO

then we have a canonical isomorphism

(22) ker.E/D .coker.E�//�:

Note the following.

Proposition 4.6 If in the diagram E either all arrows are injective and ˛ is injective
or all arrows are surjective and  is surjective, then

dim.coker E/D dim C C dim B � dim A1� dim A2:

The proof is a straightforward calculation of dimensions.

For the proof of extended Poincaré duality claimed by Theorem 4.3 it is useful to
provide an alternative definition of Fr .B/ for a box B .

For this purpose introduce the quotient space

Gr .a; b/DHr .X /=.Ia.r/C Ib
.r//:

Consider a box B D .a0; a�� Œb; b0/ and denote by G.B/ and F.B/ the diagrams

G.B/ WD

Gr .a
0; b0/ //

��

Gr .a; b
0/

��

Gr .a
0; b/ // Gr .a; b/

F.B/ WD

Fr .a
0; b0/ //

��

Fr .a; b
0/

��

Fr .a
0; b/ // Fr .a; b/

whose arrows are induced by the inclusions Ia0.r/� Ia.r/ and Ib0.r/� Ib.r/. Let

Gfr .B/ WD kerG.B/
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and recognize that
Ffr .B/D cokerF.B/:

Note that the hypotheses of Proposition 4.6 are verified, (1) for G.B/ and (2) for F.B/,
and Gr .B/ identifies to ker.G.B// and Fr .B/ to coker.F.B//.

Since Gr .a
0; b/�Gr .a;b/ Gr .a; b

0/DHr .X /=..Ia0.r/C Ib.r//\ .Ia.r/C Ib0.r///, the
vector space Gr .B/ is canonically isomorphic to

(23)
�
.Ia0.r/C Ib

.r//\ .Ia.r/C Ib0
.r//

�
=.Ia0.r/C Ib0

.r//:

Similarly, since Fr .a
0; b/˚Fr .a0;b0/ Fr .a; b

0//D .Ia0.r/\ Ib.r/C Ia.r/\ Ib0.r//, the
vector space Fr .B/ is canonically isomorphic to

Ia.r/\ Ib
.r/=.Ia0.r/\ Ib

.r/C Ia.r/\ Ib0
.r//:

The obvious inclusion Ia.r/\ Ib.r/� .Ia0.r/C Ib.r//\ .Ia.r/C Ib0.r// induces the
linear map

Fr .B/D Ia.r/\ Ib
.r/=.Ia0.r/\ Ib

.r/C Ia.r/\ Ib0
.r//

! .Ia0.r/C Ib
.r//\ .Ia.r/C Ib0

.r//=.Ia0.r/C Ib0
.r/D Gr .B/:

Proposition 4.7 For any map f W X ! R and any box B the canonical linear map
Fr .B/! Gr .B/ defined above is an isomorphism: Ffr .B/D Gfr .B/.

Proof Note that the injectivity is straightforward. Indeed, suppose

Ia.r/\ Ib
.r/ 3 x D x1Cx2

with x1 2 Ia0.r/ and x2 2 Ib0.r/. Then x1D x�x2 2 Ib.r/ and x2 2 .Ia.r/\Ib0.r//.

To check the surjectivity, start with xD x1Cy1D x2Cy2 such that x1 2 Ia0 ;y1 2 Ib ,
x2 2 Ia;y2 2 Ib0 . Then x�x1�y2 is equivalent to x in Gr .B/. But x�x1�y2 D

y1�y2 D x2�x1 hence it belongs to Ib and to Ia .

Let f W M n!R be a map, M n a �–orientable closed topological manifold and a; b

regular values such that the restriction of f to f �1.a��; aC�/ and f �1.b��; bC�/

for a small enough positive � are topological submersions. This makes f �1.a/ and
f �1.b/ codimension-one topological submanifolds of M .

Let iaW Ma!M , ibW M b!M , jaW M ! .M;Ma/, j bW M ! .M;M b/ denote
the obvious inclusions, ia.k/; i

b.k/; ja.k/; j
b.k/ denote the inclusion induced linear

maps for homology in degree k , and ra.k/; r
b.k/; sa.k/; s

b.k/ denote the inclusion
induced linear maps in cohomology (with coefficients in the field � ), as indicated in
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diagrams (24) and (25) below. Poincaré duality provides the commutative diagrams (24)
and (25) with all vertical arrows isomorphisms:

(24)

Hr .Ma/

��

ia.r/
// Hr .M /

��

ja.r/
// Hr .M;Ma/

��

H n�r .M;M a/

��

sa.n� r/
// H n�r .M /

��

ra.n� r//
// H n�r .M a/

��

.Hn�r .M;M a//�
.j a.n� r//�

// .Hn�r .M //�
.ia.n� r//�

// .Hn�r .M
a//�

(25)

Hr .M
b/

��

ib.r/
// Hr .M /

��

j b.r/
// Hr .M;M b/

��

H n�r .M;Mb/

��

sb.n� r/
// H n�r .M //

��

rb.n� r/
// H n�r .Mb/

��

.Hn�r .M;Mb//
�
.jb.n� r//�

// .Hn�r .M //�
.ib.n� r//�

// .Hn�r .Mb//
�

As a consequence of these two diagrams, observe that Poincaré duality provides a
canonical isomorphism

(26) Ffr .a; b/D .G
f
n�r .b; a//

�:

Indeed, observe the following:

� Fr .a; b/ D ker.ja.r/; j
b.r// by the exactness of the first rows in diagrams (24)

and (25). Precisely ker.ja.r/; j
b.r//D ker ja.r/\ j b.r/D Ia.r/\ Ib.r/.

� ker.ja.r/; j
b.r// � ker.ra.n � r/; rb.n � r// by the isomorphism of the upper

vertical arrows in these diagrams.

� ker.ra.n� r/; rb.n� r//� ker
�
.ia.n� r//�; .ib.n� r//�

�
by the isomorphism of

the lower vertical arrow in these diagrams.

The isomorphisms above are induced by Poincaré duality and cohomology in terms of
homology; their composition is still referred to as Poincaré duality.

� ker
�
.ia.n� r//�; .ib.n� r//�

�
D
�
coker

�
ia.n� r/C ib.n� r/

���
D .Gfn�r .b; a//

�

by standard finite-dimensional linear algebra duality.
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Putting together these equalities one obtains (26).

Suppose M is a closed �–orientable smooth manifold and f W M ! R a smooth
map which is locally polynomial (ie in the neighborhood of any point, in some local
coordinates, is a polynomial). Such a map is tame. For .a; b/ 2 R2 choose � small
enough so that the intervals .a� �; a/; .a; aC �/ as well as .a� �; a/; .a; aC �/ are
contained in the set of regular values (in the sense of differential calculus). Such a
choice is possible in view of the tameness of f .

To establish the result as stated for such a map we proceed as follows.

In view of the tameness of f ,

(27) Oıfr .a; b/D Ffr ..a� �; aC ��� Œb� �; bC �//:

By definition,

(28) Ffr ..a� �; aC ��� Œb� �; bC �//D cokerFr ..a� �; aC ��� Œb� �; bC �//:

By Proposition 4.7,

(29) cokerFr ..a��; aC��� Œb��; bC�//D ker
�
Gr ..a��; aC��� Œb��; bC�//

�
:

By equality (22),

(30) ker
�
Gr ..a� �; aC ��� Œb� �; bC �//

�
D
�
coker

�
Gr ..a� �; aC ��� Œb� �; bC �//

�
���
:

By equality (26),

(31)
�
coker

�
Gr ..a� �; aC ��� Œb� �; bC �//

�
���

D
�
coker

�
Fn�r ..b� �; bC ��� Œa� �; aC �//

���
:

In view of the equality Ffr .B/D cokerF.B/,

(32)
�
coker

�
Fn�r ..b� �; bC ��� Œa� �; aC �//

���
D
�
Fn�r ..b� �; bC ��� Œa� �; aC �//

��
:

In view of the tameness of f ,

(33)
�
Ffn�r ..b� �; bC ��� Œa� �; aC �//

��
D . Oıfn�r .b; a//

�:

Putting together equalities (27)–(33), one derives the result for f as above. In view of
Theorem 4.2 and the fact that locally polynomial maps are dense in the space of all
continuous maps when X is a smooth manifold, the result holds as stated.
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A comment The hypothesis of compact ANR can be replaced by ANR with total
homology of finite dimension and proper map by homologically proper map, which
means that for I a closed interval, the total homology of f �1.I/ has finite dimension.
All results remain unchanged with essentially the same proof. An interesting situation
when such a generalization is relevant is the case of the absolute value of the complex
polynomial function f when restricted to the complement of its zeros, which will be
treated in future work, but can be easily reduced to the case of a proper map considered
above.
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