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On mod p Ap –spaces

RUIZHI HUANG

JIE WU

We prove a necessary condition for the existence of an Ap –structure on mod p

spaces, and also derive a simple proof for the finiteness of the number of mod p

Ap –spaces of given rank. As a direct application, we compute a list of possible types
of rank 3 mod p homotopy associative H –spaces.

55P45, 55S25; 55N15, 55P15, 55S05

1 Introduction

A longstanding problem in algebraic topology is to classify finite H–spaces. However,
this problem is rather complicated, and has only been solved in few cases. There is
Zabrodsky’s localization and mixing theorem [27] yielding that a simply connected
finite complex is an H–space if and only if each of its p–localizations is an H–space.
One would also like to know for which primes p the localization at p fails to be an
H–space, so it is natural to consider the p–local version of H–spaces.

Let X be a CW-complex whose cohomology is an exterior algebra generated by r

elements of odd dimension; we call r the rank of X . For r D 1, J F Adams [1; 2]
has determined that S1 , S3 , S7 are the only H–spaces localized at 2 by solving the
famous Hopf invariant one problem, and all odd spheres are H–spaces localized at any
odd prime p . For r D 2, the case p D 2 (then the integral case) has been solved in
a series of papers: see Adams [3], Hubbuck [15], Zabrodsky [28; 29], Douglas and
Sigrist [7], Mimura, Nishida and Toda [19], as well as the case p>3 by N Hagelgans [9].
The remaining case p D 3 is challenging and has been an open question for decades;
recent progress on it can be found in Grbić, Harper, Mimura, Theriault and Wu [8].

The phenomenon that the H–structures are largely controlled by the prime p D 2

appears similarly when we consider higher homotopy associative structures. Namely,
if we consider Ap–spaces in the sense of J Stasheff [21; 22], the Ap–structure is
controlled by that of the localization at p , where a connected A2–space is just an
H–space. In general, for any An–space X , Stasheff suggests an n–projective space
Pn.X / over X , which is analogous to Milnor’s classifying space for topological groups.
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(See Definition 3.5 and the paragraph before that for the explicit definition of An–spaces
and related comments.)

Let n D p . It is well-known that there exists some nontrivial pth power in the
cohomology of p–stage projective space Pp.X / which exactly detects the Ap–structure.
Furthermore, Hemmi [12] has defined a modified projective space Rn.X / for a special
family of An–spaces, which is our main concern in this paper. Based on these ideas
and constructions we prove the following theorem, which generalizes the result of
Wilkerson [25] for local spheres:

Theorem 1.1 Fix an odd prime p � 3 and let X be a connected p–local Ap–space
with cohomology ring H�.X;Z=pZ/ Š

V
.x2m1�1; : : : ;x2mr�1/, where m1 � mj

for all j . Define
mD gcdfmi jmi � pm1g:

Then m j p�1.

For the converse of the theorem, we recall that Stasheff [23] has constructed a realization
for polynomial algebras Z=pZ Œx2m;x4m; : : : ;x2km� with m j p�1 using a theorem
of Quillen. Here, our proof of this theorem is based on a generalization of a method of
Adams and Atiyah [4]; (see also Section 2), using which we also derive a simple proof
of a finiteness theorem of Hubbuck and Mimura [16] (also see Theorem 3.7) which
claims that there are only finitely many possible homotopy types of spaces with fixed
rank r which are Ap–spaces.

For the special case when p D 3, a mod 3 A3–space is a usual 3–local homotopy
associative H–space. The only simply connected homotopy associative H–space at 3

of rank 1 is S3 . If we define the increasing sequence .m1; : : : ;mr / to be the type of X

in Theorem 1.1, then the complete list of types for rank 2 3–local simply connected
homotopy associative H–spaces are .2; 3/, .2; 4/, .2; 6/ and .6; 8/; see Wilkerson
[24, Theorem 5.1]. It is clear that

S3
�S5 3

' SU.3/

provides an example for .2; 3/, Sp.2/ for .2; 4/, and G2 for .2; 6/. Harper [10] gives
a decomposition

F4

3
'K �B5.3/;

where B5.3/ is the S11 bundle over S15 classified by ˛1 , and, further, Zabrodsky [30]
shows that B5.3/ is a loop space, which provides an example for .6; 8/. In this paper,
we consider the case of rank 3. With the help of the method of Adams and Atiyah, and
some results of Wilkerson (see [24] or Theorem 4.2), we prove the following theorem
by careful analysis of the effect of both Steenrod operations and Adams’  –operations.
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Theorem 1.2 Let X be an indecomposable 3–local homotopy associative H–space
with cohomology ring H�.X;Z=3Z/Š

V
.x2r�1;x2n�1;x2m�1/, where deg.xk/Dk

and 1< r < n<m. Then the type of X .r; n;m/ can only be one of

.2; 4; 6/; .2; 6; 8/; .3; 5; 7/; .3; 6; 8/; .6; 8; 10/; .6; 8; 12/:

In this list, the only known example is Sp.3/, which is of type .2; 4; 6/. Here are a
few things we know about potential examples of rank 3 3–local A3–spaces of the
remaining five types. For .2; 6; 8/, we can form a space X as the total space of a
G2–principal fibration over S15 , which is classified by the generator of

�15.BG2/Š �14.G2/
3
Š �14.S

3/
3
Š Z=3Z:

Then the classifying map factors as S15
f
�!BS3!BG2 , and we get X

3
' .G2�Y /=S3 ,

where Y is the total space of the fibration classified by f and also an H–space by
Theorem 7.1 of Grbić, Harper, Mimura, Theriault and Wu [8]. However, we still do
not know whether X is an H–space or not. For the case .3; 5; 7/ we have Nishida’s
B3

2
.3/, which is a 3–component of SU.7/ (see Mimura, Nishida and Toda [20]).

Still, we do not know whether B3
2
.3/ is homotopy associative. If X is of type

.3; 6; 8/, then X has a generating complex of the form S5 _A by the knowledge of
the homotopy groups of spheres, where A is of type .6; 8/. For .6; 8; 10/, Harper
and Zabrodsky [11] have proved that if the exterior algebra of rank p generated by
fx2n�1;P

1x2n�1; : : : ;P
p�1x2n�1g can be realized by an H–space, then p j n, and

the converse is still open for n > p . For the last possible case of type .6; 8; 12/, we
have P1.x11/D x15 and P3.x11/D x23 .

The article is organized as follows. In Section 2 we will introduce a refined version
of Adams and Atiyah’s method from [4]. In Section 3 we use number theory to prove
Theorem 1.1 and the finiteness theorem of Hubbuck and Mimura. Section 4 is devoted
to the proof of Theorem 1.2.

2 A method of Adams and Atiyah

In [4], Adams and Atiyah develop a method to detect the pth power of cohomology
elements using Adams’  –operations. For our purpose, we need to modify it slightly.

Given a connected CW-complex X with no p–torsion in H�.X;Z/, suppose there
exists a subalgebra xH of H�.X IZ=pZ/ such that

xHŠ xA˚ xB

as rings, where xA contains xH0 , xB is an ideal and also xH and xB are closed under the
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action of the mod p Steenrod algebra Ap . Then by the Atiyah–Hirzebruch–Whitehead
spectral sequence and [5, Theorem 6.5], we have the corresponding filtered subalgebra
H of K.X /˝Z.p/ such that

HŠA˚B;

as filtered rings, and also H and B are closed under  p–action. Write the Chern
character of an element x 2K.X /˝Z.p/ as

ch.x/D a0C

X
i
a2i C

X
j

b2j ;

with a0 2Q, a2i 2
xA>0˝Q and b2j 2

xB>0˝Q (the subscripts refer to the degree).
Then we have

ch. k.x//D a0C

X
i
kia2i C

X
j

kj b2j :

Hence  k is indeed a semisimple linear transformation if we use the Chern character to
identify K.X /˝Q with H even.X IQ/, and the eigenspace decomposition of zK.X /˝Q
is independent of the choice of  k . In particular, H˝Q and B˝Q are invariant
under  k for any k , as they are invariant under  p , and then H and B are also
invariant under each  k . Then, as in [4], we get a (partial) eigenspace decomposition

zHŠ
rM

iD1

Vi ˚W; B>0
˝QŠW;

where zHDH>0˝Q, deg.Vi/D 2mi (which means the degree of its elements) and Vi

is allowed to be the 0 vector space. For each  k , Vi is the eigenspace corresponding
to the eigenvalue kmi . We also notice that A>0˝QŠ

Lr
iD1 Vi but only as vector

spaces. Now define a linear transformation on zK.X /˝Q by

�i D

Y
1�j�r

j¤i

 kj � k
mj

j

k
mi

j � k
mj

j

;

and a number

di.m1; : : : ;mr /D gcd
� Y

1�j�r
j¤i

.k
mi

j � k
mj

j /
ˇ̌̌
kj 2NC for 1� j � r; j ¤ i

�
:

Notice that �i induces a linear transformation x�i on
Lr

iD1 Vi which is the natural
projection onto the i th component Vi . For any x 2 zH , we have

�i.x/ �
Y

1�j�r
j¤i

.k
mi

j � k
mj

j /D
Y

1�j�r
j¤i

. kj � k
mj

j /.x/ 2 zH:
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Accordingly,
�i.x/di.m1; : : : ;mr / 2 zH:

If we write x D
P

i x�i.x� v/C v for some v 2 B , then we also have

x�i.x� v/di.m1; : : : ;mr / 2 zH:

Now we make a crucial assumption that for each i

(2-1) pmi − di.m1; : : : ;mr /:

Since B is a f pg–module, we have

 p.x/D
X

i

 p.x�i.x� v//C 
p.v/

D

X
i

pmi
x�i.x� v/di.m1; : : : ;mr /

di.m1; : : : ;mr /
C p.v/

D pyC p.v/ 2 p zHCB;

ie xp� p.x/�0 mod .p;B/. Again, as in [4], xxp�0 mod . xB/ on the cohomology
level, where xx denotes the corresponding element of x in xH�H�.X;Z=pZ/.

Remark 2.1 Notice that when xH DH�.X;Z=pZ/ and xB D 0, the above result is
exactly [4, Corollary].

3 Proof of Theorem 1.1 and the finiteness theorem

3.1 Proof of Theorem 1.1

We prove the theorem by contradiction. The main task is to prove the condition (2-1)
holds. We have to do some number theory first.

Definition 3.1 Let n be a positive integer.

(1) Define e.n/D f if nD pf �x and p − x .

(2) Define � by

�.n/D

�
f C 1 if nD pf .p� 1/x and p − x;

0 if p�1 − n:
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Suppose k is a primitive root modulo p2 . Then k is also a primitive root modulo pf

for all f 2NC . Then for any positive integer n, we have

(3-1) kn
� 1 mod pf

() n� 0 mod pf�1.p� 1/:

So �.n/ is the exact exponent of p in the prime factorization of kn� 1 if p�1 j n.

The following lemma is well known and basic in number theory:

Lemma 3.2 (Legendre 1808) We have

e.n!/D

1X
kD1

j
n

pk

k
D

n� sp.n/

p� 1
;

where sp.n/D ak C ak�1C � � �C a1C a0 is the sum of all the digits in the expansion
of n in base p .

From above, we easily get:

Corollary 3.3 (1) e.a!/C e.b!/� e..aC b/!/;

(2) e..ab/!/� aC e.a!/ if b � p .

Now we are ready to prove our main lemma, which is a generalization of [4, Lemma 3.5]:

Lemma 3.4 Let p be an odd prime, k be a primitive root modulo p2 , m, t 2NC be
such that m − p�1, and set

… WD
Y

j�t�tp
j¤i

.kmi
� kmj /:

Then we have

(3-2) e.…/ <mt:

Proof We set gcd.m;p � 1/ D h, m D ah, and p � 1 D bh. Then a > 1 since
m − p�1. Then we haveY

j�t�tp
j¤i

.kmi
� kmj /D

Y
t�j<i

kmj .km.i�j/
� 1/ �

Y
i<j�tp

kmi.1� km.j�i//:

By (3-1), we only need to consider values of j satisfying p�1 jm.i � j /, ie b j i�j .
Then we have
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e.…/D
Y

t�j<i

e.km.i�j/
� 1/ �

Y
i<j�tp

e.1� km.j�i//

D

Y
1� i�j

b
�b i�t

b
c

e.kmb i�j
b � 1/ �

Y
1� j �i

b
�b

tp�i
b
c

e.kmb j �i
b � 1/

D

Y
1�j�b i�t

b
c

e.kmbj
� 1/ �

Y
1�l�b tp�i

b
c

e.kmbl
� 1/

D

X
1�j�b i�t

b
c

�.mbj /C
X

1�l�b tp�i
b
c

�.mbl/

D .e.m/C 1/
�j

i�t

b

k
C

j
tp�i

b

k�
C e

�j
i�t

b

k
!
�
C e

�j
tp�i

b

k
!
�

� .e.m/C 1/
tp�t

b
C e

��j
i�t

b

k
C

j
tp�i

b

k�
!
�

� .e.m/C 1/thC e..th/!/:

Now if hD 1, then

e.…/� .e.m/C 1/t C e.t !/

D .e.m/C 1/t C
t � sp.t/

p� 1

< t
�
e.m/C 1C

1

p�1

�
:

If h� 2, then

e.…/� .e.m/C 1/thC t C e.t !/

D .e.m/C 1/thC t C
t � sp.t/

p� 1

< t
�
.e.m/C 1/hC 1C

1

p�1

�
:

On the other hand, the inequality a � e.m/ � 1 � 1 always holds, for otherwise
e.a/C 1 D e.m/C 1 D a implies a D 1 (we use p � 3 here). Now combining all
above, it is easy to see e.…/ <mt in both cases.

Now we are going to prove Theorem 1.1. First we recall some background on
An–spaces, for which Stasheff’s original papers [21; 22] are the standard reference.
Stasheff’s An–spaces can be defined inductively with the help of Stasheff polytopes,
which are also called associahedra. Explicitly, an associahedron Kn is an .n�2/–
dimensional convex polytope whose vertices are in one to one correspondence with
the parenthesizings of the word x1x2 : : :xn and whose edges correspond to single
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application of the associativity rule. In particular, K2 is a point, K3 is a interval
and K4 is the convex hull of a pentagon. There are canonical maps between the Kn .
Indeed, the family KD fKng can be endowed with an operadic structure such that any
K–space is the so-called A1–space (K is called A1–operad). Then an An–space is
just an space with the action of K only up to the n–stage (the corresponding operad is
called the An–operad). Stasheff also gave another equivalent description of An–spaces,
which he used as definition:

Definition 3.5 [21, Definition 1] An An–structure on a space X consists of an
n–tuple of maps

X E1
� � //

p1

��

E2
� � //

p2

��

� � �
� � // En

pn

��

� B1
� � // B2

� � // � � �
� � // Bn

such that each pi is a quasifibration and there is a contracting homotopy hWCEn�1!En

such that h.CEi�1/�Ei .

Note that if An–structure is given by the operadic action, the above diagram can be
constructed such that Bi is the i th “projective space” Pn.X / over X (as in Milnor’s
construction). The reverse process was done by Stasheff. The projective space is crucial
for there are nontrivial nth powers in its cohomology ring.

Here, the key construction for our proof of Theorem 1.1 is the so-called modified pro-
jective space of Hemmi [13] which is an analogy of Stasheff’s n–projective space [21].
Since we will not use the explicit construction of this concept, we only recall some
properties stated in the following lemma.

Lemma 3.6 (see [13, Theorem 1.1]) Let n� 3 and let X be a finite An–space with
cohomology ring

H�.X;Z=pZ/Š
V
.x2m1�1; : : : ;x2mr�1/; deg.x2mi�1/D 2mi � 1:

Then there exists a modified projective space Rn.X / with a map "W †X ! Rn.X /

such that

xHŠ xA˚ xB D Z=pZ Œy2m1
; : : : ;y2mr

�=.height nC1/˚ xB

as rings, for some subalgebra xH of H�.Rn.X /;Z=pZ/ and "�.y2mi
/D ��.x2mi�1/,

where the ideal under quotient in the first factor is generated by monomials of length
greater than or equal to nC 1. Further, xH and xB are closed under the action of the
mod p Steenrod algebra Ap .
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 We prove the theorem by contradiction, and assume m − p�1.
By Lemma 3.6, H�.Rp.X // contains a truncated polynomial algebra

Z=pZ Œy2m1
; : : : ;y2mr

�=.height pC1/ ,!H�.Rp.X //:

Let us define Y .X /D R
2pm1C1
p .X / to be the .2pm1C1/–skeleton of Rp.X /. We

then have a ring decomposition

i�.xH/Š i�. xA/˚ i�. xB/;

where i W Y .X / ,!Rp.X / is the canonical inclusion. Then y
p
2m1
6� 0 mod .i�. xB//.

We then set mi Dmsi , and apply Lemma 3.4 for t D s1 and mDm since m − p�1

by assumption. Then we get e.…/ < ms1 D m1 , which implies the condition (2-1)
holds for Y .X / since m1 is the lowest degree. Further, i�.xH/ and i�. xB/ are closed
under the action of Ap , hence by the argument in Section 2, xxp � 0 mod .i�. xB// for
any xx 2 i�.xH/, which contradicts the fact that y

p
2m1
6� 0 mod .i�. xB//. The proof of

Theorem 1.1 is completed.

3.2 The finiteness theorem for finite Ap –spaces

As another application, we prove the following theorem of Hubbuck and Mimura:

Theorem 3.7 [16] Let X be a connected finite mod p Ap–space of rank r . Then
there are only finitely many possible homotopy types for the space X .

Proof Suppose X has the type .m1;m2; : : : ;mr / with m1 � m2 � � � � � mr , and
form the space

Y .X /D
R

2pmrC1
p .X /

R
2mr�1
p .X /

;

which is the .2pmrC1/–skeleton of Rp.X / with the .2mr�1/–skeleton pinched to a
point. As in the proof of Theorem 1.1, we can get a ring decomposition

p��1i�.xH/Š p��1i�. xA/˚p��1i�. xB/

using the canonical inclusion and projection, such that p��1i�.xH/ and p��1i�. xB/

are closed under the action of Ap , and y
p
2mr

is the nontrivial module p��1i�. xB/.
We may also fix a number N.p; r/ only depending on p and r such that N.p; r/�

dim p��1i�.xH/, and notice that the largest difference of the degrees of any two ele-
ments in p��1i�.xH/ is bounded by 2.p�1/mr . Suppose the even part of p��1i�.xH/
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concentrates in dimension 2t1; 2t2; : : : . Then for sufficiently large mr we have

e

�Y
j¤i

.kti � ktj /

�
�

X
j¤i

.e.ti � tj /C 1/

�N.p; r/blogp.2.p� 1/mr /cCN.p; r/

<mr

for any i , ie the condition (2-1) holds, which contradicts the existence of the nontrivial
pth power in p��1i�.xH/. Accordingly the largest dimension of the generators is
bounded and there are only finitely many possible types for X . Also by [6, Corol-
lary 4.2], there are only finitely many homotopy types for each certain type. Then in
all there are finitely many homotopy types for fixed rank.

4 Rank 3 mod 3 homotopy associative H –spaces

For rank 3 mod 3 homotopy associative H–spaces, we will consider Stasheff’s 3–
projective space instead of Hemmi’s modified projective space used in the proof of
Theorem 1.1. The key lemma analogous to Lemma 3.6 for projective spaces is the
following well-known result.

Lemma 4.1 (see eg [17]) Let n� 3 and X be a finite An–space with cohomology
ring

H�.X;Z=pZ/Š
V
.x2m1�1; : : : ;x2mr�1/; deg.x2mi�1/D 2mi � 1;

such that each x2mi�1 is An–primitive, ie x2mi�1 lies in the image of a series of
natural morphisms

H�.Pn.X //!H�.Pn�1.X //! � � � !H�.P1.X /D†X /
Š
 H��1.X /:

Then we have ring isomorphism

H�.Pn.X /;Z=pZ/ŠA˚B D Z=pZ Œy2m1
; : : : ;y2mr

�=.height nC1/˚B

as Ap–modules and AC �B D 0, where deg.y2mi
/D 2mi .

Notice that the corresponding result in the context of K–theory can be easily deduced,
and for rank 3 mod 3 homotopy associative H–spaces, the primitivity assumption is
automatically satisfied. To prove Theorem 1.2, we will also use the following theorem
of Wilkerson.
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Theorem 4.2 [24, Theorems 6.1 and 6.2] Let X be a finite mod p Ap–space with
cohomology ring H�.X;Z=pZ/Š

V
.x2m1�1; : : : ;x2mr�1/, with m1 �m2 � � � � �

mr and mr > p . Then:

(1) There is an x2mk�1 with mr �mk D s.p� 1/ for some 1� s � e.mr /C 1.

(2) If p − mi for some i , there is an x2mj�1 such that mj D kj mi�pC1 for some
1� kj � p .

Combining Theorem 1.1 and Theorem 4.2, we are left to consider the following four
cases for the possible types of the mod 3 A3–space X in Theorem 1.2:

Case 1 3 jm, 3 j n and m� nD 2s with 1� s � e.m/C 1,

Case 2 3 jm, 3 − n and m� nD 2s with 1� s � e.m/C 1,

Case 3 3 − m and m� nD 2s with 1� s � e.m/C 1,

Case 4 m� r D 2t with 1 � t � e.m/C 1, and m� n ¤ 2s for any s such that
1� s � e.m/C 1.

For Case 1, we need the following lemma:

Lemma 4.3 Under the condition of Theorem 1.2 and Case 1, we have:

(1) If r D 2, m> n> 6 and e.m/� e.n/C 2, then

8e.n/C 23� n:

(2) If r D 2, m> n> 6 and e.m/D e.n/C 1, then

8 maxfe.3n�m/; e.3n� 2m/gC 15� n:

(3) If m� 3r , e.m/� e.n/C 2, then

7e.n/Cblog3.m� r/cC 24�m or 8blog3.m� r/cC 24� 3r:

(4) If m� 3r , e.m/D e.n/C 1, then

7 maxfe.3n�m/; e.3n� 2m/gC blog3.m� r/cC 17�m

or

8blog3.m� r/cC 24� 3r:
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Proof By the condition, we have a f kg–module K D Z.3/Œxr ;xn;xm�=.height 4/,
where the subscripts refer to the filtration degree. For (1) and (2) we have r D 2, and
we only need to consider K0 DK�fxi

r j i D 1; 2; 3g. We can set

S D
˚
2i C j nC km j .i; j ; k/¤ .i; 0; 0/; 0� jj j; jkj � 3; 0� ji j � 2

	
;

and define ˆ.i; j ; k/D j2i C j nC kmj. For .1/ we have e.ˆ.0; j ; k// � e.n/C 1

and e.ˆ.i; j ; k// D 0 if ji j D 1, or 2. And we notice that there are nine elements
of the form x�nx�m , five elements of the form x1

r x�nx�m , and two elements of the form
x2

r x�nx�m in K0 . Then

e

� Y
.Qi; Qj ; Qk/¤.0;j ;k/

.2jnCkm
� 22QiC QjnCQkm/

�
�

X
e
�
ˆ.�Qi ; j � Qj ; k � Qk/

�
C 15

� 8.e.n/C 1/C 15

D 8e.n/C 23:

Similarly, we have

e

� Y
.Qi; Qj ; Qk/¤.1;j ;k/

�
� 4e.n/C 19 and e

� Y
.Qi; Qj ; Qk/¤.2;j ;k/

�
� e.n/C 16:

Since condition (2-1) should fail for X , we must have 8e.n/C 23� n.

The remaining three claims can be proved similarly, and notice that for .3/ and .4/, we
work with K0DK�fxr ;xng if m� 2r and with K0DK�fxr ;xn;x

2
r g if m> 2r .

Now we are ready to deal with Case 1:

Proposition 4.4 Under the condition of Theorem 1.2 and Case 1, the only possible
types of X are

.2; 3; 9/; .2; 12; 18/; .2; 21; 27/; .2; 30; 36/; .2; 39; 45/;

.7; 12; 18/; .10; 12; 18/; .16; 30; 36/; .19; 30; 36/:

Proof By Theorem 1.1, we have gcd.r; n;m/� 2, so 3 − r . Hence by Theorem 4.2,
we have x D �r � 2 with � 2 f1; 2; 3g and x 2 fr; n;mg. Then r D 2 or nD 2r � 2

or mD 2r � 2.

We prove the proposition under the condition e.m/ > e.n/ first:
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(1) If r D 2, n > 6 and e.m/ � e.n/C 2, by Lemma 4.3 we have 8e.n/C 23 � n.
Then

3e.m/
�f DmD nC 2s

� 8e.n/C 23C 2.e.n/C 1/

D 10e.n/C 25

� 10e.m/C 5:

Since e.m/� 3, we have mD 27 and e.m/D 3. Then e.n/D e.s/D 1 and n is odd.
Now it is not hard to check that .2; 21; 27/ is the only possible type satisfying all the
conditions.

(2) If r D 2, n> 6 and e.m/D e.n/C 1, by Lemma 4.3,

8 maxfe.3n�m/; e.3n� 2m/gC 15� n:

If 8e.3n�m/C 15� n, then

8e.n� s/C 12� 8e.n� s/C 15� s � n� s

for

e.n� s/D e.2.n� s/D 3n�m/� e.m/� 2 and s � 3:

Then it is easy to show that n� sD 9; 18 or 27. In any case, s � e.m/C1� 4, which
implies sD3. And then m�nD6 and nD12; 21 or 30. But since e.m/De.n/C1D2,
only .2; 12; 18/ or .2; 30; 36/ is possible for our X .

If 8e.3n� 2m/C 15� n, then

8e.n� 4s/C 3� 8e.n� 4s/C 15� 4s � n� 4s

for

n� 4s D 3n� 2m and s � 3:

Then we get n�4sD 9; 18 or 27. Again since e.n�4s/� e.m/� 2 and s� e.m/C1,
we have s D 3. Then m � n D 6 and n D 21; 30 or 39 and only .2; 30; 36/ and
.2; 39; 45/ survive.

(3) If m� 3r , e.m/� e.n/C 2, by Lemma 4.3 we have

7e.n/Cblog3.m� r/cC 24�m or 8blog3.m� r/cC 24� 3r:
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We also notice that r ¤ 2, which by our earlier discussion implies n D 2r � 2 or
nD 2m� 2. If the first inequality and nD 2r � 2 hold, then

2r � 2D n<m� 7e.n/Cblog3.m� r/cC 24

� 7e.r � 1/Cblog3.2r/cC 24

� 8blog3 rcC 25;

which implies r � 21. Then m � 3r � 63 implies mD 27 or 54 for e.m/ � 3. So
e.m/D 3 and e.n/D 1. Since 3 j s and s � e.m/C1, we have s D 3 and m�nD 6.
Then we see mD 27 is impossible for n is even, while mD 54 leads to r D 25, which
contradicts our previous calculation. Similar arguments can be applied to the other
three cases, which will show there are no types left.

(4) If m� 3r , e.m/D e.n/C1, by Lemma 4.3 and similar calculations as in part (3),
we get .r; n;m/D .7; 12; 18/, .10; 12; 18/, .16; 30; 36/ or .19; 30; 36/.

(5) By Theorem 1.1, the only remaining case under condition e.m/ > e.n/ is n� 3r

but m > 3r . If r D 2, then n D 3 or 6, which gives .r; n;m/ D .2; 3; 9/. When
nD 2r �2, we have 1

3
mC2<m�nD 2s � 2e.m/C2, which is impossible. Further,

mD 2r � 2 can not hold by our assumption.

We have proved the proposition when e.m/ > e.n/. If e.n/ � e.m/, then e.s/ D

e.m� n/ � e.m/ � s � 1 � 0, which implies s D 1 and m� nD 2. However, since
3 jm and 3 j n, this is impossible.

For the remaining cases, we will also use a theorem of Hemmi:

Theorem 4.5 ([12, Theorem 1.2]; also see [13, Section 8]) Let X be a homotopy
H–space with H�.X IZ=3Z/ being finite. Then for any n 2 Z with n 6� 0 mod 3 and
n> 3, if

(4-1) QH 2.3a�2t/�1.X;Z=3Z/D 0 for t � n� 1;

then

(4-2) P3a

W QH 2.3a.n�2//�1.X;Z=3Z/!QH 2.3an/�1.X;Z=3Z/

is an epimorphism, where QH�.X;Z=3Z/ D H�.X;Z=3Z/=DH�.X;Z=3Z/ and
DH�.X;Z=3Z/ is the submodule consisting of decomposable elements.

Proposition 4.6 Under the conditions of Theorem 1.2 and Case 2, the only possible
types of X are

.2; 4; 6/; .3; 4; 6/; .3; 5; 9/; .6; 8; 12/:
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Proof Since 3 − n, by Theorem 4.2, we have x D �n� 2 with x and � as before.
Then either r D n� 2 or mD 2n� 2.

(1) r D n � 2. If m > 3r , then m � n > m �
�

1
3
mC 2

�
D

2
3
m � 2. So we have

2
3
m�2D 2s< 2e.m/C2, which implies mD 9. Then .r; n;m/D .2; 4; 9/ contradicts

the fact that m� n is even.

If 2n�2D 2rC2�m� 3r , then 1
2
m�1�m�nD 2s � 2e.m/C2, which implies

.r; n;m/D .2; 4; 6/ or .3; 5; 9/.

If m< 2n� 2 and nD 3kC 2 for some k , then in the Ap–module

xK D Z=3Z Œxr ;xn;xm�=.height 4/;

P1.xr /D cxn with c 6� 0 mod 3 by Theorem 4.5. By the Adem relation

(4-3) P1P3P3k�1
D �P1P3kC2

C 2P3kC2P1;

we have P3k�1.xr /¤ 0, which implies 9k�2D 3n�8 has to be the degree of some
monomial in K . Then by direct computation, we get nD 8 and r D 6, which implies
m< 14. Since 3 jm, we have mD 9 or 12. When mD 9, m� nD 1 is odd, which
is impossible. So we have .r; n;m/D .6; 8; 12/.

If m < 2n � 2 and n D 3k C 1, then r D 3k � 1 which by Theorem 4.2 implies
x D �r � 2 with x 2 fr; n;mg and � 2 f1; 2; 3g. Then we have r D 2 or nD 2r � 2,
both of which are impossible.

(2) m D 2n � 2. We have 1
2
m � 1 D m � n D 2s � 2e.m/C 2, which implies

.r; n;m/D .2; 4; 6/ or .3; 4; 6/.

Proposition 4.7 Under the conditions of Theorem 1.2 and Case 3, the only possible
types of X are

.2; 3; 5/; .2; 6; 8/; .3; 5; 7/; .3; 6; 8/; .4; 6; 8/; .5; 6; 8/; .6; 8; 10/;

.8; 12; 14/; .12; 18; 20/; .18; 24; 26/; .21; 27; 29/; .30; 36; 38/:

Proof Since 3 − m, we have m�nD 2. Then by Theorem 4.5, we have P1.xn/¤ 0.

(1) If mD 3kC 1, we have nD 3k � 1, which by Theorem 4.2 implies x D �n� 2

as before. Then r D n � 2, or m D 2n � 2, or m D 3n � 2; the latter two cases
are easy to check and are impossible. For r D n� 2, we apply Theorem 4.5 to get
P1.xr /¤ 0, and again by Adem relation (4-3), we get Pr�1.xr /¤ 0, which implies
.r; n;m/D .3; 5; 7/ or .6; 8; 10/.

(2) If m D 3k C 2, again by Adem relation (4-3) we have Pn�1.xn/ ¤ 0. By
comparing the degree and applying Theorem 4.2, we get a list of possible types:
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.2; 3; 5/, .2; 6; 8/, .3; 6; 8/, .4; 6; 8/, .5; 6; 8/, .8; 12; 14/ and also a special type

.r; r C 6; r C 8/ with 3 j r . For this remaining case, if r D 3l with l 6� 1 mod 3,
Theorem 4.5 implies P3.xr /¤ 0. By the Adem relation

(4-4) P9P3l�1
D �1P3lC8

C �2P3lC7P1
C �3P3lC6P2

CP3lC5P3;

we have P3l�1.xr /¤ 0, which gives .r; n;m/D .18; 24; 26/.

For l � 1 mod 3, we argue similarly as in Lemma 4.3 to get the condition m � 44.
Then the possible types are .12; 18; 20/, .21; 27; 29/ and .30; 36; 38/.

Proposition 4.8 Under the condition of Theorem 1.2 and Case 4, the only possible
types of X are

.2; 3; 4/; .2; 3; 6/:

Proof If m> 3r , then 2t Dm� r > 2r , ie r < t . Then we have

mD r C 2t < 3t � 3e.m/C 3;

which is impossible. So we have m� 3r .

If 3 − m, then m� r D 2 and .r; n;m/D .r; r C1; r C2/. Further, if 3 j r , then 3 − n,
which implies xD �n�2 as usual. However, it is easy to check the latter is impossible.
Then we get 3 − r , which implies x D �r � 2. In this case, the only possible type is
.r; n;m/D .2; 3; 4/.

Now suppose 3 jm. If 3 − r , we have r D 2, nD 2r �2, nD 3r �2 or mD 2r �2 by
Theorem 4.2. When r D 2, we get .r; n;m/D .2; 3; 6/, while .2; 5; 6/ is impossible
since �5� 2 2 f3; 8; 13g. When nD 2r � 2, we have r D 1

2
nC 1 < 1

2
mC 1. Then

1
2
m�1<m�r D 2t � 2e.m/C2, which implies mD 6 or 9. When n is even, nD 4

when mD 6, which implies r D 3. But 3 − r , so mD 6 is impossible. If mD 9, then
we have .r; n;m/D .4; 6; 9/ or .5; 8; 9/, both of which are impossible since 9�4¤ 2t

and �8� 2 2 f6; 14; 22g. The other two cases can be treated similarly and lead to no
possible types.

If 3 j r , then 3 − n, which implies r D n� 2 or m D 2n� 2. When r D n� 2, we
argue exactly as in the proof of the first case in Proposition 4.6 and get no possible
types in this case. When m D 2n � 2, we see r < n D 1

2
m C 1, which implies

1
2
m� 1<m� r D 2t � 2e.m/C 2. Again, no types survive.

We recall the following theorem of Wilkerson and Zabrodsky [26], which was also
reproved by McCleary [18], and later strengthened by Hemmi in [14] where the
assumption of the primitivity of the generators was removed:
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Theorem 4.9 Let X be a simply connected mod p H–space with cohomology ring
H�.X;Z=pZ/ D

V
.x2m1�1; : : : ;x2mr�1/, with m1 � m2 � � � � � mr . If mr �

m1 < 2.p� 1/, then X is p–quasiregular, ie X is p–equivalent to a product of odd
spheres and copies of Bn.p/, where Bn.p/ is the S2nC1–fibration over S2nC1C2.p�1/

characterized by p̨ .

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 We collect all the types obtained from Propositions 4.4, 4.6,
4.7 and 4.8, and prove the theorem case by case.

First, we notice that .2; 3; 4/, .2; 3; 5/, .3; 4; 6/ and .5; 6; 8/ are quasiregular by
Theorem 4.9.

If .r; n;m/D .4; 6; 8/, we already know P1.xn/D xm in xK D Z=3Z Œxr ;xn;xm�=

.height 4/. Then for degree reasons we have

P4.xr /DP1P3.xr /DP1.�xr xn/D �P1.xr /xnC�xr xm;

which contradicts that P4.xr /D x3
r . So .4; 6; 8/ cannot be the type of X .

If .r; n;m/D .3; 5; 9/, we still have P1.xr /D xn by Theorem 4.5. Then by Adem
relation (4-3), we have P2.xr /¤ 0, which is impossible since K7 D 0.

If .r; n;m/D .8; 12; 14/, we know P1.xn/D xm in xK . Then for degree reasons we
have

2P8.xr /DP1P1P6.xr /DP1P1.�xr xn/D �xrP1.xm/;

which implies P1.xm/D �x2
r with 3 − �. On the other hand, we have P11.xn/¤ 0

from the proof of Proposition 4.7, which implies that P1W xK30DZ=pZ.x2
r xm/! xK32

is not the zero map. But P1.x2
r xm/Dx2

r P1.xm/D 0 and then .r; n;m/D .8; 12; 14/

is impossible.

If .r; n;m/ D .10; 12; 18/, we have P1P9.xr / D P10.xr / D x3
r , which implies

P1.xr xm/D xrP1.xm/CP1.xr /xmD �x3
r with 3 − �. Then we have P1.xr /D 0

and P1.xm/D �x2
r . Then by the Adem relation

(4-5) P3P7
D�P10

CP9P1;

we have P3.x2
n/D �x3

r with 3 − �. However, P3.x2
n/D 2xnP3.xn/ is not equal

to �x3
r , so .10; 12; 18/ cannot be the type of X .

If .r; n;m/ D .12; 18; 20/, we have P1.xn/ D xm . Again, by Adem relation (4-3),
we have P17.xn/¤ 0 and P3W xK52DZ=pZ.xr x2

m/!
xK58DZ=pZ.xnx2

m/ is not
the zero map, which implies P3.xr /D xn . However, the Adem relation

(4-6) P3P9
DP12

CP11P1
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implies P3.xr xn/D˙x3
r , which contradicts the equality

P3.xr xn/D xrP3.xn/CP3.xr /xn D xrP3.xn/Cx2
n :

So .r; n;m/D .12; 18; 20/ is impossible.

For .r; n;m/D .2; 12; 18/, or .7; 12; 18/, we first prove the following lemma:

Lemma 4.10 Let X be a p–local Ap–space with cohomology ring H�.X;Z=pZ/ŠV
.x2m1�1; : : : ;x2mr�1/, such that each x2mi�1 is Ap–primitive, m1 �mj for all j ,

and p < mr . Then there is an x2mk�1 such that Pi.x2mk�1/ D x2mr�1 for some
suitable nonzero i .

Proof This is essentially [24, Lemma 4.4], which claims that in the f pg–submodule
K D Z.p/Œxm1

; : : : ;xmr
�=.height pC1/ of K.Pp.X //˝Z.p/ , there is an xmk

such
that

 p.xmk
/D �xmr

C other terms

with �¤ 0, for in [5, Theorem 6.5], Atiyah has shown that if  p.xq/D
P

i pq�ixi ,
then Pi.xxq/D xxi holds on the cohomology level.

Now we return to the proof Theorem 1.2. Using Lemma 4.10, we see P3.x12/D x18

holds in xK �H�.P3.X // for both mentioned cases. Then we apply Adem relation
(4-6) to x12 . Since in both cases P11P1.x12/D 0, we have P3P9.x12/D˙x3

12
.

However, xK30 D Z=pZ.x12x18/, and since xK is truncated,

P3.x12x18/D x12P3.x18/CP3.x12/x18 D x12P3.x18/Cx2
18;

which is not equal to ˙x3
12

. Accordingly, neither case can be the type of X .

We notice that .r; n;m/D .2; 3; 6/ is impossible directly by the above lemma.

For the remaining cases which do not appear in the final list, we can check whether the
condition (2-1) fails or not in an appropriate f kg–module K0 constructed from K

(with the help of a computer), and find that (2-1) holds when .r; n;m/ is one of
.2; 3; 9/, .2; 21; 27/, .2; 30; 36/, .2; 39; 45/, .18; 24; 26/, .16; 30; 36/, .19; 30; 36/,
.21; 27; 29/ or .30; 36; 38/, which implies X cannot be a mod 3 A3–space.
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