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Acylindrical group actions on quasi-trees

SAHANA H BALASUBRAMANYA

A group G is acylindrically hyperbolic if it admits a non-elementary acylindrical
action on a hyperbolic space. We prove that every acylindrically hyperbolic group
G has a generating set X such that the corresponding Cayley graph � is a (non-
elementary) quasi-tree and the action of G on � is acylindrical. Our proof utilizes
the notions of hyperbolically embedded subgroups and projection complexes. As an
application, we obtain some new results about hyperbolically embedded subgroups
and quasi-convex subgroups of acylindrically hyperbolic groups.

20F67; 20F65, 20E08

1 Introduction

Definition 1.1 An isometric action of a group G on a metric space .S; d/ is acylin-
drical if for every � > 0 there exist R;N > 0 such that for every two points x; y with
d.x; y/�R , there are at most N elements g 2G satisfying

d.x; gx/� � and d.y; gy/� �:

Obvious examples are provided by geometric (ie proper and cobounded) actions; note,
however, that acylindricity is a much weaker condition.

In order to define an acylindrically hyperbolic group, we must define non-elementary
actions, for which we will need the following definition and theorem.

Definition 1.2 Let G be a group acting on a hyperbolic metric space S . An element
g 2G is called loxodromic if the map Z! S given by

n 7! gns

is a quasi-isometric embedding for some (equivalently any) s 2 S . Every loxodromic
element has exactly two limit points fg˙1g on the Gromov boundary @S . Two
loxodromic elements g; h are said to be independent if the sets fg˙1g and fh˙1g
are disjoint.
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Theorem 1.3 (Osin [12, Theorem 1.1]) Let G be a group acting acylindrically on a
hyperbolic space S . Then exactly one of the following holds:

(a) G has bounded orbits.

(b) G is virtually cyclic and contains a loxodromic element.

(c) G has infinitely many independent loxodromic elements.

Definition 1.4 An acylindrical action of a group G is said to be elementary in cases
(a) and (b) above, and non-elementary is case (c). Equivalently, a non-elementary
acylindrical action of a group G on a hyperbolic space is an action with unbounded
orbits, and where G is not virtually cyclic.

Definition 1.5 A group G is called acylindrically hyperbolic if it admits a non-
elementary acylindrical action on a hyperbolic space.

Over the last few years, the class of acylindrically hyperbolic groups has received
considerable attention. It is broad enough to include many examples of interest, eg non-
elementary hyperbolic and relatively hyperbolic groups, all but finitely many mapping
class groups of punctured closed surfaces, Out.Fn/ for n� 2, most 3–manifold groups,
and finitely presented groups of deficiency at least 2. On the other hand, the existence of
a non-elementary acylindrical action on a hyperbolic space is a rather strong assumption,
which allows one to prove non-trivial results. In particular, acylindrically hyperbolic
groups share many interesting properties with non-elementary hyperbolic and relatively
hyperbolic groups. For details we refer to Dahmani, Guirardel and Osin [5], Minasyan
and Osin [10], Osin [12; 11] and references therein.

The main goal of this paper is to answer the following.

Question 1.6 Which groups admit non-elementary cobounded acylindrical actions on
quasi-trees?

By a quasi-tree we mean a connected graph which is quasi-isometric to a tree. Quasi-
trees form a very particular subclass of the class of all hyperbolic spaces. From the
asymptotic point of view, quasi-trees are exactly “1–dimensional hyperbolic spaces”.

The motivation behind our question comes from the following observation. If instead
of cobounded acylindrical actions we consider cobounded proper (ie geometric) ones,
then there is a crucial difference between the groups acting on hyperbolic spaces
and quasi-trees. Indeed, a group G acts geometrically on a hyperbolic space if and
only if G is a hyperbolic group. On the other hand, Stallings’ theorem on groups
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with infinitely many ends and Dunwoody’s accessibility theorem implies that groups
admitting geometric actions on quasi-trees are exactly virtually free groups. Yet another
related observation is that acylindrical actions on unbounded locally finite graphs are
necessarily proper. Thus if we restrict to quasi-trees of bounded valence in Question 1.6,
we again obtain the class of virtually free groups. Other known examples of groups
having non-elementary, acylindrical and cobounded actions on quasi-trees include
groups associated with special cube complexes and right-angled Artin groups (see
Behrstock, Hagen and Sisto [1], Hagen [6] and Kim and Koberda [8]).

Thus one could expect that the answer to Question 1.6 would produce a proper subclass
of the class of all acylindrically hyperbolic groups, which generalizes virtually free
groups in the same sense as acylindrically hyperbolic groups generalize hyperbolic
groups. Our main result shows that this does not happen.

Theorem 1.7 Every acylindrically hyperbolic group admits a non-elementary co-
bounded acylindrical action on a quasi-tree.

In other words, being acylindrically hyperbolic is equivalent to admitting a non-
elementary acylindrical action on a quasi-tree. Although this result does not produce
any new class of groups, it can be useful in the study of acylindrically hyperbolic
groups and their subgroups. In this paper we concentrate on proving Theorem 1.7 and
leave applications for future papers to explore (for some applications, see [10]).

It was known before that every acylindrically hyperbolic group admits a non-elementary
cobounded action on a quasi-tree satisfying the so-called weak proper discontinuity
property, which is weaker than acylindricity. Such a quasi-tree can be produced by
using projection complexes introduced by Bestvina, Bromberg and Fujiwara [2]. To
the best of our knowledge, whether the corresponding action is acylindrical is an open
question. The main idea of the proof of Theorem 1.7 is to combine the Bestvina–
Bromberg–Fujiwara approach with an “acylindrification” construction from Osin [12],
in order to make the action acylindrical. An essential role in this process is played by
the notion of a hyperbolically embedded subgroup, introduced by Dahmani, Guirardel
and Osin [5]. This fact is of independent interest since it provides a new setting for the
application of the Bestvina–Bromberg–Fujiwara construction.

The above-mentioned construction has been applied in the setting of geometrically
separated subgroups (see [5, Section 4.5]). However, not every hyperbolically embedded
subgroup H � G arises from an action of G on a hyperbolic space in which H is
geometrically separated. Nevertheless, it is possible to employ hyperbolically embedded
subgroups in this construction, possibly with interesting applications. If fact, we prove
much stronger results in terms of hyperbolically embedded subgroups (see Theorem 3.1)
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of which Theorem 1.7 is an easy consequence, and derive an application which is stated
below (see Corollary 3.24).

Corollary 1.8 Let G be a group. If H �K �G , H is countable and H is hyperbol-
ically embedded in G , then H is hyperbolically embedded in K .

This result continues to hold even when we have a finite collection fH1;H2; : : : ;Hng
of hyperbolically embedded subgroups in G such that Hi � K for i D 1; 2; : : : ; n.
Interestingly, A Sisto obtains a similar result in [14, Corollary 6.10]. His result does not
require H to be countable, but under the assumption that H \K is a virtual retract of
K , it states that H \K ,!h K . Although similar, these two theorems are independent
in the sense that neither follows from the other.

Another application of Theorem 3.1 is to the case of finitely generated subgroups, as
stated below (see Corollary 3.27).

Corollary 1.9 Let H be a finitely generated subgroup of an acylindrically hyperbolic
group G . Then there exists a subset X �G such that

(a) �.G;X/ is hyperbolic, and the action of G on �.G;X/ is non-elementary and
acylindrical, and

(b) H is quasi-convex in �.G;X/.

This result indicates that in order to develop a theory of quasi-convex subgroups in
acylindrically hyperbolic groups, the notion of quasi-convexity is not sufficient, ie
a stronger set of conditions is necessary in order to prove results similar to those
known for quasi-convex subgroups in hyperbolic groups. For example, using Rips’
construction [13] and Corollary 1.9, one can easily construct an example of an infinite,
infinite-index, normal subgroup in an acylindrically hyperbolic group, which is quasi-
convex with respect to some non-elementary acylindrical action.

Acknowledgements My heartfelt gratitude to my advisor Denis Osin for his guidance
and support, and to Jason Behrstock and Yago Antolin Pichel for their remarks. I am
also grateful to the referee for remarks. My sincere thanks to Bryan Jacobson for his
thorough proofreading and comments on this paper.

2 Preliminaries

We recall some definitions and theorems which we will need to refer to.
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2.1 Relative metrics on subgroups

Definition 2.1 (relative metric) Let G be a group and fH�g�2ƒ a fixed collection
of subgroups of G . Let X �G such that G is generated by X along with the union of
all fH�g�2ƒ . Let HD

F
�2ƒH� . We denote the corresponding Cayley graph of G

(whose edges are labeled by elements of X tH) by �.G;X tH/.

Remark 2.2 It is important that the union in the definition above is disjoint. This
disjoint union leads to the following observation: for every h2Hi\Hj , the alphabet H
will have two letters representing h in G , one from Hi and another from Hj . It may
also be the case that a letter from H and a letter from X represent the same element of
the group G . In this situation, the corresponding Cayley graph �.G;XtH/ has bigons
(or multiple edges in general) between the identity and the element, one corresponding
to each of these letters.

We think of �.H�;H�/ as a complete subgraph in �.G;X t H/. A path p in
�.G;X t H/ is said to be �–admissible if it contains no edges of the subgraph
�.H�;H�/. In other words, the path p does not travel through H� in the Cayley
graph. Using this notion, we can define a metric yd�W H� �H�! Œ0;1�, known as
the relative metric, by setting yd�.h; k/ for h; k 2H� to be the length of the shortest
admissible path in �.G;X tH/ that connects h to k . If no such path exists, we define
yd�.h; k/D1. It is easy to check that yd� is a metric.

Definition 2.3 Let q be a path in the Cayley graph of �.G;X tH/. A non-trivial
subpath p of q is said to be an H�–subpath if the label of p (denoted Lab.p/) is a
word in the alphabet H� . Such a subpath is further called an H�–component if it is
not contained in a longer H�–subpath of q . If q is a loop, we must also have that p is
not contained in a longer H�–subpath of any cyclic shift of q .

We refer to an H�–component of q (for some � 2ƒ) simply by calling it a component
of q . We note that, on a geodesic, H�–components must be single H�–edges. In
general, however, the subpath p of q may consist of more than one edge.

Let p1; p2 be two H�–components of a path q for some � 2ƒ. These components
are said to be connected if there exists a path p in �.G;X tH/ such that Lab.p/ is a
word consisting only of letters from H� , and p connects some vertex of p1 to some
vertex of p2 . In algebraic terms, this means that all vertices of p1 and p2 belong to
the same (left) coset of H� . We refer to a component of a path q as isolated if it is
not connected to any other component of q .

If p is a path, we denote its initial point by p� and its terminating point by pC .
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Lemma 2.4 [5, Proposition 4.13] Let G be a group and fH�g�2ƒ a fixed collection
of subgroups in G . Let X �G such that G is generated by X together with the union
of all fH�g�2ƒ . Then there exists a constant C > 0 such that for any n–gon p with
geodesic sides in �.G;X tH/, any � 2ƒ and any isolated H�–component a of p ,
yd�.a�; aC/� Cn.

2.2 Hyperbolically embedded subgroups

Hyperbolically embedded subgroups will be our main tool in constructing the quasi-
tree. The notion has been taken from Dahmani, Guirardel and Osin [5], where it was
introduced. We recall the definition here.

Definition 2.5 (hyperbolically embedded subgroups) Let G be a group. Let X be a
(not necessarily finite) subset of G and let fH�g�2ƒ be a collection of subgroups of G .
We say that fH�g�2ƒ is hyperbolically embedded in G with respect to X (denoted
by fH�g�2ƒ ,!h .G;X/) if the following conditions hold:

(a) The group G is generated by X together with the union of all fH�g�2ƒ .

(b) The Cayley graph �.G;X tH/ is hyperbolic, where HD
F
�2ƒH� .

(c) For every � 2 ƒ, the metric space .H�; yd�/ is proper, ie every ball of finite
radius has finite cardinality.

Furthermore, we say that fH�g�2ƒ is hyperbolically embedded in G (denoted by
fH�g�2ƒ ,!h G ) if fH�g�2ƒ ,!h .G;X/ for some X � G . The set X is called a
relative generating set.

Since the notion of a hyperbolically embedded subgroup plays a crucial role in this
paper, we include two examples borrowed from [5].

Example 2.6 Let G D H �Z and Z D hxi. Let X D fxg. Then �.G;X tH/ is
quasi-isometric to a line and is hence hyperbolic. The corresponding relative metric
satisfies the inequality yd.h1; h2/ � 3 for every h1; h2 2 H , which is easy to see
from the Cayley graph (see Figure 1, left). Indeed, if �H denotes the Cayley graph
�.H;H/, then in its shifted copy x�H , there is an edge e connecting xh1 to xh2
(labeled by h�11 h2 2H ). There is thus an admissible path of length 3 connecting h1
to h2 . We conclude that if H is infinite, then H is not hyperbolically embedded in
.G;X/, since the relative metric will not be proper. In this example, one can also note
that the admissible path from h1 to h2 contains an H–subpath, namely the edge e ,
which is also an H–component of this path.
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Figure 1: H �Z (left) and H �Z (right)

Example 2.7 Let G DH �Z and ZD hxi. As in the previous example, let X D fxg.
In this case �.G;X tH/ is quasi-isometric to a tree (see Figure 1, right) and it is easy
to see that yd.h1; h2/D1 unless h1 D h2 . This means that every ball of finite radius
in the relative metric has cardinality 1. We can thus conclude that H ,!h .G;X/.

2.3 A slight modification to the relative metric

The aim of this section is to modify the relative metric on countable subgroups that
are hyperbolically embedded, so that the resulting metric takes values only in R, ie is
finite-valued. This will be of importance in Section 3. The main result of this section
is the following.

Theorem 2.8 Let G be a group. Let H < G be countable and such that H ,!h G .
Then there exists a left-invariant metric zd W H �H !R such that

(a) zd � yd , and

(b) zd is proper, ie every ball of finite radius has finitely many elements.

Proof There exists a collection of finite, symmetric (closed under inverses) subsets
fFig of H such that H D

S1
iD1 Fi and 1� F1 � F2 � � � � .

Let yd be the relative metric on H . Let H0 D fh 2H j yd.1; h/ <1g.

Define a function wWH !N by

w.h/D

�
yd.1; h/ if h 2H0;
minfi j h 2 Fig otherwise:
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Since the Fi are symmetric, w.h/Dw.h�1/ for all h 2H . Define a function l on H
as follows: for every word uD x1x2 � � � xk in the elements of H , set

l.u/D

kX
iD1

w.xi /:

Define a length function on H by

jgjw Dminfl.u/ j u is a word in the elements of H that represents gg;

for each g in H . We can now define a metric dw W H �H !N by

dw.g; h/D jg
�1hjw :

It is easy to check that dw is a (finite-valued) well defined metric. Since

dw.ag; ah/D j.ag/
�1ahjw D jg

�1a�1ahjw D jg
�1hjw D dw.g; h/

for all a; g; h 2G , the metric dw is left-invariant. Further, it is easy to see that for all
h 2H ,

dw.1; h/� w.h/:

It remains to show that dw is proper. Let N 2N . Suppose h2H such that w.h/�N .
If h 2H0 , then yd.1; h/�N , which implies that there are finitely many choices for h,
since yd is proper. If h …H0 , then h 2 Fi for some minimal i . But each Fi is a finite
set, so there are finitely many choices for h. Thus jfh 2H j w.h/�N gj<1 for all
N 2N . This implies dw is proper.

Indeed, if y ¤ 1 is such that jyjw � n, then there exists a word u, written without
the identity element (which has weight zero), representing y in the alphabet H such
that u D x1x2 � � � xr and

Pr
iD1w.xi / � n. Since w.xi / � 1 for every xi ¤ 1, we

have r � n. Further, w.xi /� n for all i . Thus xi 2 fx 2H jw.x/� ng for all i . So
there are only finitely many choices for each xi , which implies there are finitely many
choices for y . By definition, dw � yd . So we can set zd D dw .

2.4 Acylindrically hyperbolic groups

In the following theorem, @ represents the Gromov boundary.

Theorem 2.9 For any group G , the following are equivalent:
(AH1) There exists a generating set X of G such that the corresponding Cayley

graph �.G;X/ is hyperbolic, j@�.G;X/j � 2 and the natural action of G on
�.G;X/ is acylindrical.

(AH2) G admits a non-elementary acylindrical action on a hyperbolic space.
(AH3) G contains a proper infinite hyperbolically embedded subgroup.
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It follows from the definitions that .AH1/D) .AH2/. The implication .AH2/D) .AH3/
is non-trivial and was proved by Dahmani, Guirardel and Osin [5]. The implication
.AH3/D) .AH1/ was proved by Osin [12].

Definition 2.10 We call a group G acylindrically hyperbolic if it satisfies any of the
equivalent conditions .AH1/–.AH3/ from Theorem 2.9.

Lemma 2.11 [5, Corollary 4.27] Let G be a group, fH�g�2ƒ a collection of sub-
groups of G , and X1 and X2 be relative generating sets. Suppose that jX1�X2j<1.
Then fH�g�2ƒ ,!h .G;X1/ if and only if fH�g�2ƒ ,!h .G;X2/.

Theorem 2.12 [12, Theorem 5.4] Let G be a group, fH�g�2ƒ a finite collection
of subgroups of G , and X a subset of G . Suppose that fH�g�2ƒ ,!h .G;X/. Then
there exists Y �G such that the following conditions hold:

(a) X � Y .

(b) fH�g�2ƒ ,!h .G; Y /. In particular, the Cayley graph �.G; Y tH/ is hyper-
bolic.

(c) The action of G on �.G; Y tH/ is acylindrical.

Definition 2.13 Let .X; dX / and .Y; dY / be two metric spaces. A map �W X! Y is
said to be a .�; C /–quasi-isometry if there exist constants � > 1, C > 0 such that

(a) 1
�
dX .a; b/�C � dY .�.a/; �.b//� �dX .a; b/CC , for all a; b 2X , and

(b) Y is contained in the C–neighborhood of �.X/.

The spaces X and Y are said to be quasi-isometric if such a map �W X ! Y exists.
It is easy to check that being quasi-isometric is an equivalence relation. If the map �
satisfies only condition (a), then it is said to be a .�; C /–quasi-isometric embedding.

Definition 2.14 A graph � with the combinatorial metric d� is said to be a quasi-tree
if it is quasi-isometric to a tree T .

Definition 2.15 A quasi-geodesic is a quasi-isometric embedding of an interval I �R
(bounded or unbounded) into a metric space X . Note that geodesics are .1; 0/–quasi-
geodesics. By slight abuse of notation, we may identify the map that defines a quasi-
geodesic with its image in the space.

Theorem 2.16 [9, Theorem 4.6, bottleneck property] Let Y be a geodesic metric
space. The following are equivalent:
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(a) Y is quasi-isometric to some simplicial tree � .

(b) There is some �> 0 such that for all x; y 2 Y , there is a midpoint mDm.x; y/
with d.x;m/D d.y;m/D 1

2
d.x; y/ and the property that any path from x to y

must pass within less than � of the point m.

We remark that if m is replaced with any point p on a geodesic between x and y , then
the property that any path from x to y passes within less than � of the point p still
follows from (a), as proved below in Lemma 2.18. We will need the following lemma.

Lemma 2.17 [4, Proposition 3.1] For all � � 1, C � 0, ı � 0, there exists an
RDR.ı; �; C / such that if X is a ı–hyperbolic space, 
 is a .�; C /–quasi-geodesic
in X , and 
 0 is a geodesic segment with the same endpoints, then 
 0 and 
 are
Hausdorff distance less than R from each other.

Lemma 2.18 If Y is a quasi-tree, then there exists � > 0 such that for any point z
on a geodesic connecting two points, any other path between the same endpoints passes
within � of z .

Proof Let T be a tree and qW Y ! T be the .�; C /–quasi-isometry. Let dY and dT
denote the metrics in the spaces Y and T , respectively. Note that since T is 0–
hyperbolic, Y is ı–hyperbolic for some ı .

Let x; y be two points in Y , joined by a geodesic 
 . Let z be any point of 
 and let
˛ be another path from x to y . Let V denote the vertex set of ˛ , ordered according
to the geodesic 
 . Take its image q.V / and connect consecutive points by geodesics
(of length at most �CC ) to get a path ˇ in T from q.x/ to q.y/. Then the unique
geodesic � in T must be a subset of ˇ . Since q.V /� q ı˛ , we get that any point of
� is at most �CC from q ı˛ . Also, q ı 
 is a .�; C /–quasi-isometric embedding of
an interval, and hence a .�; C /–quasi-geodesic. Thus, by Lemma 2.17 the distance
from q.z/ to � is less than RDR.0; �; C /.

Let p be the point on � closest to q.z/. There is a point w 2 Y on ˛ such that
d.q.w/; p/ � �CC . Since d.p; q.z// < R , we have d.q.w/; q.z// � �CC CR .
Thus

d.z; w/� �2C 2�C CR�:

Thus ˛ must pass within �D �2C 2�C CR� of the point z .

2.5 A modified version of Bowditch’s lemma

In this section, Nk.X/ denotes the closed k–neighborhood of a set X in a metric space
.S; dS /, ie

Nk.X/D fs 2 S j 9x 2X such that dS .s; x/� kg:
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In particular, Nk.x/ denotes the closed k–neighborhood of a point x in a metric space.

The following theorem will be used in Section 3. Part (a) is a simplified form of a
result taken from [7], which is in fact derived from a hyperbolicity criterion developed
by Bowditch [3].

Theorem 2.19 Let † be a hyperbolic graph and � be a graph obtained from † by
adding edges.

(a) [3] Suppose there exists M > 0 such that for all vertices x; y 2† joined by an
edge in � and for all geodesics p in † between x and y , all vertices of p lie
in an M–neighborhood of x , ie p �NM .x/ in �. Then � is also hyperbolic,
and there exists a constant k such that for all vertices x; y 2†, every geodesic
q between x and y in † lies in a k–neighborhood in � of every geodesic in �
between x and y .

(b) If, under the assumptions of (a), we additionally assume that † is a quasi-tree,
then � is also a quasi-tree.

Lemma 2.20 Let p; q be two paths in a metric space S between points x and y , such
that p is a geodesic and q �Nk.p/. Then p �N2k.q/.

Proof Let z be any point on p . Let p1; p2 denote the segments of the geodesic p
with endpoints x; z and z; y , respectively.

p2
x y

q

z

w

p1
z1 z2

� k � k

Figure 2: Lemma 2.20

Define a function f W q!R by f .s/D d.s; p1/� d.s; p2/. Then f is a continuous
function. Further, f .x/ < 0 and f .y/ > 0. By the intermediate value theorem,
there exists a point w on q such that f .w/ D 0. Thus d.w; p1/ D d.w; p2/ (see
Figure 2). For i D 1; 2, let zi be a point of pi such that d.pi ; w/D d.zi ; w/. Then
d.z1; w/ D d.z2; w/. By the hypothesis, d.w; p/ D minfd.w; p1/; d.w; p2/g � k .
So we get that d.w; p1/ D d.w; p2/ � k . Thus d.z1; z2/ � 2k , which implies
d.z; w/� 2k .
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s

s0

x y
m

n

z in Case(1)

z in Case(2)

r

� �0
� �0

� 2k

� k

p

Figure 3: Theorem 2.19

Proof of Theorem 2.19 We proceed with the proof of part (b).

We prove that � is a quasi-tree by verifying the bottleneck property from Theorem 2.16.
Let d† and d� denote the distances in the graphs † and �, respectively. Note that
the vertex sets of the two graphs are equal.

Let x; y be two vertices. Let m be the midpoint of a geodesic r in � connecting them.
Let s be any path from x to y in �. The path s consists of edges of two types:

(i) edges of the graph †;

(ii) edges added in transforming † to � (marked as bold edges on Figure 3).

Let p be a geodesic in † between x and y . By part (a), there exists k such that p
is in the k–neighborhood of r in �. Applying Lemma 2.20 , we get a point n on p
such that

d�.m; n/� 2k:

Let s0 be the path in † between x and y , obtained from s by replacing every edge e
of type (ii) by a geodesic path t .e/ in † between its endpoints (marked by dotted lines
in Figure 3). Since † is a quasi-tree, by Lemma 2.18, there exists �0 > 0 and a point
z on s0 such that

d†.z; n/� �
0:

Case 1 If z lies on an edge of s of type (i), then

d�.z;m/� d�.z; n/C d�.n;m/� d†.z; n/C d�.n;m/� �
0
C 2k:

Case 2 If z lies on a path t .e/ that replaced an edge e of type (ii), then by part (a),

d�.e�; m/� d�.e�; z/C d�.z; n/C d�.n;m/� kC�
0
C 2k D �0C 3k:

Thus the bottleneck property holds for �D �0C 3k > 0.
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3 Proof of the main result

Our main result is the following theorem, from which Theorem 1.7 and other corollaries
stated in the introduction can be easily derived (see Section 3.5).

Theorem 3.1 Let fH1;H2; : : : ;Hng be a finite collection of countable subgroups of
a group G such that fH1;H2; : : : ;Hng ,!h .G;Z/ for some Z � G . Let K be a
subgroup of G such that Hi �K for all i . Then there exists a subset Y �K such that:

(a) fH1;H2; : : : ;Hng ,!h .K; Y /.

(b) �.K; Y tH/ is a quasi-tree, where HD
Fn
iD1Hi .

(c) The action of K on �.K; Y tH/ is acylindrical.

(d) Z \K � Y .

3.1 Outline of the proof

Step 1 In order to prove Theorem 3.1, we first prove the following proposition. It
is distinct from Theorem 3.1 since it does not require the action of K on the Cayley
graph �.K;X tH/ to be acylindrical.

Proposition 3.2 Let fH1;H2; : : : ;Hng be a finite collection of countable subgroups
of a group G such that fH1;H2; : : : ;Hng ,!h G with respect to a relative generating
set Z . Let K be a subgroup of G such that Hi �K for all i . Then there exists X �K
such that:

(a) fH1;H2; : : : ;Hng ,!h .K;X/.

(b) �.K;X tH/ is a quasi-tree, where HD
Fn
1D1Hi .

(c) Z \K �X .

Step 2 Once we have proved Proposition 3.2, we will utilize an “acylindrification”
construction from [12] to make the action acylindrical, which will prove Theorem 3.1.
The details of this step are as follows.

Proof By Proposition 3.2, there exists X �K such that:

(a) fH1;H2; : : : ;Hng ,!h .K;X/.

(b) �.K;X tH/ is a quasi-tree.

(c) Z \K �X .

By applying Theorem 2.12 to the above, we get that there exists Y �K such that:
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(a) X � Y .

(b) fH1;H2; : : : ;Hng ,!h .K; Y /. In particular, the Cayley graph �.K; Y tH/ is
hyperbolic.

(c) The action of K on �.K; Y tH/ is acylindrical.

From the proof of Theorem 2.12 (see [12, Lemma 5.6] in particular), it is easy to see
that the Cayley graph �.G; Y tH/ is obtained from �.G;X tH/ in a manner that
satisfies the assumptions of Theorem 2.19, with M D 1 (see [12, Lemma 5.6]). Thus
by Theorem 2.19, �.K; Y tH/ is also a quasi-tree. Further,

K \Z �X � Y:

Thus Y is the required relative generating set.

We will thus now focus on proving Proposition 3.2. To do so, we will use a construction
introduced by Bestvina, Bromberg and Fujiwara in [2]. We describe the construction
below and will retain the same terminology as introduced by the authors in [2].

3.2 The projection complex

Definition 3.3 Let Y be a set and � > 0 be a constant. Suppose that for each Y 2 Y
we have a function

d�Y W .YnfY g �YnfY g/! Œ0;1/

that satisfies the following axioms:

(A1) d�Y .A;B/D d
�
Y .B;A/ for all Y 2 Y and all A;B 2 YnfY g.

(A2) d�Y .A;B/C d
�
Y .B; C /� d

�
Y .A; C / for all Y 2 Y and all A;B;C 2 YnfY g.

(A3) minfd�Y .A;B/; d
�
B .A; Y /g< � for all distinct Y;A;B 2 Y .

(A4) #fY j d�Y .A;B/� �g is finite for all A;B 2 Y .

Let J be a positive constant. Then associated to this data we have the projection
complex PJ .Y /, which is a graph constructed in the following manner: the set of
vertices of PJ .Y / is the set Y . To specify the set of edges, one first defines a
new function dY W .YnfY g �YnfY g/! Œ0;1/, which can be thought of as a small
perturbation of d�Y . The exact definition of dY can be found in [2]. An essential
property of the new function is the following inequality, which is an immediate corollary
of [2, Proposition 3.2].

For every Y 2 Y and every A;B 2 YnfY g, we have

(1) jd�Y .A;B/� dY .A;B/j � 2�:
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The set of edges of the graph PJ .Y / can now be described as follows: two vertices
A;B 2Y are connected by an edge if and only if dY .A;B/�J for every Y 2YnfA;Bg.
This construction strongly depends on the constant J . Complexes corresponding to
different J are not isometric in general.

We would like to mention that if Y is endowed with an action of a group G that
preserves projections (ie d�

g.Y /
.g.A/; g.B//D d�Y .A;B/), then the action of G can

be extended to an action on PJ .Y /. We also mention the following proposition, which
has been proved under the assumptions of Definition 3.3.

Proposition 3.4 [2, Theorem 3.16] For a sufficiently large J > 0, PJ .Y / is con-
nected and quasi-isometric to a tree.

Definition 3.5 (nearest point projection) In a metric space .S; d/, given a set Y and
a point a 2 S , we define the nearest point projection as

projY .a/D fy 2 Y j d.Y; a/D d.y; a/g:

If A, Y are two sets in S , then

projY .A/D
[
a2A

projY .a/:

We note that in our case, since elements of Y will come from a Cayley graph, which is
a combinatorial graph, the nearest point projection will exist. This is because distances
on a combinatorial graph take discrete values in N [ f0g. Since this set is bounded
below, we cannot have an infinite strictly decreasing sequence of distances.

We make all geometric considerations in the Cayley graph �.G;Z tH/. Let dZtH
denote the metric on this graph. Since fH1;H2; : : : ;Hng ,!hG under the assumptions
of Proposition 3.2, from Remark 4.26 of [5] it follows that Hi ,!hG for iD1; 2; : : : ; n.
By Theorem 2.8, we can define a finite-valued, proper metric zdi on Hi , for i D
1; 2; : : : ; n, satisfying

(2) zdi .x; y/� ydi .x; y/

for all x; y 2Hi .

We can extend both ydi and zdi to all cosets gHi of Hi by setting zdi .gx; gy/D zdi .x; y/
and ydi .gx; gy/ D ydi .x; y/ for all x; y 2 Hi . Let bdiam (resp. ediam ) denote the
diameter of a subset of Hi or a coset of Hi with respect to the ydi (resp. zdi ) metric.

Let
Y D fkHi j k 2K; i D 1; 2; : : : ; ng
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x

y y0
e

Y D gHi

p
q

Figure 4: The bold red edge e denotes a single edge labeled by an element of H

be the set of cosets of all Hi in K . We think of cosets of Hi as a subset of vertices of
�.G;Z tH/.

For each Y 2 Y and A;B 2 YnfY g, define

(3) d�Y .A;B/D
ediam.projY .A/[ projY .B//;

where projY .A/ is as in Definition 3.5. The fact that (3) is well-defined will follow
from Lemma 3.6 and Lemma 3.8, which are proved below. We will also proceed to
verify the axioms (A1)–(A4) of the Bestvina–Bromberg–Fujiwara construction in the
above setting.

Lemma 3.6 For any Y 2 Y and any x 2G , ediam.projY .x//� 3C , where C is the
constant as in Lemma 2.4. As a consequence, ediam.projY .x// is bounded.

Proof By (2), it suffices to prove that bdiam.projY .x// is bounded. Let y; y0 2
projY .x/. Then dZtH.x; y/D dZtH.x; y0/D dZtH.x; Y /. Without loss of generality,
x … Y , or else the diameter is zero.

Let Y D gHi . Let e denote the edge connecting y and y0 , which is labeled by an
element of Hi . Let p and q denote geodesics between x and y and between x and y0 ,
respectively (see Figure 4).

Consider the geodesic triangle T with sides e; p; q . Since p and q are geodesics
between the point x and Y , e is an isolated component in T , ie e cannot be connected
to either p or q . Indeed, if e is connected to, say, a component of p , then since eC
and e� are in Y , it would imply that the geodesic p passes through a point of Y
before y . But then y is not the nearest point from Y to x , which is a contradiction.
By Lemma 2.4, ydi .y; y0/� 3C . Hence

bdiam.projY .x//� 3C:
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AD fHj

Y D gHi

q
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y1 y2

e

f

Figure 5: Lemma 3.8

Remark 3.7 Observe that in the previous lemma, we proved the following fact: If
x is a point in G and y 2 projY .x/, then every geodesic path p between x and y
satisfies the property that no vertex of p , except for y , can belong to the coset Y . We
will use this fact repeatedly in the following lemmas.

Lemma 3.8 For every pair of distinct elements A; Y 2 Y, bdiam.projY .A// � 4C ,
where C is the constant as in Lemma 2.4. As a consequence, ediam.projY .A// is
bounded.

Proof Let Y D gHi and A D fHj . Let y1; y2 2 projY .A/. Then there exist
a1; a22A such that dZtH.a1; y1/DdZtH.a1; Y / and dZtH.a2; y2/DdZtH.a2; Y /.
Now y1 and y2 are connected by a single edge e , labeled by an element of Hi , and
similarly, a1 and a2 are connected by an edge f , labeled by an element of Hj (see
Figure 5). Let p and q be geodesics that connect y1 to a1 and y2 to a2 , respectively.
We note that p and/or q may be trivial paths (consisting of a single point), but this
does not alter the proof.

Consider e in the quadrilateral Q with sides p; f; q; e . By Remark 3.7, e cannot be
connected to a component of p or q .

If i D j , then e cannot be connected to f since A¤ Y . If i ¤ j , then obviously e
and f cannot be connected. Thus e is isolated in this quadrilateral Q . By Lemma 2.4,
ydi .y1; y2/� 4C . Thus

bdiam.projY .A//� 4C:

Corollary 3.9 The function d�Y defined by (3) is well-defined.
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Proof Since the zdi metric takes finite values for i D 1; 2; : : : ; n, using Lemma 3.8,
we have that d�Y also takes only finite values.

Lemma 3.10 The function d�Y defined by (3) satisfies conditions (A1) and (A2) in
Definition 3.3.

Proof (A1) is obviously satisfied. For any Y 2 Y and any A;B;C 2 YnfY g, by the
triangle inequality, we have that

d�Y .A; C /D
ediam.projY .A/[ projY .C //

� ediam.projY .A/[ projY .B//C ediam.projY .B/[ projY .C //

D d�Y .A;B/C d
�
Y .B; C /:

Thus (A2) also holds.

Lemma 3.11 The function d�Y from (3) satisfies condition (A3) in Definition 3.3 for
any � > 14C , where C is the constant from Lemma 2.4

Proof By (2), it suffices to prove that

min
˚ bdiam.projY .A/[ projY .B//; bdiam.projB.A/[ projB.Y //

	
< �:

Let A;B 2 YnfY g be distinct. Let Y D gHi , AD fHj and B D tHk . If

bdiam.projY .A/[ projY .B//� 14C;

then we are done. So suppose that

(4) bdiam.projY .A/[ projY .B/// > 14C:

Choose a 2 A, b 2 B and x; y 2 Y such that dZtH.A; Y / D dZtH.a; x/ and
dZtH.B; Y /D dZtH.b; y/. In particular,

(5) x 2 projY .A/; y 2 projY .B/

and b2projB.Y /. Let p; q denote geodesics connecting a to x and b to y , respectively.
Let h1 denote the edge connecting x and y , which is labeled by an element of Hi .

By (5), we have that

bdiam.projY .A/[ projY .B//� bdiam.projY .A//C bdiam.projY .B//C ydi .x; y/:

Combining this with (4) and Lemma 3.8, we get

ydi .x; y/� bdiam.projY .A/[ projY .B//� bdiam.projY .A//� bdiam.projY .B//

> 14C � 8C D 6C:
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Y D gHi

AD fHj B D tHk
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h0r

Figure 6: Condition (A3)

Choose any a0 2 A and b0 2 projB.a
0/. Then dZtH.a0; B/ D dZtH.a0; b0/ (see

Figure 6). (Note that if a0 D a , the following arguments still hold.) Let h2 and h3
denote the edges connecting a to a0 and b to b0 , which are labeled by elements of
Hj and Hk , respectively. Let r denote a geodesic connecting a0 and b0 . Consider
the geodesic hexagon W with sides p; h1; q; h3; r; h2 . Then h1 is not isolated in W ;
otherwise, by Lemma 2.4, ydi .x; y/� 6C , a contradiction.

Thus h1 is connected to another Hi–component in W . By Remark 3.7, h1 cannot
be connected to a component of p or q . Since A;B; Y are all distinct, h1 cannot
be connected to h2 or h3 . So h1 must be connected to an Hi–component on the
geodesic r . Let this edge be h0 , with endpoints u and v , as shown in Figure 6. Let s
denote the edge (labeled by an element of Hi ) that connects y and v . Let r 0 denote
the segment of r that connects v to b0 . Then r 0 is also a geodesic.

Consider the quadrilateral Q with sides r 0; h3; q; s . By using arguments similar to
those in the previous paragraph, h3 cannot be connected to r 0; q or s . Thus h3 is
isolated in Q . By Lemma 2.4,

ydk.b; b
0/� 4C:

Since the above argument holds for any a0 2 A and for b0 2 projB.A/, we have that
ydk.b; b

0/� 4C . Using Lemma 3.8 (see Figure 7), we get that

bdiam.projB.Y /[ projB.A//� 4C C 4C D 8C < �:

Lemma 3.12 The function d�Y defined by (3) satisfies condition (A4) in Definition 3.3,
for � > 14C , where C is the constant from Lemma 2.4
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B D tHk

projB.A/ projB.Y /
b0 b c

� 4C
� 4C

Figure 7: Estimating the distance between arbitrary points b0 and c of
projB.A/ and projB.Y /

Proof If d�Y .A;B/� � , then by (2),

bdiam.projY .A/[ projY .B//� d
�
Y .A;B/� �:

Thus it suffices to prove that the number of elements Y 2 Y satisfying

(6) bdiam.projY .A/[ projY .B//� �

is finite. Let A;B 2 Y , AD fHj and B D tHk . Let Y 2 YnfA;Bg, Y D gHi . Let
a0 2 A, b0 2 projB.a

0/. By repeating the computations in Lemma 3.11, we can show
that if Y is such that bdiam.projY .A/[ projY .B// � � , then for any a 2 A, b 2 B ,
x 2 projY .a/, y 2 projY .b/, we have that ydi .x; y/ > 6C .

Let h1 denote the edge connecting x; y , which is labeled by an element of Hi (see
Figure 8). Let h2 denote the edge connecting a; a0 , which is labeled by an element
of Hj , and let h3 denote the edge connecting b; b0 , which is labeled by an element
of Hk . Let p be a geodesic between a; x , let q be a geodesic between b; y and let r
be a geodesic between a0; b0 . As argued in Lemma 3.11, we can show that h1 cannot
be isolated in the hexagon W with sides p; h1; q; h2; r; h3 and must be connected to
an Hi–component of r , say the edge h0 .

We claim that the edge h0 uniquely identifies Y . Indeed, let Y 0 be a member of Y , with
elements x0; y0 connected by an edge e (labeled by an element of the corresponding
subgroup). Suppose that e is connected to h0 . Then we must have that Y 0 is also a
coset of Hi . But cosets of a subgroup are either disjoint or equal, so Y D Y 0 . Thus, the
number of Y 2 Y satisfying (6) is bounded by the number of distinct Hi–components
of r , which is finite.

3.3 Choosing a relative generating set

We now have the necessary details to choose a relative generating set X which will
satisfy conditions (a) and (b) of Proposition 3.2. This set will later be altered slightly
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Figure 8: Condition (A4)

to obtain another relative generating set which will satisfy all three conditions of
Proposition 3.2. We will repeat arguments similar to those made by Dahmani, Guirardel
and Osin in [5, pages 60–63].

Recall that HD
Fn
iD1Hi and that Z is the relative generating set for this collection

of subgroups such that fH1;H2; : : : ;Hng ,!h .G;Z/. Let PJ .Y / be the projection
complex corresponding to the vertex set Y as specified in Section 3.2, where the constant
J is as in Proposition 3.4, ie PJ .Y / is connected and a quasi-tree. Let dP denote the
combinatorial metric on PJ .Y /. Our definition of projections is K–equivariant and
hence the action of K on Y extends to a cobounded action of K on PJ .Y /.

In what follows, by considering Hi to be vertices of the projection complex PJ .Y /,
we denote by star.Hi / the set˚
e is an edge in PJ .Y / j e connects Hi to kHj for some k 2K and 1� j � n

	
:

We choose the set X in the following manner. For all i D 1; 2; : : : ; n and each edge
e in star.Hi / in PJ .Y / that connects Hi to kHj , choose all elements xe 2HikHj
such that

dZtH.1; xe/D dZtH.1;HikHj /:

We say that all such xe have type .i; j /. Since Hi �K for all i , xe 2K . We observe
the following:
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(a) For each xe of type .i; j / as above, there is an edge in PJ .Y / connecting Hi
and xeHj . Indeed if xe D h1kh2 for h1 2Hi and h2 2Hj , then

dP .Hi ; xeHj /D dP .Hi ; h1kh2Hj /D dP .Hi ; h1kHj /

D dP .h
�1
1 Hi ; kHj /D dP .Hi ; kHj /

D 1:

(b) For each edge e connecting Hi and kHj , there is a dual edge f connecting
Hj and k�1Hi . Thus for every element xe of type .i; j /, there is an element
xf D .xe/

�1 of type .j; i/. In particular, the set given by

(7) X D fxe ¤ 1 j e 2 star.Hi /; i D 1; 2; : : : ; ng

is symmetric, ie closed under taking inverses. Obviously, X �K .

(c) If xe 2X is of type .i; j /, then xe is not an element of Hi or Hj . Indeed, if
xe D h1kh2 for some h1 2Hi and some h2 2Hj and xe is an element of Hi
or Hj , then k D hf for some h 2Hi and some f 2Hj . Consequently

dZtH.1;HikHj /D dZtH.1;HiHj /D 0D dZtH.1; xe/;

which implies xe D 1, which is a contradiction to (7).

Lemma 3.13 (cf [5, Lemma 4.49]) The subgroup K is generated by X together with
the union of all the Hi . Further, the Cayley graph �.K;X tH/ is quasi-isometric to
PJ .Y /, and hence a quasi-tree.

Proof Let † D fH1;H2; : : : ;Hng � Y . Let diam.†/ denote the diameter of the
set † in the combinatorial metric dP . Since † is a finite set, diam.†/ is finite. Define

�W K! Y ; �.k/D kH1:

By property (a) above, if xe 2X is of type .i; j /,

dP .xeH1;H1/� dP .xeH1; xeHj /C dP .xeHj ;Hi /C dP .Hi ;H1/

D dP .H1;Hj /C 1C dP .Hi ;H1/

� 2 diam.†/C 1:

Further, for h 2Hi ,

dP .hH1;H1/� dP .hH1; hHi /C dP .hHi ;H1/

D dP .H1;Hi /C dP .Hi ;H1/

� 2 diam.†/:
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v0 DH1

vr D gH1

v1 v2

vr�1

. . .

p

Figure 9: The geodesic p

Thus, for all g 2 hX [H1[H2[ � � � [Hni, we have

(8) dP .�.1/; �.g//� .2 diam.†/C 1/jgjXtH;

where jgjXtH denotes the length of g in the generating set X [H1[H2[ � � � [Hn .
(We use this notation for the sake of uniformity).

Now let g 2K and suppose dP .�.1/; �.g//D r , ie dP .H1; gH1/D r . If r D 0, then
H1 D gH1 , thus g 2H1 and jgjXtH � 1. If r > 0, consider a geodesic p in PJ .Y /
connecting H1 and gH1 . Let

v0 DH1 D g0H1 .g0 D 1/;

v1 D g1H�1
;

v2 D g2H�2
;

:::

vr�1 D gr�1H�r�1
;

vr D gH1 .gr D g/

be the sequence of vertices of p , for some �j 2 f1; 2; : : : ; ng and some gi 2K (see
Figure 9).

Now giH�i
is connected by a single edge to giC1H�iC1

. Thus

dP .giH�i
; giC1H�iC1

/D 1;

which implies
dP .H�i

; g�1i giC1H�iC1
/D 1:

Then there exists x 2X such that

x 2H�i
g�1i giC1H�iC1

and dZtH.1; x/D dZtH.1;H�i
g�1i giC1H�iC1

/:

Thus x D hg�1i giC1k for some h 2 H�i
and some k 2 H�iC1

which implies
g�1i giC1 D h

�1xk�1 . So jg�1i giC1jXtH � 3, which implies

(9) jgjXtH D

ˇ̌̌̌ rY
iD1

g�1i�1gi

ˇ̌̌̌
XtH

�

rX
iD1

jg�1i�1gi jXtH � 3r D 3dP .�.1/; �.g//:
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The above argument also provides a representation for every element g 2 K as a
product of elements from X [H1[H2[ � � �[Hn . Thus K is generated by the union
of X and all the Hi . By (8) and (9), � is a quasi-isometric embedding of .K; j � jXtH/
into .PJ .Y /; dP / satisfying

1
3
jgjXtH � dP .�.1/; �.g//� .2 diam.†/C 1/jgjXtH:

Since Y is contained in the closed diam.†/–neighborhood of �.K/, � is a quasi-
isometry. This implies that �.K;X tH/ is a quasi-tree.

Let zdi denote the modified relative metric on Hi associated with the Cayley graph
�.G;Z tH/ from Theorem 2.8. Let �dX

i denote the relative metric on Hi associated
with the Cayley graph �.K;X tH/. We will now show that �dX

i is proper for all
i D 1; 2; : : : ; n. We will use the fact that zdi is proper and derive a relation between zdi
and �dX

i .

Lemma 3.14 (cf [5, Lemma 4.50]) There exists a constant ˛ such that for any Y 2Y
and any x 2X tH , if

ediam.projY f1; xg/ > ˛;

then x 2Hj and Y DHj for some j .

Proof We prove the result for

˛ DmaxfJ C 2�; 6C g:

Suppose that ediam.projY f1; xg/ > ˛ and x 2X has type .k; l/, ie there exists an edge
connecting Hk and gHl in PJ .Y /, where g 2K . We consider three possible cases
and arrive at a contradiction in each case.

Case 1 (Hk ¤ Y ¤ xHl ) Then

ediam.projY f1; xg/� d
�
Y .Hk; xHl/� dY .Hk; xHl/C 2� � J C 2� � ˛;

using (1) and the fact that Hk and xHl are connected by an edge in PJ .Y /, which is
a contradiction.

Case 2 (Hk D Y ) Since x …Hk , let y 2 projY .x/, ie

dZtH.x; y/D dZtH.x;Hk/D dZtH.x; Y /:
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By Lemma 3.6, if ydk.1; y/� 3C , then

bdiam.projY f1; xg/� bdiam.projY .1//C bdiam.projY .x//C ydk.projY .1/; projY .x//

� 0C 3C C ydk.1; y/

� 6C � ˛:

Then by (2), we have
ediam.projY f1; xg/� ˛;

which is a contradiction. Thus ydk.1; y/ > 3C . This implies that 1 … projY .x/ (see
Figure 10). By definition of the nearest point projection, dZtH.1; x/ > dZtH.y; x/,
which implies dZtH.1; x/ > dZtH.1; y�1x/. Since y�1x 2 HkgHl , we obtain
dZtH.1; x/ > dZtH.1;HkgHl/, which is a contradiction to the choice of x .

x

y 1

Hk D Y

Figure 10: Case 2

Case 3 (Y D xHl , Hk ¤ Y ) This case reduces to Case 2, since we can translate
everything by x�1 .

Thus we must have x 2Hj for some j . Suppose that Hj ¤ Y . But then

ediam.projY f1; xg/� ediam.projY .Hj //� 4C � ˛;

by Lemma 3.8, which is a contradiction.

Lemma 3.15 (cf [5, Lemma 4.45]) If Hi D fHj , then Hi D Hj and f 2 Hi .
Consequently, if gHi D fHj , then Hi DHj and g�1f 2Hi .

Proof If Hi D fHj , then 1D f k for some k 2Hj . Then f D k�1 2Hj , which
implies Hi DHj .

Lemma 3.16 (cf [5, Theorem 4.42]) For i D 1; 2; : : : ; n and any h 2Hi , we have

˛ �dX

i .1; h/�
zdi .1; h/;

where ˛ is the constant from Lemma 3.14. Thus �dX

i is proper.

Algebraic & Geometric Topology, Volume 17 (2017)



2170 Sahana H Balasubramanya

e hD vrv0 D 1

v1

v2

v3

. . .

vr�1

x1

x2

x3

. . .

xr

Figure 11: The cycle ep

Proof Let h2Hi be such that �dX

i .1; h/D r . Let e denote the Hi–edge in the Cayley
graph �.K;X tH/ connecting h to 1, labeled by h�1 . Let p be an admissible (see
Definition 2.1) path of length r in �.K;X tH/ connecting 1 and h. Then ep forms
a cycle (see Figure 11). Since p is admissible, e is isolated in this cycle.

Let Lab.p/D x1x2 � � � xr for some x1; x2; : : : ; xr 2X tH . Let

v0 D 1; v1 D x1; v2 D x1x2; : : : ; vr D x1x2 � � � xr D h:

Since these are also elements of G , for k D 1; 2; : : : ; r we have

ediam.projHi
fvk�1; vkg/D ediam.projHi

fx1x2 � � � xk�1; x1x2 � � � xk�1xkg/

D ediam.projY f1; xkg/;

where Y D .x1x2 � � � xk�1/�1Hi .

If ediam.projY f1; xkg/ > ˛ for some k , then by Lemma 3.14, xk 2Hj and Y DHj
for some j . By Lemma 3.15, Hi DHj and x1x2 � � � xk�1 2Hj . But then e is not
isolated in the cycle ep , which is a contradiction.

Hence
ediam.projHi

fvk�1; vkg/� ˛

for all k D 1; 2; : : : ; r , which implies

zdi .1; h/� ediam.projHi
fv0; vrg/

�

rX
jD1

ediam.projHi
fvj�1; vj g/

� r˛ D ˛ �dX

i .1; h/:

3.4 Proof of Proposition 3.2

The goal of this section is to alter our relative generating set X from Section 3.3,
so that we obtain another relative generating set that satisfies all the conditions of
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Proposition 3.2. To do so, we need to establish a relation between the set X and the
set Z . We will need the following obvious lemma.

Lemma 3.17 Let X and Y be generating sets of G , and suppose that

sup
x2X

jxjY <1 and sup
y2Y

jyjX <1:

Then �.G;X/ is quasi-isometric to �.G; Y /. In particular, �.G;X/ is a quasi-tree if
and only if �.G; Y / is a quasi-tree.

Remark 3.18 This lemma implies that if we change a generating set by adding finitely
many elements, then the property that the Cayley graph is a quasi-tree still holds.

We also need to note that from (1) in Definition 3.3, it easily follows that for each
Y 2 Y and every A;B 2 YnfY g, we have

(10) dY .A;B/� d
�
Y .A;B/C 2�:

Lemma 3.19 For a large enough J , the set X constructed in Section 3.3 satisfies
the following property: if z 2 Z \K does not represent an element of Hi for any
i D 1; 2; : : : ; n, then z 2X .

Proof Recall that dZtH denotes the combinatorial metric on �.G;Z t H/. Let
z 2 Z \ K be as in the statement of the lemma. Then z 2 HizHi for all i and
1 …HizHi . Thus

dZtH.1;HizHi /� 1D dZtH.1; z/� dZtH.1;HizHi /;

which implies
dZtH.1;HizHi /D dZtH.1; z/ for all i:

In order to prove z 2 X , we must show that Hi and zHi are connected by an edge
in PJ .Y /. By Definition 3.3, this is true if

dY .Hi ; zHi /� J for all Y ¤Hi ; zHi :

In view of (10), we will estimate d�Y .Hi ; zHi /.

Let dZtH.h; x/D dZtH.Hi ; Y / and dZtH.f; y/D dZtH.zHi ; Y / for some h 2Hi ,
f 2 zHi and for some x; y 2 Y D gHj . Let p be a geodesic connecting h and x ,
and let q be a geodesic connecting y and f . Let h2 denote the edge connecting x
and y , labeled by an element of Hj . Similarly, let s; t denote the edges connecting h
to 1 and z to f respectively, which are labeled by elements of Hi . Let e denote the
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Y D gHj

Hi zHie

x
y

h

1 z

f

s t

p q

h2

Figure 12: Dealing with elements of Z \K that represent elements of H

edge connecting 1 and z , labeled by z . Consider the geodesic hexagon W with sides
p; h2; q; t; e; s (see Figure 12).

By using Remark 3.7 and the fact that Y ¤ Hi ; zHi , we can show that h2 cannot
be connected to q , p , s or t . Since z does not represent an element of Hi for
any i, h2 cannot be connected to e . Thus, h2 is isolated in W . By Lemma 2.4,
ydj .x; y/� 6C . By Lemma 3.8,

dY .Hi ; zHi /� d
�
Y .Hi ; zHi /C 2� � 14C C 2�:

We conclude that by taking the constant J to be sufficiently large so that Proposition 3.4
holds and J exceeds 14C C 2� , we can ensure that z 2X and the arguments of the
previous section still hold.

Lemma 3.20 There are only finitely many elements of Z \K that can represent an
element of Hi for some i 2 f1; 2; : : : ; ng.

Proof Let z 2Z \K represent an element of Hi for some i D 1; 2; : : : ; n. Then in
the Cayley graph �.G;ZtH/, we have a bigon between the elements 1 and h, where
one edge is labeled by z and the other edge is labeled by an element of Hi , say h1
(see Remark 2.2 and Figure 13).

This implies that ydi .1; z/ � 1, so zdi .1; z/ � 1. But then z 2 �Bi .1; 1/, ie the ball of
radius 1 in the subgroup Hi in the relative metric, centered at the identity. But this is a
finite ball. Take

�D

ˇ̌̌̌ n[
iD1

�Bi .1; 1/ˇ̌̌̌:
Then z has at most � choices, which is finite.
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1 z

z

h1

Figure 13: Bigons in the Cayley graph

By Lemma 3.20 and by selecting the constant J as specified in Lemma 3.19, we
conclude that the set X from Section 3.3 does not contain at most finitely many
elements of Z\K . By adding these finitely many remaining elements of Z\K to X ,
we obtain a new relative generating set X 0 such that jX 0�X j<1. By Lemma 2.11,
fH1;H2; : : : ;Hng ,!h .K;X

0/ and Z \K �X 0 . By Remark 3.18, �.K;X 0 tH/ is
also a quasi-tree. Thus X 0 is the required set in the statement of Proposition 3.2, which
completes the proof.

3.5 Applications of Theorem 3.1

In order to prove Theorem 1.7, we first need to recall the following definitions.

Definition 3.21 (loxodromic element) Let G be a group acting on a hyperbolic
space S . An element g 2 G is called loxodromic if the map Z ! S defined by
n 7! gns is a quasi-isometric embedding for some (equivalently, any) s 2 S .

Definition 3.22 (elementary subgroup [5, Lemma 6.5]) Let G be a group acting
acylindrically on a hyperbolic space S and g 2G a loxodromic element. Then g is
contained in a unique maximal elementary subgroup E.g/ of G given by

E.g/D fh 2G j dHau.l; h.l// <1g;

where dHau denotes the Hausdorff distance and l is a quasi-geodesic axis of g in S .

Corollary 3.23 A group G is acylindrically hyperbolic if and only if G has an
acylindrical and non-elementary action on a quasi-tree.

Proof If G has an acylindrical and non-elementary action on a quasi-tree, Theorem 2.9
implies that G is acylindrically hyperbolic. Conversely, let G be acylindrically hy-
perbolic, with an acylindrical non-elementary action on a hyperbolic space X . Let
g be a loxodromic element for this action. By Lemma 6.5 of [5] the elementary
subgroup E.g/ is virtually cyclic and thus countable. By Theorem 6.8 of [5], E.g/
is hyperbolically embedded in G . Taking K DG and E.g/ to be the hyperbolically
embedded subgroup in the statement of Theorem 3.1 now gives us the result. Since
E.g/ is non-degenerate, by Lemma 5.12 of [12], the resulting action of G on the
associated Cayley graph �.G;X tE.g// is also non-elementary.
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The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.24 Let fH1;H2; : : : ;Hng be a finite collection of countable subgroups
of a group G such that fH1;H2; : : : ;Hng ,!h G . Let K be a subgroup of G . If
Hi �K for all i D 1; 2; : : : ; n, then fH1;H2; : : : ;Hng ,!h K .

Definition 3.25 Let .M; d/ be a geodesic metric space, and � > 0 a fixed constant. A
subset S �M is said to be �–coarsely connected if for any two points x; y in S , there
exist points x0 D x; x1; x2; : : : ; xn�1; xn D y in S such that for all i D 0; : : : ; n� 1,

d.xi ; xiC1/� �:

We say that S is coarsely connected if it is �–coarsely connected for some � > 0.

Recall that we denote the closed �–neighborhood of S by SC� .

Definition 3.26 Let .M; d/ be a geodesic metric space, and � > 0 a fixed constant. A
subset S�M is said to be �–quasi-convex if for any two points x; y in S , any geodesic
connecting x and y is contained in SC� . Further, we say that S is quasi-convex if it
is �–quasi-convex for some � > 0.

Corollary 3.27 Let H be a finitely generated subgroup of an acylindrically hyperbolic
group G . Then there exists a subset X �G such that

(a) �.G;X/ is hyperbolic, and the action of G on �.G;X/ is non-elementary and
acylindrical, and

(b) H is quasi-convex in �.G;X/.

To prove this corollary, we need the following two lemmas.

Lemma 3.28 Let T be a tree, and let Q � T be �–coarsely connected. Then Q is
�–quasi-convex.

Proof Let � > 0 be the constant from Definition 3.25. Let x; y be two points in Q
and p be any geodesic between them. Then there exist points x0 D x; x1; x2; : : : ,
xn�1; xn D y in Q such that d.xi ; xiC1/� � for all i D 0; : : : ; n� 1. Let pi denote
the geodesic segments between xi and xiC1 for i D 0; 1; : : : ; n�1. Since T is a tree,
we must have that

p �

n�1[
iD0

pi :
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By definition, pi �B.xi ; �/, the ball of radius � centered at xi , for i D 0; 1; : : : ; n�1.
Since xi 2Q for i D 0; 1; : : : ; n� 1, we obtain

pi �Q
C�:

This implies p �QC� .

Lemma 3.29 Let � be a quasi-tree, and S � � be coarsely connected. Then S is
quasi-convex.

Proof Let T be a tree such that � is quasi-isometric to T . Let d� and dT denote
distances in � and T , respectively. Let ı > 0 be the hyperbolicity constant of � . Let
qW T ! � be a .�; C /–quasi-isometry, ie

�C C
1

�
dT .a; b/� d�.q.a/; q.b//� �dT .a; b/CC:

Let � > 0 be the constant from Definition 3.25 for S . Set QD q�1.S/. Then Q� T .
It is easy to check that Q is �–coarsely connected with constant �D �.�CC/. By
Lemma 3.28, Q is �–quasi-convex.

Let x; y be two points in S and p be a geodesic between them. Choose points a; b
in Q such that q.a/ D x and q.b/ D y . Let r denote the (unique) geodesic in T
between a and b . Since Q is �–quasi-convex, we have

r �QC�:

Set � D ��CC . Then
q.r/� SC� :

Further, q ı r is a quasi-geodesic between x and y . By Lemma 2.17, there exists a
constant R D R.�; C; ı/ such that q.r/ and p are Hausdorff distance less than R
from each other. This implies that p � SC.RC�/ . Thus S is quasi-convex.

Proof of Corollary 3.27 By Corollary 3.23, there exists a generating set X of G
such that �.G;X/ is a quasi-tree (hence hyperbolic) and the action of G on �.G;X/
is acylindrical and non-elementary. Let dX denote the metric on �.G;X/ induced by
the generating set X . Let H D hx1; x2; : : : ; xni. Set

� DmaxfdX .1; x˙1i / j i D 1; 2; : : : ; ng:

We claim that H is coarsely connected with constant � . Indeed if u; v are elements
of H , then u�1v D

Qk
jD1wj , where wj 2 fx˙11 ; : : : ; x˙1n g. Set

z0 D u; z1 D uw1; : : : ; zk�1 D uw1w2 � � �wk�1; zk D v:
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Clearly zi 2H for all i D 0; 1; : : : ; k� 1. Further,

dX .zi ; ziC1/D dX .1; wiC1/� �

for all i D 0; 1; : : : ; k� 1. By Lemma 3.29, H is quasi-convex in �.G;X/.
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