
msp
Algebraic & Geometric Topology 17 (2017) 2177–2237

Translation surfaces and the curve graph in genus two

DUC-MANH NGUYEN

Let S be a (topological) compact closed surface of genus two. We associate to
each translation surface .X; !/ 2 �M2 D H.2/ tH.1; 1/ a subgraph yCcyl of the
curve graph of S . The vertices of this subgraph are free homotopy classes of curves
which can be represented either by a simple closed geodesic or by a concatenation
of two parallel saddle connections (satisfying some additional properties) on X .
The subgraph yCcyl is by definition GLC.2;R/–invariant. Hence it may be seen as
the image of the corresponding Teichmüller disk in the curve graph. We will show
that yCcyl is always connected and has infinite diameter. The group AffC.X; !/ of
affine automorphisms of .X; !/ preserves naturally yCcyl , we show that AffC.X; !/
is precisely the stabilizer of yCcyl in Mod.S/ . We also prove that yCcyl is Gromov-
hyperbolic if .X; !/ is completely periodic in the sense of Calta.

It turns out that the quotient of yCcyl by AffC.X; !/ is closely related to McMullen’s
prototypes in the case that .X; !/ is a Veech surface in H.2/ . We finally show that
this quotient graph has finitely many vertices if and only if .X; !/ is a Veech surface
for .X; !/ in both strata H.2/ and H.1; 1/ .

51H20; 54H15

1 Introduction

1.1 The curve complex

Let S be a compact surface. The curve complex of S is a simplicial complex whose
vertices are free homotopy classes of essential simple closed curves on S , and k –
simplices are defined to be the sets of (homotopy classes of) kC 1 curves that can be
realized pairwise disjointly on S . This complex was introduced by Harvey [20] in order
to use its combinatorial structure to encode the asymptotic geometry of the Teichmüller
space. It turns out that its geometry is intimately related to the geometry and topology
of Teichmüller space; see eg Rafi [43]. The curve complex has now become a central
subject in Teichmüller theory, low-dimensional topology, and geometric group theory.
Note that this complex is quasi-isometric to its 1–skeleton, which is referred to as the
curve graph of S . In this paper we will denote the curve graph by C.S/.
The mapping class group Mod.S/ naturally acts on the curve complex by isomorphisms.
In most cases, all automorphisms of the curve complex are induced by elements
of Mod.S/; see Ivanov [24] and Luo [31]. Based on this relation, topological and
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combinatorial properties of the curve complex have been used to study the mapping class
group, for example in Harer [19] and Bestvina and Fujiwara [2]. Masur and Minsky [33]
showed that the curve graph (and the curve complex) is Gromov-hyperbolic; see also
Bowditch [6]. A stronger result, that the hyperbolicity constant is independent of the
surface S , has recently been proved simultaneously by several people: Aougab [1],
Bowditch [7], Clay, Rafi and Schleimer [12], and Hensel, Przytycki and Webb [21]. Its
boundary at infinity has been studied by Klarreich [27] and Hamenstädt [16]. Those
results have led to numerous applications and a fast growing literature on the subject.
In particular, the hyperbolicity of the curve graph has been exploited in the resolution
of the ending lamination conjecture by Brock, Canary and Minsky [8]. For a nice
survey on the curve complex and its applications we refer to Bowditch [5].

1.2 Teichmüller disks and translation surfaces

Another important notion in Teichmüller theory are the Teichmüller disks. These are
isometric embeddings of the hyperbolic disk H in the Teichmüller space. Such a disk
can be viewed as a complex geodesic generated by a quadratic differential q on a
Riemann surface X . This quadratic differential defines a flat metric structure on X

with conical singularities such that the holonomy of any closed curve on X belongs to
the subgroup f˙Idg �R2 of Isom.R2/. If this quadratic differential is the square of a
holomorphic 1–form ! on X , then the holonomy of any closed curve is a translation
of R2 , and we have a translation surface .X; !/.

Using the flat metric viewpoint, one can easily define a natural action of GLC.2;R/
on the space of translation surfaces as follows: given a matrix A 2 GLC.2;R/ and an
atlas f�i j i 2 Ig defining a translation surface structure, we get an atlas for another
translation surface structure defined by fAı�i j i 2 Ig. The Teichmüller disk generated
by a holomorphic 1–form .X; !/ is precisely the projection into the Teichmüller space
of its GLC.2;R/–orbit. Translations surfaces and their GLC.2;R/–orbit also arise in
different contexts such as dynamics of billiards in rational polygons, interval exchange
transformations and pseudo-Anosov homeomorphisms.

The importance of the GLC.2;R/–action is related to the fact that the GLC.2;R/–orbit
closure of a translation surface encodes information on its geometric and dynamical
properties. A remarkable illustration of this phenomenon is the famous Veech di-
chotomy, which states that if the stabilizer of .X; !/ for the action of GLC.2;R/ is
a lattice in SL.2;R/, then the linear flow in any direction on X is either periodic or
uniquely ergodic. By a result of Smillie (see [49; 46]) the stabilizer of .X; !/, denoted
by SL.X; !/, is a lattice in SL.2;R/ if and only if the GLC.2;R/–orbit of .X; !/
is a closed subset of the moduli space. For more details on translation surfaces and
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related problems we refer to the excellent surveys by Masur and Tabachnikov [35] and
Zorich [53].

The group SL.X; !/ is closely related to the subgroup of the mapping class group
that stabilizes the Teichmüller disk generated by .X; !/. This subgroup consists of
elements of Mod.S/ that are realized by homeomorphisms of X preserving the set
of singularities (for the flat metric), and given by affine maps in local charts of the
flat metric structure. This subgroup is denoted by AffC.X; !/. There is a natural
homomorphism from AffC.X; !/ to SL.X; !/ which associates to each element of
AffC.X; !/ its derivative. It is not difficult to see that this homomorphism is surjective
and has finite kernel. The study of AffC.X; !/ and SL.X; !/ is a recurrent theme
in the theory of dynamics in Teichmüller space; see eg McMullen [36], Hubert and
Schmidt [23], Hubert and Lanneau [22], Möller [40] and Lehnert [30].

1.3 The flat metric and curve complex

Consider now the flat metric defined by a holomorphic 1–form ! on a (compact)
Riemann surface X . By compactness, there exists a curve of minimal length in the
free homotopy class of any essential simple closed curve. In general this curve of
minimal length may not be a geodesic as it may contain some singularity in its interior.
Nevertheless, following a result by Masur [32], we know that there are infinitely many
curves that can be realized as simple closed geodesics for ! . Thus .X; !/ specifies a
subset of vertices of C.S/. Note that unlike the situation of hyperbolic surfaces, closed
geodesics of minimal length are not unique in their homotopy class. They actually arise
in family, that is, simple closed geodesics in the same homotopy class fill out a subset
of X which is isometric to .R=cZ/� .0; h/. We will call such a subset a geometric
cylinder, and the corresponding simple closed geodesics its core curves.

Mimicking the construction of the curve graph, we can add an edge between two
vertices representing two cylinders if there exist two curves, one in each homotopy
class, that can be realized disjointly (this condition is equivalent to requiring that the
corresponding geodesics for the flat metric are disjoint). Thus, for each translation
surface, we have a subgraph Ccyl of the curve graph.

Let A be a matrix in GLC.2;R/, and consider the surface .X 0; !0/ WD A � .X; !/.
Since the action of A preserves the affine structure, a geodesic on X corresponds
to a geodesic on X 0 and vice-versa. Therefore, the subgraphs associated to .X 0; !0/
and to .X; !/ are the same. This subgraph is actually associated to the Teichmüller
disk generated by .X; !/. As C.S/ can be viewed as the combinatorial model for
the Teichmüller space, Ccyl can be viewed as the counterpart of a Teichmüller disk
in this setting. By definition, elements of AffC.X; !/ preserve Ccyl and act on Ccyl
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by isomorphisms. As properties of the mapping class group can be studied via its
action on the curve complex, one can expect the knowledge about the combinatorial
and geometric structure of Ccyl to be useful for the study of AffC.X; !/.

1.4 Statement of results

The main purpose of this paper is to investigate Ccyl when X is a surface of genus
two. The reason for this restriction is the technical difficulties for the general cases.
Hopefully, the results and techniques used in this situation may inspire further results
in higher genera.

Recall that the moduli space of translation surfaces is naturally stratified by the zero
orders of the 1–form ! (or equivalently, the cone angles at the singularities). In genus
two, we have two strata: H.2/ which contains pairs .X; !/ such that ! has a unique
double zero, and H.1; 1/ which contains pairs .X; !/ such that ! has two simple
zeros. Our first result shows that the geometry of Ccyl does depend on the stratum
of .X; !/.

Theorem A (Theorem 2.6) If .X; !/ 2H.2/ then Ccyl contains no triangles, but if
.X; !/ 2H.1; 1/ then Ccyl always contains triangles.

Note that a triangle in Ccyl is a triple of simple closed pairwise disjoint curves that are
simultaneously realized as core curves of three cylinders in .X; !/.

From its definition, the geometric structure of the subgraph Ccyl depends very much on
the flat metric of .X; !/. It is not difficult to see that Ccyl is not connected in general;
see Section 3. To get a nicer subgraph of C.S/, we enlarge Ccyl by adjoining to it the
vertices of C.S/ representing degenerate cylinders. Roughly speaking, a degenerate
cylinder on X is a union of two saddle connections in the same direction such that
there are deformations of .X; !/ on which this union is freely homotopic to the core
curves of a geometric cylinder. We refer to Section 3 for a more precise definition. In
particular, any degenerate cylinder is freely homotopic to a simple closed curve. Thus
it corresponds to a vertex of C.S/.

We define yC .0/cyl to be the set of vertices of C.S/ that correspond to geometric cylinders
and degenerate cylinders in .X; !/. We then define yC .1/cyl to be the set of the edges
of C.S/ both of whose endpoints belong to yC .0/cyl . We thus get a subgraph yCcyl of C.S/.
By a slight abuse of notation, we will also call yCcyl the cylinder graph of .X; !/.
Subsequently, this subgraph will be the main object of our investigation. We summarize
the results concerning yCcyl in the following theorem:
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Theorem B For any .X; !/2H.1;1/tH.2/, the subgraph yCcyl is connected and has
infinite diameter. The subgroup of Mod.S/ that stabilizes yCcyl is precisely AffC.X; !/.
Moreover, if .X; !/ is completely periodic in the sense of Calta, then yCcyl is Gromov-
hyperbolic.

Theorem B actually comprises several statements, which are proved in Corollary 4.2,
Propositions 5.1 and 6.1 and Theorem 7.1. The contexts and precise statements will be
given in the corresponding sections.

We finally consider the quotient of yCcyl by the action of AffC.X; !/ in the case that
.X; !/ is a Veech surface, that is, SL.X; !/ is a lattice of SL.2;R/.

Theorem C Let G be the quotient of yCcyl by the group of affine automorphisms. Then
.X; !/ 2H.2/tH.1; 1/ is a Veech surface if and only if G has finitely many vertices.
For any Veech surface in H.2/ the set of edges of G is also finite. There exist Veech
surfaces in H.1; 1/ such that G has infinitely many edges.

The statements of Theorem C are proved in Theorem 8.1 and Proposition 8.2.

1.5 Outline

In Section 2 we recall standard notions concerning translation surfaces. We show some
geometric and topological features of translation surfaces of genus two. We end this
section with the proof of Theorem A.

In Section 3, we introduce the notion of degenerate cylinders and define the cylinder
graphs Ccyl and yCcyl . We show that yCcyl is connected and has infinite diameter in
Sections 4 and 5. These results follow from Theorem 4.1, which gives a bound on the
distance in yCcyl using the intersection number.

Section 6 is devoted to the proof of the fact that the stabilizer subgroup of yCcyl in
Mod.S/ is precisely the group of affine automorphisms.

In Section 7 we show that if .X; !/ is completely periodic in the sense of Calta,
then yCcyl is Gromov-hyperbolic. Our proof follows a strategy of Bowditch and uses a
hyperbolicity criterion by Masur and Schleimer.

We give the proof of Theorem C in Section 8. Finally, in Section 9, we give the
connection between the quotient graph GD yCcyl=AffC and the set of prototypes for
Veech surfaces in H.2/, which were introduced by McMullen [37].

Acknowledgements The author warmly thanks Arnaud Hilion for very helpful and
stimulating discussions.
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2 Preliminaries

In this section we will prove some topological properties of saddle connections and
cylinders on translation surfaces in genus two. The main result of this section is
Theorem 2.6.

Let .X; !/ be a translation surface. A saddle connection on X is a geodesic seg-
ment whose endpoints are singularities, but which contains no singularities in its
interior. A (geometric) cylinder of X is a subset C isometric to .R=cZ/� .0; h/, with
c; h 2R>0 , which is not properly contained in another subset with the same property.
The parameter c is called the circumference and h the width or height of this cylinder.

The isometry from .R=cZ/� .0; h/ to C can be extended by continuity to a map from
.R=cZ/� Œ0; h� to X . We will call the images of .R=cZ/�f0g and .R=cZ/�fhg the
boundary components of C . Each boundary component is a concatenation of some
saddle connections. It may happen that the two boundary components coincide as
subsets of X . We say that C is a simple cylinder if each of its boundary components
is a single saddle connection. It is worth noticing that on a translation surface of genus
two, every cylinder is invariant by the hyperelliptic involution. Therefore, the two
boundary components of any cylinder contain the same number of saddle connections.

Throughout this paper, for any cycle c 2 H1.X; fzeros of !gIZ/, we will use the
notation !.c/ WD

R
c ! , and for any saddle connection s , its euclidean length will be

denoted by jsj. Let us start by the following elementary lemma.

Lemma 2.1 Let .X; !/ be a translation surface in one of the hyperelliptic components
Hhyp.2g � 2/ or Hhyp.g � 1;g � 1/, and s be a saddle connection invariant by the
hyperelliptic involution � of X . We assume that s is not vertical. Then there exist a
parallelogram P D .P1P2P3P4/ in R2 and a locally isometric mapping 'W P !X

such that the following hold:

(a) The vertical lines through the vertices P3 and P4 intersect the diagonal P1P2 .

(b) The vertices of P are mapped to the singularities of X , and P1P2 is mapped
isometrically to s .

(c) The restriction of ' into int.P / is an embedding.

(d) Let � > 0 be the length of the vertical segment from P3 or P4 to a point in
P1P2 . Then for any vertical segment u in X from a singular point to a point
in s , we have juj � �, where juj is the euclidean length of u.

We will call P the embedded parallelogram associated to s .
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P1 P2

P3

P4

P 0
3

P 0
4

u�

uC

s

Figure 1: Here s D '.P1P2/ , uC D '.P3P 03/ , u� D '.P4P 04/ , and P D

.P1P2P3P4/ is the embedded parallelogram associated to s

Remark 2.2 � Since s in invariant by � , we must have �.'.P //D '.P /.

� The sides of P are mapped to saddle connections on X . Even though the
restriction of ' into int.P / is one-to-one, it may happen that ' maps the
opposite sides of P to the same saddle connection.

� This lemma is also valid for translation surfaces in H.0/ and H.0; 0/.

Proof of Lemma 2.1 We will only give the proof for the case .X; !/ 2Hhyp.2g�2/,
as the proof for Hhyp.g� 1;g� 1/ is the same. Using

U� D

��
1 0

t 1

� ˇ̌̌
t 2R

�
;

we can assume that s is horizontal. Let ‰t be the vertical flow on X generated by
the vertical vector field .0; 1/; this flow moves regular points of X vertically, upward
if t > 0.

Consider the vertical geodesic rays emanating from the unique zero x0 of ! in direction
.0;�1/. We claim that one of the rays in this direction must meet s . Indeed, if this is
not the case, then ‰t .s/ does not contain x0 for any t 2R>0 , and it follows that one
can embed a rectangle of infinite area into X . Let uC be a vertical geodesic segment
of minimal length from x0 to a point in s which is included in a ray in direction
.0;�1/. Since s is invariant by � , the segment u� WD �.uC/ is vertical of minimal
length from x0 to a point in s which is included in a ray in direction .0; 1/. Using the
developing map, we can realize s as a horizontal segment P1P2�R2 , uC (resp. u� ) as
a vertical segment P3P 03 (resp. P4P 04 ) where P 03;P

0
4 2P1P2 ; see Figure 1. We remark

that the central symmetry fixing the midpoint of P1P2 exchanges P3P 03 and P4P 04 .

Algebraic & Geometric Topology, Volume 17 (2017)



2184 Duc-Manh Nguyen

Let P denote the parallelogram .P1P3P2P4/. We define a map 'W P!X as follows:
for any point M 2P , let M 0 be the orthogonal projection of M in P1P2 , and t be the
length of MM 0 . Let yM 0 be the point in s corresponding to M 0 by the identification
between P1P2 and s . We then define '.M / WD ‰t . yM

0/ if M is above P1P2 , and
'.M / D ‰�t . yM

0/ if M is below P1P2 . By definition, ' is a local isometry and
maps the vertices of P to x0 .

Note that we have jMM 0j � jP3P 03j D jP4P 04j, and the equality only occurs when
M D P3 or M D P4 . Thus, for all M 2 P n fP1;P2;P3;P4g, '.M / is a regular
point in X ; otherwise we would have a vertical segment from P0 to a point in s of
length smaller than juCj.

We now claim that 'jint.P/ is an embedding. Assume that there exist two points
M1;M2 2 int.P / such that '.M1/ D '.M2/. Set �!v WD

����!
M1M2 ; then for any

M;M 0 2P such that
���!
MM 0 D

�!v , we have '.M /D '.M 0/. Since P is a parallelo-
gram, there exists a vertex Pi 2fP1;P2;P3;P4g and a point M 02PnfP1;P2;P3;P4g

such that
���!
PiM

0 D
�!v , which implies that '.M 0/D x0 , and we have a contradiction to

the observation above.

It is now straightforward to verify that P and ' satisfy all the required properties.

In what follows, by a slit torus we will mean a triple .X; !; s/ where X is an elliptic
curve, ! a nonzero holomorphic 1–form and s an embedded geodesic segment (with
respect to the flat metric defined by ! ) on X . We consider the endpoints of s as
marked points on X . Note that there is a unique involution of X that preserves s and
permutes its endpoints. The following lemma is useful for us in the sequel.

Lemma 2.3 Let .X; !; s/ be a slit torus and x1;x2 be the endpoints of s . Assume
that the segment (slit) s is not vertical, that is, jRe!.s/j > 0. Then there exists a
pair of parallel simple closed geodesics c1; c2 with ci passing through xi such that
ci \ int.s/ D ¿, and jRe!.ci/j � jsj. In particular, the geodesics c1; c2 cut X into
two cylinders, one of which contains int.s/. Moreover, any leaf of the vertical foliation
intersecting ci must intersect s , and if every leaf of the vertical foliation meets s , then
we have jRe!.ci/j> 0.

Proof We remark that a slit torus can be considered as hyperelliptic translation
surface with the hyperelliptic involution being the unique one that preserves s and
exchanges its endpoints. Let P D .P1P2P3P4/ be the parallelogram associated to s ,
and 'W P !X the corresponding embedding defined as in Lemma 2.1. Since we have
'.P3/ 2 fx1;x2g, either '.P3/D '.P1/ or '.P3/D '.P2/. It follows that one pair
of opposite sides of P are mapped to a pair of parallel simple closed geodesics c1; c2

of X with ci passing through xi . The other pair of opposite sides of P are mapped
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s

C1 C2

C1

C2

s

s

Figure 2: Configurations of C1 , C2 with respect to s : none of C1 , C2

contains s in its boundary (left) and s is contained in the boundary of C2

(right).

to the same geodesic segment joining x1 and x2 . Thus '.P / is a cylinder in X

that contains s . Since X is a torus, the complement of '.P / is also a cylinder. It is
straightforward to check that the pair fc1; c2g satisfy all the required properties.

We now turn to translation surfaces in genus two. Let .X; !/ be a translation surface
in H.2/tH.1; 1/. We denote by � the hyperelliptic involution of X .

Lemma 2.4 Let s1; s2 be a pair of saddle connections in X which are permuted by � .
If .X; !/ 2 H.2/, then s1 and s2 bound a simple cylinder. If .X; !/ 2 H.1; 1/ then
we have two cases:

� If si joins a zero of ! to itself, then s1 and s2 bound a simple cylinder.
� If si joins two different zeros of ! , then s1[ s2 decomposes X as a connected

sum of two slit tori.

Proof Since � acts by �Id on H1.X;Z/, s1 and s2 must be homologous. This
lemma follows from an inspection on the configurations of rays originating from the
zero(s) of ! in the same direction.

Lemma 2.5 Let .X; !/ be a surface in H.2/ and s be a saddle connection in X

invariant by the hyperelliptic involution � . Then there exist two disjoint cylinders
C1;C2 that do not intersect s , that is, C1\C2 D¿, and the core curves of C1 and C2

do not meet s . We remark that s may be contained in the boundary of C1 or C2 . The
possible configurations of C1 and C2 with respect to s are shown in Figure 2.

Proof Without loss of generality, we can assume that s is horizontal. Let P D

.P1P3P2P4/ be the embedded parallelogram associated to s , and 'W P !X be the
embedding map such that sD '.P1P2/; see Lemma 2.1. We choose the labeling of the
vertices of P such that P3 is the highest vertex, and P4 is the lowest one. Throughout
the proof, we will refer to Figure 3.
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P1 P2

Q2

P5P3

Q1

P4

s

s

dC
4

d�
4

d�
3

dC
3

d�2

d�
1

dC
1

dC
2

d�
1

dC

d�

D

Figure 3: Finding a cylinder disjoint from s

Let dC
1
D '.P3P1/; d

C

2
D '.P3P2/; d

�
1
D '.P4P2/; d

�
2
D '.P4P1/. We have d�i D

�.dCi /. By Lemma 2.4, either dCi D d�i as subsets of X or the pair d˙i bound a
simple cylinder. We remark that dC

1
and dC

2
cannot both be invariant by � , otherwise

we would have X D '.P /, and X must be a torus. Thus we must only consider two
cases:

(i) Both pairs d˙
1

and d˙
2

are respectively boundaries of two simple cylinders C1;C2

in X . In this case, it is not difficult to see that both C1 and C2 are disjoint from '.P /,
and C1\C2 D¿. We then get the configuration Figure 2 (left).

(ii) One of the pairs d˙
1
; d˙

2
bound a simple cylinder, the other consist of a single sad-

dle connection invariant by � . In this case, '.P / is actually a simple cylinder. Without
loss of generality, we can assume that the pair d˙

1
bound the cylinder C D '.P /, and

dC
2
D d�

2
.

Let P5 be the point in R2 such that the triangle .P3P5P2/ is the image of .P1P2P4/

by the translation by
���!
P1P3 . Using the assumption that dC

2
D d�

2
, that is, '.P3P2/D

'.P1P4/, we see that ' extends to a local isometric map from P 0 D .P1P2P5P3/

to X such that '.P 0/D C and 'jint.P 0/ is an embedding; see Figure 3.

Consider the horizontal rays emanating from the unique zero x0 of ! to the outside
of C . By the same argument as in Lemma 2.1, we see that one of the rays in direction
.1; 0/ reaches dC

1
D '.P3P1/ from the outside of C . It follows that we can then

extend ' to a convex hexagon H WD .P1P2Q2P5P3Q1/, which is the union of P 0

and two triangles .P2Q2P5/ and .P3Q1P1/. Note that .P2Q2P5/ and .P3Q1P1/

are exchanged by the central symmetry fixing the midpoint of P2P3 , and all the vertices
of H are mapped to x0 .
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Let dC
3
D '.P3Q1/, dC

4
D '.Q1P1/, d�

3
D '.P2Q2/ and d�

4
D '.Q2P5/. Again,

for i D 3; 4, we have either dCi D d�i or the pair d˙i bound a simple cylinder. If
dCi D d�i for both i D 3; 4, then X D '.H / and X must be a flat torus, so we have a
contradiction. If both pairs d˙

3
; d˙

4
are the boundaries of simple cylinders, then these

cylinders are disjoint, and also disjoint from '.H /. It follows that the total angle at x0

is at least 8� (the total angle of H plus 4� ), thus we have again a contradiction. We
can then conclude that one of the pairs d˙

3
; d˙

4
consists of a single saddle connection,

and the other pair bounds a simple cylinder. Without loss of generality, we can assume
that d˙

3
bounds a simple cylinder C3 , and dC

4
D d�

4
D d4 . Note that C3 must be

disjoint from '.H /, and in particular it is disjoint from s .

Let dC D '.Q1P5/ and d� D '.P1Q2/; then the pair d˙ is the boundary of a
cylinder D whose core curves cross d˙4 . If H is strictly convex then D is a simple
cylinder, but if P2Q2 is parallel to P1P2 then D is not simple (in this case we actually
have D D '.H /). Nevertheless, in both cases the core curves of D do not intersect s .
Since D is contained in '.H /, we have C3 \D D ¿. Since both C3 and D are
disjoint from s , the lemma is proved.

We are now ready to show the following theorem:

Theorem 2.6 (a) On any .X; !/ 2 H.2/, there always exist two disjoint simple
cylinders. There cannot exist a triple of pairwise disjoint cylinders in X .

(b) On any .X; !/ 2 H.1; 1/, there always exists a triple of cylinders which are
pairwise disjoint.

Remark 2.7 � The cylinders in Theorem 2.6 are not necessarily parallel.
� There cannot exist more than three simple pairwise disjoint closed curves on S .

Statement (b) means that given any holomorphic 1–form in H.1; 1/, there always
exists a family of three disjoint (simple closed) curves, realized simultaneously
as simple closed geodesics for the flat metric induced by this 1–form.

� The statement (a) of the theorem is a direct consequence of [42, Proposition A.1].

Proof of Theorem 2.6, case H.2/ Lemma 2.5 almost proves the statement for H.2/
except that it does not guarantee that both cylinders are simple. We will give here a
proof by using [41, Lemma 2.1]. Let s be a saddle connection that is invariant by
the hyperelliptic involution � (one can find such a saddle connection by picking a
geodesic segment of minimal length Os joining a regular Weierstrass point of X to
the unique zero of ! , then taking s D Os[ �.Os/). By [41, Lemma 2.1], there exists a
simple cylinder C1 that contains s . Cut off C1 from X then identify the two geodesic
segments on the boundary of the resulting surface, we obtain a flat torus .X 0; !0/ with
a marked geodesic segment s0 .
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We can consider .X 0; !0; s0/ as a slit torus. By Lemma 2.3, there exists a cylinder C 0

in X 0 that contains s0 whose complement in X 0 is another cylinder C2 disjoint from s0 .
By construction C2 is a simple cylinder in X and disjoint from C1 , hence the first
assertion follows.

For the second assertion, we observe that any triple of pairwise disjoint simple closed
curves disconnect X into two three-holed spheres. If all the curves in this triple are
simple closed geodesics (core curves of cylinders), then we get two flat surfaces with
geodesic boundary. Since X has only one singularity, one of the surfaces has no
singularities in its interior. But the Euler characteristic of a three-holed sphere is �1,
thus we have a contradiction to the Gauss–Bonnet formula. We can then conclude
that X can not contain three disjoint cylinders.

Proof of Theorem 2.6, case H.1; 1/ By [41, Lemma 2.1], we know that there exists
a simple cylinder C0 on .X; !/ that is invariant by � . Cut off C0 and glue the two
boundary components of the resulting surface; we obtain a surface . yX ; y!/ 2H.2/ with
a marked saddle connection Os . Note that Os is invariant by the hyperelliptic involution
of yX . By Lemma 2.5, we know that there exist two cylinders C1 and C2 on yX disjoint
from Os such that C1\C2 D¿. It follows immediately that C1 and C2 are actually
cylinders in X and disjoint from C0 , from which we get the desired conclusion.

3 Degenerate cylinders and the cylinder graph

3.1 Cylinders and the curve graph

Each cylinder in a translation surface is filled by simple closed geodesics in the same free
homotopy class. The following elementary lemma shows that two (freely) homotopic
closed geodesics must belong to the same cylinder.

Lemma 3.1 Let c1 and c2 be two simple closed geodesics in .X; !/ which are freely
homotopic. Then c1 and c2 are contained in the same cylinder.

Proof Since c1; c2 are freely homotopic, they are homologous, hence !.c1/D !.c2/.
It follows that c1 and c2 are parallel, thus must be disjoint. The pair c1; c2 cut X into
two components, one of which must be an annulus denoted by A; see Proposition A.11
of [9]. We have a flat metric on A induced by the flat metric of X . Let �1; : : : ; �k be
the cone angles at the singularities in A. Since the boundary of A is geodesic, the
Gauss–Bonnet formula givesX

1�i�k

.2� � �i/D 2��.A/D 0:
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Since any singularity on a translation surface has cone angle at least 4� , the equation
above actually shows that A contains no singularities. Thus A is a flat annulus, which
must be contained in a cylinder of X . Therefore, c1 and c2 are contained in the same
cylinder.

Let S be a fixed topological compact closed surface of genus two. Let C.S/ denote
the curve graph of S . Let �T2 be the abelian differential bundle over the Teichmüller
space T2 . Elements of �T2 are equivalence classes of triples .X; !; f /, where X

is a Riemann surface of genus two, ! is a holomorphic 1–form on X , and f is a
homeomorphism from S to X ; two triples .X; !; f / and .X 0; !0; f 0/ are identified if
there exists an isomorphism 'W X!X 0 such that '�!0D! and f 0 �1ı'ıf W S!S

is isotopic to IdS . The equivalence class of .X; !; f / will be denoted by ŒX; !; f �.

Each element ŒX; !; f � of �T2 defines naturally a subgraph Ccyl.X; !; f / of C.S/.
The vertices of this subgraph are free homotopy classes of the core curves of all
cylinders on the translation surface .X; !/. The set C .1/cyl .X; !; f / consists of the edges
in C.1/.S/ both of whose endpoints belong to C .0/cyl .X; !; f /.

3.2 Degenerate cylinders

If C is a cylinder in X that fills X (ie C DX ), then C represents an isolated vertex in
Ccyl.X; !; f /. This is because the core curve of any other cylinder in X must cross C .
So in general Ccyl.X; !; f / is not a connected graph. To fix this issue we introduce
the notion of degenerate cylinders. Roughly speaking, a degenerate cylinder in X is
a union of parallel saddle connections such that there exist deformations of .X; !/
where this union is freely homotopic to the core curves of a simple cylinder.

To be more precise, let x0 be a singularity on a translation surface .X; !/. For any
pair .r1; r2/ of geodesic rays emanating from x0 , we will denote the counterclockwise
angle from r1 to r2 by #.r1; r2/. If s is an oriented saddle connection from a singular-
ity x1 to a singularity x2 , then we denote by sC (resp. s� ) the intersection of s with
a neighborhood of x1 (resp. a neighborhood of x2 ). This definition also makes sense
when x1 D x2 , in which case the orientation of s is to start in sC and end in s� .

Definition 3.2 (degenerate cylinder) We will call the union of two saddle connections
s1; s2 in .X; !/ 2H.2/tH.1; 1/ a degenerate cylinder if they are both invariant by
the hyperelliptic involution, and up to an appropriate choice for the orientations of s1

and s2 , we have
#.s�1 ; s

C

2
/D #.sC

1
; s�2 /D �:

In Figure 4, we represent the configurations of a degenerate cylinder at the singularities.
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Figure 4: Configuration of a degenerate cylinder at the singularities for
H.2/ (left) and H.1; 1/ (right)

Remark 3.3 � If .X; !/ is in H.2/, then a degenerate cylinder is not a simple
curve: the zero of ! is its unique double point.

� If .X; !/ is in H.1; 1/, then the hyperelliptic involution � of X permutes the
zeros of ! , thus a saddle connection invariant by � must connect the two zeros
of ! . Therefore a degenerate cylinder must be a simple closed curve.

Examples Assume that .X; !/ 2H.2/tH.1; 1/ is horizontally periodic, and has a
unique (geometric) horizontal cylinder C . If .X; !/ 2H.2/ then it has 3 horizontal
saddle connections s1; s2; s3 , which are contained in the boundary of C ; see Figure 5.
Note that all of them are invariant by the hyperelliptic involution. By definition s1[ s2 ,
s2[ s3 and s3[ s1 are three degenerate cylinders. Similarly, if .X; !/ 2H.1; 1/, then
we have 4 horizontal saddle connections denoted by s1; : : : ; s4 (see Figure 5) such
that si [ siC1 is a degenerate cylinder for i D 1; : : : ; 4, with the convention s5 D s1 .

We will now prove some key properties of degenerate cylinders.

Lemma 3.4 Let s1[s2 be a horizontal degenerate cylinder in .X; !/2H.2/tH.1; 1/.
Then there exists in a neighborhood of .X; !/ a continuous family of translation
surfaces f.Xt ; !t / j t 2 Œ0; �/g in the same stratum as .X; !/, with � 2R>0 , such that

� .X0; !0/D .X; !/;
� for any t 2 .0; �/, .Xt ; !t / contains two saddle connections s1;t and s2;t corre-

sponding to s1 and s2 and satisfying the following property: s1;t [ s2;t is freely
homotopic to the core curves of a simple cylinder Ct in Xt ;

� as t ! 0, the width of Ct decreases to zero.

Moreover, for all t 2 .0; �/, any vertical saddle connection (resp. regular geodesic) in
.X; !/ corresponds to a vertical saddle connection (resp. regular geodesic) in .Xt ; !t /.

Proof Let us define a half cylinder to be the quotient .R�Œ0; h�/=� , where �'Z2ËZ
is generated by t W .x;y/ 7! .xC `;y/ and sW .x;y/ 7! .�x; h� y/. We will call h

Algebraic & Geometric Topology, Volume 17 (2017)



Translation surfaces and the curve graph in genus two 2191

s1

s1

s1

s1

s2

s2

s2

s2

s3

s3

s3

s3

s4

s4

C C

Figure 5: Degenerate cylinders on a horizontally periodic surface with a
unique geometric horizontal cylinder for ! 2 H.2/ (left) and ! 2 H.1; 1/
(right)

and ` the width and circumference of the half cylinder, respectively. We will refer
to the projection of .0; 0/ as the marked point on its boundary. Equivalently, a half
cylinder is a closed disc equipped with a flat metric structure with geodesic boundary
and two singularities of angle � in the interior.

Recall that all Riemann surfaces of genus two are hyperelliptic. Let pW X !CP1 be
the hyperelliptic double cover of X . There exists a meromorphic quadratic differential �
on CP1 with at most simple poles such that !2 D p��. Note that � has one zero
and k poles, where k D 5 if ! 2H.2/, and k D 6 if ! 2H.1; 1/. Let P0 denote the
unique zero of �, and P1; : : : ;Pk its simple poles. Let Y be the flat surface defined
by � on CP1 . Observe that the cone angle of Y at P0 is 3� if ! 2H.2/, and 4� if
! 2H.1; 1/. The cone angle at Pi is � for 1; : : : ; k .

Since si , i D 1; 2, is invariant by � , its projection in Y is a geodesic segment s0i
joining P0 to a pole of �. By the definition of degenerate cylinder, one of the angles
at P0 specified by s0

1
and s0

2
is � . Let yY be the flat surface obtained by slitting open Y

along s0
1

and s0
2

. By construction, yY is a flat disc with k � 2 singularities (of cone
angle � ) in its interior, and whose boundary is a geodesic loop c based at P0 . Note
that P0 is also a singular point of yY .

Let c denote the boundary of yY , and ` be the length of c . Fix an � > 0. For
any t 2 .0; �/, let yCt be the half cylinder of circumference ` and width t . We can
glue yCt to yY such that the marked point in the boundary of yCt is identified with P0 .
Let Y 0t denote the resulting flat surface. Observe that Y 0t corresponds to a meromorphic
differential �0t on CP1 which has a unique zero at P0 and the same number of simple
poles as �. It follows that the orienting double cover of .CP1; �0t / is an abelian
differential .Xt ; !t / in the same stratum as .X; !/. We also remark that the double
cover of yCt is a simple cylinder of width to t . We define .X0; !0/ to be .X; !/.
It is now straightforward to check that the family f.Xt ; !t / j t 2 Œ0; �/g satisfies the
properties in the statement of the lemma.

As a byproduct of Lemma 3.4, we also have the following:
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Lemma 3.5 Let s WD s1 [ s2 be a degenerate horizontal cylinder in the surface
.X; !/ 2H.2/tH.1; 1/.

(i) If .X; !/ 2H.2/, then there exist a pair of homologous saddle connections r˙

that cut out a slit torus containing s satisfying the following condition: any
vertical leaf crossing r˙ must intersect s .

(ii) If .X; !/ 2H.1; 1/, then either
(a) there exist a pair of homologous saddle connections r˙ that cut out a slit

torus containing s such that any vertical leaf crossing r˙ must intersect s ,
or

(b) there are two simple cylinders C1;C2 disjoint from s such that any vertical
leaf crossing C1 or C2 must intersect s .

Proof Let us use the same notation as in the proof of Lemma 3.4. Recall that by
slitting open Y along the projections of s1 and s2 , we obtain a flat surface yY whose
boundary is a geodesic loop c based at P0 . One can construct a new flat surface
homeomorphic to the sphere CP1 by “sewing up” c . This operation produces an extra
singular point of angle � at the midpoint of c .

Let Y 0 denote the resulting surface. On Y 0 , we have k � 1 singularities of cone
angles � and a singularity at P0 of cone angle 2� if ! 2H.2/, or 3� if ! 2H.1; 1/.
The loop c corresponds to a segment c0 on Y 0 joining P0 to a singularity of angle � .
Let .X 0; !0/ be the orienting double cover of Y 0 . Then either .X 0; !0/ 2H.0; 0/ or
.X 0; !0/ 2 H.2/. In both cases, c0 gives rise to a saddle connection s0 invariant by
the hyperelliptic involution of X 0 . Note that by construction, we can identify X 0 n s0

with X n s .

Let 'WP!X 0 be the embedded parallelogram associated to s0 introduced in Lemma 2.1.
By construction, ' maps the sides of P to saddle connections on X 0 which do not
intersect s0 in their interior. Thus those saddle connections correspond to some saddle
connections on X . It follows that '.P / � X 0 corresponds to a subsurface of X

containing s . The conclusions of the lemma then follow from a careful inspection on
the boundary of '.P /.

3.3 The cylinder graph

We now define a new subgraph yCcyl.X; !; f / of C.S/ as follows: the vertices of
yCcyl.X; !; f / are free homotopy classes of core curves of cylinders, or free homotopy
classes of degenerate cylinders in X . Elements of yC .1/cyl .X; !; f / are the edges of C.S/
both of whose endpoints are in yC .0/cyl .X; !; f /.
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Let dC denote the distance in C.S/. Recall that by definition each edge of C.S/ has
length equal to one. Let a, b be two simple closed curves on S , and Œa�, Œb� be their
free homotopy classes, considered as vertices of C.S/. We have

dC.Œa�; Œb�/Dmin
˚
leng.
 / j 
 is a path in C.S/ from Œa� to Œb�

	
:

We define a distance d in yCcyl.X; !; f / in the same manner, that is, every edge has
length equal to one, and given Œa�; Œb� 2 yCcyl.X; !; f /,

d.Œa�; Œb�/Dmin
˚
leng.
 / j 
 is a path in yCcyl.X; !; f / from Œa� to Œb�

	
:

By convention, if there are no paths in yCcyl.X; !; f / from Œa� to Œb�, then we define
d.Œa�; Œb�/D1. The subgraph yCcyl.X; !; f /, called the cylinder graph, will be the
main subject of our investigation in the remainder of this paper. To lighten notation,
when .X; !/ and a marking mapping f W S!X are fixed, we will write Ccyl and yCcyl

instead of Ccyl.X; !; f / and yCcyl.X; !; f /.

Convention In the sequel, a “cylinder” could mean a usual geometric cylinder or a
degenerate one. We will refer to usual geometric cylinders as nondegenerate cylinders.
The term core curve will have the usual meaning for nondegenerate cylinder, for a
degenerate one it just means the cylinder itself.

3.4 Intersection numbers

Let �. � ; � / denote the geometric intersection form on the set of free homotopy classes
of simple closed curves on S . Let a, b be two simple closed curves in S , and Œa�, Œb�
their free homotopy classes, respectively. Recall that Œa� and Œb� are connected by an
edge in C.S/ if and only if �.Œa�; Œb�/D 0.

Assume now that a and b are simple closed geodesics in .X; !/. If a and b are
parallel, then they do not have intersection, hence �.Œa�; Œb�/D 0. If they are not parallel,
then they intersect transversally at every intersection point. By using the bigon criterion
(see [14, Section 1.2.4]), it is not difficult to show that �.Œa�; Œb�/D #fa\ bg. However,
if a or b is a degenerate cylinder then we must be a little more careful since in this
case a or b may be not a simple curve (ie in H.2/), and their intersections are not
always transversal.

To deal with this complication, if a and b are core curves of two cylinders in X (possibly
degenerate), we will fix some parametrizations ˛W S1!X for a, and ˇW S1!X for b

such that ˛ and ˇ are local homeomorphisms onto their images, and the restriction of ˛
(resp. of ˇ ) to S1n˛�1.fsingularities of X g/ (resp. to S1nˇ�1.fsingularities of X g/)
is one-to-one.
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By an intersection of a and b , we will mean a pair .t; t 0/ 2 S1 � S1 such that
˛.t/ D ˇ.t 0/. This intersection is said to be transversal if there exist �; �0 > 0 such
that a1 WD ˛..t � �; t C �// and b1 WD ˇ..t

0 � �0; t 0C �0// are two simple arcs in X ,
a1 intersects b1 transversally at p D ˛.t/ D ˇ.t 0/, and a1 and b1 have no other
intersections. We denote by a\b the set of intersections of a and b , and by a y\b the
subset of transversal intersections.

Lemma 3.6 Let C and D be two cylinders on .X; !/ (both possibly degenerate) that
are not parallel. Let c and d be respectively a core curve of C and a core curve of D .
We denote by Œc� and Œd � the free homotopy classes of c and d , respectively. Let c y\d

denote the set of transversal intersections of c and d . Then we have

�.Œc�; Œd �/D #fc y\ dg:

Since a nontransversal intersection of c and d can only occur at a singularity, it follows
in particular that �.Œc�; Œd �/D #fc \ dg if one of c and d is a regular geodesic.

Proof Let � W � D fz 2 C W jzj < 1g ! X denote the universal cover of X . The
pull-back ��! of ! is a holomorphic 1–form, which defines a flat metric with cone
singularities on �.

Fix a base point x for c and a base point y for d , which are not the singularities of X .
Through any point in ��1.fxg/ (resp. any point in ��1.fyg/), there is a unique lift
of c (resp. a unique lift d ). Since c and d are not necessarily simple curves, a priori
each lift of c and d may not be a simple arc. But this actually does not happen.

Claim 3.7 (i) Each lift of c or of d is a simple arc in �.

(ii) Two lifts of c or of d can meet at at most one point (which is a nontransversal
intersection).

(iii) A lift of c and a lift of d can meet at at most one point.

Proof of the claim Since the argument for the three assertions are the same, we only
give the proof of (iii). Let Qc0 and Qd0 be a lift of c and a lift of d in �, respectively.
Let us assume that Qc0 and Qd0 intersect at two points. There exists then a disc B ��

bounded by a subarc c0� Qc0 and a subarc d0�
Qd0 . Let p; q be the common endpoints

of c0 and d0 , and ˛ and ˇ be respectively the interior angles of B at p and q .
Since c0 and d0 are geodesic segments for the flat metric on �, we have ˛ > 0 and
ˇ > 0 (˛ D 0 or ˇ D 0 means that c and d are parallel).

Let p1; : : : ;pr be the points in @B that correspond to the zeros of ��! and which
are different from p; q . Let �i be the interior angle of B at pi . By the definition of
cylinders, we have �i � � for all i D 1; : : : ; r . Let x1; : : : ;xs be the zeros of ��! in
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int.B/, and O�i be the angles at xi . The Gauss–Bonnet formula gives (see, for instance,
[48, Proposition 1])

sX
iD1

.2� � O�i/C

rX
iD1

.� � �i/C 2� � .˛Cˇ/D 2��.B/D 2�:

Since ˛Cˇ > 0, � � �i � 0 and 2� � O�i < 0, we see that the equality above cannot
be realized. Therefore, B cannot exist, which means that Qc0 and Qd0 can only meet at
at most one point.

Since nontransversal intersections of c and d can only occur at the singularities of X

(zeros of ! ), we can deform c and d slightly in a neighborhood of each zero of !
to get simple closed curves c0 and d 0 in the same free homotopy classes as c and d ,
respectively, such that #fc y\dg D #fc0\d 0g. Claim 3.7 then implies that any lift of c0

in � intersects a lift of d 0 at at most one point and all the intersections are transversal.
It follows from the bigon criterion (see eg [14, Proposition 1.7]) that

�.Œc�; Œd �/D #fc0\ d 0g D #fc y\ dg:

The lemma is then proved.

Remark 3.8 � If C and D are not parallel, we can assume that C is horizontal
and D is vertical. In the case both C and D are degenerate, to compute their inter-
section number, one can use Lemma 3.4 to get a deformation .Xt ; !t / of .X; !/
in which C corresponds to a simple (horizontal) cylinder Ct . In Xt , D corre-
sponds to a vertical cylinder Dt . Consequently, c is freely homotopic to a regular
horizontal geodesic ct in Xt , while d is freely homotopic to a core curve dt

of Dt . It follows from Lemma 3.6 that �.Œc�; Œd �/D �.Œct �; Œdt �/D #fct \ dtg.
� It may happen that two degenerate cylinders in the same direction have a positive

intersection number.

4 Reducing numbers of intersection

In what follows, given two cylinders C;D in X , by �.C;D/ we will mean the geometric
intersection number �.Œc�; Œd �/, where c and d are some core curves of C and D ,
respectively. Our first goal is to estimate the distance in yCcyl using intersection numbers.

Theorem 4.1 There exist two positive constants K1;K2 such that for any ŒX; !; f �
in �T2 , and any cylinders C and D in X (both possibly degenerate) considered as
vertices of yCcyl.X; !; f /, we have

(1) d.C;D/�K1�.C;D/CK2:
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As a direct consequence of inequality (1), we get the following:

Corollary 4.2 The subgraph yCcyl.X; !; f / is connected.

4.1 Reducing to simple cylinders

In what follows, we will fix a point ŒX; !; f � 2�T2 , and use the term “cylinder” to
refer to both degenerate and nondegenerate cylinders. Our first step is to reduce the
problem to the case where C and D are simple cylinders.

Lemma 4.3 Let C be horizontal cylinder that does not fill X , ie C ¤X , and D be
a vertical cylinder. Assume that �.C;D/ > 0. Then there exists a simple cylinder C 0

such that d.C;C 0/� 1 and �.C 0;D/� �.C;D/.

Proof We first consider the case that C is nondegenerate. Let c be a core curve of C

and d a core curve of D . Since c is a regular simple closed geodesic, by Lemma 3.6,
we have �.C;D/D #fc \ dg. Obviously, we only need to consider the case that C is
not simple.

If .X; !/ 2H.2/, then the complement of C is a simple cylinder C 0 whose boundary
is a pair of homologous saddle connections contained in the boundary of C . In
particular, C 0 is also horizontal, and we have �.C;C 0/ D 0, hence d.C;C 0/ D 1.
Any time d crosses C 0 , it must cross C before returning to C 0 . Therefore, we have
�.C 0;D/� �.C;D/.

If .X; !/2H.1; 1/ then the complement of C is either (a) a horizontal simple cylinder,
(b) two disjoint horizontal simple cylinders, or (c) a torus with a horizontal slit. In
case (a) and case (b), the boundaries of the horizontal cylinders in the complement are
contained in the boundary of C . Therefore, it suffices to choose one of them to be C 0 .
In case (c), let .X 0; !0; s0/ be the slit torus which is the complement of C . Note that
the slit s0 corresponds to a pair of homologous saddle connections in the boundary
of C . By Lemma 2.3 we know that X 0 contains a simple cylinder C 0 disjoint from
the slit s0 such that any vertical line crossing C 0 must cross s0 . Since C 0 is disjoint
from C we have d.C;C 0/D 1. Any time d crosses C 0 , it must cross the slit s0 and
hence C . Therefore, we also have �.C 0;D/� �.C;D/.

We now turn to the case that C is degenerate. If .X; !/ 2H.2/, from Lemma 3.5, we
know that C is contained in a slit torus cut out by a pair of homologous saddle connec-
tions r˙ such that every vertical leaf crossing r˙ intersects C . Since .X; !/ 2H.2/,
the complement of the slit torus is a simple cylinder C 0 bounded by r˙ . Clearly,
we have d.C;C 0/D 1. If the core curves of D are regular geodesics (that is, D is
nondegenerate), then we can immediately conclude that �.C 0;D/� �.C;D/. When D

is degenerate, we consider the deformations f.Xt ; !t / j t 2 Œ0; �/g of .X; !/ given by
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Lemma 3.4. For t 2 .0; �/, in .Xt ; !t /, D becomes a simple cylinder Dt , while the
cylinders C and C 0 persist and have the same properties. Since �.C 0;D/D �.C 0;Dt /

and �.C;D/D �.C;Dt /, we also get �.C 0;D/� �.C;D/.

The case .X; !/ 2H.1; 1/ also follows from similar arguments.

Lemma 4.4 Assume that C is a horizontal cylinder that fills X , and D is a vertical
cylinder. Then there exists a simple cylinder C 0 such that

d.C 0;C /D 2; �.C 0;D/� �.C;D/:

Proof Let c be a core curve of C . If .X; !/ 2H.2/ then the complement of C is the
union of three horizontal saddle connections s1; s2; s3 , all invariant by the hyperelliptic
involution. We remark that the union of any two of these saddle connections is a
degenerate cylinder. One can easily find a transverse simple cylinder C 0 containing s1 ,
disjoint from the union s2[ s3 , whose core curves cross c once. Furthermore, we can
choose C 0 such that the horizontal component of its core curves has length smaller
than the length of c . Clearly, we have d.C;C 0/ D 2. Since any vertical geodesic
crossing C 0 crosses also C , we have �.C 0;D/� �.C;D/. Thus the lemma is proved
for this case.

The case .X; !/ 2H.1; 1/ follows from the same arguments.

In what follows, a geodesic line on X that does not contain any singularity is called
regular.

Lemma 4.5 Let C be a horizontal cylinder and D be a vertical cylinder in X . If
there exists a regular vertical leaf which does not cross C , then d.C;D/� 2.

Proof Obviously we only need to consider the case that �.C;D/ > 0. Assume that
there is a regular vertical closed geodesic that does not intersect C . Then there exists
another vertical cylinder D0 which is disjoint from both C and D . Consequently, we
have d.C;D/D 2.

Assume now that there is an infinite regular vertical leaf that does not intersect C .
The closure of this leaf is a subsurface X 0 of X bounded by some vertical saddle
connections. Let s be a saddle connection in the boundary of X 0 . Note that s and �.s/
are homologous. Thus they decompose X into two subsurfaces X1 and X2 both
invariant by � . Since C is invariant by � , it must be contained in one of the subsurfaces,
say X1 . Since s and �.s/ are vertical, the core curves of D cannot cross s and �.s/,
which means that D is also contained in one subsurface. Since we have assumed that
�.C;D/ > 0, D must be contained in X1 .
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The subsurface X2 must be either a slit torus or a surface in H.2/ with a marked saddle
connection. However, the latter case does not occur because it would imply that X1 is
a vertical simple cylinder containing both C and D , which is impossible. Now, by
Lemma 2.3, one can find in the torus X2 a simple cylinder C 0 that does not meet the
slit. Since C 0 corresponds to a simple cylinder of X which is disjoint from both C

and D , and we have d.C;D/D 2. The lemma is then proved.

From Lemmas 4.3, 4.4, we know that if C is not simple then there exists a simple
cylinder C 0 such that d.C;C 0/ � 2 and �.C 0;D/ � �.C;D/. Consequently, we can
find simple cylinders C 0;D0 such that

d.D;D0/� 2; d.C;C 0/� 2; �.C 0;D0/� �.C;D/:

It follows in particular that d.C;D/ � d.C 0;D0/C 4. Therefore, in order to prove
Theorem 4.1, we only need to prove (1) for the case that C and D are simple cylinders.
Moreover, by Lemma 4.5, we can further assume that all the leaves of the foliation in
the direction of D intersect C . Thus, Theorem 4.1 is a consequence of the following:

Proposition 4.6 Let C and D be two simple cylinders such that all the leaves of
the foliation in the direction of D intersect C . Then there always exists a simple
cylinder C 0 such that

(2) d.C 0;C /� 3; �.C 0;D/ < �.C;D/:

To prove this proposition we will make use of the representation of translation surfaces as
polygons in R2 . In Appendix A, we give a uniform construction from symmetric poly-
gons of translation surfaces in genus two satisfying the hypothesis of Proposition 4.6.

4.2 Proof of Proposition 4.6, case H.2/

By using GLC.2;R/, we can assume that C is a horizontal cylinder, and D is vertical.
From Proposition A.1(i), we can construct .X; !/ from a symmetric polygon P WD

.P0 � � �P3Q0 � � �Q3/ in R2 . Note that by construction, the hyperelliptic involution
of X lifts to the central symmetry fixing the midpoint of P0Q0 .

Let X1 , X2 and Y be respectively the vertical projections of P1 , P2 and Q0 on P0P3 .
Let x1;x2;x3;y be respectively the lengths of P0X1;P0X2;P0P3;P0Y . Clearly, we
have 0 � x1 � x2 � x3 and 0 � y � x3 . By cutting and regluing, we see that the
cases y D 0 (Y �P0 ) and y D x3 (Y �P3 ) are equivalent. Therefore we can always
suppose 0< y � x3 .

By symmetry, we can assume that jP1X1j � jP2X2j; see Figure 6. Observe that the
union of the projections of .P0P1P2/ and .Q0Q1Q2/ in X is a cylinder E which is
disjoint from C . Similarly, the union of the projections of .P2P3Q0/ and .Q2Q3P0/
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Figure 6: Finding simple cylinders having fewer intersections with D than
C in the case .X; !/ 2 H.2/ . C is represented by the parallelogram
.P0P3Q0Q3/; D is supposed to be vertical.

is also a cylinder F in X , which is disjoint from E . Observe that by assumption, E

is always a simple cylinder, but F can be a degenerate one (that is, when both P2P3

and P3Q0 are vertical). Note that we have d.C;E/D 1 and d.C;F /D 2.

Let d be a core curve of D and yd be the preimage of d in P . We remark that yd is a
(finite) union of vertical segments with endpoints in the boundary of P and none of
the vertices of P is contained in yd . We first consider the generic case, where none of
the sides of P is vertical. By assumption, we have

0< x1 < x2 < x3 and 0< y < x3:

We have three possibilities:

(a) x2 � y < x3 We observe that if a vertical line intersects P0P2 or P2Q0 then it
must intersect P0X2 or X2Y , respectively. Thus, we have

#f yd \P0P3g � #f yd \P0P2gC #f yd \P2Q0g:

It follows that at least one of the following inequalities is true:

#f yd \P0P2g< #f yd \P0P3g ) �.E;D/ < �.C;D/;

#f yd \P2Q0g< #f yd \P0P3g ) �.F;D/ < �.C;D/:

Therefore, in this case, we can choose C 0 to be either E or F .

(b) x1 � y < x2 In this case, the parallelogram .P0P1Q0Q1/ is contained in P ,
thus it projects to a simple cylinder G in X , which is disjoint from F . In particular,
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we have d.G;C /� 3. We now observe that

#f yd \X1X2g D #f yd \P1Q0gC #f yd \P2Q0g � #f yd \P0P3g:

Therefore, at least one of the following inequalities is true �.F;D/ < �.C;D/ or
�.G;D/ < �.C;D/. Hence we can choose C 0 to be either F or G .

(c) 0 < y < x1 We will show that in this case �.G;D/ < �.C;D/. Let Z be
the vertical projection of P0 to Q0Q3 . We choose a core curve d of D which is
contained in the �–neighborhood of the left boundary of D , with � > 0 small. The left
boundary of D is a vertical saddle connection, thus it contains (the projection of) one
of the following segments: P0Z;P1X1;P2X2 . It follows that yd contains a vertical
segment yd0 which is �–close to one of P0Z;P1X1;P2X2 from the right. Observe
that yd0 always intersects P0P3 , but when � is chosen to be small enough, yd0 does not
intersect P1Q0 . Since any vertical segment in P intersecting P1Q0 must intersect
YX1 � P0P3 , it follows that �.G;D/ < �.C;D/, and we can choose C 0 to be G .

It remains to show that the same arguments work in the degenerating situations, that
is, when one of the sides of P is vertical. First, let us suppose that P2P3 is vertical,
ie x2 D x3 .

� If yD x3 , then F becomes a degenerate cylinder. Clearly F and D are disjoint
since they are both vertical. Therefore d.C;D/� d.C;F /C 1� 3, hence we
can choose C 0 to be D .

� If 0 < y < x3 , then case (a) and case (b) follow from the same arguments.
For case (c), we observe that the left boundary of D is not invariant by the
hyperelliptic involution, and P2P3 projects to an invariant saddle connection.
Therefore yd0 is either �–close to P0Z or P1X1 . Hence we can use the same
argument to conclude that �.G;D/ < �.C;D/ and we can choose C 0 to be G .

Other degenerations are easy to deal with in similar manner; details are left for the
reader.

4.3 Proof of Proposition 4.6, case H.1; 1/

Using the notation in Proposition A.1(ii), we know that .X; !/ is obtained from a
decagon P WD .P0 � � �P4Q0 � � �Q4/�R2 . Our arguments depend on the properties of
this decagon. We have three different models for P (see Figure 7): (I) both int.P0P2/

and int.P2P4/ are contained in int.P /, (II) only one of int.P0P2/ and int.P2P4/ is
contained in int.P /, and (III) none of int.P0P2/ and int.P2P4/ is contained in int.P /.
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Figure 7: Finding a simple cylinder with fewer intersections with D

than C in the case .X; !/2H.1; 1/ . C is represented by the parallelogram
.P0P4Q0Q4/ , D is supposed to be vertical.

Let X1 , X2 , X3 and Y be respectively the vertical projections of P1 , P2 , P3 and Q0

on P0P4 . The lengths of P0Xi , P0P4 and P0Y are denoted by xi , x4 and y ,
respectively. As in the previous case, we have 0 � xi � xiC1 , i D 1; 2; 3, and
0< y � x4 . Let d be a core curve of D , and yd its preimage in P .

4.3.1 Model I In this model, the sets .P0P1P2/ [ .Q0Q1Q2/ and .P2P3P4/ [

.Q2Q3Q4/ project to two disjoint simple cylinders in X which will be denoted by E

and F , respectively. Note that d.C;E/D d.C;F /D 1. Clearly, we have

#f yd \P0P4g D #f yd \P0P2gC #f yd \P2P4g ) �.C;D/D �.E;D/C �.F;D/:

Therefore, we can pick C 0 to be E or F .

4.3.2 Model II By symmetry, we only need to consider the case that int.P0P2/�

int.P /, and int.P2P4/ 6� int.P /. Let E be the simple cylinder on X which is the
projection of .P0P1P2/[ .Q0Q1Q2/. Let F be the cylinder which is the projection
of .P3P4Q0/[ .Q3Q4P0/. We have d.C;E/D 1 and d.C;F /D 2.

We first consider the generic situation, that is, 0<xi<xiC1 , iD1; 2; 3, and 0<y<x4 .
Note that in this situation F is a simple cylinder. We have three cases: (a) x2� y < x4 ,
(b) x1�y<x2 and (c) 0<y<x1 . In all of these cases, one can find a simple cylinder
having the desired property by the same arguments as the case that .X; !/ 2H.2/.

Consider now the degenerating situations: (1) P0P1 is vertical, equivalently x1 D 0;
(2) P1P2 is vertical, equivalently x1D x2 ; (3) P2P3 is vertical, equivalently x2D x3 ;
(4) P3P4 is vertical, equivalently x3 D x4 ; (5) Y � P4 , equivalently y D x4 . If (4)
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or (5) does not occur then F is always a simple cylinder, hence the arguments above
apply. If (4) and (5) hold then F is a vertical degenerate cylinder. Since F must be
disjoint from D , we have d.C;D/� 3. Therefore, we can choose C 0 to be D .

4.3.3 Model III In this case P2 must be the highest point of P , and P1P3 must
be contained in P . Consequently, the union .P1P2P3/[ .Q1Q2Q3/ projects to a
simple cylinder E in X . Let F denote the cylinder in X which is the projection of
.P3P4Q0/[ .Q3Q4P0/. We remark that d.C;E/ D 1 and d.C;F / D 2. It is not
difficult to see that the same arguments as the previous cases also allow us to get the
desired conclusion.

4.4 Proof of Theorem 4.1

By Lemmas 4.3 and 4.4, we know that there exist two simple cylinders C 0 and D0

such that
�.C 0;D0/� �.C;D/ and d.C;D/� d.C 0;D0/C 4:

It follows from Lemma 4.5 and Proposition 4.6 that d.C 0;D0/ � 3�.C 0;D0/ C 2.
Therefore

d.C;D/� 3�.C;D/C 6:

5 Infinite diameter

In this section we prove the following proposition.

Proposition 5.1 For any .X; !/ 2 H.2/tH.1; 1/, the diameter of yCcyl.X; !; f / is
infinite.

The geometry of the curve complex is closely related to the Teichmüller space T .S/.
Recall that given a simple closed curve 
 on S , for any x 2 T .S/ the extremal length
Extx.
 / of 
 is defined to be

Extx.
 /D suphj

�
j
2
h;

where h ranges over the set of Riemannian metrics of area one in the conformal class
of x , and j
 �jh is the length of the shortest curve (with respect to h) in the homotopy
class of 
 . Alternatively, one can define Extx.
 / to be the inverse of the largest
modulus of an annulus homotopic to 
 on S . There is a natural coarse mapping ˆ
from T .S/ to C.S/ defined as follows: we assign to each x 2 T .S/ a curve of minimal
x–extremal length on S . It is a well-known fact (see [33, Lemma 2.4]) that there is a
universal constant c depending only the topology of S , such that the diameter of the
subset of C.S/ consisting of simple curves having minimal x–extremal length is at
most c for any x 2 T .S/.
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Teichmüller geodesics in T .S/ through x are the projections of the lines at � q , where q

is a holomorphic quadratic differential on S equipped with the conformal structure x ,
and

at D

�
et 0

0 e�t

�
; t 2R:

It is proven in [33] that if LqW R! T .S/ is a Teichmüller geodesic, then ˆ.Lq.R//
is an unparametrized quasigeodesic in C.S/. It may happen that this quasigeodesic
has finite diameter.

The curve graph C.S/ has infinite diameter; see [33]. Klarreich [27] shows that the
boundary at infinity @1C.S/ of C.S/ can be identified with the space of topological
minimal foliations Fmin.S/ on S . Recall that a foliation on S is minimal if it has
no leaf which is a simple closed curve, here we consider foliations up to isotopy and
Whitehead moves. A characterization of sequences of curves converging to a foliation
in @1C.S/ is given by Hamenstädt [16]. It follows from this result that if the vertical
foliation of q are minimal then ˆ ıLq.Œ0;1// is a quasigeodesic of infinite diameter
in C.S/; see [17; 18].

Recall that a geometric (nondegenerate) cylinder on a translation surface is modeled by
R� .0; h/=..x;y/� .xC c;y//, where c > 0 is its circumference and h is its width.
Vorobets [50], developing Smillie’s ideas in [45], showed the following:

Theorem 5.2 (Smillie and Vorobets) Given any stratum H.�/ of translation surface,
there exists a constant K > 0 depending on � such that, on every translation surface of
area one in H.�/, one can find a geometric cylinder of width bounded below by K .

Proposition 5.1 follows easily from this and the results of Klarreich and Hamenstädt.

Proof of Proposition 5.1 Using the action of GLC.2;R/, we can always assume that
Area.X; !/ D 1 and the vertical foliation of .X; !/ is minimal. Let LW R! T .S/
be the Teichmüller geodesic defined by q D !2 . By the results of Klarreich and
Hamenstädt, the quasigeodesic ˆ ıL.R>0/ has infinite diameter.

Denote by dC the distance in C.S/, and by d the distance in yCcyl.X; !; f /. For any
pair .˛; ˇ/ in yCcyl.X; !; f /, we have dC.˛; ˇ/� d.˛; ˇ/.

For each t 2R, let .Xt ; !t / WDat �.X; !/. For anyR2R>0 there exist t1; t22 .0;C1/

such that dC.ˆ ıL.t1/; ˆ ıL.t2// � R. Let ˛i WD ˆ ıL.ti/. By Theorem 5.2 we
know that there is a geometric cylinder Ci of width bounded below by K in .Xti

; !ti
/.

Let ˇi be a core curve of Ci .

The extremal length of ˛i in Xi is bounded by a universal constant e0.S/; see eg [39,
Lemma 2.1]. Thus by definition, the length of the shortest curve ˛�i in the homotopy
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class of ˛i with respect to !ti
is bounded by e0.S/. Since the width of Ci is at

least K , we have #f˛�i \ˇig � e0.S/=K , which implies that �.Œ˛i �; Œˇi �/� e0.S/=K .

It is well known that the distance in C.S/ is bounded by a linear function of the
intersection number; see eg [33, Lemma 2.1] or [6, Lemma 1.1]. Thus there is a
constant M depending only on S such that dC.Œ˛i �; Œˇi �/�M . Therefore, we have

dC.Œˇ1�; Œˇ2�/� dC.Œ˛1�; Œ˛2�/�dC.Œ˛1�; Œˇ1�/�dC.Œ˛2�; Œˇ2�/�R� 2M:

Since d.C1;C2/D d.Œˇ1�; Œˇ2�/� dC.Œˇ1�; Œˇ2�/, the proposition follows.

6 Automorphisms of the cylinder graph

Let AffC.X; !/ denote the group of affine automorphisms of .X; !/. Recall that
elements of AffC.X; !/ are orientation-preserving homeomorphisms of X that preserve
the zero set of ! , and are given by affine maps in local charts of the flat metric out
side of this set; see [25; 35]. Note that the derivative of such a map (in local charts
associated to the flat metric) is a constant matrix in SL.2;R/. Thus we have a group
homomorphism DW AffC.X; !/ ! SL.2;R/ which associates to each element of
AffC.X; !/ its derivative. The image of D in SL.2;R/ is called the Veech group of
.X; !/ and usually denoted by SL.X; !/. Note that the kernel of D is contained in
the group Aut.X / of automorphisms of X , thus must be finite. The group SL.X; !/
can also be viewed as the stabilizer of .X; !/ for the action of SL.2;R/.

Given a point ŒX; !;f �2�T2 , via the markingf W S!X , one can identify AffC.X; !/
with a subgroup of the mapping class group Mod.S/ of S ; see [35, Section 5]. An
element of Mod.S/ induces naturally an automorphism of the curve graph C.S/. It is a
well-known fact that every automorphism of C.S/ arises from an element of Mod.S/;
see [24; 31]. Since an affine homeomorphism maps cylinders into cylinders, and saddle
connections into saddle connections, it is clear that any element of AffC.X; !/ induces
an automorphism of the subgraph yCcyl.X; !; f /. The aim of this section is to show
the following.

Proposition 6.1 Let � be an element of Mod.S/ which preserves the subgraph
yCcyl.X; !; f /, that is, �.yCcyl.X; !; f // � yCcyl.X; !; f /. Then � is induced by an
affine automorphism in AffC.X; !/. In particular, � realizes an automorphism of
yCcyl.X; !; f /.

Remark 6.2 Proposition 6.1 is equivalent to the following statement: if  W X !X

is a homeomorphism such that for any regular simple closed geodesic or degener-
ate cylinder c ,  .c/ is freely homotopic to the core curves of a cylinder (possibly
degenerate) on X , then  is isotopic to an affine automorphism of .X; !/.
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The proof of this proposition essentially follows from the arguments of [13, Lemma 22].
Before getting into the proof, let us recall some basic notions of Thurston’s compactifi-
cation of the Teichmüller space. Let MF.S/ denote the space of measured foliations
on S . The space of projective measured foliations denoted by PMF.S/ is naturally
the quotient of MF.S/ by R�C . Thurston showed that PMF.S/ can be identified
with the boundary of T .S/. A foliation is minimal if none of its leaves is a closed
curve. A (measured) foliation is uniquely ergodic if it is minimal and there exists a
unique transverse measure up to scalar multiplication.

The set of (free homotopy classes of) simple closed curves in S (that is, the vertex
set of C.S/) is naturally embedded in MF.S/ with the transverse measure being
the counting measure of intersections. The geometric intersection number �. � ; � /
defined on the set of pairs of simple closed curves extends to a continuous symmetric
function �WMF.S/�MF.S/! Œ0;C1/ which satisfies �.a�; b�/D ab�.�; �/, for
all a; b 2 Œ0;C1/ and �;� 2MF.S/. It has been shown by Thurston that the set

f.0;C1/ �˛ j ˛ is a simple closed curveg
is dense in MF.S/.

Two measured foliations are topologically equivalent if the corresponding topological
foliations are the same up to isotopy and Whitehead moves.

Proposition 6.3 [44] If � is a minimal measured foliation, and �.�; �/D 0, then �
and � are topologically equivalent.

Measured foliations are a special case of more general objects called geodesic currents
which were introduced by Bonahon; see [3; 4]. We refer to [13] for an introduction to
this concept with more details. While the space of measure foliations is the completion
of the set of simple closed curves, the space of geodesic currents, denoted by C.S/, can
be viewed as the completion of closed curves on S . In particular, we have a continuous
extension of the intersection number function � to C.S/�C.S/. A characterization of
measured foliations in the space of geodesic currents was given by Bonahon:

Proposition 6.4 [3, Proposition 4.8] MF.S/ is exactly the set of geodesic currents
with zero self-intersection, that is,

MF.S/D f� 2 C.S/ j �.�; �/D 0g:

We will also need the following important feature of geodesic currents, due to Bonahon:

Proposition 6.5 [4, Proposition 4] Let ˛ be a geodesic current with the following
property: every geodesic in zS transversely meets another geodesic in the support of ˛ .
Then the set ˇ 2 C.S/ such that �.˛; ˇ/� 1 is compact in C.S/.

Algebraic & Geometric Topology, Volume 17 (2017)



2206 Duc-Manh Nguyen

Note that if � is a minimal foliation, then the corresponding geodesic current satisfies
the hypothesis of Proposition 6.5.

Every holomorphic 1–form .X; !/ (or more generally every holomorphic quadratic dif-
ferential) defines naturally two measured foliations on X . The leaves of these foliations
are respectively vertical and horizontal geodesic lines with the transverse measures
given by jRe!j and jIm!j. It is also a well-known fact that, if � and � are two
uniquely ergodic measured foliations jointly filling up S , that is, for any � 2MF.S/,
we have �.�; �/C �.�; �/ > 0, then there is a unique Teichmüller geodesic g that
joins Œ�� and Œ��, where Œ�� and Œ�� are the projections of � and � in PMF.S/.
As a consequence, assume that .X1; !1/ and .X2; !2/ are two holomorphic 1–forms
that both satisfy the following condition: the vertical foliation of !i is topologically
equivalent to �, and the horizontal foliation is topologically equivalent to �. Then
there exists a diagonal matrix

AD

�
et 0

0 es

�
2 GLC.2;R/

such that .X2; !2/DA � .X1; !1/.

Proof of Proposition 6.1 By definition, � � ŒX; !; f �D ŒX; !; f ı��1�. Equivalently,
we can write � � ŒX; !; f �D ŒX 0; !0; f 0�, where f 0W S ! X 0 satisfies the following
condition: there exists an isomorphism y�W X 0!X such that y��! D !0 , and f ı��1

is isotopic to y� ıf 0 . Using this identification, we have

yCcyl.X
0; !0; f 0/D �.yCcyl.X; !; f //:

Thus, by assumption, we have yCcyl.X
0; !0; f 0/� yCcyl.X; !; f /.

Via the maps f W S !X , f 0W S !X 0 , for any direction � 2RP1 , we denote by ��

and �0 � the measured foliations on S corresponding to the vertical foliations defined
by ei�! and ei�!0 , respectively. The leaves of �� and �0 � are geodesic lines in the
direction of ˙.�=2��/. Observe that if f�kg is a sequence of angles converging to � ,
then ��k converges to �� , and �0 �k converges to �0 � in MF.S/.

It follows from a classical result of Kerckhoff, Masur and Smillie [26] that for almost
all directions � 2RP1 , �� and �0 � are uniquely ergodic. Set

UE.!/ WD fŒ�� � 2 PMF.S/ j �� is uniquely ergodic, � 2RP1
g � PMF.S/:

We define UE.!0/ in the same manner.

We will show that UE.!0/ � UE.!/. Let � be a direction such that �0 � is uniquely
ergodic. Without loss of generality, we can assume that Area.X /D 1. For any t 2R,
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set

.X 0 �t ; !0 �t / WD

�
et 0

0 e�t

�
� .X 0; ei�!0/:

It follows from Theorem 5.2 that there exists a constant R> 0 such that for any t 2R,
X 0 �t has a cylinder C 0t with circumference bounded by R. Let c0t be a core curve
of C 0t , and consider the sequence fc0

k
gk2N . By definition, the length of c0

k
with respect

to !0 �
k

, denoted by `!0�
k
.c0

k
/, is bounded by R. Thus we have

�.ek�0 � ; c0k/D ek �.�0 � ; c0k/� `!0�
k
.c0k/�R:

It follows that
lim

k!C1
�.�0 � ; c0k/D 0:

By Proposition 6.5, up to extracting a subsequence, we can assume that fc0
k
g converges

to a geodesic current �0 2 C.S/. Since c0
k

has zero self-intersection, it follows that
�.�0; �0/ D 0, hence �0 2MF.S/ by Proposition 6.4. By continuity of �, we have
�.�0 � ; �0/D 0. Since �0 � is uniquely ergodic (so, in particular, it is minimal), it follows
from Proposition 6.3 that �0 and �0 � are topologically equivalent. Hence �0 is also
uniquely ergodic.

By definition, fc0kgk2N are vertices of yCcyl.X
0; !0; f 0/. By assumption, we have

yCcyl.X
0; !0;f 0/� yCcyl.X; !;f /. Therefore, fc0

k
gk2N are also vertices of yCcyl.X; !;f /,

which means that c0
k

is freely homotopic to either a simple closed geodesic or a
degenerate cylinder in X . In particular, we see that each c0

k
has a well-defined

direction �k 2 RP1 with respect to ! . Again, by extracting a subsequence, we can
assume that f�kg converges to O� . Thus, f��k g converges to �

O� . Since we have
�.��k ; c0

k
/ D 0, by continuity, it follows that �.� O� ; �0/ D 0. Since �0 is uniquely

ergodic, so is � O� , and we have Œ�0 � �D Œ�0�D Œ� O� � 2PMF.S/. We can then conclude
that UE.!0/� UE.!/.

Now pick a pair of projective uniquely ergodic measured foliations .Œ��; Œ��/2UE.!0/�
UE.!/ that jointly fill up S . There exist two matrices M and M 0 such that the
vertical and horizontal foliations of M �ŒX; !; f � and M 0 �ŒX 0; !0; f 0� are topologically
equivalent to � and �, respectively. Since there is a unique Teichmüller geodesic joining
Œ�� and Œ��, there exists a diagonal matrix A 2GLC.2;R/ such that M 0 � ŒX 0;!0;f 0�D

AM �ŒX;!;f �, implying that � is represented by an affine automorphism of .X; !/.

Remark 6.6 This proof actually works for translation surfaces in any genus with yCcyl

replaced by the subgraph consisting of nondegenerate cylinders.
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7 Hyperbolicity

A translation surface .X; !/ is said to be completely periodic (in the sense of Calta)
if the direction of any nondegenerate cylinder in X is periodic, which means that
whenever we find a simple closed geodesic on X , the surface decomposes as union of
(finitely many) cylinders in the same direction; see [10; 11]. It follows from [10] and
[38] that, in H.2/, a surface is completely periodic if and only if it is a Veech surface.
In H.1; 1/, a surface is completely periodic if and only if it is an eigenform for a real
multiplication of a quadratic order. In particular, there are completely periodic surfaces
in H.1; 1/ that are not Veech surfaces.

Let us denote by ED , where D is a natural number such that D � 0 or 1 mod 4, the
locus of eigenforms for the real multiplication by the quadratic order OD in �M2 .
Each ED is a 3–dimensional irreducible (algebraic) subvariety of �M2 which is
invariant by the SL.2;R/–action. The set of eigenforms in �M2 is then (see [38])

E D
[

D�0;1 mod4

ED :

Even though complete periodicity is initially defined for directions of nondegenerate
cylinders, it is not difficult to show that in the case of genus two, this property actually
implies the periodicity for directions of degenerate cylinders; see Lemma B.1. Alter-
natively, one can also use the argument in [51] to get the same result in more general
contexts; see [52]. In what follows, by a completely periodic surface we will mean
a surface for which the direction of any cylinder (degenerate or not) is periodic. By
Lemma B.1, this apparently new definition agrees with the usual one by Calta. Our
goal in this section is to show the following theorem:

Theorem 7.1 If .X; !/ 2 H.2/tH.1; 1/ is completely periodic then yCcyl.X; !; f /

is Gromov hyperbolic.

To prove this, we will use Masur and Schleimer’s hyperbolicity criterion (see also [7,
Proposition 3.1] and [15]), and follow Bowditch’s approach in [6].

Theorem 7.2 (Masur and Schleimer [34, Theorem 3.13]) Suppose that X is a graph
with all edge lengths equal to one. Then X is Gromov hyperbolic if there is a constant
M � 0 such that for all unordered pairs of vertices x;y in X 0 , there is a connected
subgraph gx;y containing x and y with the following properties:

� (local) If dX .x;y/ � 1 then gx;y has diameter at most M .

� (slim triangle) For any x;y; z 2 X 0 , the subgraph gx;y is contained in the
M –neighborhood of gx;z [gz;y .

Algebraic & Geometric Topology, Volume 17 (2017)



Translation surfaces and the curve graph in genus two 2209

Let us fix ŒX; !; f � 2�T2 , where .X; !/ 2 E and Area.X; !/D 1. We will write yCcyl

instead of yCcyl.X; !; f /. We know from Corollary 4.2 that yCcyl is connected, and
by definition the edges of yCcyl have length equal to one. Let K be the constant in
Theorem 5.2, and C be a cylinder of width bounded below by K in X . Note that
the circumference of C is bounded above by 1=K . Recall that from Theorem 4.1, we
know that there are two constants K1;K2 such that for any pair of cylinders C;D

in X , we have
d.C;D/�K1�.C;D/CK2;

where d is the distance in yCcyl.X; !; f /, and �.C;D/ is the number of intersections
of a core curve of C and a core curve of D .

7.1 Construction of subgraphs connecting pairs of vertices

We will now construct for each unordered pair of cylinders C;D a subgraph yLC;D

of yCcyl that satisfies the conditions of Theorem 7.2 with a constant M which will be
derived along the way.

Let us first consider the case that C and D are parallel. If C or D is nondegenerate
then �.C;D/D 0 hence d.C;D/D 1, which means that C and D are connected by
an edge in yCcyl . We define yLC;D to be this edge. If both C and D are degenerate
then it may happen that �.C;D/ > 0. Since .X; !/ is completely periodic, there is a
nondegenerate cylinder E parallel to C and D . Since �.C;E/D �.D;E/D 0, there
are in yCcyl two edges connecting E to C and to D . In this case, we define yLC;D to
be the union of these two edges.

Assume from now on that C and D are not parallel. By applying an appropriate
element of SL.2;R/, we can assume that C is horizontal, D is vertical, and C and D

have the same circumference. For any t 2R, set

at D

�
et 0

0 e�t

�
and .Xt ; !t /D at � .X; !/:

For any saddle connection s in .X; !/, we will denote by `t .s/ its Euclidean length
in .Xt ; !t /. If E is a cylinder in .X; !/, then ct .E/ and wt .E/ are respectively its
circumference and width in .Xt ; !t /.

For any R 2R>0 , let L�
C;D

.t;R/ denote the set of cylinders (possibly degenerate) of
circumference bounded above by R in .Xt ; !t /. Note that this set is finite. Let us
choose a constant L1 such that

(3) L1 >maxf1=K; 9g;
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and define
L�C;D.L1/D

[
t2R

L�C;D.t;L1/:

We regard L�
C;D

.t;R/ and L�
C;D

.L1/ as subsets of yC .0/cyl . Observe that L�
C;D

.t;L1/

contains C when t tends to �1, and contains D when t tends to C1; therefore
L�

C;D
contains C and D .

For each t 2R, consider now the set L�
C;D

.t; 2L1/. From Theorem 5.2, L�
C;D

.t; 2L1/

contains a vertex corresponding to a cylinder C0;t of width bounded below by K . Set

(4) M1 WDmaxf2.2K1L1=KCK2/; 2g:

Then we have the following lemma:

Lemma 7.3 As subset of yCcyl , L�C;D.t; 2L1/ has diameter bounded by M1 .

Proof Let E be a cylinder in L�
C;D

.t; 2L1/. If �.E;C0;t / D 0, then we have
d.C0;t ;E/ D 1. Otherwise we have K�.E;C0;t / � `t .E/ � 2L1 . Hence, from (1)
we get

d.C0;t ;E/� 2K1L1=KCK2;

and the lemma follows.

Moreover, we have the following lemma as well:

Lemma 7.4 Assume that the surface .X; !/ admits cylinder decompositions in both
vertical and horizontal directions. Then there exists a constant T > 0 such that the
following hold:

� If t > T , then L�
C;D

.t; 2L1/ only contains the vertical cylinders in .X; !/ and
L�

C;D
.t; 2L1/ has diameter at most 2.

� If t < �T , then L�
C;D

.t; 2L1/ only contains the horizontal cylinders in .X; !/
and L�

C;D
.t; 2L1/ has diameter at most 2.

Proof We only give the proof of the first assertion as the second one follows from the
same argument. By assumption, X decomposes into the union of some nondegenerate
vertical cylinders D1; : : : ;Dk . Let wt .Di/ denote the width of Di in .Xt ; !t /. Let
wt Dminfwt .Di/ j i D 1; : : : ; kg. A nonvertical cylinder must cross one of Di , thus
its circumference is bounded below by wt in .Xt ; !t /. Since we have wt D etw0 ; if t

is large enough, any nonvertical cylinder has circumference at least 2L1 in .Xt ; !t /.
Hence L�

C;D
.t; 2L1/ only contains the vertical cylinders. Since any vertical cylinder

is of distance one from D1 in yCcyl , L�C;D.t; 2L1/ has diameter at most two.
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Lemma 7.5 If t � log.2/� t 0 � t C log.2/ then L�
C;D

.t 0;R/� L�
C;D

.t; 2R/ for any
R 2R>0 . In particular, C0;t 0 2 L�

C;D
.t; 2L1/.

Proof Let s be a saddle connection or a regular geodesic in .Xt 0 ; !t 0/. Let xC iy be
the period of s in .Xt 0 ; !t 0/. Note that .Xt ; !t /D at�t 0 � .Xt 0 ; !t 0/. Thus the period
of s in .Xt ; !t / is .et�t 0

x; et 0�ty/. Therefore,

`t .s/D
p

e2.t�t 0/x2C e2.t 0�t/y2 � 2
p

x2Cy2 D 2`t 0.s/:

Set
LC;D.2L1/ WD

[
k2Z

L�C;D.k log.2/; 2L1/� yC .0/cyl :

It follows from Lemma 7.4 that if n 2 N is large enough, then for any m > n,
L�

C;D
.m;L1/D L�

C;D
.n; 2L1/, and L�

C;D
.�m; 2L1/D L�

C;D
.�n; 2L1/. Therefore,

the set LC;D.2L1/ is actually finite. For each unordered pair .x;y/ of vertices in
LC;D.2L1/, let �.x;y/ be a path of minimal length in yCcyl joining x to y . Set

yLC;D.2L1/D
[

x;y2LC;D.2L1/

�.x;y/:

As a direct consequence of Lemma 7.5, we get the following:

Corollary 7.6 (a) If x 2 L�
C;D

.t; 2L1/ and y 2 L�
C;D

.t 0; 2L1/, then d.x;y/ �

M1.2Cjt � t 0j=log.2//.

(b) The set L�
C;D

.L1/ is contained in LC;D.2L1/ and LC;D.2L1/ is contained in
the M1 –neighborhood of L�

C;D
.L1/.

(c) For any pair of vertices .x;y/ 2 L�
C;D

.L1/�L�C;D.L1/, there is a path �.x;y/
in yLC;D.2L1/ from x to y of length equal to d.x;y/.

7.2 The local property for yLC;D

We will now show that the subgraphs yLC;D.2L1/ constructed above satisfy the local
property of Theorem 7.2.

Proposition 7.7 There exists a constant M2 such that if .X; !/ 2 E then for any pair
of cylinders C;D in .X; !/ such that �.C;D/D 0, we have diam yLC;D.2L1/�M2 .

To prove this proposition, we make use of an elementary result on slit tori, Lemma B.3,
and the fact that if C and D are not parallel, then there always exists a splitting of X

into two subsurfaces, each of which contains one of C and D . Those auxiliary results
are proved in Appendix B. The main technical difficulties arise when we have to deal
with degenerate cylinders.
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D

C

Figure 8: Disjoint simple cylinders on surfaces in H.2/

Proof We split this proof into two cases: .X; !/ 2H.2/ and .X; !/ 2H.1; 1/.

Case .X; !/2H.2/ If C and D are parallel then yLC;D.2L1/ has diameter bounded
by 2 and we have nothing to prove. Suppose from now on that C is horizontal, D

is vertical, C and D have the same circumference equal to `, and yLC;D.2L1/ is the
graph constructed above. Note that in this case .X; !/ is a Veech surface, thus both
horizontal and vertical directions are periodic.

Case 1 One of C or D is nondegenerate. Assume that C is nondegenerate. Let c be
a core curve of C and d a core curve of D . Note that c is a regular simple closed
geodesic. By Lemma 3.6, the condition �.C;D/D 0 implies that c \ d D¿. Clearly,
C cannot fill X . If C is not simple then the complement of C is a horizontal simple
cylinder C 0 whose boundary is contained in the boundary of C . Since D is disjoint
from C , it must be contained in C 0 . But this is impossible since C 0 is horizontal and
D is vertical. Therefore, C must be a simple cylinder.

The complement of C is then a slit torus with the slit corresponding to the boundary
of C . We remark that a core curve of D must be disjoint from the interior of the
slit, otherwise it would cross C entirely. Thus, we have in the slit torus an embedded
square bounded by the boundary of D and the slit (which is actually the boundary
of C ); see Figure 8. By assumption, the length of the sides of this square is `. Since
this square has area less than one, we must have ` < 1. Therefore C 2 L�

C;D
.t;L1/

for all t � 0, and D 2 L�
C;D

.t;L1/ for any t � 0. Hence any E 2 LC;D.2L1/ is of
distance at most M1 from C or from D . Thus diam yLC;D.2L1/� 2M1C 1.

Case 2 Both of C and D are degenerate. From Lemma 3.4, for any � > 0 small
enough, we can deform .X; !/ into another surface .X 0; !0/ such that

� C corresponds to a simple horizontal cylinder C 0 in X 0 of width � ,
� D corresponds to a vertical cylinder in X 0 .

Since �.C 0;D0/D �.C;D/D 0, it follows from Lemma 3.6 that D0 must be disjoint
from C 0 . It follows in particular that D and D0 have the same circumference `. By
construction C 0 has the same circumference as C , and

Area.X 0; !0/D Area.X; !/C �`D 1C �`:
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P 00

Figure 9: Disjoint cylinders on surfaces in H.1; 1/: one of C and D is simple

Applying the same arguments as above to .X 0; !0/, we see that X 0 contains an embed-
ded square of size ` disjoint from C 0 . Therefore we have `2 < 1C �`. Since � can be
chosen arbitrarily, we derive that `� 1. We can then conclude by the same arguments
as the previous case.

Case .X; !/ 2H.1; 1/ Again, we only have to consider the case that C and D are
not parallel. Thus we can assume that C is horizontal and D is vertical. We first
choose a positive real number L>

p
2 such that

(5) L1 � 3f .
p

2L/;

where f .x/D
p

x2C 1=x2 ; see Lemma B.3.

Case 1 One of C and D is a simple cylinder. By Lemma B.2, we need to consider
two cases (see Figure 9):

(i) There is a simple cylinder E disjoint from C[D and the complement of C[D[E

is the union of two triangles T ;T 0 ; see Figure 9 (left). Since we have

Area.T /CArea.T 0/D `2 < Area.X; !/D 1;

it follows that `< 1. Hence we can use the same argument as in the case .X; !/2H.2/
to conclude that diam yLC;D.2L1/� 2M1C 1.

(ii) There is a pair of homologous saddle connections s1; s2 that decompose X

into a connected sum of two slit tori, .X 0; !0; s0/ containing C and .X 00; !00; s00/

containing D ; see Figure 9 (right).

By construction, the complement of C in X 0 is an embedded parallelogram P 0

bounded by s1; s2 and the boundary of C . Similarly, the complement of D in X 00

is also an embedded parallelogram P 00 bounded by s1; s2 and the boundary of D .
If `� 1 then we can conclude using the argument above. Suppose that we have `� 1.
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Let !.si/D xC iy . Since we have Area.P 0/D jyj`, and Area.P 00/D jxj`, it follows
that

maxfjxj; jyjg � 1=`� 1 and jsi j D
p

x2Cy2 �
p

2=`�
p

2:

Set A1 DArea.X 0; !0/, A2 DArea.X 00; !00/; we have A1CA2 D 1. Without loss of
generality, let us suppose that A1 �

1
2

. For any t 2R, the period of si in .Xt ; !t / is
.etx; e�ty/. Let .X 0t ; !

0
t ; s
0
t / be the slit torus corresponding to .X 0; !0; s0/ in .Xt ; !t /.

Recall that we have chosen L>
p

2 and L1 satisfies (5). Let us choose a positive real
number L0 � 1 such that

L�
p

L02C 1:

� For 0� t � log.`L0/, we have et jxj �L0 and e�t jyj � jyj � 1, thus

`t .s1/�
p

L02C 1�L:

Rescaling .X 0t ; !
0
t ; s
0
t / by 1=

p
A1 , we get a torus of area one with a slit of length

bounded by
p

2L. Using Lemma B.3, we see that there exists in .1=
p

A1 / �X
0
t

a cylinder E0t disjoint from the slit of circumference bounded by L1 . Note
that in X 0t , the circumference of E0t is at most

p
A1L1 � L1 . We have

d.D;E0t / D 1 and E0t 2 L�
C;D

.t; 2L1/. Thus for any E 2 L�
C;D

.t; 2L1/ we
have d.D;E/�M1C 1.

� For � log.`L0/� t � 0, we have et jxj � jxj � 1 and e�t jyj �L0 , thus

`t .si/�
p

L02C 1�L:

The same argument as the previous case then shows that d.D;E/ �M1C 1,
for any E 2 L�

C;D
.t; 2L1/.

� For t � log.`L0/, we have `t .D/ D e�t` � 1=L0 � 1 � 2L1 . Thus D is in
L�

C;D
.t; 2L1/, which implies that d.D;E/�M1 for any E 2 L�

C;D
.t; 2L1/.

� For t �� log.`L0/, we have `t .C /�1=L0�2L1 , so for any E2L�
C;D

.t; 2L1/,
d.C;E/�M1 , which implies that d.D;E/�M1C 1.

We can then conclude that for any t 2 R, and any E 2 L�
C;D

.t; 2L1/, we have
d.D;E/�M1C 1. Hence diam yLC;D � 2.M1C 1/.

Case 2 One of C;D is nondegenerate and not simple. Without loss of generality,
we can assume that C is neither simple nor degenerate. Lemma 3.6 implies that D

is disjoint from C . Since C is not simple, the complement of C is either (a) empty,
(b) a horizontal simple cylinder, (c) the union of two simple horizontal cylinders, or
(d) another horizontal cylinder whose closure is a slit torus. Since there exists a vertical
cylinder disjoint from C (namely D ), only (d) can occur. In this case, there is a pair of
horizontal homologous saddle connection fs1; s2g contained in the boundary of C that
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Figure 10: Disjoint cylinders on surfaces in H.1; 1/; C is neither simple nor degenerate.

decompose .X; !/ into the connected sum of two slit tori. Let .X 0; !0; s0/ be the slit
torus which is the closure of C , and .X 00; !00; s00/ be the other one that contains D ;
see Figure 10.

Let x D js1j D js2j. Observe that X 00 contains a rectangle bounded by s1; s2 and the
saddle connections bordering D . Therefore we have x`� 1, equivalently 0� x � 1=`.
By the same arguments as the previous case, we also get diam yLC;D � 2.M C 1/.

Case 3 One of C and D is degenerate. Let us assume that C is degenerate. Using
Lemma 3.4, we can find a family .Xt ; !t /; t 2 Œ0; �/, of surfaces in H.1; 1/ that are
deformations of .X; !/, such that C corresponds to a simple horizontal cylinder Ct

on Xt , for t > 0, which has the same circumference. Note that the width of Ct is t .
Therefore, Area.Xt ; !t /D Area.X; !/C t`.

By construction, D corresponds to a cylinder Dt on Xt which is disjoint from Ct (since
we have �.Ct ;Dt /D �.C;D/D 0). By Lemma B.2 we know that either (i) .Xt ; !t /

contains two embedded triangles T ;T 0 disjoint from Ct and Dt , or (ii) there is a
splitting of .Xt ; !t / into two slit tori .X 0t ; !

0
t ; s
0
t / and .X 00t ; !

00
t ; s
00
t / such that Ct �X 0t

and Dt �X 00t .

If (i) occurs, then we have Area.T /DArea.T 0/D 1
2
`2 �

1
2

, which implies that `� 1.
If (ii) occurs, then since the slits (s0 and s00 ) are disjoint from Ct , they persist as
we collapse Ct to get back .X; !/. Thus, we have the same splitting on .X; !/. In
conclusion, we can use the same arguments as in Case 1 to handle this case. The proof
of Proposition 7.7 is now complete.

7.3 The slim triangle property for yLC;D

We now prove that the subgraphs yLC;D.2L1/ satisfy the slim triangle property of
Theorem 7.2. The idea of the proof can found in [6, Lemma 4.4]. To lighten notation,
in what follows we will write yLC;D instead of yLC;D.2L1/.
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Proposition 7.8 There exists a constant M3 such that for any triple of cylinders
fC;D;Eg in .X; !/, we have that yLC;D is contained in the M3 –neighborhood of
yLC;E [ yLE;D in yCcyl.X; !; f /.

Proof If C and D are parallel then yLC;D is contained in the 2–neighborhood of
yLC;E [ yLD;E . From now on we assume that C and D are not parallel.

By Corollary 7.6, we only need to show that L�
C;D

.L1/ is contained in the M3 –
neighborhood of L�

C;E
.L1/[L�

E;D
.L1/. To define LC;D.2L1/ and yLC;D.2L1/ one

needs to specify an origin for the time t by the condition that the circumferences of C

and D are equal. On the other hand to define L�
C;D

.L1/, this normalization is not
required. If E is parallel to C then L�

C;D
.L1/DL�

E;D
.L1/, and if E is parallel to D

then L�
C;D

.L1/D L�
C;E

.L1/. In both of these cases we have nothing to prove.

Let us now assume that E is neither parallel to C nor to D . We can then renormalize
(using SL.2;R/) such that C is horizontal, D is vertical, and E has slope equal to 1.
Recall that for any t 2R, .Xt ; !t /D at � .X; !/, C0;t is a cylinder of width bounded
below by K in .Xt ; !t /, and the constant L1 is chosen so that L1 > 1=K ; see (3).

Claim If t � 0 then C0;t is contained in the M1 –neighborhood of L�
C;E

.L1/.

Proof of the claim Since .X; !/ is completely periodic, it decomposes into cylinders
in both directions of C and E . Let us denote by C D C1; : : : ;Cm the horizontal
cylinders, and by E DE1; : : : ;En the cylinders in the direction of E . As usual we
denote by `t .Ci/ (resp. `t .Ej /) the circumference of Ci (resp. of Ej ) in .Xt ; !t /.
Let ui.t/ be the width of Ci , and vj .t/ be the width of Ej in .Xt ; !t /. We have

`t .Ci/D et`.Ci/; ui.t/D e�tui ;

`t .Ej /D
p

cosh.2t/`.Ej /; vj .t/D
vjp

cosh.2t/
:

Since .X; !/ has area 1, we also have

(6) 1D
X

ui`.Ci/D
X

vj`.Ej /:

Let xj (resp. yi) be the intersection number of a core curve of C0;t and a core curve of Ej

(resp. of Ci ). Since the circumference of C0;t is bounded by 1=K <L1 , we have

(7)
X

yiui.t/D e�t
X

yiui � `.C0;t /�L1 )

X
yiui � etL1:

Since the width of C0;t is bounded below by K , xj K � `t .Ej /D
p

cosh.2t/`.Ej /.
Since t � 0, it follows that

(8) xj �

p
cosh.2t/

K
`.Ej /�

e�t

K
`.Ej /:
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Let .X 0; !0/ WD U � .X; !/, where U D
�

1 �1
0 1

�
. Let `0.Ci/ and u0i (resp. `0.Ej /

and v0j ) be the circumference and the width of Ci (resp. of Ej ) in .X 0; !0/. Note
that Ci is horizontal, and Ej is vertical in .X 0; !0/. Thus, `0.Ci/D `.Ci/, u0i D ui ,
and `0.Ej /D `.Ej /=

p
2, v0j D

p
2vj .

For any s 2 R, let .X 0s; !
0
s/ WD as � .X

0; !0/. Let `0s.Ci/ and u0i.s/ (resp. `0s.Ej /

and v0j .s/) be the circumference and the width of Ci (resp. of Ej ) in .X 0s; !
0
s/.

Let xC iy be the period of the core curves of C0;t in .X 0s; !
0
s/. From (8) we get

(9) jxj D
X

xjv
0
j .s/D es

X
xjv
0
j � es

p
2e�t

K

X
`.Ej /vj D

p
2es�t

K
:

From (7), we get

(10) jyj D
X

yiu
0
i.s/D e�s

X
yiui � et�sL1:

Thus for s D t , the circumference of C0;t in .X 0s; !
0
s/ is at most

p
3L1 < 2L1 .

Let C 00;s be a cylinder of width bounded below by K in .X 0s; !
0
s/. By Lemma 7.3, we

have d.C 00;s;C0;t /�M1 which means that C0;t is contained in the M1 –neighborhood
of L�

C;E
.L1/.

It follows immediately from the claim that L�C;D.t;L1/ is contained in the 2M1 –
neighborhood of L�C;E.L1/ if t � 0. By similar arguments, one can also show
that L�C;D.t;L1/ is contained in the 2M1 –neighborhood of L�E;D.L1/ if t � 0.
Therefore, we can conclude that L�C;D.L1/D [t2RL�C;D.t;L1/ is contained in the
2M1 –neighborhood of L�C;E.L1/[L�E;D.L1/, which implies that yLC;D is contained
in the 3M1 –neighborhood of L�C;E.L1/[L�E;D.L1/.

7.4 Proof of Theorem 7.1

From Proposition 7.7, and Proposition 7.8, we see that yCcyl.X; !; f / with the family of
subgraphs yLC;D satisfies the two conditions of Theorem 7.2 with M DmaxfM2;M3g.
Therefore, yCcyl.X; !; f / is Gromov hyperbolic.

8 The quotient by affine automorphisms

In this section we investigate the quotient of yCcyl.X; !; f / by the group AffC.X; !/.
Our main focus is the case where .X; !/ is a Veech surface, that is, when SL.X; !/ is
a lattice in SL.2;R/. Throughout this section .X; !/ is a fixed translation surface in
H.2/tH.1; 1/, and yCcyl is the cylinder graph of .X; !/ with some marking map. We
denote by G the quotient graph yCcyl=AffC.X; !/, and by V and E the sets of vertices
and edges of G, respectively. Notice that an edge may join a vertex to itself (we then
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have a loop), and there may be more than one edge with the same endpoints. We use
the notations jVj and jEj to designate the cardinalities of E and V. We will show the
following theorem:

Theorem 8.1 Let .X; !/ be a surface in H.2/ tH.1; 1/. Then .X; !/ is a Veech
surface if and only if jVj is finite.

Theorem 8.1 does not mean, when .X; !/ is a Veech surface, that the quotient graph G

is a finite graph, as we have the following:

Proposition 8.2 If .X; !/ is Veech surface in H.2/ then G is a finite graph, that is,
jVj and jEj are both finite. There exist Veech surfaces in H.1; 1/ such that jVj <1
but jEj D1.

8.1 Proof of Theorem 8.1

Recall that the SL.2;R/–orbit of a Veech surface .X; !/ projects to an algebraic curve
in M2 isomorphic to X WDH� SL.X; !/; this curve is called a Teichmüller curve.
The direction of any saddle connection on X is periodic, that is, X is decomposed
into finitely many cylinders in this direction. Moreover, there is a parabolic element in
SL.X; !/ that fixes this direction. Thus each cylinder in X corresponds to a cusp in X .

Let � be a periodic direction for X . Let C1; : : : ;Ck be the cylinders of X in the
direction � , and Ti be the Dehn twist about the core curves of Ci . Let 
 be the
generator of the parabolic subgroup of SL.X; !/ that fixes � . Then there exist some
integers m1; : : : ;mk such that 
 is the derivative of an element of AffC.X; !/ isotopic
to T

m1

1
ı � � � ıT

mk

k
.

8.1.1 Proof that .X; !/ is Veech implies that V is finite If .X; !/2H.2/, then X

has one or two cylinders in the direction � . In the first case, we have three more
degenerate ones, and in the second case there is no degenerate cylinder. Thus the
total number of cylinders (degenerate or not) in a periodic direction is at most 4. If
.X; !/ 2H.1; 1/, then by similar arguments, we see that X has at most 5 cylinders in
the direction � . We have seen that � corresponds to a cusp of X . Since X has finitely
many cusps, it follows that X has finitely many cylinders up to action of AffC.X; !/.
Therefore, V is finite.

8.1.2 Proof that V is finite implies that .X; !/ is Veech In what follows, by an
embedded triangle in X , we mean the image of a triangle T in the plane by a map
'W T !X which is locally isometric, injective in the interior of T , and which sends the
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vertices of T to the singularities of X . Note that ' maps a side of T to a concatenation
of some saddle connections. By a slight abuse of notation, we will also denote by T

the image of ' in X . To show that .X; !/ is a Veech surface, we will use the following
characterization of Veech surfaces by Smillie and Weiss [47].

Theorem 8.3 (Smillie and Weiss) .X; !/ is a Veech surface if and only if there
exists an � > 0 such that the area of any embedded triangle T in X is at least � .

We now assume that jVj is finite. If v is a vertex of yCcyl , we denote by Nv its equivalence
class in V. Clearly, the group AffC.X; !/ preserves the areas of the cylinders in X .
Therefore, each element of V has a well-defined area (a degenerate cylinder has zero
area). Since V is finite, we can write V D fNv1; : : : ; Nvng, where n D jVj. Using
GLC.2;R/, we can normalize so that Area.X; !/D 1. Let ai D Area. Nvi/, and define

A1 D fa1; : : : ; ang;

A2 D fjai � aj j W ai ¤ aj g;

A3 D f1� .ai C aj / W ai C aj < 1g;

A4 D f1� .ai C aj C ak/ W ai C aj C ak < 1g:

Set � DminfA1[A2[A3[A4g. We will need the following lemma on slit tori.

Lemma 8.4 Let . yX ; y!; Os/ be a slit torus. By a cylinder in yX , we will mean a
connected component of X that is cut out by a pair of parallel simple closed geodesics
passing through the endpoints of Os .

Assume that Os is not parallel to any simple closed geodesic of yX . Then there exists a
sequence of cylinders f yCkgk2N such that yCk is disjoint from the slit Os for all k 2N ,
and Area. yCk/! Area. yX / as k!C1.

Proof Using GLC.2;R/, we can normalize so that . yX ; y!/D .C=.Z˚ iZ/; dz/. The
slit Os is then represented by a segment Œ0; .1C i˛/ t �, with t 2 .0;1/ and ˛ 2R nQ.
In this setting, each simple closed geodesic c of yX corresponds to a vector pC iq with
p; q 2Z and gcd.p; q/D 1. Let c1 and c2 be the simple geodesics parallel to c which
pass through the endpoints of Os . Note that c1; c2 cut yX into two cylinders. By [41,
Lemma 4.1], we know that one of the two cylinders is disjoint from Os if and only if

t

ˇ̌̌̌
det

�
p 1

q ˛

�ˇ̌̌̌
D t jp˛� qj< 1:

Note that the quantity t jp˛� qj is precisely the area of the cylinder that contains Os .
Since ˛ is an irrational number, one can find a sequence f.pk ; qk/gk2N such that

gcd.pk ; qk/D 1; t j˛pk � qk j< 1 and lim
k!1

j˛pk � qk j D 0:
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Figure 11: Embedded triangles in a surface in H.2/ in Case 1 (left) and
Case 2 (right)

For each .pk ; qk/ in this sequence, we have a cylinder yCk in direction of pk C iqk

disjoint from Os such that

Area. yCk/D 1� t j˛pk � qk j:

In particular, we have limk!1Area. yCk/D 1, which proves the lemma.

As a consequence of this lemma, we get the following.

Corollary 8.5 Let .s1; s2/ be a pair of homologous saddle connections in X that are
exchanged by the hyperelliptic involution � . If one of the connected components cut
out by .s1; s2/ is a slit torus, then the direction of s1; s2 is periodic.

Proof If .X; !/ 2 H.2/ then X is decomposed by .s1; s2/ into a simple cylinder
and a slit torus, if .X; !/ 2 H.1; 1/ then X is decomposed into two slit tori. Thus,
it suffices to show that si is parallel to a closed geodesic in each slit torus. If this is
not the case, then by Lemma 8.4, we can find in this slit torus a sequence of cylinders
disjoint from the slit whose area converges to the area of the torus. Note that such
cylinders are also cylinders of X . Thus their areas belong to A1 . Since A1 is finite, it
cannot contain a nonconstant converging sequence. Therefore, we can conclude that
the direction of .s1; s2/ is periodic.

Let T be an embedded triangle in X . We will show that Area.T / > 1
2
� . We first

remark that it suffices to consider the case where each side of T is a saddle connection,
since otherwise there is another embedded triangle contained in T with this property.
Let � denote the hyperelliptic involution of X , and T 0 D �.T /. Let s1; s2; s3 be the
sides of T and s0i be the image of si by � . The proof that Area.T / > 1

2
� naturally

splits into two cases depending on the stratum of .X; !/.

Case .X; !/ 2H.2/ We need to consider the following two situations:

Case 1 None of the sides of T is invariant by � . From Lemma 2.4, si and s0i bound a
simple cylinder denoted by Ci . Let hi be length of the perpendicular segment from the
opposite vertex of si in T to si . If int.T /\int.C1/¤¿, then both s2 and s3 cross C1
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Figure 12: Embedded triangles in a surface in H.1; 1/; from left to right we
have Cases 1–3.

entirely, which implies that the width of C1 is at most h1 ; see Figure 11 (left). It follows
that Area.T /� 1

2
Area.C1/ >min 1

2
A1 . The same arguments apply in the cases that

int.T / intersects int.C2/ or int.C3/. If int.T / is disjoint from int.Ci/, i D 1; 2; 3,
then we have three disjoint cylinders in X (if int.Ci/\ int.Cj / ¤ ¿ then si must
cross Cj entirely hence int.T /\ int.Cj /¤ ¿). Since .X; !/ 2 H.2/, this situation
cannot occur; see Theorem 2.6. Hence, we can conclude that Area.T /� 1

2
� here.

Case 2 One of the sides of T is invariant by � . In this case, the union of T and
its image by � is an embedded parallelogram; see Lemma 2.1. This means that there
is a parallelogram P in the plane such that T is one of the two triangles cut out
by a diagonal of P , and there is a map 'W P ! X locally isometric, injective in
int.T /, mapping the vertices of P to the singularity of X . We remark that all the
sides of T cannot be invariant by � because this would imply that X D '.P / is
a torus. If there are two sides of T that are invariant by � , then '.P / is a simple
cylinder in X , hence Area.T / � min 1

2
A1 . If there is only one side invariant by � ,

then the complement of '.P / is the union of two disjoint simple cylinders C1;C2 (see
Figure 11, right), which implies Area.P /D 1� .Area.C1/CArea.C2//. Therefore,
we have Area.T / >min 1

2
A3 �

1
2
� . This completes the proof of Theorem 8.1 for the

case .X; !/ 2H.2/.

Case .X; !/ 2H.1; 1/ We consider the following situations:

Case 1 There exists i such that s0i intersects int.T /. Note that we must have s0i ¤ si .
Let us assume that i D 1. Recall that s1 and s0

1
either bound a simple cylinder

or decompose X into two tori. In the first case, the same argument as in the case
.X; !/ 2H.2/ shows that Area.T /�min 1

2
A1 . For the second case, observe that the

intersection of T with one of the slit tori consists of a domain bounded by s1 and some
subsegments of s2 , s3 and s0

1
; see Figure 12. Let .X1; !1; Qs1/ denote this slit torus.

We can assume that s1 is horizontal. By Corollary 8.5 we know that the horizontal
direction is periodic for X1 , thus X1 is the closure of a horizontal cylinder C1 .
We remark that X1 contains a transverse simple cylinder D1 disjoint from s1 [ s0

1
,
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whose core curves cross C1 once. The complement of D1 in X1 is an embedded
parallelogram P1 bounded by s1; s

0
1

and the boundary of D1 . Clearly, we have
Area.T /� 1

2
Area.P1/. By definition, we have

Area.P1/D Area.C1/�Area.D1/�min A2:

Thus we have Area.T /� 1
2
� .

Case 2 None of s0i intersects int.T /, and s0i ¤ si , i D 1; 2; 3. It is not difficult to
show that this case only happens when si and s0i bound a simple cylinder Ci disjoint
from int.T /[ int.T 0/. Therefore, X is decomposed into the union of three cylinders
C1;C2;C3 , and T [T 0 ; see Figure 12. Thus in this case, we have

Area.T /D 1
2

�
1� .Area.C1/CArea.C2/CArea.C3//

�
�min 1

2
A4 �

1
2
�:

Case 3 None of s0i intersects int.T/ and one of s1; s2; s3 is invariant by � . Assume
that s0

1
D s1 . It follows that T [T 0 is an embedded parallelogram P . If both .s2; s

0
2
/

and .s3; s
0
3
/ are the boundaries of some simple cylinders C2 and C3 , respectively, then

C2 and C3 are disjoint, and C2 [C3 is disjoint from P . By construction we must
have X DP [C2[C3 , which is impossible since .X; !/ 2H.1; 1/. Therefore, we
can assume that .s2; s

0
2
/ decompose X into two slit tori. Let X1 be the slit torus that

contains P . By Corollary 8.5, we know that the direction of .s2; s
0
2
/ is periodic, which

means that X1 is the closure of a cylinder C . Observe that the complement of P

in X1 must be a cylinder D bounded by .s3; s
0
3
/; see Figure 12. Therefore,

Area.T/D 1
2

Area.P /D 1
2
.Area.C /�Area.D//� 1

2
min A2 �

1
2
�:

Case 4 None of s0i intersects int.T/ and two of s1 , s2 , s3 are invariant by � . In this
case T [T 0 is a simple cylinder. Therefore, Area.T/�min 1

2
A1 �

1
2
� .

In all cases Area.T /� 1
2
� , thus Theorem 8.3 implies that .X;!/ is a Veech surface.

8.2 Proof of Proposition 8.2

Case .X; !/ 2H.2/ We have shown that V is finite; it remains to show that E is
also finite. Let v be a vertex of yCcyl , and C be the corresponding cylinder in X . We
denote by Nv the equivalence class of v in G. Using SL.2;R/, we can suppose that C

is horizontal.

If C is a nondegenerate cylinder, then we have three cases: (a) C is the unique
horizontal cylinder, (b) X has two horizontal cylinders and C is not simple, and (c) C

is a simple cylinder. In case (a), there are three edges in yCcyl that have v as an endpoint,
those edges connect v to three degenerate cylinders contained in the boundary of C . In
case (b), there is only one edge in yCcyl having v as an endpoint, this edge connects C
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to the other horizontal simple cylinder. Thus in cases (a) and (b), there are only finitely
many edges having Nv as an endpoint.

Assume now that we are in case (c). Let D be the other horizontal cylinder of X .
Observe that the closure of D is a slit torus .X 0; !0; s0/ where s0 corresponds to the
boundary of C . Let d be a core curve of D , and e be a simple closed geodesic
in X 0 disjoint from the slit s0 and crossing d once. We consider fd; eg as a basis
of H1.X

0;Z/. If C 0 is a cylinder in X disjoint from C , then C 0 must be entirely
contained in D . Thus the core curves of C 0 are determined by a unique element of
H1.X

0;Z/, and we can write C 0 Dmd C ne with m; n 2 Z.

By assumption, a core curve c0 of C 0 cannot cross the slit s0 . The necessary and
sufficient condition for this is that j!0.c0/^!0.s0/j � Area.X 0/D Area.D/; see [41,
Lemma 4.1]. But j!0.c0/^!0.s0/jD jnjj!0.e/^!0.s0/j. Thus we can conclude that jnj
is bounded by some constant n0 .

We have seen that AffC.X; !/ contains an element �D T
m1

1
ıT

m2

2
, where T1 and T2

are the Dehn twists about the core curves of C and D , respectively. Observe that �
fixes the vertices of yCcyl corresponding to C and D . The action of � on the curves
contained in D is given by

�.md C ne/D .m˙m2n/d C ne:

Thus up to action of f�kgk2Z , any cylinder C 0 contained in D belongs to the equiva-
lence class of a cylinder C 00 also contained in D whose core curves are represented
by md C nc with jnj � jn0j and jmj � jm2nj � jm2jjn0j. We can then conclude that
there are finitely many edges in E which contain Nv as an endpoint.

It remains to consider the case that C is degenerate. In this case X has a unique
nondegenerate cylinder in the horizontal direction, which contains C in its boundary.
Note that the complement of C in X can be isometrically identified with a flat torus
with an embedded geodesic segment removed. Therefore, the arguments above also
hold in this case. Since we have proved that the set of vertices of G is finite, it follows
that the set of edges of G is also finite.

Case .X; !/ 2 H.1; 1/ Let .X; !/ be the surface constructed from 6 squares as
shown in Figure 13. This surface has 3 horizontal cylinders denoted by C1;C2;C3 ,
where Ci is the cylinder with i squares. It has two vertical cylinders denoted by D1

and D2 , where the core curves of D1 cross C1 and C3 . Let v be the vertex of yCcyl cor-
responding to C1 , and w be the vertex corresponding to C2 . The fact that G has finitely
many vertices follows from Theorem 8.1. We will show that G has infinitely many edges.

Given a cylinder C on X , we denote by TC the Dehn twist about the core curves
of C . Observe that f D T 6

C1
ı T 3

C2
ı T 2

C3
and g D TD1

ı T 2
D2

are two elements of
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C1

C3

C2

D1

D2

Figure 13: Example of a square-tiled surface in H.1; 1/

AffC.X; !/ whose derivatives are�
1 6

0 1

�
and

�
1 0

2 1

�
;

respectively. If h is an element of AffC.X; !/ that preserves the horizontal direction,
then h must map a horizontal cylinder to a horizontal cylinder. Since C1;C2;C3 have
different circumferences, h must preserve each of them, which implies that hD f k ,
k 2 Z. We derive in particular that there is no affine homeomorphism that maps C2

to C1 .

For any n 2 N , let En be the image of C2 by gn . We remark that En D T 2n
D2
.C2/,

hence En is contained in the closure D2 of D2 . In particular, En is disjoint from C1 .
Thus, there is an edge en in yCcyl connecting v to the vertex wn corresponding to En .
By definition, all the vertices wn belong to the equivalence class w of w in G. We
will show that the edges fengn2N are all distinct up to action of AffC.X; !/, which
means that there are infinitely many edges in E between Nv and w .

Assume that there is an affine automorphism h 2 AffC.X; !/ such that h.en1
/D en2

,
for some n1; n2 2 N . If h.wni

/ D v , then there is an element of AffC.X; !/ that
sends w to v , or equivalently C2 to C1 . But we have already seen that such an
element does not exist, thus this case cannot occur. Therefore, we must have h.v/D v

and h.wn1
/D wn2

. Since any element of AffC.X; !/ preserving C1 belongs to the
subgroup generated by f , we derive that h also preserves C2 and C3 . Observe that a
core curve of Eni

crosses C2 2ni times. Therefore, if n1 ¤ n2 , then h cannot exist.
We can then conclude that the projections of all the edges en are distinct in G, which
proves the proposition.

9 Quotient graphs and McMullen’s prototypes

By the works of McMullen [38; 37], we know that closed GLC.2;R/–orbits in H.2/
are indexed by the discriminant D , that is, a natural number D 2N such that D� 0; 1

mod 4, together with the parity of the spin structure when D� 1 mod 8 and D¤ 9.
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Figure 14: Examples of G for DD 5 (top left), DD 8 (top right) and DD 9

(bottom). For each two-cylinder decomposition, we provide the corresponding
prototype .a; b; c; e/ . A loop at some vertex represents a butterfly move that
does not change the prototype.

Let .X; !/ be an eigenform in ED \H.2/ for some fixed D . Following [37], every
two-cylinder decomposition of X is encoded by a quadruple of integers .a; b; c; e/2Z4

called a prototype satisfying the following conditions:

.PD/
b > 0; c > 0; gcd.b; c/ > a� 0;

D D e2C 4bc; b > cC e; gcd.a; b; c; e/D 1:

Set �D 1
2
.eC
p

D/. Up to action of GLC.2;R/, the decomposition of X consists of
two horizontal cylinders. The first one is simple and represented by a square of size �.
The other one is nonsimple and represented by a parallelogram constructed from the
vectors .b; 0/ and .a; c/. Note that we always have b > �.

The quotient graph G turns out to be closely related to the set of McMullen’s prototypes.
Namely, each prototype corresponds to a cluster of two vertices of G which represent
the cylinders in the corresponding cylinder decomposition. Let C1;C2 be the cylinders
in this decomposition, where C1 is the simple one. Then the vertex corresponding
to C2 is only adjacent to the one corresponding to C1 in G. This is because any other
cylinder of X must cross C2 .

On the other hand, if there is an edge in G between two vertices representing two simple
cylinders which are not parallel, then the two cylinder decompositions are related by a
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“butterfly move”; see [37, Section 7] for the precise definitions. In other words, G can
be viewed as a geometric object representing PD : each prototype is represented by two
vertices connected by an edge, and all the other edges of G represent butterfly moves.

There is nevertheless a slight difference between the two notions. The set PD only
parametrizes two-cylinder decompositions of X , while in G we also have one-cylinder
decompositions. If

p
D 62N , then any cylinder in X is contained in a two-cylinder

decomposition. Thus, the set of prototypes exhausts all the equivalence classes of
cylinders in X (hence it provides the complete list of cusps of the corresponding
Teichmüller curve). But when D is a square (eg D D 9), we need to take into account
one-cylinder decompositions as well as degenerate cylinders. In Figure 14, we draw
the quotient cylinder graphs of surfaces corresponding to some small values of D .

Appendix A: Triangulations

In this section we construct triangulations of .X; !/ that are invariant by the hyper-
elliptic involution. The aim of these triangulations is to provide a preferred way to
represent .X; !/ as a polygon in R2 when we have a horizontal simple cylinder on X .
The results of this section are certainly not new and are known to most people in the
field; see eg [49]. We present them here only for the sake of completeness.

In what follows, for any saddle connection s , we will denote by h.s/ the length of
the horizontal component of s , that is, h.s/D jRe.!.s//j. If � is a triangle bounded
by the saddle connections s1; s2; s3 , we define h.�/Dmaxfh.si/ j i D 1; 2; 3g. Our
main result in this section is the following:

Proposition A.1 Let .X; !/ be a translation surface in H.2/tH.1; 1/ having a simple
horizontal cylinder C . Assume that every regular leaf of the vertical foliation of .X; !/
crosses C .

(i) If .X; !/ 2H.2/, then .X; !/ can be obtained by identifying the pairs of opposite
sides of an octagon P D .P0 � � �P3Q0 � � �Q3/�R2 (see Figure 15), where the vertices
are labeled clockwise, such that the following hold:

�
���!
PiPiC1 D�

����!
QiQiC1 , i D 0; 1; 2, and

���!
P3Q0 D�

���!
Q3P0 .

� The diagonals P0P3 and Q0Q3 are horizontal, the parallelogram .P0P3Q0Q3/

is contained in P and projects to C �X .

� For i D 1; 2, the vertical line through Pi (resp. Qi/ intersects P0P3 (resp.
Q0Q3 ), and the vertical segment from Pi (resp. from Qi ) to the intersection is
contained in P .
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sC

s�

P0

P1
P2

P3

Q0

Q1
Q2

Q3

sC

s�

P0

P1P2

P3

P4

Q0

Q1
Q2

Q3

Q4

Figure 15: Representations of surfaces .X; !/ in H.2/ (left) and H.1; 1/
(right) with symmetric polygons. The simple horizontal cylinder is repre-
sented by the highlighted parallelogram.

(ii) If .X; !/ 2 H.1; 1/, then .X; !/ can be obtained by identifying the pairs of
opposite sides of a decagon P D .P0 � � �P4Q0 � � �Q4/ (see Figure 15), where the
vertices are labeled clockwise, such that the following hold:

�
���!
PiPiC1 D�

����!
QiQiC1 , i D 0; : : : ; 3, and

���!
P4Q0 D�

���!
Q4P0 .

� The diagonals P0P4 and Q0Q4 are horizontal, the parallelogram .P0P4Q0Q4/

is contained in P and projects to C �X .

� For i D 1; 2; 3, the vertical line through Pi (resp. Qi ) intersects P0P4 (resp.
Q0Q4 ), and the vertical segment from Pi (resp. from Qi ) to the intersection is
contained in P .

Proof Cut off C from X , and identify the geodesic segments in the boundary of
the resulting surface, we then obtain either a slit torus (if .X; !/ 2H.2/) or a surface
in H.2/ with a marked saddle connection (if .X; !/ 2H.1; 1/). Let .X 0; !0/ denote
the new surface, and s0 the marked saddle connection. If .X 0; !0/ is a slit torus, then
there is a unique involution of X 0 that acts by �Id on H1.X

0;Z/ and exchanges
the endpoints of s0 . By a slight abuse of notation, we will call this involution the
hyperelliptic involution of X 0 . Thus, in both cases, s0 is invariant by the hyperelliptic
involution.

By assumption all the regular vertical leaves of X 0 intersect s0 . Let f�˙i j i D 1; : : : ; kg

be the triangulation of X 0 provided by Lemmas A.2 and A.3; if .X 0; !0/ 2 H.0; 0/,
k D 2, if .X 0; !0/ 2H.2/, k D 3. We can represent C by a parallelogram in R2 . The
polygon P is obtained from this parallelogram by gluing successively the triangles
�C

1
; : : : ; �C

k
, then ��

1
; : : : ; ��

k
.

Lemma A.2 Let .X; !; s/ be a slit torus. Let � be the elliptic involution of X that
exchanges the endpoints P1;P2 of s . Assume that all the leaves of vertical foliation
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�C
1

��
1

�C
2

��
2

P1 P2

P2

P1

P1

P2

s

�C
1

��
1

�C
2

��
2

P1 P2

P1

P2

P2

P1

Figure 16: Triangulation of a slit torus

meet s . Then there exists a unique triangulation of X into four triangles �˙
1
; �˙

2
with

vertices in fP1;P2g, such that the following are satisfied:

� �Ci and ��i are exchanged by � .
� s is contained in both �C

1
and ��

1
.

� For i D 1; 2, the union �Ci [�
�
i is a cylinder in X .

� �C
1

is adjacent to ��
1

and �C
2

, ��
1

is adjacent to �C
1

and ��
2

.
� h.�˙

1
/D h.s/, and h.�˙

2
/D h.cC/, where cC is the unique common side of

�C
2

and �C
1

.

There are two possible configurations for this triangulation, shown in Figure 16.

Proof By Lemma 2.3, we know that there exists a pair of simple closed geodesics
cC; c� passing through the endpoints of s that cut X into two cylinders satisfying
h.c˙/� h.s/. One of the cylinders cut out by c˙ contains s , we denote it by C1 , the
other one is denoted by C2 . Note that we must have h.c˙/ > 0, otherwise there are
vertical leaves that do not meet s . It is easy to see that we get the desired triangulation
by adding some geodesic segments in C1 and C2 joining the endpoints of s .

Lemma A.3 Let .X; !/ be a surface in H.2/ and s be a saddle connection on X ,
invariant by the hyperelliptic involution � . We assume that s is horizontal and all the
leaves of the vertical foliation meet s . Then we can triangulate X into six triangles
�˙i , i D 1; 2; 3, whose sides are saddle connections, satisfying the following:

� �.�Ci /D�
�
i , i D 1; 2; 3.

� �C
1

and ��
1

contain s , and h.�˙
1
/D h.s/.

� �C
2

has a unique common side with �C
1

which will be denoted by aC , and
h.�C

2
/D h.aC/.

� �C
3

either has a unique common side bC with �C
1

and h.�C
3
/Dh.bC/ or �C

3

has a unique common side cC with �C
2

and h.�C
3
/D h.cC/.
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Figure 17: Triangulation of surfaces in H.2/

This triangulation is unique. The configurations of the triangles �˙i , i D 1; 2; 3, are
shown in Figure 17.

Proof From Lemma 2.1, we see that there exist a parallelogram P �R2 and a locally
isometric map 'W P !X that maps a diagonal of P to s . By construction, '.P / is
decomposed into two embedded triangles �˙

1
, where �C1 is the one above s , both of

which satisfy h.�˙
1
/D h.s/D jsj. Note also that �.�C1 /D�

�
1

.

Let us denote the nonhorizontal sides of �C
1

by aC and bC , and their images by � by
a� and b� , respectively. If both of aC and bC are invariant by � then X D '.P /,
which implies that X is a torus, and we have a contradiction. Therefore, we only have
two cases:

(a) None of aC; bC is invariant by � . In this cases, by Lemma 2.4 the complement
of '.P / is the disjoint union of two cylinders bounded by a˙ and b˙ , respectively.
Note that none of aC and bC is vertical, otherwise there would be vertical leaves that
do not meet s . We can then triangulate the cylinders bounded by a˙ and b˙ in the
same way as in Lemma A.2.

(b) One of aC; bC is invariant by � . We can assume that bC is invariant by � . In this
case, '.P / is a simple cylinder bounded by a˙ . The complement of '.P / is then a
slit torus .X1; !1; s1/, where s1 is the identification of a˙ . From the assumption that
all the vertical leaves meet s , we derive that a˙ are not vertical. Thus we can follow
the same argument as in Lemma A.2 to get the desired triangulation.

Appendix B: Cylinders and decompositions

In this section, we give the proofs of some lemmas which are used in Section 7.

Lemma B.1 Let .X; !/ 2 H.2/ tH.1; 1/ be a completely periodic surface in the
sense of Calta. If C is a degenerate cylinder in X , then the direction of C is periodic,
that is, X is decomposed into cylinders in the direction of C .
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Proof If .X; !/ is in H.2/ then .X; !/ is a Veech surface, thus the direction of any
saddle connection is periodic and we are done. Assume now that .X; !/ is in H.1; 1/.
In H.1; 1/, we have a local action of C which only changes the relative periods and
leaves the absolute periods invariant. Orbits of this local action are leaves of the kernel
foliation. It is well known that the any eigenform locus is invariant by this local action.

Let us label the zeros of ! by x1;x2 and define the orientation of any path connecting
x1 and x2 to be from x1 to x2 . Using this local action of C , we can collapse the
two zeros of ! as follows. Let s be a saddle connection invariant by the hyperelliptic
involution satisfying the following condition, which we will call condition .S/: if there
exists another saddle connection s0 joining x1 and x2 such that !.s0/D �!.s/ with
� 2 .0IC1/, then we have � > 1.

We can then reduce the length of s to zero by moving in the kernel foliation leaf
of .X; !/, the resulting surface is an eigenform in H.2/ having the same absolute
periods as .X; !/. The condition on s implies that x1 and x2 do not collide before s

is reduced to a point, for a proof of this fact, we refer to [28; 29]. We remark that the
new surface in H.2/ is a Veech surface.

Without loss of generality, we can assume that C is horizontal. By definition, C is the
union of two saddle connections s1; s2 both invariant by the hyperelliptic involution,
and up to a renumbering we have !.s1/ 2R>0; !.s2/ 2R<0 .

Assume that neither of s1; s2 satisfies .S/, then there exist two other saddle connections
s0
1
; s0

2
such that !.s0i/ D �i!.si/, with �i 2 .0I 1/. This implies that there are four

horizontal saddle connections on X . Since .X; !/2H.1; 1/, there are at most 4 saddle
connections in a fixed direction, and this maximal number is realized if and only if the
direction is periodic. Thus, in this case we can conclude that X is horizontally periodic.

Let us now assume that one of s1; s2 , say s1 , satisfies the condition .S/. We can then
collapse x1;x2 along s1 to get a Veech surface .X0; !0/2H.2/. Since !.s2/�!.s1/

is an absolute period, it stays unchanged along the collapsing procedure. Therefore,
s2 persists in X0 , and we have !0.s2/D !.s2/�!.s1/ 2R. In particular, .X0; !0/

has a horizontal saddle connection, and because .X0; !0/ is a Veech surface, it must
be horizontally periodic. It follows that .X; !/ is also horizontally periodic. This
completes the proof of the lemma.

Lemma B.2 Let .X; !/ 2 H.1; 1/. Let C be a horizontal (possibly degenerate)
cylinder in X , and D be a vertical simple cylinder disjoint from C . Then either

(a) there is another simple cylinder E disjoint from C[D such that the complement
of C [D[E is the union of two embedded triangles, or
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(b) there exists a pair of homologous saddle connections s1; s2 that decompose X

into two slit tori .X 0; !0; s0/ and .X 00; !00; s00/ such that C is contained in X 0

and D is contained in X 00 .

Proof We first consider the case that C is not degenerate. In this case, the complement
of C in X is either (1) empty, (2) a horizontal simple cylinder, (3) the disjoint union
of two horizontal simple cylinders, (4) a torus with a horizontal slit, or (5) a surface
. yX ; y!/ 2H.2/ with a marked horizontal saddle connection s . Since we have a vertical
simple cylinder disjoint from C , only (4) and (5) can occur. In case (4), we automatically
have two slit tori, one of which is the closure of C , and the other one must contain D .
Therefore we get case (b) of the statement of the lemma.

Let us now assume that we are in case (5). In this case C must be a simple horizontal
cylinder, and the saddle connection s in yX corresponds to the boundary of C . Note
that s is invariant by the hyperelliptic involution O� of yX . Let 'W P ! yX be the
embedded parallelogram associated to s . Let a˙ and b˙ be the images by ' of
the sides of P , where O�.aC/D a� and O�.bC/D b� . Note that D must be disjoint
from '.P / since any vertical geodesic intersecting '.int.P // must intersect int.s/,
and hence C , but we have assumed that D is disjoint from C .

If aC D a� and bC D b� then yX must be a torus, and we have a contradiction.
Therefore, we only have two cases:

� aC ¤ a� and bC ¤ b� In this case, the complement of '.P / is the disjoint
union of two simple cylinders. Since D is contained in this union, D must be one
of the two. Let us denote the other one by E . To obtain .X; !/ from . yX ; y!/, we
need to slit open s and glue back C . Consequently, we see that .X; !/ has three
disjoint simple cylinders C;D;E . The complement of C [D[E is the union of two
embedded triangles, which are the images of the triangles in P cut out by s . Thus, we
get case (a) of the statement of the lemma.

� aC D a� and bC ¤ b� In this case, '.P / is a simple cylinder bounded by b˙ .
The complement of '.P / is then a slit torus .X 00; !00; s00/ with the slit s00 corresponding
to b˙ . We can view .X 00; !00; s00/ as a subsurface of X . Observe that D must be
contained in .X 00; !00/ and disjoint from the slit s00 , since otherwise a core curve of
D must cross C . The complement of .X 00; !00; s00/ is another slit torus .X 0; !0; s0/
which is obtained by slitting '.P / along s and gluing back C . Therefore, we get case
(b) of the statement of the lemma.

Assume now C is degenerate. By Lemma 3.4, there exist deformations .Xt ; !t /,
t 2 Œ0; �/, of .X; !/ such that C corresponds to a simple horizontal cylinder Ct in Xt ,
which has the same circumference as C and height equal to t . By construction, D
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corresponds to a simple vertical cylinder Dt in Xt which is disjoint from Ct . Observe
that Ct and Dt satisfy case (5) above. Therefore, by the preceding arguments, the
conclusion of the lemma is true for Ct and Dt . In either case, the corresponding
decomposition of Xt persists as t ! 0, which implies that we have the same decom-
position on .X; !/.

In what follows, if uD .u1;u2/ and v D .v1; v2/ are two vectors in R2 , we denote

u^ v WD det
�

u1 v1

u2 v2

�
;

and juj; jvj are the Euclidean norms of u and v , respectively.

Lemma B.3 Given a constant L> 0, let

(11) L1 WD 3 maxff .L/; f .2ı/g;

where f .x/ D
p

x2C 1=x2 , and ı WD
�

3
4

� 1
4 . Then for any slit torus .X; !; s/ with

Area.X; !/D 1, and jsj<L, there exists in X a cylinder disjoint from s with area at
least 1

2
and circumference bounded above by L1 .

Proof Let ƒ be the lattice in C such that .X; !/ can be identified with .C=ƒ; dz/.
Since ƒ has covolume 1, there exists a vector v 2 ƒ such that jvj � ı . Define
uD !.s/ 2C 'R2 .

Let us first consider the case that juj � 1
2ı

. We then have

ju^ vj � jujjvj � 1
2
:

The vector v corresponds to a simple closed geodesic c on X . The inequality above
implies that there exist a pair of simple closed geodesics parallel to c cutting X into
two cylinders, one of which contains s denoted by C , the other one denoted by C 0

consists of closed geodesics parallel to c that do not intersect s ; see [41, Lemma 4.1] or
[37, Theorem 7.2]. Note that the circumferences of both C and C 0 are jvj � ı . Since
Area.C /D ju^ vj � 1

2
, we have Area.C 0/� 1

2
. Thus C 0 has the required properties.

We can now turn to the case that 1
2ı
� jsj �L. By definition, we have f .jsj/� 1

3
L1 .

By multiplying ! by a complex number of modulus 1, which does not change the area
of X and the length of s , we can assume that s is horizontal. From Lemma 2.1, we
know that there exists a local isometry ' from a parallelogram P �R2 into X such that
a horizontal diagonal of P is mapped to s . Since X is a torus, C WD '.P / is actually
a cylinder in X . Let � be the distance from the highest point of P to its horizontal
diagonal. By construction, we have Area.C / D Area.P / D �jsj � Area.X; !/ D 1.
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Thus �� 1=jsj. Note that the boundary components of C are the images by ' of two
opposite sides of P . Hence the circumference of C is bounded byp

jsj2C �2 � f .jsj/� 1
3
L1:

Observe that the complement of C is another cylinder C 0 in X sharing the same
boundary with C . If Area.C 0/ � 1

2
then we are done. Let us consider the case that

Area.C 0/ < 1
2

, which means that Area.C / > 1
2
> Area.C 0/. By cutting and pasting,

we can also realize C as a parallelogram Q D .P1P2P3P4/ with two horizontal
sides P1P2 and P4P3 identified with s . Note that the distance between P1P2 and
P4P3 is �. We can then realize C 0 as a parallelogram Q0 D .P2P3P5P6/ adjacent
to Q, where P5 is contained in the horizontal stripe bounded by the lines supporting
P1P2 and P4P3 ; see Figure 18. Let P 06 and P 05 be the intersections of the line
supporting P5P6 and the lines supporting P1P2 and P4P3 , respectively.

Clearly we have Area.C 0/D Area.Q0/D Area..P2P3P 05P 06//. Since Area.C 0/ <
Area.C /, we have jP2P 06j< jP1P2j, and jP1P 06j<2jP1P2j�2L. If P 0

6
�P6 , then X

has a horizontal cylinder C0 with circumference equal jP1P 06j and area equal 1. Clearly
the core curves of C0 do not intersect s , therefore C0 has the required properties. If
P6¤P 0

6
, then by construction, P1P5 and P4P5 project to two simple closed geodesics

in X , denoted by c1 and c2 , respectively. These closed geodesics meet s only at one
of its endpoints. Let d1 and d2 be respectively the simple closed geodesics parallel
to c1 and c2 passing through the other endpoint of s . Observe that c1 and d1 (resp. c2

and d2 ) cut X into two cylinders, one of which contains s and will be denoted by C1

(resp. C2 ), and the other is denoted by C 0
1

(resp. C 0
2

). Now, we remark that

Area.C1/D j
���!
P1P5 ^

���!
P1P2j and Area.C2/D j

���!
P4P5 ^

���!
P4P3j:

Since

j
���!
P1P5 ^

���!
P1P2jC j

���!
P4P5 ^

���!
P4P3j D j

���!
P1P2 ^

���!
P1P4j D Area.C /� 1;

we have either Area.C1/ �
1
2

or Area.C2/ �
1
2

. Assume that Area.C1/�
1
2

, so that
Area.C 0

1
/� 1

2
. We have

jc1j D jP1P5j � jP1P 06jC jP
0
6
P5j �

2
3
L1C

1
3
L1 DL1:

P1 P2

P6

P 06

P5

P 05P3P4

Figure 18: Cylinder with bounded circumference and area at least 1
2

in a slit torus
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Thus we can conclude that C 0
1

satisfies the statement of the lemma. In the case that
Area.C2/ �

1
2

, the same argument shows that the complement C 0
2

of C2 has the
required properties. The proof of the lemma is now complete.

References
[1] T Aougab, Uniform hyperbolicity of the graphs of curves, Geom. Topol. 17 (2013)

2855–2875 MR

[2] M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups,
Geom. Topol. 6 (2002) 69–89 MR

[3] F Bonahon, Bouts des variétés hyperboliques de dimension 3 , Ann. of Math. 124
(1986) 71–158 MR

[4] F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math.
92 (1988) 139–162 MR

[5] B H Bowditch, Hyperbolic 3–manifolds and the geometry of the curve complex, from
“European Congress of Mathematics” (A Laptev, editor), Eur. Math. Soc., Zürich (2005)
103–115 MR

[6] B H Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J.
Reine Angew. Math. 598 (2006) 105–129 MR

[7] B H Bowditch, Uniform hyperbolicity of the curve graphs, Pacific J. Math. 269 (2014)
269–280 MR

[8] J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II:
The ending lamination conjecture, Ann. of Math. 176 (2012) 1–149 MR

[9] P Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics
106, Birkhäuser, Boston (1992) MR

[10] K Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17
(2004) 871–908 MR

[11] K Calta, J Smillie, Algebraically periodic translation surfaces, J. Mod. Dyn. 2 (2008)
209–248 MR

[12] M Clay, K Rafi, S Schleimer, Uniform hyperbolicity of the curve graph via surgery
sequences, Algebr. Geom. Topol. 14 (2014) 3325–3344 MR

[13] M Duchin, C J Leininger, K Rafi, Length spectra and degeneration of flat metrics,
Invent. Math. 182 (2010) 231–277 MR

[14] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series
49, Princeton Univ. Press (2012) MR

[15] R H Gilman, On the definition of word hyperbolic groups, Math. Z. 242 (2002) 529–541
MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://msp.org/gt/2013/17-5/p07.xhtml
http://msp.org/idx/mr/3190300
http://dx.doi.org/10.2140/gt.2002.6.69
http://msp.org/idx/mr/1914565
http://dx.doi.org/10.2307/1971388
http://msp.org/idx/mr/847953
http://dx.doi.org/10.1007/BF01393996
http://msp.org/idx/mr/931208
http://www.ems-ph.org/books/show_abstract.php?proj_nr=23&vol=1&rank=7&srch=searchterm%7Cthe+geometry+of+the+curve+complex
http://msp.org/idx/mr/2185739
http://dx.doi.org/10.1515/CRELLE.2006.070
http://msp.org/idx/mr/2270568
http://dx.doi.org/10.2140/pjm.2014.269.269
http://msp.org/idx/mr/3238474
http://dx.doi.org/10.4007/annals.2012.176.1.1
http://dx.doi.org/10.4007/annals.2012.176.1.1
http://msp.org/idx/mr/2925381
http://www.springer.com/us/book/9780817649913
http://msp.org/idx/mr/1183224
http://dx.doi.org/10.1090/S0894-0347-04-00461-8
http://msp.org/idx/mr/2083470
http://dx.doi.org/10.3934/jmd.2008.2.209
http://msp.org/idx/mr/2383267
http://dx.doi.org/10.2140/agt.2014.14.3325
http://dx.doi.org/10.2140/agt.2014.14.3325
http://msp.org/idx/mr/3302964
http://dx.doi.org/10.1007/s00222-010-0262-y
http://msp.org/idx/mr/2729268
http://www.maths.ed.ac.uk/~aar/papers/farbmarg.pdf
http://msp.org/idx/mr/2850125
http://dx.doi.org/10.1007/s002090100356
http://msp.org/idx/mr/1985464


Translation surfaces and the curve graph in genus two 2235

[16] U Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, from
“Spaces of Kleinian groups” (Y N Minsky, M Sakuma, C Series, editors), London Math.
Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187–207 MR

[17] U Hamenstädt, Geometry of the complex of curves and of Teichmüller space, from
“Handbook of Teichmüller theory, I” (A Papadopoulos, editor), IRMA Lect. Math.
Theor. Phys. 11, Eur. Math. Soc., Zürich (2007) 447–467 MR

[18] U Hamenstädt, Stability of quasi-geodesics in Teichmüller space, Geom. Dedicata 146
(2010) 101–116 MR

[19] J L Harer, The virtual cohomological dimension of the mapping class group of an
orientable surface, Invent. Math. 84 (1986) 157–176 MR

[20] W J Harvey, Boundary structure of the modular group, from “Riemann surfaces and
related topics: proceedings of the 1978 Stony Brook conference” (I Kra, B Maskit,
editors), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245–251 MR

[21] S Hensel, P Przytycki, R C H Webb, 1–slim triangles and uniform hyperbolicity for
arc graphs and curve graphs, J. Eur. Math. Soc. 17 (2015) 755–762 MR

[22] P Hubert, E Lanneau, Veech groups without parabolic elements, Duke Math. J. 133
(2006) 335–346 MR

[23] P Hubert, T A Schmidt, Infinitely generated Veech groups, Duke Math. J. 123 (2004)
49–69 MR

[24] N V Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat.
Math. Res. Not. 1997 (1997) 651–666 MR

[25] R Kenyon, J Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75
(2000) 65–108 MR

[26] S Kerckhoff, H Masur, J Smillie, Ergodicity of billiard flows and quadratic differen-
tials, Ann. of Math. 124 (1986) 293–311 MR

[27] E Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller
space, preprint (1999) Available at http://www.math.unicaen.fr/~levitt/
klarreich.pdf

[28] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian
differentials with prescribed singularities, Invent. Math. 153 (2003) 631–678 MR

[29] E Lanneau, D-M Nguyen, Connected components of Prym eigenform loci in genus
three, Math. Ann. (online publication April 2017) 41 pages

[30] R Lehnert, On the critical exponent of infinitely generated Veech groups, Math. Ann.
(online publication August 2016) 42 pages

[31] F Luo, Automorphisms of the complex of curves, Topology 39 (2000) 283–298 MR

[32] H Masur, Closed trajectories for quadratic differentials with an application to billiards,
Duke Math. J. 53 (1986) 307–314 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://www.math.uni-bonn.de/people/ursula/ctc.pdf
http://msp.org/idx/mr/2258749
http://dx.doi.org/10.4171/029-1/11
http://msp.org/idx/mr/2349677
http://dx.doi.org/10.1007/s10711-009-9428-4
http://msp.org/idx/mr/2644273
http://dx.doi.org/10.1007/BF01388737
http://dx.doi.org/10.1007/BF01388737
http://msp.org/idx/mr/830043
http://msp.org/idx/mr/624817
http://dx.doi.org/10.4171/JEMS/517
http://dx.doi.org/10.4171/JEMS/517
http://msp.org/idx/mr/3336835
http://dx.doi.org/10.1215/S0012-7094-06-13326-4
http://msp.org/idx/mr/2225696
http://dx.doi.org/10.1215/S0012-7094-04-12312-8
http://msp.org/idx/mr/2060022
http://dx.doi.org/10.1155/S1073792897000433
http://msp.org/idx/mr/1460387
http://dx.doi.org/10.1007/s000140050113
http://msp.org/idx/mr/1760496
http://dx.doi.org/10.2307/1971280
http://dx.doi.org/10.2307/1971280
http://msp.org/idx/mr/855297
http://www.math.unicaen.fr/~levitt/klarreich.pdf
http://www.math.unicaen.fr/~levitt/klarreich.pdf
http://dx.doi.org/10.1007/s00222-003-0303-x
http://dx.doi.org/10.1007/s00222-003-0303-x
http://msp.org/idx/mr/2000471
http://dx.doi.org/10.1007/s00208-017-1542-2
http://dx.doi.org/10.1007/s00208-017-1542-2
http://dx.doi.org/10.1007/s00208-016-1462-6
http://dx.doi.org/10.1016/S0040-9383(99)00008-7
http://msp.org/idx/mr/1722024
http://dx.doi.org/10.1215/S0012-7094-86-05319-6
http://msp.org/idx/mr/850537


2236 Duc-Manh Nguyen

[33] H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent.
Math. 138 (1999) 103–149 MR

[34] H Masur, S Schleimer, The geometry of the disk complex, J. Amer. Math. Soc. 26
(2013) 1–62 MR

[35] H Masur, S Tabachnikov, Rational billiards and flat structures, from “Handbook of
dynamical systems, 1A” (B Hasselblatt, A Katok, editors), North-Holland, Amsterdam
(2002) 1015–1089 MR

[36] C T McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003)
191–223 MR

[37] C T McMullen, Teichmüller curves in genus two: discriminant and spin, Math. Ann.
333 (2005) 87–130 MR

[38] C T McMullen, Dynamics of SL2.R/ over moduli space in genus two, Ann. of Math.
165 (2007) 397–456 MR

[39] Y N Minsky, Teichmüller geodesics and ends of hyperbolic 3–manifolds, Topology 32
(1993) 625–647 MR

[40] M Möller, Affine groups of flat surfaces, from “Handbook of Teichmüller theory, II”
(A Papadopoulos, editor), IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc., Zürich
(2009) 369–387 MR

[41] D-M Nguyen, Parallelogram decompositions and generic surfaces in Hhyp.4/ , Geom.
Topol. 15 (2011) 1707–1747 MR

[42] D-M Nguyen, On the topology of H.2/ , Groups Geom. Dyn. 8 (2014) 513–551 MR

[43] K Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025–3053 MR

[44] M Rees, An alternative approach to the ergodic theory of measured foliations on
surfaces, Ergodic Theory Dynamical Systems 1 (1981) 461–488 MR

[45] J Smillie, The dynamics of billiard flows in rational polygons, from “Dynamical sys-
tems, ergodic theory and applications” (Y G Sinai, editor), 2nd edition, Encyclopaedia
of Mathematical Sciences 100, Springer (2000) 360–382 MR

[46] J Smillie, B Weiss, Minimal sets for flows on moduli space, Israel J. Math. 142 (2004)
249–260 MR

[47] J Smillie, B Weiss, Characterizations of lattice surfaces, Invent. Math. 180 (2010)
535–557 MR

[48] M Troyanov, Prescribing curvature on compact surfaces with conical singularities,
Trans. Amer. Math. Soc. 324 (1991) 793–821 MR

[49] W A Veech, Geometric realizations of hyperelliptic curves, from “Algorithms, fractals,
and dynamics” (Y Takahashi, editor), Plenum (1995) 217–226 MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.1007/s002220050343
http://msp.org/idx/mr/1714338
http://dx.doi.org/10.1090/S0894-0347-2012-00742-5
http://msp.org/idx/mr/2983005
http://dx.doi.org/10.1016/S1874-575X(02)80015-7
http://msp.org/idx/mr/1928530
http://dx.doi.org/10.1007/BF02392964
http://msp.org/idx/mr/2051398
http://dx.doi.org/10.1007/s00208-005-0666-y
http://msp.org/idx/mr/2169830
http://dx.doi.org/10.4007/annals.2007.165.397
http://msp.org/idx/mr/2299738
http://dx.doi.org/10.1016/0040-9383(93)90013-L
http://msp.org/idx/mr/1231968
http://dx.doi.org/10.4171/055-1/11
http://msp.org/idx/mr/2497782
http://dx.doi.org/10.2140/gt.2011.15.1707
http://msp.org/idx/mr/2851075
http://dx.doi.org/10.4171/GGD/237
http://msp.org/idx/mr/3231227
http://dx.doi.org/10.2140/gt.2014.18.3025
http://msp.org/idx/mr/3285228
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0143385700001383
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0143385700001383
http://msp.org/idx/mr/662738
https://www-fourier.ujf-grenoble.fr/~lanneau/references/smillie2000.pdf
http://msp.org/idx/mr/1758456
http://dx.doi.org/10.1007/BF02771535
http://msp.org/idx/mr/2085718
http://dx.doi.org/10.1007/s00222-010-0236-0
http://msp.org/idx/mr/2609249
http://dx.doi.org/10.2307/2001742
http://msp.org/idx/mr/1005085
http://link.springer.com/chapter/10.1007%2F978-1-4613-0321-3_19#page-1
http://msp.org/idx/mr/1402493


Translation surfaces and the curve graph in genus two 2237

[50] Y Vorobets, Periodic geodesics on generic translation surfaces, from “Algebraic and
topological dynamics” (S Kolyada, Y Manin, T Ward, editors), Contemp. Math. 385,
Amer. Math. Soc. (2005) 205–258 MR

[51] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol.
19 (2015) 413–438 MR

[52] A Wright, Translation surfaces and their orbit closures: an introduction for a broad
audience, EMS Surv. Math. Sci. 2 (2015) 63–108 MR

[53] A Zorich, Flat surfaces, from “Frontiers in number theory, physics, and geometry, I”
(P Cartier, B Julia, P Moussa, P Vanhove, editors), Springer (2006) 437–583 MR

Institut de Mathématiques de Bordeaux, Université de Bordeaux, CNRS UMR 5251
351, Cours de la Libération, F-33405 Talence Cedex, France

duc-manh.nguyen@math.u-bordeaux.fr

Received: 31 March 2016 Revised: 30 September 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1090/conm/385/07199
http://msp.org/idx/mr/2180238
http://dx.doi.org/10.2140/gt.2015.19.413
http://msp.org/idx/mr/3318755
http://dx.doi.org/10.4171/EMSS/9
http://dx.doi.org/10.4171/EMSS/9
http://msp.org/idx/mr/3354955
http://dx.doi.org/10.1007/978-3-540-31347-2_13
http://msp.org/idx/mr/2261104
mailto:duc-manh.nguyen@math.u-bordeaux.fr
http://msp.org
http://msp.org



	1. Introduction
	1.1. The curve complex
	1.2. Teichmüller disks and translation surfaces
	1.3. The flat metric and curve complex
	1.4. Statement of results
	1.5. Outline

	2. Preliminaries
	3. Degenerate cylinders and the cylinder graph
	3.1. Cylinders and the curve graph
	3.2. Degenerate cylinders
	3.3. The cylinder graph
	3.4. Intersection numbers

	4. Reducing numbers of intersection
	4.1. Reducing to simple cylinders
	4.2. Proof of Proposition 4.6, case H(2)
	4.3. Proof of Proposition 4.6, case H(1,1)
	4.3.1. Model I
	4.3.2. Model II
	4.3.3. Model III

	4.4. Proof of Theorem 4.1

	5. Infinite diameter
	6. Automorphisms of the cylinder graph
	7. Hyperbolicity
	7.1. Construction of subgraphs connecting pairs of vertices
	7.2. The local property for L_{C,D}
	7.3. The slim triangle property for L_{C,D}
	7.4. Proof of Theorem 7.1

	8. The quotient by affine automorphisms
	8.1. Proof of Theorem 8.1
	8.1.1. Proof that (X,w) is Veech implies that V is finite
	8.1.2. Proof that V is finite implies that (X,w) is Veech

	8.2. Proof of Proposition 8.2

	9. Quotient graphs and McMullen's prototypes
	Appendix A. Triangulations
	Appendix B. Cylinders and decompositions
	References

