
msp
Algebraic & Geometric Topology 17 (2017) 2239–2282

The diagonal slice of Schottky space

CAROLINE SERIES
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An irreducible representation of the free group on two generators X;Y into SL.2;C/
is determined up to conjugation by the traces of X;Y and XY . If the representation
is faithful and discrete, the resulting manifold is in general a genus-2 handlebody.
We study the diagonal slice of the representation variety in which Tr X D Tr Y D

Tr XY . Using the symmetry, we are able to compute the Keen–Series pleating
rays and thus fully determine the locus of faithful discrete representations. We also
computationally determine the “Bowditch set” consisting of those parameter values
for which no primitive elements in hX;Y i have traces in Œ�2; 2� , and at most finitely
many primitive elements have traces with absolute value at most 2 . The graphics
make clear that this set is both strictly larger than, and significantly different from,
the discreteness locus.

30F40; 57M50

1 Introduction

It is well known that an irreducible representation � of the free group F2 on two
generators X;Y into SL.2;C/ is determined up to conjugation by the traces of
�.X /, �.Y / and �.XY /. More generally, if we take the GIT quotient of all (not
necessarily irreducible) representations, then the resulting SL.2;C/ character variety
of F2 can be identified with C3 via these traces using an old result of Vogt; see for
example Goldman [10]. If the representation is faithful, discrete, purely loxodromic
and geometrically finite, the resulting manifold is a genus-2 handlebody; see Section 3.
The collection of all such representations is known as Schottky space, denoted by SCH .
It is a consequence of Bers’ density theorem that SCH is the interior of the faithful
discreteness locus; see for example Canary [4]. It is natural to ask: for which values of
xDTr �.X /, yDTr �.Y /, zDTr �.XY / is the corresponding representation in SCH?

Let P denote the set of primitive elements of F2 modulo conjugation and inverse. For
.x;y; z/ 2 C3 , let �.x;y;z/ denote a choice of representation F2! SL.2;C/ in the
conjugacy class determined by the trace triple. The Bowditch set (or BQ–set) B is
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defined in Tan, Wong and Zhang [30] as the set of .x;y; z/ 2 C3 corresponding to
irreducible representations for which

Tr �.x;y;z/.g/ 62 Œ�2; 2� for all g 2 P and fg 2 P W jTr �.x;y;z/.g/j � 2g is finite:

(The exceptional case in which Tr �.ŒX;Y �/D 2 corresponds to reducible representa-
tions and is excluded from the discussion; see Remark 2.1.) The Bowditch set is open,
and the set of outer automorphisms Out.F2/ of F2 acts properly discontinuously on it.
Thus it is essentially the domain of discontinuity for the mapping class group acting on
traces of primitive words. Clearly, SCH� B .

Bowditch’s original work [3] was on the case in which the image of the commutator
ŒX;Y � D XYX�1Y �1 is parabolic and Tr �.ŒX;Y �/ D �2. He conjectured that the
subsets of SCH and B corresponding to this restriction coincide. Although this has
not been proven, computer pictures indicate his conjecture may well be true.

In this paper, we restrict to the special case in which x D y D z , which we call the
diagonal slice of the character variety, denoted by � and parametrised by the single
complex variable x . We show that in this slice, the analogue of Bowditch’s conjecture
is far from being true. This is illustrated in Figure 1, which compares the intersections
of � with SCH and B . The discreteness locus is the outer region foliated by rays;
these are the Keen–Series pleating rays which relate to the geometry of the convex hull
boundary as explained in Section 4.2 and whose closure is known to be �\SCH ; see
Theorem 4.23. The Bowditch set, by contrast, is the complement of the black part. It is
clear that B\� contains a large open region not in �\SCH , and also has different
symmetries. In particular, it is not hard to show that the interval .2; 3/ is contained in
B nSCH; see the discussion in Section 2.2.2.

We would like to emphasise that there are two problems at issue here; namely, to find
the locus of discrete faithful representations, and to find the domain of discontinuity
for the automorphism group Out.F2/ acting on traces of primitive words. Both of
these problems are quite difficult and subtle with not many previous results. Moreover,
while there appeared to be some evidence from earlier studies that the two sets might,
modulo some minor caveats, coincide, our results indicate that on the contrary they are
unlikely to be related, or at least that their relationship is not obvious.

The main content of this paper is an explanation and justification of how these plots
were made, in particular, to explain how we enumerated and computed the pleating
rays for the symmetric genus-2 handlebody corresponding to the trace triple .x;x;x/.

To compute the Bowditch set B we use an algorithm based on the ideas in [3] and
developed further in [30]. This is explained in Section 2.2.1.
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Figure 1: Superposition of the discreteness locus for �1.H/ and the Bowditch
set in the x–plane. The Bowditch set for the .x;x;x/–triple is the comple-
ment of the central black region, while the discreteness locus is the closure of
the region foliated by rays. The rays are actually computed as the pleating rays
for the quotient orbifold S . The vertical ray is at x D 1

2
, and the discreteness

locus intersects R in .�1;�2� and Œ3;1/; see Section 4.5.

The discreteness problem is tackled as follows. If .x;x;x/2SCH , then the quotient 3–
manifold H3=G is a handlebody H with order-3 symmetry. We use the symmetry to re-
duce the problem of finding �\SCH to a problem very similar to that of determining the
so-called Riley slice of Schottky space. This is actually a space of groups on the boundary
of SCH , consisting of those free, discrete and geometrically finite groups for which the
two generators �.X /, �.Y / are parabolic, thus contained in the slice .2; 2; z/�C3 .
The corresponding manifold is a handlebody whose conformal boundary is a sphere
with four parabolic points. The problem of finding those z–values for which such a
group is free, discrete and geometrically finite was solved using the method of pleating
rays in Keen and Series [15]. In the present case, the quotient of H by the symmetry
is an orbifold S with two order-3 cone axes, whose conformal boundary is a sphere
with four order-3 cone points. Thus similar methods enable us to find �\SCH here.

Although Figure 1 shows that in �, the analogue of Bowditch’s conjecture fails since B
and the interior of the discreteness locus are plainly distinct, in many other slices (see
for example Figure 8), the (modified) Bowditch set and the interior of the discreteness
locus appear to coincide. This is connected to the dynamics of the action of a suitable
mapping class group on representations and raises many interesting questions which
we hope to address elsewhere.
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The plan of the paper is as follows. We begin in Section 2 with a discussion of the
Markoff tree and the algorithm used to compute the Bowditch set. In Section 3, we
introduce a basic geometrical construction which conveniently encapsulates the 3–fold
symmetry. The quotient of the original handlebody H by the symmetry is a ball with
two order-3 cone axes. This orbifold S has a further 4–fold symmetry group whose
quotient is again a topological ball. Our construction allows us to write down specific
SL.2;C/ representations (in some cases, PSL.2;C/ representations; see the discussion
in Section 3.1 and in particular Remark 3.2) of all the groups involved with ease. In
Section 4, we turn to the discreteness question. After reducing the problem to one on S ,
we briefly review material from the Keen–Series theory of pleating rays and recall
what is needed from [15], allowing us to apply a similar proof in the present context.
Section 5, not strictly logically necessary for our development, explains how we did
our trace computations in practice, by relating the problem to one on a commensurable
torus with a single cone point of angle 4�

3
.
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2 The Markoff tree and the Bowditch set

Let AD
�

a b
c d

�
2 SL.2;C/ so that ad � bc D 1. As usual we define its trace Tr AD

aC d .

Let F2 D hX;Y j � i be the free group on two generators. It is well known that a
representation �W F2! SL.2;C/ is determined up to conjugation (modulo taking the
GIT quotient under the conjugation action; see [10]) by the three traces x D Tr �.X /,
yD Tr �.Y /, zD Tr �.XY /. In fact, given x;y; z 2C , we can define a representation

�x;y;z W F2! SL.2;C/; �.X /D

�
x 1

�1 0

�
; �.Y /D

�
0 �

���1 y

�
;

where zD�.�C��1/; see [9]. Clearly, with this definition, Tr �.X /Dx , Tr �.Y /Dy

and Tr �.XY /D z .

2.1 The Markoff tree

For matrices yU ; yV 2 SL.2;C/, set u D Tr yU , v D Tr yV , w D Tr yU yV (where we
use the notation yU ; yV to distinguish from generators U;V of F2 ). Recall the trace
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Figure 2: The Farey diagram, showing the arrangement of rational numbers
on the left with the corresponding primitive words on the right

relations

Tr yU yV �1
D uv�w;(2-1)

u2
C v2

Cw2
D uvwCTr Œ yU ; yV �C 2:(2-2)

Setting �D Tr Œ yU ; yV �C 2, this last equation takes the form

u2
C v2

Cw2
�uvw D �:

Let F2 D hX;Y j � i as above. An element U 2 F2 is primitive if it is a member of
a generating pair; we denote the set of all primitive elements by P . The conjugacy
classes of primitive elements are enumerated by yQ D Q[1 and are conveniently
organised relative to the Farey diagram F as shown in Figure 2. This consists of the
images of the ideal triangle with vertices at 1=0; 0=1 and 1=1 under the action of
SL.2;Z/ on the upper half plane, suitably conjugated to the position shown in the disk.
The label p=q in the disk is just the conjugated image of the actual point p=q 2R.

Since the rational points are precisely the images of1 under SL.2;Z/, they correspond
bijectively to the vertices of F . A pair p=q; r=s 2 yQ are the endpoints of an edge if
and only if pr�qsD˙1; such pairs are called neighbours. A triple of points in yQ are
the vertices of a triangle precisely when they are the images of the vertices of the initial
triangle .1=0; 0=1; 1=1/; such triples are always of the form .p=q; r=s; .pCr/=.qCs//

where p=q , r=s are neighbours. In other words, if p=q , r=s are the endpoints of an
edge, then the vertex of the triangle on the side away from the centre of the disk is
found by “Farey addition” to be .pC r/=.qC s/. Starting from 1=0 D �1=0 D1

and 0=1, all points in yQ are obtained recursively in this way. (Note we need to start
with �1=0D1 to get the negative fractions on the left side of the left-hand diagram
in Figure 2.)
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v.uv�w/�u vw�u

u.uv�w/� v uw� v

uv�w w

v

u

Figure 3: The Markoff tree used to compute traces with an initial triple .u; v; w/

The right-hand picture in Figure 2 shows a corresponding arrangement of primitive ele-
ments in F2 , one in each conjugacy class, starting with initial triple .A;B;AB/. Each
vertex is labelled by a certain cyclically reduced representative of the corresponding
word. Pairs of primitive elements form a generating pair if and only if they are at the
endpoints of an edge. Triples at the vertices of a triangle correspond to a generator triple
of the form .U;V;U V /. Corresponding to the process of Farey addition, successive
words can be found by juxtaposition as indicated on the diagram. Note that for this to
work, it is important to preserve the order: if U;V are the endpoints of an edge with U

before V in the anticlockwise order round the circle, the correct concatenation is U V .
Note also that the words on the left side of the diagram involve B�1A, corresponding
to starting with 1D�1=0. We denote the particular representative of the conjugacy
class corresponding to p=q 2 yQ found by concatenation by Wp=q . Its word length in
the generators A;B is a function F.p=q/ of p=q . A function on yQ is said to have
Fibonacci growth if it is comparable with uniform upper and lower bounds to F .

In this paper, we are largely interested in computing traces of primitive elements.
Following Bowditch [3], these can also be easily computed by using the trivalent
tree T dual to F ; see the left frame of Figure 2 and Figure 3. Let � denote the set of
complementary regions of T ; abstractly, a complementary region is the closure of a
connected component of the complement of T . As is apparent from Figure 2, there is
a bijection between � and the set of vertices of F . Thus the set � can be identified
with conjugacy classes of primitive elements and hence with yQ.

Given a representation �W F2! SL.2;C/, each U 2� is labelled by uD Tr �.U /,
the trace of the corresponding generator, as shown in Figure 3. Labels on opposite
sides of an edge of T correspond to traces of a generator pair: the three labels round a
vertex correspond to a generator triple .U;V;U V /.
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Figure 4: The Farey tessellation used to compute traces. See Section 5.0.2
for a discussion of the choice of sign of the square roots.

Suppose that .U;V;W / are the labels of regions round a vertex with u D Tr �.U /,
vDTr �.V /, wDTr �.W /. By (2-2), we have u2Cv2Cw2�uvwD�. By (2-1), the
two vertices opposite the ends of the edge between regions .U;V / correspond to regions
U V;U V �1 with labels w;uv�w , respectively. Moving in this way, along the three
edges which meet at the vertex with labels .u; v; w/ to the three adjacent vertices, gives
rise to the three basic moves .u; v; w/! .u; v;uv�w/, .u; v; w/! .u;uw� v;w/,
.u; v; w/! .vw�u; v; w/ which generate traces of all possible elements in � (and
hence P ). Note that any of these three moves leaves Tr �.ŒU;V �/ and hence � invariant;
in other words, � is an invariant of the tree. Bowditch’s original paper was mostly
confined to the case �D 0.

In this way, the Markoff tree provides a fast way to compute traces of elements in P
starting from an initial triple .u; v; w/. This is illustrated in Figure 4 with the initial
triple .

p
xC 1; 0;

p
�xC 2/ which is used in Section 5.0.2. We denote the tree of

traces associated to an initial triple .u; v; w/ by T.u;v;w/ . Later we will use a variant of
this construction to compute traces of curves on a four-pointed sphere; see Section 4.4.

2.2 The Bowditch set

It is convenient to rephrase the above discussion using the terminology introduced
in [3]. As above, let � denote the set of complementary regions of the tree T . Define
a Markoff map to be a map �W �! C such that � satisfies the trace relations (2-1)
and (2-2). The set of all Markoff maps is denoted by ˆ. Since traces depend only
on conjugacy classes, a representation �W F2! SL.2;C/ defines a Markoff map by
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setting �.U / D Tr �.U / for U 2 �. Fixing once and for all an identification of �
with yQ (and recalling that � is identified with conjugacy classes of elements in P ),
we have �.p=q/D Tr �.Wp=q/ for p=q 2 yQ, where Wp=q is the special word in the
conjugacy class corresponding to p=q 2�.

Thus as explained above, using the trace relations (2-1) and (2-2), an initial triple
.x;y; z/ 2C3 uniquely determines a Markoff map � D �x;y;z together with a corre-
sponding labelling of T . Conversely a Markoff map � 2ˆ determines .x;y; z/ 2C3

by setting x D �.0=1/, y D �.1=0/, z D �.1=1/. In this way, we can identify ˆ
with C3 . For � 2ˆ, denote the corresponding tree endowed with the labelling given
by � by T� D T.�.0=1/;�.1=0/;�.1=1// .

The Bowditch set B is the set of all � 2ˆ with �¤ 4 which satisfy the conditions

�.U / 62 Œ�2; 2� for all U 2�;(2-3)

fU 2� W j�.U /j � 2g is finite:(2-4)

The Bowditch set B is open in C3 and Out.F2/ acts properly discontinuously on B .
Furthermore, if � 2 B , then logC j�.U /j Dmaxf0; log j�.U /jg has Fibonacci growth
on �; see [30].

Remark 2.1 The maps � for which �D 4 correspond to the reducible representations:
our definition above automatically excludes them from B . For such � , there are infin-
itely many U 2� such that j�.U /j<m for m> 2, they can alternatively be excluded
from B by relaxing condition (2-4) to the condition that fU 2� W j�.U /j � 2C �g

be finite for any � > 0. As is easily checked from the trace relation (2-2), such
representations occur in � precisely at the points x D�1, x D 2.

2.2.1 Background to the algorithm Our algorithm for computing which points lie
in B is based on results from [3; 30] which we summarise here. We consider only �
for which �¤ 4. Following Bowditch [3], we orient the edges of T� in the following
way. Suppose that labels of the regions adjacent to some edge e are u, v , and the
labels of the two remaining regions at the two end vertices are w , t ; see Figure 3. From
the trace relations, t D uv�w . Orient e by putting an arrow from t to w whenever
jt j> jwj and vice versa. If both moduli are equal, make either choice; if the inequality
is strict, say that the edge is oriented decisively.

A sink region of T� is a connected nonempty subtree T such that the arrow on any
edge not in T points towards T decisively. A sink region may consist of a single
sink vertex v (the three edges adjacent to v point towards v ) and no edges. Clearly a
sink region is not unique: one can always add further vertices and edges around the
boundary of T .
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For any m � 0 and � 2 ˆ, define ��.m/D fU 2� W j�.U /j �mg. The following
lemmas from [30] show that ��.2/ is connected, and that from any initial vertex not
adjacent to regions in ��.2/, the arrows determine a descending path through T which
either runs into a sink, or meets vertices adjacent to regions in ��.2/. Furthermore,
if �.U / takes values away from the exceptional set E D Œ�2; 2�[f˙

p
�g �C , then

there exists a finite segment of @U such that the edges adjacent to U not in this segment
are directed towards this segment.

Lemma 2.2 [30, Lemma 3.7] Suppose U;V;W 2 � meet at a vertex v with the
arrows on both the edges adjacent to U pointing away from v . Then either j�.U /j � 2

or �.V /D �.W /D 0.

Corollary 2.3 [30, Theorem 3.1(2)] Let � 2 ˆ. Then ��.2/ (more generally,
��.m/ for m� 2) is connected.

Lemma 2.4 [30, Lemma 3.11 and following comment] Suppose ˇ is an infinite ray
consisting of a sequence of edges of T� all of whose arrows point away from the initial
vertex. Then ˇ meets at least one region U 2� with j�.U /j< 2. Furthermore, if the
ray does not follow the boundary of a single region, it meets infinitely many regions
with this property.

Lemma 2.5 [30, Lemma 3.20] Suppose that �.U / 62 E , and consider the regions
Vi ; i 2 Z adjacent to U in order round @U . Then away from a finite subset, the values
j�.Vi/j are increasing and approach infinity as i !1 in both directions. Hence there
exists a finite segment of @U such that the edges adjacent to U not in this segment are
directed towards this segment.

We remark that if �.U / D ˙
p
� and

p
� 62 Œ�2; 2�, then the values of j�.Vi/j in

Lemma 2.5 approach zero in one direction round @U [30, Lemma 3.10], and hence
� 62 B since condition (2-4) will not be satisfied. Hence, for � 2 B , we have �.U / 62E

for all U 2�.

The set ��.2/ can be used to construct a sink region T (which depends of course
on � ) which is finite if and only if � 2 B . Essentially, if � 2 B , then T consists
of finite segments of the boundaries of the (finite number of) elements of ��.2/.
These are the segments alluded to in Lemma 2.5; they have to be large enough so the
conclusion of the lemma holds, and also to contain all edges adjacent to any pair U;V ,
both of which are in ��.2/, so that the union is connected. To do this, an explicit
function H�W C!RC[f1g is constructed (see Lemma 3.20, the following remark
and Lemma 3.23 in [30]) as follows:
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(1) If x 2E , define H�.x/D1.

(2) For x 62E , let x D �C��1 with j�j> 1 (note that j�j ¤ 1 since x 62 Œ�2; 2�).
Define

(2-5) H�.x/Dmax
�

2;

sˇ̌̌̌
x2��

x2� 4

ˇ̌̌̌
2j�j2

j�j � 1

�
:

Then H� is continuous on C nE . Now we can define a specific attracting subtree:

Definition 2.6 Given � 2ˆ, let T D T� be the subset of T� defined as follows:

(1) An edge with adjacent regions U;V is in T if and only if either j�.U /j � 2

and j�.V /j �H�.�.U //, or vice versa.

(2) Any sink vertex is in T , as are any vertices which are the endpoints of two edges
in T .

Based on the above lemmas, we have the following theorem (see also the special
properties of the function H� and Lemmas 3.21–3.24 in [30]).

Theorem 2.7 Given � 2 ˆ (with � ¤ 4), the set T D T� in Definition 2.6 is a
nonempty, connected subtree of T� . Moreover, T is a sink region for T� ; that is, all
edges not in T are directed decisively towards T . Furthermore, T is finite if and only
if � 2 B .

2.2.2 The algorithm Based on the above discussion, our algorithm to decide whether
or not � 2 B is as follows.

Step 1 Starting at any vertex, follow the direction of decreasing arrows. On
reaching a sink vertex, stop. This vertex is in T by Definition 2.6. If the input
is B , then this method always finds a sink vertex in finite time because there is a
finite sink region. Otherwise, the process may not terminate in (prespecified)
finite time, and the algorithm is indecisive.

Step 2 Assuming a stopping point is found in Step 1, starting from this point,
search outwards by a depth first search using Definition 2.6 to identify whether
or not an edge is in T . This works because of the connectedness of T . If this
search terminates in (prespecified) finite time, then �x;y;z 2 B . Otherwise, the
algorithm is indecisive.

Note that if the starting point is a sink vertex and the three adjacent edges are not in T ,
then T consists of just the sink vertex by the connectedness of T , hence �x;y;z 2 B .
This occurs for example for the tree T.x;x;x/ with x 2 .2; 3/.

Figure 5 shows the Bowditch set in the diagonal slice � as determined by this algorithm.
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Figure 5: The Bowditch set B for the Markoff maps �.x;x;x/ , plotted in the
x–plane. The grey (coloured) points are in B and the black ones are outside.
The shades of grey (colours) indicate the size of the sink region T .

Remark 2.8 We do not have an algorithm whose output is �x;y;z 62 B . When �D 0,
it was shown in [25] that if j�.U /j � 0:5 for some U 2�, then �x;y;z 62 B . Hence
in Step 1 above, if �D 0, we can stop when we hit a region satisfying this condition
and conclude that �x;y;z 62 B . Using the same methods, a similar upper bound can be
found for � close to 0. In particular, there is a neighbourhood of .0; 0; 0/ which is
disjoint from B , as clearly illustrated in Figure 5. However, as shown in [11], no such
universal positive bound exists for all �: precisely, for any � > 0 and � > 4, there
exist � 2 B� and U 2� such that j�.U /j< � . Another issue is that the sink region
may be extremely large so may not be detected in a program with a given finite number
of steps, this occurs when we approach the boundary of B . Thus the algorithm is not
completely decisive although it appears to give nice results. In particular, there may be
false negatives; however points which are determined to be in B are correctly marked.

3 Groups, manifolds, symmetries and quotients

In this section we detail a construction which allows us conveniently to exploit the
three-fold symmetry of groups in the diagonal slice �. We denote hyperbolic 3–space
by H3 and identify its group IsomCH3 of orientation-preserving isometries with
PSL.2;C/. As is well known, if the image of a representation �W F2 ! SL.2;C/
is faithful, discrete and geometrically finite without parabolics, then H3=�.F2/ is a
genus-two handlebody H; see [24, Corollary X.H.6] and also [12, Theorem 5.2]. (To
apply Hempel’s result, note that a hyperbolic 3–manifold is irreducible, hence prime,
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and that �2.M / D 0.) Rather than working with H , however, it is much easier to
work with the quotient S of H by the order-3 symmetry � corresponding to cyclic
permutation of the parameters. We also introduce a commensurable orbifold T with a
torus boundary @T .

Both S DH=� and T surject to a 3–orbifold U with fundamental group a so-called
.P;Q;R/–group. Its boundary @U is a sphere with three order-2 and one order-3
cone points. A similar construction has been used extensively by Akiyoshi et al (see for
example [1]), and is the basis of Wada’s program OPTi [31; 32], hence was convenient
for our computations. In this section we explain these constructions in detail, using
them to find explicit representations of all four groups.

3.1 The handlebody and related orbifolds

The symmetric handlebody H can be thought of as made by gluing two solid pairs
of pants each with order-3 symmetry. More precisely, take a 3–ball and choose three
closed disks on the boundary, placed so as to have order-3 rotational symmetry. Gluing
two such balls along the closed disks produces a handlebody H with the required
order-three symmetry � . Rather than write down a suitably symmetric representation
of �1.H/ directly, we consider first the quotient orbifold SDH=� . As will be justified
in retrospect when we have identified the representations explicitly, this is a ball with
two cone axes around each of which the angle is 2�

3
. Its boundary @S is a sphere

†0I3;3;3;3 with four order-3 cone points. We will call S the large coned ball.

The ball S has a further order-4 symmetry group. Consider the two cone axes which
form the singular locus of S , together with their common perpendicular. Lifting
to H3 , we obtain a configuration invariant under the � –rotation about C , the common
perpendicular to the two lifted cone axes, and also under � –rotations about a unique
pair of orthogonal lines in the plane orthogonal to C passing through its midpoint O ;
see Section 3.2.1. Denoting these latter rotations xP ; xQ 2 IsomCH3 , the � –rotation
about C is xP xQ and the entire configuration is invariant under h xP ; xQi D Z2 �Z2 .
Thus we obtain a further quotient orbifold U D S=.Z2 �Z2/, also topologically a
ball, which we call the small coned ball. The singular locus of U is as follows. Let yO
and yE be the images in U of the midpoint O of C and the point where C meets the
axis of xK , respectively, where xK 2 IsomCH3 is one of the two order-three rotations
about the pair of lifted cone axes. Let yC be the image in U of C , so that yC is a line
from yO to yE . From yO emanate three mutually orthogonal lines corresponding to the
order-2 axes of xP , xQ and xP xQ. One of these is the line yC corresponding to xP xQ
which ends at yE . From yE also emanates an order-3 singular line, the axis of xK ,
perpendicular to yC . The boundary @U is a sphere †0I2;2;2;3 with 3 cone points of
order 2 and one of order 3. The order-3 cone point is the image of the endpoint of the
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order-3 singular line and the order-2 cone points correspond to the endpoints on @U
of the axes of xP , xQ and a third involution xR defined below.

Finally, there is a double cover of the small coned ball U by an cone manifold T which
is topologically a solid torus. Its boundary is a torus @T with a single cone point of
angle 4�

3
. Just as the quotient of a once punctured torus †1I1 by the hyperelliptic

involution is the surface †0I2;2;2;1 , so the quotient of @T by the hyperelliptic involu-
tion � is the surface @U D†0I2;2;2;3 . The involution � extends to an involution, also
denoted by �, of T such that T =�D U .

The group �1.U/ is generated by . xP ; xQ; xK/, where . xP ; xQ; xK/ are regarded as ele-
ments of IsomCH3 D PSL.2;C/. We can replace xK by a further involution xR such
that xR xQ xP D xK . To do this, let xR be an order-2 rotation about an axis contained in the
plane through E orthogonal to Ax xK , such that the axis makes an angle 1

3
� with C .

(We will fix orientations more precisely below.) Then xR. xQ xP / is a 2�
3

–rotation about
Ax xK , in other words, provided orientations have been chosen correctly, we can identify
�1.U/ with a group˝

xP ; xQ; xR j xP2
D xQ2

D xR2
D . xR xQ xP /3 D id; xP xQD xQ xP

˛
� PSL.2;C/:

As discussed in Remarks 3.1 and 3.2 below, the above group �1.U/ cannot be lifted
to a subgroup of SL.2;C/ since it contains elements of order two. Nevertheless, we
shall find lifts P;Q;R 2 SL.2;C/ of xP ; xQ; xR 2 PSL.2;C/ for which

�U D
˝
P;Q;R j P2

DQ2
DR2

D .RQP /3 D�id; PQD�QP
˛
� SL.2;C/;

so that �U projects to �1.U/.

To do this, we recall that in [1] and other papers by the same authors, groups generated
by three involutions P;Q;R2SL.2;C/ with RQP parabolic, are used as a convenient
way of parametrising representations of once punctured tori, where the torus in question
is now a two-fold cover of the orbifold with fundamental group hP;Q;Ri with quotient
induced by the hyperelliptic involution. A small modification of their parametrisation
allows us to write down a convenient general form for a representation of the group �U
with the presentation above into SL.2;C/, from which we obtain explicit SL.2;C/
representations of �1.H/, �1.S/, together with groups in SL.2;C/ which project
to PSL.2;C/ representations of �1.U/ and �1.T / as above. This we do in the
next section.

3.2 The basic configuration and the small coned ball

We start with a general construction for representations �U ! SL.2;C/, that is, of
subgroups hP;Q;R j P2 DQ2 DR2 D .RQP /3 D�id; PQD�QP i � SL.2;C/.

Algebraic & Geometric Topology, Volume 17 (2017)



2252 Caroline Series, Ser Peow Tan and Yasushi Yamashita

�3
�1

� i�

1
3

Figure 6: The basic configuration for the .P;Q;R/–group �1.U/

For convenience we refer to such a group (or its image in PSL.2;C/) as a .P;Q;R/–
group. The elements P;Q;R;K we construct will project to the PSL.2;C/ elements
xP ; xQ; xR; xK discussed above.

We will make our calculations using line matrices following [8]. Note this will define
representations into SL.2;C/, thus fixing the signs of traces. Let u;u0 2 yC , and denote
the oriented line from u to u0 by Œu;u0�. The associated line matrix M.Œu;u0�/ 2

SL.2;C/ is a matrix which induces an order two rotation about Œu;u0� and such that
M.Œu;u0�/2 D�id, so that in particular,

M.Œ0;1�/D

�
i 0

0 �i

�
:

By [8, page 64, equation (1)], we have, if u;u0 2C ,

M.Œu;u0�/D
i

u0�u

�
uCu0 �2uu0

2 �u�u0

�
:

The representation we require is derived from a basic configuration shown in Figure 6.
It depends on a single parameter � 2C which we will relate to the original parameter x

in Section 3.2.3 below.

Let � 2 C and P;Q;R 2 SL.2;C/ be � –rotations about the oriented lines Œ�;���,
Œi�;�i�� and Œ1;�3�, respectively. By construction P2 DQ2 DR2 D�id. Moreover,
Ax P and Ax Q intersect at the point j�jj 2H3 on the hemisphere of radius j�j and
centre 0 2 C , where zC tj represents the point at height t > 0 above z 2 C in the
upper half space model of H3 . Thus PQ D �QP and PQ is an order-2 rotation
about the vertical axis 0C tj ; t > 0.

Let V be the vertical plane above the real axis in H3 . Note that the oriented axes
of the order two rotations PQ and R both lie in V , intersecting in the point

p
3j

at angle 1
3
� . The line Œ

p
3i;�
p

3i � passes through this point and is orthogonal
to V . It follows that RPQD�RQP is anticlockwise rotation through 2�

3
about the
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line Œ
p

3i;�
p

3i �. Using line matrices as above, we can now easily write down the
corresponding representation in SL.2;C/:

P D M.Œ�;���/ D �
i

2�

�
0 2�2

2 0

�
D

�
0 �i�

�i=� 0

�
;

QDM.Œi�;�i��/D �
1

2�

�
0 �2�2

2 0

�
D

�
0 �

�1=� 0

�
;

R D M.Œ1;�3�/ D �
i

4

�
�2 6

2 2

�
D

�
i=2 �3i=2

�i=2 �i=2

�
:

Let K DRPQ. Then

K D

�
�1=2 �3=2

1=2 �1=2

�
; K3

D

�
1 0

0 1

�
;

so that as expected, K is a anticlockwise rotation about Œ
p

3i;�
p

3i � by 2�
3

.

Note that P2 DQ2 D�id and PQD�QP as matrices in SL.2;C/. As isometries
of H3 , the signs are irrelevant. We could have chosen K D RQP , in which case
K3 D �id, but see Remark 3.1 below. We denote the group generated by P;Q;R

by GU .�/ and the corresponding representation �U ! SL.2;C/ by �U .�/.

3.2.1 The large coned ball S To relate �1.U/ to �1.S/, start with two oriented axes
A0;A1 about each of which we have order-3 anticlockwise rotations K0;K1 , measured
with respect to the orientation of the axes. Let C denoted the common perpendicular
between A0 and A1 , oriented from A0 to A1 . We denote this configuration, which is
clearly well defined up to isometry, by CF . As described in Section 3.1, CF has a further
Z2 �Z2 group of symmetries generated by the � –rotations xP ; xQ 2 PSL.2;C/ with
axes through the mid-point of C : precisely, let … be the plane through the mid-point
of C and orthogonal to C . Then (working equivalently with the lifts P;Q2 SL.2;C/)
the axes of P;Q are the two lines in … which bisect the angles between the projections
of Ax K0;Ax K1 onto …, chosen so that the angle bisected by Ax P is that between
the projection of the lines Ax K0;Ax K1 with the same (say outward) orientation.

This choice of P ensures that PK0P�1 D K1 while QK0Q�1 D K�1
1

. Also PQ

is the order-2 rotation about C , and PQKiQ
�1P�1 D K�1

i for i D 0; 1. As in
Section 3.1, U D S=.Z2 �Z2/, and we can take �1.U/ to be the .P;Q;R/–group
defined in Section 3.2. In terms of .P;Q;R/, the generators of �1.S/ are K0DRPQ,
K1 D PK0P�1 . Thus

K0 D�

�
1=2 3=2

�1=2 1=2

�
; K1 D�

�
1=2 ��2=2

3=.2�2/ 1=2

�
:
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In terms of generators for �1.@S/, we also have K2 D QK0Q�1, K3 D RK0R�1,
where

K2 D�

�
1=2 �2=2

�3=.2�2/ 1=2

�
; K3 D�

�
1=2 �3=2

1=2 1=2

�
;

so that K0K3K1K2 D id.

We denote the group with generators K0;K1 by GS.�/ and the corresponding repre-
sentation �1.S/! SL.2;C/ by �S.�/. From now on, we frequently drop the subscript
and refer to K0 as K .

3.2.2 The handlebody H We are now able to determine the images of generators
X;Y of �1.H/ as matrices in SL.2;C/ under a suitable representation �H.�/. To
simplify notation, we shall from now on frequently identify generators of �1.H/ with
their images in SL.2;C/, thus writing X;Y in place of �H.�/.X /; �H.�/.Y / and
so on.

Observe that the generator X 2 �1.H/ projects to the loop represented by K0K1

in H=� . (This latter is a loop in @H=� which separates one of each pair of the cone
points of K0;K1 from the other pair.) We arrange that the action of � is induced by
conjugation by K�1

0
DK�1 , so the generators of �1.H/ can be written in terms of

the generators of �1.S/ as X DK0K1 , Y DK�1
0

XK0 DK1K0 . Thus we have

K�1XK D Y; K�1YK D .XY /�1; K�1.XY /�1K DX:

Using the formulae from the previous section, this gives

X D

 
9=.4�2/C 1=4 ��2=4C 3=4

3=.4�2/� 1=4 �2=4C 1=4

!
; Y D

 
�2=4C 1=4 ��2=4C 3=4

3=.4�2/� 1=4 9=.4�2/C 1=4

!
:

In particular this reveals the relation between the parameter � and x :

(3-1) x D Tr X D Tr Y D Tr XY D
�2

4
C

9

4�2
C

1

2
:

We denote the group with generators X;Y by GH.�/ and the corresponding representa-
tion �1.H/! SL.2;C/ by �H.�/; we explain in Section 3.2.5 why up to conjugation
�H.�/ in fact depends only on x .

Remark 3.1 In the above discussion, we made choices of sign so that K3 D id,
X DK0K1 (where K DK0 as above). To compute the discreteness locus of a family
of representations only requires looking in PSL.2;C/, however for computations
involving traces we need a lift to SL.2;C/.

Algebraic & Geometric Topology, Volume 17 (2017)



The diagonal slice of Schottky space 2255

By [6], any PSL.2;C/ representation of a Kleinian group can be lifted to SL.2;C/
provided there are no elements of order 2; in particular this applies to PSL.2;C/
representations of �1.S/ and �1.H/. Since the product of the three generating loops
corresponding to X;Y;Z is the identity in �1.H/, we should make a choice of lift in
which XYZ D id in SL.2;C/. We could choose the element K which represents the
3–fold symmetry � to be such that either K3 D id or K3 D�id; however, since we
intend to work with representations of �1.S/! SL.2;C/, we should make the choice
K3 D id because K corresponds to a loop round an order-3 cone axis in the quotient
orbifold S .

In the representation we have written down, we achieve K3 D id with the choice K D

RPQD
�
�1=2 �3=2

1=2 �1=2

�
. It is easy to check that taking K3 D id, if we let X DK0K1 ,

we get XYZ D id as required, but if we choose X D�K0K1 , we get XYZ D�id,
which is wrong.

3.2.3 The singular solid torus T Finally we discuss the associated singular solid
torus T , which is constructed in a standard way from the .P;Q;R/–group. We do not
logically need to use T in our further development, however as explained in Section 5,
in practice we used T for computations, moreover the interpretation of the problem in
the more familiar setting of a torus with a cone point may be helpful.

The boundary @U is a sphere with 4 cone points xP ;xQ;xR and xK corresponding
to P;Q;R and K D RPQ. Thus we can take as generators of �1.T / the element
B D PQ whose projection to T is a loop separating xP ;xQ from xR;xK , and the
element A D RQ which projects to a loop separating xR;xQ from xP ;xK . Since
P;Q have a common fixed point, B is an order-2 elliptic, while since the axes of
R;Q are (generically) disjoint, A is a loxodromic whose axis extends the common
perpendicular to Ax R and Ax Q.

Using the formulae above for the .P;Q;R/–group, we compute

RQDAD

�
3i=.2�/ i�=2

i=.2�/ �i�=2

�
; PQD B D

�
i 0

0 �i

�
;

so that

(3-2) Tr AD
3i

2�
�

i�

2
; Tr B D 0; Tr AB D�

�

2
�

3

2�
:

Note that AB DRP and A2 D�K0K1;B
2 D�id. We also deduce that

ABA�1B�1
D ŒA;B�D

�
1=2 �3=2

1=2 1=2

�
; so that Tr ŒA;B�D 1:
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Note that Tr A2 Œ�2; 2� if and only if j�jD
p

3 or �D i t with 1�jt j�3, justifying the
above remark that generically A is loxodromic. Note also that A2D�K0K1 is consis-
tent with the direct computation using (3-2) that Tr.A2/D�.�2=4C 9=.4�2/C 1=2/.
Also note that ŒA;B�D�K2 , so that the commutator is rotation by 4�

3
about Ax K .

Since Tr K2D .Tr K/2�2, we find also that Tr ŒA;B�D 1 independently of the choice
of sign for K . This is consistent with Tr ŒA;B�D�2 cos

�
2�
3

�
, the sign being negative

by analogy with the well known fact that for any irreducible representation of a once
punctured torus group for which the commutator is parabolic, we have Tr ŒA;B�D�2.

We denote the group with generators A;B by GT .�/ and the corresponding represen-
tation �1.T /! SL.2;C/ by �T .�/.

Remark 3.2 Once again there are questions of sign which this time are a little more
subtle. If ˛ 2 PSL.2;C/ corresponds to an element of order 2 in �1.M /, then
the corresponding representation cannot be lifted to SL.2;C/, because for nontrivial
˛2SL.2;C/, necessarily ˛2D�id; see [20] and [6]. Since in �1.T / the element B2 is
trivial, a PSL.2;C/ representation of �1.T / cannot be lifted to SL.2;C/. Nevertheless,
we can as above write down a group in SL.2;C/ which projects to a PSL.2;C/
representation for �1.T /. See Section 5 for further discussion on this point.

3.2.4 More on the configuration for the large coned ball S The relation (3-1) can
be given a geometrical interpretation in terms of the perpendicular distance between
the axes of K0;K1 which sheds light on the symmetries of the configuration CF in
Section 3.2.1. To measure complex distance, we use the conventions spelled out in
detail in [28, Section 2.1]. The signed complex distance d˛.L1;L2/ between two
oriented lines L1;L2 along their oriented common perpendicular ˛ is defined as
follows. The signed real distance d˛.L1;L2/ is the positive real hyperbolic distance
between L1;L2 if ˛ is oriented from L1 to L2 and its negative otherwise. Let vi for
i D 1; 2 be unit vectors to Li at the points Li \˛ and let w1 be the parallel translate
of v1 along ˛ to the point ˛ \L2 . Then d˛.L1;L2/ D ı˛.L1;L2/C i� where �
is the angle, mod 2� i , from w1 to v2 measured anticlockwise in the plane spanned
by w1 to v2 and oriented by ˛ .

Let � be the signed complex distance from the oriented axis Ax K0 to the oriented
axis Ax K1 , measured along the common perpendicular C oriented from Ax K0 to
Ax K1 . Then Ax K0;Ax K1 together with Ax K0K1 form the alternate sides of a
right angled skew hexagon whose other three sides are the common perpendiculars
between the three axes taken in pairs. The cosine formula gives � in terms of the
complex half translation lengths �0; �1; �2 of K0;K1 and K0K1 , respectively. To get
the sides oriented consistently round the hexagon, we have to reverse the orientation of
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Ax K0 so that the complex distance � should be replaced by � 0 D � C i� and �0 by
�00 D��0 (see [28]), so the formula gives

cosh � 0 D
cosh�2� cosh�00 cosh�1

sinh�00 sinh�1

:

As in Section 3.2.2, we have X D K0K1 so x D Tr K0K1 D 2 cosh�2 while for
i D 0; 1 we have cosh�i D cos 2�

3
D�

1
2

and sinh�i D i sin 2�
3
D

1
2
i
p

3. (Note that
since K0;K1 are conjugate we should take �0D �1 so the possible additive ambiguity
of i� in the definition of the �i does not change the resulting equation.) Substituting,
we find

(3-3) � cosh � D x=2�1=4

.
p

3=2/2
D

1
3
.2x� 1/:

We can also relate � directly to our parameter � . By construction Ax K0 is the
oriented line Œ�

p
3i;
p

3i �, while K1 D PK0P�1 so that Ax K1 is the oriented line
Œi�2=

p
3;�i�2=

p
3� and C is the oriented line from 1 to 0. Thus the real part of the

hyperbolic distance from Ax K0 to Ax K1 is 2 log
p

3=j�j, and the anticlockwise angle,
measured in the plane oriented downwards along the vertical axis C , is �.�C2 Arg �/.
Hence

� D 2 log
p

3

j�j
� 2i Arg � � i� D 2 log

p
3

�
:

Comparing to (3-3), we find��p
3

�

�2

C

�
�
p

3

�2�
D 2 cosh.� C i�/D 2

3
.2x� 1/;

or

(3-4) x�
1

2
D

3

4

��p
3

�

�2

C

�
�
p

3

�2�
;

recovering and giving a more satisfactory geometrical meaning to (3-1).

3.2.5 Dependence on x versus � It is not perhaps immediately obvious why the
groups GS.�/;GH.�/ as defined above depend up to conjugation only on our original
parameter x . This is clarified by the above discussion, because up to conjugation
GS.�/ depends only on the configuration CF and hence on � which is related to x

as in (3-3). An alternative way to see this is the discussion on computing traces in
Section 4.4. Thus from now on, we shall alternatively write GS.x/;GH.x/ in place of
GS.�/;GH.�/.
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3.2.6 Symmetries The discussion in Section 3.2.4 gives insight into various symme-
tries of the parameters x and � . Equation (3-1) shows that the map � 7! x is a 4–fold
covering with branch points at � D˙

p
3, � D˙i

p
3 and z D 0;1. Correspondingly,

we have a Klein 4–group Z2 �Z2 of symmetries which change � but not x :

(1) Replacing � by �� leaves the basic construction unchanged but the line matrices
defining P;Q change sign.

(2) Replacing � by �3=� is an order-2 rotation about the axis Œ�
p

3i;
p

3i �. This
fixes K0 and moves K1 into a position on the opposite side of K0 along the
vertical line C . This changes nothing other than the position we choose for the
basic configuration in Section 3.2. Note however that the line matrices defining
P;Q change sign.

There is also a symmetry which changes x as well as � . Say we fix the orientation of
one of the two axes Ax K0;Ax K1 while reversing the other. On the level of the con-
figuration CF from Section 3.2.1, this interchanges P and Q. Since PK0P�1 DK1

while QK0Q�1 DK�1
1

, this is equivalent to fixing the orientation of one of the two
axes Ax K0;Ax K1 while reversing the other. This symmetry interchanges the marked
group P;Q;R with the marked group Q;P;R, so that one group is discrete if and only
if so is the other. In terms of our parameters, the complex distance � between the axes
changes to �Ci� , so that cosh � 7!� cosh � giving the symmetry

�
x� 1

2

�
7!�

�
x� 1

2

�
of (3-3). Note that the diagonal slice of the Bowditch set �\B does not possess this
symmetry. Interchanging P and Q is induced by the map � 7! i� ; more precisely
this map sends P to Q and Q to �P . This clearly induces the same symmetry in
Equation (3-1). Note that by the definition, in this symmetry R remains unchanged.

On the level of the torus group �1.T /, we have by definition RQ D A, PQ D B

so that AB D RP . Thus sending P to Q and Q to �P while fixing R sends B

to �B and A to �AB . (Recall that on the level of matrices, PQ D �QP .) The
symmetry should therefore replace the trace triple .Tr A;Tr B;Tr AB/ by the triple
.�Tr AB;�Tr B;Tr A/. It is easily checked from (3-2) that this is exactly the change
effected by � 7! i� .

Finally, we have the symmetry of complex conjugation induced by x! xx or equiva-
lently � 7! x� . This sends � 7! x� thus replacing GH.x/ by a conjugate group in which
the distance between Ax K0 and Ax K1 is unchanged but the angle measured along
their common perpendicular changes sign. Clearly these are different groups but one is
discrete if and only if the same is true of the other.

The diagonal slice of the Bowditch set obviously also enjoys the symmetry by conju-
gation, however, that is its only symmetry. In particular .x;x;x/! .�x;�x;�x/ is
not a symmetry and the corresponding SL.2;C/ representations project to different
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representations of F2 into PSL.2;C/. This is because any two distinct lifts of a
representation from PSL.2;C/ to SL.2;C/ differ by multiplying exactly two of the
parameters x;y; z by �1. The allowed replacement X !�X and Y !�Y gives
the group .�x;�x;x/ with parameters which are not in the diagonal slice �.

The symmetries can be seen in our plots by comparing Figure 5, the Bowditch set
for the triple �.x;x;x/ in the x–plane, with the right-hand frame of Figure 13, which
shows the same set in the �–plane. Note the symmetry of complex conjugation in both
pictures. In addition, Figure 13 is invariant under the maps � 7! �� and � 7! �3=� ,
neither of which are seen in Figure 5. Thus the upper half plane in Figure 13 is a
4–fold covering of the upper half plane in Figure 5: as is easily checked from (3-1),
the imaginary axis in Figure 13 maps to the negative real axis in Figure 5 while the
real axis in Figure 13 maps to the positive real axis in Figure 5. In particular, note the
following branch points and special values: if x D 3, then � D˙1;˙3; if x D 2, then
� D˙

p
3; if x D�1, then � D˙

p
3i ; if x D�2, then � D˙i;˙3i .

Finally, the symmetry
�
x� 1

2

�
7! �

�
x� 1

2

�
is not visible in either picture because it

does not preserve the property of lying in the Bowditch set. As we shall see later, this
symmetry is visible in pictures of the discreteness locus; see the upper frame of Figure 8.

4 Discreteness

We now turn to the question of finding those values of the parameter x for which
representation �x W F2 ! SL.2;C/ is faithful with discrete geometrically finite im-
age, where as usual F2 D hX;Y j � i. Let DS ;DH � C denote the subsets of the
complex x–plane on which the representations �S.x/; �H.x/ are respectively faithful
and GS.x/;GH.x/ are discrete and geometrically finite. (See Section 3.2.5 for the
replacement of GS.�/;GH.�/ by GS.x/;GH.x/.) We first show that DS D DH .

We begin with the easy observation that since all the groups in Section 3 are commen-
surable, they are either all discrete or all nondiscrete together:

Lemma 4.1 Suppose that G;H are subgroups of PSL.2;C/ with G � H and that
ŒG WH � is finite. Then G is discrete (geometrically finite) if and only if the same is
true of H .

Proof If G is discrete, clearly so is H . Suppose that H is discrete but G is not.
Then infinitely many distinct orbit points in G �O accumulate in some compact set
D � H3 . Label the cosets of ŒG W H � as g1H; : : : ;gkH . Then for some i there
are infinitely many points gihr �O 2D , which gives infinitely many distinct points
hr 2 g�1

i D . This contradicts discreteness of H . The proof for geometric finiteness is
equally straightforward.
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Lemma 4.2 The representation �S.x/W �1.S/!GS.x/ is faithful if and only if the
same is true of �H.x/W �1.H/!GH.x/.

Proof Note that �1.S/ is isomorphic to Z=3Z �Z=3Z D hk0; k1 j k
3
0
D k3

1
D idi,

while �1.H/ is the subgroup of �1.S/ generated by k0k1 and k1k0 , and is isomorphic
to a free group of rank 2. By construction, �H.x/ is the restriction of �S.x/ to �1.H/.
Thus, if �S.x/ is faithful, then so is �H.x/.

Now �1.H/ has index three in �1.S/ and �1.S/D �1.H/[ k0�1.H/[ k�1
0
�1.H/.

Suppose that �H.x/ is faithful but �S.x/ is not. Then there exists g 2 �1.S/ such
that �S.x/.g/ D id. Now g D ke

0
h, where e D ˙1 and h 2 �1.H/. Thus id D

�S.x/.g/D�S.x/.k
e
0
/�H.x/.h/ so that �H.x/.h3/D�S.x/.k

�3e
0

/D id, contradicting
the assumption that �H.x/ is faithful.

Corollary 4.3 The representations �S.x/; �H.x/ are faithful, discrete and geometri-
cally finite together; that is, DS D DH .

Thus we may write DD DS D DH . Our next aim is to find D �C .

4.1 Fundamental domains

We can make a rough estimate for D by exhibiting a fundamental domain for GS.x/

for sufficiently large x .

Proposition 4.4 Writing x D uC iv , the region D contains the region outside the
ellipse 1

25
.2u� 1/2C 1

4
v2 D 1 in the x–plane.

Proof In view of Corollary 4.3, we can work with the large cone manifold S with
generators K0;K1 of Section 3.2.1. The axis of K0 is the line Œ�i

p
3; i
p

3� passing
through j

p
3. Let H;H 0 be the hemispheres which meet R orthogonally at points

�3; 1 and �1; 3, respectively, and let E;E0 be the closed half spaces they cut out
which contain 0. Then H;H 0 intersect in Ax K0 , moreover E \E0 is a fundamental
domain for the group hK0i acting on H3 .

Recalling that P is the � –rotation about the line Œ��; �� which bisects the common
perpendicular between Ax K0 and Ax K1 , we see that the images of H;H 0 under P

meet along Ax K1 . Since P .z/ D �2=z for z 2 C , we have that P .H /;P .H 0/

meet P .R/ orthogonally in points �1
3
�2; �2 and 1

3
�2;��2 , respectively. If F;F 0 are

the half spaces cut out by P .H /;P .H 0/ which contain1DP .0/ (so that F DP .E//,
then in a similar way, F \F 0 is a fundamental domain for hK1i.
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i
p

3

K0

i�2=
p

3
K1

�1 0 1

Figure 7: The shaded region illustrates the fundamental domain for �1.S/
acting in its regular set in yC when j�j< 1 , so that x is outside the ellipse of
Proposition 4.4.

Thus if j�j < 1, then the hemisphere of radius j�j centred at 0 separates the regions
.E \E0/C and .F \F 0/C . We conclude by Poincaré’s theorem (or a suitable simple
version of the Klein–Maskit combination theorem) that in this situation the region
.E\E0/\.F\F 0/ is a fundamental domain for hK0;K1i, which moreover is discrete
with presentation hK0;K1 j K

3
0
D K3

1
D idi. Thus the representation �S.x/ with

x D x.�/ as in (3-1), is faithful, and hence x 2 D .

Suppose that � D ei� . Then from (3-3), 1
3
.2x� 1/ D cosh � D 1

2

�
1
3
e2i� C 3e�2i�

�
so that x D uC iv lies on the ellipse 1

25
.2u� 1/2C 1

4
v2 D 1 as claimed.

The configuration when x 2 R is of particular interest since in this case GH.x/ is
Fuchsian. The ellipse meets the real axis in points �2; 3 so that GH.x/ is discrete and
the representation is faithful on .1;�2� (corresponding to j�j> 1, � 2 iR) and Œ3;1/
(corresponding to j�j> 1; � 2R). In these two cases the fundamental domains look the
same; see Figure 11. Note that the interval .�2; 3/ is definitely not in D : if �2<x< 2,
then K0K1 is elliptic since xDTr K0K1 , while if �1<x<3, then K0K�1

1
is elliptic

since Tr K0K�1
1
D 1�x ; see also Section 4.5.

In the general case, a fundamental domain can be found by a modification of Wada’s pro-
gram OPTi [31; 32]. This program allows one to compute the limit set and fundamental
domains for the PQR–group GU . A short Python program for doing this is available
at http://vivaldi.ics.nara-wu.ac.jp/~yamasita/DiagonalSlice/.
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4.2 The method of pleating rays

To determine D , we use the Keen–Series method of pleating rays applied to the large
coned sphere S . This is closely analogous to the problem of computing the Riley slice
of Schottky space, that is the parameter space of discrete geometrically finite groups
freely generated by two parabolics, which was solved in [15; 19].

We begin by briefly summarising the elements of pleating ray theory we need. For
more details see various of the first author’s papers, for example [15; 5].

Suppose that G�SL.2;C/ is a geometrically finite Kleinian group with corresponding
orbifold M D H3=G and let C=G be its convex core, where C is the convex hull
in H3 of the limit set of G ; see [7]. Then @C=G is a convex pleated surface (see for
example [7]) also homeomorphic to @M . The bending of this pleated surface is recorded
by means of a measured geodesic lamination, the bending lamination ˇDˇ.G/, whose
support forms the bending lines of the surface and whose transverse measure records
the total bending angle along short transversals. We say ˇ is rational if it is supported
on closed curves: note that closed curves in the support of ˇ are necessarily simple
and pairwise disjoint. If a bending line is represented by a curve  2 �1.S/, then by
definition it is the projection of a geodesic axis to @C=G , so in particular ˇ contains no
peripheral curves in its support. Note that any two homotopically distinct nonperipheral
simple closed curves on @S intersect. Thus in this case, ˇ is rational only if its support
is a single simple essential nonperipheral closed curve on @C=G .

As above, we parametrise representations �S.x/W �1.S/! SL.2;C/ by x 2 C and
denote the image group by GS.x/. From now on, we frequently write �x for �S.x/.

Definition 4.5 Let  be a homotopy class of simple essential nonperipheral closed
curves on @S . The pleating ray P of  is the set of points x 2 D for which
ˇ.GS.x//D  .

Such rays are called rational pleating rays; a similar definition can be made for general
projective classes of bending lamination; see [5].

The following key lemma is proved in [5, Proposition 4.1]; see also [14, Lemma 4.6].
The essence is that because the two flat pieces of @C=G on either side of a bending line
are invariant under translation along the line, the translation can have no rotational part.

Lemma 4.6 If the axis of g 2G is a bending line of @C=GS.x/, then Tr g.x/ 2R.

Notice that the lemma applies even when the bending angle � along  vanishes, so
the corresponding surface is flat, or when the angle is � , in which case either  is
parabolic or GS.x/ is Fuchsian.

Algebraic & Geometric Topology, Volume 17 (2017)



The diagonal slice of Schottky space 2263

If g2G represents a curve  on @S , define the real trace locus R of  to be the locus
of points in C for which Tr g 2 .�1;�2�[ Œ2;1/. By the above lemma, P �R .

Our aim is to compute the locus of faithful discrete geometrically finite representations
DS D D . In summary, we do this as follows:

(1) Show that up to homotopy in S , the essential nonperipheral curves on @S are
indexed by Q=�, where p=q �˙.pC 2kq/=q for k 2 Z (Proposition 4.9).

(2) Given  2 �1.@S/, give an algorithm for computing Tr �x. / as a polynomial
in x , in particular identifying its two highest order terms in terms of p; q

(Section 4.4 and Proposition 4.11).

(3) Show that P0=1 D .�1;�3� and P1=1 D Œ2;1/ (where Pp=q denotes the
pleating ray of the curve p=q 2 �1.@S/ identified with p=q ) (Section 4.5).

(4) Show Pp=q is a union of connected nonsingular branches of R (Theorem 4.14).

(5) For p; q ¤ 0; 1, identify Pp=q by showing it has two connected components,
namely the branches of R which are asymptotic to the directions e˙i�.p=qC1/

as jxj !1 (Proposition 4.20).

(6) Prove that rational rays Pp=q are dense in DS (Theorem 4.23).

One could carry all this out following almost word for word the arguments in [15].
Rather than do this, we indicate as appropriate how more general results can be put
together to provide a somewhat less ad hoc proof of the results. The claim that Pp=q

has two connected components appears to contradict the results in [15]; see however
the following remark and Proposition 4.20 below. The pleating rays are shown on the
top in Figure 8 with the Riley slice rays from [15] below for comparison.

Remark 4.7 There were two rather subtle errors in [15]. The first was that, in the
enumeration of curves on @S , we omitted to note that p=q is homotopic to �p=q

in S . The second was, that we found only one of the two components of Pp=q . Since
Pp=q D P�p=q , these two errors in some sense cancelled each other out. They were
discussed at length and resolved in [19] and we make corresponding corrections here.

Remark 4.8 The space of all faithful discrete representations is known to be the
closure of the geometrically finite ones by the tameness and density theorems; see [23]
for a detailed overview of this and other facts about deformation spaces. However these
issues are not the main point of concern to us here.

4.3 Step 1: Enumeration of curves on @S

We need to enumerate essential nonperipheral unoriented simple curves on @S up to
free homotopy equivalence in S . As is well known, such curves on @S are, up to free
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Figure 8: Top: pleating rays for GS.x/ . Bottom: pleating rays for the Riley
slice as described in [15]. The underlying colours indicate the Bowditch sets
for the initial triples discussed in Section 5.0.3; conjecturally these coincide
with the closure of the regions filled by the pleating rays. For a discussion of
how the rays were actually computed; see Section 5.0.2

homotopy equivalence in @S , in bijective correspondence with lines of rational slope
in the plane, that is, with Q[1; see for example [15; 19]. For .p; q/ relatively prime
and q � 0, denote the class corresponding to p=q by p=q . We have:

Proposition 4.9 [19, Theorem 1.2] The unoriented curves p=q; p0=q0 are freely
homotopic in S if and only if p0=q0 D˙p=qC 2k for k 2 Z.

Missing the identification p=q � �p=q was the first of the two errors in [15] referred
to in Remark 4.7.

Before proving the proposition, we need to explain the identification of curves on @S
with Q[1. In [15; 19] this was done using the plane punctured at integer points as
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1
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B1

Figure 9: The arrangement of arcs on @S . The curve shown illustrates the
case p D 1; q D 3 .

an intermediate covering between @S and its universal cover. The idea is sketched in
Section 5.0.1. Here we give a slightly different description of the curve p=q which
leads to a nice proof of the above result.

Cut S into two halves along the meridian disk m which is the projection of the plane
which perpendicularly bisects the common perpendicular C to the two singular axes
Ax Ki for i D 0; 1. Each half is a ball yBi with a singular axis Ax Ki . The boundary
@Bi D @ yBi \@S is a sphere with two cone points and a hole @m. Since the axes of Ki

are oriented, we can distinguish one cone point on each @Bi as the positive end of
Ax Ki . Now @S has a hyperbolic structure inherited from the ordinary set (or from
the pleated surface structure on @C=GS.x/), in which @m is geodesic. With respect
to such a structure, each @Bi has a reflectional symmetry � in the (projection of the)
plane containing Ax Ki and C , which maps the cone points to themselves, and which
maps the “front” to the “back” as shown in Figure 9. There is a preferred base point Pi

on @m, namely the foot of the perpendicular from the negative end of Ax Ki to @m.

Let  be an essential nonperipheral simple curve on @S , which we may assume has
minimal intersection in its isotopy class with @m. Then  \ @Bi consists of q arcs
joining @m to itself for each i D 0; 1. On each Bi separately, after suitable isotopies,
we may arrange the strands of  symmetrically with respect to �, that is, with front to
back symmetry. However, these two isotopies may not be consistent, that is, they may
not glue together to form an isotopy of @S . We reconstruct the gluing as follows.
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Orient @m so that it points “upwards” on the front side of the figure. Lifting @m to
its cyclic cover R, enumerate in order the endpoints X k

i ; i D 0; 1I k 2 Z of arcs of 
starting (say) with the arc meeting @m nearest Pi , and so that increasing order is in
the direction of the upwards orientation of @m viewed from the front side in the figure.
Since X k

i DX
kC2q
i , the enumeration is really mod 2qZ.

To reconstruct  we have to join the endpoints X k
0

on @B0 to the endpoints X k0

1

on @B1 . Since the arcs have to be matched in order round @m, if X i
0

is joined to X
j
1

,
then X iCk

0
is joined to X

jCk
1

for all k 2Z. Set pD j � i . Clearly this gluing can be
implemented by an isotopy in an annular neighbourhood of @m, which can be extended
to an isotopy of the whole of S compatible with the previous isotopies on @Bi .

It is not hard to see that the resulting curve p=q is connected if and only if .p; q/ are
relatively prime. Note that with this description, @m is the curve q D 0, that is, 1=0 .
The curve 0=1 is represented by K0K1 and 1=1 by K0K�1

1
. We leave it to the

reader to see that this description is the same as that obtained from the lattice picture
in [15]; see also Section 5.0.1.

Notation From now on, to simplify notation, for  2 �1.S/ and Z 2 SL.2;C/, we
write  $ Z to indicate that the matrix Z corresponds to the geodesic in the free
homotopy class of  under the representation �S.x/. Thus in particular, 0=1$K0K1

and 1=1$K0K�1
1

.

Proof of Proposition 4.9 Write p=q � p0=q0 to indicate that p=q; p0=q0 are homo-
topic in S . Since Dehn twisting round @m is trivial in S and sends X k

i ! X
kC2q
i ,

we have p=q � p=qC2 . To see why p=q � �p=q , first note that the result does not
depend on the relative twisting between Ax K0;Ax K1 . Thus we shall consider the
case in which � 2R (recall that � is the complex distance between these two axes),
so that Ax K0;Ax K1 are coplanar and point in the same “vertical” direction as in
Figure 9.

Consider the orientation-reversing symmetry r of reflection in the “horizontal” plane
of Figure 9, that is the plane containing C orthogonal to the two axes Ax K0;Ax K1 .
(This is where we use that � 2R.) Clearly, this symmetry sends p=q to �p=q . Fixing
an orientation on @S , let ˛; ˇ; ; ı be anticlockwise loops on @S around the four
cone points represented by the projections of the positive endpoints of the (oriented)
axes of K0;K

�1
0
;K1;K

�1
1

, respectively, so that ˛ˇı D id and ˛; ˇ; ; ı generate
�1.@S/. Since r reverses orientation on @S it sends an anticlockwise loop round
the positive endpoint of K0 to a clockwise loop round the negative endpoint of K0 ,
which is the positive endpoint of the oriented axis of K�1

0
. Thus r.˛/ D ˇ�1 , and
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likewise r. / D ı�1 . Since ˛ D ˇ�1 $ K0 and ı D �1 $ K1 , it follows that
r.p=q/D �p=q represents the same element as p=q in �1.S/.

We will show that if p0=q0¤˙p=qC2k for k 2Z, then p=q œ p0=q0 after computing
traces; see Corollary 4.13.

4.4 Step 2: Computation of traces

Let Vp=q 2 SL.2;C/ D �x.p=q/, where, since we want to compute Tr Vp=q , we
only need to consider Vp=q up to cyclic permutation and inversion, and hence p=q
only up to free homotopy. Rather than using the associated torus tree, we will work
directly with a 4–holed sphere †0;4 and the associated tree as described in [22]; see
also [9]. Let ˛; ˇ; ; ı denote loops round the four holes, oriented so that ˛ˇı D id.
The fundamental group is identified with the free group F3 with generators ˛; ˇ;  .
A representation �W F3! SL.2;C/ is determined up to conjugation by its values on
seven elements as follows (where we use yw in place of w in [22] etc to distinguish it
from a variable w already in other use):

Tr �.˛/D aI Tr �.ˇ/D bI Tr �. /D cI Tr �.ı/D d

Tr �.˛ˇ/D yxI Tr �.ˇ /D yyI Tr �.˛/D yz

related by the equation

(4-1) yx2
C yy2

Cyz2
C yx yyyz D ypyxC yq yyCyryzCys;

where

yp D abC cd; yq D bcC ad; yr D acC bd; ys D 4� a2
� b2
� c2
� d2

� abcd:

We identify our generators Ki as: ˛$K0 , ˇ$K1 , $K2 , ı$K3 . Thus we find

aD b D c D d D�1;

yx D Tr K0K1 D x;

yy D Tr K1K2 D 2;

yz D Tr K2K0 D�xC 1:

As a check, it is easy to verify that the trace identity (4-1) holds. Notice that none of
the expressions yp; : : : ; yz depend on the sign choices made in Section 3.2.2.

The traces can be arranged in a trivalent tree in the usual way. As explained above, we
have 0=1$K0K1 , 1=0$ id, 1=1$K0K�1

1
. As explained in [22, Section 2.10],

there are now 3 moves, depending on the values of yp; yq; yr . In our case, ypD yqDyr D 2,
so the three moves described there coincide. Following [22], if u; v; w are labels round
a vertex, with v;w labels adjacent along a common edge e , then the label at the vertex
at the opposite end of e is u0 D 2� vw�u; compare Figure 3 in which u0 D vw�u.
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Clearly this procedure gives an algorithm for arranging curves and computing traces
on a trivalent tree by analogy with that described in Section 2. Curves generated in this
way inherit a natural labelling from the usual procedure of Farey addition as described
in Section 2. Denote the curve which inherits the label p=q by ıp=q ; we say this curve
is in Farey position p=q on the tree. We shall refer to this tree together with its new rule
for computing traces as the S–tree, to distinguish it from the Markoff tree of Section 2.

We need to show that ıp=q is the same as the curve p=q described in the previous
section, namely the curve with 2q intersections with the meridian @m and a twist by p .

Lemma 4.10 With the above notation, ıp=q D p=q .

Proof By definition we have ıp=q D p=q for p; q 2 f0; 1g. With the notation above,
these are the curves ˛ˇ; ˇ; ˛ , each of which separates the punctures in pairs.

Call two essential simple nonperipheral curves on @S neighbours if they intersect
exactly twice when in minimal position. Note that of the initial triple, each pair
adjacent along an initial edge are neighbours, so that the triple round the initial vertex
are neighbours in pairs. Note also that given a pair of neighbours ı; ı0 , there are exactly
two other curves which are neighbours of both ı and ı0 . If ı; ı0 are adjacent along an
edge of the tree, then these two further curves are exactly the remaining curves adjacent
to the vertices at the ends of e .

These two further curves can be found by surgery, more precisely, by the Luo product
defined in [21]. This works as follows. Arrange ı; ı0 so as to have minimal intersection,
cut them at their two intersection points and then make a consistent choice of the
direction in which to turn to rejoin the resulting arcs. The Luo product rejoins the arcs
by turning left at each intersection point (relative to a fixed orientation on the surface)
as illustrated in Figure 10; equally we could rejoin by turning right at both intersection
points. We denote the resulting curves by ı �L ı0 and ı �R ı0 , respectively. It is not hard
to see that ı �L ı0 is a neighbour of both ı and ı0 and likewise for ı �R ı0 . In particular,
it is easy to check that ı0=1 �L ı1=0 D ı1=1 and ı0=1 �R ı1=0 D ı�1=1 .

Now we show inductively that ıp=q D p=q . As noted above, this is true for the initial
values 0=1; 1=0; 1=1 and �1=1. Suppose that it is true for neighbours p=q; r=s where
jps � rqj D 1. By induction we may assume that ıp=q; ır=s are neighbours, hence
adjacent along an edge e of the tree. By the above discussion we know that the additional
curves at the two vertices of e are exactly ıp=q �Lır=s and ıp=q �Rır=s . Moreover, by the
inductive hypothesis, one of these curves must be ır�p=s�qD p�r=q�s (or r�p=s�q ).
Thus it remains only to show that the other curve is pCr=qCs .

On each Bi , arrange ıp=q D p=q and ır=s D r=s symmetrically with respect to
the front and back of S as described above, then join the strands in the usual way.
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Figure 10: Here 1=3 and 1=2 are surgered to give 2=5 ; see the proof of
Lemma 4.10. The inset circles show the direction of surgery.

With p=q in this position, its twist p is its intersection number with the geodesic ˛
joining the two positive cone points given by the axes Ki , and likewise for r=s . To
take the Luo product, we have to cut p=q; r=s at their intersection points and then
make a consistent choice of which direction to rejoin the resulting arcs. Clearly the
curve ıp=q �L ır=s with the “positive” surgery (see the inset circles in Figure 10) will
have 2.qC s/ intersection points with the meridian @m and intersection number pC r

with ˛ , and hence must be pCr=qCs . Since we already know the curve at one vertex
of e is ır�p=s�q D p�r=q�s (or r�p=s�q ), we must have ıpCr=qCs D pCr=qCs .
This completes the proof.

In the following statement we make a particular, unimportant, choice of p=q 2 �1.S/;
see the beginning of Step 2 as above.

Proposition 4.11 Let Vp=q.x/D �S.x/.p=q/. Then:

(1) Tr Vp=q D Tr V.p=q/C2 D Tr V�p=q .

(2) Tr Vp=q.x/D Tr V.pCq/=q.1�x/.

(3) Tr Vp=q is a polynomial in x . If 0 � p=q � 1, then its top two terms are
.�1/p�q�1.xq �pxq�1/.

Remark 4.12 (3) should be compared to [15, Corollary 4.3] in which we showed that
the leading term is of the form .�1/p�q�1cxq for some c > 0; see also the remark
following the corollary in that paper. Notice that by (1) and (2), it suffices to find the
traces of curves the interval 0� p=q � 1.
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Proof (1) This follows immediately from Proposition 4.9 and can also be proved
easily by looking at the symmetries of the S–tree.

(2) This results from the symmetry x 7! 1�x which interchanges 0=1; 1=1 .

(3) Note (1) holds for the three initial traces of 0=1; 1=0; 1=1 . If curves p=q; r=s

are adjacent along an edge, then the two curves at the remaining vertices at the ends
of the edge are p˙r=q˙s . The result then follows easily by induction on the tree.

Now we can prove the “only if” assertion of Proposition 4.9:

Corollary 4.13 If p0=q0 ¤˙p=qC 2k for k 2 Z, then p=q 6� p0=q0 .

Proof This follows directly by comparing the top two terms of Tr Vp=q;Tr Vp0=q0 .

4.5 Step 3: The exceptional Fuchsian case: computation of P0=1 , P1=1

As above, let Pp=q denote the pleating ray of p=q . The rays P0=1;P1=1 are exceptional.
Since 0=1$K0K1 , 1=1$K0K�1

1
, we have Tr V0=1Dx;Tr V1=1D1�x . Thus the

real locus for both trace polynomials is exactly the real axis, and on this locus, the group
GS.x/, if discrete, is Fuchsian. This is exactly the situation discussed in [15, page 84].

In the ball model of H3 , identify the extended real axis with the equatorial circle.
Since the limit set is contained in yR, the convex core (the Nielsen region) of GS.x/ is
contained in the equatorial plane. We can think that the convex core has been squashed
flat and the bending lines are just the boundary of the Nielsen region, that is, the
boundary of the convex core of the surface H2=GS.x/. Thus to find the bending
lamination we just have to determine the boundary of H2=GS.x/.

Now if x 2R, then either � 2R and x > 0, or � 2 iR and x < 0. In both cases, we
find a fundamental domain for GS.x/ as described in Section 4.1; see Figure 11. Thus
regarded as a Fuchsian group acting on the upper half plane H , GS.x/ represents a
sphere with two order-3 cone points and one hole. However the cases x < 0 and x > 0

are slightly different, because of the relative directions of rotation of K0 and K1 .

In both cases, the axis K0 has fixed points ˙i
p

3 and its axis is oriented so that it is
anticlockwise rotation about i

p
3. Thus K1 D PK0P�1 rotates anticlockwise about

P .i
p

3/D �i�2=
p

3. If x < 0 then P .i
p

3/ is in the upper half plane H , while if
x > 0 then P .i

p
3/ is in the lower half plane. Hence if x < 0 then K0;K1 rotate in

the same sense about their fixed points in H , while if x > 0 their rotation directions
are opposite. This leads to the two different configurations shown in Figure 11.
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i
p

3

K0

K1

i�2=
p

3

�1 ��2 0 �2 1

i
p

3

K0

K1

i�2=
p

3

�1 ��2 0 �2 1

Figure 11: Configurations for x 2 R . Left: � 2 iR , x � �2; K0 and K1

rotate in the same directions H and the hole is K0K1 . Right: � 2R , x � 3;
K0 and K1 rotate in opposite directions in H and the hole is K0K�1

1
.

As is easily checked, if x > 0 the boundary of the hole is thus K0K�1
1

while if
x < 0 the boundary of the hole is K0K1 . Since K0K1$ 0=1 and K0K�1

1
$ 1=1 ,

combining this with information about the discreteness locus in the Fuchsian case from
Section 4.1, we conclude that P0=1 D .�1;�2� and P1=1 D Œ3;1/.

4.6 Step 4: Nonsingularity of pleating rays

This is the part of the argument which contains the deepest mathematics. Fortunately,
the results needed have been proved elsewhere.

Theorem 4.14 [18; 15; 5] Suppose that  2 �1.S/. Then P is open and closed
in the real trace locus R . Moreover, Tr �x. / is a local coordinate for C in a
neighbourhood of P , and is a global coordinate for P on any nonempty connected
component of P .

Proof The statement that P is open in R is essentially [15, Proposition 3.1]; see
also [18, Theorems 15 and 26]. The fact that Tr �x. / is a local parameter is equivalent
to the fact, also proved in both [15] and [14], that P is a nonsingular 1–manifold.
The openness and the final statement are actually a special case of Theorems B and C
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of [5] which state that for general hyperbolic manifolds, if the support of the bending
lamination is rational (a union of closed curves), then the traces of these curves are
local parameters for the deformation space in a neighbourhood of the corresponding
pleating variety.

That P is closed in R can be proved as in [15, Theorem 3.7]. Here is a slightly more
sophisticated version of the same idea. Suppose xn! x1 with xn 2 P . The limit
group GS.x1/ is an algebraic limit of groups GS.xn/ and hence the corresponding
representation is discrete and faithful. Each of the two components of .@C=GS.xn//n

is a flat surface corresponding to a conjugacy class of Fuchsian subgroup Fj .xn/ for
j D 1; 2 (the F –peripheral subgroups of [15]). Since the limit is algebraic, Fj .xn/

limits on a Fuchsian subgroup Fj .x1/, and similarly for all its conjugates in GS.x1/.

The limit sets ƒ˛ of each of these subgroups F˛ is spanned by a hyperbolic plane H˛

in H3 . The Nielsen regions of F˛ in H˛ fit together along the lifts of the bending
line  to H3 , forming a pleated surface … in H3 . We claim that …D @C.GS.x1//.
This follows since the closure of the union of the ƒ˛ is the limit set of GS.x1/; see
also Proposition 7.2 in [17]. The result follows.

Remark 4.15 The closedness of P in R is a simple case of both the “local limit
theorem”, Theorem 15 in [18] and the “lemme de fermeture” of [2]. These much more
sophisticated results allow that the bending lines may be part of an irrational lamination.
Our argument above, in which the bending lamination is supported on closed curves, is
very close to that in the first part of the proof of Théorème 6 in [26].

Corollary 4.16 [14; 15; 5] If P ¤∅, then it is a union of connected nonsingular
branches of the real trace locus R .

Proof Suppose that P ¤ ∅ and let x 2 P , so that by Lemma 4.6, x 2 R . By
Theorem 4.14, P is open and closed in R . Since Tr �x. / is a local coordinate, in
a neighbourhood of x the locus R is a 1–manifold.

Notice that the theorem says that Tr �x. / is a local parameter even in a neighbourhood
of a cusp where �x. / is parabolic [5, Theorem C]. Thus we have

Corollary 4.17 Suppose that x 2 P . Then there is a neighbourhood of x in C on
which x 2R implies that x 2 D .

Corollary 4.18 If P ¤∅, then Tr �x. / is unbounded on P .

Proof Since Tr �x. / is a local coordinate on connected components of P , this
follows from the maximum principle on the branch; see [15, Theorem 4.1].
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4.7 Step 5: Finding the nonempty pleating rays

Now we determine the pleating rays. As above, let Pp=q denote the ray corresponding
to the curve p=q and write Rp=q for the real locus of Tr Vp=q . From Proposition 4.9
we have Pp=q D P.pC2q/=q D P�p=q .

By Section 4.6, Pp=q is a union of nonsingular branches of Rp=q . We now find those
p=q 62 f0; 1g for which Pp=q ¤∅, at the same time resolving the connectivity issue.
We follow the method of [15], using an inductive argument on position of the pleating
rays and their asymptotic directions as jxj !1, and at the same time correcting the
second of the two errors referred to in Remark 4.7. We have:

Proposition 4.19 (cf [15, Theorem 4.1]) The set Pp=q is the union of the two
branches of Rp=q which are asymptotic to the half lines �e˙i�.p�q/=q as �!1.

Proof Denote by R.�/ the ray tei� ; t > 0, in the x–plane. By Proposition 4.11,
Tr Vp=q is a polynomial in x whose top term is .�1/p�q�1xq . Now Tr Vp=q takes real
values on Pp=q , moreover by Corollary 4.18 it is unbounded on Pp=q . It follows that
Pp=q must be asymptotic to one of the rays R.k�=q/ for some k 2 Z as jxj !1.

We have already identified P0=1 and P1=1 as the real intervals .�1;�3� and Œ2;1/,
respectively. It follows from Section 4.1 that the semicircular arc from �4 to 4 (say)
in H is a continuous path in D from P0=1 to P1=1 . Hence by the continuity theorem
of [16], if 0< p=q < 1, there is a point on Pp=q in the upper half plane H . Likewise,
there is a point on Pp=q in the lower half plane. (This was missed in [15].) Since
P0=1[P1=1 separates D into two connected components, this shows in particular that
Pp=q must have at least two connected components.

Now we proceed by induction on the Farey tree. Suppose we have shown the result for
two Farey neighbours p=q; r=s . Consider the locus PpCr=qCs . By the inductive hypoth-
esis, H contains exactly one component of each of Pp=q;Pr=s , asymptotic to the rays
R.�.p�q/=q/;R.�.r �s/=s/, respectively. Exactly as in [15], it is easy to check that
there is exactly one integer k 2f0; 1; : : : ; 2.qCs/�1g for which R.k�=.qCs// lies be-
tween R.�.p�q/=q/ and R.�.r �s/=s/, namely k D .pC r/=.qC s/. By the same
continuity theorem as before, a path in this sector joining suitable points on Pp=q;Pr=s

must meet PpCr=qCs . Thus PpCr=qCs has at least one connected component asymp-
totic to R.�.pC r �q� s/=.qC s//. A similar argument in the lower half plane gives
another connected component asymptotic to R.�.pC r C qC s/=.qC s//. Since
PpCr=qCs has exactly two components by Proposition 4.20 below, the result follows.

The issue of connectivity of P is a bit subtle. In the general theory (see [2; 5]), one
shows that P has one connected component. However this result holds in a space
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of manifolds which are consistently oriented throughout the space and all of whose
convex cores have nonzero volume. In our case we have:

Proposition 4.20 If  ¤ 0=1; 1=1 and P ¤∅, then P has exactly two connected
components in D .

Proof The usual argument that the pleating ray of a rational lamination has one
connected component goes as follows. Given a point on P , double the convex core
along its boundary to obtain a cone manifold with a singular axis of angle 2.� � �/

along  , where � is the bending angle along  . (Notice that the convention on defining
bending angles differs between papers by the first author and [2]. In our convention,
a bending line contained in flat subsurface has bending angle 0 but cone angle 2� ,
whereas in [2], the bending angle along a line in a flat surface is defined to be � .)
By [13], such a hyperbolic cone manifold is parametrised by its cone angle. One shows
that one can continuously deform the cone angle to 0, at which point the curve whose
axis is the bending line has to become parabolic. The doubled manifold is an oriented
hyperbolic manifold with a rank-two cusp and finite volume. As long as we are working
in a space in which all manifolds have consistent orientation, such a manifold is unique
up to orientation-preserving isometry, from which one deduces that P is connected.

In our case, the parameter space D is separated by two lines along which G is Fuchsian
so that C.G/=G has zero volume and the above argument fails. Note however that,
provided that G is not Fuchsian, S can be oriented by the triple consisting of the
oriented axes of P;Q and the oriented line C from Ax K0 to Ax K1 . The map �!x�
reverses the relative orientations of Ax P;Ax Q while fixing that of C . Thus D nR
has two connected components in which S has naturally opposite orientations. The
above argument shows that P has at most one component in each component of D .
Since we have already shown in Proposition 4.19 that P has at least one component
in each of the upper and lower half planes, this completes the proof.

This result can alternatively be proved by the more ad hoc methods used in [15].

Remark 4.21 Proposition 4.19 shows that Pp=q ¤ ∅ for all p=q 2 Q. This can
be viewed as a special case of the general result of [2, Theorem 1]; see also [5,
Theorem 2.4]. We have to be careful to include the case, excluded in [2], that the group
GS.x/ is Fuchsian so that C=G has zero volume. The conclusion is the following:

Proposition 4.22 Let  be an essential simple nonperipheral closed curve on @S .
Then P ¤ ∅ if and only if  is nontrivial in �1.S/ and intersects the meridian
disk 1=0 at least twice. If  meets 1=0 exactly twice, then the bending angle is
identically � and GS.x/ is Fuchsian.
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4.8 Step 6: Density of rational pleating rays

Finally, we justify the claim that the rational pleating rays are dense in D :

Theorem 4.23 [14, Corollary 6.2; 15, Theorem 5.2] Rational pleating rays are dense
in DS .

Proof The proof of this result in any one-complex-dimensional parameter space is
the same. Here is a quick sketch. Suppose that � is an irrational lamination with
corresponding pleating variety P� , and that x 2 P� . Pick a sequence of rational
measured laminations �n D cnın

where cn 2 RC so that �n ! � in the space of
projective measured laminations on @S , where ın

is the unit point mass on n . Replace
the traces of n by complex length functions �n and scale to get complex analytic
functions cn�n . One shows that in a neighbourhood of x 2 P� these functions form a
normal family which converges to a nonconstant analytic function [14, Theorem 6.9;
18, Theorem 20], whose real locus contains the pleating ray P� [18, Theorem 23]. By
Hurwitz’s theorem, there are nearby points at which the approximating functions cn�n

must take on real values. In a small enough neighbourhood of x , this is enough to
force y 2 Pn

[18, Theorem 31]. This gives density in IntD . By the result quoted in
the introduction that DD IntD we are done.

Remark 4.24 D as defined above (see the beginning of Section 4) includes the
parabolic cusp groups on @D . In fact these groups are exactly the geometrically finite
groups on @D , and hence exactly the groups in D but not in SCH as defined in the
introduction. Since there are only countably many such groups, and since IntDDSCH ,
whether or not we include them in the parameter space does not materially affect our
computations. See [23] for more on this and related issues.

4.9 The pleating rays for H

By Corollary 4.3, DH D DS . Thus the rational rays for DS are also dense in DH .
However it is easy to see that a rational pleating laminations on @H.x/ correspond
exactly to those on S.x/, and that although the actual bending curves differ, their traces
are related by a simple formula.

Lemma 4.25 Suppose that the bending lamination ˇH.x/ of H.x/ is rational, so that
its support � is a union of disjoint simple closed curves on @H . Let  be a connected
component of �. Then either �. /D  or the three curves ; �. /; �2. / are disjoint.
The support of the bending lamination ˇS.x/ is exactly the projection of  to S , and
all rational bending laminations of S arise in this way.
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Proof The limit set of GH.x/ and hence its convex core are invariant under the
symmetry � . Hence the support � of ˇH.x/ is also �–invariant. Let  be a connected
component of �. Since connected components of � are pairwise disjoint, either
�. / D  or the three curves ; �. /; �2. / are disjoint. In either case,  cannot
pass through a fixed point of � : at the fixed point P the images of  would meet at
angles 2�

3
, so that ; �. /; �2. / would intersect at P , which is impossible.

Let �� be the projection H!S . In a neighbourhood of a bending line �� is a covering
map hence a local isometry. Since being a bending line can be characterised locally,
ˇS.x/ is the projection of  to S .

Let  be a simple closed curve on @S . Clearly, by the same observation about local
characterisation of bending lines, if  is a bending line, then so is any connected
component of its lift to @H . This proves the converse.

We remark that if p=q is congruent to 1=0 or 0=1 mod Z2 , then the lift of p=q has
three connected components which are permuted among themselves by � , while if p=q

is congruent to 1=1, then its lift has one �–invariant connected component. To see this,
check by hand for the curves 1=0; 0=1; 1=1 and then note that the lifting property is
invariant under the mapping class group of @S which at the same time acts transitively
on p=q congruence classes mod Z2 .

To actually compute the pleating rays for DS , we computed the traces Tr Vp=q.x/

corresponding to the curves p=q 2 �1.S/. The above discussion shows that it is
unnecessary to actually compute traces of lifted curves in �1.H/. If for some reason
one wanted to do this, either one could start again enumerating the curves on H , or
one could note that the complex length of a lift of p=q in H would be either the same
as or three times that of the curve p=q in S , depending on the Z2 –parity of p=q .

5 Computing traces

To compute traces of the elements Vp=q , rather than use the S–tree as in Section 4.4,
we actually performed computations on the associated Markoff tree corresponding to
the associated torus T of Section 3.2.3, referred to in this section as the T –tree. To
justify this, we need to compare the curves in Farey position p=q on the two trees
to ensure that they do indeed correspond geometrically as expected. We also need to
address the issue about lifting representations to SL.2;C/ raised in Remark 3.2.

5.0.1 Correspondence of curves Homotopy classes of essential simple nonperiph-
eral loops on @T are well known to be in bijective correspondence to unoriented lines
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Figure 12: Lattice representation of a cover of @S . The integer vertices (open
circles) correspond to the endpoints of the order-3 axes on @S ; the endpoints
of the order-2 elliptics P , Q and R are on horizontal segments (blue), in
the middle of squares (green), and on vertical segments (red), respectively.

of rational slope in the plane; see for example [27; 14]. In fact the word Wp=q generated
by the concatenation process following the T –tree described in Section 2 is the cutting
sequence of a line of slope p=q 2 yQ across the lattice; see [27].

The key point here is that the plane with a cone singularity of angle 4�
3

at integer lattice
points (see Figure 12), is an intermediate covering between the universal cover H of @T
and @T itself. As described in for example [15], the same lattice can also be viewed as an
intermediate covering between H and @S : the rectangle with vertices at 0; 1; 2i; 2iC1

can be viewed as a fundamental domain for the lattice action corresponding to @S
which projects, bijectively on its interior, to @S . Likewise, the rectangle with vertices
0; 1; 1

2
i; 1C1

2
i projects in a similar way to @U and the unit square projects to the

torus @T . The lattice points correspond to the cone points belonging to Ki for
i D 1; : : : ; 4 arranged as shown. Thus there is also a bijective correspondence between
lines of rational slope in the punctured plane and simple essential nonperipheral curves
on @S . In this way, one can easily relate the words Wp=q (on @T ) and Vp=q (on @S );
this is explained in detail in [15].

In this picture, the meridian loop @m of Section 4.3 is identified as the “vertical” line
of slope 1=0. One sees easily that the line of slope p=q in the plane projects to a curve
on @S which has exactly 2q intersections with @m and a twist of p as described in
Section 4.3. It follows from Lemma 4.10 that the labelling of curves by lines of rational
slope p=q exactly corresponds to the Farey labelling of curves by their position on the
S–tree.
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As above, the curve represented in Farey position p=q on the S–tree is denoted by p=q ,
corresponding to the word Vp=q ; while the curve represented in Farey position p=q

on the T –tree is denoted by !p=q , corresponding to the word Wp=q . Now S projects
to U by a four-fold cover and T projects to U by a two-fold cover.

Proposition 5.1 The complex translation length of the geodesic representative of p=q
is twice that of !p=q ; hence Tr Vp=q.�/D˙..Tr Wp=q.�//

2� 2/.

Note that this allows for an ambiguity in the signs of the traces since the two lifts
of �1.T / and �1.S/ to SL.2;C/ are not (indeed cannot be) chosen consistently.

Corollary 5.2 Up to sign, the trace of the image Vp=q of p=q 2 �1.U/ may be
computed using the formula of Proposition 5.1 and the T –tree.

Since we are aiming to compute pleating rays which are a geometrical construct and
hence only depend on a PSL.2;C/ representation, this would be sufficient for our
purposes. However it is more satisfying to prove the following more precise result which
shows that working with the SL.2;C/ lift of the representation of �1.T / described in
Section 3.2.3, we can fix the choice of sign.

Proposition 5.3 With Wp=q;Vp=q as above, let fp=q.�/D Tr Vp=q.�/ and gp=q.�/D

Tr Wp=q.�/. Then �fp=q.�/D .gp=q.�//
2� 2 for all p=q 2 yQ.

Proof It is easy to check that this is correct for p=q D 0=1; 1=0; 1=1. In detail,
(recalling that as above  $ Z means that  2 �1.S/ or �1.T / is represented by
Z 2 SL.2;C/):

� !0=1$ A and 0=1$K0K1 , and we have shown that A2 D�K0K1 . Thus
f0=1.�/D x and .g0=1.�//

2� 2D .�xC 2/� 2D�x .

� !1=0$B , 1=0$ id and B2D�id. So f1=0.�/D 2 and .g1=0.�//
2�2D�2.

� !1=1$AB and 1=1$K0K�1
1

. So f1=1.�/D1�x and .g1=1.�//
2�2Dx�1.

Now we do an inductive proof. Suppose that in the S–tree labels u; v are adjacent
along an edge e with w the remaining label at one of the two vertices at the ends of e .
By the formula in Section 4.4 the label at the other vertex is 2�uv�w .

Suppose that the corresponding labels on the T –tree are u0; v0; w0 . Then the remaining
label at the vertex at the other end of e is u0v0�w0 . Replace these labels by the negatives
of the traces of the doubled curves to get labels 2�u02; 2�v02; 2�w02; 2�.u0v0�w0/2

around the same 4 vertices. If we can show that

2� .2�u02/.2� v02/� .2�w02/D 2� .u0v0�w0/2;
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we will be done. This is easily checked by multiplying out, noting that the trace
identity (4-1) round a vertex of the T –tree gives

u02C v02Cw02 D u0v0w0CTr ŒA;B�C 2D u0v0w0C 3:

5.0.2 The actual computations The above discussion justifies the method we actu-
ally used to perform computations involving traces on S . Instead of computing on
the S–tree with initial traces Tr �S.0=1/D Tr K0K1 D x , Tr �S.1=0/D Tr idD 2,
Tr �S.1=1/ D Tr K0K�1

1
D 1 � x , we used the T –tree with initial triple Tr A D

˙i.3=.2�/� �=2/, Tr B D 0 and Tr AB D ˙.3=.2�/C �=2/ corresponding to the
generators A;B of GT . As in Section 3.2.3, A2D�K0K1 , so that Tr A2D�x . Since
Tr BD 0, we can find Tr AB from the identity .Tr A/2C.Tr AB/2DTr ŒA;B�C2D 3.
Thus setting .a; b; c/D .Tr A;Tr B;Tr AB/ we have

a2
� 2D�x; c2

D 1Cx:

It is easily checked that this is in accord with (3-2). Thus associated to GT .x/ we have
the torus tree .a; b; c/D .

p
�xC 2; 0;

p
xC 1/. This is the method we actually used

to compute the pleating rays shown in Figure 1.

Remark 5.4 The sign of the square roots in the above can be uniquely determined by
the formulae for traces in terms of � . What we actually did was to make an arbitrary
choice and plot rays corresponding to curves in the range 0� p=q � 1, thus making
a picture in the upper half plane which we could then reflect. As can be seen from
Figure 4, the signs of the square roots in fact alternate periodically with period 4 rather
than period 2, so that, for example, Tr �T .3/D�Tr �T .1/.

5.0.3 Computations for the Riley slice The traces needed to find the pleating rays
for the Riley slice in the lower frame of Figure 8 were computed by a method similar
to that described above. Our parameter x can be related to the parameter � of [15]
by comparing the traces of the word in Farey position 0=1: these are K0K1 in our
case and XY in the notation of [15]. Thus we find that x corresponds to �C 2. For
the Riley group a similar computation to the one above with Tr ŒA;B� D �2 gives
immediately .Tr A/2 D�.�C2/ and .Tr AB/2 D �C2. Thus writing in terms of the
x–coordinate we find the initial triple .

p
�x; 0;

p
x/.

5.0.4 Comparison of Bowditch sets It is interesting to compare the Bowditch sets
associated to the two initial triples .x;x;x/ and .

p
�xC 2; 0;

p
xC 1/. In the latter

case, one needs to modify the definition of the Bowditch set: since �.U /D 0 for some
U 2�, there is a trace-preserving Z–action on the associated tree T.

p
�xC2;0;

p
xC1/

corresponding to the action of a subgroup of Aut.F2/ generated by a parabolic; see,
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Figure 13: Bowditch sets (grey) plotted in the �–plane with range Œ�4; 4��

Œ�4i; 4i � . Left: initial triple .
p
�xC 2; 0;

p
xC 1/ corresponding to the

torus group GT .x/ . Right: initial triple .x;x;x/ corresponding to the
handlebody group GH.x/ . The two regions are clearly distinct: the grey
region on the right contains that on the left.

for example, [29, Theorem 1.6]. The Bowditch condition should actually be specified
on � n fU g=�, where � is the equivalence coming from this symmetry.

The results, plotted in the �–plane, are shown in Figure 13. On the right, the initial
triple is .x;x;x/ (with x related to � as in (3-1)) corresponding to the handlebody
group GH.x/. On the left, the initial triple is .

p
�xC 2; 0;

p
xC 1/ corresponding to

the torus group GT .x/. The two regions are clearly distinct: the grey region on the right
contains that on the left. Conjecturally, the left-hand grey region is also the discreteness
locus for the groups GT .x/; see Figure 8 for the parametrisation in terms of x .

Note the various symmetries as discussed in Section 3.2.6, in particular note how
Figure 5 looses the left-right reflectional symmetry seen in Figure 13. The coloured re-
gion in Figure 5 is the same region as the right frame of Figure 13, drawn in the x–plane.
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