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Untwisting information from Heegaard Floer homology

KENAN INCE

The unknotting number of a knot is the minimum number of crossings one must
change to turn that knot into the unknot. We work with a generalization of the
unknotting number due to Mathieu–Domergue, which we call the untwisting number.
The p–untwisting number is the minimum number (over all diagrams of a knot) of
full twists on at most 2p strands of a knot, with half of the strands oriented in each
direction, necessary to transform that knot into the unknot. In previous work, we
showed that the unknotting and untwisting numbers can be arbitrarily different. In
this paper, we show that a common route for obstructing low unknotting number,
the Montesinos trick, does not generalize to the untwisting number. However, we
use a different approach to get conditions on the Heegaard Floer correction terms of
the branched double cover of a knot with untwisting number one. This allows us to
obstruct several 10– and 11–crossing knots from being unknotted by a single positive
or negative twist. We also use the Ozsváth–Szabó � invariant and the Rasmussen
s invariant to differentiate between the p– and q–untwisting numbers for certain
p; q > 1 .

57M25, 57M27; 57R58

1 Introduction

It is a natural knot-theoretic question to seek to measure “how knotted up” a knot is.
One such “knottiness” measure is given by the unknotting number u.K/, the minimum
number of crossings, taken over all diagrams of K , one must change to turn K into
the unknot. By a crossing change we shall mean one of the two local moves on a knot
diagram given in Figure 1.

C �

positive

negative

Figure 1: A positive and negative crossing change
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Figure 2: A left-handed, or positive, generalized crossing change

This invariant is quite simple to define but has proven itself very difficult to master.
Fifty years ago, Milnor conjectured that the unknotting number for the .p; q/–torus
knot was 1

2
.p�1/.q�1/; only in 1993, in two celebrated papers [6; 7], did Kronheimer

and Mrowka prove this conjecture true. Hence, it is desirable to look at variants of
the unknotting number which may be more tractable. One natural variant (due to
Murakami [12]) is the algebraic unknotting number ua.K/, the minimum number of
crossing changes necessary to turn a given knot into an Alexander polynomial-one knot.
Alexander polynomial-one knots are significant because they “look like the unknot” to
classical invariants, knot invariants derived from the Seifert matrix. It is obvious that
ua.K/ � u.K/ for any knot K , and there exist knots such that ua.K/ < u.K/ (for
instance, the Whitehead double of any nontrivial knot).

In [9], Mathieu and Domergue defined another generalization of the unknotting number.
In [8], Livingston worked with this definition. He described it as follows:

“One can think of performing a crossing change as grabbing two
parallel strands of a knot with opposite orientation and giving them one
full twist. More generally, one can grab 2k parallel strands of K with
k of the strands oriented in each direction and give them one full twist.”

Following Livingston, we call such a twist a generalized crossing change. We describe
in [4] how a crossing change may be encoded as a ˙1–surgery on a nullhomologous
unknot U � S3 �K bounding a disk D such that D \K D 2 points. From this
perspective, a generalized crossing change is a relaxing of the previous definition to
allow D\KD 2k points for any k , provided lk.K;U /D 0; see Figure 2. In particular,
any knot can be unknotted by a finite sequence of generalized crossing changes.

One may then naturally define the untwisting number tu.K/ to be the minimum length,
taken over all diagrams of K , of a sequence of generalized crossing changes beginning
at K and resulting in the unknot. By tup.K/, we will denote the minimum number of
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generalized crossing changes on 2p or fewer strands, with p strands oriented in each
direction, needed to unknot K . Notice that tu1 D u and that

tu� � � � � tupC1 � tup � � � � � tu1 D u:

The algebraic untwisting number tua.K/ is the minimum number of generalized
crossing changes, taken over all diagrams of K , needed to transform K into an
Alexander polynomial-one knot. It is clear that tua.K/� tu.K/ for all knots K . In [4],
we showed that, in fact, tua.K/D ua.K/ for all knots K ; hence the unknotting and
untwisting numbers are “algebraically the same”. However, we also showed that tu
and u can be arbitrarily different in general: there exists a family of knots fSq

p g such
that .u� tuq/.S

q
p /� p� 1 for all p; q � 2.

Since the family fSq
p g consists of .p; 1/–cables of (untwisted) Whitehead doubles,

most members of this family have very high crossing number. In this paper, we
compare the unknotting and untwisting numbers for several 10– and 11–crossing knots
with signature 0. In order to do this, we will develop an obstruction to a knot with
signature 0 having untwisting number 1. This will require the methods of Heegaard
Floer homology, specifically the d –invariants or Heegaard Floer correction terms of a
3–manifold.

In [19], Ozsváth and Szabó develop an unknotting number-1 obstruction using d –
invariants. This obstruction relies on the Montesinos trick, which allows them to
construct a definite 4–manifold with boundary the branched double cover †.K/ of an
unknotting number-1 knot K . In Section 3, we give an infinite family of knots which
have untwisting number 1 but which do not satisfy the Montesinos trick, eliminating
that route toward a d –invariant obstruction:

Theorem 1.1 There exists an infinite family fKngn>1 of knots such that tu.Kn/D 1

for all n, but †.Kn/ is not a half-integer surgery on any knot in S3 for any n.

In Section 4, we get around the failure of the Montesinos trick for untwisting number-1
knots by porting the machinery used by Owens and Strle in [16] and Nagel and Owens
in [13] as an obstruction to low untwisting number:

Theorem 1.2 Let K be a knot with signature �.K/ which can be unknotted by p

positive and n negative generalized crossing changes. Then Y D†.K/, the branched
double cover of K , bounds a smooth, definite 4–manifold W with b2.W /D 2nC 2p

and signature 2n � 2p C �.K/. Moreover, H2.W IZ/ contains n classes of self-
intersection C2 and p classes of self-intersection �2 which span a primitive sublattice;
in other words, the quotient of H2.W IZ/ by this sublattice is torsion-free.
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Once we have constructed a definite 4–manifold W with @W D †.K/, the next
step is to apply a result of Ozsváth and Szabó to get conditions that the d –invariants
of †.K/ must satisfy. These invariants are easily computable for alternating K via the
Goeritz matrix associated to K . These computations are discussed further in Section 4.
We successfully obstruct several 10–crossing knots from being unknotted by a single
positive and/or negative generalized crossing change, though these untwisting numbers
cannot be computed using the methods available prior to the development of Heegaard
Floer homology:

Theorem 1.3 The knots 1068 and 1096 have untwisting number 2, the knots 1022 ,
1034 , 1035 , 1087 and 1090 cannot be unknotted by a single positive generalized
crossing change, and the knot 1048 cannot be unknotted by a single negative generalized
crossing change.

Similarly, we apply these obstructions to all 11–crossing knots with signature 0,
algebraic unknotting number 1, and unknotting number 2 to get the following:

Theorem 1.4 The knots 11a37; 11a103; 11a169 , 11a214 and 11a278 have untwisting
number 2.

Finally, we showed in [4] that there can be arbitrarily large gaps between the p–
untwisting number and the 1–untwisting number (which by definition equals the
unknotting number) for several families of knots. However, we had not yet been able
to distinguish between tup and tuq for p; q > 1.

In Section 6, we use invariants coming from Heegaard Floer homology (the Ozsváth–
Szabó � invariant) and Khovanov homology (the Rasmussen s invariant) to give lower
bounds on the p–untwisting number for arbitrary p via the following theorem. While
visiting Mark Powell at the Max Planck Institute, he suggested this theorem and outlined
a proof similar to the proof of Powell and coauthors T Cochran, S Harvey, and A Ray
that the � and s invariants give lower bounds for their bipolar metrics (to appear in
a future paper). The referee suggested a simpler approach involving the 4–genus,
detailed in Section 6.

Theorem 1.5 Let K be a knot which can be converted to the unknot via n generalized
crossing changes, where for every i , the i th generalized crossing change is performed
on 2pi strands. Then

j�.K/j �

nX
iD1

p2
i and 1

2
js.K/j �

nX
iD1

p2
i :
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This allows us to show that there exist p; q > 1 such that the difference between the p–
and q–untwisting numbers of several families of knots can be made arbitrarily large:

Example 1.6 Let Kp3 denote the .p3; 1/–cable of a knot K with genus 1 and
u.K/ D 1 D �.K/ (one example of such a K is the right-handed trefoil knot). We
know from [4, Section 5] that tup3.Kp3/D 1. We may use Theorem 1.5 to show that

tup.Kp3/� tup3.Kp3/
p!1
����!1:

Convention In this paper, all manifolds are assumed to be smooth, compact, orientable
and connected, and all surfaces in manifolds are assumed to be smoothly embedded.
When homology groups are given without specifying coefficients, they are assumed to
have coefficients in Z.

Acknowledgements Thanks to Stefan Friedl, Maciej Borodzik, Peter Horn, Matthias
Nagel, and Mark Powell for many enlightening conversations. Thanks also to Stefan
Friedl, Matthias Nagel, Brendan Owens, and the referee for providing comments on
this paper. A Maple program written by Brendan Owens and Sašo Strle has been very
useful in the computations in Section 5. I would also like to acknowledge the results of
Brendan Owens and Sašo Strle in [16], Matthias Nagel and Brendan Owens in [13],
Brendan Owens in [14], and Tim Cochran and William Lickorish in [3], all of which
greatly inspired this work.

2 Preliminaries

2.1 Dehn surgery

In this section, we will describe the operation of Dehn surgery on knots.

Definition 2.1 Let K � S3 be an oriented knot, let N be a closed tubular neighbor-
hood of K , and consider the preferred framing for N (see [20, Definition 2E8]) in
which the longitude L is oriented in the same way as K and the meridian M has
linking number C1 with K . We may write any simple closed curve J � @N in terms
of the homology basis f�D ŒL�; �D ŒM �g:

ŒJ �D q�Cp� 2H1.@N /:

The result of .p=q/–surgery on K is the 3–manifold

S3
p=q.K/ WD .S

3
� VN /[h .S

1
�D2/;
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Figure 3: Performing C1–surgery on an unknot U gives the knot K a
left-handed twist.

where hW @.S1 �D2/! @N is a homeomorphism taking ��S1 onto a curve J of
class ŒJ � D p�C q� in H1.@N /. By convention, we indicate that surgery is to be
performed on K by writing the ratio p=q next to a diagram of K .

If U � S3 nK is an unknot such that lk.K;U /D 0, we define a generalized crossing
change diagram for K to be a diagram of the link KtU with the number ˙1 written
next to U , indicating that U is to have ˙1–surgery performed on it.

There is an orientation-preserving homeomorphism ˆ of the manifold M WD S3
˙1.U /

resulting from ˙1–surgery on U with S3 . However, K0 WDˆ.K/� S3 may have a
different knot type than K . (Note that the knot type of K0 does not depend on the choice
of homeomorphism ˆ since any two orientation-preserving homeomorphisms of S3

are isotopic.) In particular, if D is a disk bounded by U such that 2p strands of K

pass through D in straight segments, then each of the 2p straight pieces is replaced
by a helix which screws through a neighborhood of D in the right- (respectively, left-)
hand sense; see Figure 3.

The process of performing ˙1–surgery on an unknot U in a generalized crossing
change diagram for a knot K , mapping the resulting manifold to S3 via an orientation-
preserving homeomorphism ˆ, then erasing ˆ.U / from the resulting diagram of
ˆ.K/tˆ.U / is called a ˙ generalized crossing change on K . Now, it can be easily
verified that performing a � generalized crossing change on the knot K on the left
side of Figure 4 transforms the crossing labeled C into the crossing labeled �. The
inverse process of introducing an unknot labeled with a C1 to the right side of Figure 4
and performing a C generalized crossing change in the resulting generalized crossing
change diagram transforms the crossing labeled � into the crossing labeled C.

2.2 The untwisting number

In a generalized crossing change diagram for K consisting of a diagram of K and
an unknot U , we have that K must pass through U an even number of times, for
otherwise lk.K;U / ¤ 0. If at most 2p strands of K pass through an unknot U in
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C �

blow down

blow upC1

Figure 4: A crossing change is a 1–generalized crossing change.

a generalized crossing change diagram, we may call the associated ˙ generalized
crossing change a ˙p–generalized crossing change on K .

The untwisting number tu.K/ of K is the minimum length of a sequence of generalized
crossing changes on K such that the result of the sequence is the unknot, where we allow
ambient isotopy of the diagram in between generalized crossing changes. Note that by
the reasoning on page 58 of [1], this definition is equivalent to taking the minimum
length, over all diagrams of K , of a sequence of generalized crossing changes beginning
with a fixed diagram of K such that the result of the sequence is the unknot, where we
do not allow ambient isotopy of the diagram in between generalized crossing changes.

For p D 1; 2; 3; : : : , we define the p–untwisting number tup.K/ to be the minimum
length of a sequence of ˙p–generalized crossing changes on K resulting in the unknot,
where we allow ambient isotopy of the diagram in between generalized crossing changes.
It follows immediately that we have the chain of inequalities

(2-1) tu.K/� � � � � tupC1.K/� tup.K/� � � � � tu2.K/� tu1.K/D u.K/:

2.3 Heegaard Floer homology

In this section, we will recall some properties of Heegaard Floer homology, a set of
invariants of 3–manifolds defined by Ozsváth and Szabó. For details, refer to their
papers, in particular [17; 18; 19].

Let Y be an oriented rational homology 3–sphere. Recall that one can associate to Y

a set Spinc.Y / of spinc structures on Y . In the case where jH 2.Y IZ/j is odd, there
is a canonical bijection H 2.Y IZ/$ Spinc.Y / under which 0 2H 2.Y IZ/ is sent to
the unique spin structure on Y . In this way, we may give Spinc.Y / a group structure
inherited from that of H 2.Y IZ/.

Fix a spinc structure s on Y . Then the (plus flavor of) Heegaard Floer homology
HFC.Y; s/ is a Q–graded abelian group with a ZŒU �–action, where multiplication
by U lowers the grading by 2. Associated to s is a d –invariant d.Y; s/ 2Q which
satisfies the symmetry condition d.Y; s/D�d.�Y; s/. The correction terms are useful
for obstructing the existence of a 4–manifold with boundary Y :
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2290 Kenan Ince

Theorem 2.2 (Ozsváth and Szabó [17]) Let X be a negative-definite 4–manifold
with boundary Y and intersection form represented by a matrix Q, and let s be any
spinc structure on X . Let c1.s/ denote the first Chern class associated to s. Then

(2-2)
1
4
.c1.s/

2
C b2.X //� d.Y; sjY /;

1
4
.c1.s/

2
C b2.X //� d.Y; sjY / mod 2:

Following [17], we now show how to check this obstruction in practice. In addition
to the assumptions of Theorem 2.2, suppose for simplicity that �1.X /D 1 and that
jH 2.Y IZ/j is odd. (This will always be true for the examples in this paper.) Let
r D b2.X /, the second Betti number of X . It is straightforward to see that H2.X IZ/
is free of rank r in this case. Choose a basis fxig

r
iD1

for H2.X IZ/ and let QD .Qij /

be a negative-definite r � r matrix representing the intersection pairing of X in this
basis; then det QD jH 2.Y IZ/j. The dual basis fxigr

iD1
for H 2.X IZ/ given by the

universal coefficient theorem defines an isomorphism H 2.X IZ/ Š Zr . Under this
isomorphism, the set fc1.s/ j s2Spinc.X /g�H 2.X IZ/ of first Chern classes of spinc

structures on X is sent to the set of characteristic covectors Char.Q/ for Q. (Recall
that a characteristic covector for an r � r matrix Q is a vector � D .�1; : : : ; �r / 2 Zr

such that �i �Qii mod 2 for i D 1; : : : ; r .) In our basis, the square of the first Chern
class of the spinc structure corresponding to a characteristic covector � is given by
�T Q�1� .

Define a function mQW Z
r=Q.Zr /!Q by

mQ.g/Dmax
˚

1
4
.�T Q�1�C r/ j � 2 Char.Q/; Œ��D g

	
;

where Œ�� is the image of � 2Zr under the projection to Zr=Q.Zr /. In computing mQ ,
it is enough to consider characteristic covectors �D .�1; : : : ; �r / with �Qii � �i �Qii ;
if, say, �i <Qii , subtracting twice the i th column of Q from � shows that �T Q�1�

is not maximal. Then we may simplify the conditions (2-2) as follows:

Theorem 2.3 (Ozsváth and Szabó) Let Y be a rational homology 3–sphere which is
the boundary of a simply connected, negative-definite 4–manifold X , with jH 2.Y IZ/j
odd. If the intersection pairing of X is represented in a basis by the matrix Q, then
there is a group isomorphism

�W Zr=Q.Zr /! Spinc.Y /

such that for all g 2 Zr=Q.Zr /,

(2-3)
mQ.g/� d.Y; �.g//

mQ.g/� d.Y; �.g// mod 2:
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Figure 5: Crossing conventions for negative-definite Goeritz matrices of
alternating knots

Under the assumptions of the theorem, we say that the 4–manifold X bounded by Y

is sharp if equality holds in (2-3). In this case, we may compute the correction terms
for Y using the values of mQ . Moreover, if a rational homology sphere Y bounds
a positive-definite 4–manifold X , we may compute the correction terms for Y by
applying Theorem 2.3 to �Y .

If K is an alternating knot, we may compute the d –invariants of †.K/ using the
negative-definite Goeritz matrix computed from an alternating diagram of K as follows.
Consider a regular projection of K into a plane R2 � R3 D S3 n f1g. Color the
regions of R2 nK alternately black and white so that the n white regions X1; : : : ;Xn

are separated by crossings of the type depicted in Figure 5.

For 0� i; j � n, where d is the number of double points incident to Xi and Xj , define

gij D

�
d; i ¤ j ;

�
P

k¤i gik ; i D j:

Let G0 D .gij /. Then the negative-definite Goeritz matrix G associated to K is the
n� n symmetric integer matrix obtained from G0 by deleting the 0th row and column
of G0 . It is shown in [19, Proposition 3.2] that G represents the intersection pairing
of a sharp 4–manifold with boundary †.K/; thus, the correction terms for †.K/ are
given by the values of mG .

3 Failure of the Montesinos trick

The “Montesinos trick” relates crossing changes downstairs on K to surgery upstairs on
†.K/, the branched double cover of K . We use the convention that the determinant of
a knot is given by j�K .�1/j, where �K is the Alexander polynomial for the knot K .

Theorem 3.1 [11] If u.K/ D 1, then †.K/ Š S3
˙D=2.C / for some other knot

C � S3 , where here D is the determinant of K .

Algebraic & Geometric Topology, Volume 17 (2017)
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Figure 6: The (local) effect of performing a C generalized crossing change
on the unknot U

We show that this theorem does not generalize to untwisting number-1 knots:

Theorem 3.2 There exists an infinite family fKng of knots such that, for all n � 1,
tu.Kn/D 1, but †.Kn/ is not a half-integer surgery on any knot in S3 .

In order to prove Theorem 3.2, we will need two main ingredients. The first is the
following lemma:

Lemma 3.3 The effect of performing a C generalized crossing change on the un-
knot U in the local picture given in Figure 6 is to add �4 full twists to the knot K .

Proof See Figure 6. The intermediate steps are left to the reader.

Our second ingredient is the following theorem of McCoy [10]:

Theorem 3.4 Let K be an alternating knot. Then the following are equivalent:

(1) u.K/D 1;

(2) the branched double cover †.K/ can be obtained by half-integer surgery on
some knot in S3 ;

(3) in every minimal diagram of K , there exists a crossing which can be changed to
unknot that diagram.
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C1

�2n

4

�2n

Figure 7: The knots Kn , together with the C1–generalized crossing change
that unknots them. Here, positive (resp. negative) numbers in boxes denote
right-handed (resp. left-handed) full twists.

Proof of Theorem 3.2 Fix an orientation on Kn . The generalized crossing change
pictured in Figure 7 introduces �4–twists on the left side of Kn , which undo the
4–twists already present. Hence, tu.Kn/D 1 for all n. Moreover, if n> 1, then Kn

is a minimal diagram of an alternating knot. One can easily see that Kn cannot be
unknotted by any single crossing change in this diagram. By Theorem 3.4, the branched
double cover †.Kn/ cannot be obtained by half-integer surgery on any knot in S3 ,
and moreover, u.Kn/ > 1.

Note 3.5 The first knot in this family is K2 D 12a1166 . The unknotting number
of 12a1166 is listed as “not known” in the KnotInfo tables, but is either 1 or 2. By
Theorem 3.4, we must have that tu.12a1166/D 1< 2D u.12a1166/.

Question 3.6 Does there exist a knot K with tu.K/ D 1 such that †.K/ is not a
surgery on any knot in S3 ?

4 Heegaard Floer-theoretic obstructions
to untwisting number 1

Although the Montesinos trick does not hold for knots with untwisting number 1, we
can still get obstructions to a knot K being unknotted by a single positive or negative
generalized crossing change using techniques similar to those of Owens and Strle
in [16] and Nagel and Owens in [13] together with Theorem 2.2.

In order to apply Theorem 2.2, we first compute a Goeritz matrix G for K and, from G ,
the function mG as in Theorem 2.2. The image of Zr=G.Zr / under mG , where G is
an r � r matrix, is the set of d –invariants for Y . We construct the 4–manifold W as
in [13, Proposition 2.3] using the propositions below, then compute the mQ and show
that no isomorphism satisfying both conditions of (2-2) exists.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proposition 4.1 Let K be an oriented knot in S3 , and suppose that K can be un-
knotted by p positive and n negative generalized crossing changes. Then K bounds
a disk � in a manifold C Š B4 #n CP2 #p CP2 with Œ�� D 0 2 H2.C; @C / and
�1.C n�/D Z, generated by a meridian of K .

Proof Suppose that K is an oriented knot in S3 and that K can be unknotted by p

positive and n negative generalized crossing changes. Then there is a sequence of knots

(4-1) K WDKpCn

�pCn

���!KpCn�1

�pCn�1

�����! � � �
�2
�!K1

�1
�!K0 WD U

for which Ki is obtained from KiC1 by a single generalized crossing change of sign
�iC1 2 f˙1g for i D 1; : : : ;p C n, with precisely p of the �i equal to C1 and n

of the �i equal to �1, and U is the unknot. Reversing our point of view, there is a
sequence of knots

(4-2) U WDK0

��1
��!K1

��2
��! � � �

��pCn�1

������!KpCn�1

��pCn

����!KpCn DWK

for which Ki is obtained from Ki�1 by a single generalized crossing change of
sign ��i for i D 1; : : : ;pC n and U is the unknot.

Consider U to be embedded in @B4 D S3 . Since U is an unknot in S3 , it bounds
an embedded disk D � S3 . We push D into B4 to get a disk �0 � B4 such that
�0\@B

4DU and �1.B
4n�0/DZ, where the latter is generated by a meridian of U .

Now, we build a 4–manifold C in which K bounds a disk � as follows. Let C0 WDB4 .
We now build C from C0 by sequentially thickening the boundary of C0 and attaching
2–handles to the new boundary. First, we thicken the boundary S0 WD@B

4 to S0�Œ0; 1�,
obtaining a new 4–manifold B0 . We denote the disk �0[ .U � I/�B0 by �1 . The
first generalized crossing change can be realized via the attachment of a ��1 –framed 2–
handle h1 along an unknot U1 � S0�f1g with lk.U�f1g; U1/D 0. There is a unique
orientation-preserving diffeomorphism from the new boundary S1 resulting from this
handle attachment to S3 , and after this diffeomorphism U � f1g is isotopic to K1 .
We denote by C1 the new 4–manifold resulting from this handle attachment. Since
attaching a ˙1–framed 2–handle to the boundary of a 4–manifold along an unknot
results in connect-summing a ˙CP2 , we have that C1ŠC0#��1CP2

DB4#��1CP2

(here ˙CP2 denotes CP2 or CP2 , respectively). Note that �1 is still a disk in C1

and that @�1 DK1 .

Attaching a 2–handle generally adds a relation to the fundamental group of the resulting
manifold, where the relation is given by the attaching map. Since the attaching circle U1

of h1 is trivial in H1

�
.S0 � f1g/ n .U � f1g/

�
Š Zh�0i, where �0 is a meridian of

U � f1g � S0 � f1g, it is also trivial in �1.B0 n�1/ Š Zh�0i. Thus, we get that
�1.C1 n�1/Š Z as well, generated by a meridian �1 of K1 .
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... ...
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B4

˙CP 2

˙CP 2

˙CP 2

D
U K1 K2 KpCn�1 K

�

Figure 8: The construction of a manifold C in which K bounds a disk �

We continue in this way to iteratively get 4–manifolds C1; : : : ;CpCn so that CiC1 is ob-
tained from Ci by adding a collar @Ci� Œi; iC1� to @Ci and attaching a ��iC1 –framed
2–handle hiC1 to @Ci�fiC1g. At each stage, the attaching circle UiC1�Si�fiC1g

of hiC1 is trivial in

H1

�
.Si � fiC1g/ n .Ki � fiC1g/

�
Š Zh�ii;

where �i is a meridian of Ki�fiC1g. Hence, UiC1 is trivial in �1.Bin�iC1/ŠZh�ii.
The end result of this process is a 4–manifold C WD CpCn Š B4 #n CP2 #p CP2 in
which K WDKpCn bounds a disk � WD�pCn such that �1.C n�/Š Z, generated
by a meridian �pCn of K DKpCn .

We now consider the nondegenerate intersection form H2.C; @C /�H2.C /! Z in
order to show that Œ��D 0 2H2.C; @C /. Since H2.C /Š ZpCn is generated by the
CP1 factors CP1

1; : : : ;CP1
pCn , where CP1

i is a generator of the second homology
of the i th connect-summed copy of ˙CP2 , we know that an element a 2H2.C; @C /

is 0 if and only if a � ŒCP1
i �D 0 for all i D 1; : : : ;pC n.

Let di denote the disk bounded by the unknot Ui , and let Di denote the second D2

factor in the i th 2–handle attached to C . Then CP1
i is homologous to�

di�1 �
˚
i�1

2

	�
[
�
Ui �

�
i�1

2
; i
��
[ .��Di/:
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The only intersections of � with CP1
i come from the intersections of Ki�1 with di .

Since lk.Ki�1;Ui/D 0 for all i , we have that [Ki�1� � Œdi �D 0 for all i . Therefore,
Œ��D 0 2H2.C; @C /. This completes the proof of the proposition.

Next, we prove a generalization of [13, Proposition 2.3]:

Proposition 4.2 Let K be a knot in S3 D @B4 , and suppose K bounds a properly
embedded disk � in C WD B4 #n CP2 #p CP2 such that Œ�� D 0 2 H2.C; @C / and
�1.C n�/ D Z, generated by a meridian of K . Then there exists an oriented 4–
manifold W with boundary @W D†.K/, the branched double cover of K , such that

(1) W is simply connected;

(2) H2.W IZ/Š Z2.pCn/ ;

(3) the signature of W is �.W /D 2.n�p/C �.K/;

(4) there exist p C n pairwise disjoint classes in H2.W IZ/ represented by p

surfaces of self-intersection �2 and n surfaces of self-intersection C2 which
span a primitive sublattice; in other words, the quotient of H2.W IZ/ by this
sublattice is torsion-free.

Proof Since �1.C n�/ D Z with generator the meridian of K , we may take the
double cover W D †2.C; �/ of C branched along �, and by definition, we have
@W D†2.K/.

(1) Let pW .CC nN.�//! C nN.�/ denote the two-fold, unbranched cover of the
complement of an open tubular neighborhood of � in C . Since �1.C n�/ Š Z,
we have that �1.AC n�/ Š Z as well. The branched cover W may be recovered
from CC nN.�/ by gluing back a closed neighborhood N.�/ Š D2 � � along
p�1.@N.�// Š S1 ��. A straightforward application of the Seifert–van Kampen
theorem to W D AC n� [

p�1.@N.�//
N.�/ shows that �1.W /D 1.

(2) We will need the following claim.

Claim The Euler characteristic of W is �.W /D 2.pC n/C 1.

Proof of claim By a standard Mayer–Vietoris argument, we may show that

Hi.C /D

8̂̂̂<̂
ˆ̂:

Z; i D 0;

0; i D 1; 3;

ZpCn; i D 2;

0; i D 4;
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where H4.C /D 0 because C is a manifold with boundary. Thus, �.C /D 1CpC n.
We have that

�.C /D �.C n�/C�.�/D �.C n�/C 1:

Therefore, the double cover AC n� of C n� has Euler characteristic 2.�.C /� 1/.
Since W D AC n� [

p�1.@N.�//
N.�/ as above, we have that

�.W /D 2.�.C /� 1/C 1D 2.pC n/C 1:

Now, since H1.W IZ/D 0, the universal coefficient theorem together with the long
exact cohomology sequence for .X; @X / implies that H 1.W; @W IZ/ D 0 as well.
By Poincaré–Lefschetz duality, we have that H3.W IZ/ D 0 as well. Note that
H4.W IZ/D 0 since W is a manifold with boundary. Now the Euler characteristic
of W is

2pC 2nC 1D �.W /D 1C b2.W /:

Therefore, b2.W /D 2.pC n/, and H2.W IZ/ is free abelian of rank 2.pC n/.

(3) Our proof follows the proof of [3, Theorem 3.7]. Let F�K be a connected
Seifert surface of the knot �K with interior pushed into �B4 . Then the manifold
. yC ;F / WD .C; �/[.S3;K / .�B4;F�K / is closed. Let yW denote the double cover
†2. yC ;F / of yC branched over F WD�[K F�K . Then yW DW [†2.K /XK , where
XK is the double cover †2.F�K / of �B4 branched along F�K . By [21; 5], the
signature of XK is ��.K/. Applying Novikov additivity, we get that

�. yW /D �.W /C �.XK /:

Furthermore, the G –signature theorem [2, Lemma 2.1] tells us that

�. yW /D 2�. yC /� 1
2
.ŒF � � ŒF �/:

Since in this case Œ��D 0 2H2.C; @C /, we have that ŒF � � ŒF �D 0 so

�.W /D 2�.C /C �.K/:

Since �.C /D n�p , we get that �.W /D 2.n�p/C �.K/.

(4) We let Si be a smoothly embedded surface representing the generator of
H2.��iCP2

i /, the i th summand of C . We define xi to be the homology class
of the two-fold cover ySi �W of Si branched over �\Si , which is a subset of W .
Since the Si are pairwise disjoint downstairs, the ySi are also pairwise disjoint. We
show that the xi have self-intersection �2�i .

Let SCi be a push-off of Si . Then Si �S
C
i D��i . We make the disk � disjoint from

the (codimension-2) intersection points Si \SCi . In the branched cover, denote the
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lk.K;U /D 0

�1 �1

lk.K;U /D˙2

U U

K K

Figure 9: No matter the sign of the crossing to be changed, Nagel and Owens
[13] may perform only �1–generalized crossing changes in order to do so.

preimage of Si by Ti and the preimage of SCi by TCi . Then TCi is also a push-off
of Ti . The intersection points of Ti and TCi are the preimages of the intersection
points of Si and SCi ; since the points of Si\SCi are disjoint from the branch set, there
are geometrically two intersection points of Ti and TCi . Furthermore, the orientations
upstairs give the same signs of intersection as downstairs. Therefore, Ti �T

C
i D�2�i .

The proof of [13, Proposition 2.3] applies to our case to show that these classes span a
primitive sublattice. This completes the proof of the proposition.

Remark 4.3 The proof of Proposition 4.2 is very similar to the proof of [13, Propo-
sition 2.3], with the caveat that Nagel and Owens use only �1–generalized crossing
changes in order to unknot K , no matter the signs of the crossings of K that need to be
changed (see Figure 9). The diagram on the right side of Figure 9 is not a generalized
crossing change diagram, since lk.K;U /¤ 0. Therefore, we must assume that K can
be unknotted only by positive generalized crossing changes.

From Propositions 4.1 and 4.2, we derive a theorem analogous to [13, Theorem 1], but
requiring the additional condition that the signature of the knot K is 0:

Theorem 4.4 Let K�S3 be an oriented knot with signature 0 which can be unknotted
by p generalized crossing changes, all of sign C1. Then the double cover Y WD†.K/

of S3 branched along K bounds a smooth, simply connected, negative-definite 4–
manifold W with H2.W IZ/ Š Z2p . Moreover, H2.W IZ/ contains p pairwise
disjoint homology classes of self-intersection �2 which span a primitive sublattice.

Proof By Proposition 4.1, K bounds a disk � in a manifold C Š B4 #p CP2 such
that Œ��D 0 2H2.C; @C / and �1.C n�/D Zh�i, where � is a meridian of K . By
Proposition 4.2, the double cover W WD†2.C; �/ of C branched over � is simply
connected, has H2.W IZ/Š Z2p , and contains p pairwise disjoint homology classes
of self-intersection �2 which span a primitive sublattice. Moreover, the signature
of W is �.W /D�2pC �.K/D�2p , so W is negative definite.

Algebraic & Geometric Topology, Volume 17 (2017)



Untwisting information from Heegaard Floer homology 2299

Note 4.5 If instead K can be unknotted using n generalized crossing changes, all of
sign �1, Theorem 4.4 applied to �K shows that the double cover �Y of S3 branched
along �K bounds a smooth negative-definite 4–manifold W with b1.W /D 0,
b2.W /D 2n, and such that H2.W IZ/ contains n pairwise disjoint surface classes of
self-intersection �2 which span a primitive sublattice.

In the rest of this paper, we will say tu.K/D˙1 if K can be unknotted by a single
˙ generalized crossing change. If �.K/ D 0 and tu.K/ D ˙1, we can always get
a negative-definite 4–manifold W bounding ˙†.K/: if K can be unknotted by a
positive generalized crossing change, then we get a negative-definite W bounding
C†.K/, and if K can be unknotted by a negative generalized crossing change, then we
get a negative-definite W bounding �†.K/. Moreover, the intersection form on W is
represented by a definite 2� 2 matrix Q. For an n� n matrix M , we denote by �M

the group Zn=M.Zn/. With this terminology established, we may state the following
corollary of Proposition 4.1, which simplifies our computations:

Corollary 4.6 Let K be an alternating knot such that tu.K/ D ˙1 and �.K/ D 0.
We use the convention that det K D j�K .�1/j > 0. Let G be the negative-definite
Goeritz matrix obtained from an alternating diagram for ˙K . Then there exists a
negative-definite matrix of the form

QD

�
�

1
2
.det KC 1/ 1

1 �2

�
such that ˙Y D ˙†.K/ bounds a negative-definite 4–manifold with intersection
form Q. Moreover, there is an isomorphism �W �Q! �G such that, for all g 2 �Q ,

mQ.g/�mG.�.g//;(4-3)

mQ.g/�mG.�.g// mod 2:(4-4)

Proof By Theorem 4.4, ˙Y bounds a negative-definite 4–manifold with intersection
form represented by

P D

�
a b

b �2

�
for some a; b 2 Z. By Theorem 2.2, there must exist isomorphisms

�P

�
�!
Š

Spinc.˙Y /ŠH 2.Y IZ/
PD
��!
Š

H1.Y IZ/;

where the isomorphism labeled “PD” is from Poincaré duality and the order of H1.Y IZ/
is equal to det K . The matrix P presents the group Z=.det P /Z. Therefore, we must
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have det P D˙ det K . Since det K is odd, we have that

b2
��2a� b2

D det P � det K � 1 mod 2;

and hence b is odd. Therefore, we can use simultaneous row and column operations to
change P into a matrix of form

QD

�
a 1

1 �2

�
:

Since Q is negative definite, det Q� 0, so we must have det QDC det K . Therefore,
aD�1

2
.det KC 1/. It follows from Theorem 3.1 that mQ.g/�mG.g/ and that the

two are congruent modulo 2. The corollary follows.

Note 4.7 Ozsváth and Szabó used a similar process to obstruct knots from having
unknotting number 1 in [19], although their isomorphisms � were also required to
satisfy a “symmetry” condition which is not necessarily satisfied in our case. In [19,
Corollary 1.3], Ozsváth and Szabó computed the mQ and mG for various knots to
determine whether there exist isomorphisms � of the type given in Corollary 4.6. The
only knot with signature 0 which had its unknotting number determined by Ozsváth
and Szabó for which the untwisting number was unknown and for which the “symmetry”
condition was not necessary is 1068 . In this way, we get from their computations that
tu.1068/D 2D u.1068/, even though ua.1068/D 1.

5 Examples

In this section, we will prove Theorems 1.3 and 1.4 using Corollary 4.6. Following
Ozsváth and Szabó in [19], we will refer to an isomorphism � satisfying (4-3) as
a positive matching and an isomorphism � satisfying (4-4) as an even matching.
We obstruct the existence of positive, even matchings for each of the cases listed
in Theorem 1.3. We illustrate the proof that tu.1068/ D 2; the remaining knots are
obstructed from having untwisting number C1 and/or �1 similarly.

Example 5.1 Although Ozsváth and Szabó have already verified in [19] that †.1068/

cannot bound a 4–manifold with intersection form

QD

�
�29 1

1 �2

�
;
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as it would have to if tu.1068/ D 1, we replicate the computation below. The knot
1068 has �.1068/D 0, det 1068 D 57 and Goeritz matrix

G D

0BBBBBBBBB@

�4 1 1 0 0 1 0

1 �3 0 0 1 0 0

1 0 �2 1 0 0 0

0 0 1 �2 1 0 0

0 1 0 1 �3 0 1

1 0 0 0 0 �2 1

0 0 0 0 1 1 �2

1CCCCCCCCCA
:

The values of mG mod 2 are

0 98/57 50/57 28/19 86/57 56/57 36/19 14/57 2/57 24/19
110/57 2/57 30/19 32/57 56/57 16/19 8/57 50/57 20/19 2/3

98/57 4/19 8/57 86/57 6/19 32/57 14/57 26/19 110/57 110/57
26/19 14/57 32/57 6/19 86/57 8/57 4/19 98/57 2/3 20/19
50/57 8/57 16/19 56/57 32/57 30/19 2/57 110/57 24/19 2/57
14/57 36/19 56/57 86/57 28/19 50/57 98/57.

If †.1068/ bounded a 4–manifold W as in Corollary 4.6, the matrix

QD

�
a 1

1 �2

�
representing the intersection form on W would have determinant equal to �2a� 1D

det.1068/D 57, so that aD�29 and

QD

�
�29 1

1 �2

�
:

In this case, the values of mQ mod 2 are

0 112/57 106/57 32/19 82/57 64/57 14/19 16/57 100/57 22/19
28/57 100/57 18/19 4/57 64/57 2/19 58/57 106/57 12/19 4/3

112/57 10/19 58/57 82/57 34/19 4/57 16/57 8/19 28/57 28/57
8/19 16/57 4/57 34/19 82/57 58/57 10/19 112/57 4/3 12/19

106/57 58/57 2/19 64/57 4/57 18/19 100/57 28/57 22/19 100/57
16/57 14/19 64/57 82/57 32/19 106/57 112/57.

These lists are not identical (in particular, there is a 112=57 in the mQ list but not in
the mG list), so there are no even matchings here and tu.1068/¤C1.
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The Goeritz matrix for �1068 is

G0 D

0@�3 1 0

1 �5 3

0 3 �6

1A I
the values of mG0 are

0 4/57 16/57 12/19 -50/57 -14/57 10/19 -32/57 28/57 -6/19
-56/57 28/57 2/19 -8/57 -14/57 -4/19 -2/57 16/57 -24/19 -2/3

4/57 -20/19 -2/57 -50/57 -30/19 -8/57 -32/57 -16/19 -56/57 -56/57
-16/19 -32/57 -8/57 -30/19 -50/57 -2/57 -20/19 4/57 -2/3 -24/19
16/57 -2/57 -4/19 -14/57 -8/57 2/19 28/57 -56/57 -6/19 28/57

-32/57 10/19 -14/57 -50/57 12/19 16/57 4/57.

Using a Python program, we check all possible isomorphisms � and find that there
are no positive, even matchings between the values of mQ and the values of mG0 .
Therefore, tu.1068/¤�1. Since u.1068/D 2, we must have that tu.1068/D 2 as well.

6 Ozsváth–Szabó � invariant and Rasmussen s invariant
obstructions to p–untwisting number

In this section, we investigate p–generalized crossing changes for fixed p in order to
prove Theorem 1.5.

Every p–generalized crossing change consists of p.p�1/Cp2Dp.2p�1/ standard
crossing changes. Thus, for every positive integer p and every knot K � S3 , if
tup.K/� n, then there is an unknotting sequence consisting of pn.2p� 1/ crossing
changes such that

u.K/� p.2p� 1/ tup.K/;

whence
j�.K/j � u.K/� p.2p� 1/ tup.K/:

Thus, it is possible to use the � invariant to get lower bounds on tup for all p . These
bounds may be useful in distinguishing tup from tuq for p ¤ q . However, we may
obtain a stronger bound using the smooth 4–genus as follows. While visiting Mark
Powell at the Max Planck Institute, he suggested this theorem and outlined a somewhat
more complicated proof. It is similar to the proof of Powell and coauthors T Cochran,
S Harvey, and A Ray that the � and s invariants give lower bounds for their bipolar
metrics (to appear in a future paper). The following, simpler proof involving the
4–genus was suggested by the referee.
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Di

...

...

...

...

...

...

...

...

...
...

qi

qi
Ki�1

Figure 10: The result of the isotopy on Di and the strands of Ki�1 . We call
the strands on the top left-oriented and those on the bottom right-oriented.

Theorem 6.1 If K can be unknotted by k generalized crossing changes, where the
i th change is performed on 2qi strands, then

g4.K/�

kX
iD1

q2
i :

Proof Suppose that K may be unknotted via k generalized crossing changes. Then
there is a sequence of k generalized crossing changes taking K to U ,

K DK0

q1–gcc
����!K1

q2–gcc
����! � � �

qk�1–gcc
������!Kk�1

qk –gcc
����!Kk D U;

for which Ki is obtained from Ki�1 by a single qi –generalized crossing change
for i D 1; : : : ; k . Let Di be the disk bounded by the unknot Ui on which the i th

qi –generalized crossing change is performed.

First, note that we can isotope Di so that the strands of Ki�1 pass through it as in
Figure 10. The strands passing through Di are oriented in two different ways; we
separate the qi strands of each orientation as in the figure. Let us arbitrarily call one
group of qi strands (say, the ones on the top of the figure) “left-oriented” and the other
group “right-oriented”. Hence, we may assume without loss of generality that we have
a local picture as in Figure 10.

A qi –generalized crossing change can be undone by changing qi.2qi � 1/ crossings;
one changes precisely one crossing between the i th and j th strands (si and sj ) for
each 1 � i < j � 2qi . Since qi of the strands are oriented in one direction and qi

in the other, q2
i of these crossing changes occur between strands oriented in opposite

directions and qi.qi � 1/ occur between strands oriented in the same direction (see
Figure 11 for an illustration in the case of a 4–generalized crossing change). Thus, q2

i

of the crossing changes have one sign, and q2
i � qi have the other sign. Therefore, K

can be unknotted by changing P positive crossings and N negative crossings, where

maxfP;N g �
kX

iD1

q2
i :
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2q2
i negative crossings

2qi.qi � 1/ positive crossings

s1
s2
s3
s4

s5
s6
s7
s8

Figure 11: Two sets of four strands twisted around each other at a positive
4–generalized crossing change

However, it is well known, for instance by the argument in the third paragraph of the
introduction of [15], that if K can be unknotted by changing P positive crossings and
N negative crossings, then g4.K/�maxfP;N g.

Since the Ozsváth–Szabó � invariant and Rasmussen s invariant give lower bounds on
the slice genus of any knot, we immediately get the following:

Corollary 6.2 Let K be a knot which can be converted to the unknot via k generalized
crossing changes, where the i th generalized crossing change is performed on 2qi strands
for i D 1; : : : ; k . Then

j�.K/j �

kX
iD1

q2
i and 1

2
js.K/j �

kX
iD1

q2
i :

This corollary gives rise to a method for distinguishing tuq.K/ from tup.K/ for some
p; q > 1. Suppose that tuq.K/� n. Then there exists an untwisting sequence for K

consisting of n generalized crossing changes on 2pi strands each, where i D 1; : : : ; n

and pi � q for all i . Applying the corollary, we get that

j�.K/j �

nX
iD1

p2
i �

nX
iD1

q2
D nq2;

so we must have

n�
j�.K/j

q2
;

and similarly for 1
2
js.K/j in place of j�.K/j. We thus obtain the following obstruction

to tuq.K/D n:
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Corollary 6.3 For all integers q � 1 and all knots K � S3 ,

tuq.K/�
j�.K/j

q2
and tuq.K/�

js.K/j

2q2
:

Note 6.4 The above obstruction shows that j�.K/j � p2 � tup.K/ for all K , which
is stronger than the obstruction j�.K/j � p.2p � 1/ tup.K/ given by representing a
p–generalized crossing change as p.2p� 1/ standard crossing changes.

Example 6.5 Let Kp3 denote the .p3; 1/–cable of a knot K with u.K/D1D�.K/D

g.K/ (one example is the right-handed trefoil knot). We know from [4, Section 5.1]
that tup3.Kp3/D 1 and that �.Kp3/D p3 . However, the above result shows that

tup.Kp3/�
j�.Kp3/j

p2
D p

for all integers p � 1. Hence

tup.Kp3/� tup3.Kp3/D tup.Kp3/� 1� p� 1
p!1
����!1:
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