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Cyclotomic structure in the
topological Hochschild homology of DX

CARY MALKIEWICH

Let X be a finite CW complex, and let DX be its dual in the category of spectra. We
demonstrate that the Poincaré/Koszul duality between THH.DX/ and the free loop
space †1CLX is in fact a genuinely S1–equivariant duality that preserves the Cn–
fixed points. Our proof uses an elementary but surprisingly useful rigidity theorem
for the geometric fixed point functor ˆG of orthogonal G–spectra.

19D55, 55P43; 55P25, 55P91

1 Introduction

Topological Hochschild homology (THH) is a powerful and computable invariant of
rings and ring spectra. Like ordinary Hochschild homology, it is built by a cyclic bar
construction on the ring R , but with the tensor products of abelian groups R˝Z R
replaced by smash products of spectra R^S R .

This construction was originally developed by Bökstedt [10], using ideas of Goodwillie
and Waldhausen. The result is a spectrum THH.R/ with a circle action. Out of its fixed
points one builds topological cyclic homology TC.R/, a very close approximation
to the algebraic K–theory spectrum K.R/. This machinery has been tremendously
successful at advancing our understanding of K.R/ when R is a discrete ring, and
Waldhausen’s functor A.X/ D K.†1

C
�X/ for any space X , to say nothing of the

K–theory of other ring spectra. The THH construction is also of intrinsic interest when
one studies topological field theories, and TC appears to be an analogue of “crystalline
cohomology” from algebraic geometry.

In this paper we use THH to study the ring spectrum DX , the Spanier–Whitehead
dual of a finite CW complex. We are motivated by classical work on the Hochschild
homology of the cochains C �.X/. Jones [18] proved that when X is simply connected
there is an isomorphism

HH�.C
�.X//ŠH�.LX/;

where LX is the space of free loops in X , and all homology is taken with field
coefficients. We investigate a lift of this theorem to spectra. Namely, the functional
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dual of THH.DX/ is equivalent to †1
C
LX when X is finite and simply connected:

(1) D.THH.DX//'†1CLX ' THH.†1C�X/:

This was observed by Cohen in the course of some string-topology calculations. Kuhn
proved a more general statement for the tensor of the commutative ring DX with any
unbased finite complex K , not just the circle S1 ; see Kuhn [20]. The THH duality (1)
was also extended by Campbell from .†1

C
�X;DX/ to other pairs of Koszul-dual ring

spectra; see Campbell [13]. These generalizations can also be seen as special cases of
the Poincaré/Koszul duality theorem of Ayala and Francis [4].

If X D M is a closed smooth manifold, we refer to (1) as Atiyah duality for the
infinite-dimensional manifold LM . Classical Atiyah duality is an equivalence of ring
spectra M�TM 'DM , where M�TM has the intersection product described by Cohen
and Jones [14]. If K is a finite set, the K–fold multiplicative norm of M�TM is

NK.M�TM/D^k.M�TM/D .M k/�TM˚k

DMap.K;M/�T Map.K;M/:

By analogy, we define the “Thom spectrum” of the infinite-dimensional virtual bundle
�TLM over LM to be the multiplicative S1–norm of M�TM :

LM�TLM
DMap.S1;M/�T Map.S1;M/

DN S1

.M�TM/:

By Angeltveit, Blumberg, Gerhardt, Hill, Lawson and Mandell [2], the THH of a
commutative ring spectrum is a model for this multiplicative S1–norm, so the duality
(1) may be interpreted as

D.LM�TLM/'†1CLM:

Previous work on the duality (1) has left open the question of whether it actually
preserves any of the fixed points under the circle action. We address this with the
following theorem:

Theorem 1.1 When X is finite and simply connected, the map of (1) is an equivalence
of cyclotomic spectra. It therefore induces equivalences of fixed point spectra

ˆCnD.THH.DX//'ˆCn†1CLX;

ŒD.THH.DX//�Cn ' Œ†1CLX�
Cn ;

for all finite subgroups Cn � S1 .

These notions of fixed points are recalled in Section 3.1. Cyclotomic spectra are recalled
in Section 5.1; the main examples are THH.R/ and †1

C
LX , and this is the structure

which allows us to compute TC.R/ and TC.X/.
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Implicit in the above theorem is the construction of a cyclotomic structure on the dual
D.THH.DX//. In fact we show that for any associative ring spectrum R , the functional
dual D.THH.R// comes with a natural precyclotomic structure, and in the case of
RDDX with X finite and simply connected, this becomes a cyclotomic structure.

We believe that this theorem suggests deeper connections between Waldhausen’s functor
A.X/ and the algebraic K–theory of DX . We will attempt to explore this idea further
in future work.

Our work on THH.DX/ builds on very recent results of Angeltveit, Blumberg, Gerhardt,
Hill, Lawson and Mandell [1; 2], along with the thesis of Martin Stolz [29]. They
establish that the cyclic bar construction, in orthogonal spectra, has the same equivariant
behavior as Bökstedt’s original construction [10] of topological Hochschild homology.
But in many respects, this cyclic bar construction is much simpler. This leads to simpli-
fications in the theory of THH, as well as new results, including those outlined above.

Our proofs also have consequences for the general theory of cyclotomic spectra and
G–spectra. Let G be a compact Lie group. We prove a rigidity result for the smash
powers and geometric fixed points of orthogonal spectra, which appears to be new and
of independent interest. Let ˆ be the functor from k–tuples of orthogonal G–spectra
to orthogonal spectra

ˆ.X1; : : : ; Xk/Dˆ
GX1 ^ � � � ^ˆ

GXk;

where ˆG is the monoidal geometric fixed point functor of Mandell and May [26].

Theorem 1.2 Suppose �W ˆ!F is a natural transformation, and � is an isomorphism
on every k–tuple of free G–spectra. Then there are only two natural transformations
from ˆ to F : the given transformation �, and zero.

We emphasize that this theorem applies to point-set functors of orthogonal spectra, not
to functors defined on the homotopy category. It is designed to prove that certain point-
set constructions strictly agree, thereby eliminating the need to construct coherence
homotopies between them.

The rigidity theorem has a host of technical corollaries. Here are two of them.

Corollary 1.3 For G a finite group, the Hill–Hopkins–Ravenel diagonal map

ˆHX
�
�!ˆGNG

HX

is the only nonzero natural transformation from ˆHX to ˆGNG
HX .
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This also applies to the subcategory of cofibrant spectra, giving an easy proof that the
diagonal isomorphism constructed by Brun, Dundas and Stolz [12] agrees with the one
constructed by Hill, Hopkins and Ravenel [17].

Corollary 1.4 For G a compact Lie group, the commutation map

ˆGX ^ˆGY
˛
�!ˆG.X ^Y /

is the only such natural transformation that is nonzero.

The rigidity theorem gives a useful framework for understanding how multiplicative
structure interacts with cyclotomic structure in orthogonal spectra. Motivated by
Kaledin’s ICM address [19], we use Theorem 1.2 to place certain tensors and internal
homs into the model category of cyclotomic spectra; see Blumberg and Mandell [8].
In particular, we get

Corollary 1.5 The homotopy category of cyclotomic spectra is tensor triangulated.

Barwick and Glasman [5] have recently extended this program further.

The paper is organized as follows. In Section 2 we review the theory of cyclic spaces
and spectra. In Section 3 we review orthogonal G–spectra, and prove Theorem 1.2.
In Section 4 we combine the previous two sections and develop the norm model of
THH following [2]. In Section 5 we study the interaction of multiplicative structure
and cyclotomic structure, proving Theorem 1.1.

The author is grateful to acknowledge Andrew Blumberg, Jon Campbell, Ralph Cohen
and Randy McCarthy for several helpful and inspiring conversations throughout this
project. He thanks Nick Kuhn for insightful comments on the first version of the paper,
and the anonymous referee for a very close reading that substantially improved the
exposition throughout. This paper represents a part of the author’s PhD thesis, written
under the direction of Ralph Cohen at Stanford University.

2 Review of cyclic spaces

A cyclic set is a simplicial set with extra structure, which allows the geometric realization
to carry a natural S1–action [15]. Similarly one may define cyclic spaces and cyclic
spectra. In this section we collect together the main results of the theory of cyclic
spaces, and their extensions to cocyclic spaces. We also describe (co)cyclic orthogonal
spectra, though we defer the study of their equivariant behavior to Section 4. This
section is all standard material from [16; 18; 11; 23] or a straightforward generalization
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thereof, but we make an effort to be definite and explicit in areas where our later proofs
require it. We will also be brief; the reader seeking more complete proofs is referred to
the author’s thesis [24].

2.1 The category ƒ and the natural circle action

Recall that � is a category with one object Œn�D f0; 1; : : : ; ng for each n � 0. The
morphisms �.Œm�; Œn�/ are the functions f W Œm�! Œn� which preserve the total ordering.
It is generated by the coface maps and codegeneracy maps

d i W Œn� 1�! Œn�; j 7!

�
j if j < i;
j C 1 if j � i;

si W ŒnC 1�! Œn�; j 7!

�
j if j � i;
j � 1 if j > i;

for 0� i � n:

A simplicial object of C is a contravariant functor X�W �op!C . We are interested in
the case where C is based spaces or orthogonal spectra. Any simplicial object X� has
a canonical presentationW

m;n�.�; Œm�/C ^�.Œm�; Œn�/C ^Xn�
W
n�.�; Œn�/C ^Xn!X�:

There is a geometric realization functor j�j taking simplicial spaces to spaces. It is
the unique colimit-preserving functor that takes �Œn� to �n , the convex hull of the
standard basis vectors in RnC1 . It turns out that for simplicial based spaces X� , the
realization jX�j is given by either of the two coequalizersa

m;n

�m ��.Œm�; Œn�/�Xn�
a
n

�n �Xn! jX�j;

W
m;n�

m
C ^�.Œm�; Œn�/C ^Xn�

W
n�

n
C ^Xn! jX�j:

When X� is a simplicial orthogonal spectrum we define jX�j by the latter of these two
formulas.

Connes’s cyclic category ƒ has the same objects as �, but more morphisms. Let Œn�
denote the free category on the arrows:

� n� 1

�
2

�1

�
0

�
n
{{hh

QQ

;;

The geometric realization jN�Œn�j of the nerve of the category Œn� is homotopy equiva-
lent to the circle. The set ƒ.Œm�; Œn�/ consists of those functors Œm�! Œn� which give
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a degree 1 map on the geometric realizations. This is generated by maps in � plus a
cycle map �nW Œn�! Œn� for each n� 0:

�

1
�

0
�

n
� � � � � �

�

1

�

0

�

n
� � � � � �

oo oo

oo oo�� ��

We may also generate ƒ by � and an extra degeneracy map snC1W ŒnC 1�! Œn� for
each n� 0, corresponding to the functor ŒnC 1�! Œn� pictured below:

�

1
�

0
�

nC 1
�

n
� � � � � �

�

1

�

0

�

n
� � � � � �

oo oo oo

oo oo�� �� �� ��

We note that a morphism f 2 ƒ.Œm�; Œn�/ is determined by the underlying map of
sets Z=.mC 1/! Z=.nC 1/, unless this map of sets is constant, in which case f is
determined by which arrow in Œm� is sent to a nontrivial arrow in Œn�.

Definition 2.1 A cyclic based space is a functor X�W ƒop ! Top� . The geometric
realization jX�j is defined by restricting X� to �op and taking the geometric realization
of the resulting simplicial space.

Theorem 2.2 (eg [16]) The geometric realization jX�j of a cyclic based space X
carries a natural based S1–action.

Proof The cyclic space X� is a colimit of representable cyclic sets

ƒŒn�Dƒ.�; Œn�/:

So, it suffices to prove that the space

ƒn WD jƒŒn�j

has an S1 action for all n, commuting with the action of the category ƒ. By a
combinatorial argument, we have homeomorphisms ƒn Š S1 ��n , and we define an
S1 action by translation on the first coordinate. These actions commute with the action
of ƒ, and so they pass to the realization. We draw a few special cases of ƒn and how
it compares to the simplicial circle times �n in Table 1.
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n ƒn �Œ1�=@��Œn�

0 �.0; 0/ � .1; 0/// �.0; 0/ � .1; 0///

1

�.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�� ��

//

//

;;

�.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�� ��

//

//

##

2 �.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�.0; 2/ � .1; 2/

GG

��

��

GG

��

��

//

//

//

**
::

55

�.0; 0/ � .1; 0/

�.0; 1/ � .1; 1/

�.0; 2/ � .1; 2/

GG

��

��

GG

��

��

//

//

//

33

''

++

Table 1

2.2 Skeleta and latching objects

When X� is a simplicial space, the nth skeleton SknX� is obtained by restricting X�
to the subcategory of �op on the objects 0; : : : ; n and then taking a left Kan extension
back. The geometric realization of each skeleton is obtained from the previous one by
a pushout square:

(2)

LnX ��
n[LnX�@�n Xn � @�

n //

��

Xn ��
n

��

jSkn�1X�j // jSknX�j

Here LnX is the nth latching object, the subspace of Xn consisting of all points in
the images of some degeneracy map si W Xn�1!Xn for 0� i � n� 1. Alternatively,
to each proper subset S � f0; 1; : : : ; ng that contains 0, we define a map of totally
ordered sets Œn�! S by rounding down to the nearest element of S . This makes XS
into a subspace of Xn , and the colimit of these subspaces under inclusions S � T
gives the subspace LnX .

Definition 2.3 X� is Reedy q–cofibrant if each LnX ! Xn is a cofibration in the
Quillen model structure on based spaces. X� is Reedy h–cofibrant if each LnX!Xn
is a classical cofibration, ie a map satisfying the unbased homotopy extension property.

We have stated these definitions for based spaces, but they also apply to orthogonal
spectra. There is a standard cofibrantly generated model structure that provides the
q–cofibrations, while the h–cofibrations are defined as maps having the homotopy
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extension property with respect to the cylinders X^IC [27]. So the following standard
theorem applies to both spaces and spectra, with either notion of “cofibration”:

Proposition 2.4 If X� is Reedy cofibrant then jX�j is cofibrant. If both X� and Y�
are Reedy cofibrant, then any map X� �!� Y� that is an equivalence on each simplicial
level induces an equivalence jX�j �!� jY�j.

Proof For simplicial spaces, the proof is an induction up the cube-shaped diagram
defining LnX , using the usual pushout and pushout-product properties for cofibrations.
The use of unbased h–cofibrations was critical — the theorem is not true with based
h–cofibrations, unless all the spaces are well-based.

For orthogonal spectra and q–cofibrations the proof is largely the same. For h–
cofibrations of orthogonal spectra, the theorem is a little surprising since we do not
assume any of the spectra involved are well-based. The hardest piece of the proof
is the statement that if f W K ! L is a relative CW complex and gW A! X is an
h–cofibration of orthogonal spectra, the pushout-product f �g is an h–cofibration.
This follows from the formal pairing result of Schwänzl and Vogt [28, Corollary 2.9].

When X� is a cyclic space, the simplicial skeleton jSknX�j is of limited utility because
it is not closed under the circle action. So we draw motivation from [6] and make the
following definitions. Since it is important, we remark that here and elsewhere we
work in the category of compactly generated, weak Hausdorff spaces.

Definition 2.5 For n� 0 we define the nth cyclic skeleton Skcyc
n X by restricting X�

to the subcategory of ƒop on the objects 0; : : : ; n and then taking a left Kan extension
back. This may be reexpressed as the coequalizerW

k;`�nƒ.�; Œk�/C ^ƒ.Œk�; Œ`�/C ^X`�
W
k�nƒ.�; Œk�/C ^Xk! Skcyc

n X�:

We take the .�1/st cyclic skeleton to be the space X�1 , defined as the equalizer of the
degeneracy and extra degeneracy maps:

Skcyc
�1X DX�1!X0�X1:

Definition 2.6 The nth cyclic latching object Lcyc
n X � Xn is the closed subspace

consisting of all points lying in the image of some degeneracy map

si W Xn�1!Xn; 0� i � n:

The 0th latching object is also taken to be Skcyc
�1X �X0 rather than being empty.

Algebraic & Geometric Topology, Volume 17 (2017)



Cyclotomic structure in the topological Hochschild homology of DX 2315

The only difference between LnX and Lcyc
n X is that the extra degeneracy is included

in Lcyc
n X . Equivalently, Lcyc

n X is the closure of LnX under the action of the cycle
map tn . It follows that jSkcyc

n X�j is the closure of jSknX�j under the circle action.

We briefly prove an equivalent characterization of Lcyc
n X . Let Œn� denote the cycle cate-

gory with nC1 objects from the definition of ƒ. Each inclusion of a nonempty subset
S�f0; : : : ; ng gives a degree 1 functor Œn�! ŒjS j�1� which rounds down to the nearest
element of S . By the cyclic structure of X , this gives a map XS WDXjS j�1!Xn . If
S is empty then we define XS D X�1 , and define XS ! Xn by including into X0
and applying any composition of degeneracy maps X0!Xn .

Proposition 2.7 This forms a cube-shaped diagram of subspaces of Xn , indexed by
the subsets of f0; : : : ; ng and inclusions. Restricting to the proper subsets, the colimit
of this diagram is Lcyc

n X .

Proof If n<1 then this is easy, so we assume n� 1. It is straightforward to check that
our rule respects inclusions of subsets. Each edge of the cube is a standard degeneracy
map, which is split by some face map. Since we are working in weak Hausdorff spaces,
this implies that each XS is a closed subspace of Xn . To prove that their colimit
is equal to their union, it suffices to check XS \XT D XS\T . This reduces to the
following claim: For each 0 � i � n, let Di W Xn! Xn be the map induced by the
functor Œn�! Œn� that sends i to i �1 and fixes all other points. Then XS is precisely
the subspace that is fixed by Di for every i in the complement of S .

To prove this when S is nonempty, note there is a natural projection map dS W Xn!XS
induced by the inclusion of S into Œn�. Thinking of this as a map Xn!Xn , the subspace
of fixed points is precisely XS . On the other hand, we may write the complement of S
as some cyclically ordered set fm1; : : : ; mkg, arranged so that mkC 1 2 S , and then
we have the identity

dS D dfmkg
c � � � dfm1g

c DDmk
� � �Dm1

:

Therefore, being in XS is equivalent to being fixed by Di for all i 2 Sc .

If S is empty, then X∅ D X�1 is contained in every X0 and so is fixed by all the
projections Di . Conversely, anything fixed by all the projections is in every subspace
of the form Xfsg ŠX0 . In particular it lies in Xf0g and Xf1g . This gives two points
x0; x1 2X0 whose images under the two degeneracy maps are the same point x 2X1 .
But each face map splits both degeneracy maps, so x0 D x1 and this point of X0 lies
in the subspace X�1 .

Now we give the analogue of the standard pushout square (2). We expect this is known,
but have not found a reference.
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Proposition 2.8 For each n� 0, there is a natural pushout square of S1–spaces

(3)

L
cyc
n X �CnC1

ƒn[Lcyc
n X�@ƒn Xn �CnC1

@ƒn //

��

Xn �CnC1
ƒn

��

jSkcyc
n�1X�j

// jSkcyc
n X�j

for each unbased cyclic space X� , and the obvious variant with smash products when
X� is a based cyclic space.

Proof The square is clearly defined and natural, and the top horizontal map is the
inclusion of a subspace. We treat the case nD 0 separately, where the square becomes

.L
cyc
0 X �S1/q∅ //

��

X0 �S
1

��

L
cyc
0 X // jSkcyc

0 X�j

which is easily checked to be a pushout. For n � 1, it suffices to check that it is a
pushout when X� Dƒ.�; Œm�/ is the standard cyclic m–simplex. The square may be
rewritten as:

.L
cyc
n ƒŒm��CnC1

ƒn/q .ƒnŒm��L
cyc
n ƒŒm�/�CnC1

@ƒn //

��

ƒnŒm��CnC1
ƒn

��

jSkcyc
n�1ƒŒm�j

// jSkcyc
n ƒŒm�j

The top map is a disjoint union of some isomorphisms and some nontrivial inclusions.
We strike out the isomorphisms without changing whether the square is a pushout:

.ƒnŒm��L
cyc
n ƒŒm�/�CnC1

@ƒn //

��

.ƒnŒm��L
cyc
n ƒŒm�/�CnC1

ƒn

��

jSkcyc
n�1ƒŒm�j

// jSkcyc
n ƒŒm�j

The complement of the latching object Lcyc
n ƒŒm� consists of maps in ƒ.Œn�; Œm�/ for

which the nC 1 points 0; : : : ; n go to distinct points in 0; : : : ; m. The CnC1–action
on these maps is free and each orbit has a unique representative that comes from
�.Œn�; Œm�/, so we can again simplify the square to:
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.�nŒm��Ln�Œm�/� @ƒ
n //

��

.�nŒm��Ln�Œm�/�ƒ
n

��

jSkcyc
n�1ƒŒm�j

// jSkcyc
n ƒŒm�j

Now one may identify this square as the standard simplicial pushout square for �Œm�,
multiplied by the identity map on S1 . Alternatively, one can enumerate the cells
of jSkcyc

n ƒŒm�j missing from jSkcyc
n�1ƒŒm�j and check that the above map attaches

precisely those cells. So the square is a pushout and the proof is complete.

As a result, Proposition 2.4 applies to cyclic spectra whose cyclic latching maps are
cofibrations, including the “.�1/st latching map” �!X�1 . One can even check that
being Reedy cofibrant in the cyclic sense is stronger than being Reedy cofibrant in the
ordinary sense.

We will need to know when jX�j is a cofibrant as a space with an S1 action:

Definition 2.9 If G is a topological group, a map X ! Y of based G–spaces is a
cofibration if it is a retract of a relative cell complex built out of cells of the form

.G=H � @Dn/C ,! .G=H �Dn/C

with n� 0 and H �G any closed subgroup.

Proposition 2.10 If X� is a cyclic space, X�1 is a cofibrant space and each cyclic
latching map Lcyc

n X ! Xn is a cofibration of CnC1–spaces, then jX�j is a cofibrant
S1–space.

Proof It suffices to show that each map of cyclic skeleta

jSkcyc
n�1X j ! jSkcyc

n X j

is an S1–cofibration. The .�1/–skeleton is already assumed to be cofibrant, and it has
trivial S1–action, so it is also S1–cofibrant. For the induction we use the square from
Proposition 2.8:

L
cyc
n X �CnC1

ƒn[Lcyc
n X�@ƒn Xn �CnC1

@ƒn //

��

Xn �CnC1
ƒn

��

jSkcyc
n�1X�j

// jSkcyc
n X�j

It suffices to prove that the top horizontal is an S1–cofibration. Since Lcyc
n X !X is

a CnC1–cofibration and @ƒn!ƒn is a free S1–cofibration, this reduces to proving
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that the CnC1 orbits of the simpler pushout-product

Œ.CnC1=Cr � @D
k
! CnC1=Cr �D

k/C� .S1 � @D`! S1 �D`/C�CnC1

is an S1–cofibration. By associativity of the pushout-product we rewrite this as

Œ.CnC1=Cr �S
1/C ^ .@D

kC`
!DkC`/C�CnC1

;

which simplifies to
.S1=Cr/C ^ .@D

kC`
!DkC`/C;

and this is one of the generating S1–cofibrations.

2.3 Fixed points and subdivision

We turn our attention to the fixed points jX�jCr , where Cr � S1 is the cyclic subgroup
of order r . The Cr –fixed points have an action of S1=Cr , which we usually regard as
an S1–action by pulling back along the group isomorphism

�r W S
1 Š
�!S1=Cr :

We will recall the standard result that the Cr –fixed points of jX�j are built from the
spaces XCr

rk�1
for k � 1. One applies a subdivision functor to X� to obtain a new

simplicial space sdr X� , whose realization is homeomorphic to jX�j, but with simplicial
Cr action, giving a homeomorphism

jX�j
Cr Š j.sdr X�/Cr j:

In fact, one may even put S1 actions on everything in sight, and the relevant maps are
all equivariant. We recall the precise definitions and theorems below.

Definition 2.11 [11] The r –fold edgewise subdivision functor is a map of categories
�

sdr
�!� which takes Œk�1� to Œrk�1�. Each order-preserving map Œm�1�! Œn�1�

is repeated r times to give a map Œrm� 1�! Œrn� 1�. Given a simplicial space X ,
we let the r –fold edgewise subdivision sdr X denote the simplicial space obtained by
composing with sdr .

Definition 2.12 The r –cyclic category ƒr is the subcategory of ƒ on the objects
of the form Œrk � 1� for k � 1, generated by all maps in the image of sdr W �!�

in addition to the cycle maps. When working in ƒr we relabel the object Œrk � 1�
as Œk� 1�. Equivalently, ƒr.Œk� 1�; Œn� 1�/ consists of all nondecreasing functions
f W Z!Z such that f .xCk/D f .x/Cn, up to the equivalence relation f � f Crn.

Proposition 2.13 If X� is a cyclic space, its r –fold subdivision sdr X� is naturally
an r –cyclic object in Cr –spaces. The Cr –action is generated by tnrn�1 at simplicial
level n� 1.
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Proposition 2.14 [11, 1.1] There is a natural diagonal homeomorphism

jsdr X�j
Dr
�!jX�j

which sends each .k�1/–simplex in Xrk�1 to the corresponding .rk�1/–simplex in
Xrk�1 by the diagonal

.u0; : : : ; uk�1/ 7!
�
1

r
u0; : : : ;

1

r
uk�1;

1

r
u0; : : : ;

1

r
uk�1; : : :

�
:

Theorem 2.15 [11, 1.6–1.8, 1.11] The realization of any r –cyclic space carries
a natural S1–action. The generator of the subgroup Cr � S

1 acts by the simpli-
cial map tnrn�1 . If X� is a cyclic space, the diagonal homeomorphism Dr is S1–
equivariant.

Now that we can freely replace jX�j with jsdr X�j as an S1 space, we see that the Cr –
fixed points can be built from the levelwise fixed points .sdr X�/Cr . These levelwise
fixed points are a priori an r –cyclic space, but they are actually a cyclic space because
they factor through the following quotient functor:

Definition 2.16 The quotient functor

Pr W ƒr.Œm� 1�; Œn� 1�/!ƒ.Œm� 1�; Œn� 1�/

takes a function f W Z!Z up to f �f Crn and mods out by the stronger equivalence
relation f � f Cn.

We always consider .sdrX�/Cr to be a cyclic space, reserving the notation Pr.sdrX�/Cr

for the corresponding r –cyclic space. With these conventions, the isomorphism between
jX�j

Cr and j.sdr X�/Cr j is S1–equivariant:

Proposition 2.17 [11, 1.10–1.12] The passage between cyclic and r –cyclic struc-
tures on sdr X� and .sdr X�/Cr , together with the diagonal of Proposition 2.14, give
natural S1–equivariant homeomorphisms

j.sdr X�/Cr j Š ��r jPr.sdr XCr
�
/j Š ��r .jsdr X�jCr /

Dr
�! ��r .jX�j

Cr /

making the following triangle commute:

j.sdrs X�/Crs j

Š

��

Š

((

��r j.sds X�/Cs jCr
Š

// ��rsjX�j
Crs
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2.4 Cocyclic spaces

The previous section dualizes easily. Recall that a cosimplicial object is a covariant
functor X�W �! C . This can be canonically expressed as an equalizer

X�!
Y
n

Map.��Œn�; Xn/�
Y
m;n

Map.��Œm���.m; n/;Xn/

and so a right adjoint out of cocyclic spaces is determined by what it does to the
cosimplicial space Map.��Œn�; Xn/. The totalization is the unique limit-preserving
functor to spaces which takes Map.��Œn�; A/ to Map.�n; A/. It is given by the
equalizer

Tot.X�/!
Y
n

Map.�n; Xn/�
Y
m;n

Map.�m ��.m; n/;Xn/:

The totalization of a cosimplicial orthogonal spectrum is given by the same formula.

If X� is not just cosimplicial, but cocyclic, then its totalization is the equalizer

Tot.X�/!
Y
n

Map.ƒn; Xn/�
Y
m;n

Map.ƒm �ƒ.m; n/;Xn/;

which is enough to prove:

Proposition 2.18 The totalization of a cocyclic space X� carries a natural S1–action.
Similarly, the totalization of an r –cocyclic space Y � carries a natural S1–action, in
which the action of Cr � S1 is the totalization of a cosimplicial map.

In the special case of X� DMap.E�; X/, where E� is a cyclic space, the canonical
homeomorphism

Tot.X�/ŠMap.jE�j; X/

is S1–equivariant. A useful example to keep in mind is Map.S1
�
; X/, the standard

cosimplicial model for the free loop space LX .

Next we recall Reedy fibrancy, which we will only need for cosimplicial spectra (as
opposed to spaces). We recall that the construction of the latching map LnX!Xn for
simplicial spectra dualizes to that of the matching map Xn!MnX for cosimplicial
spectra. We say that X� is Reedy fibrant if these matching maps are fibrations in the sta-
ble model structure on orthogonal spectra. The standard analogue of Proposition 2.4 is:

Proposition 2.19 A weak equivalence of Reedy fibrant cosimplicial spectra induces a
weak equivalence on the totalizations.

As expected, one can always replace a cosimplicial spectrum by a Reedy fibrant one
that is equivalent on every cosimplicial level. In this paper, we will only use Reedy
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fibrant cosimplicial spectra of the form F.X�; Y /, where F.�;�/ is the internal hom
in orthogonal spectra, Y is a fibrant spectrum, and X� is a Reedy q–cofibrant simplicial
spectrum. It is straightforward to verify from the properties of the model structure
in [27] that such an F.X�; Y / is always Reedy fibrant.

Finally, any cocyclic space X� may be composed with sdr to give an r –cocyclic space
sdr X� . As before, the fixed points of Tot.X�/ can be recovered as Tot..sdr X�/Cr /:

Proposition 2.20 If X� is a cosimplicial space, there is a natural diagonal homeomor-
phism

Tot.X�/ Dr
�!Tot.sdr X�/:

If X� is cocyclic, Dr is S1–equivariant.

Proposition 2.21 If X� is a cocyclic space, then .sdr X�/Cr may be regarded as a
cocyclic space, and there are natural S1–equivariant homeomorphisms

Tot..sdr X�/Cr /Š ��r Tot.sdr X�/Cr
D

Cr
r
 � ��r Tot.X�/Cr :

The proofs are easy dualizations or direct copies of the proofs for cyclic spaces.

2.5 The suspension spectrum of LX

We end this section with a more concrete example. If X is any unbased space, then
Map.S1

�
; X/ is a cocyclic space. We add a disjoint basepoint, and smash every level

with the sphere spectrum, yielding a cocyclic spectrum

S^Map.S1
�
; X/C D†

1
CX

�C1:

It is not hard to check that there is a natural map

(4) †1CLX D†
1
C Tot.X�C1/! Tot.†1CX

�C1/

given by the interchange

(5) S^
Y
k

Map�.�
k
C; X

k
C/!

Y
k

S^Map�.�
k
C; X

k
C/!

Y
k

F.�kC;S^X
k
C/;

where F.A;E/ denotes the mapping spectrum or cotensor of a space A with an
orthogonal spectrum E . On each spectrum level, the map (4) is a bijection on the
underlying sets, but it is likely not a homeomorphism, because assembly maps of the
form A^Map�.B; C /!Map�.B;A^C/ fail to be closed inclusions [21, Appendix
A, 8.6]. It does not really matter, because the cocyclic spectrum †1

C
X�C1 is not Reedy
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fibrant, and so it must be replaced if the totalization is to be homotopically meaningful.
Taking a Reedy fibrant replacement R†1

C
X�C1 and totalizing gives a derived version

of the interchange map

†1CLX ! Tot.†1CX
�C1/! Tot.R†1CX

�C1/:

Proposition 2.22 This composite is a stable equivalence when X is simply connected.

Proof We first recall that the case where X is finite follows from [20, 6.6], with
K D S1 and Z DX . To see why, we observe that the cyclic bar construction on the
dual DX can be made into a Reedy cofibrant cyclic spectrum (see Section 4). Applying
F.�; f S/, where f S is a fibrant replacement of the sphere spectrum, gives a Reedy
fibrant cosimplicial spectrum replacing †1

C
X�C1 . One then checks that the map of

Kuhn’s theorem lines up with the interchange we described above.

To get the general case, it suffices to show that both sides of the interchange map
commute with filtered homotopy colimits of simply connected spaces. Using the “cube
of retracts” terminology from [25], we identify the fibers of the coskeletal filtration of
Tot.R†1

C
X�C1/ as

F.�n=@�n; †1CX ^†
1X^n/'�n†1X^n _�n†1X^.nC1/:

The connectivity of these fibers tends to infinity when X is simply connected, and
it follows easily that the limit of the tower commutes with such filtered homotopy
colimits.

An alternative argument uses the “cyclic coskeletal filtration” for the right-hand side,
whose fibers are

F CnC1.ƒn=@ƒn; †1X^.nC1//'�n†1X^.nC1/ _�nC1†1X^.nC1/:

Along the interchange map, this filtration can be shown to agree with Arone’s model
of the Taylor tower for †1

C
LX from [3].

3 Orthogonal G –spectra, equivariant smash powers
and rigidity

We will now review the theory of orthogonal G–spectra and prove our rigidity theorem
for the geometric fixed point functor ˆG . This result is a technical linchpin that
underlies the rest of our treatment of cyclotomic spectra and the cyclic bar construction.
It allows us to cleanly reconstruct and extend the model of THH presented in [2].
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3.1 Basic definitions, model structures and fixed points

We take these definitions from [26; 17].

Definition 3.1 If G is a fixed compact Lie group, an orthogonal G–spectrum is a
sequence of based spaces fXng1nD0 equipped with

� a continuous action of G �O.n/ on Xn for each n,

� a G–equivariant structure map †Xn!XnC1 for each n,

such that the composite

Sp ^Xn! � � � ! S1 ^X.p�1/Cn!XpCn

is O.p/�O.n/–equivariant. A map of orthogonal G–spectra X ! Y is a collection
of maps Xn! Yn commuting with all the structure, including the G–actions.

Definition 3.2 Let U be a complete G–universe as in [26]. The category JG

has objects the finite-dimensional G–representations V � U , or any orthogonal G–
representation isomorphic to such a subspace. The mapping spaces JG.V;W / are the
Thom spaces O.V;W /W�V , consisting of linear isometries f W V !W with choices
of point in the orthogonal complement W �f .V /. The group G acts on O.V;W /W�V

by conjugating the map and acting on the point in W �f .V /.

Definition 3.3 A JG –space is an equivariant functor JG into based G–spaces and
nonequivariant maps. That is, each V is assigned to a based space X.V /, and for each
pair V , W the map

JG.V;W /!Map�.X.V /;X.W //

is equivariant. A map of JG –spaces is a collection of G–equivariant maps

X.V /! Y.V /

commuting with the action of JG .

Proposition 3.4 Every JG –space gives an orthogonal G–spectrum by restricting
to V DRn ; denote this functor by IR1

U . Conversely, given an orthogonal G–spectrum
X one may define a JG –space by the rule

X.V /DXn ^O.n/O.R
n; V /C; nD dimV;

with G acting diagonally on Xn and on O.Rn; V /DJG.Rn; V /. Denote this functor
by IUR1 . Then IUR1 and IR1

U are inverse equivalences of categories.
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Definition 3.5 Given a G–representation V and based G–space A, the free spectrum
FVA is the JG –space

.FVA/.W / WDJG.V;W /^A:

For fixed V , the functor A 7! FVA is the left adjoint to the functor that evaluates a
JG –space at V .

Proposition 3.6 [26] There is a cofibrantly generated model structure on the category
of orthogonal G–spectra, in which the cofibrations are the retracts of the cell complexes
built from

FV ..G=H � @D
k/C/ ,! FV ..G=H �D

k/C/; k � 0; H �G; V � U;

and the weak equivalences are the maps inducing isomorphisms on the stable homotopy
groups

�Hk .X/D

�
colimV�U �k

�
MapH� .S

V ; X.V //
�
; k � 0;

colimV�U �0
�
MapH� .S

V�Rjkj ; X.V //
�
; k < 0; Rjkj � V;

where MapH� .�;�/ denotes the space of H –equivariant maps.

Proposition 3.7 [26] The category J is symmetric monoidal, using the direct sum
of representations. The Day convolution along J defines a smash product on the
category of orthogonal G–spectra, which makes it into a closed symmetric monoidal
category. This smash product is a left Quillen bifunctor with respect to the above model
structure.

When working with G D S1 , it is common to consider a broader class of weak
equivalences that see only the finite subgroups Cn � S1 .

Definition 3.8 A map of S1–spectra is an F –equivalence if it is an equivalence as a
map of Cn–spectra for all n� 1; equivalently it is an isomorphism on the homotopy
groups �Cn

k
.X/ for all n� 1.

Next we recall the definitions of genuine and geometric fixed points. If X is a G–space
and H �G is a subgroup, the fixed point subspace XH has a natural action by only
the normalizer NH �G . Of course H acts trivially and so we are left with a natural
action by the Weyl group

WH DNH=H Š AutG.G=H/:

When X is a G–spectrum there are two natural notions of H –fixed points, each of
which gives a WH–spectrum:
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Definition 3.9 For a JG –space X and a subgroup H �G , the JWH –space of cate-
gorical fixed points XH is defined on each H –fixed G–representation V � UH � U
as just the fixed points X.V /H . More simply, if X is an orthogonal G–spectrum then
XH is obtained by taking H –fixed points levelwise.

Proposition 3.10 The categorical fixed points are a Quillen right adjoint from G–
spectra to WH–spectra. Their right-derived functor is called the spectrum of genuine
fixed points.

Definition 3.11 If X is a JG –space and H � G then the geometric fixed points
ˆHX are defined as the coequalizerW

V;W FWHS0 ^JH
G .V;W /^X.V /

H �
W
V FVHS0 ^X.V /H !ˆHX:

These are naturally JWH –spaces on the complete WH–universe UH .

Theorem 3.12 The geometric fixed points ˆH satisfy these technical properties:

(1) There is a natural isomorphism of WH–spectra

ˆHFVAŠ FVHAH :

(2) ˆH commutes with all coproducts, pushouts along a levelwise closed inclusion,
and filtered colimits along levelwise closed inclusions.

(3) ˆH preserves all cofibrations, acyclic cofibrations and weak equivalences be-
tween cofibrant objects.

(4) If H �K � G then ˆH commutes with the change-of-groups from G down
to K .

(5) There is a canonical commutation map

ˆG.X ^Y /
˛
�!ˆGX ^ˆGY;

which is an isomorphism when X or Y is cofibrant [8, A.1].

Remark 3.13 The geometric fixed point functor ˆH is not a left adjoint, since it does
not commute with all colimits. A simple counterexample with G D Z=2 is given by
the suspension spectra of the diagram of spaces:

.Z=2/C //

��

.�/C

.�/C
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Therefore ˆH is not a Quillen left adjoint. However, since it still preserves weak
equivalences between cofibrant orthogonal G–spectra, we define a left-derived geomet-
ric fixed point functor XÝˆH .cX/ by composing ˆH with a cofibrant replacement
functor c in the above model structure.

It will be important for us that these derived geometric fixed points measure the weak
equivalences of G–spectra. This is standard; for instance we can deduce it from [17,
2.52; 26, 3.5(vi), 4.12].

Proposition 3.14 A map X ! Y of orthogonal G–spectra is a weak equivalence if
and only if the induced map of derived geometric fixed points ˆH .cX/!ˆH .cY / is
an equivalence of spectra for all H �G .

Consequently, a map of S1–spectra X ! Y is an F –equivalence if and only if
ˆCn.cX/!ˆCn.cY / is an equivalence for all n� 1.

Finally, though it does not seem to appear in the literature, the iterated fixed points
map of [8] easily generalizes:

Proposition 3.15 If H �K � NH � G then there is a natural iterated fixed points
map

ˆKX
it
�!ˆK=HˆHX;

which is an isomorphism when X D FVA, and therefore an isomorphism on all
cofibrant spectra. When H and K are normal, this is a map of G=K–spectra.

3.2 The Hill–Hopkins–Ravenel norm isomorphism

When X is an orthogonal spectrum, the smash product X^n has an action of CnŠZ=n
which rotates the factors. This makes X^n into an orthogonal Cn–spectrum. It is
natural to guess that the geometric fixed points of this Cn–action should be X itself,
and in fact there is natural diagonal map

X
�
�!ˆCnX^n:

When X is cofibrant, this map is an isomorphism. More generally, if G is a finite
group, H �G and X is an orthogonal H –spectrum, we can define a smash product
of copies of X indexed by G ,

NG
HX WD

V
giH2G=H .giH/C ^H X Š

VjG=H j
X:

This construction is the multiplicative norm defined by Hill, Hopkins and Ravenel. This
can be given a G–action, which depends on some fixed choice of representatives giH
for each left coset of H (see [9; 17]). Changing the choice of representatives changes
this action, but only up to natural isomorphism. We therefore implicitly assume that
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such representatives have been chosen. The general form of the above observation
about X^n is then:

Theorem 3.16 [17, B.209] There is a natural “diagonal” map of orthogonal spectra

ˆHX
�
�!ˆGNG

HX:

When X is cofibrant, � is an isomorphism.

The full proof now appears in [17], but for the reader’s convenience we also summarize
the proof below:

Proof If A is just a based H –space, the indexed smash product of A over G=H has
fixed points AH :

AH Š
�! .NG

HA/
G
Š
�VjG=H j

A
�G
:

Here the map from left to right is the diagonal,

a 2 AH 7! .a; : : : ; a/:

Now suppose X is an orthogonal H –spectrum. We start by taking its coequalizer
presentationW

V;W FW S
0
^JH .V;W /^X.V /�

W
V FV S

0
^X.V /!X

and taking ˆGNG
H of everything in sight. Since ˆGNG

H commutes with wedges and
smashes up to isomorphism, this givesW
V;Wˆ

GNG
H FW S

0
^ .NG

HJH .V;W //
G
^ .NG

HX.V //
G

�
W
Vˆ

GNG
H FV S

0
^ .NG

HX.V //
G
!ˆGNG

HX;

which simplifies toW
V;Wˆ

GNG
HFW S

0
^JH

H .V;W /^X.V /
H�

W
Vˆ

GNG
HFV S

0
^X.V /H!ˆGNG

HX:

As a diagram, this is no longer guaranteed to be a coequalizer system, but it still
commutes. We can simplify using the string of isomorphisms

ˆGNG
H FVAŠˆ

GFIndG
HV

.NG
HA/Š F.IndG

HV /
G .N

G
HA/

G
Š FVHAH

for any based H –space A and H –representation V . This givesW
V;W FWHS0 ^JH

H .V;W /^X.V /H �
W
V FVHS0 ^X.V /H !ˆGNG

HX

and the coequalizer of the first two terms is exactly ˆHX . The universal property of
the coequalizer then gives us a map

ˆHX !ˆGNG
HX

and we take this as the definition of the diagonal map.
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Now consider the special case when X D FVA. The inclusion of the term

FVHS0 ^AH

into the above coequalizer system maps forward isomorphically to ˆHX , and so we
can evaluate the diagonal map by just examining this term. But back at the top of our
proof, the inclusion of the term

ˆGNG
H FV S

0
^ .NG

HA/
G

also maps forward isomorphically to ˆGNG
HX . Therefore, up to isomorphism, the

diagonal map becomes the string of maps we used to connect FVHS0 ^ AH to
ˆGNG

H FV S
0 ^ .NG

HA/
G , but these maps were all isomorphisms. Therefore the

diagonal is an isomorphism when X D FVA. It is straightforward to verify that both
sides preserve coproducts, pushouts along h–cofibrations and sequential colimits along
h–cofibrations, so, by induction, the diagonal is an isomorphism for all cofibrant X .

3.3 A rigidity theorem for geometric fixed points

Let G be a compact Lie group. We will prove that the geometric fixed point functor
ˆG is rigid, in the sense that it admits very few point-set level natural transformations
into other functors. Let GSpO denote the category of orthogonal G–spectra and G–
equivariant maps between them. Let Free be the full subcategory on the free spectra
FVA for all G–representations V and based G–spaces A. Let

^ı .ˆG ; : : : ; ˆG/W

kY
Free! SpO

denote the composite of the geometric fixed points and the k–fold smash product,
with k � 1.

Proposition 3.17 The only endomorphisms of ^ı .ˆG/k are zero and the identity.

Proof A natural transformation T W ^ ı .ˆG/k ! ^ ı .ˆG/k assigns to a k–tuple
.F0S

0; F0S
0; : : : ; F0S

0/ a map of spectra

F0S
0
! F0S

0;

which is determined at level 0 by a choice of point in S0 . So there are only two such
maps, the identity and zero.

Assume that T is the identity on this object. Then consider T on the k–tuple
.FV1

S0; FV2
S0; : : : ; FVk

S0/:

FVG
1 ˚V

G
2 ˚:::˚V

G
k
S0! FVG

1 ˚V
G

2 ˚:::˚V
G

k
S0:
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Let mi WD dimV Gi and fix an isomorphism between Rmi and V Gi . The above map is
determined by what it does at level m1C � � �Cmk :

O.m1C � � �Cmk/C!O.m1C � � �Cmk/C:

This map, in turn, is determined by the image of the identity point, which is some
element P 2O.m1C� � �Cmk/C . Now for any point .t1; : : : ; tk/2Sm1^� � �^Smk we
can choose maps of spectra FVi

S0! F0S
0 which at level Vi send the nonbasepoint

of S0 to the point ti 2 Smi Š .SVi /G . Since T is a natural transformation, this square
commutes for all choices of .t1; : : : ; tk/:

O.m1C � � �Cmk/C
�P
//

ev.t1;:::;tk/

��

O.m1C � � �Cmk/C

ev.t1;:::;tk/

��

Sm1C���Cmk
id

// Sm1C���Cmk

Since O.m1 C � � � Cmk/ acts faithfully on the sphere Sm1C���Cmk , we must have
P D id. Therefore, our natural transformation T acts as the identity on the k–tuple of
spectra .FV1

S0; FV2
S0; : : : ; FVk

S0/.

Finally, let A1; : : : ; Ak be a sequence of G–spaces, and consider T on the k–tuple
.FV1

A1; : : : ; FVk
Ak/. Each collection of choices of point ai 2 AGi gives a sequence

of maps FVi
S0!FVi

Ai , and applying T to this sequence of maps gives a commuting
square:

FVG
1 ˚:::˚V

G
k
S0 ^ � � � ^S0

id
//

F:::.a1;:::;ak/

��

FVG
1 ˚:::˚V

G
k
S0 ^ � � � ^S0

F:::.a1;:::;ak/

��

FVG
1 ˚:::˚V

G
k
AG1 ^ � � � ^A

G
k

T
// FVG

1 ˚:::˚V
G

k
AG1 ^ � � � ^A

G
k

From inspection of level m1C � � �Cmk , the bottom map must be the identity on the
point id^ .a1; : : : ; ak/. But this is true for all .a1; : : : ; ak/ and so the bottom map is
the identity. Therefore, T is the identity on .FV1

A1; : : : ; FVk
Ak/, so it is the identity

on every object in
Qk Free.

For the second case, we assume T is zero on .F0S0; : : : ; F0S0/ and follow the same
steps as before, concluding that T is zero on .FV1

S0; : : : ; FVk
S0/ and then it is zero

on .FV1
A1; : : : ; FVk

Ak/.

To derive corollaries, we say that a functor �W
Qk

GSpO ! SpO is rigid if restricting
to the subcategory

Qk Free gives an injective map on natural transformations out of � .
In other words, a natural transformation out of � is determined by its behavior on the
subcategory Free.
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Corollary 3.18 If �1 and �2 are functors
Qk

GSpO ! SpO which when restricted
to the subcategory

Qk Free are separately isomorphic to ^ı .ˆG/k , and �1 is rigid,
then there is at most one nonzero natural transformation �1! �2 .

The example we are interested in is the smash product of geometric fixed points.

Proposition 3.19 The functor ^ı .ˆG ; : : : ; ˆG/ is rigid.

Proof For any orthogonal G–spectrum X , let � denote the map

�W
W
V�UFVX.V /!X

whose V th summand is adjoint to the identity map of X.V /. It suffices to show that
^ ı .ˆG ; : : : ; ˆG/ takes .�; : : : ; �/ to a map of orthogonal spectra that is surjective
on every spectrum level. We will describe this in detail in the case of k D 2, that is,
.X; Y /ÝˆGX ^ˆGY , but the other cases are similar.

The smash product commutes with colimits in each variable, and this gives a definition
of ˆGX ^ˆGY as a colimit of a diagram with four terms. We rearrange this into a
single coequalizer diagram and conclude that there is a natural levelwise surjection of
spectra W

V 0;W 0�UFV 0GX.V
0/G ^FW 0GY.W

0/G!ˆGX ^ˆGY

for all orthogonal G–spectra X and Y . Applying this construction to .�; �/ gives a
commuting square

W
V;W�Uˆ

GFVX.V /^ˆ
GFW Y.W /

ˆG.�/^ˆG.�/
// ˆGX ^ˆGY

Z

OOOO

//
W
V 0;W 0�UFV 0GX.V

0/G ^FW 0GY.W
0/G

OOOO

where

Z D
W
V 0;W 0;V;W�UFV 0G ŒJG.V; V

0/^X.V /�G ^FW 0G ŒJG.W;W
0/^Y.W /�G ;

in which the vertical maps are levelwise surjections. We wish to show ˆG.�/^ˆG.�/

is surjective, and for this it suffices to show that the bottom horizontal map is surjective.
This follows by examining the summands where V D V 0 and W DW 0 , and noting
that the action map O.V /C ^ X.V / ! X.V / is surjective on the G–fixed points.
(Alternatively, one can show that the top horizontal and right vertical maps may be
identified by a homeomorphism.)

As a result, we get new rigidity statements for the maps relating geometric fixed points
and smash powers:
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Theorem 3.20 Let X and Y denote arbitrary G–spectra. Then the commutation map

ˆGX ^ˆGY
˛
�!ˆG.X ^Y /

is the only nonzero natural transformation from ˆGX ^ˆGY to ˆG.X ^Y /.

Remark 3.21 If X and Y are G–spectra and H � G , then there is more than one
natural map

ˆHX ^ˆHY !ˆH .X ^Y /:

Indeed, we could take any element g in the center Z.G/, and postcompose ˛H with
the map IUR1g that acts on the trivial-representation levels by the action of g . However,
˛H is the only natural transformation that respects the forgetful functor to H –spectra.
In other words, it is the only one that is natural with respect to all of the H –equivariant
maps of spectra, and not just the G–equivariant ones. Similar considerations apply to
the iterated fixed points map below.

Theorem 3.22 Let G be a finite group and let X denote an arbitrary H –spectrum
with H �G . Then the Hill–Hopkins–Ravenel diagonal map

ˆHX
�
�!ˆGNG

HX

is the only such map that is both natural and nonzero.

Theorem 3.23 If X is a G–spectrum and N � G is a normal subgroup, then the
iterated fixed points map

ˆGX
it
�!ˆG=NˆNX

is characterized by the property that it is natural in X and nonzero.

We end with five more corollaries, which served as the motivation for the rigidity result.
The first corollary is the most important for our work on tensors and duals of cyclotomic
spectra.

Proposition 3.24 If X and Y are a G–spectra and N � G is a normal subgroup,
then the following rectangle commutes:

ˆGX^ˆGY

it^it
��

˛G
// ˆG.X^Y /

it
��

ˆG=NˆNX^ˆG=NˆNY
˛G=N

// ˆG=N.ˆNX^ˆNY /
ˆG=N˛N

// ˆG=NˆN.X^Y /

The next two corollaries help us simplify and clarify the theory of cyclic orthogonal
spectra.
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Proposition 3.25 (see also [2, Lemma 4.5]) If X is a G–spectrum and g 2 Z.G/,
then multiplication by g on the trivial representation levels gives a map of JG –spaces

X
IU

R1g
// X

which on fixed points,

ˆGX
ˆGIU

R1g
// ˆGX;

is the identity map.

Proposition 3.26 If X and Y are orthogonal spectra, then the self-map of orthogonal
Cr –spectra

f W NCr .X ^Y /ŠX^r ^Y ^r !X^r ^Y ^r

which rotates only the Y factors but not the X factors fits into a commuting triangle:

ˆCr .X^r ^Y ^r/

ˆCr IU
R1f

��

X ^Y

� 44

�
**

ˆCr .X^r ^Y ^r/

The next corollary requires more explanation. Let X be an orthogonal spectrum, and
consider the diagonal map

X^m
�n
�!ˆCn.X^m/^n:

If we write .X^m/^n in lexicographical order

.X^m/^ .X^m/^ � � � ^ .X^m/;

then there is an obvious Cmn–action which rotates the terms. This commutes with the
action of the subgroup Cn , so it passes to a Cmn–action on the geometric fixed points.
By Proposition 3.25, the subgroup Cn acts trivially, giving a Cm–action on the fixed
points.

Proposition 3.27 Under these conventions, �n is Cm–equivariant.

Proof Let g denote the generator of Cm and h the generator of Cmn . Since the
diagonal is natural, �n is equivariant with respect to the action of g , but with g acting
on .X^m/^n by rotating each X^m separately. If we apply g and then the inverse of h,
the composite matches the description of the map f of Proposition 3.26. Therefore,
f �1 ı�n D�n , so

�n ıg D g ı�n D g ıf
�1
ı�n D h ı�n:

Therefore, �n is Cm–equivariant.
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Remark 3.28 This argument generalizes: the diagonal map �n commutes with any
automorphism of X^mn coming from a self-map of the Cn–set Cm�Cn that gives the
identity on the quotient set Cm . In particular, Cmn may be identified with Cm�Cn as
Cn–sets with quotient Cm .

Our final corollary will be the key ingredient for showing that the cyclotomic structure
maps on the cyclic bar construction are compatible with each other.

Proposition 3.29 If X is an ordinary spectrum and m; n� 0 then the following square
commutes:

X
�Cmn

//

�Cm

��

ˆCmnX^mn

it
��

ˆCmX^m
ˆCm .�n/

// ˆCmˆCnX^mn

Remark 3.30 It is reasonable to expect that �n coincides with the generalized HHR
diagonal

NCmn=CnX
��
�!ˆCnNCmnX

of [2, Proposition 2.19]. Of course the above proposition is true for �� as well.

4 Cyclic orthogonal spectra and the cyclic bar construction

Now we will integrate the modern technology from Section 3 into the classical theory
from Section 2. We prove a few more properties of cyclic and cocyclic orthogonal
spectra that concern the genuinely equivariant structure. Then we describe the con-
struction and properties of the cyclic bar construction in orthogonal spectra, expanding
on the treatment in [2].

4.1 Equivariant properties of cyclic and cocyclic spectra

Let X� be a cyclic orthogonal spectrum. Then sdr X� is an r –cyclic orthogonal
spectrum. At each simplicial level, .sdr X/n�1 is an orthogonal spectrum with Cr –
action generated by the nth power of the cycle map tnrn�1 . This commutes with all
the face, degeneracy and cycle maps, making sdr X� an r –cyclic object in orthogonal
Cr –spectra. So we may take the geometric fixed points on each level separately.

Proposition 4.1 If X� is a cyclic spectrum then ˆCr sdr X� is naturally a cyclic
spectrum, and there is a natural S1–equivariant isomorphism

jˆCr sdr X�j Š ��rˆ
Cr jX�j:
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Proof Since geometric fixed points is a functor, we know that ˆCr sdr X� is at
least an r –cyclic orthogonal spectrum. By Proposition 3.25, the nth power of the
cycle map tnrn�1 acts trivially on the geometric fixed points. Therefore ˆCr sdr X� is
actually a cyclic spectrum, ie it factors in a canonical way through the quotient functor
Pr W ƒr !ƒ.

Using Prˆ
Cr sdr X� to denote ˆCr sdr X� as an r –cyclic spectrum, we have the

equivariant isomorphisms

jˆCr sdr X�j Š ��r jPrˆ
Cr sdr X�j Š ��rˆ

Cr jsdr X�j Š ��rˆ
Cr jX�j;

where the middle map is the canonical commutation of ˆCr with geometric real-
ization. These are obtained from the maps of Proposition 2.17 applied to the term
FV Cr S

0^X.V /Cr in the coequalizer system for ˆCrX . They pass to the coequalizer
because ��r , Pr , sdr and geometric realization all commute with colimits.

We already know (Proposition 2.4) that the realization functor jX�j preserves weak
equivalences when X� is Reedy cofibrant. We will also need to know when jX�j is
cofibrant.

Proposition 4.2 If X� is a cyclic spectrum, X�1 is a cofibrant spectrum and each
cyclic latching map Lcyc

n X ! Xn is a cofibration of CnC1–spectra, then jX�j is a
cofibrant S1–spectrum.

Proof As in Proposition 2.10, we reduce to checking that the CnC1 orbits of a pushout-
product of a CnC1–cell of spectra and a free S1–cell of spaces is an S1–cofibration,

Œ.FV .CnC1=Cr�@D
k/C!FV .CnC1=Cr�D

k/C/�.S1�@D`!S1�D`/C�CnC1
:

Here V is any finite-dimensional Cr –representation. This simplifies to

ŒFV .CnC1=Cr/C ^CnC1
S1C�^ .@D

kC`
!DkC`/C:

It suffices to show the left-hand term is cofibrant as an S1–spectrum, but it is ob-
tained by applying the left Quillen functor �^CnC1

S1
C

to the CnC1–cofibrant object
FV .CnC1=Cr/C , so it is cofibrant.

Next, let X� be a cocyclic orthogonal spectrum. Then sdr X� is an r –cocyclic
orthogonal spectrum, and, by the same argument as above, ˆCr sdr X� is naturally a
cocyclic orthogonal spectrum. As before, we get the string of equivariant maps

Tot.ˆCr sdr X�/Š ��r Tot.PrˆCr sdr X�/ ��rˆ
Cr Tot.sdr X�/Š ��rˆ

Cr Tot.X�/:

The middle map is the canonical commutation of ˆCr with totalization, but as one
might expect, it is not an isomorphism.
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Proposition 4.3 There is a natural interchange map

ˆCr Tot.Z�/! Tot.ˆCrZ�/

for cosimplicial spectra with Cr –actions.

Proof The interchange map is given canonically by universal properties, using the
shorthand diagram:

TotˆCr //
Q
k ˆ

Cr //
// Q

k;`ˆ
Cr

ˆCr Tot

88

Q
k

W
V

OO

//
// Q

k;`

W
V

OO

W
V Tot

OO

//
W
V

Q
k

77

//
// W
V

Q
k;`

77

Q
k

W
V;W

OOOO

W
V;W Tot

OOOO

//
W
V;W

Q
k

77

OOOO

A diagram chase shows this is natural with respect to maps of cosimplicial spectra
Z�! zZ� .

Corollary 4.4 If X� is a cocyclic spectrum then ˆCr sdr X� is naturally a cocyclic
spectrum, and there is a natural S1–equivariant map

��rˆ
Cr Tot.X�/! Tot.ˆCr sdr X�/:

4.2 The cyclic bar construction

Let R be an orthogonal ring spectrum. The cyclic bar construction on R is the cyclic
spectrum N

cyc
� R with

N
cyc
n RDR^.nC1/ DR^n ^R:

We underline the last copy of R since in the simplicial structure it plays a special role.
The action of ƒ is best visualized by taking the category Œn� and labeling the arrows
with copies of R :

�

�

�

� �

R

RR

R

{{hh

QQ

;;
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Each map Œk� ! Œn� induces a map R^.nC1/ ! R^.kC1/ as follows. Each arrow
i! iC1 in Œk� is sent to some composition j!� � �! jC` in Œn�, which corresponds
to ` copies of R in R^.nC1/ . We send this smash product R^` to the copy of R in
slot i of R^.kC1/ , using the multiplication on R . When `D 0, we interpret this as
the unit map S!R .

More generally, if C is a category enriched in orthogonal spectra, the cyclic nerve on
C is defined as

N
cyc
n C D

W
c0;:::;cn2ob C C .c0; c1/^C .c1; c2/^ � � � ^C .cn�1; cn/^C .cn; c0/:

One may think of these objects loosely as “functors” from Œk� into C , where ordi-
nary products have been substituted by smash products, and this suggests the correct
face, degeneracy and cycle maps. In particular, as indicated below, the 0th face
map d0W N

cyc
n C ! N

cyc
n�1C switches the first term C .c0; c1/ past the others and

composes it into C .cn; c0/. The extra degeneracy map snC1W N
cyc
n C ! N

cyc
nC1C

inserts a unit S!C .c0; c0/ into the underlined factor in the smash product. The cycle
map tnW N

cyc
n C !N

cyc
n C rotates the factors towards the right:

d0W C .c0; c1/^C .c1; c2/^ � � � ^C .cn; c0/! C .c1; c2/^ � � � ^C .cn; c1/;

snC1W � � �^C .cn�1; cn/^C .cn; c0/^S!� � �^C .cn�1; cn/^C .cn; c0/^C .c0; c0/;

tnW C .c0; c1/^ � � � ^C .cn�1; cn/^C .cn; c0/

! C .cn; c0/^C .c0; c1/^ � � � ^C .cn�1; cn/:

If C has a single object, we recover the definition of N cycR we gave above.

Definition 4.5 The topological Hochschild homology of C is the geometric realization
of the cyclic nerve

THH.C / WD jN cyc
�

C j:

The cyclic bar construction of orthogonal spectra is remarkable because its geometric
fixed points are isomorphic to the original spectrum.

Theorem 4.6 If C is a spectral category then there are natural maps of S1–spectra,
for r � 0,


r W THH.C /! ��rˆ
Cr THH.C /:

They are compatible in the following sense: if T D THH.C / then the square

T

mn

//


m

��

��mnˆ
CmnT

it
��

��mˆ
CmT

��mˆ
Cm
n

// ��mˆ
Cm��nˆ

CnT
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strictly commutes. Furthermore, if every C .ci ; cj / is a cofibrant orthogonal spectrum,
then every 
r is an isomorphism.

Remark 4.7 This extends one of the main results of [2] from ring spectra to spectral
categories. This turns out to not be so difficult. However the treatment in [2] does not
prove the above compatibility square, which seems to be harder. Our rigidity theorem
allows us to check the compatibility easily.

Proof In essence, we need to understand the geometric fixed points of THH.C /. We
start with the isomorphism of S1–spectra from Proposition 4.1:

jˆCr sdr N cyc
�

C j Š�! ��rˆ
Cr jN cyc

�
C j:

It thus suffices to understand the geometric fixed points of the subdivision sdr N
cyc
� C .

This is an r –cyclic spectrum. At simplicial level n�1 it is a wedge of smash productsW
c0;:::;crn�12ob C C .c0; c1/^ � � � ^C .crn�1; c0/

and the Cr –action is by tnrn�1 , which rotates this rn–fold smash product by n slots.
In particular, the generator ˛ 2 Cr sends the summand A indexed by c0; : : : ; crn�1 to
the summand ˛.A/ indexed by

c.r�1/n; : : : ; crn�1; c0; : : : ; c.r�1/n�1

by a homeomorphism. The summands A and ˛.A/ coincide precisely when the list
c0; : : : ; crn�1 repeats with period n:

c0; c1; : : : ; cn�1; c0; c1; : : : ; cn�1; c0; c1; : : : ; cn�1:

If this is not the case, then the Cr –closure zA of A does not have any levelwise Cr –fixed
points: zA.V /Cr D �. This is because any fixed point would have in its Cr –orbit a
point x 2 A, but then x must be in the intersection A\˛.A/D �.

It is therefore a good idea to write Y D sdr N
cyc
n�1C as the wedge of two spectra X_X 0 ,

where X is the wedge of those summands A such that AD ˛.A/, and X 0 contains
the remaining summands. Since the levelwise fixed point functor .�/.V /Cr pre-
serves wedge sums, we immediately conclude that the inclusion X ! Y induces a
homeomorphism on each level X.V /Cr Š Y.V /Cr . Recalling the definition of ˆCr

(Definition 3.11), we conclude that the inclusion also induces an isomorphism on the
geometric fixed points ˆCrX ŠˆCrY .

In conclusion, the geometric fixed points of the subdivision can be rewritten as

ˆCr sdr N
cyc
n�1C Šˆ

Cr
�W
c0;:::;cn�1

.C .c0; c1/^ � � � ^C .cn�1; c0//
^r
�

Š
W
c0;:::;cn�1

ˆCr .C .c0; c1/^ � � � ^C .cn�1; c0//
^r :
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It remains to compare this last term to N cyc
n�1C using Hill–Hopkins–Ravenel norm

diagonal

C .c0; c1/^ � � � ^C .cn�1; c0/
�
�!ˆCr .C .c0; c1/^ � � � ^C .cn�1; c0//

^r :

We want to show that these diagonal maps for each n � 1 assemble into a map of
cyclic spectra

N cyc
�

C
�
�!ˆCr sdr N cyc

�
C

(see [2, Definition 4.6]). It easily commutes with most of the face and degeneracy maps
because the diagonal is natural. One runs into issues with d0 and trn�1 , but these are
fixed by the argument we used in Proposition 3.27. In brief, the r –fold smash .d0/^r

of d0 from the cyclic structure is not the same map as d0 in the r –cyclic structure,
but they differ by the map

f W .C .c0; c1/^ � � � ^C .cn�1; c0//
^r
! .C .c0; c1/^ � � � ^C .cn�1; c0//

^r

that takes the factors C .cn�1; c0/ and cycles them while leaving all the other terms
fixed. It suffices to show that f commutes with �, but we did that in Proposition 3.26.
A similar argument works for trn�1 .

This proves that the Hill–Hopkins–Ravenel diagonal gives a map of cyclic spectra. We
define 
r to be its geometric realization, combined with the S1–equivariant isomor-
phism of Proposition 4.1:

jN cyc
�

C j
j�r j
��!jˆCr sdr N cyc

�
C j Š�! ��rˆ

Cr jN cyc
�

C j:

When all the C .ci ; ciC1/ are cofibrant, 
r is a realization of isomorphisms at each
level, so 
r is an isomorphism.

Now we check compatibility. The compatibility square may be expanded and subdi-
vided:

jN
cyc
� C j

�mn
//

�m

��

ˆCmn jsdmnN
cyc
� C j

it
��

ˆCmnDmn

Š
// ˆCmn jN

cyc
� C j

it
��

ˆCm jsdmN
cyc
� C j

ˆCmDmŠ

��

ˆCmˆCn jsdmnN
cyc
� C j

ˆCmˆCnDmŠ

��

ˆCmˆCnDmn

Š
// ˆCmˆCn jN

cyc
� C j

ˆCm jN
cyc
� C j

ˆCm�n
// ˆCmˆCn jsdnN

cyc
� C j

ˆCmˆCnDn

Š
// ˆCmˆCn jN

cyc
� C j

The top-right square commutes by naturality of the iterated fixed points map, and the
bottom-right commutes by Proposition 2.17. The left-hand rectangle is subtle, so we
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expand and subdivide it once more:

jN
cyc
� C j

�mn
//

�m

��

ˆCmn jsdm sdnN
cyc
� C j

it
��

ˆCm jsdmN
cyc
� C j

ˆCmDmŠ

��

ˆCm sdm�n
// ˆCm jsdmˆCn sdnN

cyc
� C j

ˆCmDmŠ

��

int

Š

// ˆCmˆCn jsdm sdnN
cyc
� C j

ˆCmˆCnDmŠ

��

ˆCm jN
cyc
� C j

ˆCm�n
// ˆCmˆCn jsdnN

cyc
� C j ˆCmˆCn jsdnN

cyc
� C j

The bottom-left square inside commutes by naturality of Dm . The interchange map “int”
is the obvious identification of the two cyclic spectra, which at simplicial level k� 1
are both given by ˆCmˆCnN

cyc
mnk�1

C . The lower-right square then easily commutes,
and the remaining rectangle commutes by Proposition 3.29.

In order to do homotopy theory, we need to know which maps C ! D are sent to
weak equivalences THH.C /! THH.D/, and we need conditions guaranteeing that
THH.C / will be cofibrant. By our work above, this reduces to a calculation of the
latching maps and cyclic latching maps. Let S denote the initial spectrally enriched
category on the objects of C :

S .ci ; cj /D

�
S; ci D cj ;

�; ci ¤ cj :

The latching maps of the cyclic bar construction can be described concisely in terms of
the canonical functor S ! C .

Proposition 4.8 For every n� 0 the latching map LnN cycC !N
cyc
n C is the wedge

of pushout-productsW
c0;:::;cn2ob C .S .c0; c1/! C .c0; c1//� � � �� .S .cn�1; cn/! C .cn�1; cn//

� .�! C .cn; c0//

and the cyclic latching map Lcyc
n N

cyc
� C !N

cyc
n C is the wedge of pushout-productsW

c0;:::;cn2ob C .S .c0; c1/! C .c0; c1//� � � �� .S .cn; c0/! C .cn; c0//:

Proof One proves by induction that the pushout-product of nC 1 different maps
f0W A0!X0 , : : : , fnW An!Xn comes from a cube-shaped diagram indexed by the
subsets S � f0; : : : ; ng and inclusions. Each S is assigned to the smash product of
those Ai for i 62 S and Xi for i 2 S . The pushout-product f0� � � �� fn is then the
map that includes into the final vertex the colimit of the remaining vertices.
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Therefore it suffices to identify the cube for the pushout-product with the cube from
Proposition 2.7 for the nth cyclic latching object Lcyc

n . Each cube sends S �f0; : : : ; ng
to a smash product in which the smash summand for .ci�1; ci / is C .ci�1; ci / if i 2 S
and S .ci�1; ci / if i 62S . In the pushout-product cube, the map induced by the inclusion
S � T is a smash product of S .ci�1; ci /! C .ci�1; ci / for each i 2 T �S , together
with the identity map on S .ci�1; ci / for i 62 T and C .ci�1; ci / for i 2 S . But this
is the same as the map in the cyclic latching cube, because the rounding down map
T ! S preserves every arrow which ends in S and squashes the rest, so in the cyclic
structure this induces a map that includes the unit for every arrow not ending in S and
preserves the rest. Therefore the two cubes coincide. Restricting attention to subsets S
containing 0 gives the cube for the simplicial latching object, giving a pushout-product
in which the last factor is always C .cn; c0/.

Remark 4.9 We have claimed that the 0th cyclic latching map is the wedge of unit
maps �W S .c; c/! C .c; c/. In general, this is not quite correct — it is actually the
wedge of inclusions of the images of these unit maps. However the inclusion of the
image of � is still a pushout of �, so it does not matter which one we use in the latching
square from Proposition 2.8.

The previous proposition suggests that we need a very weak cofibrancy assumption
on C to guarantee that THH.C / is well behaved.

Definition 4.10 C is cofibrant if every map S .ci ; cj /!C .ci ; cj / is a cofibration of
orthogonal spectra. Equivalently, every C .ci ; cj / is a cofibrant orthogonal spectrum.

Proposition 4.11 If C is cofibrant then jN cyc
� C j is a cofibrant S1–spectrum. More-

over the inclusion of each cyclic skeleton into the next is a cofibration of S1–spectra.

Proof By Proposition 4.2, it suffices to show that the cyclic latching map from
Proposition 4.8W

c0;:::;cn�12ob C .S .c0; c1/! C .c0; c1//� � � �� .S .cn�1; c0/! C .cn�1; c0//

is a Cn–cofibration of spectra. We restrict to one wedge summand at a time and consider
its Cn–orbit. If there is no periodicity in the objects c0; : : : ; cn�1 then the orbit is of
the form .Cn/C smashed with a pushout-product of cofibrations, so it is automatically
a Cn–cofibration. When there is r –fold periodicity, the problem instead reduces to
showing that an r –fold pushout-product of a single cofibration f of orthogonal spectra
becomes a Cr –cofibration f �r . Since � preserves retracts, it suffices to show that if
f is a cell complex of orthogonal spectra then f �r is a cell complex of orthogonal
Cr –spectra.
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In fact, it is a cell complex of orthogonal †r –spectra. The argument for this is
tedious but very formal. It holds because the categories of orthogonal G–spectra with
varying G satisfy the following assumptions: the domains of our G–cells are small
with respect to relative cell complexes; ^ commutes with colimits in each variable;
a pushout-product of an H –cell with a K–cell is a coproduct of H �K–cells; the
operation G^H� takes H –cells to G–cells; restriction of group actions takes G–cells
to H –cell complexes; and the n–fold pushout-product of a single cell is a †n–cell
complex. This last assumption can be observed for orthogonal spectra by combining
the space-level argument (eg [25, 3.4]) with the fact that an n–fold smash power of a
free spectrum FRmA is isomorphic to F˚nRmA^n as a †n–spectrum.

Proposition 4.12 If C and D are cofibrant, and C !D is a pointwise weak equiva-
lence which is the identity on objects, then it induces an F –equivalence of S1–spectra
jN

cyc
� C j ! jN

cyc
� Dj (see Definition 3.8).

Proof It is easy to check that N cyc
� C !N

cyc
� D is a levelwise stable equivalence. By

Proposition 4.8, both simplicial spectra are Reedy cofibrant, so the map of realizations is
an equivalence of nonequivariant spectra. By Proposition 4.11, both of these realizations
are cofibrant S1–spectra, and by Theorem 4.6 each one is naturally equivalent its own
geometric fixed points. It follows that the map of left-derived geometric fixed points

ˆCn jN cyc
�

C j !ˆCn jN cyc
�

Dj

is an equivalence for all n� 1. By Proposition 3.14, the map jN cyc
� C j ! jN

cyc
� Dj is

therefore an F –equivalence.

5 Tensors and duals of cyclotomic spectra

In this final section, we discuss how to tensor and dualize cyclotomic structures, and
use this to prove Theorem 1.1.

5.1 A general framework for dualizing cyclotomic structures

Recall that a cyclotomic spectrum is an orthogonal S1–spectrum T with compatible
maps of S1–spectra, for all n� 1,

cnW �
�
nˆ

CnT ! T

for which the composite map

(6) ��nˆ
Cn.cT /! ��nˆ

CnT ! T
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is an F –equivalence of S1–spectra (Definition 3.8). Here c refers to cofibrant replace-
ment in the stable model structure on orthogonal S1–spectra; see Proposition 3.6. To
be more specific about the compatibility, we require that for all m; n� 1 the square

��mnˆ
CmnX

cmn
//

it
��

X

��mˆ
Cm��nˆ

CnX
��mˆ

Cmcn
// ��mˆ

CmX

cm

OO

commutes. The left vertical is the canonical iterated fixed points map described in [8,
Proposition 2.4], and it is an isomorphism when X is cofibrant as an S1–spectrum.

A precyclotomic spectrum has all the same structure except that the map (6) need not
be an equivalence. An op-precyclotomic spectrum has the above structure, but every
map has the opposite direction, except for the iterated fixed points map.

In contrast to this, we give a more restrictive definition:

Definition 5.1 A tight cyclotomic spectrum is a cofibrant S1–spectrum with isomor-
phisms 
nW T

Š
�! ��nˆ

CnT of S1–spectra for all n� 0 compatible in the following
way:

T

mn

Š
//


mŠ

��

��mnˆ
CmnT

itŠ

��

��mˆ
CmT

��mˆ
Cm
n

Š
// ��mˆ

Cm��nˆ
CnT

Here “cofibrant” means in the stable model structure of Proposition 3.6. This implies
that the geometric fixed points compute the left-derived geometric fixed points, ie the
first map of (6) is always an equivalence. So a tight cyclotomic spectrum may be
regarded as a cyclotomic spectrum by taking cn D 
�1n and forgetting that it is an
isomorphism. We can summarize most of the previous section in a single theorem:

Theorem 5.2 If R is an orthogonal ring spectrum which is cofibrant as an orthogonal
spectrum, then THH.R/ is a tight cyclotomic spectrum. If C is a cofibrant spectral
category, then THH.C / is a tight cyclotomic spectrum.

The point of these definitions is to dualize cyclotomic structures. Our first result is:

Proposition 5.3 If T is a tight cyclotomic spectrum and T 0 is precyclotomic then the
function spectrum F.T; T 0/ has a natural precyclotomic structure.
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Corollary 5.4 If T is a tight cyclotomic spectrum then the functional dual DT D
F.T;S/ is precyclotomic.

Proof We define the structure map cr as the composite

��rˆ
CrF.T; T 0/

x̨
�!F.��rˆ

CrT; ��rˆ
CrT 0/

F.
r ;cr /
����!F.T; T 0/;

where x̨ is the “restriction” map adjoint to

��rˆ
CrF.T; T 0/^ ��rˆ

CrT
˛
�! ��rˆ

Cr .F.T; T 0/^T /! ��rˆ
CrT 0

and ˛ is the usual commutation of ˆCr with smash products. By the usual rules for
equivariant adjunctions, cr is automatically S1–equivariant. We verify that these maps
are compatible. Clearly they are natural in T and T 0 , so in the diagram

��mnˆ
CmnF.T; T 0/

x̨
//

it

��

F
� ��mnˆCmnT;

��mnˆ
CmnT 0

�
F.id;it/

// F
���mnˆCmnT;

��mˆ
Cm��nˆ

CnT 0

�
OO

ŠF.it;id/

��mˆ
Cm��nˆ

CnF.T; T 0/
ˆCm x̨

// ��mˆ
CmF

� ��nˆCnT;

��nˆ
CnT 0

�
x̨
//

F.ˆCm
n;ˆ
Cmcn/

��

F
� ��mˆCm��nˆ

CnT;

��mˆ
Cm��nˆ

CnT 0

�
F.ˆCm
n;ˆ

Cmcn/

��

��mˆ
CmF.T; T 0/

x̨
// F.��mˆ

CmT; ��mˆ
CmT 0/

F.
m;cm/

��

F.T; T 0/

the small square automatically commutes. The left-most and right-most paths compose
to give the two maps we are trying to compare. So, we just need to show that the big
rectangle at the top commutes. It is adjoint to:

��mnˆ
CmnF.T; T 0/

^��mnˆ
CmnT

it^it
��

˛
// ��mnˆ

Cmn.F.T; T 0/^T / //

it

��

��mnˆ
CmnT 0

it

��
��mˆ

Cm��nˆ
CnF.T; T 0/

^��mˆ
Cm��nˆ

CnT
˛ı˛

// ��mˆ
Cm��nˆ

Cn.F.T; T 0/^T / // ��mˆ
Cm��nˆ

CnT 0

The right square is by naturality of the iterated fixed points map, and the left square is
by Proposition 3.24.
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We have chosen to state these results for tight cyclotomic spectra, because then every
object we work with has precyclotomic structure, as opposed to a mix of objects with
precyclotomic and op-precyclotomic structure. If we freely allow ourselves to use
both structures then the we get the following more general conclusion. It tells us that
we have something close to, but not quite, a closed symmetric monoidal category of
spectra with these structures.

Proposition 5.5 If X and Y are op-precyclotomic spectra and Z is a precyclotomic
spectrum then X^Y is op-precyclotomic, F.Y;Z/ is precyclotomic and the adjunction

F.X ^Y;Z/Š F.X; F.Y;Z//

respects the precyclotomic structure.

Proof The above proof generalizes to show that F.Y;Z/ is precyclotomic, since we
only used the maps 
n for Y and cn for Z . For X ^Y we define the op-cyclotomic
structure by

X ^Y

n^
n
����!ˆCnX ^ˆCnY

˛
�!ˆCn.X ^Y /;

where the ��n are suppressed. By an easy diagram chase, the compatibility reduces
again to Proposition 3.24. When we check that the adjunction preserves the cyclotomic
structures, we reduce to the claim that the interchange map ˛ has an associativity
property. This can be proven from the definitions with a little bit of work, but it also
follows effortlessly from the rigidity theorem.

This analysis does not quite apply to the categories of precyclotomic or cyclotomic
spectra, because we get zigzags when we try to define a cyclotomic structure on their
tensor product. However this problem goes away if we restrict attention to cofibrant
objects, so we can draw a conclusion about the homotopy category:

Proposition 5.6 The homotopy categories of precyclotomic spectra and of cyclotomic
spectra from [8] have a tensor triangulated structure.

Proof For simplicity we suppress ��n . If X and Y are cofibrant (pre)cyclotomic
spectra, we make X ^Y into a (pre)cyclotomic spectrum using the structure maps

ˆCn.X ^Y / oo
˛

Š
ˆCnX ^ˆCnY

cn^cn
// X ^Y:

The relevant compatibility square is:
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ˆCmn.X^Y /

it

��

oo
˛

Š
ˆCmnX^ˆCmnY

cmn^cmn
//

it^it
��

X^Y

ˆCmˆCnX^ˆCmˆCnY
ˆCmcn^ˆ

Cmcn
//

˛

��

ˆCmX^ˆCmY

cm^cm

OO

ˆCmˆCn.X^Y / oo
ˆCm˛

Š
ˆCm.ˆCnX^ˆCnY /

ˆCm .cn^cn/
// ˆCm.X^Y /

��

˛ Š

Again Proposition 3.24 gives us the left-hand rectangle, the top-right square is the smash
product of the compatibility squares for X and Y , and the bottom-right commutes by
naturality of ˛ . It is straightforward to check that this smash product preserves colimits
and cofibers of (pre)cyclotomic spectra, so this gives the desired tensor triangulated
structure on the homotopy category.

Remark 5.7 The analogue of this theorem for p–precyclotomic spectra and p–
cyclotomic spectra is also true, and it is much easier.

Returning to the precyclotomic structure on F.T; T 0/, our main example of interest
will be when T D jN cycC j is the cyclic nerve of a ring or category. We have just
proven that F.jN cycC j; T 0/ is a precyclotomic spectrum. It is also the totalization of
the cocyclic S1–spectrum

Y k D F.N
cyc
k

C ; T 0/:

To be precise, the S1 is acting only on the T 0 , and ƒ is acting by the dual of the ƒop

action on N cyc
k

C . This puts two commuting S1–actions on the totalization, but we
restrict attention to the diagonal S1–action, because this is the action that agrees with
the precyclotomic structure we just defined.

In order to compare this to the cocyclic spectrum †1
C
X�C1 , we will need to describe

our cyclotomic structure maps using only the cocyclic structure on F.jN cycC j; T 0/:

Proposition 5.8 The cyclotomic structure map on Tot.Y �/ŠF.jN cycC j; T 0/ is equal
to the composite of S1–equivariant maps

��rˆ
Cr Tot.F.N cyc

�
C ; T 0//

Dr
�! ��rˆ

Cr Tot.F.sdr N cyc
�

C ; T 0//

! ��r Tot.ˆCrF.sdr N cyc
�

C ; T 0//
x̨
�! ��r Tot.F.PrˆCr sdr N cyc

�
C ; ˆCrT 0//

Š
�!Tot.F.ˆCr sdr N cyc

�
C ; ��rˆ

CrT 0//
F.�;cr /
����!Tot.F.N cyc

�
C ; T 0//;

where the undecorated map is the interchange of Proposition 4.3.
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Proof We compare to the structure map we defined above:

��rˆ
CrF.jN

cyc
� C j; T 0/

Š
//

x̨

��

Dr

Š

((

��rˆ
Cr Tot.F.N cyc

� C ; T 0//

Dr

��

F
���rˆCr jN

cyc
� C j;

��rˆ
CrT 0

�
Dr

Š
''

��rˆ
CrF.jsdr N

cyc
� C j; T 0/

x̨

��

Š
// ��rˆ

Cr Tot.F.sdr N
cyc
� C ; T 0//

��

F
� ��rˆCr jsdr N

cyc
� C j;

��rˆ
CrT 0

�
Š

��

��r Tot.ˆCrF.sdr N
cyc
� C ; T 0//

x̨

��

F
���r jPrˆCr sdr N

cyc
� C j;

��rˆ
CrT 0

�
Š

��

Š
// ��r Tot

�
F
�PrˆCr sdr N

cyc
� C ;

ˆCrT 0

��
Š

��

F
�
jˆCr sdr N

cyc
� C j;

��rˆ
CrT 0

�
F.�;cr /

��

Š
// Tot

�
F
�ˆCr sdr N

cyc
� C ;

��rˆ
CrT 0

��
F.�;cr /

��

F.jN
cyc
� C j; T 0/

Š
// Tot.F.N cyc

� C ; ˆCrT 0//

Most of these squares commute easily. The nontrivial one in the middle can be simplified
to the following: if X� is a simplicial Cr –spectrum and T is a Cr –spectrum then the
middle rectangle of

FW Cr S
0 ^MapCr

� .jX�j; shW T /

��

ˆCrF.jX�j; T /
Š

//

x̨
��

ˆCr Tot.F.X�; T //

��

F.ˆCr jX�j; ˆ
CrT /

Š
��

Tot.ˆCrF.X�; T //

x̨
��

F.jˆCrX�j; ˆ
CrT /

Š
// Tot.F.ˆCrX�; ˆ

CrT //

��

F.FV Cr S
0 ^�k

C
^Xk.V /

Cr ; ˆCrT /
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commutes. Here shWT is shorthand for the mapping spectrum F.FW S
0; T /, which

is used in the standard formula for level W of a mapping spectrum

F.jX�j; T /.W /Š F.jX�j; shW T /.0/ŠMap�.jX�j; shW T /:

Now, it suffices to show that the composites from the top to the bottom of our rectangle
are identical for any Cr –representations V and W and any integer k � 0. For the
left-hand branch it is easy to check this is adjoint to the composite:

FV Cr S
0 ^�k

C
^Xk.V /

Cr ^FW Cr S
0 ^MapCr

� .jX�j; shW T /

include intoˆCr

��

ˆCr .�k
C
^Xk/^ˆ

CrF.jX�j; T /

include into jX�j
��

ˆCr jX�j ^ˆ
CrF.jX�j; T /

˛
��

ˆCr .jX�j ^F.jX�j; T //

ˆCr .ev/
��

ˆCrT

A careful trace through the diagram in Proposition 4.3 shows that the right-hand branch
is the composite

FW Cr S
0
^MapCr

� .jX�j; shW T / restrict
����!FW Cr S

0
^MapCr

� .�
k
C ^Xk; shW T /

assembly
����!F.�kC; FW Cr S

0
^MapCr

� .Xk; shW T // include
����!F.�kC; ˆ

CrF.Xk; T //

x̨
�!F.�kC; F .ˆ

CrXk; ˆ
CrT //

include
����!F.�kC; F .FV Cr S

0
^Xk.V /

Cr ; ˆCrT //:

The adjoint of this map does indeed agree with the first, by a very long diagram
chase. The essential ingredients are functoriality of ˆCr, naturality of ˛ and ev, and
associativity of ˛ .

Now we know that F.T; T 0/ has a precyclotomic structure. This won’t be very useful
unless we can make cofibrant and fibrant replacements of T and T 0, respectively, while
preserving that structure. For this task, we use the model structure on cyclotomic and
precyclotomic spectra defined in [8]. It has following attractive property:

Lemma 5.9 If T is cofibrant or fibrant in the model* category on (pre)cyclotomic
spectra, then it is also cofibrant or fibrant, respectively, as an orthogonal S1–spectrum
in the F –model structure.
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Proof The fibrant part is true by definition. For the cofibrant part it suffices to check
that the monad

CX D
W
n�1�

�
nˆ

CnX

preserves cofibrant objects in the F –model structure. This is true because wedge sums,
geometric fixed points and change of groups all preserve cofibrations.

In light of this fact, we can replace T 0 with a fibrant cyclotomic spectrum f T 0 , resulting
in the precyclotomic spectrum F.T; f T 0/, whose underlying S1–spectrum has the
homotopy type of the derived mapping spectrum from T to T 0 (ie the first input is
cofibrant and the second input is fibrant). Specializing to T 0D S gives a precyclotomic
structure on the dual F.T; f S/.

Remark 5.10 If T is finite as a genuine S1 spectrum, then F.T; f S/ is actually
cyclotomic, not just precyclotomic. In general, however, this is not true. One can check
that T D†1

C
RP1 gives a counterexample. In the next section we will consider an

example where T is infinite, but F.T; f S/ is still cyclotomic, mainly for reasons of
connectivity.

5.2 The equivariant duality between THH.DX/ and †1
C

LX

Let X be a finite based CW complex and let DX D F.XC;S/ denote its Spanier–
Whitehead dual. Though S is not fibrant, X is compact, so DX has the correct
homotopy type. It is also finite, of course, but it is no longer compact, and this slightly
complicates our proof below.

DX is a commutative ring with multiplication given by the dual of the diagonal map
of X . Likewise, the spectrum zDX D F.X;S/ has a commutative multiplication given
by the dual of the smash diagonal X ! X ^X . It does not have a unit, but we can
make S_ zDX into a ring spectrum by having S act as the unit. The levelwise fiber
sequence of spectra

F.X;S/! F.XC;S/! S

preserves the multiplications, and this allows us to form an equivalence of ring spectra

S_ zDX �!� DX:

Let c zDX denote cofibrant replacement of DX as a unitless ring, so that

cDX WD S_ c zDX ! S_ zDX
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is a particularly nice cofibrant replacement of ring spectra. We’ll take as our example
of a tight cyclotomic spectrum

T D THH.cDX/:

We recall that this cofibrant replacement ensures that THH.cD.�// is homotopy
invariant (Proposition 4.12). Our starting point is the following consequence of
Proposition 2.22. In its statement, we assume implicitly that cofibrant replacements are
taken before each application of D or THH.

Theorem 5.11 [20; 13] When X is a finite simply connected CW complex, there is
an equivalence of spectra with an S1–action

D.THH.DX//' THH.†1C�X/'†
1
CLX

in which LX DMap.S1; X/ is the free loop space.

Remark 5.12 If M is a manifold then DM 'M�TM is a Thom spectrum. But the
analysis of [7] does not apply, because the multiplication on M�TM does not arise
from the normal bundle M ! BO being a loop map.

We will spend the rest of this section proving a more highly structured version of that
result:

Theorem 5.13 Let f S be a fibrant replacement of S as a cyclotomic spectrum. Then
for every unbased space X there is a natural map of precyclotomic spectra

†1CLX ! F.THH.cDX/; f S/:

The left-hand side is always cyclotomic. When X is a finite simply connected CW
complex, the right-hand side is cyclotomic and the map is an F –equivalence.

Corollary 5.14 When X is a finite simply connected CW complex, the equivalence
between THH.†1

C
�X/ and the functional dual of THH.DX/ is an equivalence of

cyclotomic spectra.

Proof We will describe explicitly the map of Theorem 5.11 and check that it respects
the precyclotomic structures. Then we will use connectivity arguments to argue that
these precyclotomic spectra are actually cyclotomic when X is finite.

As above, let Y � denote the cocyclic S1–spectrum

Y k D F.N
cyc
k
cDX; f S/D F..cDX/^.kC1/; f S/:
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The totalization of Y � is isomorphic to F.jN cyccDX j; f S/, and Proposition 5.8 gives
us a recipe for the precyclotomic structure. Furthermore, Y � is the dual of a Reedy
cofibrant simplicial spectrum, and is therefore Reedy fibrant.

We will construct a map †1
C
LX!Tot.Y �/ by going through an intermediary Tot.Z�/.

Let Z� be the cocyclic spectrum †1
C

Map.S1
�
; X/, so that

Zk D†1C Map.ƒ.Œk�; Œ0�/; X/Š†1CX
kC1

with ƒ action given by applying †1
C

to the usual ƒop action on the ƒ.�; Œ0�/ term.
The interchange of Proposition 2.22 gives a map of spectra

†1CLX ! Tot.Z�/:

Next we construct a map of cocyclic spectra Z�! Y � . The evaluation map composed
with the product in S and fibrant replacement

.†1CX/
^.kC1/

^c.DX/^.kC1/!.†1CX/
^.kC1/

^.DX/^.kC1/!.S/^.kC1/!S!f S

is adjoint to a map

Zk D†1CX
kC1
! F..cDX/^.kC1/; f S/D Y k :

Of course, this map is actually an equivalence when X is finite. The map clearly
commutes with the S1–action on each level coming from f S . We check that it
commutes with the cocyclic structure: for each 
 2ƒ.Œk�; Œ`�/ we have the square

Map.ƒŒ0�k; X/ŠXkC1 //




��

F..cDX/^kC1; f S/




��

Map.ƒŒ0�`; X/ŠX`C1 // F..cDX/^`C1; f S/

which commutes if this one commutes:

XkC1 ^ .cDX/`C1

^id

//

id^

��

X`C1 ^ .cDX/`C1

��

XkC1 ^ .cDX/kC1 // S

Both branches have the same description: 
 gives a map from a necklace with kC 1
beads and every segment labeled by X to a necklace with `C 1 beads and every
segment labeled by DX . Each copy of X is sent by 
 to a string of a copies of DX ;
we apply the diagonal to XC

�
�!

�Qa
X
�
C

and pair with those a copies of DX .
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Therefore we have a map of cocyclic S1–spectra Z�! Y � , with S1 acting trivially on
each cosimplicial level of Z� . Composing with the interchange map of Proposition 2.22
gives an S1–equivariant map

(7) †1CLX ! Tot.Z�/! Tot.Y �/:

When X is finite, this is the equivalence of Theorem 5.11. In fact, when X is finite
the map Z�! Y � is an equivalence on each cosimplicial level, and we may therefore
consider Y � to be a Reedy fibrant replacement of Z� , so (7) is also a model for the
derived interchange map of Proposition 2.22.

Our next task is to check that the map (7) respects the precyclotomic structures on the
two ends. The recipe in Proposition 5.8 actually defines a precyclotomic structure on
Tot.Z�/ as well, so our problem breaks up into two steps:

(8)

ˆCr†1
C
LX

Š

��

Š
// ��rˆ

Cr Tot.Z�/ //

DrŠ
��

��rˆ
Cr Tot.Y �/

DrŠ
��

��rˆ
Cr Tot.sdr Z�/ //

��

��rˆ
Cr Tot.sdr Y �/

��

��r Tot.ˆCr sdr Z�/ //

OO

�Š

��r Tot.ˆCr sdr Y �/

F.�;cr /ıx̨
��

†1
C
LX

Š
// Tot.Z�/ // Tot.Y �/

We start with the left-hand rectangle of (8), where everything is a suspension spectrum
and so all maps are completely determined by what they do at spectrum level 0. The
horizontal homeomorphisms may be computed by observing that ƒŒ0�k Dƒ.Œk�; Œ0�/

has kC1 points f0; : : : ; fk , where fi W Z!Z sends 0 through i�1 to 0 and i through
k to 1 (or if i D 0 it sends 0 through k to 0). Using our choice of homeomorphism
jƒŒ0�j Š R=Z from Section 2, the k–simplex given by fi maps down to the circle
R=Z by the formula

.t0; : : : ; tk/ 7! .ti C � � �C tk/� .1� .t0C � � �C ti�1//:

Negating the circle and reparametrizing �k � Rk as points .x1; : : : ; xk/ for which
0� x1 � x2 � � � � � xk � 1 according to the rule xi D t0C� � �C ti�1 , we arrive at the
simple rule

.fi ; x1; : : : ; xk/ 7! xi ; x0 WD 0:

So now the map LX ! Tot.X�C1/ can be expressed by the formula

�k�1 �LX !Xk; .r1; : : : ; rk�1; 
/ 7! .
.0/; 
.r1/; : : : ; 
.rk�1//;
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as in [14]. Under this change of coordinates, both branches give


.�/!.r1; : : : ; rk�1/ 7!
�

.0/;


�
1

r
r1

�
;

�
1

r
r2

�
; : : : ;


�
1

r
rk�1

�
;
.0/;


�
1

r
r1

�
; : : :

�
and so the square commutes.

Returning to (8), the top and middle squares of the right-hand row automatically
commute by the naturality of the cosimplicial diagonal and the interchange map with
geometric fixed points. The final square is then:

Tot.ˆCr sdr Z�/ //

OO

�Š

��r Tot.ˆCr sdr Y �/

F.�;cr /ıx̨
��

Tot.Z�/ // Tot.Y �/

The map � is the cocyclic map

ˆCr†1CX
rk Š
 �†1CX

k

given by the Hill–Hopkins–Ravenel diagonal; this is almost tautologically cosimplicial.
The map F.�; cr/ı x̨ is also cocyclic, so to check that this square commutes it suffices
to check level k� 1. This boils down to this rectangle:

ˆCr†1
C
Xrk ^ˆCr .cDX/^rk

˛
// ˆCr .†1

C
Xrk ^ .cDX/^rk/ // ˆCr S

Š

��

†1
C
Xk ^ .cDX/^k

�^�

OO

�

33

// S

The top triangle commutes because the norm diagonal commutes with smash products.
The trapezoid commutes because the inverse of the right-hand isomorphism is the norm
diagonal on S (in fact there is only one isomorphism S! S), and the norm diagonal
is natural. This finishes the proof that †1

C
LX ! Tot.Y �/ is a map of precyclotomic

spectra.

For the second phase of the proof, we assume that X is finite and 1–connected, and
we check that Tot.Y �/ is actually cyclotomic; in other words, the map

ˆCr Tot.Y �/! Tot.Y �/

is nonequivariantly an equivalence when ˆCr is left-derived. For simplicity, we
may forget the S1–actions and remember only the cosimplicial Cr –action on sdr Y � ,
making it a cosimplicial Cr –spectrum. Then our structure maps respect the restriction
to the k–skeleton for each k � 0:
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(9)

ˆCr cF.jsdr N
cyc
� cDX j; f S/

x̨
��

// ˆCr cF.jSkk sdr N
cyc
� cDX j; f S/

x̨
��

F.ˆCr jsdr N
cyc
� cDX j; ˆCrf S/

F.�;cr /
��

// F.ˆCr jSkk sdr N
cyc
� cDX j; ˆCrf S/

F.�;cr /
��

F.jN
cyc
� cDX j; f S/ // F.jSkkN

cyc
� cDX j; f S/

We first argue that the right vertical composite is an equivalence for each value of k .
The skeleta jSkkN

cyc
� cDX j and jSkk sdr N

cyc
� cDX j all have the homotopy type of

a finite spectrum, so by [22, III.1.9] the interchange map x̨ is an equivalence. Of
course, the diagonal isomorphism � from the proof of Theorem 4.6 is an isomorphism
of simplicial objects, so it also gives an isomorphism of skeleta. This is enough to
conclude that the map F.�; cr/ on the right-hand column is an equivalence.

Thus we get two equivalent towers of spectra underneath ˆCr cF.jsdr N
cyc
� cDX j; f S/

and F.jN cyc
� cDX j; f S/, giving an equivalence of homotopy inverse limits:

ˆCr cF.jsdr N
cyc
� cDX j; f S/

��

// holimk ˆCr cF.jSkk sdr N
cyc
� cDX j; f S/

�
��

F.jN
cyc
� cDX j; f S/

�
// holimk F.jSkkN

cyc
� cDX j; f S/

To finish proving that the left vertical map is an equivalence, it remains to show that
on the top, the derived geometric fixed points ˆCr .c�/ commute with the homotopy
inverse limit. This will require us to look more closely at the homotopy fibers of the
maps in the homotopy limit system.

Although sdr N
cyc
� cDX and N cyc

� cDX^r are not isomorphic as simplicial objects,
they have the same degeneracy maps and therefore have isomorphic latching maps.
The cofiber of this latching map

.S! .cDX/^r/�k� .�! .cDX/^r/

is the smash product of k copies of the Cr –equivariant cofiber of S! .cDX/^r and
one copy of .cDX/^r . The Cr –equivariant dual of this is a smash product of k copies
of †1Xr and one copy of †1

C
Xr .

To evaluate the homotopy fiber of the map of our homotopy limit system

F.jSkk sdr N cyc
�
cDX j; f S/! F.jSkk�1 sdr N cyc

�
cDX j; f S/;

we observe that it is the dual of the cofiber of the inclusion of skeleta. By the usual
latching square, this cofiber is the k–fold suspension of the cofiber of the latching map.
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Therefore our desired homotopy fiber is equivalent as a Cr –spectrum to

�k†1.Xr/^k ^XrC:

Since X is 1–connected, we can arrange so that its lowest nonbasepoint cell is in
dimension 2. This leads to a Cr –equivariant cell structure on Xr in which the lowest
nonbasepoint cell is in the diagonal, and is also dimension 2, so .Xr/^k ^Xr

C
has

lowest nonbasepoint cell in dimension 2k . By induction on these cells, the genuine
fixed points

.f �k†1.Xr/^k ^XrC/
H

are at least .k�1/–connected, for each subgroup H � Cr . Since genuine fixed points
commute with homotopy limits, we conclude that the fiber of the map from the homotopy
limit to the kth term in the homotopy limit system

F.jsdr N cyc
�
cDX j; f S/! F.jSkk sdr N cyc

�
cDX j; f S/

has k–connected genuine fixed points for all H � Cr .

The derived geometric fixed points of this fiber are also k–connected. To see this, we
use an equivalent definition for the derived geometric fixed points of E , as the genuine
fixed points of zEP ^E for a certain complex zEP [17, B.10.1]. Our claim then follows
by induction on the cells of zEP , using the identifications

.f .†nG=HC ^E//
G
'†nF.G=HC; fE/

G
'†n.fE/H :

In fact, this proves that for any finite G , a G–spectrum E with k–connected genuine
fixed points .fE/H for all H �G will also have k–connected geometric fixed points
ˆH cE for all H �G .

Finally, since derived geometric fixed points commute with fiber sequences, we conclude
that the map of derived geometric fixed points

ˆCr cF.jsdr N cyc
�
cDX j; f S/!ˆCr cF.jSkk sdr N cyc

�
cDX j; f S/

is .kC1/–connected. Therefore the map to the homotopy limit is an equivalence:

ˆCr cF.jsdr N cyc
�
cDX j; f S/ �!� holimk ˆ

Cr cF.jSkk sdr N cyc
�
cDX j; f S/:

This finishes the proof that Tot.Y �/D F.jN cyc
� cDX j; f S/ is cyclotomic.

In conclusion, our map †1
C
LX ! Tot.Y �/ is a map of cyclotomic spectra. We

already know that it is a stable equivalence if we ignore the circle action. But any such
equivalence of cyclotomic spectra is automatically an F –equivalence of S1 spectra,
so we are done.

Algebraic & Geometric Topology, Volume 17 (2017)



Cyclotomic structure in the topological Hochschild homology of DX 2355

Remark 5.15 One may similarly check that this duality preserves multiplications and
Adams operations. As a result, when n � 1, the homology of THH.DS2nC1/ is a
tensor of a divided power algebra and an exterior algebra

H�.THH.DS2nC1//ŠH��.LS2nC1/Š �Œ˛�˝ƒŒˇ�;

where j˛j D �2n and jˇj D �.2nC 1/. The Adams operations  n are given by

 n.˛iˇ
j /D ni˛iˇ

j :
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