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Spectral sequences in smooth generalized cohomology

DANIEL GRADY

HISHAM SATI

We consider spectral sequences in smooth generalized cohomology theories, includ-
ing differential generalized cohomology theories. The main differential spectral
sequences will be of the Atiyah–Hirzebruch (AHSS) type, where we provide a
filtration by the Čech resolution of smooth manifolds. This allows for systematic
study of torsion in differential cohomology. We apply this in detail to smooth Deligne
cohomology, differential topological complex K-theory and to a smooth extension
of integral Morava K-theory that we introduce. In each case, we explicitly identify
the differentials in the corresponding spectral sequences, which exhibit an interesting
and systematic interplay between (refinements of) classical cohomology operations,
operations involving differential forms and operations on cohomology with U.1/
coefficients.

55N15, 55T10, 55T25; 53C05, 55S05, 55S35

1 Introduction

Spectral sequences are very useful algebraic tools that often allow for efficient compu-
tations that would otherwise require brute force; see McCleary [54] for a broad survey.
The Atiyah–Hirzebruch spectral sequence (henceforth AHSS) for K-theory and any
generalized cohomology theory, in the topological sense, was introduced by Atiyah and
Hirzebruch in [3]. An excellent introduction to the generalized cohomology AHSS can
also be found in Hilton [38] and Adams [1, Section III.7]. Other useful references on
the subject include Switzer [67] (Section 15, from a homology point of view, including
the Gysin sequence from AHSS), and interesting remarks in relation to spectra are
given in Rudyak [59]: Theorem 3.45 (homology), Remark 4.24 (sheaves and Čech),
Remark 4.34 (Postnikov) and Corollary 7.12. A description with an eye for applications
is given in Husemöller, Joachim, Jurčo and Schottenloher [42, Chapter 21].

The goal of this paper is to systematically study the spectral sequence in the context of
smooth or differential cohomology; see Cheeger and Simons [20], Freed [27], Hopkins
and Singer [41], Simons and Sullivan [66], Bunke [13], Bunke and Schick [17] and
Schreiber [63]. Existence and interesting aspects of the AHSS in twisted forms of
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such differential cohomology theories have been considered briefly by Bunke and
Nikolaus [15], where the main interest was the effect of the geometric part of the twist
on the spectral sequence. In this paper, we take a step back and consider untwisted
differential generalized cohomology to systematically study the corresponding AHSS
in generality and determine the differentials explicitly as cohomology operations. From
the geometric point of view, one might expect on general grounds that the geometric
information carried by the differential cohomology theory should somehow manifest
itself within the spectral sequence. On the other hand, from an algebraic point of view,
one might a priori expect not much of that information to be retained, or even expect it to
be totally stripped out while running through the homological algebra machine. We will
show that the answer lies somewhat in between, and both intuitions are to some extent
correct: the differentials in the spectral sequence will be essentially refinements of classi-
cal ones, but with additional operations on differential forms. We recently characterized
such operations in [33], and so this paper is a natural continuation of that work.

Just as generalized cohomology theories are represented by spectra, differential coho-
mology theories are represented by certain sheaves of smooth spectra called differential
function spectra. The original definition of differential function spectra was due
to Hopkins and Singer [41], generalized by Bunke, Nikolaus and Völkl [16], and
reformulated in terms of cohesion by Schreiber [63]. The terms smooth cohomology
and differential cohomology seem to be used interchangeably in some of the literature;
see eg Bunke and Schick [18]. However, we will find it useful for us to provide a specific
and precise usage, where the first is viewed as being more general than the second. We
also present most of our 1–categories as combinatorial, simplicial model categories,
rather than quasicategories. We believe that this way, nice objects are more easily and
explicitly identifiable, which is desirable when dealing with differential cohomology.
Indeed, our discussion will be very explicit, and the results will be readily utilizable.

Ordinary cohomology has smooth extension with various different realizations, in-
cluding those of Cheeger and Simons [20], Gajer [30], Brylinski [11], Dupont and
Ljungmann [23], Hopkins and Singer [41] and Bunke, Kreck and Schick [14]. All
these realizations are in fact isomorphic [66; 18]. A description of K-theory with
coefficients that combines vector bundles, connections and differential forms into
a topological context was initiated by Karoubi [45]. Using Karoubi’s description,
Lott introduced R=Z–valued K-theory [49] as well as differential flat K-theory [50].
Currently, there are various geometric models of differential K-theory; see Lott [49],
Bunke and Schick [17], Simons and Sullivan [66], Freed and Lott [28], and Tradler,
Wilson and Zeinalian [69; 70]. As in the case of ordinary differential cohomology,
these models should be equivalent. Indeed, explicit isomorphisms between various
models have been demonstrated: for instance, between the differential K-theory group

Algebraic & Geometric Topology, Volume 17 (2017)



Spectral sequences in smooth generalized cohomology 2359

of Hopkins and Singer [41] and that of Freed and Lott [28] in Klonoff [46], between
Lott’s R=Z K-theory and Lott–Freed differential K-theory in [28], between Bunke–
Schick differential K-theory and Lott(–Freed) differential K-theory in Ho [40], and
between Simons–Sullivan [66] and Freed–Lott [28] in Ho [39].

The group structure of differential K-theory splits into odd and even-degree parts; thus
the refinement preserves the grading. However, the odd part turns out to be more
delicate than the even part. In particular, while any two differential extensions of even
K-theory are isomorphic by the uniqueness results in [18], odd K-theory requires extra
data in order to obtain uniqueness. There are various concrete models in the odd case:
using smooth maps to the unitary group [69], via loop bundles (see Hekmati, Murray,
Schlegel and Vozzo [37]) and via Hilbert bundles (see Gorokhovsky and Lott [31]).
Our results in both even and odd K-theory will, of course, not depend on the particular
model chosen.

Suppose E is a spectrum and X is a space of the homotopy type of a CW-complex.
Then there is a half-plane spectral sequence (AHSS)

E
p;q
2 ŠHp.X IEq.�//;

converging conditionally to E�.X/. An immediate matter that we encounter in setting
up the spectral sequence which calculates the generalized differential cohomology
of a smooth manifold X is how to deal with filtrations. Classically, Maunder [52]
gave two approaches to any generalized cohomology theory. The first is by filtering
over the q–skeletons Xq of the topological space X , and the second by filtering
over the Postnikov systems of spaces Yq , which are the layers of an �–spectrum
associated to the cohomology theory. Maunder also gives an isomorphism between
the two approaches. While we expect this to be the case in the differential setting,
the proof might require considerable work. Hence we leave this as an open problem.
Maunder sets up his construction in the simplicial complex setting, which is equivalent
to doing so in the CW-complex setting, as the geometric realization of a simplicial set
is a CW-complex. Simplicial and Čech spectral sequences are discussed by May and
Sigurdsson [53, Chapter 22].

We will prefer the filtration of the spaces/manifolds rather than of the corresponding
spectra, as this will naturally bring out the geometry desired in the smooth setting.
We first would like to replace a topological space with skeletal filtration by a smooth
manifold and then view this manifold as a stack. Hence, in doing this, we need an
analogue of a skeleton in stacks. This will be done via Čech resolution of smooth
spaces, and the replacement of skeletons of a space X will be the various intersections
of open sets covering the smooth manifold X .
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We will use diff.†nE; ch/ to denote the differential refinement in degree n of a coho-
mology theory E. This was the notation used in [41] and carries more data than other
notation, such as E.n/. It also avoids possible confusion with other notations, eg when
dealing with Morava K-theory K.n/ at chromatic level n. The axiomatic approach is
very useful for characterizing a smooth cohomology theory, but one still needs the model
of [41] for actually constructing examples of such smooth spectra. We will be using
features of two main approaches at once, namely from [41] with I W diff.†nE; ch/! E

and from [16; 63] with I W E!…E. Note that E is not discrete while …E is, but both
are equivalent as smooth spectra: E'…E. This essentially boils down to the fact that
since …E is locally constant, the underlying theory satisfies …E�.U /D…E�.�/ on
contractible open sets. On the other hand, the homotopy invariance of the theory E

implies the same thing: namely, E.U /'E.�/ for a contractible U . These relationships
are discussed in further detail in [16].

We will be interested in how the differentials look in our spectral sequences. One
might a priori suspect that the differentials in the refined theories should at least
loosely be connected to the differentials of the underlying topological theory. We
will make this precise below, and so it seems appropriate to understand the form
and structure of the differentials in the topological case. To illustrate the point, we
will focus on what might perhaps be the most prominent example, namely the first
differential d3W H�.X;K0.�//! H�.X;K0.�// in complex topological K-theory
K.X/ of a topological space X . This is given by Sq3Z ; see Atiyah and Hirzebruch [3; 4].
There are exactly two stable cohomology operations H�.X IZ/!H�C3.X IZ/, since
HnC3.K.Z; n//D Z=2 for n sufficiently large. One of these is zero and the other is
ˇ ı Sq2 ı �2 , where ˇ is the Bockstein associated to the sequence Z �2

��! Z
�2
��! Z2

with �2 denoting both the mod 2 reduction and its effect on cohomology with these as
coefficients, ie �2W H i .X IZ/!H i .X IZ=2/.

The above class, which is a priori in mod 2 cohomology, turned out to be a class
in integral cohomology. One could work at any prime [4] by noting the follow-
ing; see eg Fomenko, Fuchs and Gutenmacher [26] or Hatcher [36]. For any class
x 2Hn.X IZ=p/, and with p̌ the Bockstein associated with the sequence Zp

�p
��!

Zp2
�p
��! Zp , the element p̌.x/ is an integral class in HnC1.X IZ=p/; ie it belongs

to the image of the reduction homomorphism �pW H
nC1.X IZ/!HnC1.X IZ=p/.

This can be used to prove the integrality of the class d 2 H 3.K.Z=p; 2/IZ=p/ as
follows; see [26]. The cohomology Serre spectral sequence for the path-loop fibration
�K.Z; 2/! PK.Z; 3/!K.Z; 3/ gives that H�.K.Z; 3/IZ=p/ has a single additive
generator xd in dimension � 2p . Now we have a map ˇW K.Z=p; 2/!K.Z; 3/ such
that ˇ�. xd/Dd 2H 3.K.Z=p; 2/IZ=p/, constructed via the Serre spectral sequence of
the path-loop fibration K.Z=p; 1/! PK.Z=p; 2/!K.Z=p; 2/. The map ˇ induces
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a map of loop spaces which are also Serre fibrations:

K.Z=p; 1/ // PK.Z=p; 2/

��

PK.Z; 3/

��

K.Z=p; 2/oo

K.Z=p; 2/ // K.Z; 3/

The induced homomorphism on the special sequences sends xd to d by the construction
of ˇ . Now we have H 3.K.Z=p; 2/IZ=p/DZ=p ; hence d is contained in the image
of the homomorphism �pW H

3.K.Z=p; 2/IZ/! H 3.K.Z=p; 2/IZ=p/. Therefore,
d is an integral class. This is attractive as it makes it readily amenable to differential
refinement.

Such statements, and generalizations to other primes and to other generalized coho-
mology theories, can be made at the level of spectra; see eg Schwede [64]. The first
nontrivial k–invariant of connective complex K-theory spectrum ku is a morphism
k2.ku/ 2 H

2.HZ;Z/, which is equal to ˇ ı Sq2 , where ˇW HZ=2! †.HZ/ is
the Bockstein operator associated to the extension Z �2

��! Z ! Z=2, and Sq2Z is
the pullback of the Steenrod operation Sq2 2H 2.HZ=2;Z=2/ along the projection
morphism �2W HZ! HZ=2 given by mod 2 reduction. Since ku is a symmetric
ring spectrum, then by [64, Proposition 8.8], the k–invariants are derivations. The
only derivations (up to units) in the mod p Steenrod algebra Ap are the Milnor
primitives Qn 2H 2pn�1.HZ=p;Z=p/. At the lowest level, we have Q0 D p̌ , the
mod p Bockstein, and the others are realized as k–invariants of symmetric spectra,
the connective Morava K-theory spectra k.n/. That is, we have Qn D k2pn�2.k.n//.
We will consider refinements of integral lifts of these.

The classical AHSS collapses already at the first page if the generalized cohomology
theory is rational. In fact, it can be shown that for any reasonably behaved spectrum
like all the ones we consider, all the differentials in the AHSS are torsion, ie zero when
rationalized; see [59, Corollary 7.12]. The differentials in the AHSS in the topological
case are analyzed by systematically by Arlettaz [2]. Using the structure of the integral
homology of the Eilenberg–Mac Lane spectra, it is proved there that for any connected
space X , there are integers Rr such that Rrd

s;t
r D 0 for all r � 2 and for all s , t .

Some aspects of this general feature will continue to hold in the differential setting.
From a homotopy point of view, there is not much difference between the localizations
at R and at Q. However, from a geometric point of view there is a considerable
difference. Nevertheless, we will still use the term “rationalize” when we discuss
localization at R, as is customary in the homotopy theory literature. We stress that the
distinction is needed in certain geometric settings (see Griffiths and Morgan [35]), but
it will not be an issue for us in this paper.
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Note that although the differential cohomology diamond, ie the diagram that character-
izes such theories (see Remark 12), certainly detects torsion classes in the flat part of the
theory, it does not distinguish between torsion at various primes. As a by-product, our
analysis can be seen as a systematic method for addressing p–primary torsion in differ-
ential theories. In [33], we found that the Deligne–Beilinson squaring operation admits
lower-degree operations refining the Steenrod squares. We have the familiar pattern

DD; �Sq1; �Sq2; �Sq3; : : : ; DD2; : : : ;

where DD is the Dixmier–Douady class: a nontorsion differential cohomology oper-
ation. The refined squares �Sq2kC1 , as the classical squares Sq2k , are operations that
are 2–torsion. In this paper, we get �Sq2kC1 as we expect, but also differentials d2m
at lowest degree for every m:

(1-1) d2mW
Y

k
�2k.M/!H 2m.M IU.1//:

We consider this as a cohomology operation, which can be viewed as first projecting
on to the homogeneous component ch2m of the Chern character. A U.1/–valued Čech
cocycle is obtained by restricting to 2m–fold intersections of an open cover, pairing
with an appropriate simplex of degree 2m and exponentiating; this will be spelled out
in detail in Section 4. If indeed the form ch2m arises as the curvature of a bundle, it
must represent a closed form with integral periods. The differential d2m can therefore
be understood as the obstruction to this condition. Similar results hold for the odd part,
ie for differentially refined K1–theory, where the refined Steenrod square takes the
same form as in differential K0–theory, while the differentials arising from forms —
the analogues of those in (1-1) — are now of odd degrees.

The paper is organized as follows. In Section 2, we start by carefully setting up
the background in smooth and differential cohomology, preparing the scene for our
constructions. In particular, in Section 2.1, we adapt abstract general results on stacks
(or simplicial sheaves) to our context and spell out specific definitions and constructions
that will be useful for us in later sections; more general and comprehensive accounts
can be found in Jardine [43], Lurie [51] and Schreiber [63]. Then in Section 2.2, we
take the approach to differential cohomology that allows for a direct generalization.
Our main constructions will be in Section 3. In particular, in Section 3.1, we provide
the filtration via Čech resolutions; then we construct the AHSS for smooth spectra
in Section 3.2 and compare to the AHSS of the underlying topological theory. This
refinement will depend on whether the degree is positive, negative or zero. Then we
explore the compatibility of the differentials with the product structure in Section 3.3.

Having given the main construction, our main applications of the general spectral
sequence to various differential cohomology theories will be presented in Section 4.
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The construction is general enough to apply to any structured cohomology theory
whose coefficients are known. We will explicitly emphasize three main examples:
ordinary differential cohomology, differential K-theory and a differential version of
integral Morava K-theory that we introduce. As a test of our method, in Section 4.1,
we recover the usual hypercohomology spectral sequence for the Deligne complex
(see [11] and Esnault and Viehweg [24, Appendix]), and we do so for manifolds, then
products of these, and then more generally for smooth fiber bundles. Then the AHSS for
K-theory is generalized in Section 4.2 to differential K-theory, where the differentials
involve refinements of Steenrod squares, in the sense of [33], as well as operations on
forms, as indicated above around expression (1-1). We also show that the odd case,
ie smooth extension of K1 , leads to a similar construction, but with the differentials
now involving odd forms. Then in Section 4.3, we first introduce a refinement of the
integral form of Morava K-theory, discussed in Kriz and Sati [47], Sati [60] and Sati
and Westerland [62], and then characterize the corresponding differentials, which turn
out to have a similar pattern as in K-theory, where the operation that gets refined is the
Milnor primitive Qn encountered above. We end with an application to an example
from M-theory and string theory.

Notation We have the following morphism that we will use repeatedly throughout.
Denote by �pW Z! Z=p the mod p reduction on coefficients with corresponding
morphism using the same notation on the cohomology groups with these as coefficients.
We will denote by ˇ , p̌ and ž the Bockstein homomorphisms associated with the
coefficient sequences

0! Z!R
exp
��! U.1/! 0;

0! Z=p
�p
��! Z=p2

�p

�! Z=p! 0;

0! Z
�p
��! Z

�p

�! Z=p! 0;

respectively. We will let �2W Z=2 ,!U.1/ denote the representation as the square roots
of unity, and also the induced map �2W Hn.�IZ=2/!Hn.�IU.1// on cohomology.
We will also use more refined Bockstein homomorphisms associated with spectra, and
these will be defined as we need them.

2 Smooth cohomology

2.1 Smooth cohomology and the stable category of smooth stacks

In this section, we adapt abstract general results on stacks (or simplicial sheaves) to
our context and spell out specific definitions and constructions that will be useful for
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us in later sections. The interested reader can find more general and comprehensive
accounts in [43; 51; 63]. For the reader who is more interested in the applications to
differential cohomology theories, this section can be skipped. However, we would
like to emphasize that although the language used in this section is rather abstract, the
generality gained from this formalism is far reaching and allows this machinery to be
used for a wide variety theories beyond just differential cohomology theories.

Essentially, the axioms characterizing a smooth cohomology theory are not much
different from the axioms characterizing usual cohomology theories. The big difference
is where the theory takes place. More precisely, we want to consider homotopical
functors on the category of pointed smooth stacks Sh1.CartSp/C with CartSp the
category of Cartesian spaces, rather than the category of pointed topological spaces
TopC . Let Abgr be the category of graded abelian groups.

Definition 1 (smooth cohomology) Let E�W Sh1.CartSp/op
C
! Abgr be a functor

satisfying the following axioms:

(1) Invariance E� sends equivalences to isomorphisms.

(2) Additivity For small coproducts (ie ones forming sets) of pointed stacks,W
˛ X˛ , we have

E�
�W̨

X˛
�
D

Y
˛

E�.X˛/:

(3) Mayer–Vietoris For any homotopy pushout of pointed stacks

Z //

��

Y

��

X // X [Z Y

the induced sequence

E�.X [Z Y /! E�.X/˚E�.Y /! E�.Z/

is exact.

(4) Suspension For any stack X , there is an isomorphism EnC1.†X/' En.X/.

Then we call E� a smooth cohomology theory.

Remark 2 Note that the Mayer–Vietoris axiom implies the usual Mayer–Vietoris
sequence. Indeed, let M be a manifold and let V be a local chart of M . Let U be an
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open set such that fU; V g is a cover of M . Then the strict pushout

U \V //

��

V

��

U // U [V

is actually a homotopy pushout. We can equivalently write this diagram as a homotopy
coequalizer

U \V � U tV ! U [V

in which the homotopy cofiber of the second map can be identified with †U \V . By
iterating this argument and applying E� to the resulting diagram, one obtains the long
exact sequence

� � � ! E�.U \V /! E�.M/! E�.U /˚E�.V /! E�C1.U \V /! � � � ;

which is the familiar Mayer–Vietoris sequence.

The above axioms can be taken as a generalization of the Eilenberg–Steenrod axioms
(see [1; 38]), where the Mayer–Vietoris axiom subsumes both the excision axiom and
the long exact sequence axiom. It is interesting to note that the axioms do not require
homotopy invariance. Namely, if two manifolds M and N are homotopic, they may
fail to be equivalent as stacks. In fact, an equivalence of stacks requires, in particular,
that for every sheaf F (embedded as a stack), we have an isomorphism

F.N/' �0 Map.N; F /' �0 Map.M;F /' F.M/:

In particular, we can take the sheaf of smooth R–valued functions on a manifold. Then
if every homotopy equivalence f W M ! N induced an equivalence of stacks, we
would have an induced isomorphism

f �W C1.N IR/! C1.M IR/:

Taking N D � and M D Rn immediately gives a contradiction. On the other hand,
every equivalence of stacks does produce a weak homotopy equivalence of geometric
realizations. To see this, simply note that the geometric realization functor

…W Sh1.CartSp/! sSet;

being a Quillen functor, has a derived functor by Ken Brown’s lemma [10]. It therefore
preserves weak equivalences between fibrant objects. But these objects are exactly
those that satisfy descent, namely stacks (eg manifolds) [63; 22].
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Remark 3 Given a smooth cohomology theory E� , we always get a presheaf of
graded abelian groups on the site CartSp by precomposing with the Yoneda embedding:

E�W CartSp ,
Y
�! Sh.CartSp/ ,

sk0
��! Sh1.CartSp/

C
�! Sh1.CartSp/C

E�

�!Abgr;

where sk0 embeds a sheaf as a discrete simplicial sheaf. We will use this fact later in
the construction of the spectral sequence in Theorem 25.

Just as all cohomology theories are representable by �–spectra, via Brown repre-
sentability, all smooth cohomology theories are representable by smooth spectra. This
follows from the version of Brown representability formulated by Jardine in [43] applied
to the stable homotopy category of smooth stacks. We will quickly review the basic
properties of this category (see [51; 44]) to establish where our objects of interest live.

We first recall some operations on stacks that are counterparts to standard operations
on topological spaces. Let X and Y be two pointed stacks.

(i) The wedge product X _Y is defined via the pushout diagram:

Y // Y _X

�

OO

// X

OO

(ii) The smash product X ^Y is defined as the quotient X ^Y WDX �Y=X _Y
of the Cartesian product by the wedge product.

(iii) The suspension †X is defined via the homotopy pushout diagram:

X

��

// �

��

� // †X

(iv) The looping, ie loop space, �X is defined via the homotopy pullback:

�X

��

// �

��

� // X

Definition 4 We define the stabilization Stab.Sh1.CartSp/C/ of smooth pointed
stacks to be the following category:
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ı The objects of Stab.Sh1.CartSp/C/ are sequences of pointed stacks

fEng � Sh1.CartSp/C; n 2 Z;

equipped with maps �nW †En! EnC1 .
ı The morphisms between E and F are defined to be the levelwise morphisms

En! Fn commuting with the �n .

This category carries a stable model structure given by first taking the projective
model structure on sequences of stacks and then performing Bousfield localization
with respect to stable weak equivalences in the usual way. This process is described
in detail in [43; 51; 44], and we summarize the relevant results found there. The
category Stab.Sh1.CartSp/C/ admits a stable, closed, simplicial model structure with
the following properties:

ı The weak equivalences are stable weak equivalences. That is, a morphism of
smooth spectra f W E�! F� is a weak equivalence if and only if it induces a
weak equivalence

Q.f /W lim
i!1

�iEnCi ! lim
j!1

�jFnCj :

ı The fibrant objects are precisely the smooth �–Spectra, that is, the sequence of
stacks X� whose structure maps

�nW †En! EnC1

induce equivalences En
�
�!�EnC1 .

Remark 5 We will refer to the stable model category Stab.Sh1.CartSp/C/ as the
category of smooth spectra and denote it by

Sh1.CartSpI Sp/ WD Stab.Sh1.CartSp/C/:

Example 6 Let M 2 Sh1.CartSp/C be a manifold, viewed a stack and equipped
with a basepoint. We can define the smooth spectrum †1M in the usual way, as the
sequence of suspensions of the manifold M . Given a smooth �–spectrum E, we can
define a smooth cohomology theory E� , by setting

Eq.M/' �0 Map.†�q†1M;E/:

Differential cohomology theories are examples of the theories introduced above, al-
though it may not be immediately apparent where the differential cohomology “diamond”
diagram [66] fits into this context. In fact, it was observed by Bunke, Nikolaus and Völkl
in [16] that the diamond provides a further characterization of all smooth cohomology
theories in terms of refinement of topological theories. This characterization happens
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in addition to the Brown representability described above, and it happens only when
the category of stacks exhibits so-called cohesion. We now review the properties of the
cohesive structure on smooth stacks [63] that we need, along with the characterization
of smooth cohomology theories described in [16]. It is shown in [63] that the category
Sh1.CartSp/ admits a quadruple 1–categorical adjunction .… a disc a � a codisc/

(2-1) Sh1.CartSp/ �
//

…
//

sSet;
codisc
oo

disc
oo

where … preserves finite 1–limits, and the functors disc and codisc are fully faithful.

One implication of this is that sSet embeds into Sh1.CartSp/ as an 1–subcategory
in two different ways: one reflective, the other reflective and coreflective. From the
reflectors, one can produce two monads and one comonad defined as follows:

… WD… ı disc; [ WD disc ı�; ] WD codisc ı�:

These monads fit into a triple 1–adjunction .… a [ a ]/ which is called a cohesive
adjunction.

Remark 7 Each monad in the cohesive adjunction picks out a different part of the
nature of a smooth stack. This nature is perhaps best exemplified by how the adjoints
behave on smooth manifolds (viewed as stacks). More precisely, if M is a smooth
manifold, then for instance:

(i) The comonad [ takes the underlying set of points of the manifold and then embeds
this set back into stacks as a discrete object. This functor therefore misses the
smooth structure of the manifold and treats it instead as a discrete object.

(ii) The monad … essentially takes the singular nerve of the manifold using smooth
paths and higher smooth simplices on the manifold. It therefore retains the
geometry of the manifold and “knows” that the points of the manifold ought to
be connected together in a smooth way.

The following observation on lifting from simplicial sets to spectra is known [63,
Proposition 4.1.9], but we supply a proof for completeness.

Proposition 8 The 1–adjunction (2-1) lifts to an 1–adjunction

Sh1.CartSpI Sp/ �s
//

…s
//

Sp
codiscs
oo

discs
oo
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on the stable 1–category of smooth spectra. Moreover, the adjoints satisfy the same
condition as the 1–adjunction (2-1) does.

Proof The category of smooth stacks is presented by the combinatorial simplicial
model category

Sh1.CartSp/D ŒCartSp; sSet�loc;proj;

where loc denotes the Bousfield localized model structure at the maps out of Čech nerves.
The quadruple adjunction is presented by Quillen adjoints .…a disca� a codisc/ [63].
We need to show that this adjunction holds on the stable model category of smooth
spectra. The adjunction immediately gives an underlying categorical adjunction by
simply applying the functors degreewise. In the projective model structure, the right
adjoints are Quillen by definition, and the closed model axioms imply that the left
adjoints are also Quillen.

Now the functors (in the global model structure on Sp) disc and codisc both preserve
homotopy limits. Hence for a local weak equivalence f W E! F of spectra, we have

lim
i!1

�idisc.E/nCi ' disc
�

lim
i!1

�iFnCi
�

' disc
�

lim
j!1

�jFnCj
�

' lim
j!1

�j disc.F/nCj ;

and disc.f / induces a weak equivalence Q.disc.f //. Hence disc.f / is a weak
equivalence. In the same way, codisc preserves local weak equivalences. It follows
by the basic properties of Bousfield localization that disc and codisc are right Quillen
adjoints. Again, by the axioms of a closed model category, it follows that the entire
adjunction holds as a Quillen adjunction of stable model categories.

Remark 9 The proof of the previous proposition implies that both disc and codisc
preserve �–spectra. However, … and � need not take �–spectra to �–spectra. This
problem can be remedied by taking …s (or �s ) to be the composition Rı… (or Rı� ),
where R is the fibrant replacement in spectra. Since R defines a left 1–adjoint to
the inclusion of fibrant objects (and preserves finite 1–limits), we will still have an
adjunction at the level of 1–categories (although this is not presented by a Quillen
adjunction).

As in the case of smooth stacks, the quadruple adjunction in Proposition 8 produces
adjoint monads .…s a [s a ]s/ exhibiting stable cohesion. The main observation
in [16], recast in the cohesive setting in [63], is the following. Let j W [s! id be the
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counit of the comonad [s , and let I W id! …s be the unit of the monad …s . Let
E 2 Sh1.CartSpI Sp/ be a smooth spectrum. Then E sits inside a hexagon diagram

(2-2)

fib.�/.E/

""

// cofib.�/.E/

&&

†�1…s cofib.�/.E/

77

''

E
I

##

;;

…s cofib.�/.E/

[sE

j

<<

// …sE

77

where the diagonals are fiber sequences (by definition), the top and bottom sequences
are fiber sequences, and the two squares in the hexagon are homotopy Cartesian; ie
both are homotopy pullback squares and hence homotopy pushouts (via the equivalence
of the two in the stable setting). The latter property is key because it is a homotopy
Cartesian square, as on the right of the hexagon, which Hopkins and Singer [41] took
as the definition of differential cohomology (for a specific choice of the object of
differential forms). Bunke, Nikolaus and Völkl [16] observed that by the hexagon,
every smooth spectrum satisfies this kind of Hopkins–Singer definition, if one just
allows more general objects of differential forms, which is the object cofib.�/.E/ in
our notation above.

It often happens in practice that the smooth spectra fib.�/.E/ and cofib.�/.E/ contain
no information away from degree 0. In particular, it often happens that for n > 0,

�n Map.M; cofib.�/.E//' 0;(2-3)

��n Map.M;fib.�/.E//' 0:(2-4)

In this case, the E–cohomology of a manifold can be calculated as either the flat
cohomology or the underlying topological cohomology in all degrees but 0. This is
summarized as the following result.

Proposition 10 Let E be a smooth spectrum such that (2-3) and (2-4) are satisfied.
Then the E–theory of a manifold M is given by

En.M/ WD

�
.…sE/n.M/; n > 0;

.[sE/n.M/; n < 0;

where E.M/ is already characterized in degree 0 by the diamond (2-2).

Proof Since the diagonals of the diamond are fiber sequences, they induce long exact
sequences in cohomology. Let n be a positive integer. The sequence

[sE! E! cofib.�/.E/
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gives the section of the long sequence

�nC1 Map.M; cofib.�/.E//! [sE�n.M/! E�n.M/! �n Map.M; cofib.�/.E//:

By assumption, the leftmost and rightmost groups are 0. Thus we have an isomorphism

.[sE/�n.M/' E�n.M/:

Similarly, the sequence
fib.�/.E/! E!…sE

gives the long sequence

��n Map.M;fib.�/.E//! En.M/! .…sE/n.M/! ��n�1 Map.M;fib.�/.E//;

and again we get the desired isomorphism.

2.2 Differential cohomology and differential function spectra

The main applications we have in mind, as we indicated in the introduction, concern
differential cohomology theories. In this section, we review some of the concepts
established in [13; 16; 63] (which generalize [66]), adapted to our context.

Definition 11 Let E� be a cohomology theory. A differential refinement yE� of E�

consists of the following data:

(1) a functor yE�W Sh1.CartSpC/op!Abgr ;

(2) three natural transformations:
(a) Integration I W yE�! E� ;
(b) Curvature RW yE�!Z�.�

�˝E�.�//;
(c) Secondary Chern character aW ��˝E�.�/Œ1�= im.d/! yE� ;

such that the following axioms hold:

ı Chern–Weil We have a commutative diagram

yE�
R
//

I

��

Z�.�
�˝E�.�//

q

��

E�
ch
// H�.�

�˝E�.�//

where ch is the Chern character map.
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ı Secondary Chern–Weil We have a commutative diagram

��˝E�.�/Œ1�= im.d/ d
//

a
''

Z�.�
�˝E�.�//

yE�
R

88

and an exact sequence

� � � ! E�Œ1�!��˝E�.�/Œ1�= im.d/! yE�! E�! � � � :

Note that in the Chern–Weil axiom above, H�.��˝E�.�// appears as the codomain
of the Chern character. As explained in [16], this becomes a locally constant stack
equivalent to just the locally constant stack on the rationalization of E� ; ie ch is
equivalent to chW E�! E� ^HR (or MR).

Remark 12 The above characterization can ultimately be summarized by saying that
differential cohomology fits into an exact diamond

��˝E�.�/Œ1�= im.d/

a

&&

d
// Z�.�

�˝E�.�//

%%

E��1˝R

77

''

yE�

I

$$

R

99

E�˝R

E��1R=Z

88

ˇE
// E�

ch
99

where the diagonal, top and bottom sequences are all part of long exact sequences.
The bottom sequence is obtained by observing that the cofiber of the rationalization
map is an MU.1/ (Eilenberg–Moore spectrum), where we identify R=Z with U.1/
throughout. That is, we have a cofiber sequence involving the unit map from the sphere
spectrum SDMZ:

S!MR!MU.1/:

Smashing on the left with the theory E, we obtain a “Bockstein sequence”

E! E^MR! E^MU.1/
ˇE
�!†E:

We define the flat theory as
EU.1/ WD E^MU.1/

and the rational theory as
ER WD E^MR:
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Remark 13 Differential cohomology theories are special cases of smooth cohomology
theories, while differential function spectra are special cases of smooth spectra. Thus,
this section can be viewed as describing a special case of the previous section.

Since differential cohomology theories will arise as certain homotopy pullbacks (in
Definition 17 below), we will first need to establish the components of the pullback.
We begin with the following lemma that can be found in [13, Lemma 6.10], which
explains how we can transition from a topological cohomology theory to a smooth one,
in a process whose direction is opposite to that of the map I .

Lemma 14 Let E be a spectrum and define the smooth presheaf of spectra E via the
assignments

objects: U 7!Map.†1U;E/;

morphisms: .f W U ! V / 7!
�
f �W Map.†1V;E/!Map.†1U;E/

�
:

Then E satisfies descent.

Proof Let C �.fU˛g/ denote the Čech nerve of a good open cover fU˛g of some
manifold M . The Yoneda lemma and basic properties of the mapping space functor
imply that we have the sequence of equivalences

E.M/ WDMap.†1M;E/

'Map.†1 hocolim�op C �.fU˛g/;E/

'Map.hocolim�op †1C �.fU˛g/;E/

' holim�op Map.†1C �.fU˛g/;E/

' holim
n
� � �

//

//
//
Q
˛ˇ Map.†1U˛ˇ ;E/

oo
oo
oo
oo

//
// Q

˛ˇ Map.†1U˛ˇ ;E/
oo

oo
oo

//
Q
˛ Map.†1U˛;E/

oo
oo

o
' holim

n
� � �

//

//
//
Q
˛ˇ E.U˛ˇ /

oo
oo
oo
oo

//
// Q

˛ˇ E.U˛ˇ /
oo

oo
oo //

Q
˛ E.U˛/

oo
oo

o
;

and so E satisfies descent.

The other components of the pullback we want to establish are presented by sheaves
of chain complexes. There is a general functorial construction by which one can turn
an unbounded chain complex into a spectrum, which we now describe; see [65] for
details. This functor is called the Eilenberg–Mac Lane functor

(2-5) H W Ch! Sp;

Algebraic & Geometric Topology, Volume 17 (2017)



2374 Daniel Grady and Hisham Sati

and acts on objects as follows. Let C� be an unbounded chain complex, and let Zn
denote the subgroup of cycles in degree n. The functor H takes C� and forms the
sequence C�.�/ of truncated bounded chain complexes:

C�.0/D .� � � ! Cn! Cn�1! � � � ! C1!Z0/;

C�.1/D .� � � ! Cn! Cn�1! � � � ! C0!Z�1/;

C�.2/D .� � � ! Cn! Cn�1! � � � ! C�1!Z�2/;
:::

C�.k/D .� � � ! Cn! Cn�1! � � � ! C�kC1!Z�k/;
:::

The reason for the group of cycles appearing in degree 0 comes from using the right
adjoint to the inclusion i W ChC! Ch (as opposed to the left). The left adjoint simply
truncates the complex in degree 0, while the right adjoint truncates and then takes only
the cycles in degree 0.

Continuing with our discussion, at each level in the sequence, H applies the Dold–Kan
functor DKW ChC! sSet to the bounded chain complex in that degree. This gives a
sequence DK.C�.�// of spaces

DK.C�.0//; DK.C�.1//; DK.C�.2//; : : : ; DK.C�.k//; : : : :

Since DK preserves looping (being a right Quillen adjoint) and equivalences (being a
Quillen equivalence of model categories), we get induced equivalences

�k W DK.C�.k//!�DK.C�.k� 1//;

which turns DK.C�.�// into a spectrum.

Example 15 Consider the unbounded chain complex ZŒ0�, with Z concentrated in
degree 0. Then

H.ZŒ0�/'HZ;

where the right-hand side denotes the Eilenberg–Mac Lane spectrum.

Example 16 Fix a manifold M and consider the de Rham complex

�� WD .� � � ! 0!�0.M/!�1.M/! � � � !�k.M/! � � � /;
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where the nonzero terms are concentrated in negative degrees. Then H takes �� to
the spectrum:

H.��.M//D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

DK.� � � ! 0!�0cl.M//;

DK.� � � ! 0!�0.M/!�1cl.M/! : : : /;

DK.� � � ! 0!�0.M/!�1.M/!�2cl.M/! : : : /;
:::

DK.� � � ! 0!�0.M/!�1.M/! � � � !�kcl.M/! : : : /;
:::

By the basic properties of the Dold–Kan functor, the stable homotopy groups of this
spectrum are computed as

�snH.�
�.M//' lim

k!1
�kCn DK.� � � ! 0!�0.M/!�1.M/! � � � !�kcl.M//

' lim
k!1

HkCn.� � � ! 0!�0.M/!�1.M/! � � � !�kcl.M//:

For n > 0, these groups are 0. For n� 0, they are the nth de Rham groups Hn
dR.M/.

Now the functor H in (2-5) prolongs to a functor on prestacks

H W ŒCartSp;Ch�! ŒCartSp; Sp�:

In fact, using the properties of the Dold–Kan correspondence, it is fairly straightforward
to show that this functor preserves local weak equivalences [10]. We therefore get a
functor of smooth stacks

(2-6) H W Sh1.CartSpICh/! Sh1.CartSpI Sp/:

Recall that for an �–spectrum E, we always have a rational equivalence

rW E^MR!H.��.E/˝R/;

where MR denotes an Eilenberg–Moore spectrum. Now, since we are working over the
site of Cartesian spaces, the Poincaré lemma implies that the inclusion j W RŒ0�!��

induces an equivalence

id˝ j W ��.E/˝RŒ0�! ��.E/˝�
�;

where ��.E/D E.�/ (which follows from suspension).

Definition 17 Let E be a spectrum. For an unbounded chain complex C� , let ��0C�
denote the truncated complex

��0C� D .� � � ! 0! C0! C�1! � � � ! C�n! � � � /:
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A differential function spectrum diff.E; ch/ is a homotopy pullback

diff.E; ch/ //

��

H.��0�
�˝��.E//

��

E
ch

// H.��˝��.E//

where chD j ı r, and j induces an equivalence j W ��.E/˝RŒ0� '�! ��.E/˝�
� .

Remark 18 In our definition, we have chosen the complex ��˝��.E/ as the de Rham
complex modeling our rational theory. In general, the differential function spectrum
depends on this choice and on the equivalence j [13]. For the purposes of clarity
and utility, we will always choose this model, although other models can be treated
analogously. We do, however, keep the dependence on the map ch explicit to emphasize
this fact.

Example 19 (Deligne cohomology) Let E D H.ZŒn�/ ' †nHZ be the n–fold
suspension of the Eilenberg–Mac Lane spectrum. In unbounded chain complexes, we
have a natural isomorphism

ZŒn�˝�� '��Œn�;

where ZŒn� is the sheaf of locally constant integer-valued functions in degree n, and the
complex on the right-hand side has been shifted up n units. That is, �n is in degree 0,
while �0 is in degree n. Since †nHZ is in the image of the Eilenberg–Mac Lane
functor H , and H preserves homotopy pullbacks, the homotopy pullback

diff.†nHZ; ch/ //

��

H.��0�
�Œn�/

��

†nHZ
ch

// H.��Œn�/

is presented by the homotopy pullback of unbounded chain complexes:

ZŒn��h
��Œn�

��0�
�Œn�

��

// ��0�
�Œn�

��

ZŒn� // ��Œn�

By stability, we can identify the homotopy pullback with the shifted mapping cone:

ZŒn��h��Œn� ��0�
�Œn�' cone

�
ZŒn�˚ ��0�

�
!��Œn�

�
Œ�1�:
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The right-hand side is precisely the Deligne complex Z1D .nC 1/. We therefore have
an equivalence

H.Z1D .nC 1//' diff.†nHZ; ch/:

The underlying theory this spectrum represents is precisely Deligne cohomology. In fact,
by the Dold–Kan correspondence, we have an isomorphism of graded abelian groups

�0 homCh
�
N
�
C.fUig/;Z

1
D .nC 1/

��
' �0 Map.†1M; diff.†nHZ; ch//:

Here N denotes the normalized Moore complex (adjoint to the Dold–Kan functor DK)
and C.fUig/ denotes the Čech nerve of some good open cover of X . The right-hand
side is simply the definition of diff.†nHZ; ch/0.M/, while the left-hand side is the
shifted total complex of the Čech–Deligne double complex. It therefore computes the
degree-n Deligne cohomology Hn.M IZ1D .nC 1//.

The above example illustrates what exactly differential function spectra have to do with
differential cohomology theories. The following definition can be found in [16].

Definition 20 Let E be a spectrum, and let

chW E!H.��0�
�
˝��.E//

be the Chern character map as in Definition 17. The differential E–cohomology of a
manifold is the smooth cohomology theory with degree-n component

yEn.M/' diff.†nE; ch/0.M/:

Since diff.†nE; ch/ is a smooth spectrum for each n, it fits into a diamond diagram
of the form (2-2), as established in [16; 64]. In [16], it was shown that the form that
this diamond takes is precisely the differential cohomology diamond in Remark 12.
In particular, Proposition 10 allows us to calculate the diff.†nE; ch/ cohomology in
degrees away from 0 as

diff.†nE; ch/q.M/D

�
EnCq.M/; q > 0;

E
n�1Cq

U.1/
.M/; q < 0:

3 The smooth Atiyah–Hirzebruch spectral sequence (AHSS)

In this section, we describe general machinery to construct an Atiyah–Hirzebruch
spectral sequence (AHSS) from a smooth spectrum E. We also describe how to compare
this spectral sequence to the classical AHSS spectral sequence for the underlying
theory …E, in nice cases.

Algebraic & Geometric Topology, Volume 17 (2017)



2378 Daniel Grady and Hisham Sati

3.1 Construction of the spectral sequence via Čech resolutions

The trick to describing the spectral sequence is to choose the right filtration on a fixed
manifold. In the local (projective) model structure on smooth stacks, a natural choice
arises: namely, the Čech-type filtration on good open covers. This is indeed the most
natural choice since the maps which are weakly inverted in the local model structure are
precisely those arising from taking the Čech nerve of a good open cover of a manifold.
That is, we have a weak equivalence

wW hocolim
n
� � �

//
//
//
//

`
˛ˇ U˛ˇoo

oo
oo

//

//
//
`
˛ˇ U˛ˇoo

oo //
//

`
˛ U˛

oo

o
!X:

We now explicitly describe a filtration on C.fUig/. Recall that any simplicial diagram
J W �op! Sh1.CartSp/ can be filtrated by skeleta. More precisely, let i W ��k ,!�

denote the embedding of the full subcategory of linearly ordered sets Œr� such that
r � k . Then i induces a restriction between functor categories (the kth truncation)

��k W Œ�
op;Sh1.CartSp/�! Œ�

op
�k
;Sh1.CartSp/�:

By general abstract nonsense (the existence of left and right Kan extensions), there are
left and right adjoints .skk a ��k a coskk/

Œ�op;Sh1.CartSp/�
��k

// Œ�
op
�k
;Sh1.CartSp/�:

coskk
oo

skk
oo

Furthermore, by composing adjoints, we have an adjunction .skk a coskk/

Œ�op;Sh1.CartSp/�
skk

//

Œ�op;Sh1.CartSp/�:coskk
oo

The functor skk freely fills in degenerate simplices above level k , while coskk probes
a simplicial object with simplices only up to level k (the singular k–skeleton).

Proposition 21 Let Y� be a simplicial object in Sh1.CartSp/. Then we can filter Y�
by skeleta

sk0Y�! sk1Y�! � � � ! skkY�! � � � ! Y�:

The homotopy colimit over Y� is presented by the ordinary colimit

hocolim
�op

.Y�/' colim
k!1

Lcolim
�op

.skkY�/;

where Lcolim is the left derived functor of the colimit, hence computable upon suitable
cofibrant replacement of the diagram.1

1We take this particular model of the homotopy colimit in order to ensure that taking the colimit of the
resulting diagram makes sense. The claim will also hold for other presentations of the homotopy colimit.
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Proof Since Sh1.CartSp/ is presented by a combinatorial simplicial model category,
the homotopy colimit over a filtered diagram is presented by the ordinary colimit, and
the canonical map

Lcolim
k!1

Lcolim
�op

.skkY�/! colim
k!1

Lcolim
�op

.skkY�/

is an equivalence. Since homotopy colimits commute with homotopy colimits, we also
have an equivalence

Lcolim
k!1

Lcolim
�op

.skkY�/' Lcolim
�op

Lcolim
k!1

.skkY�/:

Again, using the fact that the ordinary colimit over a filtered diagram presents the
homotopy colimit, we have an equivalence

Lcolim
�op

Lcolim
k!1

.skkY�/! Lcolim
�op

colim
k!1

.skkY�/' Lcolim
�op

.Y�/:

Remark 22 The above proposition says that the homotopy colimit over the simplicial
object is filtered by homotopy colimits of its skeleta. In particular, if M is a paracompact
manifold, we can fix a good open cover on M and form the simplicial object given by
its Čech nerve

C.fUig/ WD � � �

//
//
//
//

`
˛ˇ U˛ˇoo

oo
oo

//

//
//
`
˛ˇ U˛ˇoo

oo //
//

`
˛ U˛:

oo

The homotopy colimit over this object is then filtered by its skeleta.

Let us see exactly what the skeleta look like in this case. To this end, we recall that in
Sh1.CartSp/, the full homotopy colimit is presented by the local homotopy formula

hocolim
�op

C.fUig/D

Z n2� a
˛0���˛n

U˛0���˛n
ˇ�Œn�:

The filtration on this object is given by first truncating the Čech nerve and then freely
filling in degenerate simplices. As a consequence, in degree k , we can forget about the
simplices of dimension higher than k . The homotopy colimit over this skeleton is then
given by a strict colimit over the diagram

(3-1)
`
˛0���˛k

U˛0���˛k
ˇ�Œk� � � �

//
//
//
//

`
˛ˇ U˛ˇ ˇ�Œ2�oo

oo
oo

//

//
//
`
˛ˇ U˛ˇ ˇ�Œ1�oo

oo //
//

`
˛ U˛

oo ˇ�Œ0�;

where the face and degeneracy maps are induced by the face and degeneracy maps
of �Œk�. Taking k !1, we do indeed reproduce the coend representing the full
homotopy colimit C.fUig/.
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We would like to eventually use this filtration to define a Mayer–Vietoris like spectral
sequence for general cohomology theory E. To get to this step, however, we will
need to identify the successive quotients of the filtration. To simplify notation in what
follows, we will fix a manifold M with Čech nerve C.fUig/, and we set

Xk WD hocolim
�op

�
skkC.fUig/

�
:

Then the quotient Xk=Xk�1 can be identified from the previous discussion by quoti-
enting out the face maps at level k described in diagram (3-1). Since the tensor of a
simplicial set and a stack is given by the product of the stack with the discrete inclusion
of the simplicial set, we can identify the quotient from the pushout of coendsR n<k `

˛0���˛n

U˛0���˛n
� disc.�Œn�/

@

��

// �

Rm�k `
˛0���˛m

U˛0���˛m
� disc.�Œm�/

where @ denotes the boundary inclusion. At the level of points (or elements), a simplex
in
R n<k`

˛0���˛k
U˛0���˛n

� disc.�Œn�/ is given by a pair

.�; �/ 2
a

˛0���˛k�1

U˛0���˛k�1
� disc.�Œk� 1�/;

which is glued to lower simplices via the face and degeneracy relations.

Let us identify where the boundary inclusion takes a generic simplex. Then the quotient
Xk=Xk�1 will be obtained by gluing these simplices together to a single point. Note
that the face and degeneracy relations imply that simplices of the form .�; sjC1�/ are
sent by dj to .dj�; �/. Since simplices in the image of the face maps are precisely
those which are collapsed to a point, we see that

.dj�; �/� � for every �:

We therefore see that each term of the coproduct
`
˛0���˛k

U˛0���˛k
is joined to another

by the inclusion into a lower intersection. These lower intersections are then collapsed
to a point yielding the wedge productW̨

0���˛k
U˛0���˛k

�Xk=Xk�1:

Similarly, the simplex .sjC1�; �/ is sent to .�; dj�/ under dj . We therefore identify
the discrete simplicial sphere in the quotient

disc
�
�Œk�=@�Œk�

�
�Xk=Xk�1:
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Finally, the relations imposed by the coend imply that a simplex of the form .sj�; �/

is glued to .�; dj�/. The former are precisely those simplices in the simplicial sphere,
while the latter are glued to the point. Similarly, .�; sj�/ is glued to the point. Thus
we have the following.

Lemma 23 We can identify the quotient with the smash product:

Xk=Xk�1 ' disc.�Œk�=@�Œk�/^
W̨

0���˛k
U˛0���˛k

' †k
�W̨

0���˛k
U˛0���˛k

�
:

Remark 24 (the filtration as a natural choice) Another way to think of our filtration
above is the following. Let us form a Čech nerve of a manifold, then contract all the
patches and intersections in that Čech nerve as points, so we obtain a simplicial set. Then
Borsuk’s nerve theorem (see [6] for a survey, [36, Corollary 4G.3] or [57, Theorem 3.21])
says that this simplicial set is equivalent — weak homotopy equivalent — to the singular
simplicial complex of the manifold, hence to its homotopy type. Moreover, that singular
simplicial complex (or rather its geometric realization) in turn gives a CW-complex
realization of the original manifold. So with this in mind, one may view our filtration
above as the natural smooth refinement of the filtration by CW-stages of the manifold.
That is, in taking the Čech nerve without contracting all its patches to points, we
retain exactly the smooth information that, via Borsuk’s theorem, corresponds to each
cell in the canonical CW-complex incarnation of the manifold. So in this sense, our
refinement can be viewed as the canonical smooth refinement of the traditional filtering
by CW-stages.

We are now ready to describe the spectral sequence.

Theorem 25 (AHSS for general smooth spectra) Let M be a compact smooth
manifold, and let E be a smooth spectrum. There is a spectral sequence with

E
p;q
2 DHp.M;Eq/ H) EpCq.M/:

Here Hp denotes the pth Čech cohomology with coefficients in the presheaf Eq . More-
over, the differential on the E1–page is given by the differential in Čech cohomology.

Proof The proof is almost immediate from the definitions. Recall that we have
identified the quotients in Lemma 23. By the axioms for a smooth cohomology theory,
we have that the E–cohomology of the quotient is given by

E�.Xk=Xk�1/' E�
�
†k
�W̨

0���˛k
U˛0���˛k

��
' E��k

�W̨
0���˛k

U˛0���˛k

�
'

M
˛0���˛k

E��k.U˛0���˛k
/:
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Applying EpCq to the cofiber sequence Xp ,! XpC1 � XpC1=Xp gives the long
exact sequence in E–cohomology

(3-2) � � � ! EpCq.XpC1=Xp/! EpCq.XpC1/

! EpCq.Xp/! EpCqC1.XpC1=Xp/! � � � :

Forming the corresponding exact triangle, we get a spectral sequence with Ep;q1 –term

E
p;q
1 D

M
˛0;���;˛p

Eq.U˛0���˛p
/:

Now we want to show that the differential on this page is given by the Čech differential

ıW E
p;q
1 D

M
˛0���˛p

Eq.U˛0���˛p
/ !

M
˛0���˛pC1

Eq.U˛0���˛pC1
/DEpC1;q:

To this end, note that differential on the E1–page, by definition, comes from the exact
sequence

� � �!EpCq.XpC1=Xp/
j
�!EpCq.XpC1/

i
�!EpCq.Xp/

@
�!EpCqC1.XpC1=Xp/!� � � :

We need to show that @j D d1 D ı is the Čech differential. By naturality of the
connecting homomorphism @, we have a commutative diagram

LCp�1.M IEq/

'
��

d1
// LCp.M IEq/

'
��L

˛0���˛p�1

Eq.U˛0���˛p�1
/

'
��

//
L

˛0���˛p

Eq.U˛0���˛p
/

'
��

EpCq�1.Xp�1=Xp�2/
j
//

��

EpCq�1.Xp�1/
@

//

��

EpCq.Xp=Xp�1/

��

EpCq�1.@�Œp��U˛0���˛p�1
/

id
**

EpCq.�Œp�=@�Œp�^U˛0���˛p
/

EpCq�1.@�Œp��U˛0���˛p�1
/

@ 44

where the vertical bottom maps are induced from the inclusion of a factor

(3-3)

�Œp��U˛0���˛p

� � // Xp

@�Œp��U˛0���˛p�1

� � //

OO

Xp�1

OO

∅ //

OO

Xp�2

OO
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into the p–level of the filtration. Comparing the top and bottom composite morphisms
in the big diagram, we see that on .p�1/–fold intersections U˛0���˛p�1

, the map d1 is
forced to map a section to the alternating sum of restrictions, as this is precisely the
map induced by the boundary inclusion in (3-3).

All that remains is the convergence. To establish that, we simply note that compactness
implies that, for large values of p , we have an equivalence Xp ' X . Moreover,
there are only finitely many diagonal entries at each page of the sequence. With this
assumption, the convergence to the corresponding graded complex

Ep;q1 D
ker
�
EpCq.X/! EpCq.Xp/

�
ker
�
EpCq.X/! EpCq.XpC1/

� D FpE
pCq.X/

FpC1EpCq.X/

follows exactly as in the classical case in [3].

Fiber bundles We can also construct a spectral sequence for a fiber bundle

F !N
p
�!M;

where each map is a smooth map of manifolds and M is compact. To that end, we
note that for a fixed good open cover fUig of M , the pullbacks fp�1.Ui /g define a
good open cover of N . By local triviality, we have that each p�1.Ui /'F �Ui . Then,
using the filtration

Xk D hocolim
�op

�
skkC.fp

�1.Ui /g/
�

on the total space N , we identify the successive quotients

Xk=Xk�1 '†
k
W̨

0���˛k
U˛0���˛k

^F:

A similar argument as in the proof of Theorem 25 gives:

Theorem 26 (smooth AHSS for fiber bundles) LetM;N and F be manifolds with M
compact. Let F !N

p
�!M be a fiber bundle. Let E be a sheaf of spectra. Then there

is a spectral sequence

E
p;q
2 DHp.M;Eq.�^F // H) EpCq.N /:

Here Hp denotes the pth Čech cohomology with coefficients in the presheaf E�q.�^F /.

Remark 27 (unreduced theories) Note that the smooth spectral sequence works for
reduced theories. One can treat unreduced theories similarly by setting

Eq.M;�/ WD zEq.MC/;
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where the tilde denotes the reduced theory and MC is the pointed stack with basepoint �.
In this case, we have the slight modification on the second spectral sequence, which
takes the form

E
p;q
2 DHp.M;Eq.��F // H) EpCq.N /:

3.2 Morphisms of smooth spectral sequences and refinement of the AHSS

Our next task will be to show that these spectral sequences do indeed refine the classical
Atiyah–Hirzebruch spectral sequence (AHSS) [3]. Since any smooth theory E comes
as a refinement of the underlying topological theory …E, we will immediately get a
morphism of spectral sequences induced by the morphism of spectra

I W E!…E:

Unfortunately, this morphism does not allow us to compare the differentials of the
spectral sequences in the way that we would ideally hope for. However, as we will
progressively see, the situation can be remedied by constructing a slightly different
morphism of spectral sequences. This morphism is related to the boundary map of
spectral sequences which occurs when a morphism of spectra induces the 0 map on
corresponding spectral sequences; see [55] for a discussion in the case of the Adams
spectral sequence. We first discuss the morphism induced by I , then construct this
“boundary-type” map, and prove that it indeed defines a morphism of spectral sequences.

Definition 28 Let Ep;qn and F p;qn be spectral sequences, that is, a sequence of bi-
graded complexes Ep;qn and F p;qn , n 2 N . A morphism of spectral sequences is a
morphism of bigraded complexes

fnW E
p;q
n ! F p;qn ;

defined for all n > N , where N is some fixed positive integer. Furthermore, we
require the map fnC1 to be the map on homology induced by fn . We call the smallest
integer N such that fn are defined for n > N the rank of the morphism.

We now apply this to the smooth AHSS. The next result should follow from general
principles, but we emphasize it explicitly for clarity and for subsequent use.

Proposition 29 Let E and F be smooth spectra. Then a map f W E! F induces a
morphism of corresponding smooth AHSSs

Ep;qn ! F p;qn :
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Proof Fix a manifold X and a good open cover fUig. Let Xp denote the pth filtration
of the Čech nerve as before. It is clear by naturality that a map of spectra f W E! F
induces a morphism of long exact sequences (see (3-2))

� � �EpCq.XpC1=Xp/ //

��

EpCq.XpC1/ //

��

EpCq.Xp/ //

��

EpCqC1.XpC1=Xp/ � � �

��

� � �FpCq.XpC1=Xp/ // FpCq.XpC1/ // FpCq.Xp/ // FpCqC1.XpC1=Xp/ � � �

It follows immediately from the construction of the corresponding exact triangles that
this morphism commutes with the differentials.

This now allows us to compare the topological and the smooth theories.

Corollary 30 Let E be a smooth spectrum and …E the underlying topological theory.
Let En and Fn denote the spectral sequences corresponding to E and …E, respectively.
The natural map I W E!…E induces a morphism of classical AHSSs2

I W Ep;qn ! F p;qn :

Remark 31 It is interesting that the smooth spectrum …E is, by definition, locally
constant. From the discussion around (2-1), this means that we have an isomorphism

…Eq.U /' ��q Map.U;…E/' ��q Map.�;…E/' ��q…E'…Eq.�/

for every element of a good open cover (or higher intersection) U . This connects,
via Borsuk’s theorem mentioned in Remark 24 above, the “smooth AHSS for locally
constant coefficients” with the classical AHSS: the locally constant coefficients see
each (contractible) patch as a point, and hence by Borsuk’s theorem, they see our “Čech
filtration” to be the classical CW-cell filtration.

From the construction of our smooth AHSS, it directly follows that the spectral sequence
associated to the smooth spectrum is a refinement of the classical topological AHSS.

Corollary 32 The spectral sequence F p;qn is precisely the AHSS for the cohomology
theory …E.

2Here we have an unfortunate conflict of notation. We are using the same symbols for the pages in the
spectral sequences for both the classical and the refined theories. We will aim to make the context explicit
whenever a possible ambiguity arises.
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We now would like to apply the above machinery to differential cohomology theories. In
particular, we note that for a differential function spectrum diff.E; ch/, the natural map

I W diff.E; ch/! E;

which strips the differential theory of the differential data and maps to the bare underly-
ing theory, is precisely the map induced by the unit I W id!…. In the above discussion,
we observed that this map always induces a morphism of spectral sequences. Moreover,
the target spectral sequence is exactly the AHSS for the underlying topological theory.
One might hope to be able to use this map to compare the differentials in the refined
theory with those differentials in the classical AHSS.

Unfortunately, this does not work in practice, as we will see when we discuss applica-
tions in Section 4. The core issue is that the spectral sequence for the refined theory
usually ends up shifted with respect to the classical AHSS. As a consequence, the
nonzero terms in each sequence are interlaced with respect to one another, and the
map I ends up killing all the nonzero terms. This, in turn, stems from the appearance of
the Bockstein map (which raises degree by 1) in the differential cohomology diagram.

However, there is often a different map between the lower quadrants of the two spectral
sequences corresponding to diff.E; ch/ and E, which lowers the degree as to match
the corresponding nonzero entries. This map is related to the so-called boundary map
between spectral sequences studied in [55]. The next proposition concerns this map
and will be essential for comparing the differentials in the refined theory to those of
the classical theory.

Proposition 33 (i) Let E be a spectrum such that ��.E/ is concentrated in degrees
which are a multiple of some integer n� 2 (eg K-theory, Morava K-theory). Suppose,
moreover, that ��.E/ is projective in those degrees. Then the sequence of spectra

E! E^MR! E^MU.1/
ˇE
�!†E

induces a short exact sequence on coefficients

(3-4) 0! ��.E/! ��.E/˝R! ��.E/˝U.1/! 0:

(ii) Let ˇ denote the connecting homomorphism (ie the Bockstein) for the coefficient
sequence (3-4). Let Ep;qn denote the spectral sequence corresponding to †�1E^MU.1/
and let F p;qn denote the spectral sequence corresponding to E. Then

ˇW Ep;qn ! F p;qn

induces a morphism of spectral sequences of rank 2.
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Proof Consider the long Bockstein sequence

� � � ! E
r
�! E^MR

e
�! E^MU.1/

ˇE
�!†E! � � �

induced by the cofiber sequence

S!MR!MU.1/:

Fix a manifold M and let Xp denote the p–level of the Čech filtration. Now each spec-
trum in the above sequence has a long exact sequence induced by the cofiber sequences

Xp�1!Xp!Xp=Xp�1;

from which one builds the exact couple for the corresponding spectral sequence. Using
the properties of ��.E/ along with this sequence, we can fit the long exact sequences
into a diagram

LCp.X I��q�1.E//
q�
//

r
��

EpCq�1.Xp/
i�
//

r
��

EpCq�1.Xp�1/
@

//

r
��

0

��

LCp.X I��q�1.ER//
q�
//

e
��

E
pCq�1
R .Xp/

i�
//

e
��

E
pCq�1
R .Xp�1/

@
//

e
��

0

��

LCp.X I��q�1.EU.1///
q�
//

ˇE
��

E
pCq

U.1/
.Xp/

i�
//

ˇE
��

E
pCq

U.1/
.Xp�1/

@
//

ˇE
��

0

��

0 // EpCq.XpC1/ // EpCq.Xp/ // LCp.X I��qC1.E//

where both the rows and columns are part of exact sequences, and LCp.X IA/ denotes
the group of Čech p–cochains with coefficients in A. Since everything commutes, this
induces a corresponding short exact sequence of E1–pages. At each .p; q/–entry, this
sequence is given by

0! Cp.X I��q.E//! Cp.X I��q.E/˝R/! Cp.X I��q.E/˝U.1//! 0:

Since the differentials on the E1–page are precisely the Čech differentials, the con-
struction of the Bockstein map in Čech cohomology will produce a map of E2–pages

ˇW Hp.X I��q.E/˝U.1//! HpC1.X I��q.E//:

We need to show that this map commutes with the differential. Choose a representative x
of a class in Hp.X I��q.E/˝U.1//. By definition, y D ˇ.x/ is a class such that
r.y/D ı.xx/, where xx is such that e.xx/D x . Then

r.d2y/D d2r.y/D d2ı.xx/:
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We want to show that there is a lift z of d2x such that ı.z/D d2ı.xx/. Indeed, if this
is the case, then d2y represents ˇ.d2x/ and we are done.

To construct z , recall that d2x is defined by first pulling back by the quotient q ,
which lies in the image of the map induced by the inclusion i W Xp ,!XpC1 , and then
applying the boundary to an element of the preimage. Let w be such that

i�.w/D q�.x/:

Chasing the diagram

LCp.X I��q�1.ER//
q�
//

e
��

E
pCq�1
R .Xp/

e
��

e
// E
pCq�1
R .Xp�1/

e
��

LCp.X I��q�1.EU.1///
q�
//

ˇE
��

E
pCq

U.1/
.Xp/

ˇE
��

i�
// E
pCq

U.1/
.Xp�1/

ˇE
��

0 // EpCq.Xp/
i�
// EpCq.Xp�1/

we see that 0DˇEq�.x/DˇEi�.w/D i�.ˇEw/. By exactness of the rows, this implies
that ˇEw D 0. Therefore, there is a class xw 2 EpCqC1R .XpC1/ such that e. xw/D w .

Now, by definition of the differential, we have

e.@ xw/D @.e. xw//D @w D d2x;

and z WD @ xw is a lift of d2x . Using the fact that ı D d1 D @q� , we have

ı.z/D ı.@ xw/D @.q�@ xw/:

By exactness, we have

i�.q�@ xw/D 0D q�@q�.xx/D q�.ı.xx//;

and it follows from the definition that ı.z/D d2.ı.xx//.

To show that H�.ˇ/ commutes with the higher differentials, we proceed by induction.
The above discussion proves the base case. Suppose ˇ induces a map Hn.ˇ/ on En
which commutes with dn . Then Hn.ˇ/ induces a well-defined map HnC1.ˇ/ on the
EnC1–page. Let x 2

Tn
iD1 ker.dnC1/ be a representative of a class on the En–page.

Then by definition, HnC1.ˇ/.x/ D ˇ.x/, and the exact same argument as before
(replacing d2 with dnC1 ) gives the result.

Having done the heavy lifting in the above proposition, we will now apply this to
straightforwardly relate the differentials of the refined theory to those of the underlying
topological theory. This will use an explicit alternative to the map I , along the lines of
the discussion preceding Proposition 33.
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Theorem 34 (refinement of differentials) Let E be a spectrum satisfying the proper-
ties of Proposition 33, and let diff.E; ch/ be a differential function spectrum refining E.
Let En and Fn denote the smooth AHSSs corresponding to diff.E; ch/ and E, respec-
tively. Then the Bockstein ˇ defines a rank-2 morphism of fourth quadrant spectral
sequences

ˇW Ep;qn ! F p;qn ; q < 0:

Proof Recall that for q <0, Proposition 10 implies that diff.E; ch/q.M/'E
q�1

U.1/
.M/.

The claim then follows from the previous proposition.

3.3 Product structure and the differentials

Let E be an E1 ring spectrum. Then the associative graded-commutative product
on E� induces a product (associative and graded-commutative) on the refinement
diff.†nE; ch/� , that is, a map

(3-5) [W diff.†nE; ch/k˝ diff.†mE; ch/j ! diff.†nCmE; ch/kCj

(see [13; 71]). The goal of this section will be to establish the following very useful
property, in analogy with the classical case.

Proposition 35 (compatibility with products) The product

[W diff.†nE; ch/k˝ diff.†mE; ch/j ! diff.†nCmE; ch/kCj

induces a morphism of spectral sequences

[W E�.n/�E�.m/!E�.nCm/:

Moreover, the differentials satisfy the Leibniz rule

d.xy/D d.x/yC .�1/pCqxd.y/:

Let us first work out what the cup product pairing is on the E1–page. Recall from the
construction of the spectral sequence that Ep;q1 is given by

E
p;q
1 D

M
˛0���˛p

diff.†nE; ch/q.U˛0���˛p
/' LCp.M I diff.†nE; ch/q/:

Using the product (3-5), we get a cross product map

(3-6) �W

M
˛0���˛p

diff.†nE; ch/q.U˛0���˛p
/�

M
˛0���˛r

diff.†mE; ch/t .U˛0���˛r
/

!

M
˛0���˛p

M
˛0���˛r

diff.†nCmE; ch/qCt .U˛0���˛p
�U˛0���˛r

/:
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We also have an isomorphismM
˛0���˛s

diff.†nCmE; ch/qCt ..U �U/˛0���˛s
/

' diff.†nCmE; ch/qCt
�W̨

0���˛s
.U �U/˛0���˛s

�
' diff.†nCmE; ch/qCt

�W̨
0���˛p

W̨
0���˛r

W
pCrDs .U˛0���˛p

�U˛0���˛r
/
�

'

M
˛0���˛p

M
˛0���˛r

M
pCrDs

diff.†nCmE; ch/qCt .U˛0���˛p
�U˛0���˛r

/

given by decomposing the product of the cover fU˛g with itself. Finally, we can
pullback by the diagonal map

��W
M
˛0���˛s

diff.†nCmE; ch/qCt ..U �U/˛0���˛s
/

!

M
˛0���˛s

diff.†nCmE; ch/qCt .U˛0���˛s
/' LCpCr.M I diff.†nCmE; ch/qCt /:

The cup product on the E1–page is defined by the composite map ���.

Lemma 36 The differential d1 on the E1–page satisfies the Leibniz rule.

Proof The construction of the cup product on the E1–page is precisely the cup product
structure for Čech cohomology. The Čech differential satisfies the Leibniz rule, and
this is precisely d1 by construction.

We are now ready to prove Proposition 35.

Proof The proof follows by induction on the pages of the spectral sequence. The base
case is satisfied by Lemma 36. Now suppose we have a cup product map

[W E.n/k �E.n/k!E.nCm/k

such that dk satisfies Leibniz. By definition, we have

E.n/
p;q

kC1
D

ker
�
dk W E.n/

p;q

k
!E.n/

pCk;qCk�1

k

�
im
�
dk W E.n/

p�k;q�kC1!E.n/p;q
� ;

and we define the cup product

[W E.n/
p;q

kC1
�E.m/

r;s
kC1
!E.nCm/

pCr;qCs

kC1

by restricting to elements in the kernel of dk . The product is well defined since dk
satisfies the Leibniz rule. At this stage, the problem looks formally like the classical
problem. Hence, analogously to the classical discussion in [36], it is tedious but
straightforward to show that dkC1 also satisfies the Leibniz rule.
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4 Applications to differential cohomology theories

In this section, we would like to apply the spectral sequence constructed in the previous
section to various differential cohomology theories. The construction is general enough
to apply to any structured cohomology theory whose coefficients are known. We will
explicitly emphasize three main examples. The first two are to known theories, namely
ordinary differential cohomology and differential K-theory. We take this opportunity
to explicitly develop the third theory, which is differential Morava K-theory, and then
apply our smooth AHSS construction to it.

4.1 Ordinary differential cohomology theory

We begin by recovering the usual hypercohomology spectral sequence for the Deligne
complex (see [11; 24, Appendix]) using our methods. We will first look at manifolds,
then products of these, and then more generally to smooth fiber bundles.

Let us consider the smooth spectrum diff.†nHZ; ch/ representing differential coho-
mology in degree n. We would like to see what our smooth AHSS gives in this case.
We recall that diff.†nHZ; ch/ is represented by Deligne cohomology of the sheaf of
chain complexes Z1D .n/ via the Eilenberg–Mac Lane functor H W Sh1.CartSpICh/!
Sh1.CartSpI Sp/ (2-6). It follows from the general properties of this functor that the
homotopy groups are given by

�k diff.†nHZ; ch/'HkZ1D .n/:

In this case, we have the immediate corollary to Theorem 25.

Corollary 37 The spectral sequence for Deligne cohomology takes the form

E
p;q
2 DHp.X IH�qZ1D .n// H) HpCq.X IZ1D .n//;

which is essentially the hypercohomology spectral sequence for the Deligne complex,
but shifted as a fourth quadrant spectral sequence.

For the sake of completeness, we work out this spectral sequence and recover the
differential cohomology diamond (2-2) from the sequence. This will help to illustrate
how the general spectral sequence behaves and how it can be used to calculate general
differential cohomology groups.

Now over the site of Cartesian spaces, the Poincaré lemma implies that we have an
isomorphism of presheaves d W �n�1= im.d/ '�! �ncl . Since �ncl is a sheaf over the
site of smooth manifolds, the gluing condition allows us to calculate the relevant terms
on the E2–page of the spectral sequence in Figure 1.
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0 �ncl.M/

::: 0

�.n�2/ 0

�.n�1/ Hn�1.M IU.1//

�n 0

d2

d2

d2

Figure 1: Ep;q2 from Corollary 37

The term Hn�1.M IU.1// will survive to the E1–page, and we have an isomorphism

Hn�1.M IU.1//' Fn�1 yH
n.M IZ/=Fn yH

n.M IZ/:

In fact, it is not hard to see that the definition of the filtration gives Fn yHn.M IZ/' 0,
and we have an injection

Hn�1.M IU.1//' Fn�1 yH
n.M IZ/ ,! yHn.M IZ/:

On the En–page, we get one possibly nonzero differential

dnW �
n.M/cl!Hn.M IU.1//:

Proposition 38 The differential dn for the AHSS for Deligne cohomology can be
identified with the composition

�ncl.M/!Hn
dR.M/

R
�n

��!Hn.M IR/
exp
��!Hn.M IU.1//;

and the kernel is precisely those forms which have integral periods.

Proof We will unpack the definition of the differential in the AHSS in detail. This in
turn will require unpacking the connecting homomorphism in the Deligne model of
ordinary differential cohomology; see [11]. Denote by Xp the Čech filtration, and let

@W diff.†nHZ; ch/q.Xp/! diff.†nHZ; ch/qC1.XpC1=Xp/

denote the connecting homomorphism in the long exact sequence associated to the
cofiber sequence Xp ,! XpC1 � XpC1=Xp in the usual way. In what follows, we
will denote Čech–Deligne cochains on the p–level of the filtration Xp as a p–tuple

.z0; z1; : : : ; zp/ 2 yC
q.Xp/;

where zi is a .q�i/–form defined on i –fold intersections.
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Now, by definition, dnW E
0;0
n !E

n;0
n is given by dnD@.j �/�1 , where .j �/�1 denotes

a choice of element in the preimage of the restriction j � induced by j W X0 ,!Xn�1 .3

Since we have dk D 0 for k < n, the differential dn is defined on all elements
z 2 �ncl.M/. Let g0 be a locally defined .n�1/–form trivializing z . Then we can
choose .j �/�1z to be the Čech–Deligne cocycle

(4-1) .j �/�1z D .g0; g1; g2; : : : ; gn�2/„ ƒ‚ …
n�1

2 yC 0.Xn�1/;

where each gk is a .n�k�1/–form that satisfies the cocycle condition ı.gk/ D

.�1/kdgkC1 . To see where the boundary map takes this element, let y be a Čech–
Deligne cochain given by

y D .g0; g1; g2; : : : ; gn�2; exp.2�ign�1//„ ƒ‚ …
n

2 yC 0.Xn/;

where gn�1 is any smooth R–valued function satisfying d.gn�1/D .�1/n�1ı.gn�2/.4

Now y is not Čech–Deligne closed in general since

Dy D .d C .�1/n�1ı/y D .0; 0; : : : ; exp..�1/n�12�i � ı.gn�1///;

and gn�1 may not satisfy the cocycle condition ı.gn�1/D 0. However, by the Čech–
de Rham isomorphism (see for example [7]), this element in the Čech– de Rham
double complex is isomorphic to an R–valued Čech cocycle on n–fold intersections.
Explicitly, there is a constant R–valued cocycle rn such that ı.gn�1/D rn . It follows
from the isomorphisms between the Čech, de Rham, and singular cohomologies that
the class of rn can be represented by the singular cocycle given by the pairing

R
�z

for any cycle � in M . Since the class
R
� z was just an unraveling of the boundary

@..j �/�1z/, we have proved the claim.

In the next section, we will need to make use of a differential refinement of the
Chern character. To this end, we briefly discuss differential cohomology with rational
coefficients yHn.�IQ/. These groups are obtained via the differential function spectra
diff.†nHQ; ch/ which fit into the homotopy cartesian square:

diff.HQ; ch/ //

��

H.��0�
�Œn�/

��

†nHQ // H.��Œn�/

3Note that the differential only takes this form at the .0; 0/–entry. In general, the differential formed
from the nth derived couple will be more complicated.

4Note that this cocycle condition is necessary for y to be an lift of .j �/�1z to the n–level of the
filtration.
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As a consequence of Proposition 10, the cohomology groups with values in this spectrum
are calculated as

diff.†nHQ; ch/q.M/D

8<:
HnCq.M/; q > 0;

yHn.M IQ/; q D 0;

Hn�1Cq.M IR=Q/; q < 0:

The explicit calculation of the differential in Proposition 38 can be easily modified to
get the following.5

Proposition 39 The differential dn on the En–page for the AHSS spectral sequence
for diff.†nHQ; ch/ is given by

�ncl.M/!Hn
dR.M/

R
�n

��!Hn.M IR/!Hn.M IQ=Z/;

and the kernel is precisely those forms which have rational periods.

We will make use of this result when we discuss the differentials in smooth K-theory
in the next section. For now, from Proposition 38, we immediately get the following
characterization of closed forms with integral periods and forms with rational periods
using our smooth AHSS.

Corollary 40 (i) The group of closed forms with integral periods on a manifold M
is given by

�ncl;Z.M/' yHn.M IZ/=F1 yH
n.M IZ/:

(ii) The group of closed forms with rational periods on a manifold M is given by

�ncl;Q.M/' yHn.M IQ/=F1 yH
n.M IQ/:

4.2 Differential K-theory

In this section, we examine the smooth AHSS for the differential function spectrum
diff.K; ch/, corresponding to complex K-theory. Proposition 10 allows us to calculate
the cohomology groups on a paracompact manifold M as (see [49; 17; 66; 28])

(4-2) diff.K; ch/q.M/D

8̂<̂
:
Kq.M/; q > 0;

yK0.M/; q D 0;

K
q

U.1/
.M/; q < 0:

Both groups K and KU.1/ are periodic. Indeed, KU.1/.M/ fits into an exact sequence

� � � !K�1.M/˝R!K�1U.1/.M/!K.M/!K.M/˝R! � � � :

5The exact argument in the proof of Proposition 38 applies, with R=Q in place of R=Z' U.1/ .
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Consequently, the periodicity of both integral and rational K-theory, along with an
application of the five lemma, imply that KU.1/ is 2–periodic. In particular, we have

K
2q

U.1/
.�/' U.1/ and K

2qC1

U.1/
.�/' 0; q 2 Z:

Given (4-2), we see that for a contractible open set U , we have an isomorphism

diff.K; ch/2qC1.U /'K2q
U.1/

.�/' U.1/

for q < 0. For degree 0, the differential cohomology diamond in this case takes
the form: Q

2k�1

�2k�1= im.d/

a

''

d
//
Q
2k

�2kcl

""

K�1R

77

''

yK0

I

##

R
<<

K0R

K�1
U.1/

77

ˇK
// K0

ch
;;

This implies that for a contractible open set U , differential K-theory yK0.U / fits into
the short exact sequence

0!
Y
2k�1

�2k�1= im.d/.U /! yK0.U /! Z! 0:

Hence, over the site of Cartesian spaces, we have a naturally split short exact sequence
of presheaves

0!
Y
2k�1

�2k�1= im.d/! yK0! Z! 0:

Over that site, the presheaf on the left-hand side is actually a sheaf and is naturally
isomorphic (by the Poincaré lemma) to the sheaf

Q
2k �

2k
cl . We therefore make the

identification

(4-3) yK0 '
Y
2k

�2kcl ˚Z:

Remark 41 It is important to note that the identification (4-3) is only true on the site
of Cartesian spaces, which is to say that it holds only locally. On the site of smooth
manifolds, this is of course not the case.

Next, since both �2kcl and Z are sheaves on the site of smooth manifolds, we can
identify the degree-0 Čech cohomology with these coefficients with the value of this
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0
Q
2k �

2k
cl .M/˚Z

�1 H 1.M IU.1// H 2.M IU.1//

�2 0 0 0

�3 H 4.M IU.1//

d2

Figure 2: Ep;q2 for even differential K-theory

sheaf on M . Isolating the terms on the E2–page which converge to yK0.M/, we get
Figure 2.

We see that all the differentials are zero except for the map labeled d2 above. On the
E3–page, we get Figure 3.

The higher pages will fall into cases depending on the parity. We observe that for each
even page E2m , there is one nonzero differential given by d2m . For the odd pages the
differentials are given by an odd-degree U.1/–cohomology operation.

Note that, in the diagrams, we are interested in the case pC q D 0, corresponding to
diagonal entries. Now p � 0, as the Čech filtrations are of nonnegative degrees, which
implies that q � 0. Hence the entries go down the diagonal. Our first goal will be
to identify the even differentials d2m . In order to do this, let us recall that there is a
differential Chern character map (see [13; 63]) which is stably given by a morphism
of smooth spectra �chW diff.K; ch/!

Y
2k

diff.†2kHQ; ch/:

Postcomposing this map with the projection pr2m onto the 2m–component gives a
map of smooth spectra

pr2m �chW diff.K; ch/! diff.†2mHQ; ch/:

Using this map, we can prove the following analogue of Proposition 39.

Proposition 42 The group of permanent cycles in bidegree .0; 0/ in the AHSS for
diff.K; ch/ is a subgroup of even-degree closed forms with rational periods. That is,
we have

E0;01 �
Y
k

�2kcl;Q.M/˚Z:
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0 ker.d2/

�1 H 2.M IU.1// H 3.M IU.1//

�2 0

�3 H 5.M IU.1//

d3

d3

Figure 3: Ep;q3 for even differential K-theory

Proof We prove by induction on the even pages6 of the spectral sequence that, for
all n, E0;02n must be a subgroup ofY

2k�2n

�2kcl;Q.M/ ˚
Y
2k>2n

�2kcl .M/˚Z:

For the base case, observe that the map pr2 �ch induces a rank-1 morphism of AHSSs
and therefore commutes with d2 . It is straightforward to check, using the definitions,
that this leads to the following commutative diagram:

Q
2k

�2kcl .M/˚Z

d2

��

pr2
// �2cl.M/

d 02
��

H 2.M IR=Z/
q
// H 2.M IR=Q/

We see that the kernel of d2 must be a subgroup of �2cl;Q.M/˚
Q
2k>2�

2k.M/˚Z
by Proposition 38.

Now suppose the claim is true for d2n . Again, we have that pr2nC2 �ch commutes
with d2nC2 , and we have the following commutative diagram:

ker.d2n/
pr2nC2

//

d2nC2

��

�2nC2cl .M/

d 0
2nC2

��

H 2nC2.M IR=Z/
q
// H 2nC2.M IR=Q/

6The differential is 0 for the odd pages, and so no generality is lost by restricting to the even pages.
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By the induction hypothesis,

ker.d2n/�
Y
2k�2n

�2kcl;Q.M/˚
Y
2k>n

�2kcl .M/˚Z;

and the kernel of d2nC2 is as claimed.

We now turn to the first odd differential d3 . Recall that ˇ and ž denote the Bockstein
homomorphisms corresponding to the sequences 0! Z! R

exp
��! U.1/! 0 and

0! Z! Z! Z=2! 0, respectively. We still also denote by �2W Hn.�IZ=2/!
Hn.�; U.1// the map induced by the representation of Z=2 as the square roots of
unity and �2W Z! Z=2 as the mod 2 reduction.

Proposition 43 (degree-3 differential) The first odd-degree differential in the AHSS
for differential K-theory is given by

d3 D

8̂<̂
:
�Sq3 WD �2Sq2�2ˇ; q < 0;

Sq3Z WD žSq2�2; q > 0;

0; q D 0:

Proof The case for q D 0 is obvious. For q > 0, this follows from the fact that the
integration map defines an isomorphism I W diff.K; ch/q.M/ '�! Kq.M/ for q > 0.
Since the differential d3 for the classical AHSS is given by Sq3Z , and the integration
map defines an isomorphism of corresponding first quadrant spectral sequences, the
case q > 0 is settled.

For q < 0, Corollary 30 implies that the Bockstein ˇ commutes with the differentials
on the E3–page. We therefore have

(4-4) ˇd3 D Sq3Zˇ D žSq3�2ˇ:

Rephrasing, we have the commuting diagram:

Hn�1.M IU.1//
d3
//

ˇ
��

HnC3�1.M IU.1//

ˇ
��

Hn.M IZ/
Sq3

Z
// HnC3.M IZ/

We now claim that ž D ˇ ı�2 . Indeed, we have a morphism of short exact sequences:

Z
�2

//

id
��

Z
�2

//

��i
����

Z=2

�2
��

Z
�2�i

// R
exp

// U.1/
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This morphism induces a morphism on the associated long exact sequences on coho-
mology. After delooping once to extend to the left, the homotopy commutativity of the
resulting diagram

Z=2

�2
��

ž
// BZ

U.1/
ˇ
// BZ

immediately establishes the claim.

Now it follows from (4-4) that d3 � �2Sq3�2ˇ is in the kernel of ˇ . By exactness
of the Bockstein, this implies that it must be in the image of the exponential map
expW H�.�IR/ ! H�.�IU.1//. Hence there is an operation  W H�.�IU.1// !
H�.�IR/ such that

� WD exp ı D exp. /D d3��2Sq3�2ˇ:

Equivalently, we have a factorization:

H�.�IU.1//

 ((

�
// H�.�IU.1//

H�.�IR/
exp

66

We expect to have hom.H�.�IU.1//;H�.�IR//D0 since U.1/ is almost completely
torsion (and since the second argument is an R–vector space). However, we need to
be slightly careful here, since not all elements a 2 H�.M IU.1// represent torsion
classes. In fact, identifying U.1/'R=Z, such an element will be torsion if and only
if it represents an element in H�.M IQ=Z/ ,!H�.M IR=Z/. To fix this issue, we
observe that for any abelian group A, we have an isomorphism

r W hom.H�.M IR/; A/! hom.H�.M IQ/; A/

given by restricting a map to the rationals Q�R. The inverse is given by restricting a
map to the generators and extending with real coefficients. This implies, in turn, that
we have an isomorphism

r W hom.H�.M IR=Z/; A/! hom.H�.M IQ=Z/; A/I

ie R=Z and Q=Z behave equivalently when taken as coefficients of cohomology
inside the hom. Finally, since hom.H�.M IQ=Z/;H�.M IR// D 0, we must have
hom.H�.M IR=Z/;H�.M IR//D0, which forces  D0. Consequently, exp ı D0,
so that � D 0. Therefore, indeed we have

d3 D �2Sq3�2ˇ:
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Remark 44 The above proposition suggests that these operations are related to some
sort of differential Steenrod squares. Indeed, this is the case, which has been investigated
by the authors in [33], with �Sq3 being one such operation.

Now that we have established the algebraic construction, we turn to investigating the
convergence of the spectral sequence from a geometric point of view. In particular,
we immediately observe that the only terms in the spectral sequence which contain
information about differential forms are at q D 0. These terms converge to elements in
the filtered graded complex (since q D 0)

yK.M/=F1 yK.M/:

Since the filtration is given by the Čech-type filtration on M , we see that this quotient
contains elements which have nontrivial data on all open sets, intersections and higher
intersections. For the degrees q < 0, the filtration quotients

Fp yK.M/=FpC1 yK.M/

have trivial data below p–intersections.

In fact, it is not too surprising that this occurs. There is a geometric model for
reduced yK0 which is given by the moduli stack BUconn of unitary vector bundles,
equipped with connection. Let Vectr be the moduli stack of vector bundles with
connections. It was shown in [16] that there is a cycle map

cyclW �0 Map.M;Vectr/! yK0.M/;

which induces an isomorphism upon group completion. In our construction, this is
equivalent to

cyclW �0 Map.M;BUconn/! yK0.M/:

Now the stack BUconn can be identified with the moduli stack obtained by taking the
nerve of the action groupoid C1.�; U /==�1.�I u/ with the action given by gauge
transformations, where u is the Lie algebra of the unitary group. Let fU˛g be a good
open cover of M . Then a map M ! BUconn is given by the following data:
ı a choice of smooth U.n/–valued function g˛ˇ on intersections U˛ \Uˇ ,
ı a choice of local connection 1–form A˛ˇ on open sets U˛ .

This is precisely the data needed to define a unitary vector bundle on M .

Remark 45 More relevant to our needs, though, is the fact that the effects of the
filtration become transparent when taking BUconn as a model for yK0 . We now see that
the q D 0 terms converge to terms which involve the data of the connection, while the
q < 0 terms contain data about bundles with trivializable connections (in particular,
flat connections).
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Differential K1 –theory We now consider odd differential K-theory, K1 . In this case,
the representing spectrum is the unitary group U itself. Viewing this as a classifying
space, we can write U D B�U . Of course we are interested in the corresponding
stacks. Unfortunately, we do not have the analogue of the above group-loop group
relation in stacks; ie Uconn 6'B�Uconn . Nevertheless, the machinery that we set up will
work equally well for differential K1–theory, as far as the third differential goes; ie we
still have d3 D �Sq3 . However, the even differentials are now transgressed in degree by
one, so that they are also of odd degree. This is expected as the Chern character in this
case is a map to cohomology of odd degree.

The story for yK1 can be worked out similarly as we indicated above. Let us expand on
this in more detail. In the odd case, the differential cohomology diamond takes the formQ

2k

�2k= im.d/

a

%%

d
//
Q
2kC1

�2kC1cl

##

K0R

::

%%

yK1

I

$$

R
;;

K1R

K0
U.1/

99

ˇK
// K1

ch
::

and we get a short exact sequence of presheaves (on the site of Cartesian spaces)

0! Z!
Y
2k

�2k= im.d/! yK1! 0:

It is straightforward to show that the map Z!
Q
2k �

2k= im.d/ is zero. Consequently,
we have the isomorphism

yK1 '
Y
2k

�2k= im.d/'
Y
2kC1

�2kC1cl :

Using the same type of argument as in the even K-theory K0 , we likewise get a
refinement of the differential of the underlying topological theory. More precisely, we
see that the first nonzero differentials appear on the E3–page as in Figure 4.

Proposition 46 Proposition 43 holds for differential K1–theory. That is, the degree-3
differential in yK1 is given by the refinement of the Steenrod square of dimension three.

Also, using the same argument as in the proof of Proposition 42, we see that the perma-
nent cycles in bidegree .0; 0/ are a subgroup of odd-degree forms with rational periods.
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0
Q
2kC1�

2kC1
cl .M/

�1

�2 H 2.M IU.1// H 3.M IU.1//

�3

�4 H 5.M IU.1//

d3

�Sq3

Figure 4: Ep;q2 for odd differential K-theory

Proposition 47 The group of permanent cycles in bidegree .0; 0/ in the AHSS for
diff.†K; ch/ is a subgroup of odd degree closed forms with rational periods. That is,
we have

E0;01 �
Y
k

�2k�1cl;Q .M/˚Z:

Example 48 (fields in string theory and M-theory) In the string theory and M-theory
literature, one encounters settings where cohomology classes are compared to K-theory
elements, in the sense of asking when a cohomology class arises from or “lifts to” a
K-theory class. This involves, in a sense, a physical modeling of the process of building
the AHSS. One such obstruction is Sq3 , viewed as the first nontrivial differential d3
in K-theory, so that the condition Sq3x D 0 on a cohomology class x amounts to
saying that the class lifts to K-theory. This is desirable in the study of the partition
function of the fields in type-IIA string theory; see [21; 47]. On the other hand, it is
desirable to have differential refinements for physical purposes. Therefore, now that we
have the differential AHSS at our disposal, it is natural to consider expressions such as
d3.yx/ WD �Sq3yx D 0 on the differential cohomology class yx that refines the topological
class x . This can be viewed as a condition on cohomology with U.1/–coefficients (or
flat n–bundles), in order that they lift to flat elements in yK .7 If the degree of the class x
is even, then we are in type-IIA string theory, and we lift to differential K0–theory. On
the other hand, being in type-IIB string theory means the degree of x is odd, and we
are lifting to differential K1–theory. The new differentials d2m and d2mC1 arising
from differential forms will correspond to even- and odd-degree closed differential
forms as the particular forms representing the physical fields F2m and F2mC1 via the
Chern character.

7This could end up being stronger in the sense that it is a condition for lifting differential cohomology
classes to differential K-theory, but we will leave that for future investigations.
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Example 49 (D-brane charges) The charges of D-branes can, a priori, be taken to be
given as a class in cohomology QH 2H�.X IQ/. Quantum effects requires some of
these charges to be (up to shifts) to be in integral cohomology. However, in order to
not discuss isomorphism classes of such physical objects but pinning down a particular
physical object, one considers the charges to take values in differential cohomology,
with Deligne cohomology being one such presentation: Q yH 2 yH

�.X IZ/; see [19].
On the other hand, careful analysis reveals that the charges take values in K-theory
rather than in cohomology QK 2Ki .X/ for i D 0; 1 for type IIB/IIA; see [56; 29; 9].
Such a class exists if the cohomology charge satisfies Sq3QH D 0. Again, at this stage,
adding in the geometry requires the charges to take values in differential K-theory
Q yK 2 yK

i .X/. Our construction now allows for a characterization of when charges
in Deligne cohomology lift to charges in differential K-theory, namely when they are
annihilated by the third differential in the smooth AHSS, ie when �Sq3Q yH D 0.

4.3 Differential Morava K-theory

There are various interesting generalized cohomology theories that descend from
complex cobordism, among which are Morava K-theory and Morava E-theory. Such
theories can be defined using their coefficient rings, which in general are polynomials
over finite or p–adic fields on generators whose dimension depends on the chromatic
level and the prime p . As such, these kind of theories do not lend themselves directly
to immediate geometric interpretation in contrast to the case of K-theory, which can be
formulated via stable isomorphism classes of vector bundles.

However, recent work in [48] (generalizing some aspects of [5]) seems to give hope in
that direction. Nevertheless, just because an entity is defined over a finite field does not
automatically make it ineligible for differential refinement. In fact, we have recently
demonstrated this [33] for the case of Steenrod cohomology operations, which are, a
priori, Z=p–valued operations. The main point there was that as long as these admit
integral lifts, they do have a chance at a differential refinement. What we will seek here
is something analogous: integral refinements of such generalized cohomology theories.

We will consider the integral Morava K-theory zK.n/ highlighted in [47; 60; 62]. Morava
K-theory K.n/ is the mod p reduction of an integral (or p–adic) lift zK.n/ with coeffi-
cient ring zK.n/�DZpŒvn; v�1n �. This theory more closely resembles complex K-theory
than is the case for the mod p versions (for nD 1, it is the p–completion of K-theory).
The integral theory is much more suited to applications in physics [47; 60; 12; 62].

The Atiyah–Hirzebruch spectral sequence for Morava K-theory has been studied by
Yagita in [72]; see also [47]. There is a spectral sequence converging to K.n/�.X/
with E2–term E

p;q
2 DHp.X;K.n/q/. While this can be done for any prime, we will
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focus on the prime 2. In this case, the first possibly nontrivial differential is d2nC1�1 ;
this is given by [72] as

d2nC1�1.xv
k
n/DQn.x/v

k�1
n :

Here Qn is the nth Milnor primitive at the prime 2, which we define inductively
as Q0 D Sq1 , the Bockstein operation, and QjC1 D Sq2

j

Qj � QjSq2
j

, where
Sqj W Hn.X IZ2/!HnCj .X IZ2/ is the j th Steenrod square. These operations are
derivations

Qj .xy/DQj .x/yC .�1/
jxjxQj .y/:

The signs are of course irrelevant at p D 2, but will become important in the integral
version. Extensive discussion of the mod p Steenrod algebra in terms of these operations
is given in [68].

The integral theory is also computable via an AHSS, which can be deduced from
[47; 62]. There is an AHSS converging to zK.n/�.X/ with Ep;q2 DHp.X; zK.n/q/.
The first possibly nontrivial differential is d2nC1�1 ; this is given by

d2nC1�1.xv
k
n/D

zQn.x/v
k�1
n :

Here zQk W H�.X IZ/!H�C2
kC1�1.X IZ/ is an integral cohomology operation lifting

the Milnor primitive Qk .

In order to consider differential refinement of Morava K-theory, we need geometric in-
formation encoded in differential forms, hence rational information. The rationalization
of Morava K-theory zK.n/, like any reasonable spectrum, exists and can be thought of
as localization at zK.0/DHQ; see [8; 58]. We can, in the same way, localize at R.
More precisely, the localized theory is given by

zKR.n/D zK.n/^MR;

where MR is an Eilenberg–Moore spectrum. We have an equivalence

zKR.n/'H.ZŒvn; v
�1
n �˝R/

and a Chern character map

chW zK.n/!H.ZŒvn; v
�1
n �˝��/:

Thus we can form the differential function spectrum diff. zK.n/; ch/, and we can form
the associated AHSS. To see what form the spectral sequence takes, we need to discuss
the flat Morava K-theory zKU.1/.n/, defined by the fiber sequence

zK.n/! zK.n/^MR! zKU.1/.n/ WD zK.n/^MU.1/:
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0
Q
k �

k2.2n�1/
cl .M/˚Z

:::

�2nC1C3 H 2nC1�3.M IU.1// H 2.2n�1/.M IU.1//

:::

�2nC2C5 H 4.2n�1/.M IR=Z/

d2.2n�1/

Figure 5: Ep;q
2.2n�1/

for Morava K-theory

This theory is periodic with period 2.2n�1/. Indeed, both zK.n/ and its rationalization
are periodic, and we have a long exact sequence

� � � ! zK.n/m.M/! . zK.n/^MR/m.M/! zKmU.1/.n/.M/! zK.n/mC1.M/! � � �

relating the flat theory to both the rational and integral theories. This, in particular,
gives the following identification.

Lemma 50 The coefficients of flat Morava K-theory are given by

zKU.1/.n/
m.�/'

�
U.1/; mD 2.2n� 1/;

0; otherwise:

Knowing the coefficients of the flat theory, we can write down the relevant nonzero
terms on the E2.2n�1/–page of the corresponding spectral sequence in Figure 5, and
the only nonzero differential is given by

d2.2n�1/W

Y
k

�
k2.2n�1/
cl .M/˚Z!H 2.2n�1/.M IR=Z/:

Just as in the case for differential K-theory (see Propositions 42 and 47), we have:

Proposition 51 The group of permanent cycles in bidegree .0; 0/ in the AHSS for
diff. zK.n/; ch/ is a subgroup of certain closed forms with rational periods. More
precisely, we have

E0;01 �
Y
k

�
2k.2n�1/
cl;Q .M/˚Z:
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To identify the Čech cohomology groups with coefficients in yK.n/0 , we make the
identification (as we did for differential K-theory)

yK.n/0 '
Y
k

�
2k.2n�1/
cl ˚Z

on the site of Cartesian spaces. Again, using the sheaf condition over smooth manifolds,
we have

Hp.M I yK.n/0/'
Y
k

�
2k.2n�1/
cl .M/˚Z:

We now consider the differential refinement of the (integrally lifted) Milnor primitive.
As before, let �2W Hn.�IZ=2/!Hn.�IU.1// denote the map induced by the repre-
sentation of Z=2 as the square roots of unity, and let �2W Z! Z=2 denote the mod 2
reduction.

Lemma 52 The integral Milnor primitive zQn factors through the representation
�2W Z=2 ,! U.1/. That is, there exists an operation yQn such that

Qn�2 D �2 zQn D �2ˇ�2 yQn;

where ˇ is the Bockstein for the exponential sequence.

Proof Recall first that �2ˇ�2 D �2 ž D Sq1 , where ž is the Bockstein for the mod 2
reduction sequence. We can therefore rewrite the above equation as

Qn�2 D �2 zQn D �2ˇ�2 yQn D Sq1 yQn;

and the existence of the class yQn holds if and only if Sq1Qn�2 D 0. On the other
hand, the existence of the integral lift zQn immediately implies this condition.

Again, let ˇ and ž denote the Bockstein homomorphism corresponding to the sequences
0!Z!R!R=Z!0 and 0!Z!Z!Z=2!0, respectively. Then the following
can be proved in a similar way as we did for Proposition 43 in the case of differential
K-theory.

Proposition 53 (odd differentials for Morava AHSS) The .2nC1�1/–differential in
the AHSS for differential Morava K-theory is given by

d2nC1�1 D

8<:
�2 yQn�2ˇ; q < 0;

zQn; q > 0;

0; q D 0:

Remark 54 (odd primes) The above discussion has been for the prime 2; that is, we
are considering integral Morava K-theory as arising from lifting of the p D 2 Morava
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K-theory. We can do the same for odd primes, leading to integral Morava K-theory lifted
from an odd prime p . A similar discussion follows and we have an integral lift of the
Milnor primitive at odd primes, as in Lemma 52. The differentials will be again given by
these refinements of the Milnor primitive; ie Proposition 53 holds except that the prim-
itives are defined using the Steenrod reduced power operations P j . Precisely, Q0 is
the Bockstein homomorphism associated to reduction mod p sequence, and inductively
QiC1DP

pi

Qi �QiP
pi

. The operations P j have been differentially refined in [33].
Hence the refinement of the Milnor primitives at odd primes will also follow. Then
the .pnC1�1/–differential in the AHSS for differential Morava K-theory is given by

dpnC1�1 D

8<:
�p yQn�pˇ; q < 0;

zQn; q > 0;

0; q D 0:

Example 55 (lifting fields to differential Morava K-theory) We build on Example 48
and aim to lift the cohomology classes beyond K-theory. In particular, for xD�D 1

2
p1

the first Spin characteristic class, we have yx D y� the differential refinements of �
[61; 25] (which can be viewed as a lifted Wu class [41]), and we would have �Sq3y�D 0.
This condition in differential cohomology can be viewed as a refinement of the condition
W7 D Sq3�D 0 leading to orientation with respect to integral Morava K.2/–theory
(lifted from the prime p D 2) as shown in [47] and elaborated further in [12]. From
the structure of the smooth AHSS in relation to the classical AHSS, one can extend
various results to the differential case. For instance, one can generalize the statement
in [47] on orientation to state that: an oriented smooth 10–dimensional manifold is
oriented with respect to differential (integrally lifted from pD 2) Morava K.2/–theory
yK.2/ if the class �W 7 WD

�Sq3y� is equal to 0. The development of this, as well as the
relation to refinements of characteristic classes, deserves a separate treatment and will
be addressed elsewhere.

Remark 56 (i) Note that our construction allows for an AHSS for other spectra
beyond the particular ones we discussed above. This holds for any spectrum which
admits a rationalization, whose coefficients are known, and which can be lifted integrally
in the sense that we discussed at the beginning of this section.

(ii) All the cohomology theories that we used in this paper can be twisted. Indeed,
the construction in this paper can be generalized to construct an AHSS for twisted
differential spectra [32], in the sense of [15], and using [34].
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